content
stringlengths
5
1.05M
import config from app import make_app import pytest from sqlalchemy import create_engine, MetaData @pytest.yield_fixture def app(): create_db(config.SQLA_URI) autoapi_app = make_app() yield autoapi_app drop_db(config.SQLA_URI) def create_db(sqlalchemy_uri): CREATE_TABLE_SQL = """ CREATE TABLE people ( id int primary key, name text, dob date, number_of_pets int) """ INSERT_TABLE_SQL = """ INSERT INTO people (id, name, dob, number_of_pets) VALUES (?, ?, ?, ?) """ engine = create_engine(config.SQLA_URI) connection = engine.connect() connection.execute(CREATE_TABLE_SQL) connection.execute(INSERT_TABLE_SQL, 1, 'Tom', '1980-02-26', 0) connection.execute(INSERT_TABLE_SQL, 2, 'Dick', '1982-03-14', 3) connection.execute(INSERT_TABLE_SQL, 3, 'Harry', '1972-11-24', 2) def drop_db(sqlalchemy_uri): engine = create_engine(config.SQLA_URI) meta = MetaData(bind=engine) meta.reflect() meta.drop_all()
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2017-01-23 15:09 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Rule', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(max_length=32)), ('slug', models.SlugField(max_length=128)), ('mode', models.IntegerField(choices=[(0, 'darf nicht'), (1, 'kann'), (2, 'muss')])), ('description', models.CharField(max_length=2048)), ('rule', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='Sentence', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.CharField(max_length=2048)), ('comma_select', models.CommaSeparatedIntegerField(default='0', max_length=255)), ('total_submits', models.IntegerField(default='0', max_length=25)), ], ), migrations.CreateModel( name='SentenceRule', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('position', models.IntegerField()), ('rule', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='trainer.Rule')), ('sentence', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='trainer.Sentence')), ], ), migrations.CreateModel( name='Solution', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_id', models.CharField(max_length=255)), ('solution', models.BigIntegerField()), ('sentence', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='trainer.Sentence')), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_id', models.CharField(max_length=255)), ('user_rank', models.IntegerField(choices=[(0, 'Kommachaot'), (1, 'Kommakönner'), (2, 'Kommakommandant'), (3, 'Kommakönig')], default=0)), ('comma_type_false', models.CharField(default='A1:0/0, A2:0/0, A3:0/0, A4:0/0, B1.1:0/0, B1.2:0/0, B1.3:0/0, B1.4.1:0/0, B1.4.2:0/0, B1.5:0/0, B2.1:0/0, B2.2:0/0, B2.3:0/0, B2.4.1:0/0, B2.4.2:0/0, B2.5:0/0, C1:0/0, C2:0/0, C3.1:0/0, C3.2:0/0, C4.1:0/0, C4.2:0/0, C5:0/0, C6.1:0/0, C6.2:0/0, C6.3.1:0/0, C6.3.2:0/0, C6.4:0/0, C7:0/0, C8:0/0, D1:0/0, D2:0/0, D3:0/0, E1:0/0', max_length=400)), ], ), migrations.AddField( model_name='sentence', name='rules', field=models.ManyToManyField(through='trainer.SentenceRule', to='trainer.Rule'), ), ]
output_file = None indent = 0 assign_operators = ['=', '*=', '/=', '%=', '+=', '-=', '<<=', '>>=', '&=', '^=', '|='] temp_var_count = 0 operator_mappings = { '!' : 'not', '||' : 'or', '&&' : 'and', } internal_functions = ['printf', ] def generate_unique_tempname(): global temp_var_count temp_var_count += 1 return 'temp_var_%d' % temp_var_count def print_code(*args): global output_file if output_file is None: print(*args, end='') else: print(*args, end='', file=output_file) def print_operator(op): real_op = operator_mappings.get(op) if real_op is not None: print_code(real_op) else: print_code(op) def type_checking(data_type, value_node): if data_type in ['int', 'char', 'short', 'long']: if value_node.data_type in ['float', 'double']: raise TypeError("%s type cannot be assigned to a %s type." \ % (value_node.data_type, data_type)) else: value_node.data_type = 'float' if value_node.value: value_node.value = float(value_node.value) class BaseNode(object): def __init__(self): pass def traverse(self): for key in self.__dict__.keys(): if isinstance(self.__dict__[key], BaseNode): self.__dict__[key].traverse() def generate_code(self): return None def is_leaf(self): is_leaf = isinstance(self, ConstantNode) \ or isinstance(self, StringLiteralNode) \ or isinstance(self, IdentifierNode) return is_leaf class ConstantNode(BaseNode): def __init__(self, value): self.value = value if isinstance(self.value, int): self.data_type = 'int' else: self.data_type = 'float' def generate_code(self, table=None): print_code(self.value) class StringLiteralNode(BaseNode): def __init__(self, value): if value[-3:-1] != '\\0': self.value = "%s\\0%s" % (value[0:-1], value[-1:]) else: self.value = value self.data_type = 'str' def generate_code(self, table=None): print_code(self.value) class IdentifierNode(BaseNode): def __init__(self, item): self.value = None self.item = item self.data_type = None def generate_code(self, table=None): if self.item['data_type'] == 'char' and len(self.item['array_size']) == 0: print_code('ord(%s)' % self.item['actual_name']) else: print_code(self.item['actual_name']) class ArrayNode(BaseNode): def __init__(self, item, bias): self.item = item self.data_type = item.data_type self.value = None self.bias = bias def generate_code(self, table=None): pos = self while isinstance(pos, ArrayNode): pos = pos.item item = pos.item pos = self flag = True factor = 1 flattened_bias = 0 i = -1 while isinstance(pos, ArrayNode): if flag: if pos.bias.value is not None: flattened_bias += factor * pos.bias.value else: flag = False last_temp_name = str(flattened_bias) if flag == False: temp_name_middle = generate_unique_tempname() temp_name = generate_unique_tempname() if pos.bias.is_leaf(): print_code(' ' * indent) print_code('%s = %d * ' % (temp_name_middle, factor)) pos.bias.generate_code() print_code('\n') else: temp_name_expr = pos.bias.generate_code() print_code(' ' * indent) print_code('%s = %d * %s\n' % (temp_name_middle, factor, temp_name_expr)) print_code(' ' * indent) print_code('%s = %s + %s\n' % (temp_name, temp_name_middle, last_temp_name)) last_temp_name = temp_name factor *= item['array_size'][i] i -= 1 pos = pos.item if flag: final_name = '%s[%d]' % (item['actual_name'], flattened_bias) else: final_name = '%s[%s]' % (item['actual_name'], last_temp_name) if item['data_type'] == 'char': return 'ord(%s)' % final_name return final_name class FunctionCallNode(BaseNode): def __init__(self, func, argument_list): self.func = func self.argument_list = argument_list self.data_type = self.func.item['return_type'] self.value = None if self.func.item['actual_name'] in internal_functions: return args_type = [] pos = self.argument_list while isinstance(pos, ArgumentListNode): args_type.append(pos.next_arg.data_type) pos = pos.previous_args if pos: args_type.append(pos.data_type) args_type.reverse() required_len = len(self.func.item['param_type_list']) actual_len = len(args_type) if required_len != actual_len: #return raise SyntaxError('Function %s requires %d arguments but %d is given.' \ % (self.func.item['actual_name'], required_len, actual_len)) for i in range(required_len): type_1 = self.func.item['param_type_list'][i] type_2 = args_type[i] if type_1 == 'int' and type_2 == 'float': raise SyntaxError('Function %s requires %s type for %dth argument, but %s type is given.'\ % (self.func.item['actual_name'], type_1, i, type_2)) def generate_code(self, table=None): temp_args = [] pos = self.argument_list # calculate values of argument expressions(if necessary) while isinstance(pos, ArgumentListNode): if pos.next_arg.is_leaf(): temp_args.append(pos.next_arg) elif pos.next_arg.value is not None: temp_args.append(pos.next_arg.value) else: temp_args.append(pos.next_arg.generate_code()) pos = pos.previous_args if pos is None: pass elif pos.is_leaf(): temp_args.append(pos) elif pos.value is not None: temp_args.append(pos.value) else: temp_args.append(pos.generate_code()) temp_args.reverse() if self.func.item['actual_name'] == 'printf': return self.print_printf_function(temp_args) # print code for function names temp_name = generate_unique_tempname() print_code(' ' * indent) print_code("%s = %s" % (temp_name, self.func.item['actual_name'])) print_code('(') # print code for arguments for i in range(len(temp_args)): arg = temp_args[i] if isinstance(arg, BaseNode): arg.generate_code() else: print_code(arg) if i < len(temp_args) - 1: print_code(', ') print_code(')\n') return temp_name def print_printf_function(self, args): temp_name = generate_unique_tempname() print_code(' ' * indent) print_code("%s = %s" % (temp_name, 'print')) print_code('(') for i in range(len(args)): arg = args[i] if isinstance(arg, BaseNode): arg.generate_code() else: print_code(arg) if i == 0: print_code(' % (') elif i < len(args) - 1: print_code(', ') else: print_code(')') print_code(')\n') return temp_name class ArgumentListNode(BaseNode): def __init__(self, previous_args, next_arg): self.previous_args = previous_args self.next_arg = next_arg class ExpressionNode(BaseNode): @classmethod def cal_unary_expression(cls, op, operator): if operator == '+': return op elif operator == '-': return -op elif operator == '!': return (not op) else: raise NotImplementedError('Unary operator %s is not implemented.' % operator) @classmethod def cal_binary_expression(cls, op1, operator, op2): if operator == '||': return int(op1 or op2) elif operator == '&&': return int(op1 and op2) elif operator == '|': return op1 | op2 elif operator == '^': return op1 ^ op2 elif operator == '&': return op1 & op2 elif operator == '==': return int(op1 == op2) elif operator == '!=': return int(op1 != op2) elif operator == '<': return int(op1 < op2) elif operator == '>': return int(op1 > op2) elif operator == '<=': return int(op1 <= op2) elif operator == '>=': return int(op1 >= op2) elif operator == '<<': return op1 << op2 elif operator == '>>': return op1 >> op2 elif operator == '+': return op1 + op2 elif operator == '-': return op1 - op2 elif operator == '*': return op1 * op2 elif operator == '/': # TODO: type checking return op1 / op2 elif operator == '%': return op1 % op2 def __init__(self, op1, operator, op2): self.op1 = op1 self.op2 = op2 self.operator = operator # TODO: type checking self.data_type = op1.data_type # TODO: type checking self.value = None if op2 is None: if op1.value is not None: self.value = self.cal_unary_expression(op1.value, operator) else: if op1.value is not None and op2.value is not None: self.value = self.cal_binary_expression(op1.value, operator, op2.value) def generate_code(self, table=None): new_symbol_name = None if self.op2 is not None: is_leaf_1 = self.op1.is_leaf() is_leaf_2 = self.op2.is_leaf() # For complex expressions, deal with sub-expressions first. if is_leaf_1 == False and self.op1.value is None: temp_op1 = self.op1.generate_code() if is_leaf_2 == False and self.op2.value is None: temp_op2 = self.op2.generate_code() print_code(' ' * indent) if self.operator not in assign_operators: new_symbol_name = generate_unique_tempname() print_code('%s = ' % new_symbol_name) if is_leaf_1: self.op1.generate_code() elif self.op1.value is not None: print_code(self.op1.value) else: print_code(temp_op1) print_code(' ') print_operator(self.operator) print_code(' ') if is_leaf_2: self.op2.generate_code() elif self.op2.value is not None: print_code(self.op2.value) else: print_code(temp_op2) print_code('\n') if self.operator not in assign_operators: return new_symbol_name else: is_leaf_1 = self.op1.is_leaf() if is_leaf_1 == False and self.op1.value is None: temp_op1 = self.op1.generate_code() print_code(' ' * indent) new_symbol_name = generate_unique_tempname() print_code('%s = ' % new_symbol_name) print_operator(self.operator) if is_leaf_1: self.op1.generate_code() elif self.op1.value is not None: print_code(self.op1.value) else: print_code(temp_op1) print_code('\n') return new_symbol_name class ExpressionListNode(BaseNode): def __init__(self, previous_exprs, next_expr): self.previous_exprs = previous_exprs self.next_expr = next_expr class DeclarationNode(BaseNode): def __init__(self, data_type, init_declarator_list): self.data_type = data_type self.init_declarator_list = init_declarator_list def add_into_table(self, table): self.init_declarator_list.add_into_table(self.data_type, table) def generate_code(self, table=None): self.init_declarator_list.generate_code() class DeclarationListNode(BaseNode): def __init__(self, previous_declarations, next_declaration): self.previous_declarations = previous_declarations self.next_declaration = next_declaration def generate_code(self, table=None): self.previous_declarations.generate_code() self.next_declaration.generate_code() class InitDeclaratorListNode(BaseNode): def __init__(self, previous_declarators, next_declarator): self.previous_declarators = previous_declarators self.next_declarator = next_declarator def add_into_table(self, data_type, table): pos = self while isinstance(pos, InitDeclaratorListNode): pos.next_declarator.add_into_table(data_type, table) pos = pos.previous_declarators pos.add_into_table(data_type, table) def generate_code(self, table=None): pos = self self.previous_declarators.generate_code() self.next_declarator.generate_code() class InitDeclaratorNode(BaseNode): def __init__(self, declarator, initializer): self.declarator = declarator self.initializer = initializer def add_into_table(self, data_type, table): pos = self.declarator array_size = list() while isinstance(pos, DeclaratorArrayNode): array_size.append(pos.constant_expression.value) pos = pos.declarator array_size.reverse() name = pos.item # Type checking if self.initializer: type_checking(data_type, self.initializer) pos.item = table.insert(name, data_type, array_size) def generate_code(self, table=None): array_size = list() item = None if isinstance(self.declarator, DeclaratorArrayNode): (item, array_size) = self.declarator.array_meta else: item = self.declarator.item if len(array_size) > 0: flattened_array_size = 1 for n in array_size: flattened_array_size *= n print_code(' ' * indent) if isinstance(self.initializer, StringLiteralNode): print_code("%s = " % item['actual_name']) self.initializer.generate_code() print_code("\n") else: print_code("%s = [0] * %d\n" % (item['actual_name'], flattened_array_size)) else: if self.initializer is not None: if self.initializer.is_leaf(): print_code(' ' * indent) print_code("%s = " % item['actual_name']) self.initializer.generate_code() print_code('\n') else: temp_ini = self.initializer.generate_code() print_code(' ' * indent) print_code("%s = %s\n" % (item['actual_name'], temp_ini)) else: print_code(' ' * indent) print_code("%s = None\n" % item['actual_name']) class DeclaratorFunctionNode(BaseNode): def __init__(self, declarator, param_type_list): self.declarator = declarator self.param_type_list = param_type_list def generate_code(self, table=None): global indent print_code(self.declarator.item['actual_name']) print_code("(") if self.param_type_list is not None: self.param_type_list.generate_code() print_code(")") class DeclaratorArrayNode(BaseNode): def __init__(self, declarator, constant_expression): self.declarator = declarator self.constant_expression = constant_expression @property def array_meta(self): pos = self array_size = list() while isinstance(pos, DeclaratorArrayNode): array_size.append(pos.constant_expression.value) pos = pos.declarator array_size.reverse() return (pos.item, array_size) class ParameterTypeListNode(BaseNode): def __init__(self, previous_declarations, next_declaration): self.previous_declarations = previous_declarations self.next_declaration = next_declaration def generate_code(self, table=None): self.previous_declarations.generate_code() print_code(", ") self.next_declaration.generate_code() class ParameterDeclarationNode(BaseNode): def __init__(self, data_type, declarator): self.data_type = data_type self.declarator = declarator def add_into_table(self, table): pos = self.declarator array_size = list() while isinstance(pos, DeclaratorArrayNode): array_size.append(pos.constant_expression.value) pos = pos.declarator array_size.reverse() name = pos.item pos.item = table.insert(name, self.data_type, array_size) def generate_code(self, table=None): pos = self.declarator while isinstance(pos, DeclaratorArrayNode): pos = pos.declarator print_code(pos.item['actual_name']) class InitializerNode(BaseNode): def __init__(self, initializer_list): self.initializer_list = initializer_list class IntializerListNode(BaseNode): def __init__(self, previous_initializers, next_initializer): self.previous_initializers = previous_initializers self.next_initializer = next_initializer class CompoundStatementNode(BaseNode): def __init__(self, declaration_list, statement_list): self.declaration_list = declaration_list self.statement_list = statement_list def generate_code(self, table=None): if table is not None: symbol_count = len(table.current_table.items) #print(table.current_table.items) for key in table.current_table.items: print_code(' ' * indent) print_code('global %s\n' % table.current_table.items[key]['actual_name']) if self.declaration_list is not None: self.declaration_list.generate_code() if self.statement_list is not None: self.statement_list.generate_code() if self.declaration_list is None and self.statement_list is None: if table is None : print_code(' ' * indent) print_code('pass\n') elif symbol_count == 0: print_code(' ' * indent) print_code('pass\n') class StatementListNode(BaseNode): def __init__(self, previous_statements, next_statement): self.previous_statements = previous_statements self.next_statement = next_statement def generate_code(self, table=None): self.previous_statements.generate_code() self.next_statement.generate_code() class ExpressionStatementNode(BaseNode): def __init__(self, expression): self.expression = expression def generate_code(self, table=None): self.expression.generate_code() class SelectionStatementNode(BaseNode): def __init__(self, condition, true_statement, false_statement): self.condition = condition self.true_statement = true_statement self.false_statement = false_statement def generate_code(self, table=None): global indent if self.condition.is_leaf() == False: temp_cond = self.condition.generate_code() print_code(' ' * indent) print_code('if ') if self.condition.is_leaf(): self.condition.generate_code() else: print_code(temp_cond) print_code(':\n') indent += 4 self.true_statement.generate_code() indent -= 4 if self.false_statement is not None: print_code(' ' * indent) print_code('else:\n') indent += 4 self.false_statement.generate_code() indent -= 4 class IterationStatementNode(BaseNode): def __init__(self, condition, statement): self.condition = condition self.statement = statement def generate_code(self, table=None): global indent print_code(' ' * indent) print_code('while ') if self.condition.is_leaf(): self.condition.generate_code() else: print_code('True') print_code(':\n') indent += 4 if self.condition.is_leaf() == False: temp_cond = self.condition.generate_code() print_code(' ' * indent) print_code('if not %s:\n' % temp_cond) print_code(' ' * (indent + 4)) print_code('break\n') self.statement.generate_code() indent -= 4 class JumpStatementNode(BaseNode): def __init__(self, jump_type, expression): self.jump_type = jump_type self.expression = expression def generate_code(self, table=None): if self.jump_type == 'continue' or self.jump_type == 'break': print_code(' ' * indent) print_code(self.jump_type) print_code('\n') elif self.jump_type == 'return': if self.expression is None: print_code(' ' * indent) print_code("return\n") else: if self.expression.is_leaf(): print_code(' ' * indent) print_code("return ") self.expression.generate_code() print_code("\n") else: ret_val = self.expression.generate_code() print_code(' ' * indent) print_code("return %s\n" % ret_val) class TranslationUnitNode(BaseNode): def __init__(self, previous_units, next_unit): self.previous_units = previous_units self.next_unit = next_unit def generate_code(self, table): self.previous_units.generate_code(table) self.next_unit.generate_code(table) class FunctionDefinition(BaseNode): def __init__(self, return_type, declarator, statements): self.return_type = return_type self.declarator = declarator self.statements = statements def generate_code(self, table): global indent print_code("def ") self.declarator.generate_code() print_code(":\n") indent += 4 self.statements.generate_code(table) print_code("\n") indent -= 4
# -*- coding: utf-8 -*- import json import logging from beer_garden.api.http.authorization import authenticated, Permissions from beer_garden.api.http.base_handler import BaseHandler class PermissionsAPI(BaseHandler): logger = logging.getLogger(__name__) @authenticated(permissions=[Permissions.LOCAL_ADMIN]) def get(self): """ --- summary: Retrieve all Permissions responses: 200: description: All Permissions schema: type: array items: type: string 50x: $ref: '#/definitions/50xError' tags: - Permissions """ self.set_header("Content-Type", "application/json; charset=UTF-8") self.write(json.dumps(sorted(Permissions.values)))
import pathlib from argparse import ArgumentParser import torch import torchaudio from torchaudio.prototype.pipelines import EMFORMER_RNNT_BASE_LIBRISPEECH def cli_main(): parser = ArgumentParser() parser.add_argument( "--librispeech_path", type=pathlib.Path, required=True, help="Path to LibriSpeech datasets.", ) args = parser.parse_args() dataset = torchaudio.datasets.LIBRISPEECH(args.librispeech_path, url="test-clean") decoder = EMFORMER_RNNT_BASE_LIBRISPEECH.get_decoder() token_processor = EMFORMER_RNNT_BASE_LIBRISPEECH.get_token_processor() feature_extractor = EMFORMER_RNNT_BASE_LIBRISPEECH.get_feature_extractor() streaming_feature_extractor = EMFORMER_RNNT_BASE_LIBRISPEECH.get_streaming_feature_extractor() hop_length = EMFORMER_RNNT_BASE_LIBRISPEECH.hop_length num_samples_segment = EMFORMER_RNNT_BASE_LIBRISPEECH.segment_length * hop_length num_samples_segment_right_context = ( num_samples_segment + EMFORMER_RNNT_BASE_LIBRISPEECH.right_context_length * hop_length ) for idx in range(10): sample = dataset[idx] waveform = sample[0].squeeze() # Streaming decode. state, hypothesis = None, None for idx in range(0, len(waveform), num_samples_segment): segment = waveform[idx : idx + num_samples_segment_right_context] segment = torch.nn.functional.pad(segment, (0, num_samples_segment_right_context - len(segment))) with torch.no_grad(): features, length = streaming_feature_extractor(segment) hypos, state = decoder.infer(features, length, 10, state=state, hypothesis=hypothesis) hypothesis = hypos[0] transcript = token_processor(hypothesis.tokens) if transcript: print(transcript, end=" ", flush=True) print() # Non-streaming decode. with torch.no_grad(): features, length = feature_extractor(waveform) hypos = decoder(features, length, 10) print(token_processor(hypos[0].tokens)) print() if __name__ == "__main__": cli_main()
# Python - 2.7.6 Test.describe('Basic tests') Test.assert_equals(year_days(0), '0 has 366 days') Test.assert_equals(year_days(-64), '-64 has 366 days') Test.assert_equals(year_days(2016), '2016 has 366 days') Test.assert_equals(year_days(1974), '1974 has 365 days') Test.assert_equals(year_days(-10), '-10 has 365 days') Test.assert_equals(year_days(666), '666 has 365 days') Test.assert_equals(year_days(1857), '1857 has 365 days') Test.assert_equals(year_days(2000), '2000 has 366 days') Test.assert_equals(year_days(-300), '-300 has 365 days') Test.assert_equals(year_days(-1), '-1 has 365 days')
#!/usr/bin/env python # coding:utf-8 import math import logging import torch from torch.optim import Optimizer from torch.optim import lr_scheduler as lrs class LRSchedulerWorker(object): def __init__(self, log_type, logger=None): super(LRSchedulerWorker, self).__init__() self.log_level = log_type self.logger = logger self._build_map() def __call__(self, optimizer, scheduler_type, scheduler_setting, scheduler_state=None, **other_params): scheduler = self.init_scheduler( scheduler_type, optimizer, group_num=1, **scheduler_setting) scheduler = self.load_state(scheduler=scheduler, scheduler_state=scheduler_state) return scheduler def _build_map(self): self.name2scheduler = { 'constant': keep_constant, 'power': reduce_with_power, 'plateau': reduce_on_plateau, 'improve': ReduceByImprove, 'cosine': reduce_cosine_annealing, 'cosine_restart': reduce_cosine_annealing_warm_restart } self.name2default_setting = { 'constant': {}, 'power': {'sleep_epochs': 25, 'reduce_factor': 0.5}, 'plateau': {'mode': 'min', 'patience': 3, 'reduce_factor': 0.5, 'cooldown': 3, 'min_lr': 1e-5}, 'improve': {'factor': 0.5, 'patience': 3}, 'cosine': {'t_max': 4, 'min_lr': 1e-5, 'last_epoch': -1}, 'cosine_restart': {'t0': 20, 't_mult': 2, 'min_lr': 1e-5} } def init_scheduler(self, scheduler_type, optimizer, group_num=1, **scheduler_setting): write_log(content='Using scheduler: {}'.format(scheduler_type), level=self.log_level, logger=self.logger) default_setting = self.name2default_setting[scheduler_type] if group_num == 1: default_setting.update(scheduler_setting) scheduler = self.name2scheduler[scheduler_type]( **{**{'optimizer': optimizer}, **default_setting}) else: raise NotImplementedError('cannot support more than 1 params group') return scheduler def load_state(self, scheduler, scheduler_state=None): if not scheduler_state: write_log(content='No exist scheduler state', level=self.log_level, logger=self.logger) elif isinstance(scheduler_state, (dict, str, tuple, list)): if isinstance(scheduler_state, str): already_optimizer_state = torch.load(scheduler_state, map_location=lambda storage, loc: storage) write_log(content='Loading exist scheduler state from {}'.format(scheduler_state), level=self.log_level, logger=self.logger) elif isinstance(scheduler_state, (tuple, list)): already_optimizer_state = torch.load( scheduler_state[0], map_location=lambda storage, loc: storage)[scheduler_state[1]] write_log(content='Loading exist scheduler state from {}'.format('.'.join(scheduler_state)), level=self.log_level, logger=self.logger) else: already_optimizer_state = scheduler_state write_log(content='Loading exist scheduler state', level=self.log_level, logger=self.logger) scheduler.load_state_dict(already_optimizer_state) else: raise ValueError('unknown scheduler state') return scheduler def keep_constant(optimizer, **params): def lr_constant(epoch): return 1. scheduler = lrs.LambdaLR( optimizer, lr_lambda=lr_constant, last_epoch=-1) return scheduler def reduce_with_power(optimizer, sleep_epochs, reduce_factor, **params): def lr_power_epoch(epoch): if epoch >= sleep_epochs: factor = math.pow(0.5, (epoch - sleep_epochs + 1) * reduce_factor) else: factor = 1. return factor scheduler = lrs.LambdaLR( optimizer, lr_lambda=lr_power_epoch, last_epoch=-1) return scheduler def reduce_on_plateau(optimizer, mode, patience, reduce_factor, cooldown, min_lr, **params): scheduler = lrs.ReduceLROnPlateau( optimizer, mode=mode, factor=reduce_factor, patience=patience, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=cooldown, min_lr=min_lr, eps=1e-08) return scheduler def reduce_cosine_annealing(optimizer, t_max, min_lr, last_epoch, **other_params): scheduler = lrs.CosineAnnealingLR(optimizer=optimizer, T_max=t_max, eta_min=min_lr, last_epoch=last_epoch) return scheduler def reduce_cosine_annealing_warm_restart(optimizer, t0, t_mult, min_lr, **other_params): scheduler = lrs.CosineAnnealingWarmRestarts(optimizer, T_0=t0, T_mult=t_mult, eta_min=min_lr, last_epoch=-1) return scheduler class ReduceByImprove(object): def __init__(self, optimizer, factor=0.1, patience=10, **params): super(ReduceByImprove, self).__init__() assert factor < 1.0, 'Factor should be < 1.0.' self.factor = factor # Attach optimizer if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an Optimizer'.format(type(optimizer).__name__)) self.optimizer = optimizer self.patience = patience def step(self, no_improve): if no_improve >= self.patience: self._reduce_lr() def _reduce_lr(self): for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group['lr']) new_lr = old_lr * self.factor param_group['lr'] = new_lr def state_dict(self): return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} def load_state_dict(self, state_dict): self.__dict__.update(state_dict) def write_log(content, logger=None, level=None, **other_params): """ write log :param content: content need to write :param level: level of content or None :param logger: False or logger :param other_params: reserved interface :return: None """ if not logger: pass elif logger == 'print': print(content) elif isinstance(logger, logging.Logger): if not level: pass else: assert level in ['debug', 'info', 'warning', 'error', 'critical'], 'unknown level' getattr(logger, level)(content) else: raise NotImplementedError('unknown logger') return None
print('Accessing private members in Class:') print('-'*35) class Human(): # Private var __privateVar = "this is __private variable" # Constructor method def __init__(self): self.className = "Human class constructor" self.__privateVar = "this is redefined __private variable" # Public method def showName(self, name): self.name = name return self.__privateVar + " with name: " + name # Private method def __privateMethod(self): return "Private method" def _protectedMethod(self): return 'Protected Method' # Public method that returns a private variable def showPrivate(self): return self.__privateMethod() def showProtecded(self): return self._protectedMethod() class Male(Human): def showClassName(self): return "Male" def showPrivate(self): return self.__privateMethod() def showProtected(self): return self._protectedMethod() class Female(Human): def showClassName(self): return "Female" def showPrivate(self): return self.__privateMethod() human = Human() print(f'\nCalling the: {human.className} from the Human class.') print(f'\nAccessing the public method of Human class: {human.showName("Ling-Ling")}') print(f'\nAccessing the private method of the Human class: {human.showPrivate()}, from Human Class.') # print(f'Acessing the protected Method of the Human Class : {human.showProtected()},from Human Class.') -->AttributeError:'Human' object has no attribute 'showProtected' male = Male() print(f'\ncalling the {male.className} from the Male class') print(f'\nAccessing the Public method of Male class: {male.showClassName()}, from male class') print(f'\nAccessing the protected method of Male class: {male.showProtected()}, from male class.') # print(f'Accessing the private method of Male class: {male.Human__showPrivate()}, from male Class.') --> AttributeError: 'Male' object has no attribute '_Male__privateMethod' female = Female() print(f'\ncalling the {female.className} from the Female class') print(f'\nAccessing the Public method of female class: {female.showClassName()}, from Female class') # print(f'Accessing the protected method of female class: {female.showProtected()}, from Female class.') --> AttributeError: 'Female' object has no attribute 'showProtected' # print(f'Accessing the private method of female class: {female.showPrivate()}, from Female Class.') AttributeError: 'Female' object has no attribute '_Female__privateMethod' print('\n'+'-'*25+"Method 2 -- Accessing private members in Class"+'-'*25) print('\n'+'Example: Public Attributes: ') print('-'*20) class Employee: def __init__(self,name,sal): self.name=name #Public attribute self.salary=sal #Public attribute e1=Employee('Ling1',30000) print(f'Accessing the Public Attributes: {e1.name} : {e1.salary}') # if attribute is public then the value can be modified too e1.salary=40000 print(f'Accessing the Public Attributes after modifying: {e1.name} : {e1.salary}') print('\n'+'Example: Protected Attributes: ') '''Python's convention to make an instance variable protected is to add a prefix _ (single underscore) to it. This effectively prevents it to be accessed, unless it is from within a sub-class.''' print('-'*25) class Employee: def __init__(self,name,sal): self._name=name #protected attribute self._salary=sal #protected attribute e2=Employee('Ling2',50000) print(f'Accessing the Protected Attributes: {e2._name} : {e2._salary}') #even if attribute is protected the value can be modified too e2._salary=44000 print(f'Accessing the Protected Attributes after modifying: {e2._name} : {e2._salary}') print('\n'+'Example: Private Attributes: ') '''a double underscore __ prefixed to a variable makes it private. It gives a strong suggestion not to touch it from outside the class. Any attempt to do so will result in an AttributeError.''' print('-'*25) class Employee: def __init__(self,name,sal): self.__name=name # private attribute self.__salary=sal # private attribute e3=Employee('Ling3',60000) # print(f'Accessing the Privated Attributes: {e3.__name} : {e3.__salary}') --> AttributeError: 'Employee' object has no attribute '__name '''In order to access the attributes, Python performs name mangling of private variables. Every member with double underscore will be changed to _object._class__variable.''' print(f'Accessing the Private Attributes: {e3._Employee__name} : {e3._Employee__salary}') #even if attribute is protected the value can be modified too e3._Employee__salary=15000 print(f'Accessing the Protected Attributes after modifying: {e3._Employee__name} : {e3._Employee__salary}')
# -*- coding: utf-8 -*- """ Created on Sun Apr 26 19:54:16 2020 @author: tobia """ import spacy import pandas as pd import numpy as np import nltk from nltk.stem import SnowballStemmer from spacy.lang.es import Spanish nltk.download('wordnet') spacy.load("es_core_news_md") nltk.download('stopwords') #open csv file to construct the data data = pd.read_csv('') #load network_data.csv mom = list() for time in data['retrieved']: if time[38] == "1": mom.append(2021) elif time[38] == "4": mom.append(2020) else: print("ERROR!") data['mom'] = mom data['subgraph'] = np.where(data['mom'] == 2021, data['subgraph'].astype(str) + "_2021", data['subgraph'].astype(str)) data = data.iloc[:,1:21] prep_text = np.array(data['text']) #correct for doubled exeptional threads manual_stopwords = [ #append this list to take out all the stuff that we cannot process for the later topic modelling ">", ">>" "negrin", "negrines", "negrín", "negro", "negros", "anon", "URL", "number", ",", ".", "?", "¿", "@", "¡", "!", "(", ")", "q", "ser", ] #for the strings that start with digits in the beginning of every post parser = Spanish() stemmer = SnowballStemmer('spanish') stop_list = nltk.corpus.stopwords.words('spanish') [stop_list.append(word) for word in manual_stopwords] es_stop = set(stop_list) for index in (range(0,len(prep_text))): prep_text[index] = str(prep_text[index]).replace('>', ' ') prep_text[index] = str(prep_text[index]).replace('<', ' ') prep_text[index] = str(prep_text[index]).replace('0', ' ') prep_text[index] = str(prep_text[index]).replace('1', ' ') prep_text[index] = str(prep_text[index]).replace('2', ' ') prep_text[index] = str(prep_text[index]).replace('3', ' ') prep_text[index] = str(prep_text[index]).replace('4', ' ') prep_text[index] = str(prep_text[index]).replace('5', ' ') prep_text[index] = str(prep_text[index]).replace('6', ' ') prep_text[index] = str(prep_text[index]).replace('7', ' ') prep_text[index] = str(prep_text[index]).replace('8', ' ') prep_text[index] = str(prep_text[index]).replace('9', ' ') prep_text[index] = str(prep_text[index]).replace('(OP)', ' ') prep_text[index] = str(prep_text[index]).replace('/', ' ') prep_text[index] = str(prep_text[index]).replace('\\', ' ') prep_text[index] = str(prep_text[index]).replace('(', ' ') prep_text[index] = str(prep_text[index]).replace(')', ' ') prep_text[index] = str(prep_text[index]).replace('*', ' ') prep_text[index] = str(prep_text[index]).replace('[', ' ') prep_text[index] = str(prep_text[index]).replace(']', ' ') prep_text[index] = str(prep_text[index]).replace(';', ' ') prep_text[index] = str(prep_text[index]).replace('^', ' ') prep_text[index] = str(prep_text[index]).replace('"', ' ') prep_text[index] = str(prep_text[index]).replace('!', ' ') prep_text[index] = str(prep_text[index]).replace('¡', ' ') prep_text[index] = str(prep_text[index]).replace('?', ' ') prep_text[index] = str(prep_text[index]).replace('¿', ' ') prep_text[index] = str(prep_text[index]).replace('@', ' ') prep_text[index] = str(prep_text[index]).replace('.', ' ') prep_text[index] = str(prep_text[index]).replace('#', ' ') prep_text[index] = str(prep_text[index]).replace('&', ' ') prep_text[index] = str(prep_text[index]).replace('%', ' ') prep_text[index] = str(prep_text[index]).replace('https:', ' ') prep_text[index] = str(prep_text[index]).replace('http:', ' ') prep_text[index] = str(prep_text[index]).replace(':', ' ') prep_text[index] = str(prep_text[index]).replace('`', ' ') prep_text[index] = str(prep_text[index]).replace('-', ' ') prep_text[index] = str(prep_text[index]).replace('=', ' ') prep_text[index] = str(prep_text[index]).replace('\'', ' ') prep_text[index] = str(prep_text[index]).replace('xd', ' ') print(str(index)+ ': nº of lines replaced') #tokenizer and lemmatizer def tokenize(text): lda_tokens = list() tokens = parser(text) #### one possibility for adaptation is: [lda_tokens.append(token.lower_) for token in tokens if token.isalpha()] ######## for token in tokens: if token.orth_.isspace(): continue elif token.like_url: lda_tokens.append('URL') elif token.orth_.isdigit(): lda_tokens.append('number') else: lda_tokens.append(token.lower_) return lda_tokens #a good idea could be a curseword stoplist def prepare_text_for_lda(text): lemmas = tokenize(text) lemmas = [token for token in lemmas if token not in es_stop] lemmas = [stemmer.stem(token) for token in lemmas] return lemmas #make the analyzable data strucutre data['prep_text'] = prep_text bodies = data['prep_text'] bodies = list(bodies) text_data = list() thread_len = list() #tokenize the different bodies counter = 1 for body in bodies: #try to tokenize try: text_data.append(prepare_text_for_lda(body)) print(str(counter) + 'bodies tokenized and lemmatized') #handles empty nodes except TypeError: text_data.append([]) print('empty text node') print(str(counter) + 'bodies tokenized and lemmatized') counter = counter + 1 #dictionary = corpora.Dictionary(text_data) #those couple of lines are going to be excluded in the final version #corpus = [dictionary.doc2bow(text) for text in text_data] #we just keep them as reference until we have made the corpora per topic #pickle.dump(corpus, open('C:\\Users\\tobia\\Desktop\\Working Copies\\Projects\\phd thesis\\code\\graphs\\corpus.pkl', 'wb')) #pickle.dump(text_data, open('C:\\Users\\tobia\\Desktop\\Working Copies\\Projects\\phd thesis\\code\\graphs\\lemmatisedtext.pkl', 'wb')) #dictionary.save('C:\\Users\\tobia\\Desktop\\Working Copies\\Projects\\phd thesis\\code\\graphs\\dictionary.gensim') #set in a character for missing text new_text_data = list() for list_ in text_data: if len(list_) == 0: new_text_data.append(['?']) elif list_ == ['nan']: new_text_data.append(['?']) elif len(list_) != 0: new_text_data.append(list_) #here we can add all the stuff that we will need to calculate later such as message lenght, mean centralities per topic and so on #operate on the text_data array rathern than the text data dataframe column data['text_data'] = new_text_data filepath = "" data.to_csv('', index = True) #create network_data_prep.csv print("data saved. FINISH")
#!/usr/bin/env python3 """ Author : shv <shv@email.arizona.edu> Date : 2021-11-16 Purpose: Run length encoding """ import argparse import os # -------------------------------------------------- def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description="", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("str", metavar="str", help="DNA text or file") args = parser.parse_args() if os.path.isfile(args.str): args.str = open(args.str).read() return args # -------------------------------------------------- def main(): """Zoom""" args = get_args() for seq in args.str.splitlines(): print(rle(seq)) # -------------------------------------------------- def rle(seq: str) -> str: "creating RLE" encoded_dna = "" i = 0 while i <= len(seq) - 1: count = 1 ch = seq[i] j = i while j < len(seq) - 1: if seq[j] == seq[j + 1]: count = count + 1 j = j + 1 else: break encoded_dna = encoded_dna + ch + (str(count) if count > 1 else "") i = j + 1 return encoded_dna # ------------------------------------------------------- def test_rle(): """Test rle""" assert rle("A") == "A" assert rle("ACGT") == "ACGT" assert rle("AA") == "A2" assert rle("AAAAA") == "A5" assert rle("ACCGGGTTTT") == "AC2G3T4" # -------------------------------------------------- if __name__ == "__main__": main()
class StopRequest: stop_id = 0 components = [] def __init__(self, stop_id, components=[]): self.stop_id = stop_id self.components = components
from typing import TYPE_CHECKING, Optional from requests import Session from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry if TYPE_CHECKING: from requests import PreparedRequest # pylint: disable=ungrouped-imports class TimeoutAdapter(HTTPAdapter): """ Adds a default timeout to request Requests. """ DEFAULT_TIMEOUT = 10 def __init__(self, *args, **kwargs): _timeout = kwargs.pop("timeout", None) if _timeout is None: self.timeout = self.DEFAULT_TIMEOUT else: self.timeout = _timeout super().__init__(*args, **kwargs) def __getstate__(self): state = super().__getstate__() state["timeout"] = self.timeout return state def send( self, request: "PreparedRequest", *args, **kwargs ): # pragma: no cover # pylint: disable=signature-differs kwargs.setdefault("timeout", self.timeout) return super().send(request, *args, **kwargs) retry_strategy = Retry( total=3, status_forcelist=[429, 500, 502, 503, 504], backoff_factor=3, ) timeout_retry_adapter = TimeoutAdapter(max_retries=retry_strategy) DEFAULT_HEADERS = {"Accept": "application/json"} def session_factory(session: Optional[Session] = None) -> Session: """ Creates or modifies `requests.Session` by attaching a timeout adapter with a retry strategy and default headers. """ if session is None: session = Session() session.mount("https://", timeout_retry_adapter) session.mount("http://", timeout_retry_adapter) session.headers.update(DEFAULT_HEADERS) return session
import tensorflow as tf from tensorflow import keras # # Helper libraries import numpy as np import math import pathlib as path from PIL import Image import random print(tf.__version__) # Helper function to display digit images MODEL_FILE = "mnist.h5" def pre_process(): def _process(p): return np.asfarray(Image.open( p).resize((28, 28), Image.BICUBIC).convert('L').point(lambda x: 255 - x)) / 255 root_dir = path.Path("English") train_dir = [i for i in root_dir.iterdir() if i.name.startswith("Sample")] test_dir = [i for i in root_dir.iterdir() if i.name.startswith("Test")] train_dir.sort() test_dir.sort() test_data = [[_process(str(j)) for j in i.iterdir()] for i in test_dir] train_data = [[_process(str(j)) for j in i.iterdir()] for i in train_dir] return train_data, test_data def build(): train_data, test_data = pre_process() train_labels = [i for i in range(len(train_data)) for j in train_data[i]] test_labels = [i for i in range(len(test_data)) for j in test_data[i]] train_data = [j for i in train_data for j in i] test_data = [j for i in test_data for j in i] test_dl = list(zip(test_data, test_labels)) train_dl = list(zip(train_data, train_labels)) random.shuffle(test_dl) random.shuffle(train_dl) test_data, test_labels = zip(*test_dl) train_data, train_labels = zip(*train_dl) test_data = np.asarray(test_data) test_labels = np.asarray(test_labels) train_data = np.asarray(train_data) train_labels = np.asarray(train_labels) # Define the model architecture model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), # keras.layers.Dense(128, activation=tf.nn.relu), # Optional: You can replace the dense layer above with the convolution layers below to get higher accuracy. keras.layers.Reshape(target_shape=(28, 28, 1)), keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation=tf.nn.relu), keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation=tf.nn.relu), keras.layers.MaxPooling2D(pool_size=(2, 2)), keras.layers.Dropout(0.25), keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation=tf.nn.relu), keras.layers.Dropout(0.5), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Train the digit classification model model.fit(train_data, train_labels, epochs=5) # Evaluate the model using test dataset. test_loss, test_acc = model.evaluate(test_data, test_labels) print('Test accuracy:', test_acc) # Predict the labels of digit images in our test dataset. # predictions = model.predict(test_data) # Then plot the first 25 test images and their predicted labels. # show_sample(test_images, # ['Predicted: %d' % np.argmax(result) for result in predictions]) model.save(MODEL_FILE) def recognize(images) -> int: if not path.Path(MODEL_FILE).exists(): build() model = keras.models.load_model(MODEL_FILE) predictions = model.predict(images) return [np.argmax(result) for result in predictions] class Recognizer: def __init__(self): if not path.Path(MODEL_FILE).exists(): build() self.model = keras.models.load_model(MODEL_FILE) def predict(self, images): predictions = self.model.predict(images) return [np.argmax(result) for result in predictions] if __name__ == "__main__": build()
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ PauliExpectation Class """ import logging from typing import Union import numpy as np from qiskit.opflow.converters.abelian_grouper import AbelianGrouper from qiskit.opflow.converters.pauli_basis_change import PauliBasisChange from qiskit.opflow.expectations.expectation_base import ExpectationBase from qiskit.opflow.list_ops.composed_op import ComposedOp from qiskit.opflow.list_ops.list_op import ListOp from qiskit.opflow.operator_base import OperatorBase from qiskit.opflow.primitive_ops.pauli_sum_op import PauliSumOp from qiskit.opflow.primitive_ops.primitive_op import PrimitiveOp from qiskit.opflow.state_fns.operator_state_fn import OperatorStateFn from qiskit.opflow.state_fns.state_fn import StateFn logger = logging.getLogger(__name__) class PauliExpectation(ExpectationBase): r""" An Expectation converter for Pauli-basis observables by changing Pauli measurements to a diagonal ({Z, I}^n) basis and appending circuit post-rotations to the measured state function. Optionally groups the Paulis with the same post-rotations (those that commute with one another, or form Abelian groups) into single measurements to reduce circuit execution overhead. """ def __init__(self, group_paulis: bool = True) -> None: """ Args: group_paulis: Whether to group the Pauli measurements into commuting sums, which all have the same diagonalizing circuit. """ self._grouper = AbelianGrouper() if group_paulis else None def convert(self, operator: OperatorBase) -> OperatorBase: """Accepts an Operator and returns a new Operator with the Pauli measurements replaced by diagonal Pauli post-rotation based measurements so they can be evaluated by sampling and averaging. Args: operator: The operator to convert. Returns: The converted operator. """ if isinstance(operator, ListOp): return operator.traverse(self.convert).reduce() if isinstance(operator, OperatorStateFn) and operator.is_measurement: # Change to Pauli representation if necessary if ( isinstance(operator.primitive, (ListOp, PrimitiveOp)) and not isinstance(operator.primitive, PauliSumOp) and {"Pauli", "SparsePauliOp"} < operator.primitive_strings() ): logger.warning( "Measured Observable is not composed of only Paulis, converting to " "Pauli representation, which can be expensive." ) # Setting massive=False because this conversion is implicit. User can perform this # action on the Observable with massive=True explicitly if they so choose. pauli_obsv = operator.primitive.to_pauli_op(massive=False) operator = StateFn(pauli_obsv, is_measurement=True, coeff=operator.coeff) if self._grouper and isinstance(operator.primitive, (ListOp, PauliSumOp)): grouped = self._grouper.convert(operator.primitive) operator = StateFn(grouped, is_measurement=True, coeff=operator.coeff) # Convert the measurement into diagonal basis (PauliBasisChange chooses # this basis by default). cob = PauliBasisChange(replacement_fn=PauliBasisChange.measurement_replacement_fn) return cob.convert(operator).reduce() return operator def compute_variance(self, exp_op: OperatorBase) -> Union[list, float, np.ndarray]: def sum_variance(operator): if isinstance(operator, ComposedOp): sfdict = operator.oplist[1] measurement = operator.oplist[0] average = np.asarray(measurement.eval(sfdict)) variance = sum( (v * (np.asarray(measurement.eval(b)) - average)) ** 2 for (b, v) in sfdict.primitive.items() ) return operator.coeff * variance elif isinstance(operator, ListOp): return operator.combo_fn([sum_variance(op) for op in operator.oplist]) return 0.0 return sum_variance(exp_op)
import sys import os import pytest import pandas as pd sys.path.insert(1, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import json_to_excel.json_to_excel as source_code def test_create_sample_json(): count=1 test_json = source_code.create_sample_json(count=count) assert isinstance(test_json, list) assert test_json[0]['Ref'] == f'ABC_{count}' assert test_json[0]['sample'] == f'sample_status_{count}' def test_create_sample_json_error(): test_json = source_code.create_sample_json(count='1') assert test_json == "Exception occured!" with pytest.raises(Exception): test_json = source_code.create_sample_json(count=1) assert test_json[1]['Ref'] == f'ABC_{1}' def test_read_from_excel(): test_obj = source_code.ExcelHandling() assert test_obj.read_from_excel() def test_write_to_excel(): DUMMY_JSON_LOAD = [{'Ref': 'test_1', 'sample': 'test_1'}] process_file = r"C:\Users\JP\OneDrive\Documents\GitHub\json_to_excel\json_to_excel\processing\excel_database.xlsx" test_obj = source_code.ExcelHandling(json_load=DUMMY_JSON_LOAD) test_obj.read_from_excel(process_file=process_file) assert test_obj.write_to_excel() data_ = pd.read_excel(process_file, sheet_name='Sheet1') assert data_.values[0][1] == 'test_1' assert data_.values[0][2] == 'test_1'
# -*- coding: utf-8 -*- #!/usr/bin/env python # -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """ Demo script showing detections in sample images. See README.md for installation instructions before running. """ import _init_paths from fast_rcnn.config import cfg from fast_rcnn.test import im_detect from fast_rcnn.test import vis_detections from fast_rcnn.nms_wrapper import nms from utils.timer import Timer import matplotlib.pyplot as plt import numpy as np import scipy.io as sio import os, sys # Make sure that caffe is on the python path: caffe_root = './caffe-fast-rcnn/' os.chdir(caffe_root) sys.path.insert(0, os.path.join(caffe_root, 'python')) import caffe import cv2 import argparse from PIL import Image CLASSES = ('__background__','hand') def demo(net, im, nframe): """Detect object classes in an image using pre-computed object proposals.""" timer = Timer() timer.tic() scores, boxes = im_detect(net, im) timer.toc() print ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class CONF_THRESH = 0.95 NMS_THRESH = 0.01 dets = np.hstack((boxes, scores)).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] inds = np.where(dets[:, -1] >= CONF_THRESH)[0] if len(inds) == 0: print "not detected hand" # im = im[:, :, (2, 1, 0)] else: print "scores:\n",scores print "boxes:\n", boxes print "dets:\n", dets for i in xrange(dets.shape[0]): if(dets[i][4]>CONF_THRESH): cv2.rectangle(im, (dets[i][0], dets[i][1]),(dets[i][2], dets[i][3]),(255,0,0),1) cv2.putText(im,str(dets[i][4] ), (dets[i][0], dets[i][1]), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,0)) # # cv2.imshow("detections", im); if __name__ == '__main__': cfg.TEST.HAS_RPN = True # Use RPN for proposals prototxt = "/Users/momo/wkspace/caffe_space/detection/py-faster-rcnn/models/MMCV5S8/faster_rcnn_end2end/test.prototxt" caffemodel = "/Users/momo/wkspace/caffe_space/detection/py-faster-rcnn/models/MMCV5S8/mmcv5stride8bn128_neg01_iter_100000.caffemodel" # prototxt = "/Users/momo/Desktop/gesture/from113/MMCV5_stride16/test.prototxt" # caffemodel = "/Users/momo/Desktop/sdk/momocv2_model/original_model/object_detect/mmcv5stride16_iter_5250000.caffemodel" caffe.set_mode_cpu() net = caffe.Net(prototxt, caffemodel, caffe.TEST) print '\n\nLoaded network {:s}'.format(caffemodel) cfg.TEST.SCALES = [144,] cfg.TEST.MAX_SIZE = 256 cfg.DEDUP_BOXES = 1./8. CONF_THRESH = 0.98 NMS_THRESH = 0.01 fromDir = "/Volumes/song/testVideos/0627/all/" readFile = open(fromDir + "../testlists.txt", "r") retfilename = '627_'+caffemodel.split('.')[0].split('/')[-1] + '_' + str(CONF_THRESH).split('.')[-1] toDir = '/Users/momo/wkspace/caffe_space/detection/py-faster-rcnn/retTests/ret/' + retfilename print toDir if not os.path.isdir(toDir): os.makedirs(toDir) writeFile = open(toDir + "/../" + retfilename + ".txt", "w") filelists = readFile.readlines() print filelists for filename in filelists: print "filename:", filename video_name = filename.split()[0] video = cv2.VideoCapture(fromDir + video_name + '.mp4') success, im = video.read() numFrame = 0 while success: if video_name == "20180627_momo_0007": im = cv2.transpose(im) if video_name == "20180627_momo_0023": im = cv2.flip(im, 0) numFrame += 1 savename = filename.split()[0] + '_f' + str(numFrame) + '.jpg' scores, boxes = im_detect(net, im) dets = np.hstack((boxes, scores)).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] inds = np.where(dets[:, -1] >= CONF_THRESH)[0] nhand = 0 for i in xrange(dets.shape[0]): if (dets[i][4] > CONF_THRESH): nhand += 1 if nhand > 0: writeFile.write(savename +' '+ str(nhand)+ ' ') for i in xrange(dets.shape[0]): if (dets[i][4] > CONF_THRESH): writeFile.write('hand ' \ + str( int( dets[i][0]) ) +' ' \ + str( int( dets[i][1]) ) +' ' \ + str( int( dets[i][2]) ) +' ' \ + str( int( dets[i][3]) ) + ' ') writeFile.write('\n') # for i in xrange(dets.shape[0]): # if (dets[i][4] > CONF_THRESH): # cv2.rectangle(im, (dets[i][0], dets[i][1]), (dets[i][2], dets[i][3]), (255, 0, 0), 1) # cv2.putText(im, str(dets[i][4]), (dets[i][0], dets[i][1]), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0)) # cv2.imwrite(toDir+'/' + savename, im) # cv2.imshow("capture", im) # cv2.waitKey(1) success, im = video.read() writeFile.close() readFile.close()
from hypothesis_auto import auto_pytest_magic from streamdeck_ui import api auto_pytest_magic(api.set_button_command) auto_pytest_magic(api.get_button_command) auto_pytest_magic(api.set_button_switch_page) auto_pytest_magic(api.get_button_switch_page) auto_pytest_magic(api.set_button_keys) auto_pytest_magic(api.get_button_keys) auto_pytest_magic(api.set_button_write) auto_pytest_magic(api.get_button_write) auto_pytest_magic(api.set_brightness, auto_allow_exceptions_=(KeyError,)) auto_pytest_magic(api.get_brightness) auto_pytest_magic(api.change_brightness, auto_allow_exceptions_=(KeyError,)) auto_pytest_magic(api.set_page) auto_pytest_magic(api.get_page) auto_pytest_magic(api.render)
import unittest import json from dataclasses import dataclass, field from rlbottraining.history.metric import Metric from .utils.example_metrics import ExampleMetric, ExampleMetric2 class MetricsTest(unittest.TestCase): def test_dataclass(self): """ Just make sure we understand Data Classes properly. """ red_dude = ExampleMetric2(5, (3,0,4)) self.assertEqual(repr(red_dude), 'ExampleMetric2(speed=5, momentum=(3, 0, 4), violence=True)') self.assertIsInstance(red_dude, Metric) red_dude2 = ExampleMetric2(5, (3,0,4), True) self.assertEqual(red_dude, red_dude2) self.assertEqual(len(set([red_dude, red_dude2])), 1) # yay, easily hashable def test_dataclass_2(self): class NonDataClassBase: foo:int = 3 def __init__(self, bar): self.bar = bar pass @dataclass class Rectangle(NonDataClassBase): width: float height: float rect = Rectangle(3,4) self.assertEqual(repr(rect), 'MetricsTest.test_dataclass_2.<locals>.Rectangle(width=3, height=4)') self.assertTrue(hasattr(rect, 'foo')) self.assertFalse(hasattr(rect, 'bar')) class Cuboid(Rectangle): def __init__(self, width, height, depth): super().__init__(width, height) self.depth = depth cube = Cuboid(1,2,3) self.assertEqual(cube.width, 1) self.assertEqual(cube.height, 2) self.assertEqual(cube.depth, 3) def test_dataclass_3(self): ''' Check how overriding default values works. ''' @dataclass class Rectangle: width: float = 0 height: float = 0 @dataclass class SpecificWidthRectangle(Rectangle): width: float = 5 specificWidth: bool = True self.assertEqual( # Same argument-order as Rectangle repr(SpecificWidthRectangle(3)), 'MetricsTest.test_dataclass_3.<locals>.SpecificWidthRectangle(width=3, height=0, specificWidth=True)' ) self.assertEqual( repr(SpecificWidthRectangle(height=3)), 'MetricsTest.test_dataclass_3.<locals>.SpecificWidthRectangle(width=5, height=3, specificWidth=True)' ) self.assertEqual( SpecificWidthRectangle(3).__dict__, {'width': 3, 'height': 0, 'specificWidth': True} ) @dataclass class SpecificHeightRectangle(Rectangle): height: float = 4 specificHeight: bool = True ''' How does diamond-shaped multiple-inheritance work? It grabs the overriding defauls of one, including its base class. ''' @dataclass class SpecificWidthHeightRectangle(SpecificWidthRectangle, SpecificHeightRectangle): pass self.assertEqual( repr(SpecificWidthHeightRectangle()), 'MetricsTest.test_dataclass_3.<locals>.SpecificWidthHeightRectangle(width=5, height=0, specificHeight=True, specificWidth=True)' ) @dataclass class CompositeRectangle(Rectangle): width: float = SpecificWidthRectangle.width height: float = SpecificHeightRectangle.height self.assertEqual( repr(CompositeRectangle()), 'MetricsTest.test_dataclass_3.<locals>.CompositeRectangle(width=5, height=4)' ) # A class with a nondefault may not override a dataclass with a default. try: @dataclass class Cuboid(Rectangle): depth: float except TypeError: pass else: self.fail() if __name__ == '__main__': unittest.main()
# Font recognition for the two (2) puzzles that have invoked it so far (2021 Day 13 and ... that one with the flying points from 2018?) from typing import Set, Tuple # Yes, this was generated by trawling through github for various inputs for day 13 and running them # No, it might not have all the possible letters that are generated # Yes, it seems to exclude ambiguous letters, almost surely intentionally (also notably 'M' or 'W' which would require variable width characters) # Yes, getting all those inputs was tedious LETTERS = { ('A', ('.##.', '#..#', '#..#', '####', '#..#', '#..#')), ('B', ('###.', '#..#', '###.', '#..#', '#..#', '###.')), ('C', ('.##.', '#..#', '#...', '#...', '#..#', '.##.')), ('E', ('####', '#...', '###.', '#...', '#...', '####')), ('F', ('####', '#...', '###.', '#...', '#...', '#...')), ('G', ('.##.', '#..#', '#...', '#.##', '#..#', '.###')), ('H', ('#..#', '#..#', '####', '#..#', '#..#', '#..#')), ('J', ('..##', '...#', '...#', '...#', '#..#', '.##.')), ('K', ('#..#', '#.#.', '##..', '#.#.', '#.#.', '#..#')), ('L', ('#...', '#...', '#...', '#...', '#...', '####')), ('P', ('###.', '#..#', '#..#', '###.', '#...', '#...')), ('R', ('###.', '#..#', '#..#', '###.', '#.#.', '#..#')), ('U', ('#..#', '#..#', '#..#', '#..#', '#..#', '.##.')), ('Z', ('####', '...#', '..#.', '.#..', '#...', '####')) } HEIGHT = 6 WIDTH = 4 def recognize(points: Set[Tuple[int, int]], min_x: int, max_x: int, min_y: int, max_y: int) -> str: width = max_x - min_x + 1 height = max_y - min_y + 1 assert (width + 1) % (WIDTH + 1) == 0, 'Uneven amount of letters: width %d' % width assert height == HEIGHT, 'Font height %d != 6' % height dx = 0 letters = [] while dx < width: for letter, pattern in LETTERS: if dx + WIDTH <= width: # This letter can fit in the provided width if all((pattern[y][x] == '#') == ((min_x + dx + x, min_y + y) in points) for x in range(WIDTH) for y in range(HEIGHT)): letters.append(letter) dx += WIDTH + 1 break else: raise ValueError('No matching text found! Found start = %s at offset dx = %d' % (letters, dx)) return ''.join(letters)
""" Copyright (c) 2020 Tyler Cone Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from .register import Register from .field import Field class CtrlUART1(Register): def __init__(self, address=0x24, value=0x00004007): fields = { "crc_poly": Field(0, 8), "noise_cancel_en": Field(8), "break_on_err": Field(9), "crc_en": Field(14), "lsb_first": Field(15), "timeout": Field(16, 8) } super(CtrlUART1, self).__init__(address, value, fields) class CtrlUART2(Register): def __init__(self, address=0x26, value=0x00000683): fields = { "baud": Field(0, 16), "frame_delay": Field(16, 8) } super(CtrlUART2, self).__init__(address, value, fields) class CtrlUARTStatus(Register): def __init__(self, address=0x28, value=0x00000000): fields = { "irq_uart_crc_error": Field(1), "irq_time_out_err": Field(2), "irq_frame_err": Field(3), "irq_noise_err": Field(4), "irq_rx_ovr": Field(5), "irq_tx_ovr": Field(6), "irq_rx_full": Field(8), "irq_tx_empty": Field(9), "irq_read_error": Field(10), "irq_write_error": Field(11), "irq_spi_crc_error": Field(12), "irq_underrun": Field(13), "irq_overrun": Field(14), "break_received": Field(16), "uart_crc_error": Field(17), "time_out_err": Field(18), "frame_err": Field(19), "noise_err": Field(20), "rx_ovr": Field(21), "tx_ovr": Field(22), "rx_full": Field(24), "tx_empty": Field(25), "read_error": Field(26), "write_error": Field(27), "spi_crc_error": Field(28), "underrun": Field(29), "overrun": Field(30) } super(CtrlUARTStatus, self).__init__(address, value, fields)
from unittest.mock import call from .. import service from ..models import File def test_stat(): file = service.stat("somefile") assert isinstance(file, File) def test_ls(mocker, settings): def list_of_files(path): assert path == "/data/subdir/somedir" return ["file1", "file2", "file3", "dir2", "dir1"] def is_file(_, name): return name.startswith("file") settings.CP_ROOT_DIR = "/data" listdir_mock = mocker.patch("cutepaste.files.service.os.listdir") listdir_mock.side_effect = list_of_files file_mock = mocker.patch("cutepaste.files.service.File.is_file") file_mock.side_effect = is_file files = service.ls("subdir/somedir") assert len(files) == 5 # Check ordering assert files[0].name == "dir1" assert files[1].name == "dir2" assert files[2].name == "file1" assert files[3].name == "file2" assert files[4].name == "file3" def test_ls_with_absolute_dir(mocker, settings): def ensure_listdir_inside_data_dir(path): assert path == "/data/root" return [] settings.CP_ROOT_DIR = "/data" listdir_mock = mocker.patch("cutepaste.files.service.os.listdir") listdir_mock.side_effect = ensure_listdir_inside_data_dir service.ls("/root") def test_move(mocker, settings): settings.CP_ROOT_DIR = "/data" move_mock = mocker.patch("cutepaste.files.service.shutil.move") service.move(["file1", "file2"], "/some/other/dir") assert move_mock.mock_calls == [call("/data/file1", "/data/some/other/dir/"), call("/data/file2", "/data/some/other/dir/")] def test_move_absolute_dir(mocker, settings): settings.CP_ROOT_DIR = "/data" move_mock = mocker.patch("cutepaste.files.service.shutil.move") service.move(["/file1"], "/some/dir") assert move_mock.mock_calls == [call("/data/file1", "/data/some/dir/")] def test_rename(mocker, settings): settings.CP_ROOT_DIR = "/data" move_mock = mocker.patch("cutepaste.files.service.shutil.move") service.rename("file1", "file2") assert move_mock.mock_calls == [call("/data/file1", "/data/file2")] def test_rename_absolute(mocker, settings): settings.CP_ROOT_DIR = "/data" move_mock = mocker.patch("cutepaste.files.service.shutil.move") service.rename("/etc/hosts", "/etc/resolv.conf") assert move_mock.mock_calls == [call("/data/etc/hosts", "/data/etc/resolv.conf")] def test_copy(mocker, settings): settings.CP_ROOT_DIR = "/data" copy_mock = mocker.patch("cutepaste.files.service.shutil.copy") service.copy(["file1", "file2"], "/some/dir") assert copy_mock.mock_calls == [call("/data/file1", "/data/some/dir/"), call("/data/file2", "/data/some/dir/")] def test_copy_absolute(mocker, settings): settings.CP_ROOT_DIR = "/data" copy_mock = mocker.patch("cutepaste.files.service.shutil.copy") service.copy(["/etc/passwd"], "/tmp") assert copy_mock.mock_calls == [call("/data/etc/passwd", "/data/tmp/")] def test_remove_files(mocker, settings): def is_file_results(path): return path in ["/data/file1", "/data/file2"] def is_dir_results(path): return path in ["/data/dir1"] settings.CP_ROOT_DIR = "/data" remove_mock = mocker.patch("cutepaste.files.service.os.remove") rmtree_mock = mocker.patch("cutepaste.files.service.shutil.rmtree") isfile_mock = mocker.patch("cutepaste.files.service.path.isfile") isfile_mock.side_effect = is_file_results isdir_mock = mocker.patch("cutepaste.files.service.path.isdir") isdir_mock.side_effect = is_dir_results service.remove(["file1", "file2", "dir1"]) assert remove_mock.mock_calls == [call("/data/file1"), call("/data/file2")] assert rmtree_mock.mock_calls == [call("/data/dir1")] def test_remove_absolute(mocker, settings): settings.CP_ROOT_DIR = "/data" remove_mock = mocker.patch("cutepaste.files.service.os.remove") isfile_mock = mocker.patch("cutepaste.files.service.path.isfile") isfile_mock.return_value = True service.remove(["/etc/hosts"]) assert remove_mock.mock_calls == [call("/data/etc/hosts")]
import re import setuptools import pathlib WORK_DIR = pathlib.Path(__file__).parent with open("README.md", "r") as fh: long_description = fh.read() def get_version(): """ Read version :return: str """ txt = (WORK_DIR / 'aiomanybots' / '__init__.py').read_text('utf-8') try: return re.findall(r"^__version__ = ('|\")([^\1]+)\1r?$", txt, re.M)[0][1] except IndexError: raise RuntimeError('Unable to determine version.') setuptools.setup( name="aiomanybots", version=get_version(), author="drforse", author_email="george.lifeslice@gmail.com", description="Library for running bots concurrently on aiogram", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/drforse/aiogram_many_bots_lib", packages=setuptools.find_packages(), install_requires=[ 'manybots@git+git://github.com/Senderman/manybotslib.git#egg=manybots', ], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.7', )
#Python program for stem plot #with Amplitude = 5 units import numpy as np import scipy as sy from matplotlib import pyplot as plt t = np.arange(0,1,0.01) #frequency = 2 Hz f = 2 #Amplitude of sine wave = 1 PI = 22/7 a = np.sin(2*PI*2*t) a = 5*a; #plt.stem(t,a,linefmt='grey',markerfmt='C',bottom =0.0) plt.stem(t,a,linefmt='grey',markerfmt='D',bottom =0.0) plt.xlabel('Time') #Y-axis label plt.ylabel('Amplitude') plt.grid(True, which='both') plt.title('Discrete Time Sine Wave') plt.show()
import json, inspect from helper.User import User from helper.cEmbed import granted_msg, denied_msg from helper.GitHub import GitHub from helper.cLog import elog from helper.Algorithm import Algorithm from cDatabase.DB_Algorithm import DB_Algorithm config = json.load(open('config.json', 'r')) path = __file__.split(config['split_path']) file = path[len(path) - 1][:-3] github_api = GitHub() db_algo = DB_Algorithm('db_algorithms') # ------------------ [ is_admin_only() ] ------------------ # # Limits this command to only admin users (i.e. Ahmad, Khaled, MB, Miguel) def is_admin_only(): return True # ------------------ [ usage() ] ------------------ # # Returns how the command is called ex. "[prefix][command]" def usage(): return file + " [algorithm] ([code] OR [file_attachment])" # ------------------ [ description() ] ------------------ # # Returns a short explanation of what the function does def description(): return ( "Creates a new file in the repository.\n" + "```" + file + " [algorithm] [code]\n" + file + " [algorithm] [file_attachment]```\n" + "Notes: \n```\n" + "`[code]` format: '''[lang]\\n [code] \\n'''\n" + "`[file_attachment]` name format:\n" + " .zip: [algo]__[lang].zip \n" + " .cpp, .java, .py: [algo].[lang] \n```" ) # ------------------ [ check_args() ] ------------------ # # Checks if the command called by the user is valid async def check_args(msg, args): author = User(id = str(msg.author.id)) if not author.is_admin(): description = msg.author.mention + " You are not allowed to use this function." await msg.reply(embed = denied_msg("Admin Command", description)) return False flag = (len(msg.attachments) == 0 and len(args) >= 4 and len(args[0].split()) == 3) flag = flag or (len(msg.attachments) == 1 and len(args) == 1 and len(args[0].split()) == 3) if not flag: await msg.reply(embed = denied_msg("Invalid Command Format", usage())) return False if len(msg.attachments) == 1: algo = args[0].split()[-1] filename = msg.attachments[0].filename.split('.') extension = filename[-1] if extension == 'zip': if len(filename) != 2 or len(filename[0].split("__")) != 2: await msg.reply(embed= denied_msg("Invalid File Name", "")) return False file_path = config['module_cmds_loc'] + "/algo/code.zip" await msg.attachments[0].save(file_path) filename = filename[0].split("__") algo = Algorithm(algo= filename[0], lang= filename[1], is_zip= True) else: if len(filename) != 2: await msg.reply(embed= denied_msg("Invalid File Name", "")) return False file_path = config['module_cmds_loc'] + "/algo/code.txt" await msg.attachments[0].save(file_path) with open(file_path, 'r') as f: code = f.read() algo = Algorithm(algo= filename[0], lang= extension, code= code, is_zip= False) else: algo = args[0].split()[-1] lang = args[1].strip('`') code = '\n'.join(args[2 : -1]) file_path = config['module_cmds_loc'] + "/algo/code.txt" with open(file_path, 'w') as f: f.write(code) algo = Algorithm(algo= algo, lang= lang, code= code, is_zip= False) if algo.lang not in ['cpp', 'java', 'py']: await msg.reply(embed = denied_msg("Invalid Language", "Try one of `cpp`, `java`, `py`")) return False if algo.is_found(): await msg.reply(embed = denied_msg("Error", "Algorithm already exists in this language")) return False return algo async def execute(msg, args, client): try: algo = await check_args(msg, args) if algo == False: return result = algo.commit() if result == True: algo.add() await msg.channel.send(embed = granted_msg("Algorithm Added Succesfully", str(algo))) else: elog(result, inspect.stack()) desc = "We faced an error while uploading the file.\n" desc += "Consider trying again in a couple of minutes." await msg.reply(embed = denied_msg("Error", desc)) except Exception as ex: elog(ex, inspect.stack()) await msg.reply(embed = denied_msg())
# coding: utf-8 """ Apteco API An API to allow access to Apteco Marketing Suite resources # noqa: E501 The version of the OpenAPI document: v2 Contact: support@apteco.com Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class AudienceExportDetail(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'audience_update_id': 'int', 'timestamp': 'datetime', 'fast_stats_build_date': 'datetime', 'user': 'UserDisplayDetails', 'nett_counts': 'list[Count]', 'urn_file_path': 'str', 'maximum_number_of_rows_to_browse': 'int', 'return_browse_rows': 'bool', 'file_path': 'str', 'output': 'Output', 'columns': 'list[Column]', 'rows': 'list[Row]' } attribute_map = { 'audience_update_id': 'audienceUpdateId', 'timestamp': 'timestamp', 'fast_stats_build_date': 'fastStatsBuildDate', 'user': 'user', 'nett_counts': 'nettCounts', 'urn_file_path': 'urnFilePath', 'maximum_number_of_rows_to_browse': 'maximumNumberOfRowsToBrowse', 'return_browse_rows': 'returnBrowseRows', 'file_path': 'filePath', 'output': 'output', 'columns': 'columns', 'rows': 'rows' } def __init__(self, audience_update_id=None, timestamp=None, fast_stats_build_date=None, user=None, nett_counts=None, urn_file_path=None, maximum_number_of_rows_to_browse=None, return_browse_rows=None, file_path=None, output=None, columns=None, rows=None): # noqa: E501 """AudienceExportDetail - a model defined in OpenAPI""" # noqa: E501 self._audience_update_id = None self._timestamp = None self._fast_stats_build_date = None self._user = None self._nett_counts = None self._urn_file_path = None self._maximum_number_of_rows_to_browse = None self._return_browse_rows = None self._file_path = None self._output = None self._columns = None self._rows = None self.discriminator = None self.audience_update_id = audience_update_id self.timestamp = timestamp self.fast_stats_build_date = fast_stats_build_date self.user = user self.nett_counts = nett_counts self.urn_file_path = urn_file_path self.maximum_number_of_rows_to_browse = maximum_number_of_rows_to_browse self.return_browse_rows = return_browse_rows if file_path is not None: self.file_path = file_path if output is not None: self.output = output self.columns = columns if rows is not None: self.rows = rows @property def audience_update_id(self): """Gets the audience_update_id of this AudienceExportDetail. # noqa: E501 The id of the update (audience version) that the export was created from # noqa: E501 :return: The audience_update_id of this AudienceExportDetail. # noqa: E501 :rtype: int """ return self._audience_update_id @audience_update_id.setter def audience_update_id(self, audience_update_id): """Sets the audience_update_id of this AudienceExportDetail. The id of the update (audience version) that the export was created from # noqa: E501 :param audience_update_id: The audience_update_id of this AudienceExportDetail. # noqa: E501 :type: int """ if audience_update_id is None: raise ValueError("Invalid value for `audience_update_id`, must not be `None`") # noqa: E501 self._audience_update_id = audience_update_id @property def timestamp(self): """Gets the timestamp of this AudienceExportDetail. # noqa: E501 The date and time that the export was produced # noqa: E501 :return: The timestamp of this AudienceExportDetail. # noqa: E501 :rtype: datetime """ return self._timestamp @timestamp.setter def timestamp(self, timestamp): """Sets the timestamp of this AudienceExportDetail. The date and time that the export was produced # noqa: E501 :param timestamp: The timestamp of this AudienceExportDetail. # noqa: E501 :type: datetime """ if timestamp is None: raise ValueError("Invalid value for `timestamp`, must not be `None`") # noqa: E501 self._timestamp = timestamp @property def fast_stats_build_date(self): """Gets the fast_stats_build_date of this AudienceExportDetail. # noqa: E501 The date and time that the FastStats system used to create this export was built # noqa: E501 :return: The fast_stats_build_date of this AudienceExportDetail. # noqa: E501 :rtype: datetime """ return self._fast_stats_build_date @fast_stats_build_date.setter def fast_stats_build_date(self, fast_stats_build_date): """Sets the fast_stats_build_date of this AudienceExportDetail. The date and time that the FastStats system used to create this export was built # noqa: E501 :param fast_stats_build_date: The fast_stats_build_date of this AudienceExportDetail. # noqa: E501 :type: datetime """ if fast_stats_build_date is None: raise ValueError("Invalid value for `fast_stats_build_date`, must not be `None`") # noqa: E501 self._fast_stats_build_date = fast_stats_build_date @property def user(self): """Gets the user of this AudienceExportDetail. # noqa: E501 :return: The user of this AudienceExportDetail. # noqa: E501 :rtype: UserDisplayDetails """ return self._user @user.setter def user(self, user): """Sets the user of this AudienceExportDetail. :param user: The user of this AudienceExportDetail. # noqa: E501 :type: UserDisplayDetails """ if user is None: raise ValueError("Invalid value for `user`, must not be `None`") # noqa: E501 self._user = user @property def nett_counts(self): """Gets the nett_counts of this AudienceExportDetail. # noqa: E501 The set of overall counts for the audience behind this export # noqa: E501 :return: The nett_counts of this AudienceExportDetail. # noqa: E501 :rtype: list[Count] """ return self._nett_counts @nett_counts.setter def nett_counts(self, nett_counts): """Sets the nett_counts of this AudienceExportDetail. The set of overall counts for the audience behind this export # noqa: E501 :param nett_counts: The nett_counts of this AudienceExportDetail. # noqa: E501 :type: list[Count] """ if nett_counts is None: raise ValueError("Invalid value for `nett_counts`, must not be `None`") # noqa: E501 self._nett_counts = nett_counts @property def urn_file_path(self): """Gets the urn_file_path of this AudienceExportDetail. # noqa: E501 If a URN file was generated as part of this export then this will be its path within the FastStats system # noqa: E501 :return: The urn_file_path of this AudienceExportDetail. # noqa: E501 :rtype: str """ return self._urn_file_path @urn_file_path.setter def urn_file_path(self, urn_file_path): """Sets the urn_file_path of this AudienceExportDetail. If a URN file was generated as part of this export then this will be its path within the FastStats system # noqa: E501 :param urn_file_path: The urn_file_path of this AudienceExportDetail. # noqa: E501 :type: str """ if urn_file_path is None: raise ValueError("Invalid value for `urn_file_path`, must not be `None`") # noqa: E501 self._urn_file_path = urn_file_path @property def maximum_number_of_rows_to_browse(self): """Gets the maximum_number_of_rows_to_browse of this AudienceExportDetail. # noqa: E501 The requested maximum number of rows to return when browsing the data # noqa: E501 :return: The maximum_number_of_rows_to_browse of this AudienceExportDetail. # noqa: E501 :rtype: int """ return self._maximum_number_of_rows_to_browse @maximum_number_of_rows_to_browse.setter def maximum_number_of_rows_to_browse(self, maximum_number_of_rows_to_browse): """Sets the maximum_number_of_rows_to_browse of this AudienceExportDetail. The requested maximum number of rows to return when browsing the data # noqa: E501 :param maximum_number_of_rows_to_browse: The maximum_number_of_rows_to_browse of this AudienceExportDetail. # noqa: E501 :type: int """ if maximum_number_of_rows_to_browse is None: raise ValueError("Invalid value for `maximum_number_of_rows_to_browse`, must not be `None`") # noqa: E501 self._maximum_number_of_rows_to_browse = maximum_number_of_rows_to_browse @property def return_browse_rows(self): """Gets the return_browse_rows of this AudienceExportDetail. # noqa: E501 Whether data rows were requested to be returned or whether the data was exported directly to the specified file # noqa: E501 :return: The return_browse_rows of this AudienceExportDetail. # noqa: E501 :rtype: bool """ return self._return_browse_rows @return_browse_rows.setter def return_browse_rows(self, return_browse_rows): """Sets the return_browse_rows of this AudienceExportDetail. Whether data rows were requested to be returned or whether the data was exported directly to the specified file # noqa: E501 :param return_browse_rows: The return_browse_rows of this AudienceExportDetail. # noqa: E501 :type: bool """ if return_browse_rows is None: raise ValueError("Invalid value for `return_browse_rows`, must not be `None`") # noqa: E501 self._return_browse_rows = return_browse_rows @property def file_path(self): """Gets the file_path of this AudienceExportDetail. # noqa: E501 If specified, the path of a file that the data was exported to # noqa: E501 :return: The file_path of this AudienceExportDetail. # noqa: E501 :rtype: str """ return self._file_path @file_path.setter def file_path(self, file_path): """Sets the file_path of this AudienceExportDetail. If specified, the path of a file that the data was exported to # noqa: E501 :param file_path: The file_path of this AudienceExportDetail. # noqa: E501 :type: str """ self._file_path = file_path @property def output(self): """Gets the output of this AudienceExportDetail. # noqa: E501 :return: The output of this AudienceExportDetail. # noqa: E501 :rtype: Output """ return self._output @output.setter def output(self, output): """Sets the output of this AudienceExportDetail. :param output: The output of this AudienceExportDetail. # noqa: E501 :type: Output """ self._output = output @property def columns(self): """Gets the columns of this AudienceExportDetail. # noqa: E501 The list of columns that have been included in this export # noqa: E501 :return: The columns of this AudienceExportDetail. # noqa: E501 :rtype: list[Column] """ return self._columns @columns.setter def columns(self, columns): """Sets the columns of this AudienceExportDetail. The list of columns that have been included in this export # noqa: E501 :param columns: The columns of this AudienceExportDetail. # noqa: E501 :type: list[Column] """ if columns is None: raise ValueError("Invalid value for `columns`, must not be `None`") # noqa: E501 self._columns = columns @property def rows(self): """Gets the rows of this AudienceExportDetail. # noqa: E501 If data rows were requested to be returned then the set of rows containing data for the given columns selected by the audience queries # noqa: E501 :return: The rows of this AudienceExportDetail. # noqa: E501 :rtype: list[Row] """ return self._rows @rows.setter def rows(self, rows): """Sets the rows of this AudienceExportDetail. If data rows were requested to be returned then the set of rows containing data for the given columns selected by the audience queries # noqa: E501 :param rows: The rows of this AudienceExportDetail. # noqa: E501 :type: list[Row] """ self._rows = rows def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AudienceExportDetail): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
from datetime import date from messaging.messaging_system import db from messaging.models import DatabaseModel from messaging.models.users import User class Message(DatabaseModel): __tablename__ = 'messages' id = db.Column(db.Integer, primary_key=True) sender = db.Column(db.ForeignKey(User.id), nullable=False) receiver = db.Column(db.ForeignKey(User.id), nullable=False) subject = db.Column(db.String(50), nullable=False) message = db.Column(db.Text, nullable=False) is_read = db.Column(db.Boolean, nullable=False, default=False) creation_date = db.Column(db.Date, nullable=False, default=date.today)
"""Store Aisle Monitor""" """ Copyright (c) 2018 Intel Corporation. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit person to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import sys import time from argparse import ArgumentParser import pathlib import cv2 import numpy as np import json from azure.storage.blob import BlockBlobService, PublicAccess from inference import Network isasyncmode = True CONFIG_FILE = '../resources/config.json' # Weightage/ratio to merge (for Heatmap) original frame and colorMap frame(sum of both should be 1) INITIAL_FRAME_WEIGHTAGE = 0.65 COLORMAP_FRAME_WEIGHTAGE = 0.35 # Weightage/ratio to merge (for integrated output) people count frame and colorMap frame(sum of both should be 1) P_COUNT_FRAME_WEIGHTAGE = 0.65 COLORMAP_FRAME_WEIGHTAGE_1 = 0.35 # Multiplication factor to compute time interval for uploading snapshots to the cloud MULTIPLICATION_FACTOR = 5 # Azure Blob container name CONTAINER_NAME = 'store-aisle-monitor-snapshots' # To get current working directory CWD = os.getcwd() # Creates subdirectory to save output snapshots pathlib.Path(CWD + '/output_snapshots/').mkdir(parents=True, exist_ok=True) def build_argparser(): parser = ArgumentParser() parser.add_argument("-m", "--model", help="Path to an .xml file with a trained model.", required=True, type=str) parser.add_argument("-l", "--cpu_extension", help="MKLDNN (CPU)-targeted custom layers. Absolute " "path to a shared library with the kernels impl.", type=str, default=None) parser.add_argument("-d", "--device", help="Specify the target device to infer on; " "CPU, GPU, FPGA, HDDL or MYRIAD is acceptable. Application" " will look for a suitable plugin for device " "specified (CPU by default)", default="CPU", type=str) parser.add_argument("-pt", "--prob_threshold", help="Probability threshold for detections filtering", default=0.5, type=float) parser.add_argument("-an", "--account_name", help="Account name of Azure cloud storage container", default=None, type=str) parser.add_argument("-ak", "--account_key", help="Account key of Azure cloud storage container", default=None, type=str) parser.add_argument("-f", "--flag", help="sync or async", default="async", type=str) return parser def apply_time_stamp_and_save(image, people_count, upload_azure): """ Saves snapshots with timestamps. """ current_date_time = time.strftime("%y-%m-%d_%H:%M:%S", time.gmtime()) file_name = current_date_time + "_PCount_" + str(people_count) + ".png" file_path = CWD + "/output_snapshots/" local_file_name = "output_" + file_name file_name = file_path + local_file_name cv2.imwrite(file_name, image) if upload_azure is 1: upload_snapshot(file_path, local_file_name) def create_cloud_container(account_name, account_key): """ Creates a BlockBlobService container on cloud. """ global BLOCK_BLOB_SERVICE # Create the BlockBlobService to call the Blob service for the storage account BLOCK_BLOB_SERVICE = BlockBlobService(account_name, account_key) # Create BlockBlobService container BLOCK_BLOB_SERVICE.create_container(CONTAINER_NAME) # Set the permission so that the blobs are public BLOCK_BLOB_SERVICE.set_container_acl(CONTAINER_NAME, public_access=PublicAccess.Container) def upload_snapshot(file_path, local_file_name): """ Uploads snapshots to cloud storage container. """ try: full_path_to_file = file_path + local_file_name print("\nUploading to cloud storage as blob : " + local_file_name) # Upload the snapshot, with local_file_name as the blob name BLOCK_BLOB_SERVICE.create_blob_from_path(CONTAINER_NAME, local_file_name, full_path_to_file) except Exception as e: print(e) def main(): global CONFIG_FILE global is_async_mode args = build_argparser().parse_args() account_name = args.account_name account_key = args.account_key if account_name is "" or account_key is "": print("Invalid account name or account key!") sys.exit(1) elif account_name is not None and account_key is None: print("Please provide account key using -ak option!") sys.exit(1) elif account_name is None and account_key is not None: print("Please provide account name using -an option!") sys.exit(1) elif account_name is None and account_key is None: upload_azure = 0 else: print("Uploading the results to Azure storage \""+ account_name+ "\"" ) upload_azure = 1 create_cloud_container(account_name, account_key) assert os.path.isfile(CONFIG_FILE), "{} file doesn't exist".format(CONFIG_FILE) config = json.loads(open(CONFIG_FILE).read()) for idx, item in enumerate(config['inputs']): if item['video'].isdigit(): input_stream = int(item['video']) cap = cv2.VideoCapture(input_stream) if not cap.isOpened(): print("\nCamera not plugged in... Exiting...\n") sys.exit(0) else: input_stream = item['video'] cap = cv2.VideoCapture(input_stream) if not cap.isOpened(): print("\nUnable to open video file... Exiting...\n") sys.exit(0) fps = cap.get(cv2.CAP_PROP_FPS) if args.flag == "async": is_async_mode = True print('Application running in async mode') else: is_async_mode = False print('Application running in sync mode') # Initialise the class infer_network = Network() # Load the network to IE plugin to get shape of input layer n, c, h, w = infer_network.load_model(args.model, args.device, 1, 1, 2, args.cpu_extension)[1] print("To stop the execution press Esc button") initial_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) initial_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(cap.get(cv2.CAP_PROP_FPS)) frame_count = 1 accumulated_image = np.zeros((initial_h, initial_w), np.uint8) mog = cv2.createBackgroundSubtractorMOG2() ret, frame = cap.read() cur_request_id = 0 next_request_id = 1 while cap.isOpened(): ret, next_frame = cap.read() if not ret: break frame_count = frame_count + 1 in_frame = cv2.resize(next_frame, (w, h)) # Change data layout from HWC to CHW in_frame = in_frame.transpose((2, 0, 1)) in_frame = in_frame.reshape((n, c, h, w)) # Start asynchronous inference for specified request. inf_start = time.time() if isasyncmode: infer_network.exec_net(next_request_id, in_frame) else: infer_network.exec_net(cur_request_id, in_frame) # Wait for the result if infer_network.wait(cur_request_id) == 0: det_time = time.time() - inf_start people_count = 0 # Converting to Grayscale gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Remove the background fgbgmask = mog.apply(gray) # Thresholding the image thresh = 2 max_value = 2 threshold_image = cv2.threshold(fgbgmask, thresh, max_value, cv2.THRESH_BINARY)[1] # Adding to the accumulated image accumulated_image = cv2.add(threshold_image, accumulated_image) colormap_image = cv2.applyColorMap(accumulated_image, cv2.COLORMAP_HOT) # Results of the output layer of the network res = infer_network.get_output(cur_request_id) for obj in res[0][0]: # Draw only objects when probability more than specified threshold if obj[2] > args.prob_threshold: xmin = int(obj[3] * initial_w) ymin = int(obj[4] * initial_h) xmax = int(obj[5] * initial_w) ymax = int(obj[6] * initial_h) class_id = int(obj[1]) # Draw bounding box color = (min(class_id * 12.5, 255), min(class_id * 7, 255), min(class_id * 5, 255)) cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), color, 2) people_count = people_count + 1 people_count_message = "People Count : " + str(people_count) inf_time_message = "Inference time: N\A for async mode" if is_async_mode else\ "Inference time: {:.3f} ms".format(det_time * 1000) cv2.putText(frame, inf_time_message, (15, 25), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) cv2.putText(frame, people_count_message, (15, 65), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) final_result_overlay = cv2.addWeighted(frame, P_COUNT_FRAME_WEIGHTAGE, colormap_image, COLORMAP_FRAME_WEIGHTAGE_1, 0) cv2.imshow("Detection Results", final_result_overlay) time_interval = MULTIPLICATION_FACTOR * fps if frame_count % time_interval == 0: apply_time_stamp_and_save(final_result_overlay, people_count, upload_azure) frame = next_frame if isasyncmode: cur_request_id, next_request_id = next_request_id, cur_request_id key = cv2.waitKey(1) if key == 27: break cap.release() cv2.destroyAllWindows() infer_network.clean() if __name__ == '__main__': sys.exit(main() or 0)
import discord from discord.ext import commands from PIL import Image import inspect import random import io def random_color(): color = ('#%06x' % random.randint(8, 0xFFFFFF)) color = int(color[1:], 16) color = discord.Color(value=color) return color class Utility: '''Useful commands to make your life easier''' def __init__(self, bot): self.bot = bot @commands.command(name='logout') async def _logout(self, ctx): ''' Shuts down the selfbot, equivalent to a restart if you are hosting on heroku ''' await ctx.send('`Selfbot Logging out...`') await self.bot.logout() @commands.command(name='help') async def new_help_command(self, ctx, *commands: str): '''Shows this message.''' destination = ctx.message.author if self.bot.pm_help else ctx.message.channel def repl(obj): return self.bot._mentions_transforms.get(obj.group(0), '') # help by itself just lists our own commands. if len(commands) == 0: pages = await self.bot.formatter.format_help_for(ctx, self.bot) elif len(commands) == 1: # try to see if it is a cog name name = self.bot._mention_pattern.sub(repl, commands[0]) command = None if name in self.bot.cogs: command = self.bot.cogs[name] else: command = self.bot.all_commands.get(name) if command is None: await destination.send(self.bot.command_not_found.format(name)) return pages = await self.bot.formatter.format_help_for(ctx, command) else: name = self.bot._mention_pattern.sub(repl, commands[0]) command = self.bot.all_commands.get(name) if command is None: await destination.send(self.bot.command_not_found.format(name)) return for key in commands[1:]: try: key = self.bot._mention_pattern.sub(repl, key) command = command.all_commands.get(key) if command is None: await destination.send(self.bot.command_not_found.format(key)) return except AttributeError: await destination.send(self.bot.command_has_no_subcommands.format(command, key)) return pages = await self.bot.formatter.format_help_for(ctx, command) if self.bot.pm_help is None: characters = sum(map(lambda l: len(l), pages)) # modify destination based on length of pages. if characters > 1000: destination = ctx.message.author color = random_color() for embed in pages: em = discord.Embed(title='Command Help', color=color) embed = embed.strip('```') em.description = embed await ctx.send(embed=em) @commands.command() async def tinyurl(self, ctx, *, link: str): '''Makes a link shorter using the tinyurl api''' await ctx.message.delete() url = 'http://tinyurl.com/api-create.php?url=' + link async with ctx.session.get(url) as resp: new = await resp.text() emb = discord.Embed(color=random_color()) emb.add_field(name="Original Link", value=link, inline=False) emb.add_field(name="Shortened Link", value=new, inline=False) emb.set_footer(text='Selfbot made by SharpBit | Powered by cr-api', icon_url='http://cr-api.com/static/img/branding/cr-api-logo.png') await ctx.send(embed=emb) @commands.command() async def hastebin(self, ctx, *, code): '''Hastebin-ify your code!''' async with ctx.session.post("https://hastebin.com/documents", data=code) as resp: data = await resp.json() key = data['key'] await ctx.message.edit(content=f"Hastebin-ified! <https://hastebin.com/{key}.py>") @commands.command() async def source(self, ctx, *, command): '''See the source code for any command.''' source = str(inspect.getsource(self.bot.get_command(command).callback)) fmt = '```py\n' + source.replace('`', '\u200b`') + '\n```' if len(fmt) > 2000: async with ctx.session.post("https://hastebin.com/documents", data=source) as resp: data = await resp.json() key = data['key'] return await ctx.send(f'Command source: <https://hastebin.com/{key}.py>') else: return await ctx.send(fmt) def setup(bot): bot.add_cog(Utility(bot))
import keyboard, pyautogui, pygame pygame.init() appVersion = 'python_pygame_gui_template' dev = False white = (255,255,255) black = (0,0,0) red = (200,0,0) light_red = (255,0,0) yellow = (200,200,0) light_yellow = (255,255,0) green = (34,177,76) light_green = (0,255,0) darkblue = (21,35,45) lightblue = (22,48,66) textgrey = (170,170,170) display_width = 300 display_height = 450 display_width = 300 display_height = 80 FPS = 30 botMainApp = True font = pygame.font.SysFont(None, 25) pygame.display.set_caption(appVersion) gameDisplay = pygame.display.set_mode((display_width,display_height)) clock = pygame.time.Clock()
import asyncio from ..pool import ConnectionPool, ClosedPool, EmptyPool from .aioconnection import AIOLDAPConnection MYPY = False if MYPY: from ..ldapclient import LDAPClient class AIOPoolContextManager: def __init__(self, pool, *args, **kwargs): self.pool = pool self.__conn = None async def __aenter__(self): if self.pool.closed: await self.pool.open() self.__conn = await self.pool.get() return self.__conn async def __aexit__(self, type, value, traceback): await self.pool.put(self.__conn) class AIOConnectionPool(ConnectionPool): """ A connection pool that can be used with asnycio tasks. It's inherited from :class:`bonsai.pool.ConnectionPool`. :param LDAPClient client: the :class:`bonsai.LDAPClient` that's used to create connections. :param int minconn: the minimum number of connections that's created after the pool is opened. :param int maxconn: the maximum number of connections in the pool. :param \\*\\*kwargs: additional keyword arguments that are passed to the :meth:`bonsai.LDAPClient.connect` method. :raises ValueError: when the minconn is negative or the maxconn is less than the minconn. """ def __init__( self, client: "LDAPClient", minconn: int = 1, maxconn: int = 10, loop=None, **kwargs ): super().__init__(client, minconn, maxconn, **kwargs) self._loop = loop try: # The loop parameter is deprecated since 3.8, removed in 3.10 # and it raises TypeError. self._lock = asyncio.Condition(loop=self._loop) except TypeError: self._lock = asyncio.Condition() async def open(self) -> None: async with self._lock: for _ in range( self._minconn - self.idle_connection - self.shared_connection ): conn = await self._client.connect( is_async=True, loop=self._loop, **self._kwargs ) self._idles.add(conn) self._closed = False async def get(self) -> AIOLDAPConnection: async with self._lock: if self._closed: raise ClosedPool("The pool is closed.") await self._lock.wait_for(lambda: not self.empty or self._closed) try: conn = self._idles.pop() except KeyError: if len(self._used) < self._maxconn: conn = await self._client.connect( is_async=True, loop=self._loop, **self._kwargs ) else: raise EmptyPool("Pool is empty.") from None self._used.add(conn) self._lock.notify() return conn async def put(self, conn: AIOLDAPConnection) -> None: async with self._lock: super().put(conn) self._lock.notify() async def close(self) -> None: async with self._lock: super().close() self._lock.notify_all() def spawn(self, *args, **kwargs): return AIOPoolContextManager(self, *args, **kwargs)
""" Bases for sqlalchemy data models """ from __future__ import annotations from typing import TYPE_CHECKING, Any, Dict, List, Union from sqlalchemy import Column, text from sqlalchemy.schema import PrimaryKeyConstraint from sqlalchemy.sql.base import ImmutableColumnCollection from sqlalchemy.sql.elements import BinaryExpression, TextClause from sqlalchemy.sql.functions import Function import util import util.jsontools from db import db if TYPE_CHECKING: from db.models.bases import Model class ProxyBase: def __init__(self, model: Model): self.model: Model = model class ColumnProxy(ProxyBase): """ Proxy object for a data model's columns """ def __iter__(self): for col in self.columns: yield col def __repr__(self): return util.jsontools.make_repr(self.names) def __getitem__(self, item): try: # item is int return self.columns[item] except TypeError: # item is not int pass return self.dict()[item] def dict(self) -> Dict[str, Column]: return dict(self.sa_obj) # type: ignore @property def sa_obj(self) -> ImmutableColumnCollection: """ Reference to the underlying sqlalchemy object """ return self.model.__table__.columns @property def columns(self) -> List[Column]: return list(self.sa_obj) @property def names(self) -> List[str]: return [x.name for x in self.columns] @property def pytypes(self) -> Dict[str, Any]: """ Return a mapping of the model's field names to Python types. Example: >>> model.columns.pytypes >>> {"id": int, "name": str} Returns: Dict[str, Any] """ dtypes = {} for col in self.columns: dtypes[col.name] = col.type.python_type return dtypes @property def dtypes(self) -> Dict[str, Any]: """ Return a mapping of the model's field names to SQL column types. Example: >>> model.columns.dtypes >>> {'id': BigInteger(), 'first_name': String(length=100)} Returns: Dict[str, Any] """ dtypes = {} for col in self.columns: dtypes[col.name] = col.type return dtypes class PrimaryKeyProxy(ColumnProxy): """ Proxy object for a data model's primary key attributes """ def dict(self) -> Dict: return dict(self.sa_obj.columns) # type: ignore @property def sa_obj(self) -> PrimaryKeyConstraint: # type: ignore """ Reference to the underlying sqlalchemy object """ return self.model.__table__.primary_key @property def columns(self) -> List[Column]: return list(self.sa_obj.columns) @property async def values(self) -> List[Any]: values: List async with db.Session() as session: async with session.begin(): values = (await session.execute(self.model.select(*self.columns))).all() return [util.reduce(v) for v in values] class AggregateProxy(ProxyBase): """ Proxy object for invoking aggregate queries against a model's underlying data """ def __repr__(self): return f"AggregateProxy: {self.model.__module__}" @property def _pk(self) -> PrimaryKeyProxy: return self.model.pk @property def _c(self) -> ColumnProxy: return self.model.c @property def default_column(self) -> Column: return self._pk[0] if len(list(self._pk)) > 0 else self._c[0] def ensure_column(self, column: Union[str, Column] = None) -> Column: col: Column if isinstance(column, str): col = self._c[column] elif column is None: col = self.default_column else: raise ValueError( f"No column named '{column}' on {self.model.__name__} model" ) return col # TODO: test with and without filter async def agg( self, funcs: Union[Function, List[Function]], filter: Union[str, TextClause, BinaryExpression] = None, ) -> Dict[str, Union[int, float]]: func_map: Dict[str, Function] = {f.name: f for f in util.ensure_list(funcs)} stmt = self.model.select(*func_map.values()) if filter is not None: if not isinstance(filter, (TextClause, BinaryExpression)): filter = text(filter) stmt = stmt.where(filter) result: db.Row async with db.Session() as session: async with session.begin(): result = (await session.execute(stmt)).one() return dict(zip(func_map, result)) async def count(self, filter: Union[str, TextClause] = None) -> int: """ Get the model's rowcount """ result = await self.agg(db.func.count(self.default_column), filter=filter) return util.reduce(result.values()) async def max( self, column: Union[str, Column] = None, filter: Union[str, TextClause] = None ) -> int: """ Get the maximum value of the given column. If no column is specified, the max value of the first primary key column is returned. """ func: Function = db.func.max(self.ensure_column(column)) result = await self.agg(func, filter=filter) return util.reduce(result.values()) async def min( self, column: Union[str, Column] = None, filter: Union[str, TextClause] = None ) -> int: """ Get the minimum value of the given column. If no column is specified, the min value of the first primary key column is returned. """ func: Function = db.func.min(self.ensure_column(column)) result = await self.agg(func, filter=filter) return util.reduce(result.values())
from machine import Pin try: import usocket as socket except: import socket # Set this with the corresponding pin of your board. led_gpio = 2 led = Pin(led_gpio, Pin.OUT) web_server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) web_server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) web_server.bind(("", 80)) web_server.listen(5) # Just a simple web interface for reference. def web_page(): if led.value() == 0: led_state = "ON" else: led_state = "OFF" html = """ <html> <head> <title>ESP Web Server</title> <meta name="viewport" content="width=device-width, initial-scale=1"> </head> <body> <h1>ESP Web Server</h1> <p>GPIO state:&nbsp;<strong>{0}</strong></p> <form> <p><button name="led" value="on">ON</button></p> <p><button name="led" value="off">OFF</button></p> </form> </body> </html> """.format(led_state) return html def main(): client, addr = web_server.accept() request = b"" while "\r\n\r\n" not in request: request += client.recv(128) request = str(request) led_on = request.find("/?led=on") led_off = request.find("/?led=off") if led_on == 6: led.value(0) print("LED IS ON!") if led_off == 6: led.value(1) print("LED IS OFF!") client.send("HTTP/1.1 200 OK\r\n") client.send("Content-Type: text/html\r\n") client.sendall(web_page()) client.close() print("Starting web server...") while True: main()
def threeSum(nums): res = set() nums.sort() for i in range(len(nums)-2): target = -(nums[i]) left = i + 1 right = len(nums)-1 while left < right: sum = nums[left] + nums[right] if sum == target: res.add((nums[i],nums[left],nums[right])) left += 1 elif sum < target: left += 1 else: right -= 1 print(list(res)) arr = [-1,0,1,2,-1,-4] threeSum(arr) # Find a pair of nums whose sum is equal to -ve value of a number in the list so that the sum of all three nums is 0
# -*- coding: utf-8 -*- import glob import json import numpy as np from sklearn.model_selection import train_test_split from keras.utils import np_utils, plot_model from keras.models import Sequential from keras.layers import Convolution2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense import keras_model # バッチサイズ BATCH_SIZE = 10 # エポック数 MAX_EPOCH = 10 # 出力数 N_OUT = len(glob.glob('image/*')) # データセットをロードする関数 def load_dataset(): image_data = np.load("./data/image_data.npy") label_data = np.load("./data/label_data.npy") # 学習データとテストデータに分割 train_image, test_image, train_label, test_label = train_test_split(image_data, label_data, train_size=0.8, shuffle=True) # ラベルをone-hot-label形式に変換 train_label = np_utils.to_categorical(train_label, N_OUT) test_label = np_utils.to_categorical(test_label, N_OUT) print("train_data: {0}\ttest_data: {1}".format(len(train_image), len(test_image))) return train_image, train_label, test_image, test_label # モデルを構築する関数 def build_model(in_shape): N_OUT = len(glob.glob('image/*')) model = keras_model.my_model(in_shape, N_OUT) return model # 学習する関数 def train_model(model, x, y): model.fit(x, y, batch_size=BATCH_SIZE, epochs=MAX_EPOCH, shuffle=True) # モデルを保存するパス save_model_path = "./log/model.hdf5" # モデルを保存 model.save_weights(save_model_path) return model # 評価する関数 def evaluate_model(model, x, y): print("test loss: {:.04f}\ttest accuracy: {:.04f}".format(score[0], score[1])) if __name__ == '__main__': # データセットをロード train_image, train_label, test_image, test_label = load_dataset() # 入力サイズ in_shape = train_image.shape[1:] # モデルを構築 model = build_model(in_shape) # モデルを可視化 plot_model(model, to_file='./log/model.png') # 学習 model_train = train_model(model, train_image, train_label) # 評価 evaluate_model(model_train, test_image, test_label)
#!/usr/bin/python # -*- coding: utf-8 -*- # # Tong Zhang <zhangt@frib.msu.edu> # 2016-10-16 20:20:57 PM EDT # from flame import Machine import numpy as np import matplotlib.pyplot as plt lat_fid = open('test.lat', 'r') m = Machine(lat_fid) ## all BPMs and Correctors (both horizontal and vertical) bpm_ids, cor_ids = m.find(type='bpm'), m.find(type='orbtrim') corh_ids = cor_ids[0::2] corv_ids = cor_ids[1::2] observe_ids = bpm_ids ## before distortion s = m.allocState({}) r = m.propagate(s, 0, len(m), observe=range(len(m))) x, y = np.array([[r[i][1].moment0_env[0] for i in range(len(m))] for j in [0,2]]) pos = np.array([r[i][1].pos for i in range(len(m))]) fig1 = plt.figure(figsize=(10, 8), dpi=120) ax1 = fig1.add_subplot(111) linex, = ax1.plot(pos[observe_ids], x[observe_ids], 'r-', alpha=0.6, label='$\mathrm{ref\;orbit}$') linex.set_lw(2) ## apply random kicks N = 1 #corh_ids_enabled = np.random.choice(corh_ids, size=N) #corh_val_enabled = 5e-3 * (np.random.random(size=N) * (2 - 1) + 1) corh_ids_enabled = np.array([392]) corh_val_enabled = np.array([0.005]) for i, v in zip(corh_ids_enabled, corh_val_enabled): m.reconfigure(i, {'theta_x': v}) """ for i, v in zip(corh_sel, corh_val): m.reconfigure(i, {'theta_x': v}) for i, v in zip(corv_sel, corv_val): m.reconfigure(i, {'theta_y': v}) """ s_tmp = m.allocState({}) r_tmp = m.propagate(s_tmp, 0, len(m), observe=range(len(m))) x_tmp, y_tmp = np.array([[r_tmp[i][1].moment0_env[0] for i in range(len(m))] for j in [0,2]]) pos = np.array([r_tmp[i][1].pos for i in range(len(m))]) # data plot linex_tmp, = ax1.plot(pos[observe_ids], x_tmp[observe_ids], 'b--', alpha=0.8, label='$\mathrm{kicked\;orbit}$') linex_tmp.set_lw(2) ## mark the enabled kickers corr = ax1.scatter(pos[corh_ids_enabled], x_tmp[corh_ids_enabled], c='m', alpha=0.8, s=100, label=r"$\mathrm{Kicker}$") #plt.show() ## correct orbit # define objective function to minimize #def obj_func(cor_val, cor_ids): # """ Objective function for `minimize`, calculate the distance # to the ideal trajectory # # :param cor_val: corrector strength/values, list/array, [rad] # :param cor_ids: corrector id numbers, list/array # :return: sum of the square of the deviation between present # ideal trajectory # """ # for i, v in zip(cor_ids, cor_val): # m.reconfigure(i, {'theta_x': v}) # horizontal only # # s_tmp = m.allocState({}) # r_tmp = m.propagate(s_tmp, 0, len(m), observe=range(len(m))) # x_tmp, y_tmp = np.array([[r_tmp[i][1].moment0_env[j] # for i in observe_ids] # for j in [0, 2]]) # #return np.sum((x_tmp - x)**2) # #return np.sum((x_tmp)**2) # xsq = x_tmp * x_tmp # return xsq.mean() * xsq.max() # #return np.sum(xsq) # #print obj_func(corh_ids_enabled, corh_val_enabled) def obj_func(cor_val, cor_ids): """ Objective function for `minimize`, calculate the distance to the ideal trajectory :param cor_val: corrector strength/values, list/array, [rad] :param cor_ids: corrector id numbers, list/array :return: sum of the square of the deviation between present ideal trajectory """ corh_val, corv_val = cor_val[0::2], cor_val[1::2] corh_ids, corv_ids = cor_ids[0::2], cor_ids[1::2] for i, v in zip(corh_ids, corh_val): m.reconfigure(i, {'theta_x': v}) for i, v in zip(corv_ids, corv_val): m.reconfigure(i, {'theta_y': v}) s_tmp = m.allocState({}) r_tmp = m.propagate(s_tmp, 0, len(m), observe=range(len(m))) x_tmp, y_tmp = np.array([[r_tmp[i][1].moment0_env[j] for i in observe_ids] for j in [0, 2]]) #return np.sum((x_tmp - x)**2) #return np.sum((x_tmp)**2) xsq = x_tmp * x_tmp return np.sum(xsq) #return xsq.mean() * xsq.max() # select correctors, H #NC = 20 #corh_ids_se = np.random.choice(corh_ids, size=NC) #corh_val_se = 0. * (np.random.random(size=NC) * (2 - 1) + 1) #corh_ids_se = corh_ids_enabled #corh_val_se = [0.005] cor_ids_se = m.find(type='orbtrim')[45:61] #cor_ids_se = m.find(type='orbtrim')[34:50] #cor_ids_se = m.find(type='orbtrim')[44:50] #print cor_ids_se #import sys #sys.exit(1) #corh_ids_se = cor_ids_se[0::2] #corv_ids_se = cor_ids_se[1::2] cor_val_se = [1e-4]*len(cor_ids_se) #corh_val_se = [1e-4] * len(corh_ids_se) #corv_val_se = [1e-4] * len(corv_ids_se) from scipy.optimize import minimize res = minimize(obj_func, cor_val_se, args=(cor_ids_se,), #method='Nelder-Mead', method='L-BFGS-B', options={'disp':True} #method='SLSQP', options={'maxiter':200, 'disp':True} ) print res.x cor_val = res.x # show corrected result corh_val, corv_val = cor_val[0::2], cor_val[1::2] corh_ids, corv_ids = cor_ids_se[0::2], cor_ids_se[1::2] for i, v in zip(corh_ids, corh_val): m.reconfigure(i, {'theta_x': v}) for i, v in zip(corv_ids, corv_val): m.reconfigure(i, {'theta_y': v}) s_oc = m.allocState({}) r_oc = m.propagate(s_oc, 0, len(m), observe=range(len(m))) x_oc, y_oc = np.array([[r_oc[i][1].moment0_env[j] for i in observe_ids] for j in [0, 2]]) x_oc_all, y_oc_all = np.array([[r_oc[i][1].moment0_env[j] for i in range(len(m))] for j in [0, 2]]) pos_oc = np.array([r_oc[i][1].pos for i in observe_ids]) pos_oc_all = np.array([r_oc[i][1].pos for i in range(len(m))]) linex_oc, = ax1.plot(pos_oc, x_oc, 'g-', alpha=0.9, label='$\mathrm{corrected\;orbit}$') linex_oc.set_lw(2) # setup ax1 ax1.set_xlim([0,160]) ax1.set_title(r"$\mathrm{kick\;of}\;\theta_x = %.3f\;\mathrm{is\;applied\;at\;corrector\;id:}\;%d$" % (corh_val_enabled[0], corh_ids_enabled[0]), fontsize=18) ax1.set_xlabel('$z\,\mathrm{[m]}$', fontsize=20) ax1.set_ylabel('$x_{env}\,\mathrm{[mm]}$', fontsize=20) ax1.legend(loc=3) #ax1.text(20, 16, # r'$\mathrm{Orbit\;is\;corrected\;back\;by\;applying}\;\theta_x=%.4f$' % (corh_val), # fontdict={'fontsize':18}) corr1 = ax1.scatter(pos_oc_all[cor_ids_se], x_oc_all[cor_ids_se], c='m', alpha=0.8, s=100, label=r"$\mathrm{Kicker}$") np.savetxt('zxy_scipy_3.dat', np.vstack((pos_oc, x_oc, y_oc)).T) # show plt.show() import sys sys.exit(1) #corr1 = ax1.scatter(pos[corh_ids_se], x[corh_ids_se], # c='k', alpha=0.8, s=80) # show with x-rms xrms_tmp, yrms_tmp = np.array([[r_tmp[i][1].moment0_rms[j] for i in range(len(observe_ids))] for j in [0, 2]]) fig_tmp = plt.figure() ax_tmp = fig_tmp.add_subplot(111) linex_tmp, = ax_tmp.plot(pos, x_tmp, 'r', lw=2) fillx_tmp = ax_tmp.fill_between(pos, x_tmp - xrms_tmp, x_tmp + xrms_tmp, alpha=0.2, color='b') plt.show()
#!/usr/bin/python3 import io from bot.bot import Bot from bot.handler import MessageHandler, NewChatMembersHandler from bot.types import Format class Myteam(): def __init__(self, token, chat): self.token = token self.bot = Bot(token=self.token, api_url_base='https://api.internal.myteam.mail.ru/bot/v1') self.chat = chat def send_report_text(self, message): self.bot.send_text(chat_id=self.chat, text=message, parse_mode="HTML") def file_send(self, job_id,): # file = open(f'out/2cf0a00c-85eb-4839-8198-623935169090_confluence.csv') with io.StringIO() as file: file.write(u'x' * 100) file.name = "123123.txt" file.seek(0) response = self.bot.send_file(chat_id=self.chat, file=file.read(), caption=f"Report-{job_id}") file_id = response.json()['fileId'] def run(self, message): print("START MYTEAM") print(message) self.send_report_text(message) if __name__ == '__main__': print("Can't start script") exit()
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright 2010 OpenStack LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from xml.etree.ElementTree import fromstring as xml_to_tree from xml.dom.minidom import parseString as xml_to_dom from nova import context from nova import db from nova import flags from nova import test from nova import utils from nova.api.ec2 import cloud from nova.auth import manager from nova.virt import libvirt_conn FLAGS = flags.FLAGS flags.DECLARE('instances_path', 'nova.compute.manager') class LibvirtConnTestCase(test.TestCase): def setUp(self): super(LibvirtConnTestCase, self).setUp() libvirt_conn._late_load_cheetah() self.flags(fake_call=True) self.manager = manager.AuthManager() self.user = self.manager.create_user('fake', 'fake', 'fake', admin=True) self.project = self.manager.create_project('fake', 'fake', 'fake') self.network = utils.import_object(FLAGS.network_manager) FLAGS.instances_path = '' test_ip = '10.11.12.13' test_instance = {'memory_kb': '1024000', 'basepath': '/some/path', 'bridge_name': 'br100', 'mac_address': '02:12:34:46:56:67', 'vcpus': 2, 'project_id': 'fake', 'bridge': 'br101', 'instance_type': 'm1.small'} def test_xml_and_uri_no_ramdisk_no_kernel(self): instance_data = dict(self.test_instance) self._check_xml_and_uri(instance_data, expect_kernel=False, expect_ramdisk=False) def test_xml_and_uri_no_ramdisk(self): instance_data = dict(self.test_instance) instance_data['kernel_id'] = 'aki-deadbeef' self._check_xml_and_uri(instance_data, expect_kernel=True, expect_ramdisk=False) def test_xml_and_uri_no_kernel(self): instance_data = dict(self.test_instance) instance_data['ramdisk_id'] = 'ari-deadbeef' self._check_xml_and_uri(instance_data, expect_kernel=False, expect_ramdisk=False) def test_xml_and_uri(self): instance_data = dict(self.test_instance) instance_data['ramdisk_id'] = 'ari-deadbeef' instance_data['kernel_id'] = 'aki-deadbeef' self._check_xml_and_uri(instance_data, expect_kernel=True, expect_ramdisk=True) def test_xml_and_uri_rescue(self): instance_data = dict(self.test_instance) instance_data['ramdisk_id'] = 'ari-deadbeef' instance_data['kernel_id'] = 'aki-deadbeef' self._check_xml_and_uri(instance_data, expect_kernel=True, expect_ramdisk=True, rescue=True) def _check_xml_and_uri(self, instance, expect_ramdisk, expect_kernel, rescue=False): user_context = context.RequestContext(project=self.project, user=self.user) instance_ref = db.instance_create(user_context, instance) host = self.network.get_network_host(user_context.elevated()) network_ref = db.project_get_network(context.get_admin_context(), self.project.id) fixed_ip = {'address': self.test_ip, 'network_id': network_ref['id']} ctxt = context.get_admin_context() fixed_ip_ref = db.fixed_ip_create(ctxt, fixed_ip) db.fixed_ip_update(ctxt, self.test_ip, {'allocated': True, 'instance_id': instance_ref['id']}) type_uri_map = {'qemu': ('qemu:///system', [(lambda t: t.find('.').get('type'), 'qemu'), (lambda t: t.find('./os/type').text, 'hvm'), (lambda t: t.find('./devices/emulator'), None)]), 'kvm': ('qemu:///system', [(lambda t: t.find('.').get('type'), 'kvm'), (lambda t: t.find('./os/type').text, 'hvm'), (lambda t: t.find('./devices/emulator'), None)]), 'uml': ('uml:///system', [(lambda t: t.find('.').get('type'), 'uml'), (lambda t: t.find('./os/type').text, 'uml')]), 'xen': ('xen:///', [(lambda t: t.find('.').get('type'), 'xen'), (lambda t: t.find('./os/type').text, 'linux')]), } for hypervisor_type in ['qemu', 'kvm', 'xen']: check_list = type_uri_map[hypervisor_type][1] if rescue: check = (lambda t: t.find('./os/kernel').text.split('/')[1], 'kernel.rescue') check_list.append(check) check = (lambda t: t.find('./os/initrd').text.split('/')[1], 'ramdisk.rescue') check_list.append(check) else: if expect_kernel: check = (lambda t: t.find('./os/kernel').text.split( '/')[1], 'kernel') else: check = (lambda t: t.find('./os/kernel'), None) check_list.append(check) if expect_ramdisk: check = (lambda t: t.find('./os/initrd').text.split( '/')[1], 'ramdisk') else: check = (lambda t: t.find('./os/initrd'), None) check_list.append(check) common_checks = [ (lambda t: t.find('.').tag, 'domain'), (lambda t: t.find( './devices/interface/filterref/parameter').get('name'), 'IP'), (lambda t: t.find( './devices/interface/filterref/parameter').get( 'value'), '10.11.12.13'), (lambda t: t.findall( './devices/interface/filterref/parameter')[1].get( 'name'), 'DHCPSERVER'), (lambda t: t.findall( './devices/interface/filterref/parameter')[1].get( 'value'), '10.0.0.1'), (lambda t: t.find('./devices/serial/source').get( 'path').split('/')[1], 'console.log'), (lambda t: t.find('./memory').text, '2097152')] if rescue: common_checks += [ (lambda t: t.findall('./devices/disk/source')[0].get( 'file').split('/')[1], 'disk.rescue'), (lambda t: t.findall('./devices/disk/source')[1].get( 'file').split('/')[1], 'disk')] else: common_checks += [(lambda t: t.findall( './devices/disk/source')[0].get('file').split('/')[1], 'disk')] common_checks += [(lambda t: t.findall( './devices/disk/source')[1].get('file').split('/')[1], 'disk.local')] for (libvirt_type, (expected_uri, checks)) in type_uri_map.iteritems(): FLAGS.libvirt_type = libvirt_type conn = libvirt_conn.LibvirtConnection(True) uri = conn.get_uri() self.assertEquals(uri, expected_uri) xml = conn.to_xml(instance_ref, rescue) tree = xml_to_tree(xml) for i, (check, expected_result) in enumerate(checks): self.assertEqual(check(tree), expected_result, '%s failed check %d' % (xml, i)) for i, (check, expected_result) in enumerate(common_checks): self.assertEqual(check(tree), expected_result, '%s failed common check %d' % (xml, i)) # This test is supposed to make sure we don't override a specifically # set uri # # Deliberately not just assigning this string to FLAGS.libvirt_uri and # checking against that later on. This way we make sure the # implementation doesn't fiddle around with the FLAGS. testuri = 'something completely different' FLAGS.libvirt_uri = testuri for (libvirt_type, (expected_uri, checks)) in type_uri_map.iteritems(): FLAGS.libvirt_type = libvirt_type conn = libvirt_conn.LibvirtConnection(True) uri = conn.get_uri() self.assertEquals(uri, testuri) def tearDown(self): super(LibvirtConnTestCase, self).tearDown() self.manager.delete_project(self.project) self.manager.delete_user(self.user) class IptablesFirewallTestCase(test.TestCase): def setUp(self): super(IptablesFirewallTestCase, self).setUp() self.manager = manager.AuthManager() self.user = self.manager.create_user('fake', 'fake', 'fake', admin=True) self.project = self.manager.create_project('fake', 'fake', 'fake') self.context = context.RequestContext('fake', 'fake') self.network = utils.import_object(FLAGS.network_manager) class FakeLibvirtConnection(object): pass self.fake_libvirt_connection = FakeLibvirtConnection() self.fw = libvirt_conn.IptablesFirewallDriver( get_connection=lambda: self.fake_libvirt_connection) def tearDown(self): self.manager.delete_project(self.project) self.manager.delete_user(self.user) super(IptablesFirewallTestCase, self).tearDown() in_rules = [ '# Generated by iptables-save v1.4.4 on Mon Dec 6 11:54:13 2010', '*filter', ':INPUT ACCEPT [969615:281627771]', ':FORWARD ACCEPT [0:0]', ':OUTPUT ACCEPT [915599:63811649]', ':nova-block-ipv4 - [0:0]', '-A INPUT -i virbr0 -p udp -m udp --dport 53 -j ACCEPT ', '-A INPUT -i virbr0 -p tcp -m tcp --dport 53 -j ACCEPT ', '-A INPUT -i virbr0 -p udp -m udp --dport 67 -j ACCEPT ', '-A INPUT -i virbr0 -p tcp -m tcp --dport 67 -j ACCEPT ', '-A FORWARD -d 192.168.122.0/24 -o virbr0 -m state --state RELATED' ',ESTABLISHED -j ACCEPT ', '-A FORWARD -s 192.168.122.0/24 -i virbr0 -j ACCEPT ', '-A FORWARD -i virbr0 -o virbr0 -j ACCEPT ', '-A FORWARD -o virbr0 -j REJECT --reject-with icmp-port-unreachable ', '-A FORWARD -i virbr0 -j REJECT --reject-with icmp-port-unreachable ', 'COMMIT', '# Completed on Mon Dec 6 11:54:13 2010', ] in6_rules = [ '# Generated by ip6tables-save v1.4.4 on Tue Jan 18 23:47:56 2011', '*filter', ':INPUT ACCEPT [349155:75810423]', ':FORWARD ACCEPT [0:0]', ':OUTPUT ACCEPT [349256:75777230]', 'COMMIT', '# Completed on Tue Jan 18 23:47:56 2011', ] def test_static_filters(self): instance_ref = db.instance_create(self.context, {'user_id': 'fake', 'project_id': 'fake', 'mac_address': '56:12:12:12:12:12'}) ip = '10.11.12.13' network_ref = db.project_get_network(self.context, 'fake') fixed_ip = {'address': ip, 'network_id': network_ref['id']} admin_ctxt = context.get_admin_context() db.fixed_ip_create(admin_ctxt, fixed_ip) db.fixed_ip_update(admin_ctxt, ip, {'allocated': True, 'instance_id': instance_ref['id']}) secgroup = db.security_group_create(admin_ctxt, {'user_id': 'fake', 'project_id': 'fake', 'name': 'testgroup', 'description': 'test group'}) db.security_group_rule_create(admin_ctxt, {'parent_group_id': secgroup['id'], 'protocol': 'icmp', 'from_port': -1, 'to_port': -1, 'cidr': '192.168.11.0/24'}) db.security_group_rule_create(admin_ctxt, {'parent_group_id': secgroup['id'], 'protocol': 'icmp', 'from_port': 8, 'to_port': -1, 'cidr': '192.168.11.0/24'}) db.security_group_rule_create(admin_ctxt, {'parent_group_id': secgroup['id'], 'protocol': 'tcp', 'from_port': 80, 'to_port': 81, 'cidr': '192.168.10.0/24'}) db.instance_add_security_group(admin_ctxt, instance_ref['id'], secgroup['id']) instance_ref = db.instance_get(admin_ctxt, instance_ref['id']) # self.fw.add_instance(instance_ref) def fake_iptables_execute(cmd, process_input=None): if cmd == 'sudo ip6tables-save -t filter': return '\n'.join(self.in6_rules), None if cmd == 'sudo iptables-save -t filter': return '\n'.join(self.in_rules), None if cmd == 'sudo iptables-restore': self.out_rules = process_input.split('\n') return '', '' if cmd == 'sudo ip6tables-restore': self.out6_rules = process_input.split('\n') return '', '' self.fw.execute = fake_iptables_execute self.fw.prepare_instance_filter(instance_ref) self.fw.apply_instance_filter(instance_ref) in_rules = filter(lambda l: not l.startswith('#'), self.in_rules) for rule in in_rules: if not 'nova' in rule: self.assertTrue(rule in self.out_rules, 'Rule went missing: %s' % rule) instance_chain = None for rule in self.out_rules: # This is pretty crude, but it'll do for now if '-d 10.11.12.13 -j' in rule: instance_chain = rule.split(' ')[-1] break self.assertTrue(instance_chain, "The instance chain wasn't added") security_group_chain = None for rule in self.out_rules: # This is pretty crude, but it'll do for now if '-A %s -j' % instance_chain in rule: security_group_chain = rule.split(' ')[-1] break self.assertTrue(security_group_chain, "The security group chain wasn't added") self.assertTrue('-A %s -p icmp -s 192.168.11.0/24 -j ACCEPT' % \ security_group_chain in self.out_rules, "ICMP acceptance rule wasn't added") self.assertTrue('-A %s -p icmp -s 192.168.11.0/24 -m icmp --icmp-type ' '8 -j ACCEPT' % security_group_chain in self.out_rules, "ICMP Echo Request acceptance rule wasn't added") self.assertTrue('-A %s -p tcp -s 192.168.10.0/24 -m multiport ' '--dports 80:81 -j ACCEPT' % security_group_chain \ in self.out_rules, "TCP port 80/81 acceptance rule wasn't added") class NWFilterTestCase(test.TestCase): def setUp(self): super(NWFilterTestCase, self).setUp() class Mock(object): pass self.manager = manager.AuthManager() self.user = self.manager.create_user('fake', 'fake', 'fake', admin=True) self.project = self.manager.create_project('fake', 'fake', 'fake') self.context = context.RequestContext(self.user, self.project) self.fake_libvirt_connection = Mock() self.fw = libvirt_conn.NWFilterFirewall( lambda: self.fake_libvirt_connection) def tearDown(self): self.manager.delete_project(self.project) self.manager.delete_user(self.user) def test_cidr_rule_nwfilter_xml(self): cloud_controller = cloud.CloudController() cloud_controller.create_security_group(self.context, 'testgroup', 'test group description') cloud_controller.authorize_security_group_ingress(self.context, 'testgroup', from_port='80', to_port='81', ip_protocol='tcp', cidr_ip='0.0.0.0/0') security_group = db.security_group_get_by_name(self.context, 'fake', 'testgroup') xml = self.fw.security_group_to_nwfilter_xml(security_group.id) dom = xml_to_dom(xml) self.assertEqual(dom.firstChild.tagName, 'filter') rules = dom.getElementsByTagName('rule') self.assertEqual(len(rules), 1) # It's supposed to allow inbound traffic. self.assertEqual(rules[0].getAttribute('action'), 'accept') self.assertEqual(rules[0].getAttribute('direction'), 'in') # Must be lower priority than the base filter (which blocks everything) self.assertTrue(int(rules[0].getAttribute('priority')) < 1000) ip_conditions = rules[0].getElementsByTagName('tcp') self.assertEqual(len(ip_conditions), 1) self.assertEqual(ip_conditions[0].getAttribute('srcipaddr'), '0.0.0.0') self.assertEqual(ip_conditions[0].getAttribute('srcipmask'), '0.0.0.0') self.assertEqual(ip_conditions[0].getAttribute('dstportstart'), '80') self.assertEqual(ip_conditions[0].getAttribute('dstportend'), '81') self.teardown_security_group() def teardown_security_group(self): cloud_controller = cloud.CloudController() cloud_controller.delete_security_group(self.context, 'testgroup') def setup_and_return_security_group(self): cloud_controller = cloud.CloudController() cloud_controller.create_security_group(self.context, 'testgroup', 'test group description') cloud_controller.authorize_security_group_ingress(self.context, 'testgroup', from_port='80', to_port='81', ip_protocol='tcp', cidr_ip='0.0.0.0/0') return db.security_group_get_by_name(self.context, 'fake', 'testgroup') def test_creates_base_rule_first(self): # These come pre-defined by libvirt self.defined_filters = ['no-mac-spoofing', 'no-ip-spoofing', 'no-arp-spoofing', 'allow-dhcp-server'] self.recursive_depends = {} for f in self.defined_filters: self.recursive_depends[f] = [] def _filterDefineXMLMock(xml): dom = xml_to_dom(xml) name = dom.firstChild.getAttribute('name') self.recursive_depends[name] = [] for f in dom.getElementsByTagName('filterref'): ref = f.getAttribute('filter') self.assertTrue(ref in self.defined_filters, ('%s referenced filter that does ' + 'not yet exist: %s') % (name, ref)) dependencies = [ref] + self.recursive_depends[ref] self.recursive_depends[name] += dependencies self.defined_filters.append(name) return True self.fake_libvirt_connection.nwfilterDefineXML = _filterDefineXMLMock instance_ref = db.instance_create(self.context, {'user_id': 'fake', 'project_id': 'fake'}) inst_id = instance_ref['id'] ip = '10.11.12.13' network_ref = db.project_get_network(self.context, 'fake') fixed_ip = {'address': ip, 'network_id': network_ref['id']} admin_ctxt = context.get_admin_context() db.fixed_ip_create(admin_ctxt, fixed_ip) db.fixed_ip_update(admin_ctxt, ip, {'allocated': True, 'instance_id': instance_ref['id']}) def _ensure_all_called(): instance_filter = 'nova-instance-%s' % instance_ref['name'] secgroup_filter = 'nova-secgroup-%s' % self.security_group['id'] for required in [secgroup_filter, 'allow-dhcp-server', 'no-arp-spoofing', 'no-ip-spoofing', 'no-mac-spoofing']: self.assertTrue(required in self.recursive_depends[instance_filter], "Instance's filter does not include %s" % required) self.security_group = self.setup_and_return_security_group() db.instance_add_security_group(self.context, inst_id, self.security_group.id) instance = db.instance_get(self.context, inst_id) self.fw.setup_basic_filtering(instance) self.fw.prepare_instance_filter(instance) self.fw.apply_instance_filter(instance) _ensure_all_called() self.teardown_security_group()
from model.group import Group __author__ = "Grzegorz Holak" testdata = [ Group(name="nazwa1", footer="stopka1", header="naglowek1"), Group(name="nazwa2", header="naglowek2", footer="stopka2") ]
""" Calculate properties for BpForms modeled in Bouhaddou et al., PLoS Comput Biol, 2018. This example uses both the Python API and the JSON REST API Bouhaddou M, Barrette AM, Stern AD, Koch RJ, DiStefano MS, Riesel EA, Santos LC, Tan AL, Mertz AE & Birtwistle MR. A mechanistic pan-cancer pathway model informed by multi-omics data interprets stochastic cell fate responses to drugs and mitogens. PLoS Comput Biol 2018, 14(3): e1005985. doi: `10.1371/journal.pcbi.1005985 <http://dx.plos.org/10.1371/journal.pcbi.1005985>`_. :Author: Jonathan Karr <karr@mssm.edu> :Author: Marc Birtwistle <mbirtwi@clemson.edu> :Author: Cemal Erdem <cemale@clemson.edu> :Date: 2019-06-18 :Copyright: 2019, Karr Lab :License: MIT """ from Bio import SeqIO import bpforms import csv import os.path import requests IN_FILENAME = os.path.join('examples', 'bouhaddou_et_al_plos_comput_biol_2018.fasta') OUT_FILENAME = os.path.join('examples', 'bouhaddou_et_al_plos_comput_biol_2018.tsv') ENDPOINT = 'https://www.bpforms.org' def run(): # read BpForms from FASTA file seqs = [] with open(IN_FILENAME, "r") as file: for record in SeqIO.parse(file, "fasta"): seqs.append({'id': record.id, 'seq': str(record.seq)}) seq_props = calc_bpforms_props_with_python_api(seqs) seq_props = calc_bpforms_props_with_rest_api(seqs) # save computed properties to .tsv file with open(OUT_FILENAME, 'w') as file: writer = csv.DictWriter(file, fieldnames=['Species', 'Formula', 'Molecular weight', 'Charge', 'Length'], dialect='excel-tab') writer.writeheader() for seq_prop in seq_props: writer.writerow(seq_prop) def calc_bpforms_props_with_python_api(seqs): # calculate properties seq_props = [] for seq in seqs: form = bpforms.ProteinForm().from_str(seq['seq']) seq_props.append({ 'Species': seq['id'], 'Formula': form.get_formula(), 'Molecular weight': form.get_mol_wt(), 'Charge': form.get_charge(), 'Length': len(form.seq), }) return seq_props def calc_bpforms_props_with_rest_api(seqs): seq_props = [] for seq in seqs: data = { "alphabet": "protein", "seq": seq['seq'], "circular": False, "major_tautomer": False, "dearomatize": False, } response = requests.post(ENDPOINT + '/api/bpform/', json=data) response.raise_for_status() props = response.json() seq_props.append({ 'Species': seq['id'], 'Formula': props['formula'], 'Molecular weight': props['mol_wt'], 'Charge': props['charge'], 'Length': props['length'], }) return seq_props
from spanet.network.jet_reconstruction import JetReconstructionModel from spanet.dataset import JetReconstructionDataset from spanet.options import Options
import os, requests, logging def send_metric(measurement, tags, values, num_retries=0, must_succeed=False): url = os.environ.get("DPP_INFLUXDB_URL") db = os.environ.get("DPP_INFLUXDB_DB") if tags and url and db: line_tags = ",".join(["{}={}".format(k, v) for k, v in tags.items()]) line_values = ",".join(["{}={}".format(k, v) for k, v in values.items()]) old_logging_level = logging.getLogger().level logging.getLogger().setLevel(logging.ERROR) res = requests.post("{url}/write?db={db}".format(url=url, db=db), '{measurement},{tags} {values}'.format(measurement=measurement, tags=line_tags, values=line_values)) logging.getLogger().setLevel(old_logging_level) if res.status_code == 404 and res.json()["error"].startswith("database not found:"): if num_retries > 0: raise Exception("Failed to create InfluxDB database") logging.getLogger().setLevel(logging.ERROR) res = requests.post("{url}/query".format(url=url), {"q": "CREATE DATABASE {db}".format(db=db)}) logging.getLogger().setLevel(old_logging_level) res.raise_for_status() return send_metric(measurement, tags, values, num_retries+1) elif res.status_code == 200: return True else: res.raise_for_status() elif must_succeed: raise Exception("missing required environment variables") def send_metric_parameters(measurement, tags, values, parameters): metric_tags = parameters.get("metric-tags", {}) if len(metric_tags) > 0: tags.update(metric_tags) return send_metric(measurement, tags, values)
import modulo_restaurante as mr minha_cozinha = mr.Restaurante( nome_restaurante='pão com ovo', tipo_cozinha='normal' ) minha_cozinha.descrição_restaurante() minha_cozinha.restaurante_aberto()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This module implements the interface to Denon AVR receivers. :copyright: (c) 2016 by Oliver Goetz. :license: MIT, see LICENSE for more details. """ import logging import time from typing import Callable, Dict, List, Optional import attr import httpx from .decorators import run_async_synchronously from .foundation import DenonAVRFoundation, set_api_host, set_api_timeout from .const import ( DENON_ATTR_SETATTR, MAIN_ZONE, VALID_ZONES) from .exceptions import AvrCommandError from .audyssey import DenonAVRAudyssey, audyssey_factory from .input import DenonAVRInput, input_factory from .soundmode import DenonAVRSoundMode, sound_mode_factory from .tonecontrol import DenonAVRToneControl, tone_control_factory from .volume import DenonAVRVolume, volume_factory _LOGGER = logging.getLogger(__name__) @attr.s(auto_attribs=True, on_setattr=DENON_ATTR_SETATTR) class DenonAVR(DenonAVRFoundation): """ Representing a Denon AVR Device. Initialize MainZone of DenonAVR. :param host: IP or HOSTNAME. :type host: str :param name: Device name, if None FriendlyName of device is used. :type name: str or None :param show_all_inputs: If True deleted input functions are also shown :type show_all_inputs: bool :param timeout: Timeout when calling device APIs. :type timeout: float :param add_zones: Additional Zones for which an instance are created :type add_zones: dict [str, str] or None """ _host: str = attr.ib( converter=str, on_setattr=[*DENON_ATTR_SETATTR, set_api_host]) _name: Optional[str] = attr.ib( converter=attr.converters.optional(str), default=None) _show_all_inputs: bool = attr.ib(converter=bool, default=False) _add_zones: Optional[Dict[str, str]] = attr.ib( validator=attr.validators.optional(attr.validators.deep_mapping( attr.validators.in_(VALID_ZONES), attr.validators.optional(attr.validators.instance_of(str)), attr.validators.instance_of(dict))), default=None) _timeout: float = attr.ib( converter=float, on_setattr=[*DENON_ATTR_SETATTR, set_api_timeout], default=2.0) _zones: Dict[str, DenonAVRFoundation] = attr.ib( validator=attr.validators.deep_mapping( attr.validators.in_(VALID_ZONES), attr.validators.instance_of(DenonAVRFoundation), attr.validators.instance_of(dict)), default=attr.Factory(dict), init=False) audyssey: DenonAVRAudyssey = attr.ib( validator=attr.validators.instance_of(DenonAVRAudyssey), default=attr.Factory(audyssey_factory, takes_self=True), init=False) input: DenonAVRInput = attr.ib( validator=attr.validators.instance_of(DenonAVRInput), default=attr.Factory(input_factory, takes_self=True), init=False) soundmode: DenonAVRSoundMode = attr.ib( validator=attr.validators.instance_of(DenonAVRSoundMode), default=attr.Factory(sound_mode_factory, takes_self=True), init=False) tonecontrol: DenonAVRToneControl = attr.ib( validator=attr.validators.instance_of(DenonAVRToneControl), default=attr.Factory(tone_control_factory, takes_self=True), init=False) vol: DenonAVRVolume = attr.ib( validator=attr.validators.instance_of(DenonAVRVolume), default=attr.Factory(volume_factory, takes_self=True), init=False) def __attrs_post_init__(self) -> None: """Initialize special attributes.""" # Set host and timeout again to start its custom setattr function self._host = self._host self._timeout = self._timeout # Add own instance to zone dictionary self._zones[self._device.zone] = self # Create instances of additional zones if requested if self._device.zone == MAIN_ZONE and self._add_zones is not None: self.create_zones(self._add_zones) def create_zones(self, add_zones): """Create instances of additional zones for the receiver.""" for zone, zname in add_zones.items(): # Name either set explicitly or name of Main Zone with suffix zonename = None if zname is None and self._name is not None: zonename = "{} {}".format(self._name, zone) zone_device = attr.evolve(self._device, zone=zone) zone_inst = DenonAVR( host=self._host, device=zone_device, name=zonename, timeout=self._timeout, show_all_inputs=self._show_all_inputs) self._zones[zone] = zone_inst async def async_setup(self) -> None: """Ensure that configuration is loaded from receiver asynchronously.""" # Device setup await self._device.async_setup() if self._name is None: self._name = self._device.friendly_name # Setup other functions self.input.setup() await self.soundmode.async_setup() self.tonecontrol.setup() self.vol.setup() self.audyssey.setup() self._is_setup = True @run_async_synchronously(async_func=async_setup) def setup(self) -> None: """Ensure that configuration is loaded from receiver.""" async def async_update(self): """ Get the latest status information from device asynchronously. Method executes the update method for the current receiver type. """ # Ensure that the device is setup if self._is_setup is False: await self.async_setup() # Create a cache id for this global update cache_id = time.time() # Verify update method await self._device.async_verify_avr_2016_update_method( cache_id=cache_id) # Update device await self._device.async_update(global_update=True, cache_id=cache_id) # Update other functions await self.input.async_update(global_update=True, cache_id=cache_id) await self.soundmode.async_update( global_update=True, cache_id=cache_id) await self.tonecontrol.async_update( global_update=True, cache_id=cache_id) await self.vol.async_update(global_update=True, cache_id=cache_id) # AppCommand0300.xml interface is very slow, thus it is not included # into main update # await self.audyssey.async_update( # global_update=True, cache_id=cache_id) @run_async_synchronously(async_func=async_update) def update(self): """ Get the latest status information from device. Method executes the update method for the current receiver type. """ async def async_update_tonecontrol(self): """Get Tonecontrol settings.""" await self.tonecontrol.async_update() @run_async_synchronously(async_func=async_update_tonecontrol) def update_tonecontrol(self): """Get Tonecontrol settings.""" async def async_update_audyssey(self): """Get Audyssey settings.""" await self.audyssey.async_update() @run_async_synchronously(async_func=async_update_audyssey) def update_audyssey(self): """Get Audyssey settings.""" async def async_get_command(self, request: str) -> str: """Send HTTP GET command to Denon AVR receiver asynchronously.""" return await self._device.api.async_get_command(request) @run_async_synchronously(async_func=async_get_command) def get_command(self, request: str) -> str: """Send HTTP GET command to Denon AVR receiver.""" @run_async_synchronously(async_func=async_get_command) def send_get_command(self, request: str) -> str: """Send HTTP GET command to Denon AVR receiver...for compatibility.""" ############## # Properties # ############## @property def zone(self) -> str: """Return Zone of this instance.""" return self._device.zone @property def zones(self) -> Dict[str, DenonAVRFoundation]: """Return all Zone instances of the device.""" zones = self._zones.copy() return zones @property def name(self) -> Optional[str]: """Return the name of the device as string.""" return self._name @property def host(self) -> str: """Return the host of the device as string.""" return self._host @property def manufacturer(self) -> Optional[str]: """Return the manufacturer of the device as string.""" return self._device.manufacturer @property def model_name(self) -> Optional[str]: """Return the model name of the device as string.""" return self._device.model_name @property def serial_number(self) -> Optional[str]: """Return the serial number of the device as string.""" return self._device.serial_number @property def power(self) -> Optional[str]: """ Return the power state of the device. Possible values are: "ON", "STANDBY" and "OFF" """ return self._device.power @property def state(self) -> Optional[str]: """ Return the state of the device. Possible values are: "on", "off", "playing", "paused" "playing" and "paused" are only available for input functions in PLAYING_SOURCES. """ return self.input.state @property def muted(self) -> bool: """ Boolean if volume is currently muted. Return "True" if muted and "False" if not muted. """ return self.vol.muted @property def volume(self) -> float: """ Return volume of Denon AVR as float. Volume is send in a format like -50.0. Minimum is -80.0, maximum at 18.0 """ return self.vol.volume @property def input_func(self) -> Optional[str]: """Return the current input source as string.""" return self.input.input_func @property def input_func_list(self) -> List[str]: """Return a list of available input sources as string.""" return self.input.input_func_list @property def support_sound_mode(self) -> Optional[bool]: """Return True if sound mode supported.""" return self.soundmode.support_sound_mode @property def sound_mode(self) -> Optional[str]: """Return the matched current sound mode as a string.""" return self.soundmode.sound_mode @property def sound_mode_list(self) -> List[str]: """Return a list of available sound modes as string.""" return self.soundmode.sound_mode_list @property def sound_mode_map(self) -> Dict[str, str]: # returns an OrderedDict """Return a dict of available sound modes with their mapping values.""" return self.soundmode.sound_mode_map @property def sound_mode_map_rev(self) -> Dict[str, str]: """Return a dict to map each sound_mode_raw to matching sound_mode.""" return self.soundmode.sound_mode_map_rev @property def sound_mode_raw(self) -> Optional[str]: """Return the current sound mode as string as received from the AVR.""" return self.soundmode.sound_mode_raw @property def image_url(self) -> Optional[str]: """Return image URL of current playing media when powered on.""" return self.input.image_url @property def title(self) -> Optional[str]: """Return title of current playing media as string.""" return self.input.title @property def artist(self) -> Optional[str]: """Return artist of current playing media as string.""" return self.input.artist @property def album(self) -> Optional[str]: """Return album name of current playing media as string.""" return self.input.album @property def band(self) -> Optional[str]: """Return band of current radio station as string.""" return self.input.band @property def frequency(self) -> Optional[str]: """Return frequency of current radio station as string.""" return self.input.frequency @property def station(self) -> Optional[str]: """Return current radio station as string.""" return self.input.station @property def netaudio_func_list(self) -> List[str]: """Return list of network audio devices. Those devices should react to play, pause, next and previous track commands. """ return self.input.netaudio_func_list @property def playing_func_list(self) -> List[str]: """Return list of playing devices. Those devices offer additional information about what they are playing (e.g. title, artist, album, band, frequency, station, image_url). """ return self.input.playing_func_list @property def receiver_port(self) -> int: """Return the receiver's port.""" if self._device.receiver is None: return None return self._device.receiver.port @property def receiver_type(self) -> Optional[str]: """Return the receiver's type.""" if self._device.receiver is None: return None return self._device.receiver.type @property def show_all_inputs(self) -> Optional[bool]: """Indicate if all inputs are shown or just active one.""" return self._show_all_inputs @property def bass(self) -> Optional[int]: """Return value of bass.""" return self.tonecontrol.bass @property def bass_level(self) -> Optional[str]: """Return level of bass.""" return self.tonecontrol.bass_level @property def treble(self) -> Optional[int]: """Return value of treble.""" return self.tonecontrol.treble @property def treble_level(self) -> Optional[str]: """Return level of treble.""" return self.tonecontrol.treble_level @property def dynamic_eq(self) -> Optional[bool]: """Return value of Dynamic EQ.""" return self.audyssey.dynamic_eq @property def reference_level_offset(self) -> Optional[str]: """Return value of Reference Level Offset.""" return self.audyssey.reference_level_offset @property def reference_level_offset_setting_list(self) -> List[str]: """Return a list of available reference level offset settings.""" return self.audyssey.reference_level_offset_setting_list @property def dynamic_volume(self) -> Optional[str]: """Return value of Dynamic Volume.""" return self.audyssey.dynamic_volume @property def dynamic_volume_setting_list(self) -> List[str]: """Return a list of available Dynamic Volume settings.""" return self.audyssey.dynamic_volume_setting_list @property def multi_eq(self) -> Optional[str]: """Return value of MultiEQ.""" return self.audyssey.multi_eq @property def multi_eq_setting_list(self) -> List[str]: """Return a list of available MultiEQ settings.""" return self.audyssey.multi_eq_setting_list async def async_dynamic_eq_off(self) -> None: """Turn DynamicEQ off.""" await self.audyssey.async_dynamiceq_off() ########## # Setter # ########## def set_async_client_getter( self, async_client_getter: Callable[[], httpx.AsyncClient]) -> None: """ Set a custom httpx.AsyncClient getter for this instance. The function provided must return an instance of httpx.AsyncClient. This is a non-blocking method. """ if not callable(async_client_getter): raise AvrCommandError("Provided object is not callable") self._device.api.async_client_getter = async_client_getter @run_async_synchronously(async_func=async_dynamic_eq_off) def dynamic_eq_off(self) -> None: """Turn DynamicEQ off.""" async def async_dynamic_eq_on(self) -> None: """Turn DynamicEQ on.""" await self.audyssey.async_dynamiceq_on() @run_async_synchronously(async_func=async_dynamic_eq_on) def dynamic_eq_on(self) -> None: """Turn DynamicEQ on.""" async def async_toggle_dynamic_eq(self) -> None: """Toggle DynamicEQ.""" await self.audyssey.async_toggle_dynamic_eq() @run_async_synchronously(async_func=async_toggle_dynamic_eq) def toggle_dynamic_eq(self) -> None: """Toggle DynamicEQ.""" async def async_set_input_func(self, input_func: str) -> None: """ Set input_func of device. Valid values depend on the device and should be taken from "input_func_list". """ await self.input.async_set_input_func(input_func) @run_async_synchronously(async_func=async_set_input_func) def set_input_func(self, input_func: str) -> None: """ Set input_func of device. Valid values depend on the device and should be taken from "input_func_list". """ async def async_set_sound_mode(self, sound_mode: str) -> None: """ Set sound_mode of device. Valid values depend on the device and should be taken from "sound_mode_list". """ await self.soundmode.async_set_sound_mode(sound_mode) @run_async_synchronously(async_func=async_set_sound_mode) def set_sound_mode(self, sound_mode: str) -> None: """ Set sound_mode of device. Valid values depend on the device and should be taken from "sound_mode_list". """ async def async_toggle_play_pause(self) -> None: """Toggle play pause media player.""" await self.input.async_toggle_play_pause() @run_async_synchronously(async_func=async_toggle_play_pause) def toggle_play_pause(self) -> None: """Toggle play pause media player.""" async def async_play(self) -> None: """Send play command to receiver command via HTTP post.""" await self.input.async_play() @run_async_synchronously(async_func=async_play) def play(self) -> None: """Send play command to receiver command via HTTP post.""" async def async_pause(self) -> None: """Send pause command to receiver command via HTTP post.""" await self.input.async_pause() @run_async_synchronously(async_func=async_pause) def pause(self) -> None: """Send pause command to receiver command via HTTP post.""" async def async_previous_track(self) -> None: """Send previous track command to receiver command via HTTP post.""" await self.input.async_previous_track() @run_async_synchronously(async_func=async_previous_track) def previous_track(self) -> None: """Send previous track command to receiver command via HTTP post.""" async def async_next_track(self) -> None: """Send next track command to receiver command via HTTP post.""" await self.input.async_next_track() @run_async_synchronously(async_func=async_next_track) def next_track(self) -> None: """Send next track command to receiver command via HTTP post.""" async def async_power_on(self) -> None: """Turn on receiver via HTTP get command.""" await self._device.async_power_on() @run_async_synchronously(async_func=async_power_on) def power_on(self) -> None: """Turn on receiver via HTTP get command.""" async def async_power_off(self) -> None: """Turn off receiver via HTTP get command.""" await self._device.async_power_off() @run_async_synchronously(async_func=async_power_off) def power_off(self) -> None: """Turn off receiver via HTTP get command.""" async def async_volume_up(self) -> None: """Volume up receiver via HTTP get command.""" await self.vol.async_volume_up() @run_async_synchronously(async_func=async_volume_up) def volume_up(self) -> None: """Volume up receiver via HTTP get command.""" async def async_volume_down(self) -> None: """Volume down receiver via HTTP get command.""" await self.vol.async_volume_down() @run_async_synchronously(async_func=async_volume_down) def volume_down(self) -> None: """Volume down receiver via HTTP get command.""" async def async_set_volume(self, volume: float) -> None: """ Set receiver volume via HTTP get command. Volume is send in a format like -50.0. Minimum is -80.0, maximum at 18.0 """ await self.vol.async_set_volume(volume) @run_async_synchronously(async_func=async_set_volume) def set_volume(self, volume: float) -> None: """ Set receiver volume via HTTP get command. Volume is send in a format like -50.0. Minimum is -80.0, maximum at 18.0 """ async def async_mute(self, mute: bool) -> None: """Mute receiver via HTTP get command.""" await self.vol.async_mute(mute) @run_async_synchronously(async_func=async_mute) def mute(self, mute: bool) -> None: """Mute receiver via HTTP get command.""" async def async_enable_tone_control(self) -> None: """Enable tone control to change settings like bass or treble.""" await self.tonecontrol.async_enable_tone_control() @run_async_synchronously(async_func=async_enable_tone_control) def enable_tone_control(self) -> None: """Enable tone control to change settings like bass or treble.""" async def async_disable_tone_control(self) -> None: """Disable tone control to change settings like bass or treble.""" await self.tonecontrol.async_disable_tone_control() @run_async_synchronously(async_func=async_disable_tone_control) def disable_tone_control(self) -> None: """Disable tone control to change settings like bass or treble.""" async def async_set_bass(self, value: int) -> None: """ Set receiver bass. Minimum is 0, maximum at 12 Note: Doesn't work, if Dynamic Equalizer is active. """ await self.tonecontrol.async_set_bass(value) @run_async_synchronously(async_func=async_set_bass) def set_bass(self, value: int) -> None: """ Set receiver bass. Minimum is 0, maximum at 12 Note: Doesn't work, if Dynamic Equalizer is active. """ async def async_bass_up(self) -> None: """ Increase level of Bass. Note: Doesn't work, if Dynamic Equalizer is active """ await self.tonecontrol.async_bass_up() @run_async_synchronously(async_func=async_bass_up) def bass_up(self) -> None: """ Increase level of Bass. Note: Doesn't work, if Dynamic Equalizer is active """ async def async_bass_down(self) -> None: """ Decrease level of Bass. Note: Doesn't work, if Dynamic Equalizer is active """ await self.tonecontrol.async_bass_down() @run_async_synchronously(async_func=async_bass_down) def bass_down(self) -> None: """ Decrease level of Bass. Note: Doesn't work, if Dynamic Equalizer is active """ async def async_set_treble(self, value: int) -> None: """ Set receiver treble. Minimum is 0, maximum at 12 Note: Doesn't work, if Dynamic Equalizer is active. """ await self.tonecontrol.async_set_treble(value) @run_async_synchronously(async_func=async_set_treble) def set_treble(self, value: int) -> None: """ Set receiver treble. Minimum is 0, maximum at 12 Note: Doesn't work, if Dynamic Equalizer is active. """ async def async_treble_up(self) -> None: """ Increase level of Treble. Note: Doesn't work, if Dynamic Equalizer is active """ await self.tonecontrol.async_treble_up() @run_async_synchronously(async_func=async_treble_up) def treble_up(self) -> None: """ Increase level of Treble. Note: Doesn't work, if Dynamic Equalizer is active """ async def async_treble_down(self) -> None: """ Decrease level of Treble. Note: Doesn't work, if Dynamic Equalizer is active """ await self.tonecontrol.async_treble_down() @run_async_synchronously(async_func=async_treble_down) def treble_down(self) -> None: """ Decrease level of Treble. Note: Doesn't work, if Dynamic Equalizer is active """
# coding:utf-8 ############################### # python代码加密与License控制例子 # 这是需要License控制的脚本 ############################### import socket, fcntl, datetime, os, struct from Crypto.Cipher import AES from binascii import b2a_hex, a2b_hex import time class Get_License(object): def __init__(self): super(Get_License, self).__init__() # 定义秘钥信息 self.seperateKey = "d#~0^38J:" self.aesKey = "123456789abcdefg" self.aesIv = "abcdefg123456789" self.aesMode = AES.MODE_CBC def getHwAddr(self, ifname): """ 获取主机物理地址 """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s', ifname[:15])) return ''.join(['%02x' % ord(char) for char in info[18:24]]) def decrypt(self, text): """ 从.lic中解密出主机地址 """ try: cryptor = AES.new(self.aesKey, self.aesMode, self.aesIv) plain_text = cryptor.decrypt(a2b_hex(text)) return plain_text.rstrip('\0') except: return "" def getLicenseInfo(self, filePath = None): if filePath == None: filePath = "./license.lic" if not os.path.isfile(filePath): print("请将 license.lic 文件放在当前路径下") os._exit(0) return False, 'Invalid' encryptText = "" with open(filePath, "r") as licFile: encryptText = licFile.read() licFile.close() try: hostInfo = self.getHwAddr('eth0') except IOError: hostInfo = self.getHwAddr('eno1') decryptText = self.decrypt(encryptText) pos = decryptText.find(self.seperateKey) if -1 == pos: return False, "Invalid" licHostInfo = self.decrypt(decryptText[0:pos]) licenseStr = decryptText[pos + len(self.seperateKey):] if licHostInfo == hostInfo: return True, licenseStr else: return False, 'Invalid' # 以下是Liceshi控制的一种实施例子,仅供参考 License = Get_License() condition, LicInfo = License.getLicenseInfo() class Today(): def get_time(self): if condition==True and LicInfo=='Valid': print(datetime.datetime.now()) else: print('未权授!') def say(self): if condition==True and LicInfo=='Valid': print('hello world!') localtime = time.asctime( time.localtime(time.time()) ) print("The local time is now:", localtime) else: print('未权授!')
import random import math import numpy as np from GraphEngine import GraphicEngine class FourierTransform: def __init__(self, input_signal_vector): self.number_of_data = len(input_signal_vector) self.number_of_transform = int(self.number_of_data / 2) self.input_signal_vector = input_signal_vector self.component_real = np.zeros((self.number_of_transform, 1), dtype=float) self.component_imaginary = np.zeros((self.number_of_transform, 1), dtype=float) self.component_phases = np.zeros((self.number_of_transform, 1), dtype=float) self.component_magnitude = np.zeros((self.number_of_transform, 1), dtype=float) self.synthesis_signal = np.zeros((self.number_of_data, 1), dtype=float) self.graph_engine = GraphicEngine() def fourier_transformation(self): for k in range(self.number_of_transform): self.component_real[k] = sum([self.input_signal_vector[i] * math.cos(2 * math.pi * k * i / self.number_of_data) for i in range(self.number_of_data)]) self.component_imaginary[k] = sum([-self.input_signal_vector[i] * math.sin(2 * math.pi * k * i / self.number_of_data) for i in range(self.number_of_data)]) def fourier_calculate_phase_and_mag(self): # self.component_phases = math.atan(self.component_imaginary/self.component_real) self.component_magnitude = [math.sqrt(self.component_real[i] ** 2 + self.component_imaginary[i] ** 2) for i in range(self.number_of_transform)] def fourier_synthesis(self): for i in range(self.number_of_data): self.synthesis_signal[i] = sum( [self.component_real[k] / self.number_of_data * math.cos(2 * math.pi * k * i / self.number_of_data) - self.component_imaginary[k] / self.number_of_data * math.sin( 2 * math.pi * k * i / self.number_of_data) for k in range(self.number_of_transform)]) def plot_signal(self): self.graph_engine.plot_signal([self.input_signal_vector, self.component_real, self.component_imaginary, self.synthesisize_signal], [-1, 1]) if __name__ == "__main__": input_vector_signal = np.zeros((100, 1), dtype=float) for i in range(100): input_vector_signal[i] = random.randrange(-1, 1) fourier_transform = FourierTransform(input_vector_signal) fourier_transform.fourier_transformation() fourier_transform.fourier_calculate_phase_and_mag() fourier_transform.fourier_synthesis() fourier_transform.plot_signal()
# Generic imports from pathlib import Path from math import log2, ceil import numpy as np # FPGA-specific imports from msdsl import MixedSignalModel, VerilogGenerator, sum_op, clamp_op, to_uint, to_sint from msdsl.expr.expr import array, concatenate from msdsl.expr.extras import if_ from msdsl.expr.format import SIntFormat from msdsl.function import PlaceholderFunction # DragonPHY imports from dragonphy import (Filter, get_file, get_dragonphy_real_type, add_placeholder_inputs) class AnalogSlice: def __init__(self, filename=None, **system_values): # set a fixed random seed for repeatability np.random.seed(0) module_name = Path(filename).stem build_dir = Path(filename).parent #This is a wonky way of validating this.. :( assert (all([req_val in system_values for req_val in self.required_values()])), \ f'Cannot build {module_name}, Missing parameter in config file' m = MixedSignalModel(module_name, dt=system_values['dt'], build_dir=build_dir, real_type=get_dragonphy_real_type()) # Random number generator seeds (defaults generated with random.org) m.add_digital_input('jitter_seed', width=32) m.add_digital_input('noise_seed', width=32) # Chunk of bits from the history; corresponding delay is bit_idx/freq_tx delay m.add_digital_input('chunk', width=system_values['chunk_width']) m.add_digital_input('chunk_idx', width=int(ceil(log2(system_values['num_chunks'])))) # Control code for the corresponding PI slice m.add_digital_input('pi_ctl', width=system_values['pi_ctl_width']) # Indicates sequencing of ADC slice within a bank (typically a static value) m.add_digital_input('slice_offset', width=int(ceil(log2(system_values['slices_per_bank'])))) # Control codes that affect states in the slice m.add_digital_input('sample_ctl') m.add_digital_input('incr_sum') m.add_digital_input('write_output') # ADC sign and magnitude m.add_digital_output('out_sgn') m.add_digital_output('out_mag', width=system_values['n_adc']) # Emulator clock and reset m.add_digital_input('clk') m.add_digital_input('rst') # Noise controls m.add_analog_input('jitter_rms') m.add_analog_input('noise_rms') # Create "placeholder function" that can be updated # at runtime with the channel function chan_func = PlaceholderFunction( domain=system_values['func_domain'], order=system_values['func_order'], numel=system_values['func_numel'], coeff_widths=system_values['func_widths'], coeff_exps=system_values['func_exps'] ) # Check the function on a representative test case chan = Filter.from_file(get_file('build/chip_src/adapt_fir/chan.npy')) self.check_func_error(chan_func, chan.interp) # Add digital inputs that will be used to reconfigure the function at runtime wdata, waddr, we = add_placeholder_inputs(m=m, f=chan_func) # Sample the pi_ctl code m.add_digital_state('pi_ctl_sample', width=system_values['pi_ctl_width']) m.set_next_cycle(m.pi_ctl_sample, m.pi_ctl, clk=m.clk, rst=m.rst, ce=m.sample_ctl) # compute weights to apply to pulse responses weights = [] for k in range(system_values['chunk_width']): # create a weight value for this bit weights.append( m.add_analog_state( f'weights_{k}', range_=system_values['vref_tx'] ) ) # select a single bit from the chunk. chunk_width=1 is unfortunately # a special case because some simulators don't support the bit-selection # syntax on a single-bit variable chunk_bit = m.chunk[k] if system_values['chunk_width'] > 1 else m.chunk # write the weight value m.set_next_cycle( weights[-1], if_( chunk_bit, system_values['vref_tx'], -system_values['vref_tx'] ), clk=m.clk, rst=m.rst ) # Compute the delay due to the PI control code delay_amt_pre = m.bind_name( 'delay_amt_pre', m.pi_ctl_sample / ((2.0**system_values['pi_ctl_width'])*system_values['freq_rx']) ) # Add jitter to the sampling time if system_values['use_jitter']: # create a signal to represent jitter delay_amt_jitter = m.set_gaussian_noise( 'delay_amt_jitter', std=m.jitter_rms, lfsr_init=m.jitter_seed, clk=m.clk, ce=m.sample_ctl, rst=m.rst ) # add jitter to the delay amount (which might possibly yield a negative value) delay_amt_noisy = m.bind_name('delay_amt_noisy', delay_amt_pre + delay_amt_jitter) # make the delay amount non-negative delay_amt = m.bind_name('delay_amt', if_(delay_amt_noisy >= 0.0, delay_amt_noisy, 0.0)) else: delay_amt = delay_amt_pre # Compute the delay due to the slice offset t_slice_offset = m.bind_name('t_slice_offset', m.slice_offset/system_values['freq_rx']) # Add the delay amount to the slice offset t_samp_new = m.bind_name('t_samp_new', t_slice_offset + delay_amt) # Determine if the new sampling time happens after the end of this period t_one_period = m.bind_name('t_one_period', system_values['slices_per_bank']/system_values['freq_rx']) exceeds_period = m.bind_name('exceeds_period', t_samp_new >= t_one_period) # Save the previous sample time t_samp_prev = m.add_analog_state('t_samp_prev', range_=system_values['slices_per_bank']/system_values['freq_rx']) m.set_next_cycle(t_samp_prev, t_samp_new-t_one_period, clk=m.clk, rst=m.rst, ce=m.sample_ctl) # Save whether the previous sample time exceeded one period prev_exceeded = m.add_digital_state('prev_exceeded') m.set_next_cycle(prev_exceeded, exceeds_period, clk=m.clk, rst=m.rst, ce=m.sample_ctl) # Compute the sample time to use for this period t_samp_idx = m.bind_name('t_samp_idx', concatenate([exceeds_period, prev_exceeded])) t_samp = m.bind_name( 't_samp', array( [ t_samp_new, # 0b00: exceeds_period=0, prev_exceeded=0 t_samp_new, # 0b01: exceeds_period=0, prev_exceeded=1 0.0, # 0b10: exceeds_period=1, prev_exceeded=0 t_samp_prev # 0b11: exceeds_period=1, prev_exceeded=1 ], t_samp_idx ) ) # Evaluate the step response function. Note that the number of evaluation times is the # number of chunks plus one. f_eval = [] for k in range(system_values['chunk_width']+1): # compute change time as an integer multiple of the TX period chg_idx = m.bind_name( f'chg_idx_{k}', ( system_values['slices_per_bank']*system_values['num_banks'] - (m.chunk_idx+1)*system_values['chunk_width'] + k ) ) # scale by TX period t_chg = m.bind_name(f't_chg_{k}', chg_idx/system_values['freq_tx']) # compute the kth evaluation time t_eval = m.bind_name(f't_eval_{k}', t_samp - t_chg) # evaluate the function (the last three inputs are used for updating the function contents) f_eval.append(m.set_from_sync_func(f'f_eval_{k}', chan_func, t_eval, clk=m.clk, rst=m.rst, wdata=wdata, waddr=waddr, we=we)) # Compute the pulse responses for each bit pulse_resp = [] for k in range(system_values['chunk_width']): pulse_resp.append( m.bind_name( f'pulse_resp_{k}', weights[k]*(f_eval[k] - f_eval[k+1]) ) ) # sum up all of the pulse responses pulse_resp_sum = m.bind_name('pulse_resp_sum', sum_op(pulse_resp)) # update the overall sample value sample_value_pre = m.add_analog_state('analog_sample_pre', range_=5*system_values['vref_rx']) m.set_next_cycle( sample_value_pre, if_(m.incr_sum, sample_value_pre + pulse_resp_sum, pulse_resp_sum), clk=m.clk, rst=m.rst ) # add noise to the sample value if system_values['use_noise']: sample_noise = m.set_gaussian_noise( 'sample_noise', std=m.noise_rms, clk=m.clk, rst=m.rst, ce=m.write_output, lfsr_init=m.noise_seed ) sample_value = m.bind_name('sample_value', sample_value_pre + sample_noise) else: sample_value = sample_value_pre # there is a special case in which the output should not be updated: # when the previous cycle did not exceed the period, but this one did # in that case the sample value should be held constant should_write_output = m.bind_name('should_write_output', (prev_exceeded | (~exceeds_period)) & m.write_output) # determine out_sgn (note that the definition is opposite of the typical # meaning; "0" means negative) out_sgn = if_(sample_value < 0, 0, 1) m.set_next_cycle(m.out_sgn, out_sgn, clk=m.clk, rst=m.rst, ce=should_write_output) # determine out_mag vref_rx, n_adc = system_values['vref_rx'], system_values['n_adc'] abs_val = m.bind_name('abs_val', if_(sample_value < 0, -1.0*sample_value, sample_value)) code_real_unclamped = m.bind_name('code_real_unclamped', (abs_val / vref_rx) * ((2**(n_adc-1))-1)) code_real = m.bind_name('code_real', clamp_op(code_real_unclamped, 0, (2**(n_adc-1))-1)) # TODO: clean this up -- since real ranges are not intervals, we need to tell MSDSL # that the range of the signed integer is smaller code_sint = to_sint(code_real, width=n_adc+1) code_sint.format_ = SIntFormat(width=n_adc+1, min_val=0, max_val=(2**(n_adc-1))-1) code_sint = m.bind_name('code_sint', code_sint) code_uint = m.bind_name('code_uint', to_uint(code_sint, width=n_adc)) m.set_next_cycle(m.out_mag, code_uint, clk=m.clk, rst=m.rst, ce=should_write_output) # generate the model m.compile_to_file(VerilogGenerator()) self.generated_files = [filename] @staticmethod def check_func_error(placeholder, func): # calculate coeffients coeffs = placeholder.get_coeffs(func) # determine test points samp = np.random.uniform(placeholder.domain[0], placeholder.domain[1], 1000) # evaluate the function at those test points using # the calculated coefficients approx = placeholder.eval_on(samp, coeffs) # determine the values the function should have at # the test points exact = func(samp) # calculate the error err = np.max(np.abs(exact-approx)) # display the error print(f'Worst-case error: {err}') @staticmethod def required_values(): return ['dt', 'func_order', 'func_numel', 'chunk_width', 'num_chunks', 'slices_per_bank', 'num_banks', 'pi_ctl_width', 'vref_rx', 'vref_tx', 'n_adc', 'freq_tx', 'freq_rx', 'func_widths', 'func_exps', 'func_domain', 'use_jitter', 'use_noise']
from itertools import cycle import dwave_networkx as dwnx import networkx as nx from matplotlib import pyplot as plt from matplotlib.cm import get_cmap from placeandroute.tilebased.heuristic import Constraint def create(w): ret = dwnx.chimera_graph(w, w) return ret, dwnx.chimera_layout(ret) def cnf_to_constraints(clauses, num_vars): """from each 3-cnf clause, generate a Constraint with a fresh ancilla variable""" ancilla = num_vars + 1 for clause in clauses: # first two vars third var + ancilla clause = list(abs(l) for l in clause) assert len(clause) == 3, clause c = Constraint() for literal in clause: c.add_possible_placement([[ancilla, literal],[l for l in clause if l != literal]]) yield c ancilla += 1 def show_result(cg, xdict, layout=dwnx.chimera_layout): """Display a Chimera embedding using matplotlib""" layout = layout(cg) color = cycle(get_cmap("tab20").colors) nx.draw(cg, layout, node_color="gray", edge_color="gray") for k, vs in xdict.items(): col = next(color) subcg = cg.subgraph(vs) nx.draw(subcg, layout, node_color=[col] * subcg.number_of_nodes(), edge_color=[col] * subcg.number_of_edges()) plt.savefig("result.png")
# coding=utf-8 # Copyright 2015 Brave Labs sp. z o.o. # All rights reserved. # # This source code and all resulting intermediate files are CONFIDENTIAL and # PROPRIETY TRADE SECRETS of Brave Labs sp. z o.o. # Use is subject to license terms. See NOTICE file of this project for details. # from celery import shared_task import logging from django.contrib import messages from django.views.debug import CLEANSED_SUBSTITUTE, SafeExceptionReporterFilter from django.views.generic import View log = logging.getLogger(__name__) def show_debug_toolbar(request): from debug_toolbar.middleware import show_toolbar return show_toolbar(request) or "debug" in request.GET or request.user.is_superuser class ErrView(View): """Raise an error on purpose to test any health monitoring features""" def get(self, request): messages.warning(request, u"Error was tested ążźśęćńół") from website.misc.signals import signal_raise_error results = signal_raise_error.send_robust(self) for receiver, response in results: if isinstance(response, Exception): log.warning(response, exc_info=(type(response), response, response.__traceback__)) raise Exception(u"Błąd ążśźęćńół") class SaferExceptionReporterFilter(SafeExceptionReporterFilter): """Works even if tb_frame has no f_back attribute""" def get_traceback_frame_variables(self, request, tb_frame): """ Replaces the values of variables marked as sensitive with stars (*********). """ # Loop through the frame's callers to see if the sensitive_variables # decorator was used. current_frame = getattr(tb_frame, 'f_back', None) sensitive_variables = None while current_frame is not None: if current_frame.f_code.co_name == 'sensitive_variables_wrapper' and 'sensitive_variables_wrapper' in current_frame.f_locals: # The sensitive_variables decorator was used, so we take note # of the sensitive variables' names. wrapper = current_frame.f_locals['sensitive_variables_wrapper'] sensitive_variables = getattr(wrapper, 'sensitive_variables', None) break current_frame = current_frame.f_back cleansed = {} if self.is_active(request) and sensitive_variables: if sensitive_variables == '__ALL__': # Cleanse all variables for name, value in tb_frame.f_locals.items(): cleansed[name] = CLEANSED_SUBSTITUTE else: # Cleanse specified variables for name, value in tb_frame.f_locals.items(): if name in sensitive_variables: value = CLEANSED_SUBSTITUTE else: value = self.cleanse_special_types(request, value) cleansed[name] = value else: # Potentially cleanse the request and any MultiValueDicts if they # are one of the frame variables. for name, value in tb_frame.f_locals.items(): cleansed[name] = self.cleanse_special_types(request, value) if tb_frame.f_code.co_name == 'sensitive_variables_wrapper' and 'sensitive_variables_wrapper' in tb_frame.f_locals: # For good measure, obfuscate the decorated function's arguments in # the sensitive_variables decorator's frame, in case the variables # associated with those arguments were meant to be obfuscated from # the decorated function's frame. cleansed['func_args'] = CLEANSED_SUBSTITUTE cleansed['func_kwargs'] = CLEANSED_SUBSTITUTE return cleansed.items() def debug_who_disabled_a_logger(): # pragma: no cover """ If you need to trace what code might set handler.disabled to True (it is 0, so false, by default), you can replace the attribute it with a property """ # http://stackoverflow.com/a/28694704/260480 import logging import sys def get_disabled(self): return self._disabled def set_disabled(self, disabled): # noinspection PyProtectedMember frame = sys._getframe(1) if disabled: print('{}:{} disabled the {} logger'.format( frame.f_code.co_filename, frame.f_lineno, self.name)) self._disabled = disabled logging.Logger.disabled = property(get_disabled, set_disabled)
from model.board import Board, Location, NumberAssignmentError from model.evaluator import Evaluator from itertools import permutations class Result: complete = False solution = Board() success = False class Solver: def __init__(self): self._debut_board = Board() self._result = Result() def _attempt(self): missing_numbers = self._debut_board.get_missing_numbers() empty_cells = self._debut_board.get_empty_cell_locations() number_combinations = permutations(missing_numbers, len(missing_numbers)) for combo in number_combinations: cloned_board = self._debut_board.clone() cell_index = 0 for empty_cell in empty_cells: try: cloned_board.set_cell_value(empty_cell.get_x(), empty_cell.get_y(), combo[cell_index]) cell_index = cell_index + 1 except NumberAssignmentError: break if cloned_board.has_empty_cell(): continue evaluator = Evaluator() evaluator.evaluate(cloned_board) if evaluator.is_complete() and evaluator.is_valid(): self._result.complete = True self._result.success = True self._result.solution = cloned_board return def solve(self, board: Board) -> Result: self._result = Result() self._debut_board = board self._attempt() return self._result
from matplotlib import pyplot as plt import tensorflow as tf import numpy as np #hyper params lr = 0.1 epochs = 100 x_train = np.linspace(-1, 1,101) y_train = 2 * x_train + np.random.randn(*x_train.shape) * 0.33 X = tf.placeholder(tf.float32) Y = tf.placeholder(tf.float32) def model(X,w): return tf.multiply(X,w) w = tf.Variable(0.0,name='weights') y_model = model(X, w) cost = tf.square(Y-y_model) tf_op = tf.train.GradientDescentOptimizer(lr).minimize(cost) sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) for epoch in range(epochs): for (x,y) in zip(x_train,y_train): sess.run(tf_op,feed_dict = {X:x,Y:y}) w_val = sess.run(w) sess.close() plt.scatter(x_train, y_train) y_learned = x_train*w_val plt.plot(x_train,y_learned,'r') plt.show()
""" Trellis Histogram ----------------- This example shows how to make a basic trellis histogram. https://vega.github.io/vega-lite/examples/trellis_bar_histogram.html """ # category: histograms import altair as alt from vega_datasets import data source = data.cars() ( alt.Chart(source) .mark_bar() .encode(alt.X("Horsepower:Q", bin=True), y="count()", row="Origin") )
from ..converter import Converter from ..oval_node import restore_dict_to_tree from .client_html_output import ClientHtmlOutput from .client_json_input import ClientJsonInput START_OF_FILE_NAME = 'graph-of-' class JsonToHtml(ClientHtmlOutput, ClientJsonInput): def __init__(self, args): super().__init__(args) self.hide_passing_tests = self.arg.hide_passing_tests self.oval_tree = None def get_only_fail_rule(self, rules): """ Function processes array of matched IDs of rules in selected file. Function retunes array of failed matched IDs of rules in selected file. """ raise NotImplementedError def _get_rows_of_unselected_rules(self): """ Function retunes array of rows where is not selected IDs of rules in selected file. """ raise NotImplementedError def _get_message(self): return { 'description': 'Client for visualization of JSON created by command arf-to-json', 'source_filename': 'JSON file', } def load_json_to_oval_tree(self, rule): dict_of_tree = self.json_data_file[rule] try: return restore_dict_to_tree(dict_of_tree) except Exception: raise ValueError('Data is not valid for OVAL tree.') def create_dict_of_oval_node(self, oval_node): converter = Converter(oval_node) return converter.to_JsTree_dict(self.hide_passing_tests) def create_dict_of_rule(self, rule): self.oval_tree = self.load_json_to_oval_tree(rule) return self.create_dict_of_oval_node(self.oval_tree) def _put_to_dict_oval_trees(self, dict_oval_trees, rule): dict_oval_trees[rule.replace( START_OF_FILE_NAME, '')] = self.create_dict_of_rule(rule) def _get_src_for_one_graph(self, rule): return self.get_save_src(rule.replace(START_OF_FILE_NAME, '')) def prepare_parser(self, parser): super().prepare_parser(parser) self.prepare_args_when_output_is_html(parser)
"""Ensemble module.""" import numpy as np from tqdm import tqdm from .parser import Parser from ..utils.metrics import timing from .conformation import Conformation from .transform import Transform class Ensemble: """Default class for Ensemble.""" def __init__( self, base_conformation: Conformation, transform: Transform, parser: Parser, debug_mode: bool ): """Ensemble initialization.""" self.base_conformation = base_conformation self.transform = transform self.parser = parser self.object_length = len(self.base_conformation.coords_in_center_of_mass[0]) self.conformations = [] self.debug_mode = debug_mode def count_rotation_matrix(self, axis, theta): """ The function to calculate a rotation matrix using quaternion multiplication. Parameters: axis (A 3-by-1 numpy array): The axis, around which the rotation is to be performed. theta (Scalar): Angle (in degrees), by which the desired 3D object frame would be rotated around given axis. Returns: matrix (A 3-by-3 numpy array): Rotation matrix. """ c = np.cos(theta) s = np.sin(theta) matrix = np.array( [ [ axis[0] * axis[0] * (1.0 - c) + c, axis[0] * axis[1] * (1.0 - c) - axis[2] * s, axis[0] * axis[2] * (1.0 - c) + axis[1] * s, ], [ axis[1] * axis[0] * (1.0 - c) + axis[2] * s, axis[1] * axis[1] * (1.0 - c) + c, axis[1] * axis[2] * (1.0 - c) - axis[0] * s, ], [ axis[2] * axis[0] * (1.0 - c) - axis[1] * s, axis[2] * axis[1] * (1.0 - c) + axis[0] * s, axis[2] * axis[2] * (1.0 - c) + c, ], ] ) return matrix @timing def rmsd_angle(self, chosen_axis): """ The function to calculate the rotation angle for a given combination of partition and RMSD parameters. Parameters: chosen_axis (A 3-by-1 numpy array): The axis, which serves as a basis for performing rotation calculations. Returns: trans_angle (Float): The rotation angle, corresponding to the given partition and RMSD. partition (Float): Redefined partition parameter, changes in case there is no suitable rotation angle for a given set of parameters. """ partition = self.transform.partition ntn = np.dot( chosen_axis, np.dot(self.base_conformation.inertia_tensor, chosen_axis.T) ) in_arcsin = np.sqrt( np.power(self.transform.rmsd, 2) * partition * self.base_conformation.total_weight / (4 * ntn) ) if in_arcsin > 1: trans_angle = np.pi partition = (4 / self.base_conformation.total_weight * ntn) / np.power( self.transform.rmsd, 2 ) print( "Warning: arcsin exceeds 1 for the given conformation, replacing with pi instead." ) else: trans_angle = 2 * np.arcsin(in_arcsin) return trans_angle, partition @timing def generate_conformation(self, chosen_axis): """ The function to generate a conformation, which was transformed using the given partition and RMSD parameters. Parameters: chosen_axis (A 3-by-1 numpy array): The axis, which serves as a basis for performing rotation calculations. Returns: conformation (An N-by-3 numpy array): 3D object point array, which was transformed using the given partition and RMSD parameters. """ angle, partition = self.rmsd_angle(chosen_axis) rotation_matrix = self.count_rotation_matrix(chosen_axis, angle) conformation = np.sum( [ np.matmul( self.base_conformation.coords_in_center_of_mass, rotation_matrix ), self.transform.rmsd * np.sqrt(1 - partition) * chosen_axis, ], axis=0, ) if self.debug_mode: self.check_rmsd(conformation) conformation = conformation + self.base_conformation.center_of_mass return conformation @timing def check_rmsd(self, conformation): """ The function which performs trivial RMSD calculation for comparison with Eurecon. Parameters: conformation (An N-by-3 numpy array): 3D object point array, which was transformed using the given partition and RMSD parameters. Returns: None. """ trivial_rmsd = self.calc_trivial_rmsd(conformation) if ( not self.transform.rmsd - 0.00001 < trivial_rmsd < self.transform.rmsd + 0.00001 ): raise ValueError('Wrong RMSD') def calc_trivial_rmsd(self, a): """ The function which calculates trivial RMSD. Parameters: a (An N-by-3 numpy array): 3D object point array, which was transformed using the given partition and RMSD parameters. Returns: RMSD value. """ b = self.base_conformation.coords_in_center_of_mass return np.sqrt( (1 / self.base_conformation.object_length) * np.sum((a - b) ** 2) ) def generate_ensemble(self, stdout_mode: bool = True): """ The function which generates an ensemble of conformations. Parameters: stdout_mode (Boolean): Parameter which allows/prohibits writing conformation ensembles into files. Returns: None. """ POINT_CLOUD = ("pcd", "pts", "xyz") TRIANGLE_MESH = ("stl", "obj", "off", "gltf", "ply") object_type = str(self.base_conformation.data_file_name)[:-3] if object_type in POINT_CLOUD: print_type = "Point Cloud" else: print_type = "Mesh" print('Augmenting ' + str(self.base_conformation.data_file_name) + ' object' + ' | Type: ' + str(print_type) + ' | RMSD Value: ' + str(self.transform.rmsd)) name_of_bar = 'Processing conformations' if stdout_mode else 'Generating conformations' bar = tqdm(total=len(self.transform.axes), desc=name_of_bar) for counter, axis in enumerate(self.transform.axes): new_conformation = self.generate_conformation(axis) if stdout_mode: self.parser.write_conformation( self.base_conformation.data_object, new_conformation, self.base_conformation.data_file_name, counter, self.base_conformation.object_length, ) else: self.conformations.append(new_conformation) bar.update() bar.close() def write(self): """ The function which performs the file generation. Parameters: None. Returns: None. """ self.parser.write_all_conformations(self.conformations, self.base_conformation)
''' The MIT License (MIT) Copyright (c) 2014 Stefan Lohmaier Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import json import unittest from slojsonrpc import SLOJSONRPC from .api import sessionfaker try: import cherrypy class fake_request: def __init__(self, method, body): self.method = method class fake_body: def __init__(self, body): self.body = body def read(self): return self.body self.body = fake_body(body) class JSONRPCTestCherryPy(unittest.TestCase): def setUp(self): self.jsonrpc = SLOJSONRPC(sessionfaker()) def test_request(self): cherrypy.request = fake_request( 'PUT', '{"jsonrpc": "2.0", "method": "ping", "id": 1}') self.assertEqual( json.loads('{"jsonrpc": "2.0", "id": 1, "result": "pong"}'), json.loads(self.jsonrpc())) def test_invalid_method(self): cherrypy.request = fake_request( 'PUT', '{"jsonrpc": "2.0", "method": "ping", "id": 1}') self.assertEqual( json.loads('{"jsonrpc": "2.0", "id": 1, "result": "pong"}'), json.loads(self.jsonrpc())) cherrypy.request = fake_request( 'POST', '{"jsonrpc": "2.0", "method": "ping", "id": 1}') self.assertEqual( json.loads('{"jsonrpc": "2.0", "id": 1, "result": "pong"}'), json.loads(self.jsonrpc())) cherrypy.request = fake_request( 'PUTT', '{"jsonrpc": "2.0", "method": "ping", "id": 1}') self.assertEqual('Method "PUTT" not allowed.', self.jsonrpc()) except: pass
from frowns import Smiles from frowns import Smarts mol = Smiles.smilin("CCN") pattern = Smarts.compile("CCN") # simple match match = pattern.match(mol) assert match index = 1 for path in match: print "match", index print "\tatoms", path.atoms print "\tbond", path.bonds index = index + 1 print "*"*33 # more complicated match pattern = Smarts.compile("C*") match = pattern.match(mol) assert match index = 1 for path in match: print "match", index print "\tatoms", path.atoms print "\tbond", path.bonds index = index + 1 print "*"*33 pattern = Smarts.compile("[!N]-[!C]") match = pattern.match(mol) assert match index = 1 for path in match: print "match", index print "\tatoms", path.atoms print "\tbond", path.bonds index = index + 1
# # (c) Copyright 2016 Hewlett Packard Enterprise Development LP # (c) Copyright 2017-2018 SUSE LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import logging import logging.config from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric import dsa from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import serialization from ardana_configurationprocessor.cp.model.VariablePlugin \ import VariablePlugin from ardana_configurationprocessor.cp.model.CPLogging \ import CPLogging as KenLog LOG = logging.getLogger(__name__) class RandomSshKeyVariable(VariablePlugin): def __init__(self, instructions, models, controllers): super(RandomSshKeyVariable, self).__init__( 2.0, instructions, models, controllers, 'random-sshkey-2.0') LOG.info('%s()' % KenLog.fcn()) def calculate(self, payload=None): LOG.info('%s()' % KenLog.fcn()) if not payload: payload = dict() if 'algorithm' not in payload: payload['algorithm'] = 'RSA' elif payload['algorithm'] not in ('RSA', 'DSA',): self.add_error('algorithm must be one of RSA or DSA') return None if 'length' not in payload: payload['length'] = 2048 if 'comment' not in payload: payload['comment'] = None if 'passphrase' not in payload: payload['passphrase'] = None return self._calculate(payload) def is_immutable(self): return True def _calculate(self, payload): LOG.info('%s()' % KenLog.fcn()) algorithm = payload['algorithm'] length = payload['length'] passphrase = payload['passphrase'] comment = payload['comment'] if algorithm == 'DSA': new_key = dsa.generate_private_key( key_size=length, backend=default_backend()) else: new_key = rsa.generate_private_key( public_exponent=3, key_size=length, backend=default_backend()) key_encryption = serialization.NoEncryption() if passphrase: key_encryption = serialization.BestAvailableEncryption( passphrase) private_key = new_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=key_encryption ) public_key = new_key.public_key().public_bytes( encoding=serialization.Encoding.OpenSSH, format=serialization.PublicFormat.OpenSSH ) value = { 'private': private_key, 'public': public_key, } if comment is not None: value['public'] += " " + comment return value @property def instructions(self): return self._instructions @property def models(self): return self._models @property def controllers(self): return self._controllers
import json from qc_bot.qc_bot import bot from qc_bot import bot_commands, bot_events # Modules bot_commands, bot_events are imported # just to run the code in them if __name__ == "__main__": config = None with open("config.json", "r") as config_file: config = json.load(config_file) discord_api_key = config["API_KEY"] bot.run(discord_api_key)
#!/bin/python from os import path from shutil import copyfile, copy from io import open import fnmatch import os resxfiles = "oem_files.conf" corpconf = "oem.properties" rcconf = "oem_resources.conf" src = path.abspath("resources") dst = path.abspath("..\..") resx=[] def getResx(dir, resx): for root, dirs, files in os.walk(dir): for f in fnmatch.filter(files, '*.resx'): resx.append(os.path.join(root, f)) getResx('..\..\XenAdmin', resx) getResx('..\..\XenModel', resx) # get oem name old = [] new = [] cf = open(corpconf, encoding='utf-8') for kv in cf: if kv.startswith('#'): continue if kv =="": continue (k, v) = kv.split('=') old.append(k) new.append(v.rstrip()) cf.close() print("---------------------------------------------------------") for o, n in zip(old, new): print(o + "=====>" + n) print("---------------------------------------------------------") for resx_file in resx: print(resx_file) try: lines = [] with open(resx_file, encoding='utf-8') as infile: for line in infile: for o,n in zip(old, new): line = line.replace(o, n) lines.append(line) with open(resx_file, 'w', encoding='utf-8') as outfile: for line in lines: outfile.write(line) except: lines = [] with open(resx_file) as infile: for line in infile: for o,n in zip(old, new): line = line.replace(o, n) lines.append(line) with open(resx_file, 'w') as outfile: for line in lines: outfile.write(line) # replace the resx files ff = open(resxfiles) encode = 'ascii' for sf in ff: f = path.join(dst, path.normpath(sf.rstrip())) print(f) try: lines = [] with open(f, encoding='utf-8') as infile: for line in infile: for o,n in zip(old, new): line = line.replace(o, n) lines.append(line) with open(f, 'w', encoding='utf-8') as outfile: for line in lines: outfile.write(line) except: lines = [] with open(f) as infile: for line in infile: for o,n in zip(old, new): line = line.replace(o, n) lines.append(line) with open(f, 'w') as outfile: for line in lines: outfile.write(line) ff.close() # replace the images rf = open(rcconf) for pic in rf: (k, v) = pic.split('=') copyfile(path.join(src, path.normpath(k)), path.join(dst, path.normpath(v.rstrip())))
""" Get records from the table returns dict if `dictionary is True` ==> https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlconnection-cursor.html """ import json from mysql.connector import Error as mysqlError from typing import List from helperFunc import getRecordsCount # get all records def readTableAll(db_connection, table_name: str, close_connection_afterward: bool = True) -> List[tuple]: """ Public function. Query full table data. Args --- db_connection: `(class) MySQLConnection`, Connection to a MySQL Server table_name: `str`, the table you want to insert data in close_connection_afterward: `bool`, default `True`. Choose to close `db_cursor` and `mysql connection` after operation. Queried result from MySQL --- `List[tuple]`: e.g. `[(id, column1, column2, ...), (...), ...]` Return --- `Iterable[dict]`, a `list of dict` in json format. e.g. [ {'Title': 'Breaking Bad', 'Year': 2008}, {'Title': 'Game of Thrones', 'Year': 2011}, ... ] Remark ------ `json.dumps(the_return_dict_list)` make return dict become JSON string. """ print(f'mysql> Reading records from `{table_name}` table in `{db_connection.database}` database... ', end='') # creating a db_cursor to perform a sql operation # returns dict list if `dictionary is True` ==> https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlconnection-cursor.html db_cursor = db_connection.cursor(dictionary=True) # sql query query = f'''SELECT * FROM {table_name};''' record = None try: count = getRecordsCount(cursor=db_cursor, table_name=table_name) if count == 0: print(f'\n\t==> Fail.') print(f'\tmysql> No data present in `{table_name}` table in `{db_connection.database}` database.') else: # execute the command db_cursor.execute(query) db_cursor record = db_cursor.fetchall() print(f'==> Done!') except(Exception, mysqlError) as error: print(f'\n\t==> Fail.') print(f'\t> Error = `{error}`') if close_connection_afterward: if db_connection.is_connected(): db_cursor.close() db_connection.close() print('mysql>>> MySQL connection is closed\n') return record #json.dumps(record, indent=4, sort_keys=True, default=str) # driver code # if __name__ == '__main__': # # connect to database and get all data # readTableAll(connect())
# -*- coding: utf-8 -*- """ Created on Thu Jul 20 10:29:38 2017 @author: neh69 """ import os import sys import numpy as np import pandas as pd import lmfit as lm import matplotlib import matplotlib.pyplot as plt import seaborn as sns from PyQt5 import QtCore, QtWidgets import visionplot_widgets import mriplotwidget from ImageData import T2imageData def openStudyDir(): dlg = QtWidgets.QFileDialog() returned_data = dlg.getExistingDirectory(None, "Study Directory", "") print("openStudyDir\n",returned_data, type(returned_data)) # tree_window.setRootIndex(tree_window.model.index(returned_data)) def openNiftiAnalyzeFile(): dlg = QtWidgets.QFileDialog() returned_data = dlg.getOpenFileName(None, "MRI data nifti/analyze", procDataDirPath, "nii files (*.nii);;analyze files (*.img);;All files (*)") print(returned_data) def getH5file(): dlg = QtWidgets.QFileDialog() returned_data = dlg.getOpenFileName(None, "select results file", procDataDirPath, "CSV files (*.csv);;All files (*)") pathandfilename = returned_data[0] #self.hd5_store = pd.HDFStore(pathandfilename) if len(pathandfilename) > 0: ### attempt to extract details from data print(pathandfilename) imageData.readin_alldata_from_results_filename( os.path.abspath(pathandfilename)) if imageData.read_T2_img_hdr_files(): print("just before read_T2_data()") if imageData.read_T2_data(): imageData.read_Dixon_data() print("just after read_T2_data()") mainWindow.setWindowTitle(imageData.T2resultsFilenameAndPath) #### Update image displayed in window imageData.overlayRoisOnImage(0, imageData.fittingParam) # mri_window.update_plot(imageData.img1) mri_window.update_plot(imageData.mriSliceIMG, imageData.maskedROIs) print("type(imageData.ImageDataT2)",type(imageData.ImageDataT2)) hist_window.update_plot([1,imageData.T2slices,imageData.dixonSlices], [imageData.t2_data_summary_df, imageData.dixon_data_summary_df], "T2m") bar_window.update_plot([1,imageData.T2slices,imageData.dixonSlices], [imageData.t2_data_summary_df, imageData.dixon_data_summary_df], "T2m") #### set min max on sliders mri_window.slicesSlider.setMinimum(0) mri_window.slicesSlider.setMaximum(imageData.numSlicesT2-1) mri_window.slicesSlider.setValue(0) mri_window.echoesSlider.setMinimum(0) mri_window.echoesSlider.setMaximum(imageData.numEchoesT2-1) mri_window.slicesSlider.setValue(0) else: print(imageData.t2_image_hdr_pathfilename, " not found") def fileQuit(self): self.close() def closeEvent(self, ce): self.fileQuit() if __name__ == "__main__": lmparams = {} epgt2fitparams = lm.Parameters() azzt2fitparams = lm.Parameters() epgt2fitparams.add('T2fat', value = 180.0, min=0, max=5000, vary=False) epgt2fitparams.add('T2muscle', value = 35, min=0, max=100, vary=True ) epgt2fitparams.add('Afat', value = 0.20, min=0, max=10, vary=True ) epgt2fitparams.add('Amuscle', value = 0.80, min=0, max=10, vary=True ) epgt2fitparams.add('T1fat', value = 365.0, vary=False) epgt2fitparams.add('T1muscle', value = 1400, vary=False) epgt2fitparams.add('echo', value = 10.0, vary=False) epgt2fitparams.add('B1scale', value = 1.0, min=0, max=2, vary=True ) azzt2fitparams.add_many(('Afat', 60.0, True, 0, 250, None), ('Amuscle', 40.0, True, 0, 250, None), ('T2muscle', 40.0, True, 0, 100, None), ('c_l', 0.55, False, 0, 2000, None), ('c_s', 0.45, False, 0, 2000, None), ('t2_fl', 250.0, False, 0, 2000, None), ('t2_fs', 43.0, False, 0, 2000, None), ('echo', 10.0, False, 0, 2000, None)) lmparams['epgt2fitparams'] = epgt2fitparams lmparams['azzt2fitparams'] = azzt2fitparams params=azzt2fitparams matplotlib.use('Qt5Agg') plt.style.context('seaborn-colorblind') sns.set(font_scale = 0.6) # sns.set_palette("pastel") procDataDirPath = r"/home/eric/Documents/projects/programming/2019/mri_progs/T2EPGviewer/studyData/testStudy/HC-001/sess-1/upperleg/T2/results/muscle/AzzEPG" progname = os.path.basename(sys.argv[0]) qApp = QtWidgets.QApplication(sys.argv) imageData = T2imageData() print("imageData.fittingParam:",imageData.fittingParam) mainWindow = QtWidgets.QMainWindow() mainWindow.setAttribute(QtCore.Qt.WA_DeleteOnClose) mainWindow.setWindowTitle("application main window") file_menu = QtWidgets.QMenu('&File', mainWindow) # file_menu.addAction("&Open study Directory", openStudyDir) file_menu.addAction('&Choose Study Results File', getH5file, QtCore.Qt.CTRL + QtCore.Qt.Key_H) # file_menu.addAction('&Open nifti/analyze image File', openNiftiAnalyzeFile ) # file_menu.addAction('&Choose Rois', imageData.getRoiFiles, QtCore.Qt.CTRL + QtCore.Qt.Key_R) # file_menu.addAction('&Quit', fileQuit, QtCore.Qt.CTRL + QtCore.Qt.Key_Q) mainWindow.menuBar().addMenu(file_menu) main_widget = QtWidgets.QWidget(mainWindow) mainlayout = QtWidgets.QHBoxLayout(main_widget) # mainWindow.setCentralWidget(main_widget) # plot_window1 = mri_widget(main_widget) npts = 256*100 iii = np.random.permutation(np.arange(255*255))[:npts] ddd = np.random.randn(npts)*100+500 data_df = pd.DataFrame({'iii': iii, 'ddd':ddd}) leftwindow = QtWidgets.QWidget() rightwindow = QtWidgets.QWidget() splitHwidget = QtWidgets.QSplitter(QtCore.Qt.Horizontal) hlayout = QtWidgets.QHBoxLayout(leftwindow) vlayout = QtWidgets.QVBoxLayout(rightwindow) mri_window = mriplotwidget.MRIPlotWidget( imageData=imageData) rbtns_window = visionplot_widgets.radiobuttons_fitWidget(mri_window=mri_window) t2plot_window = visionplot_widgets.T2PlotWidget( lmparams, showToolbar=False) bar_window = visionplot_widgets.BarPlotWidget( showToolbar=False, data_df=data_df, image_size=256) hist_window = visionplot_widgets.HistogramPlotWidget( mri_plot=mri_window, showToolbar=True,data_df=data_df, image_size=256) mainlayout.addWidget(splitHwidget) hlayout.addWidget(rbtns_window) hlayout.addWidget(mri_window) vlayout.addWidget(t2plot_window) vlayout.addWidget(bar_window) vlayout.addWidget(hist_window) splitHwidget.addWidget(leftwindow) splitHwidget.addWidget(rightwindow ) mri_window.register_PlotWidgets(t2plot_window, bar_window, hist_window, rbtns_window) main_widget.setFocus() mainWindow.setCentralWidget(main_widget) mainWindow.show() sys.exit(qApp.exec_())
import random import time import cPickle import numpy as np import subprocess as sub class Optimizer(object): def __init__(self, pop, selection_func, mutation_func, evaluation_func, num_rand_inds=1): self.pop = pop self.select = selection_func self.mutate = mutation_func self.evaluate = evaluation_func self.num_rand_inds = num_rand_inds self.continued_from_checkpoint = False self.start_time = None self.max_fitness = 1e10 self.autosuspended = False def elapsed_time(self, units="s"): if self.start_time is None: self.start_time = time.time() s = time.time() - self.start_time if units == "s": return s elif units == "m": return s / 60.0 elif units == "h": return s / 3600.0 def save_checkpoint(self, directory, gen): sub.call("mkdir {0}/pickledPops{1}".format(directory, self.pop.seed), shell=True) random_state = random.getstate() numpy_random_state = np.random.get_state() data = [self, random_state, numpy_random_state] with open('{0}/pickledPops{1}/Gen_{2}.pickle'.format(directory, self.pop.seed, gen), 'wb') as handle: cPickle.dump(data, handle, protocol=cPickle.HIGHEST_PROTOCOL) def run(self, max_hours_runtime, max_gens, checkpoint_every, directory="."): self.start_time = time.time() if self.autosuspended: sub.call("rm %s/AUTOSUSPENDED" % directory, shell=True) if not self.continued_from_checkpoint: # generation zero self.evaluate(self.pop) self.select(self.pop) # only produces dominated_by stats, no selection happening (population not replaced) while self.pop.gen < max_gens: if self.pop.gen % checkpoint_every == 0: # and self.pop.gen > 0 print "Saving checkpoint at generation {0}".format(self.pop.gen+1) self.save_checkpoint(directory, self.pop.gen) if self.elapsed_time(units="h") > max_hours_runtime or self.pop.best_fit_so_far == self.max_fitness: self.autosuspended = True print "Autosuspending at generation {0}".format(self.pop.gen+1) self.save_checkpoint(directory, self.pop.gen) # keep going but checkpoint every gen at this point # break self.pop.gen += 1 # update ages self.pop.update_ages() # mutation print "Mutation starts" new_children = self.mutate(self.pop) print "Mutation ends: successfully generated %d new children." % (len(new_children)) # combine children and parents for selection print "Now creating new population" self.pop.append(new_children) for _ in range(self.num_rand_inds): print "Random individual added to population" self.pop.add_random_individual() print "New population size is %d" % len(self.pop) # evaluate fitness print "Starting fitness evaluation" eval_timer = time.time() self.evaluate(self.pop) print "Fitness evaluation finished in {} seconds".format(time.time()-eval_timer) # perform selection by pareto fronts new_population = self.select(self.pop) # replace population with selection self.pop.individuals = new_population print "Population size reduced to %d" % len(self.pop) if not self.autosuspended: # print end of run stats print "Finished {0} generations".format(self.pop.gen + 1) print "DONE!"
import re import struct import unicodedata from .regex import ( EMAIL_REGEX, EMOJI_REGEX, HASHTAG_REGEX, MULTIWHITESPACE_REGEX, NON_ALNUMWHITESPACE_REGEX, TELEGRAM_LINK_REGEX, URL_REGEX, ) def add_surrogate(text): return ''.join( # SMP -> Surrogate Pairs (Telegram offsets are calculated with these). # See https://en.wikipedia.org/wiki/Plane_(Unicode)#Overview for more. ''.join(chr(y) for y in struct.unpack('<HH', x.encode('utf-16le'))) if (0x10000 <= ord(x) <= 0x10FFFF) else x for x in text ) def cast_string_to_single_string(s): processed = MULTIWHITESPACE_REGEX.sub(' ', NON_ALNUMWHITESPACE_REGEX.sub(' ', s)) processed = processed.strip().replace(' ', '-') return processed def clean_text(text): text = remove_markdown(remove_emoji(text)) text = remove_url(text) text = despace_smart(text) return text.strip() def despace(text): text = re.sub(r'\n+', '\n', text) text = re.sub(r'[ \t]+', ' ', text) text = re.sub(r'\n[ \t]+', '\n', text) return text def despace_full(text): return re.sub(r'\s+', ' ', text).strip() def despace_smart(text): text = re.sub(r'\n\s*[-•]+\s*', r'\n', text) text = re.sub(r'\n{2,}', r'\n', text).strip() text = re.sub(r'\.?(\s+)?\n', r'. ', text) text = re.sub(r'\s+', ' ', text) return text def escape_format(text): text = text.replace("__", "_").replace("**", "*").replace("`", "'") text = text.replace('[', r'`[`').replace(']', r'`]`') return text def remove_markdown(text): text = re.sub('[*_~]{2,}', '', text) text = re.sub('[`]+', '', text) text = re.sub(r'\[\s*(.*?)(\s*)\]\(.*?\)', r'\g<1>\g<2>', text, flags=re.MULTILINE) return text def normalize_string(string): string = re.sub('[^a-zA-Z0-9_\\-]+', '', string.lower().strip().replace(' ', '-')) return unicodedata.normalize('NFKD', string).encode('ascii', 'ignore').decode('utf-8') def remove_emails(text): return re.sub(EMAIL_REGEX, '', text) def remove_emoji(text): text = re.sub(EMOJI_REGEX, '', text) text = re.sub(u'\ufe0f', '', text) return text def remove_hashtags(text): return re.sub(HASHTAG_REGEX, '', text) def remove_url(text): return re.sub(URL_REGEX, '', text) def replace_telegram_link(text): return re.sub(TELEGRAM_LINK_REGEX, r'@\1', text) def split_at(s, pos): if len(s) < pos: return s pos -= 10 pos = max(0, pos) for p in range(pos, min(pos + 20, len(s) - 1)): if s[p] in [' ', '\n', '.', ',', ':', ';', '-']: return s[:p] + '...' return s[:pos] + '...' def unwind_hashtags(text): return re.sub(HASHTAG_REGEX, r'\2', text)
from skimage.measure import compare_ssim import imutils import cv2 imageA = cv2.imread("images/t.png") imageB = cv2.imread("images/t1.png") grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY) grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY) (score, diff) = compare_ssim(grayA, grayB, full=True) diff = (diff * 255).astype("uint8") print("SSIM: {}".format(score)) thresh = cv2.threshold(diff, 0, 255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) for c in cnts: (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(imageA, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.rectangle(imageB, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.imshow("ImageA", imageA) cv2.imshow("ImageB", imageB) cv2.waitKey(0)
class MicroarrayModule: def __init__(self, owner): self.owner = owner def get_parameter_set(self): return self.owner.get_parameter_set() def get_m_query_id(self): return self.owner.get_m_query_id() def get_t_metadata(self): return self.owner.get_t_metadata() def set_t_metadata(self,metadata): return self.owner.set_t_metadata(metadata) def get_t_gene_annotation(self): return self.owner.get_t_gene_annotation()
class MessageBus(object): def __init__(self): self.handlers = {} def register_handler(self, event, handler): if event in self.handlers: self.handlers[event].append(handler) else: self.handlers[event] = [handler] def fire_event(self, event, **params): if event not in self.handlers: return for handler in self.handlers[event]: result = handler(**params) if result: return result
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### <summary> ### Demonstration of how to estimate constituents of QC500 index based on the company fundamentals ### The algorithm creates a default tradable and liquid universe containing 500 US equities ### which are chosen at the first trading day of each month. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="universes" /> ### <meta name="tag" content="coarse universes" /> ### <meta name="tag" content="fine universes" /> class ConstituentsQC500GeneratorAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.UniverseSettings.Resolution = Resolution.Daily self.SetStartDate(2018, 1, 1) # Set Start Date self.SetEndDate(2019, 1, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash # Add QC500 Universe self.AddUniverse(self.Universe.QC500)
""" Slack Bot Commands Loader """ import os from ebr_trackerbot import module_loader module_loader.load(os.path.dirname(__file__), "ebr_trackerbot.storage")
from http.server import HTTPServer, BaseHTTPRequestHandler from urllib.parse import urlparse, parse_qs from cowpy import cow import json import sys class SimpleHTTPRequestHandler(BaseHTTPRequestHandler): def do_GET(self): parsed_path = urlparse(self.path) parsed_qs = parse_qs(parsed_path.query) # import pdb; pdb.set_trace() if parsed_path.path == '/': self.send_response(200) self.end_headers() self.wfile.write(return_html_string()) return elif parsed_path.path == '/cowsay': self.send_response(200) self.end_headers() self.wfile.write(b'Helpful instructions about this application') return elif parsed_path.path == '/cow': try: # import pdb; pdb.set_trace() msg = parsed_qs['msg'][0] print(msg) except (KeyError, json.decoder.JSONDecodeError): self.send_response(400) self.end_headers() self.wfile.write(b'You did a bad thing') return cheese = cow.Moose(thoughts=True) message = cheese.milk(msg) self.send_response(200) self.end_headers() self.wfile.write(message.encode('utf8')) return else: self.send_response(404) self.end_headers() self.wfile.write(b'Not Found') def do_POST(self): parsed_path = urlparse(self.path) parsed_qs = parse_qs(parsed_path.query) if parsed_path.path == '/cow': try: msg = parsed_qs['msg'][0] cheese = cow.Moose(thoughts=True) message = cheese.milk(msg) post_dict = {} post_dict['content'] = message self.send_response(200) self.end_headers() self.wfile.write(json.dumps(post_dict).encode('utf8')) return except (KeyError, json.decoder.JSONDecodeError): self.send_response(400) self.end_headers() self.wfile.write(b'You did a bad thing') return def create_server(): return HTTPServer(('127.0.0.1', 3000), SimpleHTTPRequestHandler) def run_forever(): server = create_server() try: print('Starting server on port 3000') server.serve_forever() except KeyboardInterrupt: server.shutdown() server.server_close() # sys.exit() def return_html_string(): return b'''<!DOCTYPE html> <html> <head> <title> cowsay </title> </head> <body> <header> <nav> <ul> <li><a href="/cowsay">cowsay</a></li> </ul> </nav> <header> <main> <!-- project description --> </main> </body> </html>''' if __name__ == '__main__': run_forever()
#!/usr/bin/python def stringWrap(toWrap): ''' @param {String} toWrap @return ""toWrap"" Ie, if you call print(self.stringWrap('mesh')); > "\"mesh\"" ''' if not toWrap: return '""' return '"\\"' + toWrap + '\\""' def numWrap(toWrap): return str(toWrap); ##Note: this vector is ordered to agree with the order in which ##arguments for the scene.db file read by csvobjectfactory DEFAULT_VAL_VECTOR = [ ['objtype', 'mesh', stringWrap], ['pos_x', 0, numWrap], ['pos_y', 0, numWrap], ['pos_z', 0, numWrap], ['orient_x', 0, numWrap], ['orient_y', 0, numWrap], ['orient_z', 1, numWrap], ['orient_w', 0, numWrap], ['vel_x', 0, numWrap], ['vel_y', 0, numWrap], ['vel_z', 0, numWrap], ["rot_axis_x", 0, numWrap], ["rot_axis_y", 0, numWrap], ["rot_axis_z", 0, numWrap], ["rot_speed", 0, numWrap], ["meshURI", "meerkat:///test/multimtl.dae/original/0/multimtl.dae", stringWrap], ["scale", 1, numWrap], ["script_type", '', stringWrap], ["script_contents", '', stringWrap], ["solid_angle", 12, numWrap], ["physics", '', stringWrap] ]; def getCSVHeaderAsCSVString(): returner = ''; for s in DEFAULT_VAL_VECTOR: returner += s[0] + ','; return returner; class Entity: ''' An Entity object contains all information about how to initialize an entity. This eventually gets output to a scene.db file. ''' def __init__ (self, *args, **kwargs): ''' @see DEFAULT_VAL_VECTOR for a list of argument names that we can use. ''' for s in DEFAULT_VAL_VECTOR: self.checkArgsLoadDefaults(s[0],kwargs,s[1],s[2]); def checkArgsLoadDefaults(self,toCheckFor,toCheckIn,default,wrapFn): toExec = 'self.' + toCheckFor + '='; if (toCheckFor in toCheckIn): toExec += wrapFn(toCheckIn[toCheckFor]); else: toExec += wrapFn(default); exec (toExec); ''' @return {String} returns a comma-separated string with all the constructor info necessary for csvobjectfactory to construct an entity with specified characteristcs. ''' def getConstructorRow(self): returner = ''; #iterate through default val vector to get order to write #field names for s in DEFAULT_VAL_VECTOR: returner += str(self.getSelfData(s[0])) + ','; return returner; def getSelfData(self,fieldName): exec ('returner = self.' + fieldName); return returner; #Only to test to ensure that this code is working correctly. if __name__ == "__main__": cInfo1= Entity(pos_x=-20,pos_y=5,pos_z=1.25, scale=20, meshURI='meerkat:///kittyvision/hedgehog.dae/optimized/0/hedgehog.dae'); print('\n\n'); print(getCSVHeaderAsCSVString()); print(cInfo1.getConstructorRow()); print('\n\n');
from django.apps import AppConfig class PagesConfig(AppConfig): name = 'glitter.pages' label = 'glitter_pages' verbose_name = 'Pages' def ready(self): super().ready() from . import listeners # noqa
""" Recursive Digit We define super digit of an integer x using the following rules: If x has only 1 digit, then its super digit is x. Otherwise, the super digit of x is equal to the super digit of the sum of the digits of x. For example, the super digit of x will be calculated as: super_digit(9875) 9+8+7+5 = 29 super_digit(29) 2 + 9 = 11 super_digit(11) 1 + 1 = 2 super_digit(2) = 2 You are given two numbers n and k. The number p is created by concatenating the string times. Continuing the above example where n = 9875, assume your value k=4. Your initial p = 9875 9875 9875 9875 (spaces added for clarity). super_digit(p) = super_digit(9875987598759875) 5+7+8+9+5+7+8+9+5+7+8+9+5+7+8+9 = 116 super_digit(p) = super_digit(116) 1+1+6 = 8 super_digit(p) = super_digit(8) All of the digits of p sum to 116. The digits of 116 sum to 8. 8 is only one digit, so it's the super digit. Complete the super_digit() method. It must return the calculated super digit as an integer. superDigit has the following parameter(s): n: a string representation of an integer. k: an integer, the times to concatenate n to make p. Examples super_digit("148", 3) ➞ 3 super_digit("123", 3) ➞ 9 super_digit("99999999999999999999999999", 104500) ➞ 9 """ def super_digit(n, k): a, b =list(n), [] for i in a: b.append(int(i)) tot = (sum(b))*k n=str(tot) while len(list(n)) >0: a, b =list(n), [] for i in a: b.append(int(i)) tot = (sum(b)) n=str(tot) if len(n) == 1: break return int(n[0]) #super_digit("123", 3) #, 9) #super_digit("9875", 4) #, 8) #super_digit("148", 3) #, 3) #super_digit("111", 10) #, 3) #super_digit("543", 100) #, 3) super_digit("99999999999999999999999999", 104500) #➞ 9
"""The tests for the litejet component.""" import logging from openpeerpower.components import light from openpeerpower.components.light import ATTR_BRIGHTNESS from openpeerpower.const import ATTR_ENTITY_ID, SERVICE_TURN_OFF, SERVICE_TURN_ON from . import async_init_integration _LOGGER = logging.getLogger(__name__) ENTITY_LIGHT = "light.mock_load_1" ENTITY_LIGHT_NUMBER = 1 ENTITY_OTHER_LIGHT = "light.mock_load_2" ENTITY_OTHER_LIGHT_NUMBER = 2 async def test_on_brightness(opp, mock_litejet): """Test turning the light on with brightness.""" await async_init_integration(opp) assert opp.states.get(ENTITY_LIGHT).state == "off" assert opp.states.get(ENTITY_OTHER_LIGHT).state == "off" assert not light.is_on(opp, ENTITY_LIGHT) await opp.services.async_call( light.DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: ENTITY_LIGHT, ATTR_BRIGHTNESS: 102}, blocking=True, ) mock_litejet.activate_load_at.assert_called_with(ENTITY_LIGHT_NUMBER, 39, 0) async def test_on_off(opp, mock_litejet): """Test turning the light on and off.""" await async_init_integration(opp) assert opp.states.get(ENTITY_LIGHT).state == "off" assert opp.states.get(ENTITY_OTHER_LIGHT).state == "off" assert not light.is_on(opp, ENTITY_LIGHT) await opp.services.async_call( light.DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: ENTITY_LIGHT}, blocking=True, ) mock_litejet.activate_load.assert_called_with(ENTITY_LIGHT_NUMBER) await opp.services.async_call( light.DOMAIN, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: ENTITY_LIGHT}, blocking=True, ) mock_litejet.deactivate_load.assert_called_with(ENTITY_LIGHT_NUMBER) async def test_activated_event(opp, mock_litejet): """Test handling an event from LiteJet.""" await async_init_integration(opp) # Light 1 mock_litejet.get_load_level.return_value = 99 mock_litejet.get_load_level.reset_mock() mock_litejet.load_activated_callbacks[ENTITY_LIGHT_NUMBER]() await opp.async_block_till_done() mock_litejet.get_load_level.assert_called_once_with(ENTITY_LIGHT_NUMBER) assert light.is_on(opp, ENTITY_LIGHT) assert not light.is_on(opp, ENTITY_OTHER_LIGHT) assert opp.states.get(ENTITY_LIGHT).state == "on" assert opp.states.get(ENTITY_OTHER_LIGHT).state == "off" assert opp.states.get(ENTITY_LIGHT).attributes.get(ATTR_BRIGHTNESS) == 255 # Light 2 mock_litejet.get_load_level.return_value = 40 mock_litejet.get_load_level.reset_mock() mock_litejet.load_activated_callbacks[ENTITY_OTHER_LIGHT_NUMBER]() await opp.async_block_till_done() mock_litejet.get_load_level.assert_called_once_with(ENTITY_OTHER_LIGHT_NUMBER) assert light.is_on(opp, ENTITY_LIGHT) assert light.is_on(opp, ENTITY_OTHER_LIGHT) assert opp.states.get(ENTITY_LIGHT).state == "on" assert opp.states.get(ENTITY_OTHER_LIGHT).state == "on" assert ( int(opp.states.get(ENTITY_OTHER_LIGHT).attributes.get(ATTR_BRIGHTNESS)) == 103 ) async def test_deactivated_event(opp, mock_litejet): """Test handling an event from LiteJet.""" await async_init_integration(opp) # Initial state is on. mock_litejet.get_load_level.return_value = 99 mock_litejet.load_activated_callbacks[ENTITY_OTHER_LIGHT_NUMBER]() await opp.async_block_till_done() assert light.is_on(opp, ENTITY_OTHER_LIGHT) # Event indicates it is off now. mock_litejet.get_load_level.reset_mock() mock_litejet.get_load_level.return_value = 0 mock_litejet.load_deactivated_callbacks[ENTITY_OTHER_LIGHT_NUMBER]() await opp.async_block_till_done() # (Requesting the level is not strictly needed with a deactivated # event but the implementation happens to do it. This could be # changed to an assert_not_called in the future.) mock_litejet.get_load_level.assert_called_with(ENTITY_OTHER_LIGHT_NUMBER) assert not light.is_on(opp, ENTITY_OTHER_LIGHT) assert not light.is_on(opp, ENTITY_LIGHT) assert opp.states.get(ENTITY_LIGHT).state == "off" assert opp.states.get(ENTITY_OTHER_LIGHT).state == "off"
import random import threading import time try: import Queue except: import queue as Queue class producer: def __init__(self): self.food = ["ham", "soup", "salad"] self.nexttime = 0 def run(self): global q while (time.clock() < 10): if (self.nexttime < time.clock()): f = self.food[random.randrange(len(self.food))] q.put(f) print("Adding " + f) self.nexttime += random.random() class consumer: def __init__(self): self.nexttime = 0 def run(self): global q while (time.clock() < 10): if (self.nexttime < time.clock() and not q.empty()): f = q.get() print("Removing " + f) self.nexttime += random.random() * 2 if __name__ == '__main__': q = Queue.Queue(10) p = producer() c = consumer() pt = threading.Thread(target=p.run, args=()) ct = threading.Thread(target=c.run, args=()) pt.start() ct.start()
""" JSON and meta-data blocks, primarily used for SEO purposes. """ import json from django import forms from django.utils.translation import ugettext_lazy as _ from wagtail.core import blocks from coderedcms import schema from .base_blocks import MultiSelectBlock class OpenHoursValue(blocks.StructValue): """ Renders selected days as a json list. """ @property def days_json(self): """ Custom property to return days as json list instead of default python list. """ return json.dumps(self['days']) class OpenHoursBlock(blocks.StructBlock): """ Holds day and time combination for business open hours. """ days = MultiSelectBlock( required=True, verbose_name=_('Days'), help_text=_('For late night hours past 23:59, define each day in a separate block.'), widget=forms.CheckboxSelectMultiple, choices=( ('Monday', _('Monday')), ('Tuesday', _('Tuesday')), ('Wednesday', _('Wednesday')), ('Thursday', _('Thursday')), ('Friday', _('Friday')), ('Saturday', _('Saturday')), ('Sunday', _('Sunday')), )) start_time = blocks.TimeBlock(verbose_name=_('Opening time')) end_time = blocks.TimeBlock(verbose_name=_('Closing time')) class Meta: template = 'coderedcms/blocks/struct_data_hours.json' label = _('Open Hours') value_class = OpenHoursValue class StructuredDataActionBlock(blocks.StructBlock): """ Action object from schema.org """ action_type = blocks.ChoiceBlock( verbose_name=_('Action Type'), required=True, choices=schema.SCHEMA_ACTION_CHOICES ) target = blocks.URLBlock(verbose_name=_('Target URL')) language = blocks.CharBlock( verbose_name=_('Language'), help_text=_('If the action is offered in multiple languages, create separate actions for each language.'), default='en-US' ) result_type = blocks.ChoiceBlock( required=False, verbose_name=_('Result Type'), help_text=_('Leave blank for OrderAction'), choices=schema.SCHEMA_RESULT_CHOICES ) result_name = blocks.CharBlock( required=False, verbose_name=_('Result Name'), help_text=_('Example: "Reserve a table", "Book an appointment", etc.') ) extra_json = blocks.RawHTMLBlock( required=False, verbose_name=_('Additional action markup'), classname='monospace', help_text=_('Additional JSON-LD inserted into the Action dictionary. Must be properties of https://schema.org/Action.') ) class Meta: template = 'coderedcms/blocks/struct_data_action.json' label = _('Action')
from argparse import ( ArgumentParser, Namespace, _SubParsersAction, ) import logging import pathlib import rlp from eth_utils import ValidationError from eth.abc import ChainAPI from eth.db.atomic import AtomicDB from eth.db.backends.level import LevelDB from eth.exceptions import HeaderNotFound from eth.vm.forks.frontier.blocks import FrontierBlock from eth.vm.interrupt import EVMMissingData from trinity.config import ( Eth1AppConfig, TrinityConfig, ) from trinity.extensibility import Application from trinity.initialization import ( ensure_eth1_dirs, initialize_database, ) from .rlp_decode import decode_all def get_chain(trinity_config: TrinityConfig) -> ChainAPI: app_config = trinity_config.get_app_config(Eth1AppConfig) ensure_eth1_dirs(app_config) base_db = LevelDB(db_path=app_config.database_dir) chain_config = app_config.get_chain_config() chain = chain_config.full_chain_class(AtomicDB(base_db)) initialize_database(chain_config, chain.chaindb, base_db) return chain class ImportBlockComponent(Application): """ Import blocks an RLP encoded file. """ logger = logging.getLogger('trinity.components.BlockImport') @classmethod def configure_parser(cls, arg_parser: ArgumentParser, subparser: _SubParsersAction) -> None: import_parser = subparser.add_parser( 'import', help='Import blocks from a file (RLP encoded)', ) import_parser.add_argument( 'file_path', type=pathlib.Path, help='Specify the file to import from' ) import_parser.set_defaults(func=cls.run_import) @classmethod def run_import(cls, args: Namespace, trinity_config: TrinityConfig) -> None: with open(args.file_path, 'rb') as import_file: # This won't handle large files. # TODO: Make this stream based: https://github.com/ethereum/trinity/issues/1282 file_bytes = import_file.read() blocks = decode_all(file_bytes, sedes=FrontierBlock) cls.logger.info("Importing %s blocks", len(blocks)) chain = get_chain(trinity_config) for block in blocks: try: chain.import_block(block) except (EVMMissingData, ValidationError) as exc: cls.logger.error(exc) cls.logger.error("Import failed") else: cls.logger.info("Successfully imported %s", block) class ExportBlockComponent(Application): """ Export blocks to an RLP encoded file. """ logger = logging.getLogger('trinity.components.BlockExport') @classmethod def configure_parser(cls, arg_parser: ArgumentParser, subparser: _SubParsersAction) -> None: export_parser = subparser.add_parser( 'export', help='Export blocks to a file (RLP encoded)', ) export_parser.add_argument( 'file_path', type=pathlib.Path, help='Specify the file to export to' ) export_parser.add_argument( 'block_number', type=int, help='Specify the block number to be exported' ) export_parser.add_argument( "--append", action="store_true", help="Disable peer discovery", ) export_parser.add_argument( "--overwrite", action="store_true", help="Disable peer discovery", ) export_parser.set_defaults(func=cls.run_export) @classmethod def run_export(cls, args: Namespace, trinity_config: TrinityConfig) -> None: chain = get_chain(trinity_config) try: block = chain.get_canonical_block_by_number(args.block_number) except HeaderNotFound: cls.logger.error("Block number %s does not exist in the database", args.block_number) return cls.logger.info("Exporting %s", block) block_bytes = rlp.encode(block) if args.file_path.exists() and not (args.append or args.overwrite): cls.logger.error( "%s does exist. Must use `--append` or `--overwrite` to proceed.", args.file_path ) return parent_dir = args.file_path.parent if not parent_dir.exists(): parent_dir.mkdir(parents=True) write_mode = 'w+b' if not args.append else 'a+b' cls.logger.info("Writing %s bytes to %s", len(block_bytes), args.file_path) with open(args.file_path, write_mode) as export_file: export_file.write(block_bytes) cls.logger.info("Successfully exported %s", block)
__author__ = 'Andreas M. Wahl' from autosim.SimulationAutomator import SimulationAutomator from configurator.ranges.RangeGenerator import RangeGenerator from configurator.visualization.Plotter import Plotter from configurator.persistence.PersistenceManager import PersistenceManager import yaml from configurator.util.util import sanitize_results, sanitize_dict class QuickTest: def __init__(self, simulations_file, config_file): self.config = yaml.load(open(config_file)) self.generator = RangeGenerator(yaml.load(open(simulations_file))) self.automator = SimulationAutomator(self.config["SimulationAutomator"]) self.persistence = PersistenceManager(self.config["Persistence"]["database"]) self.plotter = Plotter(self.persistence) def setup(self): self.persistence.start_db() def run_simulations(self, tag): simulation_scenarios = self.generator.generate_memory() #print len(simulation_scenarios) automator_input = [] for scenario in simulation_scenarios: automator_entry = {} automator_entry["parameters"] = scenario automator_entry["strategies"] = None automator_input.append(automator_entry) results, fails = self.automator.run(automator_input, tag) self.persistence.initialise_database_client() sanitized_results = sanitize_results(results) #print sanitized_results self.persistence.persist_to_database(self.config["Persistence"]["database"]["collection_name"], sanitized_results) return results, fails def plot2d(self, tag, x_param, y_param, filter, output_filename, title="", x_label="", y_label=""): self.persistence.initialise_database_client() self.plotter.plot2d_from_database(tag, x_param, y_param, filter, output_filename, title, x_label, y_label) def plot3d(self, tag, x_param, y_param, z_param, filter, output_filename, title="", x_label="", y_label="", z_label=""): self.persistence.initialise_database_client() self.plotter.plot3d_from_database(tag, x_param, y_param, z_param, filter, output_filename, title, x_label, y_label, z_label) def teardown(self): self.persistence.shutdown_db()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 6 11:35:30 2020 @author: christian """ import speaknspell import matplotlib.pyplot as plt import numpy as np from scipy.io.wavfile import read plt.style.use('paper') data = read("./Voice Recordings/Short _a_.wav") y = data[1][:, 0] x = np.arange(0, len(y), 1) # plt.figure(0) # plt.plot(x, y) test = speaknspell.SnS(np.array([x, y]).T, "Short _a_"[:-1], 15) test.synth_signal() test.play_sound() #filenames = ["Short _a_", "Short _e_", "Short _i_", "Short _o_", # "Short _u_", "Long _a_", "Long _e_", "Long _i_", # "Long _o_", "Long _u_", "_Ah_"] #for filename in filenames: # data = read("./Voice Recordings/" + filename + ".wav") # y = data[1][:, 0] # x = np.arange(0, len(y), 1) ## plt.figure(0) ## plt.plot(x, y) # test = speaknspell.SnS(np.array([x, y]).T, filename[:-1], 15) # test.synth_signal() # test.play_sound() #fnames = ['Long_a_15', 'Long_e_15', 'Long_i_15', # 'Long_o_15', 'Long_u_15'] #compname = "AEIOU" #test.synthspeech(fnames, compname)
from django.contrib.auth.models import User from django.db import models from Cinema.models import Movie class Comment(models.Model): user=models.ForeignKey(User,on_delete=models.SET_NULL,null=True) movie=models.ForeignKey(Movie,on_delete=models.CASCADE) text=models.CharField(max_length=200) date_created=models.DateTimeField(auto_now_add=True) class Rating(models.Model): user=models.ForeignKey(User,on_delete=models.SET_NULL,null=True) movie=models.ForeignKey(Movie,on_delete=models.CASCADE) score=models.FloatField(default=0.0)
tot = barato = contamil = contador = 0 baratonome = '' while True: nome = str(input('Informe o nome do produto: ')) preco = float(input('Informe o preço do produto: R$')) contador += 1 if contador == 1 or preco < barato: barato = preco baratonome = nome tot += preco if preco > 1000: contamil += 1 esc = str(input('Deseja continuar: [S/N] ')).strip().upper()[0] print('=-' * 20) if esc not in 'SN': while True: esc = str(input('OPÇÃO INVÁLIDA! Deseja continuar: [S/N] ')).strip().upper()[0] if esc in 'SN': break elif esc == 'N': break print(f'O total gasto na compra foi de: R${tot:.2f}') print(f'{contamil} produtos custaram mais de R$1000.00.') print(f'O produto mais barato foi: {baratonome}, com o valor de R${barato:.2f}.')
import pandas as pd import os from upload_dados import * import seaborn as sns import matplotlib.pyplot as plt os.system('cls') #3. Existem correlações entre as características de um anúncio e seu faturamento? # a. Quais? Explique # filtrando todos os dados somente dos anuncios alugados data_df = data_df.loc[data_df['booked_on'] != 'blank'] #agrupando todos os dados pela soma do faturamento billings = data_df[['ad_name','number_of_bedrooms','number_of_bathrooms','star_rating','is_superhost','price_string','number_of_reviews']].groupby('ad_name').sum() print(billings.sort_values(by='price_string', ascending=False)) # chamar a matriz de correlação para análise print('----- Correlação dos dados -----') print(billings.corr()) sns.heatmap(billings.corr(), annot=True, vmin=-1, vmax=1, cmap='coolwarm') plt.show() print('--------------------------------') print('Podemos ver que o faturamento está correlacionado ao número de quartos e número de banheiros, \ e podemos dizer que a nota do anuncio também tem uma certa relevância na análise.') print('--------------------------------')
""" * Copyright 2009 Mark Renouf * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http:#www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHDIR * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. """ from pyjamas.media.Media import Media from pyjamas import DOM """* * An HTML5 AUDIO element """ class Audio(Media): def __init__(self, src=None, **kwargs): self.setElement(DOM.createElement("audio")) if src: self.setSrc(src) Media.__init__(self, **kwargs)
""" models/one_d.py Author: Ankit Gupta Implementations of the core DenseNet model This module contains helper functions that define a DenseNet computational graph in Keras. Note that these functions are not immediately usable for classification, as the outputs are not softmaxed, and the functions have not been wrapped in keras.models.Model objects. """ from tensorflow.keras.layers import Conv1D, BatchNormalization, Activation, MaxPooling1D, GlobalAveragePooling1D from densenet.blocks.one_d import dense_block, transition_block, squeeze_excite_block def DenseNet( k, block_sizes, conv_kernel_width, bottleneck_size, transition_pool_size, transition_pool_stride, theta, initial_conv_width, initial_stride, initial_filters, initial_pool_width, initial_pool_stride, use_global_pooling, se=False): def f(x): x = Conv1D( initial_filters, initial_conv_width, strides=initial_stride, padding="same")(x) x = BatchNormalization()(x) x = Activation("relu")(x) x = MaxPooling1D( pool_size=initial_pool_width, strides=initial_pool_stride, padding="same")(x) if se: x = squeeze_excite_block(x) # Add all but the last dense block for block_size in block_sizes[:-1]: x = dense_block( k, block_size, conv_kernel_width, bottleneck_size, se=se)(x) x = transition_block( pool_size=transition_pool_size, stride=transition_pool_stride, theta=theta, se=se)(x) # Add the last dense block final_block_size = block_sizes[-1] x = dense_block( k, final_block_size, conv_kernel_width, bottleneck_size)(x) x = BatchNormalization()(x) x = Activation("relu")(x) if use_global_pooling: x = GlobalAveragePooling1D()(x) return x return f def DenseNet121( k, conv_kernel_width, bottleneck_size, transition_pool_size, transition_pool_stride, theta, initial_conv_width, initial_stride, initial_filters, initial_pool_width, initial_pool_stride, use_global_pooling): block_sizes = [6, 12, 24, 16] return DenseNet( k, block_sizes, conv_kernel_width, bottleneck_size, transition_pool_size, transition_pool_stride, theta, initial_conv_width, initial_stride, initial_filters, initial_pool_width, initial_pool_stride, use_global_pooling) def DenseNet169( k, conv_kernel_width, bottleneck_size, transition_pool_size, transition_pool_stride, theta, initial_conv_width, initial_stride, initial_filters, initial_pool_width, initial_pool_stride, use_global_pooling): block_sizes = [6, 12, 32, 32] return DenseNet( k, block_sizes, conv_kernel_width, bottleneck_size, transition_pool_size, transition_pool_stride, theta, initial_conv_width, initial_stride, initial_filters, initial_pool_width, initial_pool_stride, use_global_pooling) def DenseNet201( k, conv_kernel_width, bottleneck_size, transition_pool_size, transition_pool_stride, theta, initial_conv_width, initial_stride, initial_filters, initial_pool_width, initial_pool_stride, use_global_pooling): block_sizes = [6, 12, 48, 32] return DenseNet( k, block_sizes, conv_kernel_width, bottleneck_size, transition_pool_size, transition_pool_stride, theta, initial_conv_width, initial_stride, initial_filters, initial_pool_width, initial_pool_stride, use_global_pooling) def DenseNet264( k, conv_kernel_width, bottleneck_size, transition_pool_size, transition_pool_stride, theta, initial_conv_width, initial_stride, initial_filters, initial_pool_width, initial_pool_stride, use_global_pooling): block_sizes = [6, 12, 64, 48] return DenseNet( k, block_sizes, conv_kernel_width, bottleneck_size, transition_pool_size, transition_pool_stride, theta, initial_conv_width, initial_stride, initial_filters, initial_pool_width, initial_pool_stride, use_global_pooling)
from django.shortcuts import redirect from django.http import HttpResponse from django.template import loader def index(request): if request.user.is_authenticated: user = request.user context = { 'user': user, } template = loader.get_template('patienthistory/home.html') return HttpResponse(template.render(context, request)) else: return redirect('login')
from sparksampling.core.job.base_job import BaseJob from pyspark.sql import DataFrame class BasicStatisticsJob(BaseJob): def __init__(self, *args, **kwargs): super(BasicStatisticsJob, self).__init__() def _statistics(self, df: DataFrame, *args, **kwargs) -> dict: self.logger.info("Generating description...") return df.describe().toPandas().to_dict('records')
# Copyright (c) 2020 the Eclipse BaSyx Authors # # This program and the accompanying materials are made available under the terms of the MIT License, available in # the LICENSE file of this project. # # SPDX-License-Identifier: MIT """ Module for the creation of an example :class:`~aas.model.submodel.Submodel` template containing all kind of :class:`SubmodelElements <aas.model.submodel.SubmodelElement>` where the kind is always `TEMPLATE`. """ import logging from ... import model from ._helper import AASDataChecker logger = logging.getLogger(__name__) def create_example_submodel_template() -> model.Submodel: """ Creates an example :class:`~aas.model.submodel.Submodel` template containing all kind of :class:`~aas.model.submodel.SubmodelElement` objects where the kind is always `TEMPLATE` :return: example submodel """ submodel_element_property = model.Property( id_short='ExampleProperty', value_type=model.datatypes.String, value=None, value_id=None, # TODO category='CONSTANT', description={'en-us': 'Example Property object', 'de': 'Beispiel Property Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/Properties/ExampleProperty', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_multi_language_property = model.MultiLanguageProperty( id_short='ExampleMultiLanguageProperty', value=None, value_id=None, # TODO category='CONSTANT', description={'en-us': 'Example MultiLanguageProperty object', 'de': 'Beispiel MulitLanguageProperty Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/MultiLanguageProperties/' 'ExampleMultiLanguageProperty', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_range = model.Range( id_short='ExampleRange', value_type=model.datatypes.Int, min=None, max=100, category='PARAMETER', description={'en-us': 'Example Range object', 'de': 'Beispiel Range Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/Ranges/ExampleRange', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_range_2 = model.Range( id_short='ExampleRange2', value_type=model.datatypes.Int, min=0, max=None, category='PARAMETER', description={'en-us': 'Example Range object', 'de': 'Beispiel Range Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/Ranges/ExampleRange', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_blob = model.Blob( id_short='ExampleBlob', mime_type='application/pdf', value=None, category='PARAMETER', description={'en-us': 'Example Blob object', 'de': 'Beispiel Blob Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/Blobs/ExampleBlob', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_file = model.File( id_short='ExampleFile', mime_type='application/pdf', value=None, category='PARAMETER', description={'en-us': 'Example File object', 'de': 'Beispiel File Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/Files/ExampleFile', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_reference_element = model.ReferenceElement( id_short='ExampleReferenceElement', value=None, category='PARAMETER', description={'en-us': 'Example Reference Element object', 'de': 'Beispiel Reference Element Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/ReferenceElements/ExampleReferenceElement', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_relationship_element = model.RelationshipElement( id_short='ExampleRelationshipElement', first=model.AASReference((model.Key(type_=model.KeyElements.PROPERTY, local=True, value='ExampleProperty', id_type=model.KeyType.IDSHORT),), model.Property), second=model.AASReference((model.Key(type_=model.KeyElements.PROPERTY, local=True, value='ExampleProperty', id_type=model.KeyType.IDSHORT),), model.Property), category='PARAMETER', description={'en-us': 'Example RelationshipElement object', 'de': 'Beispiel RelationshipElement Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/RelationshipElements/' 'ExampleRelationshipElement', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_annotated_relationship_element = model.AnnotatedRelationshipElement( id_short='ExampleAnnotatedRelationshipElement', first=model.AASReference((model.Key(type_=model.KeyElements.PROPERTY, local=True, value='ExampleProperty', id_type=model.KeyType.IDSHORT),), model.Property), second=model.AASReference((model.Key(type_=model.KeyElements.PROPERTY, local=True, value='ExampleProperty', id_type=model.KeyType.IDSHORT),), model.Property), annotation=None, category='PARAMETER', description={'en-us': 'Example AnnotatedRelationshipElement object', 'de': 'Beispiel AnnotatedRelationshipElement Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/RelationshipElements/' 'ExampleAnnotatedRelationshipElement', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_operation_variable_input = model.OperationVariable( value=submodel_element_property) submodel_element_operation_variable_output = model.OperationVariable( value=submodel_element_property) submodel_element_operation_variable_in_output = model.OperationVariable( value=submodel_element_property) submodel_element_operation = model.Operation( id_short='ExampleOperation', input_variable=[submodel_element_operation_variable_input], output_variable=[submodel_element_operation_variable_output], in_output_variable=[submodel_element_operation_variable_in_output], category='PARAMETER', description={'en-us': 'Example Operation object', 'de': 'Beispiel Operation Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/Operations/' 'ExampleOperation', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_capability = model.Capability( id_short='ExampleCapability', category='PARAMETER', description={'en-us': 'Example Capability object', 'de': 'Beispiel Capability Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/Capabilities/' 'ExampleCapability', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_basic_event = model.BasicEvent( id_short='ExampleBasicEvent', observed=model.AASReference((model.Key(type_=model.KeyElements.PROPERTY, local=True, value='ExampleProperty', id_type=model.KeyType.IDSHORT),), model.Property), category='PARAMETER', description={'en-us': 'Example BasicEvent object', 'de': 'Beispiel BasicEvent Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/Events/' 'ExampleBasicEvent', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_submodel_element_collection_ordered = model.SubmodelElementCollectionOrdered( id_short='ExampleSubmodelCollectionOrdered', value=(submodel_element_property, submodel_element_multi_language_property, submodel_element_range, submodel_element_range_2), category='PARAMETER', description={'en-us': 'Example SubmodelElementCollectionOrdered object', 'de': 'Beispiel SubmodelElementCollectionOrdered Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/SubmodelElementCollections/' 'ExampleSubmodelElementCollectionOrdered', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_submodel_element_collection_unordered = model.SubmodelElementCollectionUnordered( id_short='ExampleSubmodelCollectionUnordered', value=(submodel_element_blob, submodel_element_file, submodel_element_reference_element), category='PARAMETER', description={'en-us': 'Example SubmodelElementCollectionUnordered object', 'de': 'Beispiel SubmodelElementCollectionUnordered Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/SubmodelElementCollections/' 'ExampleSubmodelElementCollectionUnordered', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel_element_submodel_element_collection_unordered_2 = model.SubmodelElementCollectionUnordered( id_short='ExampleSubmodelCollectionUnordered2', value=(), category='PARAMETER', description={'en-us': 'Example SubmodelElementCollectionUnordered object', 'de': 'Beispiel SubmodelElementCollectionUnordered Element'}, parent=None, semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/SubmodelElementCollections/' 'ExampleSubmodelElementCollectionUnordered', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) submodel = model.Submodel( identification=model.Identifier(id_='https://acplt.org/Test_Submodel_Template', id_type=model.IdentifierType.IRI), submodel_element=(submodel_element_relationship_element, submodel_element_annotated_relationship_element, submodel_element_operation, submodel_element_capability, submodel_element_basic_event, submodel_element_submodel_element_collection_ordered, submodel_element_submodel_element_collection_unordered, submodel_element_submodel_element_collection_unordered_2), id_short='TestSubmodel', category=None, description={'en-us': 'An example submodel for the test application', 'de': 'Ein Beispiel-Teilmodell für eine Test-Anwendung'}, parent=None, administration=model.AdministrativeInformation(version='0.9', revision='0'), semantic_id=model.Reference((model.Key(type_=model.KeyElements.GLOBAL_REFERENCE, local=False, value='http://acplt.org/SubmodelTemplates/' 'ExampleSubmodel', id_type=model.KeyType.IRI),)), qualifier=None, kind=model.ModelingKind.TEMPLATE) return submodel ############################################################################## # check functions for checking if an given object is the same as the example # ############################################################################## def check_example_submodel(checker: AASDataChecker, submodel: model.Submodel) -> None: expected_submodel = create_example_submodel_template() checker.check_submodel_equal(submodel, expected_submodel) def check_full_example(checker: AASDataChecker, obj_store: model.DictObjectStore) -> None: example_data: model.DictObjectStore[model.Identifiable] = model.DictObjectStore() example_data.add(create_example_submodel_template()) checker.check_object_store(example_data, obj_store)
from selenium import webdriver from selenium.webdriver.support.select import Select from bs4 import BeautifulSoup import re import Course #Functions def remove_html_tags(string): return re.sub(r'<[^<]+?>', '', string) # Place asterisk in course name and convert to upper def prep_course(course_name): g = re.match(r"(\D+)(\d+)", course_name, re.IGNORECASE) ret = g.groups()[0].upper() + "*" + g.groups()[1] return ret # get the schedule for a course def get_schedule(term, level, course_name, location): # Setup return variable ret = "" # prep course_name course_name = prep_course(course_name) # Parse subject subject = course_name.split("*")[0] #Setup browser driver = './env/bin/geckodriver' options = webdriver.FirefoxOptions() options.add_argument('-headless') browser = webdriver.Firefox(executable_path=driver, options=options) browser.get('http://es.unb.ca/apps/timetable/') # Select website parameters select_term = Select(browser.find_element_by_id('term')) select_term.select_by_value(term) select_level = Select(browser.find_element_by_id('level')) select_level.select_by_value(level) select_subject = Select(browser.find_element_by_id('subject')) select_subject.select_by_value(subject) select_subject = Select(browser.find_element_by_id('location')) select_subject.select_by_value(location) submit = browser.find_element_by_xpath('/html/body/div[1]/div/div/div/div/div/div[4]/form/input[4]') submit.click() # Get page source source = browser.page_source #Save html to file #with open("page.html", "w") as f: # f.write(source) browser.quit() # Get main table soup = BeautifulSoup(source, 'html.parser') table = soup.find('table', id='course-list') # Find what index the CourseID is under headings = table.find('thead').find_all('th') for i in range(len(headings)-1): if 'ID' in headings[i]: indID = i elif 'Course' in headings[i]: indCourse = i elif 'Section' in headings[i]: indSection = i elif 'Title' in headings[i]: indTitle = i elif 'Instructor' in headings[i]: indInstructor = i elif 'Days' in headings[i]: indDays = i elif 'Times' in headings[i]: indTimes = i elif 'Room' in headings[i]: indRoom = i # Get all rows rows = table.find('tbody').find_all('tr') # Find the row containing the course_name specified coursefound = False courseduplicate = False course_list = list() for i in range(len(rows)-1): # if this course if offered multiple times if coursefound and course_name in rows[i].get_text(): courseduplicate = True elif course_name in rows[i].get_text() and not coursefound: ret += '\nTimes for ' + course_name + ':\n' coursefound = True cols = rows[i].find_all('td') # Place days and times into lists days = str(cols[indDays]).split("<br/>") times = str(cols[indTimes]).split("<br/>") # remove html tags for index in range(len(days)): days[index] = remove_html_tags(days[index]) for index in range(len(times)): times[index] = remove_html_tags(times[index]) # Place days and times in list sessions = [] for index in range(len(days)): sessions.append([days[index], times[index]]) # Create course course_list.append(Course.Course(course_name)) # Print class time slots ret += 'Lecture' for session in sessions: ret += '\t' + session[0] ret += '\t' + session[1] + '\n' course_list[len(course_list)-1].add_time('Lecture', session[0], session[1]) # Print following time slots # Do while the current line has a time slot within it: j=i checkNext = True while checkNext: checkNext = False # If the row contains a time slot BUT not a courseCode then read the row if re.search(r'\d\d:\d\d..-\d\d:\d\d..', rows[j+1].get_text()) and not course_name in rows[j+1].get_text(): # This row should be printed and the next should be checked checkNext = True # Column indices secCols = rows[j+1].find_all('td') # Place days and times into lists secdays = str(secCols[2]).split("<br/>") sectimes = str(secCols[3]).split("<br/>") # remove html tags for index in range(len(secdays)): secdays[index] = remove_html_tags(secdays[index]) for index in range(len(sectimes)): sectimes[index] = remove_html_tags(sectimes[index]) # Place days and times in list sessions = [] for index in range(len(secdays)): sessions.append([secCols[0].get_text(), secdays[index], sectimes[index]]) for session in sessions: ret += session[0] + '\t' ret += session[1] + '\t' ret += session[2] + '\n' course_list[len(course_list)-1].add_time(session[0], session[1], session[2]) j = j + 1 print(course_list[len(course_list)-1].to_string()) if courseduplicate: ret += "This course is a duplicate" return ret # #Input courseIDs # input_line = input("Enter course IDs: ") # # Separate input by each course # courses = input_line.split() # # Place asterisk betweene each course_name # for index in range(len(courses)): # courses[index] = prep_course(courses[index]) # # Testing loop # for course in courses: # get_schedule('2019/FA','UG', course, 'FR')
from selenium.webdriver import Firefox from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support.expected_conditions import ( url_changes ) url = 'https://selenium.dunossauro.live/aula_10_c.html' browser = Firefox() browser.get(url) wdw = WebDriverWait(browser, 10) link = browser.find_element_by_css_selector('.body_b a') link.click() wdw.until( url_changes(url), 'URL não mudou' ) print(url, browser.current_url)
# -*- coding: utf8 -*- """ This is part of shot detector. Produced by w495 at 2017.05.04 04:18:27 """ from __future__ import absolute_import, division, print_function import logging from .base_swfilter import BaseSWFilter class NormSWFilter(BaseSWFilter): """ ... """ __logger = logging.getLogger(__name__) class Options(object): """ Initial config for filter-options. """ min_size = 2 strict_windows = False def aggregate_window_item(self, window, **kwargs): """ :param Iterable window: :param kwargs: :return: """ item_list = list(window) value = item_list[0] max_item = max(item_list) min_item = min(item_list) # noinspection PyUnresolvedReferences rng = max_item - min_item new_value = (value - min_item) / rng # print (value, new_value, max_item, min_item, item_list) return new_value
# SPDX-License-Identifier: Apache-2.0 from onnx import onnx_pb as onnx_proto from ...common._registration import register_converter, register_shape_calculator from ...common.utils import check_input_and_output_numbers from ...common.data_types import * def convert_sparkml_vector_indexer(scope, operator, container): feature_count = operator.raw_operator.numFeatures category_map = operator.raw_operator.categoryMaps split_output_names = [ scope.get_unique_variable_name('split_tensor_%d' % i) for i in range(0, feature_count)] if feature_count > 1: container.add_node('Split', operator.inputs[0].full_name, split_output_names, name=scope.get_unique_operator_name('Split'), op_version=2, axis=1, split=[1]*feature_count) else: split_output_names = operator.input_full_names concat_inputs = split_output_names.copy() for i in category_map.keys(): converted_output = scope.get_unique_variable_name('converted_tensor_%d' % i) container.add_node('Cast', split_output_names[i], converted_output, name=scope.get_unique_operator_name('Cast'), op_version=9, to=onnx_proto.TensorProto.STRING) attrs = { 'name': scope.get_unique_operator_name('LabelEncoder'), 'classes_strings': ['{0:g}'.format(c) for c in category_map[i].keys()], 'default_string': '__unknown__' } encoded_output_name = scope.get_unique_variable_name('indexed_tensor_%d' % i) container.add_node('LabelEncoder', converted_output, encoded_output_name, op_domain='ai.onnx.ml', **attrs) converted_float_output = scope.get_unique_variable_name('converted_float_tensor_%d' % i) if feature_count == 1: converted_float_output = operator.output_full_names[0] container.add_node('Cast', encoded_output_name, converted_float_output, name=scope.get_unique_operator_name('Cast'), op_version=9, to=onnx_proto.TensorProto.FLOAT) concat_inputs[i] = converted_float_output # add the final Concat if feature_count > 1: container.add_node('Concat', concat_inputs, operator.output_full_names[0], name=scope.get_unique_operator_name('Concat'), op_version=4, axis=1) register_converter('pyspark.ml.feature.VectorIndexerModel', convert_sparkml_vector_indexer) def calculate_vector_indexer_shapes(operator): check_input_and_output_numbers(operator, input_count_range=1, output_count_range=1) N = operator.inputs[0].type.shape[0] operator.outputs[0].type = FloatTensorType([N, operator.raw_operator.numFeatures]) register_shape_calculator('pyspark.ml.feature.VectorIndexerModel', calculate_vector_indexer_shapes)
""" All constants, imports and functions. by Bobobert """ ### Imports import matplotlib.pyplot as plt import numpy as np from abc import ABC from math import ceil, floor FLOAT_DEFT = np.float32 UINT_DEFT = np.uint8 INT_DEFT = np.int32
from typing import * @overload def date_range(start: Literal["2000-01-01"], periods: int): """ usage.xarray: 27 """ ... @overload def date_range(start: Literal["1999-01-05"], periods: int): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2000-02-01"], periods: int): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2010-01-01"], periods: int, freq: Literal["1D"]): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2000-02-01"], periods: int, freq: Literal["A"]): """ usage.xarray: 2 """ ... @overload def date_range(start: Literal["2000-02-01"], periods: int, freq: Literal["M"]): """ usage.xarray: 2 """ ... @overload def date_range(start: Literal["2000-02-01"], periods: int, freq: Literal["D"]): """ usage.xarray: 2 """ ... @overload def date_range(start: Literal["2000"], periods: int): """ usage.dask: 1 usage.xarray: 5 """ ... @overload def date_range( start: Literal["2000-01-02T01:03:51"], periods: int, freq: Literal["1777S"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2000-01-01T12:07:01"], periods: int, freq: Literal["8003D"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2000-01-01T12:07:01"], periods: int, freq: Literal["6H"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2000-01-01T12:07:01"], periods: int, freq: Literal["3D"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2000-01-01T12:07:01"], periods: int, freq: Literal["11D"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2000-01-01T12:07:01"], periods: int, freq: Literal["3MS"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2000-01-01T12:07:01"], periods: int, freq: Literal["7M"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2000-01-01T12:07:01"], periods: int, freq: Literal["43QS-AUG"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2000-01-01T12:07:01"], periods: int, freq: Literal["11Q-JUN"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2000-01-01T12:07:01"], periods: int, freq: Literal["3AS-MAR"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2000-01-01T12:07:01"], periods: int, freq: Literal["7A-MAY"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2004-01-01T12:07:01"], periods: int, freq: Literal["3D"] ): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["1970-01-01"], periods: int, freq: Literal["h"]): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2000-01-01"], periods: int, freq: Literal["h"]): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2001-04-01-00"], end: Literal["2001-04-30-23"], freq: Literal["H"] ): """ usage.xarray: 2 """ ... @overload def date_range( start: Literal["2001-04-01"], end: Literal["2001-04-05"], freq: Literal["D"] ): """ usage.xarray: 2 """ ... @overload def date_range( start: Literal["2001-05-01"], end: Literal["2001-05-05"], freq: Literal["D"] ): """ usage.xarray: 2 """ ... @overload def date_range(start: Literal["2000-01-16"], periods: int): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2000-01-01"], periods: int, freq: Literal["MS"]): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2100"], periods: int): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2000-01-01"], periods: int, freq: Literal["D"]): """ usage.xarray: 2 """ ... @overload def date_range(start: Literal["2000-01-01"], periods: int, freq: Literal["6H"]): """ usage.xarray: 20 """ ... @overload def date_range(start: Literal["2000"], periods: int, freq: Literal["D"]): """ usage.dask: 1 usage.xarray: 2 """ ... @overload def date_range(start: Literal["2000-01-01"], periods: int, freq: Literal["1D"]): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2007-02-01"], end: Literal["2007-03-01"], freq: Literal["D"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2016-01-01"], end: Literal["2016-03-31"], freq: Literal["1D"] ): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["20130101"], periods: int): """ usage.dask: 2 usage.xarray: 5 """ ... @overload def date_range(start: Literal["2000"], periods: int, freq: Literal["2MS"]): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2000-01-01"], periods: int, freq: Literal["H"]): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["1/1/2011"], periods: int, freq: Literal["H"]): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2000-01-01"], periods: int, freq: Literal["M"]): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["20100101"], periods: int): """ usage.dask: 2 usage.xarray: 1 """ ... @overload def date_range(start: Literal["2000-01-01"], periods: int, freq: Literal["3H"]): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["20130101"], periods: int, tz: Literal["US/Eastern"]): """ usage.dask: 2 usage.xarray: 1 """ ... @overload def date_range(start: Literal["15/12/1999"], periods: int): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2000"], periods: int, freq: Literal["7D"]): """ usage.xarray: 2 """ ... @overload def date_range( start: Literal["2010-08-01"], end: Literal["2010-08-15"], freq: Literal["15min"] ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["2010-08-01"], end: Literal["2010-08-15"], freq: Literal["24H"] ): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["01-01-2001"], periods: int, freq: Literal["D"]): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["01-01-2001"], periods: int, freq: Literal["H"]): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2001-01-01"], periods: int, freq: Literal["H"]): """ usage.xarray: 2 """ ... @overload def date_range(start: Literal["20000101"], periods: int): """ usage.xarray: 2 """ ... @overload def date_range(start: Literal["2000-01-01"], end: Literal["2000-01-10"]): """ usage.xarray: 2 """ ... @overload def date_range(start: Literal["2000-1-1"], periods: int): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["15/12/1999"], periods: int, freq: pandas._libs.tslibs.offsets.DateOffset, ): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["2011-09-01"], periods: int): """ usage.xarray: 1 """ ... @overload def date_range(start: Literal["10-09-2010"], periods: int, freq: Literal["1y"]): """ usage.xarray: 2 """ ... @overload def date_range( start: Literal["2000-01-01"], periods: int, freq: Literal["1h"], tz: object ): """ usage.xarray: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: None, name: Literal["Date"], ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2000"], end: Literal["2015"], freq: Literal["6M"]): """ usage.dask: 2 """ ... @overload def date_range( start: Literal["2000"], end: Literal["2000"], freq: Literal["1H"], name: Literal["timestamp"], ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2000"], end: Literal["2015"], freq: Literal["3M"]): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2000-01-01"], end: Literal["2000-12-31"], freq: Literal["1M"] ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2000"], end: Literal["2001"], freq: Literal["3M"]): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: pandas._libs.tslibs.offsets.Hour, tz: None, name: Literal["timestamp"], ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2000"], end: Literal["2001"], freq: Literal["6M"]): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: Literal["1D"], name: Literal["timestamp"], ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["20120101"], periods: int): """ usage.dask: 2 """ ... @overload def date_range(start: Literal["2019-01-01"], periods: int, freq: Literal["1T"]): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: None, name: Literal["date"], ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2011-01-01"], periods: int, freq: Literal["D"]): """ usage.dask: 3 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: pandas._libs.tslibs.offsets.Day, tz: None, name: None, ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2000"], periods: int, freq: Literal["B"]): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: None, name: None ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: pandas._libs.tslibs.offsets.BusinessDay, tz: None, name: None, ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: Literal["15s"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2015-01-01 00:00"], end: Literal[" 2015-05-01 23:50"], freq: Literal["10min"], ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: Literal["1M"], ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2016-01-01"], periods: int): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2015-01-01"], periods: int, freq: Literal["1T"]): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2000"], periods: int, freq: Literal["H"]): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: pandas._libs.tslibs.offsets.Hour, tz: None, name: None, ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1/1/2000"], end: Literal["1/1/2001"], freq: Literal["12h"] ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1/1/2000"], end: Literal["1/1/2001"], freq: Literal["D"] ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["01.01.2015"], end: Literal["05.05.2015"]): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2000-01-01"], end: Literal["2000-01-31"], freq: Literal["1d"] ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: Literal["1s"], name: Literal["timestamp"], ): """ usage.dask: 1 """ ... @overload def date_range(start: int, periods: int): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2000-01-01"], end: Literal["2000-04-01"], freq: Literal["1D"] ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2016-01-01"], end: Literal["2016-01-31"], freq: Literal["12h"] ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2011-01-01"], periods: int, freq: Literal["H"]): """ usage.dask: 5 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: None, name: Literal["time"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: pandas._libs.tslibs.offsets.Day, tz: None, name: Literal["time"], ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2019-08-01"], periods: int, freq: Literal["1D"]): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2016-01-01 00:00:00"], periods: int, freq: Literal["1s"] ): """ usage.dask: 2 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: None, name: Literal["a"] ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: pandas._libs.tslibs.offsets.Day, tz: None, name: Literal["a"], ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2000"], end: Literal["2004"], freq: Literal["1M"]): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: Literal["2H"], name: Literal["timestamp"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: None, name: Literal["timestamp"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: None, name: Literal["notz"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: pandas._libs.tslibs.offsets.Day, tz: object, name: Literal["tz"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: None, name: Literal["x"] ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2000"], periods: int, tz: Literal["US/Central"]): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: object, name: Literal["A"], ): """ usage.dask: 1 """ ... @overload def date_range(start: Literal["2000"], end: Literal["2001"], freq: Literal["1M"]): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2016-01-01"], periods: int, tz: Literal["America/New_York"] ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: pandas._libs.tslibs.offsets.Day, tz: object, name: Literal["foo"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1-1-2000"], end: Literal["2-15-2000"], freq: Literal["h"] ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["4-15-2000"], end: Literal["5-15-2000"], freq: Literal["h"] ): """ usage.dask: 2 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: pandas._libs.tslibs.offsets.Minute, name: None, closed: Literal["left"], ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: pandas._libs.tslibs.offsets.Minute, name: None, closed: None, ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: pandas._libs.tslibs.offsets.Hour, name: None, closed: Literal["left"], ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: pandas._libs.tslibs.offsets.Hour, name: None, closed: None, ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: pandas._libs.tslibs.offsets.Day, name: None, closed: Literal["left"], ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: pandas._libs.tslibs.offsets.Day, name: None, closed: None, ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: pandas._libs.tslibs.offsets.Week, name: None, closed: None, ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: pandas._libs.tslibs.offsets.Week, name: None, closed: Literal["left"], ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: pandas._libs.tslibs.offsets.MonthEnd, name: None, closed: Literal["left"], ): """ usage.dask: 1 """ ... @overload def date_range( start: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp, freq: pandas._libs.tslibs.offsets.MonthEnd, name: None, closed: None, ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2000-01-01"], end: Literal["2000-02-15"], freq: Literal["h"] ): """ usage.dask: 4 """ ... @overload def date_range( start: Literal["1-1-2000"], end: Literal["2-15-2000"], freq: Literal["D"] ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["4-15-2000"], end: Literal["5-15-2000"], freq: Literal["D"] ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: pytz.UTC, name: Literal["Time"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: pandas._libs.tslibs.offsets.Day, tz: pytz.UTC, name: Literal["Time"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2012-01-02"], end: Literal["2012-02-02"], freq: Literal["H"] ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2012-03-02"], end: Literal["2012-04-02"], freq: Literal["H"] ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2012-01-02 00:00:00"], end: Literal["2012-01-02 01:00:00"], freq: Literal["T"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2012-01-02 06:00:00"], end: Literal["2012-01-02 08:00:00"], freq: Literal["T"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["2020-08-17T23:31:00.596478"], end: Literal["2020-09-06T23:31:00.596478"], freq: Literal["D"], ): """ usage.dask: 1 """ ... @overload def date_range( start: Literal["1970-01-01"], periods: int, freq: None, tz: object, name: None ): """ usage.dask: 1 """ ... def date_range( start: Union[pandas._libs.tslibs.timestamps.Timestamp, int, str], periods: int = ..., end: Union[pandas._libs.tslibs.timestamps.Timestamp, str] = ..., freq: object = ..., tz: object = ..., name: Union[None, str] = ..., closed: Union[None, Literal["left"]] = ..., ): """ usage.dask: 94 usage.xarray: 122 """ ... class DatetimeIndex: # usage.dask: 1 __module__: ClassVar[object] # usage.dask: 2 __name__: ClassVar[object] # usage.dask: 1 array: object # usage.dask: 1 day: object # usage.xarray: 1 dayofweek: object # usage.xarray: 1 dayofyear: object # usage.dask: 4 # usage.xarray: 5 dtype: object # usage.dask: 4 freq: None # usage.xarray: 1 hour: object # usage.dask: 1 is_all_dates: object # usage.dask: 2 # usage.xarray: 2 is_monotonic: object # usage.xarray: 2 is_unique: object # usage.dask: 4 # usage.xarray: 1 month: object # usage.dask: 17 # usage.xarray: 5 name: Union[None, Literal["timestamp", "index"]] # usage.dask: 1 names: object # usage.xarray: 1 ndim: object # usage.xarray: 1 shape: object # usage.xarray: 5 size: object # usage.xarray: 1 time: object # usage.dask: 2 tz: object # usage.xarray: 16 values: object @overload def __add__(self, _0: pandas._libs.tslibs.offsets.Hour, /): """ usage.dask: 1 usage.xarray: 1 """ ... @overload def __add__(self, _0: datetime.timedelta, /): """ usage.xarray: 1 """ ... @overload def __add__(self, _0: Union[numpy.ndarray, numpy.timedelta64, numpy.datetime64], /): """ usage.pandas: 103 """ ... @overload def __add__(self, _0: pandas._libs.tslibs.offsets.Nano, /): """ usage.dask: 1 """ ... @overload def __add__(self, _0: pandas._libs.tslibs.offsets.Minute, /): """ usage.dask: 1 """ ... @overload def __add__(self, _0: pandas._libs.tslibs.offsets.Day, /): """ usage.dask: 2 """ ... @overload def __add__(self, _0: pandas._libs.tslibs.offsets.Week, /): """ usage.dask: 1 """ ... @overload def __add__(self, _0: pandas._libs.tslibs.offsets.MonthEnd, /): """ usage.dask: 1 """ ... @overload def __add__(self, _0: pandas._libs.tslibs.offsets.QuarterEnd, /): """ usage.dask: 1 """ ... def __add__(self, _0: object, /): """ usage.dask: 8 usage.pandas: 103 usage.xarray: 2 """ ... def __contains__(self, _0: pandas._libs.tslibs.timestamps.Timestamp, /): """ usage.dask: 2 """ ... def __eq__(self, _0: Union[numpy.ndarray, numpy.datetime64], /): """ usage.pandas: 32 """ ... def __ge__(self, _0: Union[numpy.ndarray, numpy.datetime64], /): """ usage.pandas: 3 """ ... @overload def __getitem__(self, _0: int, /): """ usage.dask: 18 usage.xarray: 6 """ ... @overload def __getitem__(self, _0: slice[None, int, None], /): """ usage.xarray: 1 """ ... @overload def __getitem__(self, _0: slice[int, None, int], /): """ usage.xarray: 2 """ ... @overload def __getitem__(self, _0: slice[int, int, int], /): """ usage.dask: 2 usage.xarray: 1 """ ... @overload def __getitem__(self, _0: numpy.ndarray, /): """ usage.xarray: 2 """ ... @overload def __getitem__(self, _0: slice[None, None, None], /): """ usage.dask: 1 usage.xarray: 7 """ ... @overload def __getitem__(self, _0: slice[None, None, None], /): """ usage.xarray: 1 """ ... def __getitem__( self, _0: Union[ int, numpy.ndarray, slice[Union[None, int], Union[int, None], Union[None, int]], ], /, ): """ usage.dask: 21 usage.xarray: 20 """ ... @overload def __gt__(self, _0: Union[numpy.ndarray, numpy.datetime64], /): """ usage.pandas: 2 """ ... @overload def __gt__(self, _0: pandas._libs.tslibs.timestamps.Timestamp, /): """ usage.dask: 1 """ ... def __gt__( self, _0: Union[ pandas._libs.tslibs.timestamps.Timestamp, numpy.datetime64, numpy.ndarray ], /, ): """ usage.dask: 1 usage.pandas: 2 """ ... def __iadd__(self, _0: Union[numpy.ndarray, numpy.timedelta64], /): """ usage.pandas: 4 """ ... def __isub__(self, _0: Union[numpy.ndarray, numpy.timedelta64], /): """ usage.pandas: 3 """ ... def __le__(self, _0: Union[numpy.ndarray, numpy.datetime64], /): """ usage.pandas: 5 """ ... @overload def __lt__(self, _0: numpy.ndarray, /): """ usage.pandas: 1 """ ... @overload def __lt__(self, _0: pandas._libs.tslibs.timestamps.Timestamp, /): """ usage.dask: 1 """ ... def __lt__( self, _0: Union[pandas._libs.tslibs.timestamps.Timestamp, numpy.ndarray], / ): """ usage.dask: 1 usage.pandas: 1 """ ... def __ne__(self, _0: numpy.ndarray, /): """ usage.pandas: 2 """ ... def __radd__( self, _0: Union[numpy.datetime64, numpy.timedelta64, numpy.ndarray], / ): """ usage.pandas: 59 """ ... def __rsub__( self, _0: Union[numpy.ndarray, numpy.timedelta64, numpy.datetime64], / ): """ usage.pandas: 32 """ ... @overload def __sub__(self, _0: pandas._libs.tslibs.timestamps.Timestamp, /): """ usage.xarray: 3 """ ... @overload def __sub__(self, _0: numpy.timedelta64, /): """ usage.xarray: 1 """ ... @overload def __sub__(self, _0: Union[numpy.ndarray, numpy.timedelta64, numpy.datetime64], /): """ usage.pandas: 75 """ ... def __sub__( self, _0: Union[ numpy.datetime64, numpy.timedelta64, numpy.ndarray, pandas._libs.tslibs.timestamps.Timestamp, ], /, ): """ usage.pandas: 75 usage.xarray: 4 """ ... def ceil(self, /, *args: Literal["v", "t"]): """ usage.xarray: 3 """ ... def copy(self, /, deep: bool): """ usage.xarray: 1 """ ... def equals(self, /, other: pandas.core.indexes.datetimes.DatetimeIndex): """ usage.xarray: 2 """ ... def floor(self, /, *args: Literal["v", "t"]): """ usage.xarray: 3 """ ... @overload def get_indexer(self, /, target: numpy.ndarray, method: None, tolerance: None): """ usage.xarray: 1 """ ... @overload def get_indexer( self, /, target: numpy.ndarray, method: Literal["pad"], tolerance: None ): """ usage.xarray: 1 """ ... @overload def get_indexer( self, /, target: numpy.ndarray, method: Literal["backfill"], tolerance: None ): """ usage.xarray: 1 """ ... @overload def get_indexer( self, /, target: numpy.ndarray, method: Literal["nearest"], tolerance: None ): """ usage.xarray: 1 """ ... @overload def get_indexer( self, /, target: numpy.ndarray, method: Literal["pad"], tolerance: Literal["12H"], ): """ usage.xarray: 1 """ ... @overload def get_indexer( self, /, target: numpy.ndarray, method: Literal["backfill"], tolerance: Literal["12H"], ): """ usage.xarray: 1 """ ... @overload def get_indexer( self, /, target: numpy.ndarray, method: Literal["nearest"], tolerance: Literal["6H"], ): """ usage.xarray: 1 """ ... def get_indexer( self, /, target: numpy.ndarray, method: Union[Literal["nearest", "backfill", "pad"], None], tolerance: Union[Literal["6H", "12H"], None], ): """ usage.xarray: 7 """ ... @overload def get_loc(self, /, key: numpy.datetime64, method: Literal["nearest"]): """ usage.xarray: 2 """ ... @overload def get_loc(self, /, key: Literal["2000-01-01"], method: None, tolerance: None): """ usage.xarray: 1 """ ... def get_loc( self, /, key: Union[Literal["2000-01-01"], numpy.datetime64], method: Union[None, Literal["nearest"]], tolerance: None = ..., ): """ usage.xarray: 3 """ ... def max(self, /): """ usage.dask: 1 """ ... def min(self, /): """ usage.dask: 1 """ ... def round(self, /, *args: Literal["v", "t"]): """ usage.xarray: 3 """ ... @overload def shift(self, /, periods: int, freq: Literal["S"]): """ usage.dask: 3 """ ... @overload def shift(self, /, periods: int, freq: Literal["W"]): """ usage.dask: 3 """ ... @overload def shift(self, /, periods: int, freq: pandas._libs.tslibs.timedeltas.Timedelta): """ usage.dask: 3 """ ... @overload def shift(self, /, periods: int, freq: None): """ usage.dask: 2 """ ... def shift( self, /, periods: int, freq: Union[None, Literal["W", "S"], pandas._libs.tslibs.timedeltas.Timedelta], ): """ usage.dask: 11 """ ... @overload def to_frame(self, /, index: bool, name: None): """ usage.dask: 1 """ ... @overload def to_frame(self, /, name: Literal["foo"]): """ usage.dask: 1 """ ... @overload def to_frame(self, /, index: bool, name: Literal["foo"]): """ usage.dask: 1 """ ... def to_frame(self, /, name: Union[Literal["foo"], None], index: bool = ...): """ usage.dask: 3 """ ... def to_numpy(self, /, dtype: Literal["datetime64[ns]"]): """ usage.xarray: 1 """ ... def to_series(self, /): """ usage.dask: 1 """ ... @overload def tz_localize(self, /, tz: None, nonexistent: Literal["shift_forward"]): """ usage.dask: 1 """ ... @overload def tz_localize(self, /, tz: object, nonexistent: Literal["shift_forward"]): """ usage.dask: 1 """ ... def tz_localize(self, /, tz: object, nonexistent: Literal["shift_forward"]): """ usage.dask: 2 """ ...
# GUI reader side: like pipes-gui1, but make root window and mainloop explicit from tkinter import * from PP4E.Gui.Tools.guiStreams import redirectedGuiShellCmd def launch(): redirectedGuiShellCmd('python -u pipe-nongui.py') window = Tk() Button(window, text='GO!', command=launch).pack() window.mainloop()
from . import builtin
import requests import json parameters = { # 'address' : '19.108914019118583, 72.86535472954193' 'address' : '19.1067657, 72.8639412' } response = requests.get("https://plus.codes/api", params=parameters) r = json.loads(response.text) print(r['plus_code']['global_code'])
import argparse import pprint from typing import Any import torch from transformers import AutoTokenizer, BartForConditionalGeneration from transformers.tokenization_utils_base import PreTrainedTokenizerBase def pretty_convert(x: Any) -> Any: if isinstance(x, torch.Tensor): return x.tolist() else: return x def pretty_print(x: dict) -> None: y = {k: pretty_convert(v) for k, v in x.items()} pp = pprint.PrettyPrinter(indent=4, compact=True, width=120) pp.pprint(y) def main(args=None) -> None: parser = argparse.ArgumentParser() parser.add_argument("--model", default="facebook/bart-base") parser.add_argument("--input", required=True) args = parser.parse_args() pretty_print(args.__dict__) tokenizer: PreTrainedTokenizerBase = AutoTokenizer.from_pretrained(args.model) tokenized_inputs = tokenizer( [args.input], padding="longest", return_tensors="pt", add_special_tokens=True, return_attention_mask=False, ) pretty_print(tokenized_inputs) back_decoded = tokenizer.batch_decode( tokenized_inputs["input_ids"], skip_special_tokens=False, clean_up_tokenization_spaces=False, ) pretty_print({"back_decoded": back_decoded}) if __name__ == "__main__": main()
""" fs.appdirfs =========== A collection of filesystems that map to application specific locations. These classes abstract away the different requirements for user data across platforms, which vary in their conventions. They are all subclasses of :class:`fs.osfs.OSFS`, all that differs from `OSFS` is the constructor which detects the appropriate location given the name of the application, author name and other parameters. Uses `appdirs` (https://github.com/ActiveState/appdirs), written by Trent Mick and Sridhar Ratnakumar <trentm at gmail com; github at srid name> """ from fs.osfs import OSFS from fs.appdirs import AppDirs __all__ = ['UserDataFS', 'SiteDataFS', 'UserCacheFS', 'UserLogFS'] class UserDataFS(OSFS): """A filesystem for per-user application data.""" def __init__(self, appname, appauthor=None, version=None, roaming=False, create=True): """ :param appname: the name of the application :param appauthor: the name of the author (used on Windows) :param version: optional version string, if a unique location per version of the application is required :param roaming: if True, use a *roaming* profile on Windows, see http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx :param create: if True (the default) the directory will be created if it does not exist """ app_dirs = AppDirs(appname, appauthor, version, roaming) super(UserDataFS, self).__init__(app_dirs.user_data_dir, create=create) class SiteDataFS(OSFS): """A filesystem for application site data.""" def __init__(self, appname, appauthor=None, version=None, roaming=False, create=True): """ :param appname: the name of the application :param appauthor: the name of the author (not used on linux) :param version: optional version string, if a unique location per version of the application is required :param roaming: if True, use a *roaming* profile on Windows, see http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx :param create: if True (the default) the directory will be created if it does not exist """ app_dirs = AppDirs(appname, appauthor, version, roaming) super(SiteDataFS, self).__init__(app_dirs.site_data_dir, create=create) class UserCacheFS(OSFS): """A filesystem for per-user application cache data.""" def __init__(self, appname, appauthor=None, version=None, roaming=False, create=True): """ :param appname: the name of the application :param appauthor: the name of the author (not used on linux) :param version: optional version string, if a unique location per version of the application is required :param roaming: if True, use a *roaming* profile on Windows, see http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx :param create: if True (the default) the directory will be created if it does not exist """ app_dirs = AppDirs(appname, appauthor, version, roaming) super(UserCacheFS, self).__init__(app_dirs.user_cache_dir, create=create) class UserLogFS(OSFS): """A filesystem for per-user application log data.""" def __init__(self, appname, appauthor=None, version=None, roaming=False, create=True): """ :param appname: the name of the application :param appauthor: the name of the author (not used on linux) :param version: optional version string, if a unique location per version of the application is required :param roaming: if True, use a *roaming* profile on Windows, see http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx :param create: if True (the default) the directory will be created if it does not exist """ app_dirs = AppDirs(appname, appauthor, version, roaming) super(UserLogFS, self).__init__(app_dirs.user_log_dir, create=create) if __name__ == "__main__": udfs = UserDataFS('exampleapp', appauthor='pyfs') print udfs udfs2 = UserDataFS('exampleapp2', appauthor='pyfs', create=False) print udfs2
#!/usr/bin/env python3 import re import urllib.request import os from dockerfile_parse import DockerfileParser from whalelinter.app import App from whalelinter.utils import DockerfileCommand class Parser(DockerfileParser): def __init__(self, filename): DockerfileParser.__init__(self, cache_content=True) if self.is_url(filename) is not None: response = urllib.request.urlopen(filename) if self.is_content_type_plain_text(response): self.content = response.read().decode('utf-8') App._dockerfile['is_remote'] = True App._dockerfile['url'] = filename else: print('ERROR: file format not supported. Plain text expected\n') exit(-1) elif os.path.isfile(filename): self.dockerfile_path = filename self.content = open(filename, encoding='utf-8').read() App._dockerfile['is_remote'] = False elif self.is_github_repo(filename): filename = 'https://raw.githubusercontent.com/' + filename + '/master/Dockerfile' self.content = urllib.request.urlopen(filename).read().decode('utf-8') App._dockerfile['is_remote'] = True App._dockerfile['url'] = filename else: print('ERROR: file format not supported\n') exit(-1) self.commands = self.dict_to_command_object(self.structure) @property def content(self): pass @content.setter def content(self, content): pass def is_github_repo(self, filename): regex = re.compile(r'^[-_.0-9a-z]+/[-_.0-9a-z]+$', re.IGNORECASE) return True if regex.match(filename) is not None else False def is_url(self, filename): regex = re.compile( r'^(?:http|ftp)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # domain... r'localhost|' # localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) return regex.match(filename) def is_content_type_plain_text(self, response): content_type = response.getheader('Content-Type') regex = re.compile(r'text/plain') return True if regex.search(content_type) is not None else False def dict_to_command_object(self, lst): commands = [] for element in lst: command = DockerfileCommand() command.instruction = element.get('instruction').upper() command.arguments = element.get('value').split(' ') command.line = element.get('startline') + 1 command._raw = element.get('content') commands.append(command) return commands
import six import json import threading from rdflib import URIRef, BNode, Literal, Namespace from rdflib.namespace import RDF, XSD from ckanext.dcat.profiles import RDFProfile, VCARD, DCAT, DCT, FOAF, SKOS, ADMS, SPDX, LOCN, GSP from ckanext.dcat.utils import resource_uri, url_quote from ckan.plugins import toolkit as p import logging log = logging.getLogger(__name__) ADFI = Namespace('http://avoindata.fi/ns#') GEODCAT = Namespace('http://data.europa.eu/930/#') namespaces = { 'dct': DCT, 'dcat': DCAT, 'vcard': VCARD, 'foaf': FOAF, 'skos': SKOS, 'adms': ADMS, 'xsd': XSD, 'spdx': SPDX, 'adfi': ADFI, 'locn': LOCN, 'gsp': GSP, 'geodcat': GEODCAT, } def as_dict(value): if type(value) is dict: return value elif type(value) in (str, six.text_type): return as_dict(json.loads(value)) else: raise ValueError() def get_dict(d, key): return as_dict(d.get(key, {})) def uriref(uri, *args, **kwargs): return URIRef(url_quote(uri.encode('utf-8')), *args, **kwargs) thread_local = threading.local() thread_local.organization_list = [] thread_local.group_list = [] def get_organization(org_id): if hasattr(thread_local, 'organization_list'): organization = next((organization for organization in thread_local.organization_list if organization['id'] == org_id), None) else: organization = None # If organization does not exist in previously fetched list, use organization_show to fetch it if not organization: organization = p.get_action('organization_show')({}, {'id': org_id, 'include_users': False, 'include_dataset_count': False, 'include_groups': False, 'include_tags': False, 'include_followers': False}) return organization def get_group(group_id): if hasattr(thread_local, 'group_list'): group = next((group for group in thread_local.group_list if group['id'] == group_id), None) else: group = None # If group does not exist in previously fetched list, use group_show to fetch it if not group: group = p.get_action('group_show')({}, {'id': group_id}) return group class AvoindataDCATAPProfile(RDFProfile): ''' An RDF profile for Avoindata based on DCAT-AP 2.0.0 extension at <https://www.avoindata.fi/ns/#> Supported dataset fields: Mandatory: dct:title, dct:description Recommended: dcat:contactPoint, dcat:distribution, dcat:keyword dct:publisher, dcat:theme Optional: dcat:landingPage, dct:spatial, dct:accuralPeriodicity, dct:type, dct:identifier, dct:temporal, dct:issued Supported distribution fields: Mandatory: dct:accessUrl Recommended: dct:description Optional: dct:title, dct:downloadUrl, adms:status, dct:license, dct:format, dcat:byteSize, dcat:temporalResolution, spdx:checksum, dct:rights, dct:conformsTo ''' # def parse_dataset(self, dataset_dict, dataset_ref): return dataset_dict def graph_from_dataset(self, dataset_dict, dataset_ref): g = self.g for prefix, namespace in namespaces.iteritems(): g.bind(prefix, namespace) g.add((dataset_ref, RDF.type, DCAT.Dataset)) # Flatten extras for extra in dataset_dict.get('extras', []): key = extra['key'] if key not in dataset_dict: dataset_dict[key] = extra['value'] # dct:title titles = set(t for t in get_dict(dataset_dict, 'title_translated').values() if t) if not titles: titles.add(dataset_dict.get('title', '')) for title in titles: g.add((dataset_ref, DCT.title, Literal(title))) # dct:description descriptions = set(d for d in get_dict(dataset_dict, 'notes_translated').values() if d) if not descriptions: descriptions.add(dataset_dict.get('notes', '')) for description in descriptions: g.add((dataset_ref, DCT.description, Literal(description))) # dct:contactPoint contact_details = BNode() g.add((contact_details, RDF.type, VCARD.Organization)) g.add((dataset_ref, DCAT.contactPoint, contact_details)) self._add_triple_from_dict(dataset_dict, contact_details, VCARD.fn, 'maintainer') self._add_triple_from_dict(dataset_dict, contact_details, VCARD.hasEmail, 'maintainer_email', _type=URIRef, value_modifier=self._add_mailto) self._add_triple_from_dict(dataset_dict, contact_details, VCARD.hasUrl, 'maintainer_website', _type=URIRef) contact_email = dataset_dict.get('contact_email') if contact_email: g.add((dataset_ref, DCAT.contactPoint, uriref(contact_email))) # dcat:distribution for resource_dict in dataset_dict.get('resources', []): resource_dict = as_dict(resource_dict) distribution = BNode() g.add((distribution, RDF.type, DCAT.Distribution)) g.add((dataset_ref, DCAT.distribution, distribution)) # dct:title titles = set(t for t in get_dict(resource_dict, 'name_translated').values() if t) if not titles: titles.add(resource_dict.get('title', '')) for title in titles: g.add((distribution, DCT.title, Literal(title))) # dct:description descriptions = set(d for d in get_dict(resource_dict, 'description_translated').values() if d) if not descriptions: descriptions.add(dataset_dict.get('description', '')) for description in descriptions: g.add((distribution, DCT.description, Literal(description))) # dct:rights copyright_notices = set(n for n in get_dict(dataset_dict, 'copyright_notice_translated').values() if n) if copyright_notices: rights_statement = BNode() g.add((rights_statement, RDF.type, DCT.RightsStatement)) g.add((rights_statement, DCT.description, Literal('\n\n'.join(copyright_notices)))) g.add((distribution, DCT.rights, rights_statement)) # dcat:accessUrl g.add((distribution, DCAT.accessURL, uriref(resource_uri(resource_dict)))) # dcat:downloadUrl resource_url = resource_dict.get('url') if resource_url: g.add((distribution, DCAT.downloadURL, uriref(resource_url))) # adms:status maturity = resource_dict.get('maturity') if maturity: status = BNode() g.add((status, RDF.type, SKOS.Concept)) g.add((status, SKOS.prefLabel, Literal(maturity))) g.add((distribution, ADMS.status, status)) # dct:license license_url = dataset_dict.get('license_url') if license_url: license_ref = uriref(license_url) g.add((license_ref, RDF.type, DCT.LicenseDocument)) g.add((distribution, DCT.license, license_ref)) # dct:format file_format = resource_dict.get('format') if file_format: media_type = BNode() g.add((media_type, RDF.type, DCT.MediaTypeOrExtent)) g.add((media_type, RDF.value, Literal(file_format))) g.add((distribution, DCT['format'], media_type)) # dct:conformsTo position_info = resource_dict.get('position_info') if position_info: standard = BNode() g.add((standard, RDF.type, DCT.Standard)) g.add((standard, DCT.identifier, Literal(position_info))) g.add((distribution, DCT.conformsTo, standard)) spatial_reference_system = dataset_dict.get('spatial-reference-system') if spatial_reference_system: standard = BNode() g.add((standard, RDF.type, DCT.Standard)) g.add((standard, DCT.identifier, Literal(spatial_reference_system))) g.add((distribution, DCT.conformsTo, standard)) # dcat:byteSize file_size = resource_dict.get('size') if file_size: g.add((distribution, DCAT.byteSize, Literal(file_size, datatype=XSD.decimal))) # spdx:checksum checksum_value = resource_dict.get('sha256') if checksum_value: checksum = BNode() g.add((checksum, RDF.type, SPDX.Checksum)) g.add((checksum, SPDX.checksumValue, Literal(checksum_value))) g.add((checksum, SPDX.algorithm, SPDX.checksumAlgorithm_sha1)) g.add((distribution, SPDX.checksum, checksum)) # dct:temporal temporal_coverage_from = resource_dict.get('temporal_coverage_from') temporal_coverage_to = resource_dict.get('temporal_coverage_to') if temporal_coverage_from or temporal_coverage_to: period = BNode() g.add((distribution, DCT.temporal, period)) g.add((period, RDF.type, DCT.PeriodOfTime)) if temporal_coverage_from: g.add((period, DCAT.startDate, Literal(temporal_coverage_from))) if temporal_coverage_to: g.add((period, DCAT.endDate, Literal(temporal_coverage_to))) # dcat:temporalResolution temporal_granularities = set(t for lang in get_dict(resource_dict, 'temporal_granularity').values() for t in lang if t) if temporal_granularities: g.add((distribution, DCAT.temporalResolution, Literal(', '.join(temporal_granularities), datatype=XSD.duration))) # dcat:keyword keywords = set( keyword for keyword_language in get_dict(dataset_dict, 'keywords').values() for keyword in keyword_language) for keyword in keywords: g.add((dataset_ref, DCAT.keyword, Literal(keyword))) # dct:publisher organization = get_organization(dataset_dict['owner_org']) # If organization is not approved, it won't be available in organization list if organization: publisher = URIRef(p.url_for(controller='organization', action='read', id=organization['id'], qualified=True)) g.add((publisher, RDF.type, FOAF.Agent)) g.add((dataset_ref, DCT.publisher, publisher)) organization_titles = (t for t in get_dict(organization, 'title_translated').values() if t) for title in organization_titles: g.add((publisher, FOAF.name, Literal(title))) self._add_triple_from_dict(organization, publisher, FOAF.homepage, 'homepage') # dcat:theme groups = dataset_dict.get('groups', []) for group_item in groups: group_dict = get_group(group_item['id']) theme = URIRef(p.url_for(controller='group', action='read', id=group_dict['id'], qualified=True)) g.add((theme, RDF.type, SKOS.Concept)) g.add((dataset_ref, DCAT.theme, theme)) group_titles = (t for t in get_dict(group_dict, 'title_translated').values() if t) for title in group_titles: g.add((theme, SKOS.prefLabel, Literal(title))) # dcat:landingPage external_urls = (u for u in dataset_dict.get('external_urls', []) if u) for external_url in external_urls: # some external urls have whitespace in them external_url = external_url.strip() document = URIRef(url_quote(external_url.encode('utf-8'))) g.add((document, RDF.type, FOAF.Document)) g.add((dataset_ref, DCAT.landingPage, document)) # dct:spatial locations = [] geographical_coverages = set(g for g in dataset_dict.get('geographical_coverage', []) if g) for geographical_coverage in geographical_coverages: locations.append((DCT.identifier, Literal(geographical_coverage))) bbox_field_names = ['bbox-south-lat', 'bbox-west-long', 'bbox-north-lat', 'bbox-east-long'] bbox_fields = [dataset_dict.get(field) for field in bbox_field_names] if all(bbox_fields): log.debug('bbox fields are present: %s', bbox_fields) from lxml import etree gml = 'http://www.opengis.net/gml/3.2.1#' nsmap = {'gml': gml} envelope = etree.Element(etree.QName(gml, 'Envelope'), srsName='http://www.opengis.net/def/crs/OGC/1.3/CRS84', nsmap=nsmap) lowerCorner = etree.SubElement(envelope, etree.QName(gml, 'lowerCorner'), nsmap=nsmap) upperCorner = etree.SubElement(envelope, etree.QName(gml, 'upperCorner'), nsmap=nsmap) lowerCorner.text = ' '.join(bbox_fields[:2]) upperCorner.text = ' '.join(bbox_fields[2:]) locations.append((DCAT.bbox, Literal(etree.tostring(envelope)))) spatial_field = dataset_dict.get('spatial') if spatial_field: log.debug('spatial field is present: %s', spatial_field) locations.append((LOCN.geometry, Literal(spatial_field, datatype=GSP.geoJSONLiteral))) if dataset_dict.get('name') == 'keski-suomen-maakuntakaavayhdistelma7': from pprint import pformat log.debug(pformat(dataset_dict)) if locations: location = BNode() g.add((dataset_ref, DCT.spatial, location)) g.add((location, RDF.type, DCT.Location)) for prop, value in locations: g.add((location, prop, value)) # geodcat:custodian responsible_party = dataset_dict.get('responsible-party') if responsible_party: try: custodians_data = json.loads(responsible_party) custodians_data = custodians_data if type(custodians_data) is list else [custodians_data] for custodian_data in custodians_data: custodian = BNode() g.add((custodian, RDF.type, FOAF.Agent)) custodian_fields = [('name', FOAF.name), ('email', VCARD.hasEmail)] for field, prop in custodian_fields: value = custodian_data.get(field) if value: g.add((custodian, prop, Literal(value))) g.add((dataset_ref, GEODCAT.custodian, custodian)) except ValueError: log.debug('Invalid JSON value in field responsible-party') # dct:accuralPeriodicity update_frequencies = set(u for lang in get_dict(dataset_dict, 'update_frequency').values() for u in lang if u) spatial_frequency_of_update = dataset_dict.get('frequency-of-update') if spatial_frequency_of_update: update_frequencies.add(spatial_frequency_of_update) if update_frequencies: accrual_periodicity = BNode() g.add((accrual_periodicity, RDF.type, DCT.Frequency)) g.add((accrual_periodicity, RDF.value, Literal(', '.join(update_frequencies)))) g.add((dataset_ref, DCT.accrualPeriodicity, accrual_periodicity)) # dct:type content_types = set(t for lang in get_dict(dataset_dict, 'content_type').values() for t in lang if t) if content_types: concept = BNode() g.add((concept, RDF.type, SKOS.Concept)) for content_type in content_types: g.add((concept, SKOS.prefLabel, Literal(content_type))) g.add((dataset_ref, DCT.type, concept)) # dct:identifier g.add((dataset_ref, DCT.identifier, Literal(dataset_dict.get('id')))) # dct:temporal valid_from = dataset_dict.get('valid_from') or dataset_dict.get('temporal-extent-begin') valid_till = dataset_dict.get('valid_till') or dataset_dict.get('temporal-extent-end') if valid_from or valid_till: period = BNode() g.add((dataset_ref, DCT.temporal, period)) g.add((period, RDF.type, DCT.PeriodOfTime)) if valid_from: g.add((period, DCAT.startDate, Literal(valid_from))) if valid_till: g.add((period, DCAT.endDate, Literal(valid_till))) # dct:issued date_released = dataset_dict.get('dataset-reference-date') or dataset_dict.get('metadata_created') if date_released: issued_date = Literal(date_released) g.add((dataset_ref, DCT.issued, issued_date)) def graph_from_catalog(self, catalog_dict, catalog_ref): # Fetch organization list for graph_from_dataset to use context = {'user': p.c.user} thread_local.organization_list = \ p.get_action('organization_list')(context, {"all_fields": True, "include_extras": True, "include_dataset_count": False}) thread_local.group_list = p.get_action('group_list')(context, {"all_fields": True, "include_extras": True, "include_dataset_count": False}) g = self.g for prefix, namespace in namespaces.iteritems(): g.bind(prefix, namespace) g.add((catalog_ref, RDF.type, DCAT.Catalog)) # Basic fields title = p.config.get('ckan.site_title', '') g.add((catalog_ref, DCT.title, Literal(title))) description = p.config.get('ckan.site_description', '') g.add((catalog_ref, DCT.description, Literal(description))) homepage = URIRef(p.config.get('ckan.site_url', '')) g.add((catalog_ref, FOAF.homepage, homepage)) language = p.config.get('ckan.locale_default', 'en') linguistic_system = URIRef('http://id.loc.gov/vocabulary/iso639-1/%s' % language) g.add((linguistic_system, RDF.type, DCT.LinguisticSystem)) g.add((catalog_ref, DCT.language, linguistic_system)) publisher = BNode() g.add((publisher, RDF.type, FOAF.Organization)) g.add((publisher, FOAF.hasSite, URIRef(p.config.get('ckan.site_url', '')))) g.add((publisher, FOAF.name, Literal(p.config.get('ckan.site_title')))) g.add((catalog_ref, DCT.publisher, publisher)) # Dates modified = self._last_catalog_modification() if modified: self._add_date_triple(catalog_ref, DCT.modified, modified)
import numpy as np class Problem: def __init__(self): self.states = [] def p(self, s, next_s, action): return 0 def r(self, s, next_s, action): return 0 def a(self, s): return [] def value_iteration(problem, gamma=0.9, theta=0.001): value = np.zeros(len(problem.states)) p = problem.p r = problem.r while True: delta = 0 for s in problem.states: actions = problem.a(s) v = value[s] value[s] = max([sum([p(s, next_s, a) * (r(s, next_s, a) + gamma * value[next_s]) for next_s in problem.states]) for a in actions]) delta = max(delta, abs(v - value[s])) if delta < theta: break policy = np.zeros(len(problem.states), dtype=int) for s in problem.states: actions = problem.a(s) policy[s] = actions[np.argmax( [sum([p(s, next_s, a) * (r(s, next_s, a) + gamma * value[next_s]) for next_s in problem.states]) for a in actions])] return policy, value def eval_policy(problem, policy, gamma=0.9, theta=0.01): value = np.zeros(len(problem.states)) p = problem.p r = problem.r while True: delta = 0 for s in problem.states: v = value[s] value[s] = sum([p(s, next_s, policy[s]) * (r(s, next_s, policy[s]) + gamma * value[next_s]) for next_s in problem.states]) delta = max(delta, abs(v - value[s])) if delta < theta: return value def improve_policy(problem, policy, value, gamma=0.9): p = problem.p r = problem.r stable = True for s in problem.states: actions = problem.a(s) b = policy[s] policy[s] = actions[np.argmax( [sum([p(s, next_s, a) * (r(s, next_s, a) + gamma * value[next_s]) for next_s in problem.states]) for a in actions])] if b != policy[s]: stable = False return stable def policy_iteration(problem, gamma=0.9, theta=0.01): policy = np.array([np.random.choice(problem.a(s)) for s in problem.states]) stable = False while not stable: values = eval_policy(problem, policy, gamma, theta) stable = improve_policy(problem, policy, values, gamma) return policy, values
from ceci import PipelineStage from descformats import TextFile, HDFFile, YamlFile import subprocess import os # This class runs the python3 version of BPZ from the command line class BPZpipeStage1(PipelineStage): """Pipeline stage to run the BPZpy3 version of BPZ The inputs and outputs are named in the associated yml file used by ceci inputs: ------- input_photometry_file: hdf5 file file containing the ugrizy photometry and errors configuration options: ---------------------- param_file: ascii file containing the BPZ parameters other than INTERP, infile, and outfiles. Many of the parameters will be the same run to run, so we can use a default file for many healpix pixels' of data. INTERP: integer (though read in as a string): the number of interpolated SEDs to be created in between the grid. The default value is 0. path_to_bpz: string OUTPUT_CUT: float (read in as string) If OUTPUT_CUT is set, then BPZ masks values with M_0 (the reference band used in the prior) and only computes and outputs photo-z's for galaxies with M_0 < OUTPUT_CUT path_to_BPZ: string The path to the installed BPZpy3 version, will be set as the $BPZPY3PATH env. variable outputs: -------- photoz_pointfile: ascii file usually ending in ".bpz" that contains the point estimate data created by BPZ photoz_probsfile: ascii file usually ending in "_probs.out" containing the p(z) for each object in the catalog ----- For now, the code assumes that this is being run on cori and using the version of BPZ installed there, you can specify a different installation via the "path_to_bpz" config option. """ name = "BPZpipeStage1" # inputs = [ ('input_photometry_file', HDFFile), ] outputs = [ ('output_photoz_pointfile', HDFFile), ('output_photoz_probsfile', HDFFile) ] config_options = { 'INTERP': '0', #Interpolate between input templates N times 'OUTPUT_CUT': "Null", #if you want to only compute and output M_0 < OUTPUT_CUT set here 'param_file': "test.pars", 'path_to_bpz': "/global/projecta/projectdirs/lsst/groups/PZ/BPZ/BPZpy3/pz_pdf/pz/BPZ" } def run(self): interp = self.config['INTERP'] pfile = self.config['param_file'] infile = self.get_input('input_photometry_file') bpz_path = self.config['path_to_bpz'] outfile_point = self.get_output('output_photoz_pointfile') outfile_probs= self.get_output('output_photoz_probsfile') #BPZ uses paths relevant to an environment variable, set this os.environ["BPZPY3PATH"]=bpz_path #BPZ is so old that it has some leftover references to NUMERIX os.environ["NUMERIX"]="numpy" print ("Running BPZ...") #Set up the command line command to run bpz_py3_hdf5. The format is #bpz_py3_hdf5.py [infile] -P [parsfile] [specific BPZ keywords not in pars file, e.g. -INTERP] bpz_exec = bpz_path+"/bpz_py3_readwritehdf5.py" args = ['python3', bpz_exec, infile, '-P',pfile,'-OUTPUT', outfile_point,'-PROBS_LITE',outfile_probs] subprocess.Popen(args) # You would normally call some other function or method # here to generate some output. You can use self.comm, # self.rank, and self.size to use MPI. print ("finished")