content
stringlengths
5
1.05M
# Compatibility Python 2/3 from __future__ import division, print_function, absolute_import from builtins import range from past.builtins import basestring # ---------------------------------------------------------------------------------------------------------------------- import numpy as np import opto.log as log from timeit import default_timer as timer import logging logger = logging.getLogger(__name__) def is_dominated(x, y, minimize=True): """ Compute if x is dominated by y :param x: np.matrix [N_OBJECTIVES] :param y: np.matrix [N_POINTS, N_OBJECTIVES] :param minimize: bool True=> compute PF that minimize, False=> compute PF that maximize :return: """ if minimize: return np.all(y <= x, axis=1) else: return np.all(y >= x, axis=1) def dominates(x, y, minimize=True): """ Compute if x dominates y :param x: np.matrix [N_OBJECTIVES] :param y: np.matrix [N_POINTS, N_OBJECTIVES] :param minimize: bool. True=> compute PF that minimize, False=> compute PF that maximize :return: """ if minimize: return np.all(x <= y, axis=1) else: return np.all(x >= y, axis=1) def is_pareto_optimal_1(objectives, minimize=True): """ :param costs: An [N_OBJECTIVES, N_POINTS] matrix :return: A (n_points, ) boolean array, indicating whether each point is Pareto optimal """ objectives = objectives.T is_PF = np.ones(objectives.shape[0], dtype=bool) for i, c in enumerate(objectives): is_PF[i] = (np.sum(is_dominated(x=c, y=objectives[is_PF], minimize=minimize)) <= 1) # (note that each point is dominated by each self) return is_PF def is_pareto_optimal_1b(objectives, minimize=True): """ :param objectives: An [N_OBJECTIVES, N_POINTS] matrix :return: A (n_points, ) boolean array, indicating whether each point is Pareto optimal """ objectives = objectives.T # [N_POINTS, N_OBJECTIVES] is_PF = np.ones(objectives.shape[0], dtype=bool) for i, c in enumerate(objectives): if is_PF[i]: is_PF[is_PF] = np.array(np.invert(dominates(x=c, y=objectives[is_PF], minimize=minimize))).squeeze() is_PF[i] = True # Remove dominated points (note that each point is dominated by each self) return is_PF def is_pareto_optimal_2(costs, minimize=True): """ :param costs: An (n_points, n_costs) array :return: A (n_points, ) boolean array, indicating whether each point is Pareto efficient """ costs = costs.T is_efficient = np.ones(costs.shape[0], dtype=bool) for i, c in enumerate(costs): if is_efficient[i]: is_efficient[is_efficient] = np.any(costs[is_efficient] <= c, axis=1) # Remove dominated points return is_efficient def is_pareto_optimal_3(costs, minimize=True): # From http://stackoverflow.com/questions/32791911/fast-calculation-of-pareto-front-in-python """ :param costs: An (n_points, n_costs) array :return: A (n_points, ) boolean array, indicating whether each point is Pareto efficient """ costs = costs.T is_efficient = np.ones(costs.shape[0], dtype=bool) for i, c in enumerate(costs): is_efficient[i] = np.all(np.any(costs >= c, axis=1)) return is_efficient # def is_pareto_optimal_4(objectives, minimize=True): # nObj = objectives.shape[0] # # if nObj == 2: # # TODO: stablesort # if func[0] == 'minimize': # idx = np.argsort(objectives[0]) # if func[0] == 'maximize': # idx = np.argsort(objectives[0])[::-1] # idx_PF = [idx[0]] # TODO: bug! first element is always in the PF! # cur = objectives[1, idx[0]] # if func[1] == 'minimize': # for i in idx: # if objectives[1, i] < cur: # idx_PF.append(i) # cur = objectives[1, i] # if func[1] == 'maximize': # for i in idx: # if objectives[1, i] > cur: # idx_PF.append(i) # cur = objectives[1, i] # PF = objectives[:, idx_PF] # # if nObj > 2: # # Use simple_cull # # TODO: accept func with multiple value # if func[0] == 'maximize': # f = dominates_max # if func[0] == 'minimize': # f = dominates_min # dominated = [] # cleared = [] # remaining = np.transpose(objectives) # nPointsRemaning = remaining.shape[0] # while nPointsRemaning > 0: # # print(nPointsRemaning) # candidate = remaining[0] # new_remaining = [] # for other in remaining[1:]: # [new_remaining, dominated][f(candidate, other)].append(other) # if not any(f(other, candidate) for other in new_remaining): # cleared.append(candidate) # else: # dominated.append(candidate) # remaining = np.array(new_remaining) # nPointsRemaning = remaining.shape[0] # PF = np.transpose(np.array(cleared)) # dom = np.transpose(np.array(dominated)) def paretoFront(objectives, parameters=None, func='minimize'): """ Compute the Pareto Front :param objectives: [N_OBJECTIVES, N_POINTS] :param parameters: [N_PARAMETERS, N_POINTS] :param func: if func is a single string, it will be considered as the same value for all objectives. Alternatively, it is possible to present a list (currently not implemented). :return: PF [N_OBJECTIVES, N_POINTS] PF_par [N_PARAMETERS, N_POINTS] """ nObj = objectives.shape[0] if parameters is not None: nPars = parameters.shape[0] assert objectives.shape[1] == parameters.shape[1], 'Inconsistent size objectives - parameters' assert isinstance(func, basestring), 'currently only single values are accepted' # TODO: allow multiple values if isinstance(func, basestring): func = [func] * nObj _startTime = timer() logging.info('Computing PF') idx_PF = is_pareto_optimal_1b(objectives, minimize=True) PF = objectives[:, idx_PF] if parameters is not None: PF_PAR = parameters[:, idx_PF] end = timer() logging.info('PF computed in %f[s]' % (end - _startTime)) logging.info('Identified %d points in the PF' % (PF.shape[1])) assert PF.shape[0] == nObj, 'Inconsistent size PF' if parameters is None: return PF else: PF_PAR = parameters[:, idx_PF] assert PF_PAR.shape[0] == nPars, 'Inconsistent size PF' return PF, PF_PAR def paretoFrontIdx(objectives, parameters=None, func='minimize'): """ Compute idx of the Pareto Front :param objectives: [N_OBJECTIVES, N_POINTS] :param parameters: [N_PARAMETERS, N_POINTS] :param func: if func is a single string, it will be considered as the same value for all objectives. Alternatively, it is possible to present a list (currently not implemented). :return: PF [N_OBJECTIVES, N_POINTS] PF_par [N_PARAMETERS, N_POINTS] """ nObj = objectives.shape[0] if parameters is not None: nPars = parameters.shape[0] assert objectives.shape[1] == parameters.shape[1], 'Inconsistent size objectives - parameters' assert isinstance(func, basestring), 'currently only single values are accepted' # TODO: allow multiple values if isinstance(func, basestring): func = [func] * nObj _startTime = timer() logging.info('Computing PF') idx_PF = is_pareto_optimal_1b(objectives, minimize=True) return idx_PF
from tokens import * from baseorder import BaseOrder, log from dexible.common import Price, as_units from dexible.exceptions import * import asyncio TOKEN_IN = DAI_KOVAN TOKEN_OUT = WETH_KOVAN IN_AMT = as_units(500, 18) async def main(): sdk = BaseOrder.create_dexible_sdk() token_in = await sdk.token.lookup(TOKEN_IN) token_out = await sdk.token.lookup(TOKEN_OUT) twap = BaseOrder( sdk=sdk, token_in=TOKEN_IN, token_out=TOKEN_OUT, amount_in=IN_AMT, algo_details={ "type": "TWAP", "params": { "time_window": {"minutes": 7}, "price_range": { "base_price": Price.units_to_price(in_token=token_in, out_token=token_out, in_units=1, out_units=.00133), "lower_bound_percent": 1, "upper_bound_percent": 1}, "gas_policy": { "type": "relative", "deviation": 0 }, "slippage_percent": 5 } }) try: order = await twap.create_order() log.info("Submitting order...") result = await order.submit() log.info(f"Order result: {result}") except InvalidOrderException as e: log.error(f"Probem with order: {e}") except QuoteMissingException as e: log.error(f"Could not generate quote: {e}") except DexibleException as e: log.error(f"Generic problem: {e}") if __name__ == '__main__': asyncio.run(main())
import os import json import yaml class Context: """ Conversation Context Object """ def __init__(self, db, userProfile): """ Initialize Context Object :param db: database for state storage :param userProfile: user profile object :type db: db object :type userProfile: json/dictionary """ self.db = db self.userProfile = userProfile def update_user_info(self, key, value): """ Update dynamodb user detail :param value: value to update the item with :type key: string :type value: string """ pk = { 'userId' : { 'S' : self.userProfile['id'] } } self.db.update_item( pk, { key : { 'Value' : { 'S' : value } } } ) def get_context(self, key): """ Get Conversational Context :param key: context item key :type key: string :returns: context info :rtype: string """ if 'contextInfo:' + key in self.userProfile: return self.userProfile['contextInfo:' + key] return None def save_context(self, keyVal): """ Save conversational context :param keyVal: key value to save :type keyVal: json/dictionary """ pk = { 'userId' : { 'S' : self.userProfile['id'] } } self.db.update_item( pk, { 'contextInfo:' + keyVal['key'] : { 'Value' : { 'S' : keyVal['value'] } } } ) class StateRouter: """ Chatbot State Transition Router """ def __init__(self, userObject, msgObject, outputBuilder, stateService, profileBuilder=None): """ Initialize State Router Module :param userObject: chatbot user info :param msgObject: chatbot user msg :param outputBuilder: messaging platform outbound builder :param stateService: chatbot state service :param profileBuilder: optional userprofile builder """ self.profileBuilder = profileBuilder self.userObject = userObject self.msgObject = msgObject self.outputBuilder = outputBuilder self.stateService = stateService def _next_state(self, state): """ Update User State :param state: state name :type state: string """ self.stateService.update_session_state( self.userObject['id'], state ) def _init_user(self): """ Initilize User Record :returns: user profile object :rtype: json/dictionary """ userProfile = self.profileBuilder(self.userObject['id'], self.stateService)() self.stateService.init_user_session(userProfile) return userProfile def _get_user_profile(self): """ Get User Profile Record :returns: user profile record :rtype: json/dictionary """ userProfile = self.stateService._get_user_profile(self.userObject['id']) if userProfile == None: return self._init_user() return userProfile def _get_init_state(self): """ Get initial state :returns: initial chatbot state :rtype: string """ masterFile = open('src/views/master.yml').read() masterConfig = yaml.safe_load(masterFile) return masterConfig['init_state'] def execute(self): """ Execute Current State """
# Standard libraries import contractions import re import string import enum # Nltk download import nltk nltk.download('stopwords') nltk.download('punkt') from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer class TextCleaner: def __init__(self): self.settings = ['rm_punctuation', 'rm_numeric', 'lowerize', 'rm_stopwords'] self.white_list = [] self.black_list = [] self.lang_settings = ['english'] def lang_stopwords(self): stop_words = set() [stop_words.update(set(stopwords.words(lang.lower()))) for lang in self.lang_settings] return stop_words def action_settings(self): """ map settings to their respective actions. """ settings = { 'rm_punctuation': self.remove_punctuation, 'rm_numeric' : self.remove_numeric, 'lowerize' : self.lowerize, 'rm_stopwords' : self.remove_stopwords, 'stem_words' : self.stemming, 'rm_long_words' : self.remove_long_words } return settings def clean_text(self, to_clean, **kwargs): to_clean = contractions.fix(to_clean) # Expand contractions tokens = self.tokenize(to_clean) for param in self.settings: tokens = self.action_settings()[param](tokens) [tokens.remove(w) for w in tokens if w == ''] # Remove empty tokens if 'tokenize' in kwargs: if kwargs['tokenize']: return tokens else: return ' '.join(tokens) def tokenize(self, text): """ Tokenize string and split numeric and alpha characters :return: list of tokens """ tokens = word_tokenize(text) splitted = [] for w in tokens: splitted += re.split(r'(\d+)', w) splitted = self.rm_empty_tokens(splitted) return splitted def remove_punctuation(self, tokens): future_tokens = [] for text in tokens: try: future_tokens.append(''.join(character for character in text if character not in string.punctuation)) except TypeError as e: print(f'Error removing punctuation from token:\n{e}') return self.rm_empty_tokens(future_tokens) @staticmethod def remove_numeric(tokens): return [w for w in tokens if not w.isdigit()] @staticmethod def lowerize(tokens): return [w.lower() for w in tokens] def remove_stopwords(self, tokens): return [w for w in tokens if w not in self.create_stopwords()] @staticmethod def stemming(tokens): porter = PorterStemmer() return [porter.stem(word) for word in tokens] @staticmethod def remove_long_words(tokens): return [w for w in tokens if len(w) < 13] def create_stopwords(self): stop_words = set(self.black_list) stop_words.update(self.lang_stopwords()) stop_words = [w for w in stop_words if w not in self.white_list] return stop_words @staticmethod def rm_empty_tokens(tokens): return list(filter(None, tokens))
# Copyright 2015-2021 Mathieu Bernard # # This file is part of phonemizer: you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Phonemizer is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with phonemizer. If not, see <http://www.gnu.org/licenses/>. """Espeak backend for the phonemizer""" import abc import distutils.spawn import itertools import os import re import shlex import subprocess import tempfile import joblib from phonemizer.backend.base import BaseBackend from phonemizer.logger import get_logger from phonemizer.punctuation import Punctuation from phonemizer.separator import default_separator from phonemizer.utils import list2str, chunks, cumsum # a regular expression to find language switching flags in espeak output, # Switches have the following form (here a switch from English to French): # "something (fr) quelque chose (en) another thing". _ESPEAK_FLAGS_RE = re.compile(r'\(.+?\)') # a global variable being used to overload the default espeak installed on the # system. The user can choose an alternative espeak with the method # EspeakBackend.set_espeak_path(). _ESPEAK_DEFAULT_PATH = None class BaseEspeakBackend(BaseBackend): """Abstract espeak backend for the phonemizer Base class of the concrete backends Espeak and EspeakMbrola. It provides facilities to find espeak executable path and read espeak version. """ espeak_version_re = r'.*: ([0-9]+(\.[0-9]+)+(\-dev)?)' @staticmethod def set_espeak_path(fpath): """Sets the espeak executable as `fpath`""" global _ESPEAK_DEFAULT_PATH if not fpath: _ESPEAK_DEFAULT_PATH = None return if not (os.path.isfile(fpath) and os.access(fpath, os.X_OK)): raise ValueError( f'{fpath} is not an executable file') _ESPEAK_DEFAULT_PATH = os.path.abspath(fpath) @staticmethod def espeak_path(): """Returns the absolute path to the espeak executable""" if 'PHONEMIZER_ESPEAK_PATH' in os.environ: espeak = os.environ['PHONEMIZER_ESPEAK_PATH'] if not (os.path.isfile(espeak) and os.access(espeak, os.X_OK)): raise ValueError( f'PHONEMIZER_ESPEAK_PATH={espeak} ' f'is not an executable file') return os.path.abspath(espeak) if _ESPEAK_DEFAULT_PATH: return _ESPEAK_DEFAULT_PATH espeak = distutils.spawn.find_executable('espeak-ng') if not espeak: # pragma: nocover espeak = distutils.spawn.find_executable('espeak') return espeak @classmethod def is_available(cls): return bool(cls.espeak_path()) @classmethod def long_version(cls): """Returns full version line Includes data path and detailed name (espeak or espeak-ng). """ return subprocess.check_output(shlex.split( '{} --help'.format(cls.espeak_path()), posix=False)).decode( 'utf8').split('\n')[1] @classmethod def is_espeak_ng(cls): """Returns True if using espeak-ng, False otherwise""" return 'eSpeak NG' in cls.long_version() @classmethod def version(cls, as_tuple=False): # the full version version string includes extra information # we don't need long_version = cls.long_version() # extract the version number with a regular expression try: version = re.match(cls.espeak_version_re, long_version).group(1) except AttributeError: raise RuntimeError( f'cannot extract espeak version from {cls.espeak_path()}') if as_tuple: # ignore the '-dev' at the end version = version.replace('-dev', '') version = tuple(int(v) for v in version.split('.')) return version @abc.abstractmethod def _command(self, fname): pass @abc.abstractmethod def _postprocess_line(self, line, separator, strip): pass class EspeakBackend(BaseEspeakBackend): """Espeak backend for the phonemizer""" def __init__(self, language, punctuation_marks=Punctuation.default_marks(), preserve_punctuation=False, language_switch='keep-flags', with_stress=False, logger=get_logger()): super().__init__( language, punctuation_marks=punctuation_marks, preserve_punctuation=preserve_punctuation, logger=logger) self.logger.debug('espeak is %s', self.espeak_path()) # adapt some command line option to the espeak version (for # phoneme separation and IPA output) version = self.version() self.sep = '--sep=_' if version == '1.48.03' or version.split('.')[1] <= '47': self.sep = '' # pragma: nocover self.ipa = '--ipa=3' if self.is_espeak_ng(): # this is espeak-ng self.ipa = '-x --ipa' # ensure the lang_switch argument is valid valid_lang_switch = [ 'keep-flags', 'remove-flags', 'remove-utterance'] if language_switch not in valid_lang_switch: raise RuntimeError( 'lang_switch argument "{}" invalid, must be in {}' .format(language_switch, ", ".join(valid_lang_switch))) self._lang_switch = language_switch self._with_stress = with_stress @staticmethod def name(): return 'espeak' @classmethod def supported_languages(cls): # retrieve the languages from a call to 'espeak --voices' voices = subprocess.check_output(shlex.split( '{} --voices'.format(cls.espeak_path()), posix=False)).decode( 'utf8').split('\n')[1:-1] voices = [v.split() for v in voices] return {v[1]: v[3].replace('_', ' ') for v in voices} def phonemize(self, text, separator=default_separator, strip=False, njobs=1): text, text_type, punctuation_marks = self._phonemize_preprocess(text) lang_switches = [] if njobs == 1: # phonemize the text forced as a string text, lang_switches = self._phonemize_aux( list2str(text), separator, strip) else: # If using parallel jobs, disable the log as stderr is not # picklable. self.logger.info('running %s on %s jobs', self.name(), njobs) log_storage = self.logger self.logger = None # divide the input text in chunks, each chunk being processed in a # separate job text_chunks = chunks(text, njobs) # offset used below to recover the line numbers in the input text # wrt the chunks offset = [0] + cumsum((c.count('\n')+1 for c in text_chunks[:-1])) # we have here a list of (phonemized chunk, lang_switches) output = joblib.Parallel(n_jobs=njobs)( joblib.delayed(self._phonemize_aux)(t, separator, strip) for t in text_chunks) # flatten both the phonemized chunks and language switches in a # list. For language switches lines we need to add an offset to # have the correct lines numbers wrt the input text. text = list(itertools.chain(*(chunk[0] for chunk in output))) lang_switches = [chunk[1] for chunk in output] for i, _ in enumerate(lang_switches): for j, _ in enumerate(lang_switches[i]): lang_switches[i][j] += offset[i] lang_switches = list(itertools.chain(*lang_switches)) # restore the log as it was before parallel processing self.logger = log_storage # warn the user if language switches occured during phonemization self._warn_on_lang_switch(lang_switches) # finally restore the punctuation return self._phonemize_postprocess( text, text_type, punctuation_marks) def _command(self, fname): return ( f'{self.espeak_path()} -v{self.language} {self.ipa} ' f'-q -f {fname} {self.sep}') def _phonemize_aux(self, text, separator, strip): output = [] lang_switch_list = [] for num, line in enumerate(text.split('\n'), start=1): with tempfile.NamedTemporaryFile( 'w+', encoding='utf8', delete=False) as data: try: # save the text as a tempfile data.write(line) data.close() # generate the espeak command to run command = self._command(data.name) if self.logger: self.logger.debug('running %s', command) # run the command completed = subprocess.run( shlex.split(command, posix=False), check=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # retrieve the output line (raw phonemization) line = completed.stdout.decode('utf8') # ensure all was OK error = completed.stderr.decode('utf8') for err_line in error.split('\n'): # pragma: nocover err_line = err_line.strip() if err_line: self.logger.error(err_line) if error or completed.returncode: # pragma: nocover raise RuntimeError( f'espeak failed with return code ' f'{completed.returncode}') finally: os.remove(data.name) line, lang_switch = self._postprocess_line( line, separator, strip) output.append(line) if lang_switch: lang_switch_list.append(num) return output, lang_switch_list def _postprocess_line(self, line, separator, strip): # espeak can split an utterance into several lines because # of punctuation, here we merge the lines into a single one line = line.strip().replace('\n', ' ').replace(' ', ' ') # due to a bug in espeak-ng, some additional separators can be # added at the end of a word. Here a quick fix to solve that # issue. See https://github.com/espeak-ng/espeak-ng/issues/694 line = re.sub(r'_+', '_', line) line = re.sub(r'_ ', ' ', line) line, lang_switch = self._process_lang_switch(line) if not line: return '', lang_switch out_line = '' for word in line.split(u' '): word = word.strip() # remove the stresses on phonemes if not self._with_stress: word = word.replace("ˈ", '') word = word.replace('ˌ', '') word = word.replace("'", '') word = word.replace("-", '') if not strip: word += '_' word = word.replace('_', separator.phone) out_line += word + separator.word if strip and separator.word: out_line = out_line[:-len(separator.word)] return out_line, lang_switch def _process_lang_switch(self, utt): # look for language swith in the current utterance flags = re.findall(_ESPEAK_FLAGS_RE, utt) # no language switch, nothing to do if not flags: return utt, False # ignore the language switch but warn if one is found if self._lang_switch == 'keep-flags': return utt, True if self._lang_switch == 'remove-flags': # remove all the (lang) flags in the current utterance for flag in set(flags): utt = utt.replace(flag, '') else: # self._lang_switch == 'remove-utterances': # drop the entire utterance return None, True return utt, True def _warn_on_lang_switch(self, lang_switches): # warn the user on language switches fount during phonemization if lang_switches: nswitches = len(lang_switches) if self._lang_switch == 'remove-utterance': self.logger.warning( 'removed %s utterances containing language switches ' '(applying "remove-utterance" policy)', nswitches) else: self.logger.warning( '%s utterances containing language switches ' 'on lines %s', nswitches, ', '.join(str(l) for l in lang_switches)) self.logger.warning( 'extra phones may appear in the "%s" phoneset', self.language) if self._lang_switch == "remove-flags": self.logger.warning( 'language switch flags have been removed ' '(applying "remove-flags" policy)') else: self.logger.warning( 'language switch flags have been kept ' '(applying "keep-flags" policy)') class EspeakMbrolaBackend(BaseEspeakBackend): """Espeak-mbrola backend for the phonemizer""" # this will be initialized once, at the first call to supported_languages() _supported_languages = None def __init__(self, language, logger=get_logger()): super().__init__(language, logger=logger) self.logger.debug('espeak is %s', self.espeak_path()) @staticmethod def name(): return 'espeak-mbrola' @staticmethod def is_available(): return ( BaseEspeakBackend.is_available() and distutils.spawn.find_executable('mbrola') is not None) @classmethod def _all_supported_languages(cls): # retrieve the voices from a call to 'espeak --voices=mb'. This voices # must be installed separately. voices = subprocess.check_output(shlex.split( f'{cls.espeak_path()} --voices=mb', posix=False)).decode( 'utf8').split('\n')[1:-1] voices = [voice.split() for voice in voices] return {voice[4][3:]: voice[3] for voice in voices} @classmethod def _is_language_installed(cls, language): """Returns True if the required mbrola voice is installed""" command = f'{cls.espeak_path()} --stdin -v {language} -q --pho' completed = subprocess.run( shlex.split(command, posix=False), input=b'', check=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if completed.stderr.decode('utf8'): return False return True @classmethod def supported_languages(cls): # pragma: nocover """Returns the list of installed mbrola voices""" if cls._supported_languages is None: cls._supported_languages = { k: v for k, v in cls._all_supported_languages().items() if cls._is_language_installed(k)} return cls._supported_languages def _command(self, fname): return f'{self.espeak_path()} -v {self.language} -q -f {fname} --pho' def _phonemize_aux(self, text, separator, strip): output = [] for line in text.split('\n'): with tempfile.NamedTemporaryFile( 'w+', encoding='utf8', delete=False) as data: try: # save the text as a tempfile data.write(line) data.close() # generate the espeak command to run command = self._command(data.name) if self.logger: self.logger.debug('running %s', command) # run the command completed = subprocess.run( shlex.split(command, posix=False), check=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # retrieve the output line (raw phonemization) line = completed.stdout.decode('utf8') # ensure all was OK error = completed.stderr.decode('utf8') for err_line in error.split('\n'): # pragma: nocover err_line = err_line.strip() if err_line: self.logger.error(err_line) if error or completed.returncode: # pragma: nocover raise RuntimeError( f'espeak failed with return code ' f'{completed.returncode}') finally: os.remove(data.name) line = self._postprocess_line(line, separator, strip) output.append(line) return output def _postprocess_line(self, line, separator, strip): # retrieve the phonemes with the correct SAMPA alphabet (but # without word separation) phonemes = ( l.split('\t')[0] for l in line.split('\n') if l.strip()) phonemes = separator.phone.join(pho for pho in phonemes if pho != '_') if not strip: phonemes += separator.phone return phonemes
from .base import * DEBUG=True HOST = os.getenv("DEBUG_HOST") ALLOWED_HOSTS = ["*"] AUTH_SERVER_LOGIN = ROOT_SERVER + "/login" AUTH_SERVER_AUTHENTICATE = ROOT_SERVER + "/authenticate" AUTH_SERVER_LOGOUT = ROOT_SERVER + "/logout" AUTH_SERVER_TOKEN = ROOT_SERVER + "/token" if os.getenv("GITHUB_WORKFLOW"): DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'github_actions', 'USER': 'postgres', 'PASSWORD': 'postgres', 'HOST': '127.0.0.1', 'PORT': '5432', } } else: # .env DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': os.getenv('DB_NAME'), # dbname 'USER': os.getenv('MYSQL_ID'), # master username 'PASSWORD': os.getenv('MYSQL_PW'), # master password 'HOST': os.getenv('MYSQL_IP'), # Endpoint 'PORT': os.getenv('MYSQL_PORT'), 'OPTIONS': {'charset': 'utf8mb4'}, } }
# -*- coding: utf-8-*- ''' Copyright 2015 David J Murray License: MIT ''' # Python Library imports import feedparser import logging import re from datetime import datetime logger = logging.getLogger(__name__) WORDS = ["HOROSCOPE", ] PRIORITY = 1 def getDailyHoroscope(zodiacSign): ''' Get horoscope from astrology.com rss feed. Arguments: zodiacSign -- text of zodiac sign Returns: horoscope text -- text ''' DAILY_RSS_URL = "http://www.astrology.com/horoscopes/daily-horoscope.rss" # Cut down on extra work of parser by disabling Relative URI's Resolution feedparser.RESOLVE_RELATIVE_URIS = 0 feed = feedparser.parse(DAILY_RSS_URL) # Check for well-formed feed if feed.bozo == 1: logger.error("Not a well formed feed. Not using it.") text = "No horoscope found today." return text # <rss><channel><item><title>[zodiac sign] Daily Horoscope for [date %b %d, %Y]</title> # <rss><channel><item><description><p>[Text is here]</p></description> for item in feed['items']: if zodiacSign in item["title"]: text = item["description"] # Horoscope in <description> break else: logger.info(zodiacSign + " not found in feed.") text = "No horoscope found today." return text # The horoscope text is in the first paragraph <p></p> textStart = text.find("<p>") + 3 textEnd = text.find("</p>", textStart) return text[textStart:textEnd] def getZodiac(birthDate): ''' Calculate the zodiac or star sign from a date. Arguments: date -- user-input, the birthdate Return: text -- zodiac sign The code was based on: https://stackoverflow.com /questions/3274597 /how-would-i-determine-zodiac-astrological-star-sign-from-a-birthday-in-python ''' ZODIACS = [(120, 'Capricorn'), (218, 'Aquarius'), (320, 'Pisces'), (420, 'Aries'), (521, 'Taurus'), (621, 'Gemini'), (722, 'Cancer'), (823, 'Leo'), (923, 'Virgo'), (1023, 'Libra'), (1122, 'Scorpio'), (1222, 'Sagittarius'), (1231, 'Capricorn')] dateNumber = birthDate.date().month * 100 + birthDate.date().day for zodiac in ZODIACS: if dateNumber < zodiac[0]: return zodiac[1] else: logger.info("No zodiac sign for date {birthDate}".format(birthDate=birthDate)) return "" def handle(text, mic, profile): ''' Read todays horoscope from ycombiner. Responds to or handles user-input, typically speech text. Arguments: text -- user-input, typically transcribed speech mic -- used to interact with the user (for both input and output) profile -- contains information related to the user (e.g., phone number) Requires: birth_date: 01 Jan 2001 in profile.yml ''' firstName = profile["first_name"] try: birthDate = profile["birth_date"] except KeyError: logger.info("No birth_date in profile.yml.") mic.say("Please add your birth_date to the profile, so I can get your horoscope.") return if birthDate is None: logger.info("Blank birth_date in profile.yml") mic.say("Please check your birth_date to the profile, so I can get your horoscope.") return birthDate = datetime.strptime(birthDate, "%d %b %Y") zodiacSign = getZodiac(birthDate) mic.say("{firstName}, your zodiac or star sign is {zodiacSign}. and " .format(zodiacSign=zodiacSign, firstName=firstName)) text = getDailyHoroscope(zodiacSign) mic.say("your horoscope states that " + text) return def isValid(text): ''' Returns True if the input is related to this modules. Arguments: text -- user-input, typically transcribed speech ''' return bool(re.search(r'\bhoroscope\b', text, re.IGNORECASE))
#!/usr/bin/env python # -*- coding: utf-8 -*- ####################################################### import numpy as np ###################################### ##### ネットワークの初期設定を行う ##### ###################################### class NWSetup: def __init__(self, nw_cond, target_cond): # self.nw_model = nw_cond[0] self.strand = nw_cond[1] # self.n_strand = nw_cond[2] self.n_segments = nw_cond[3] self.n_cell = nw_cond[4] self.n_sc = nw_cond[5] # self.l_bond = nw_cond[6] # self.c_n = nw_cond[7] self.multi = target_cond[0] ################################################################################ # レギュラー・ネットワーク設定 ################################################################################ def calc_all(self): # 架橋点 JP を設定 jp_xyz, strand_se_xyz = self.calc_jp_strands() # calcd_data_dic = self.set_atom(jp_xyz, strand_se_xyz) return calcd_data_dic ################################################################################ # JPおよびサブチェインの始点と終点のXYZを設定 def calc_jp_strands(self): # jp_xyz は、JPの座標のリスト # strand_se_xyz は、サブチェインの出発点と終点のリスト if self.strand == "3_Chain_S": # JPを設定 jp_xyz = [ [ [0, 0, 0], [0, 0.25, 0.25], [0.25, 0.25, 0.5], [0.25, 0, 0.75], [0.5, 0.5, 0.5], [0.5, 0.75, 0.75], [0.75, 0.5, 0.25], [0.75, 0.75, 0] ] ] # サブチェインの出発点と終点を設定 strand_se_xyz = [ [ [[0, 0, 0], [0, 0.25, 0.25]], [[0, 0.25, 0.25], [0.25, 0.25, 0.5]], [[0.25, 0.25, 0.5], [0.25, 0, 0.75]], [[0.25, 0.25, 0.5], [0.5, 0.5, 0.5]], [[0.5, 0.5, 0.5], [0.5, 0.75, 0.75]], [[0.5, 0.5, 0.5], [0.75, 0.5, 0.25]], [[0.75, 0.5, 0.25], [0.75, 0.75, 0]], [[0.75, 0.5, 0.25], [1, 0.25, 0.25]], [[0.25, 0, 0.75], [0, 0, 1]], [[0.5, 0.75, 0.75], [0.25, 1, 0.75]], [[0.5, 0.75, 0.75], [0.75, 0.75, 1]], [[0.75, 0.75, 0], [1, 1, 0]] ] ] elif self.strand == "3_Chain_D": # JPを設定 jp_xyz = [ [ [0, 0, 0], [0, 0.25, 0.25], [0.25, 0.25, 0.5], [0.25, 0, 0.75], [0.5, 0.5, 0.5], [0.5, 0.75, 0.75], [0.75, 0.5, 0.25], [0.75, 0.75, 0] ], [ #ここから二つ目 [0, 0.5, 0.75], [0, 0.75, 0.5], [0.25, 0.75, 0.25], [0.25, 0.5, 0], [0.5, 0.25, 0], [0.5, 0, 0.25], [0.75, 0, 0.5], [0.75, 0.25, 0.75] ] ] # サブチェインの出発点と終点を設定 strand_se_xyz = [ [ [[0, 0, 0], [0, 0.25, 0.25]], [[0, 0.25, 0.25], [0.25, 0.25, 0.5]], [[0.25, 0.25, 0.5], [0.25, 0, 0.75]], [[0.25, 0.25, 0.5], [0.5, 0.5, 0.5]], [[0.5, 0.5, 0.5], [0.5, 0.75, 0.75]], [[0.5, 0.5, 0.5], [0.75, 0.5, 0.25]], [[0.75, 0.5, 0.25], [0.75, 0.75, 0]], [[0.75, 0.5, 0.25], [1, 0.25, 0.25]], [[0.25, 0, 0.75], [0, 0, 1]], [[0.5, 0.75, 0.75], [0.25, 1, 0.75]], [[0.5, 0.75, 0.75], [0.75, 0.75, 1]], [[0.75, 0.75, 0], [1, 1, 0]] ], [ [[0, 0.5, 0.75], [0, 0.75, 0.5]], [[0, 0.75, 0.5], [0.25, 0.75, 0.25]], [[0.25, 0.75, 0.25], [0.25, 0.5, 0]], [[0.25, 0.5, 0], [0.5, 0.25, 0]], [[0.5, 0.25, 0], [0.5, 0, 0.25]], [[0.5, 0, 0.25], [0.75, 0, 0.5]], [[0.75, 0, 0.5], [0.75, 0.25, 0.75]], [[0, 0.5, 0.75], [0.25, 0.5, 1]], [[0.25, 0.75, 0.25], [0.5, 1, 0.25]], [[0.75, 0.25, 0.75], [0.5, 0.25, 1]], [[0.75, 0.25, 0.75], [1, 0.5, 0.75]], [[0.75, 1, 0.5], [1, 0.75, 0.5]] ] ] elif self.strand == "4_Chain": # JPを設定 jp_xyz = [ [ [0.0, 0.0, 0.0], [0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.25, 0.25, 0.25], [0.25, 0.75, 0.75], [0.75, 0.25, 0.75], [0.75, 0.75, 0.25] ] ] # サブチェインの出発点と終点を設定 strand_se_xyz = [ [ [[0.25, 0.25, 0.25], [0.0, 0.0, 0.0]], # No.1 [[0.25, 0.25, 0.25], [0.0, 0.5, 0.5]], [[0.25, 0.25, 0.25], [0.5, 0.0, 0.5]], [[0.25, 0.25, 0.25], [0.5, 0.5, 0.0]], [[0.25, 0.75, 0.75], [0.0, 0.5, 0.5]], # No.2 [[0.25, 0.75, 0.75], [0.0, 1.0, 1.0]], [[0.25, 0.75, 0.75], [0.5, 0.5, 1.0]], [[0.25, 0.75, 0.75], [0.5, 1.0, 0.5]], [[0.75, 0.25, 0.75], [0.5, 0.0, 0.5]], # No.3 [[0.75, 0.25, 0.75], [0.5, 0.5, 1.0]], [[0.75, 0.25, 0.75], [1.0, 0.0, 1.0]], [[0.75, 0.25, 0.75], [1.0, 0.5, 0.5]], [[0.75, 0.75, 0.25], [0.5, 0.5, 0.0]], # No.4 [[0.75, 0.75, 0.25], [0.5, 1.0, 0.5]], [[0.75, 0.75, 0.25], [1.0, 0.5, 0.5]], [[0.75, 0.75, 0.25], [1.0, 1.0, 0.0]] ] ] elif self.strand == "6_Chain": # JPを設定 jp_xyz = [ [ [0.,0.,0.] ] ] # サブチェインの出発点と終点を設定 strand_se_xyz = [ [ [[0., 0., 0.], [1, 0, 0]], [[0., 0., 0.], [0, 1, 0]], [[0., 0., 0.], [0, 0, 1]] ] ] elif self.strand == "8_Chain": # JPを設定 jp_xyz = [ [ [0.,0.,0.], [0.5,0.5,0.5] ] ] # サブチェインの出発点と終点を設定 strand_se_xyz = [ [ [[0.5, 0.5, 0.5], [0, 0, 0]], [[0.5, 0.5, 0.5], [1, 0, 0]], [[0.5, 0.5, 0.5], [0, 1, 0]], [[0.5, 0.5, 0.5], [1, 1, 0]], [[0.5, 0.5, 0.5], [0, 0, 1]], [[0.5, 0.5, 0.5], [1, 0, 1]], [[0.5, 0.5, 0.5], [0, 1, 1]], [[0.5, 0.5, 0.5], [1, 1, 1]] ] ] return jp_xyz, strand_se_xyz ######################################################### def set_atom(self, jp_xyz, strand_se_xyz): calcd_data_dic={} count = 0 for i in (range(self.multi)): for mol, jp in enumerate(jp_xyz): atom_all = [] pos_all = {} # システム全体にわたるジャンクションポイントのxyzとIDの辞書を作成 jp_id_dic, jp_xyz_dic, atom_jp = self.set_jp_id(jp, mol) atom_all.extend(atom_jp) pos_all.update(jp_xyz_dic) # print(jp_xyz_dic) # サブチェイン中の各アトムのxyzリストとボンドリストを作成 strand_xyz, bond_all, atom_sc, angle_all = self.set_strands(jp_id_dic, strand_se_xyz[mol], mol) # atom_all.extend(atom_sc) pos_all.update(strand_xyz) # calcd_data_dic[count] = {"atom_all":atom_all, "bond_all":bond_all, "pos_all":pos_all, "angle_all":angle_all} count += 1 return calcd_data_dic ################################################### # システム全体にわたるJPのxyzとIDの辞書を作成 def set_jp_id(self, jp_xyz, mol): jp_id_dic = {} jp_xyz_dic = {} atom_jp = [] jp_id = 0 for z in range(self.n_cell): for y in range(self.n_cell): for x in range(self.n_cell): base_xyz = np.array([x,y,z]) for jp in jp_xyz: jp_id_dic[tuple(np.array(jp) + base_xyz)] = (jp_id) jp_xyz_dic[(jp_id)] = tuple(np.array(jp) + base_xyz) atom_jp.append([jp_id, 2*mol + 0, 0]) jp_id += 1 return jp_id_dic, jp_xyz_dic, atom_jp ######################################################### # サブチェイン中の各アトムのxyzリストとボンドリストを作成 def set_strands(self, jp_id_dic, strand_se_xyz, mol): strand_xyz = {} bond_all = {} atom_sc = [] angle_all = [] sub_id = len(jp_id_dic) bond_id = 0 for z in range(self.n_cell): for y in range(self.n_cell): for x in range(self.n_cell): b_xyz = (x,y,z) for se_xyz in strand_se_xyz: tmp_xyz, tmp_bond, new_sub_id, new_bond_id, tmp_atom_sc, tmp_angle = self.calc_single_strand(jp_id_dic, sub_id, bond_id, b_xyz, se_xyz, mol) strand_xyz.update(tmp_xyz) bond_all.update(tmp_bond) atom_sc.extend(tmp_atom_sc) angle_all.append(tmp_angle) sub_id = new_sub_id bond_id = new_bond_id return strand_xyz, bond_all, atom_sc, angle_all ############################################################### # 一本のサブチェイン中の各アトムのxyzリストとボンドリストを作成 def calc_single_strand(self, jp_id_dic, sub_id, bond_id, b_xyz, se_xyz, mol): tmp_xyz = {} tmp_bond = {} tmp_angle = [] tmp_atom_sc = [] bas_xyz = np.array(b_xyz) # サブチェインの末端間のベクトルを設定 start_xyz = np.array(se_xyz[0]) + bas_xyz end_xyz = np.array(se_xyz[1]) + bas_xyz vec = end_xyz - start_xyz # ストランドの鎖長分のループ処理 unit_len = 1./(self.n_segments + 1) ortho_vec = self.find_ortho_vec(vec) mod_o_vec = np.linalg.norm(vec)*ortho_vec # 始点のアトムのIDを設定 mod_xyz = list(start_xyz)[:] for dim in range(3): if mod_xyz[dim] == self.n_cell: mod_xyz[dim] = 0 s_id = jp_id_dic[tuple(mod_xyz)] tmp_angle.append(s_id) # 終点のアトムのIDを周期境界条件で変更 mod_xyz = list(end_xyz)[:] for dim in range(3): if mod_xyz[dim] == self.n_cell: mod_xyz[dim] = 0 E_id = jp_id_dic[tuple(mod_xyz)] # サブチェインの鎖長分のループ処理 for seg in range(self.n_segments): pos = tuple(start_xyz + vec*(seg + 1)/(self.n_segments + 1.)) tmp_xyz[sub_id] = pos if seg == 0 or seg == self.n_segments - 1: tmp_atom_sc.append([sub_id, 1, 1]) else: tmp_atom_sc.append([sub_id, 2, 2]) e_id = sub_id # if seg == 0: bond = 0 else: bond = 1 tmp_bond[bond_id] = tuple([bond, [s_id, e_id]]) bond_id += 1 tmp_angle.append(e_id) s_id = e_id sub_id += 1 if self.n_sc != 0: sc_s_id = s_id for i in range(self.n_sc): tmp_xyz[sub_id] = tuple(np.array(pos) + (i + 1)*mod_o_vec*unit_len) tmp_atom_sc.append([sub_id, 2, 1]) sc_e_id = sub_id # bond = 2 tmp_bond[bond_id] = tuple([bond, [sc_s_id, sc_e_id]]) sc_s_id = sc_e_id sub_id += 1 bond_id += 1 e_id = E_id bond = 0 tmp_bond[bond_id] = tuple([bond, [s_id, e_id]]) tmp_angle.append(e_id) bond_id += 1 return tmp_xyz, tmp_bond, sub_id, bond_id, tmp_atom_sc, tmp_angle ###### def find_ortho_vec(self, list): vec = np.array(list).reshape(-1,1) # 線形独立である新たな三次元ベクトルを見つける。 rank = 0 while rank != 2: a = np.array(np.random.rand(3)).reshape(-1,1) target = np.hstack((vec, a)) rank = np.linalg.matrix_rank(target) # QR分解により q, r = np.linalg.qr( target ) # print(q[:,1]) ortho_vec = q[:,1] return ortho_vec
from django.urls import path, include from rest_framework import routers # from rest.l2_serializers import DoctorSerializer, PodrazdeleniyaSerializer # from rest.l2_view_sets import UserViewSet router = routers.DefaultRouter() # router.register(r'users', UserViewSet) # router.register(r'doctorprofiles', DoctorSerializer) # router.register(r'podrazdeleniyas', PodrazdeleniyaSerializer) urlpatterns = [path('', include(router.urls)), path('api-auth/', include('rest_framework.urls', namespace='rest_framework'))]
import numpy as np from state import * count_in_center=0 index_diff_block=-1 opposite_block=-1 def eval(cur_state:State): global_point=np.zeros(9) i=0 for block in cur_state.blocks: point=0 countX_row=-np.count_nonzero(block==1, axis=1) countX_col=-np.count_nonzero(block==1, axis=0) countO_row=np.count_nonzero(block==-1, axis=1) countO_col=np.count_nonzero(block==-1, axis=0) for i in range(0,3): if (countX_row[i]<0) and (countO_row[i]>0): continue else: point+=(countX_row[i]+countO_row[i]) for i in range(0,3): if (countX_col[i]<0) and (countO_col[i]>0): continue else: point+=(countX_col[i]+countO_col[i]) countX_diagnol_topright=0 countO_diagnol_topright=0 countX_diagnol_topleft=0 countO_diagnol_topleft=0 for i in range (0,3): if(block[i][i]==1): countX_diagnol_topleft-=1 elif (block[i][i]==-1): countO_diagnol_topleft+=1 if(block[i][2-i]==1): countX_diagnol_topright-=1 elif (block[i][2-i]==-1): countO_diagnol_topright+=1 if (countX_diagnol_topleft)==0 or (countO_diagnol_topleft)==0: point+=(countX_diagnol_topleft+countO_diagnol_topleft) if (countX_diagnol_topright)==0 or (countO_diagnol_topright)==0: point+=(countX_diagnol_topright+countO_diagnol_topright) global_point[i]=point i+=1 return global_point.sum() def max_value(cur_state, alpha, beta, depth): leaf_state_val=terminate_state(cur_state, depth) if leaf_state_val!=None: return leaf_state_val else: v=-np.inf valid_moves=cur_state.get_valid_moves for move in valid_moves: temp_state=State(cur_state) temp_state.free_move=cur_state.free_move temp_state.act_move(move) val=min_value(temp_state, alpha, beta,depth-1) v=max(v,val) if(v>=beta): return v alpha=max(alpha, v) return v def min_value(cur_state, alpha, beta, depth): leaf_state_val=terminate_state(cur_state, depth) if leaf_state_val!=None: return leaf_state_val else: v=np.inf valid_moves=cur_state.get_valid_moves if(len(valid_moves)!=0): for move in valid_moves: temp_state=State(cur_state) temp_state.free_move=cur_state.free_move temp_state.act_move(move) val=max_value(temp_state, alpha, beta,depth-1) v=min(v,val) if(v<=alpha): return v beta=min(beta, v) return v def terminate_state(cur_state, depth): if(depth==0): return eval(cur_state) else: result=cur_state.game_result(cur_state.global_cells.reshape(3,3)) if(result!=None): if(result==0): return 0 return -np.inf*result else: return None def minimax_ab_cutoff(cur_state, tree_depth): alpha=-np.inf beta=np.inf v=-np.inf valid_moves=cur_state.get_valid_moves if(len(valid_moves)!=0): optimal_move=valid_moves[0] for move in valid_moves: temp_state=State(cur_state) temp_state.free_move=cur_state.free_move temp_state.act_move(move) new_val=min_value(temp_state, alpha, beta, tree_depth) if new_val>v: v=new_val alpha=v optimal_move=move return optimal_move def select_move(cur_state, remain_time): global index_diff_block global count_in_center global opposite_block valid_moves = cur_state.get_valid_moves ##Go first if(cur_state.player_to_move==1): if(cur_state.previous_move==None): count_in_center=0 index_diff_block=-1 opposite_block=-1 return UltimateTTT_Move(4,1,1,cur_state.player_to_move) elif (index_diff_block==-1): index_valid_block=cur_state.previous_move.x*3+cur_state.previous_move.y if(count_in_center<7): count_in_center+=1 return UltimateTTT_Move(index_valid_block, 1,1, cur_state.player_to_move) else: index_diff_block=index_valid_block opposite_block=8-index_diff_block return UltimateTTT_Move(index_diff_block, cur_state.previous_move.x,cur_state.previous_move.y, cur_state.player_to_move) else: if(cur_state.free_move==False): if(cur_state.blocks[valid_moves[0].index_local_board][int(index_diff_block/3)][index_diff_block%3]==0): return UltimateTTT_Move(valid_moves[0].index_local_board,int(index_diff_block/3),index_diff_block%3, cur_state.player_to_move) else: return UltimateTTT_Move(valid_moves[0].index_local_board,int((8-index_diff_block)/3),(8-index_diff_block)%3, cur_state.player_to_move) if(cur_state.free_move==True): if(cur_state.blocks[opposite_block][int(index_diff_block/3)][index_diff_block%3]==0): return UltimateTTT_Move(opposite_block,int(index_diff_block/3),index_diff_block%3, cur_state.player_to_move) else: return UltimateTTT_Move(opposite_block,int((8-index_diff_block)/3),(8-index_diff_block)%3, cur_state.player_to_move) #Go second else: return minimax_ab_cutoff(cur_state, 4) return None
import os import time import threading import tkinter.messagebox import json from mutagen.mp3 import MP3 from pygame import mixer from tkinter import * from tkinter import ttk from tkinter.filedialog import askdirectory # dir sounderdir = os.getcwd() # sounderdir = os.path.dirname(sys.executable) userdir = os.path.expanduser('~') # end PlayerForm = Tk() PlayerForm.geometry('800x500') PlayerForm.title("Sounder!") PlayerForm.resizable(width=FALSE, height=FALSE) PlayerForm.iconbitmap(sounderdir + "\\Soundericon.ico") s = ttk.Style() s.theme_use('clam') # variables PlayLabelText = StringVar() DirectoryLabelText = StringVar() GenreLabelText = StringVar() BitrateLabelText = StringVar() VolumeValue = StringVar() YearLabelText = StringVar() TimeLabelText = StringVar() SampleLabelText = StringVar() NowYear = StringVar() Avtime = StringVar() TSongs = StringVar() TVol = StringVar() ETimeVar = StringVar() maxsong = 0 playbuttonstate = 0 mode = 0 themeset = "Light" infoframe = None threads = 0 totallength = 0.0 directory = "" version = "2.8.2" settings = {} # end # images PlayPhotoimg = PhotoImage(file=sounderdir + "\\musicicon.png") Playimg = PhotoImage(file=sounderdir + "\\play.png") Pauseimg = PhotoImage(file=sounderdir + "\\pause.png") Forwardimg = PhotoImage(file=sounderdir + "\\forward.png") Previousimg = PhotoImage(file=sounderdir + "\\previous.png") Fileimg = PhotoImage(file=sounderdir + "\\file-directory.png") RefreshLabelimg = PhotoImage(file=sounderdir + "\\refresh.png") RepeatNone = PhotoImage(file=sounderdir + "\\repeatnone.png") RepeatAll = PhotoImage(file=sounderdir + "\\repeatall.png") RepeatOne = PhotoImage(file=sounderdir + "\\repeatone.png") Info = PhotoImage(file=sounderdir + "\\info.png") InfoMusic = PhotoImage(file=sounderdir + "\\musicinfo.png") Copyright = PhotoImage(file=sounderdir + "\\copyright.png") Fork = PhotoImage(file=sounderdir + "\\fork.png") Theme = PhotoImage(file=sounderdir + "\\theme.png") PlayPhotoimgD = PhotoImage(file=sounderdir + "\\musicicond.png") PlayimgD = PhotoImage(file=sounderdir + "\\playd.png") PauseimgD = PhotoImage(file=sounderdir + "\\paused.png") ForwardimgD = PhotoImage(file=sounderdir + "\\forwardd.png") PreviousimgD = PhotoImage(file=sounderdir + "\\previousd.png") FileimgD = PhotoImage(file=sounderdir + "\\file-directoryd.png") RefreshLabelimgD = PhotoImage(file=sounderdir + "\\refreshd.png") RepeatNoneD = PhotoImage(file=sounderdir + "\\repeatnoned.png") RepeatAllD = PhotoImage(file=sounderdir + "\\repeatalld.png") RepeatOneD = PhotoImage(file=sounderdir + "\\repeatoned.png") InfoD = PhotoImage(file=sounderdir + "\\infod.png") InfoMusicD = PhotoImage(file=sounderdir + "\\musicinfod.png") CopyrightD = PhotoImage(file=sounderdir + "\\copyrightd.png") ForkD = PhotoImage(file=sounderdir + "\\forkd.png") ThemeD = PhotoImage(file=sounderdir + "\\themed.png") # end # year NowYear.set("Copyright 2018-{}".format(time.strftime("%Y"))) # end def musicscan(): global directory, maxsong, listofsongs, state, songnumber directory = directory.rstrip('\n') state = 0 songnumber = 0 maxsong = -1 listofsongs = [] try: os.chdir(directory) for file in os.listdir(directory): if file.endswith(".mp3"): maxsong += 1 state = 1 listofsongs.append(file) except: os.chdir(sounderdir) os.remove('cfg.json') firststart() def firststart(): global directory, themeset, settings if os.path.exists('cfg.json'): with open('cfg.json', 'r') as file: try: settings = json.load(file) except: settings["theme"] = "Light" try: directory = settings["directory"] except: directory = askdirectory() settings["directory"] = directory try: themeset = settings["theme"] themechange() themechange() except: settings["theme"] = "Light" themeset = "Light" themechange() themechange() with open('cfg.json', 'w') as file: json.dump(settings, file) mixer.pre_init(frequency=44100, size=-16, channels=2, buffer=4096) mixer.init() musicscan() elif not os.path.exists('cfg.json'): settings["theme"] = "Light" themechange() themechange() directory = askdirectory() settings["directory"] = directory with open('cfg.json', 'w') as file: json.dump(settings, file) mixer.pre_init(frequency=44100, size=-16, channels=2, buffer=4096) mixer.init() musicscan() def changedirectory(): global directory, sounderdir, state, settings newdirectory = askdirectory() if directory != newdirectory and newdirectory != "" or None: os.chdir(sounderdir) settings["directory"] = directory with open('cfg.json', 'w') as file: json.dump(settings, file) MusicListBox.delete(0, END) directory = newdirectory DirectoryLabelText.set(directory) musicscan() update(state) def update(cstate): global listofsongs, maxsong, songnumber try: if cstate == 1: if maxsong == 0: TSongs.set("Song: {}".format(maxsong + 1)) elif maxsong > 0: TSongs.set("Songs: {}".format(maxsong + 1)) listofsongs.reverse() for file in listofsongs: file = file.rstrip('.mp3') MusicListBox.insert(0, file) listofsongs.reverse() if mixer.music.get_busy(): MusicListBox.selection_clear(0, END) MusicListBox.select_set(songnumber) elif cstate == 0: MusicListBox.delete(0, END) maxsong = -1 listofsongs = [] TSongs.set("Songs: 0") ETimeVar.set("0:00") except: pass def refreshdirectory(): global directory, maxsong, listofsongs, state state = 0 maxsong = -1 listofsongs = [] MusicListBox.delete(0, END) for file in os.listdir(directory): if file.endswith(".mp3"): maxsong += 1 state = 1 listofsongs.append(file) update(state) time.sleep(0.2) def playsong(): global playbuttonstate, songnumber, listofsongs, state, themeset if state == 1: if playbuttonstate == 1: mixer.music.pause() if themeset == "Light": PlayButton.configure(image=Playimg) elif themeset == "Dark": PlayButton.configure(image=PlayimgD) playbuttonstate = 0 elif playbuttonstate == 0: if mixer.music.get_busy(): mixer.music.unpause() if themeset == "Light": PlayButton.configure(image=Pauseimg) elif themeset == "Dark": PlayButton.configure(image=PauseimgD) playbuttonstate = 1 else: mixer.music.load(listofsongs[songnumber]) if len(listofsongs[songnumber]) > 60: PlayLabelText.set(listofsongs[songnumber][0:60]) else: PlayLabelText.set(str(listofsongs[songnumber]).rstrip('.mp3')) mixer.music.play() if themeset == "Light": PlayButton.configure(image=Pauseimg) elif themeset == "Dark": PlayButton.configure(image=PauseimgD) playbuttonstate = 1 preapir() elif state == 0: if playbuttonstate == 1: mixer.music.stop() PlayLabelText.set("") ETimeVar.set("0:00") if themeset == "Light": PlayButton.configure(image=Playimg) elif themeset == "Dark": PlayButton.configure(image=PlayimgD) playbuttonstate = 0 def nextsong(): global playbuttonstate, songnumber, state, maxsong, themeset if state == 1: if playbuttonstate == 1: if songnumber < maxsong: mixer.music.stop() if themeset == "Light": PlayButton.configure(image=Pauseimg) elif themeset == "Dark": PlayButton.configure(image=PauseimgD) playbuttonstate = 1 songnumber += 1 mixer.music.load(listofsongs[songnumber]) mixer.music.play() if len(listofsongs[songnumber]) > 60: PlayLabelText.set(listofsongs[songnumber][0:60]) else: PlayLabelText.set(str(listofsongs[songnumber]).rstrip('.mp3')) preapir() if playbuttonstate == 0: if songnumber < maxsong: mixer.music.stop() playbuttonstate = 1 if themeset == "Light": PlayButton.configure(image=Pauseimg) elif themeset == "Dark": PlayButton.configure(image=PauseimgD) songnumber += 1 mixer.music.load(listofsongs[songnumber]) mixer.music.play() if len(listofsongs[songnumber]) > 60: PlayLabelText.set(listofsongs[songnumber][0:60]) else: PlayLabelText.set(str(listofsongs[songnumber]).rstrip('.mp3')) preapir() def previoussong(): global playbuttonstate, songnumber, state, themeset if state == 1: if playbuttonstate == 1: if songnumber > 0: mixer.music.stop() if themeset == "Light": PlayButton.configure(image=Pauseimg) elif themeset == "Dark": PlayButton.configure(image=PauseimgD) songnumber -= 1 mixer.music.load(listofsongs[songnumber]) mixer.music.play() if len(listofsongs[songnumber]) > 50: PlayLabelText.set(listofsongs[songnumber][0:50]) else: PlayLabelText.set(str(listofsongs[songnumber]).rstrip('.mp3')) preapir() if playbuttonstate == 0: if songnumber > 0: mixer.music.stop() playbuttonstate = 1 if themeset == "Light": PlayButton.configure(image=Pauseimg) elif themeset == "Dark": PlayButton.configure(image=PauseimgD) songnumber -= 1 mixer.music.load(listofsongs[songnumber]) mixer.music.play() if len(listofsongs[songnumber]) > 50: PlayLabelText.set(listofsongs[songnumber][0:50]) else: PlayLabelText.set(str(listofsongs[songnumber]).rstrip('.mp3')) preapir() def musiclistboxpointer(e): global selected, curent, state, songnumber, playbuttonstate, listofsongs, themeset if state == 1: selected = MusicListBox.curselection() if selected != (): mixer.music.stop() for Song in selected: curent = MusicListBox.get(Song) for nr, Song in enumerate(listofsongs): if Song.rstrip('.mp3') == curent: mixer.music.load(listofsongs[nr]) songnumber = nr mixer.music.play() if playbuttonstate == 0: playbuttonstate = 1 if themeset == "Light": PlayButton.configure(image=Pauseimg) elif themeset == "Dark": PlayButton.configure(image=PauseimgD) if len(listofsongs[songnumber]) > 50: PlayLabelText.set(listofsongs[songnumber][0:50].rstrip('.mp3')) else: PlayLabelText.set(str(listofsongs[songnumber]).rstrip('.mp3')) preapir() def volume(value): value = float(value) value = value / 100 if value == 0.99: TVol.set("Volume: 100%") else: TVol.set("Volume: {}%".format(int(value * 100))) mixer.music.set_volume(value) def preapir(): global listofsongs, songnumber, playbuttonstate, totallength MusicListBox.selection_clear(0, END) MusicListBox.select_set(songnumber) file = MP3(listofsongs[songnumber]) bitratevar = int(file.info.bitrate / 1000) samplerate = file.info.sample_rate BitrateLabelText.set("Bitrate: " + str(bitratevar) + "kbps") SampleLabelText.set("Sample Rate: " + str(samplerate) + "kHz") try: fileinfo = file.tags['TCON'] if len(str(fileinfo)) > 13: GenreLabelText.set("Genre: " + str(fileinfo)[0:15]) else: GenreLabelText.set("Genre: " + str(fileinfo)) except: GenreLabelText.set("Genre: Unknown") try: fileyear = file.tags['TDRC'] YearLabelText.set("Year: " + str(fileyear)) except: YearLabelText.set("Year: Unknown") mins, secs = divmod(file.info.length, 60) mins = int(mins) secs = int(secs) TimeLabelText.set("Time: " + str(mins) + ":" + str(secs).zfill(2)) totallength = round(file.info.length, 1) MusicProgressBar["value"] = 0 MusicProgressBar["maximum"] = totallength if playbuttonstate == 0: PlayButton.configure(image=Pauseimg) if not threads > 0: music_progress = threading.Thread(target=progressbarfill,) music_progress.daemon = True music_progress.start() def progressbarfill(): global playbuttonstate, themeset, threads, totallength wait = False threads += 1 activtime = 0 while mixer.music.get_busy() == 1 and activtime <= totallength - 0.11: # time smoothing if playbuttonstate == 1 and wait: time.sleep(0.15) wait = False elif playbuttonstate == 1 and not wait: activtime = mixer.music.get_pos() / 1000 MusicProgressBar["value"] = activtime emin, esec = divmod(activtime, 60) ETimeVar.set(str(int(emin)) + ":" + str(int(esec)).zfill(2)) elif playbuttonstate == 0 and not wait: wait = True # end time.sleep(0.2) threads -= 1 if activtime >= totallength - 0.5: mixer.music.stop() if themeset == "Light": PlayButton.configure(image=Playimg) elif themeset == "Dark": PlayButton.configure(image=PlayimgD) playbuttonstate = 0 playmode() def playmode(): global mode, songnumber, maxsong, state if state == 1: time.sleep(0.5) if mode == 0: if songnumber < maxsong: nextsong() elif mode == 1: if songnumber < maxsong: nextsong() elif songnumber == maxsong: songnumber = 0 playsong() elif mode == 2: playsong() def switchmode(): global mode, themeset if mode == 0: mode = 1 if themeset == "Light": ModeButton.configure(image=RepeatAll) elif themeset == "Dark": ModeButton.configure(image=RepeatAllD) elif mode == 1: mode = 2 if themeset == "Light": ModeButton.configure(image=RepeatOne) elif themeset == "Dark": ModeButton.configure(image=RepeatOneD) else: mode = 0 if themeset == "Light": ModeButton.configure(image=RepeatNone) elif themeset == "Dark": ModeButton.configure(image=RepeatNoneD) def close(): global themeset, playbuttonstate, settings, directory, version if playbuttonstate == 1: check = tkinter.messagebox.askquestion('Sounder!', 'Are you sure you want to quit?') if check == 'yes': os.chdir(sounderdir) settings["theme"] = themeset settings["directory"] = directory settings["version"] = version with open('cfg.json', 'w') as file: json.dump(settings, file) mixer.music.stop() PlayerForm.destroy() else: pass else: os.chdir(sounderdir) settings["theme"] = themeset settings["directory"] = directory settings["version"] = version with open('cfg.json', 'w') as file: json.dump(settings, file) mixer.music.stop() PlayerForm.destroy() def info(): global themeset, infoframe, version infoframe = Toplevel(PlayerForm) infoframe.geometry("300x220") infoframe.resizable(width=False, height=False) infoframe.title("Sounder Info") infoframe.iconbitmap(sounderdir + "\\Soundericon.ico") infoframe.grab_set() verlabel = ttk.Label(infoframe, text="Version {}".format(version), font='Bahnschrift 11', style="W.TLabel") authorlabel = ttk.Label(infoframe, text="By: Mateusz Perczak", font='Bahnschrift 11', style="W.TLabel") musiclabel = ttk.Label(infoframe, image=InfoMusic, style="W.TLabel") copylabel = ttk.Label(infoframe, image=Copyright, style="W.TLabel") infolabel = ttk.Label(infoframe, textvariable=NowYear, font='Bahnschrift 11', style="W.TLabel") atlabel = ttk.Label(infoframe, textvariable=Avtime, font='Bahnschrift 11', style="W.TLabel") themebutton = ttk.Button(infoframe, image=Theme, cursor="hand2", takefocus=0, command=themechange) forknutton = ttk.Button(infoframe, image=Fork, cursor="hand2", takefocus=0, command=lambda: os.system("start \"\" " "https" "://github" ".com/losek1" "/Sounder")) if themeset == "Dark": infoframe.configure(background='#000') musiclabel.configure(image=InfoMusicD) copylabel.configure(image=CopyrightD) themebutton.configure(image=ThemeD) forknutton.configure(image=ForkD) elif themeset == "Light": infoframe.configure(background='#fff') musiclabel.place(x=90, y=15) verlabel.place(x=110, y=94) authorlabel.place(x=86, y=120) copylabel.place(x=2, y=190) infolabel.place(x=32, y=192) atlabel.place(x=42, y=140) forknutton.place(x=268, y=186) themebutton.place(x=230, y=186) def themechange(): global themeset, playbuttonstate, infoframe, mode if infoframe is not None: infoframe.destroy() if themeset == "Dark": themeset = "Light" PlayerForm.configure(background='#fff') MusicListBox.configure(selectbackground="#000", foreground='#000', background='#fff') s.configure("G.Horizontal.TProgressbar", foreground='#000', background='#000', lightcolor='#000', darkcolor='#fff', bordercolor='#fff', troughcolor='#fff') s.configure("W.TLabel", background='#fff', foreground='#000', border='0') s.configure("TButton", background='#fff', relief="flat") s.configure("TScale", troughcolor='#fff', background='#fff', relief="flat") VerButton.configure(image=Info) DirectoryChangeButton.configure(image=Fileimg) RefreshButton.configure(image=RefreshLabelimg) NextButton.configure(image=Forwardimg) PreviousButton.configure(image=Previousimg) PlayImg.configure(image=PlayPhotoimg) if playbuttonstate == 1: PlayButton.configure(image=Pauseimg) elif playbuttonstate == 0: PlayButton.configure(image=Playimg) if mode == 0: ModeButton.configure(image=RepeatNone) elif mode == 1: ModeButton.configure(image=RepeatAll) else: ModeButton.configure(image=RepeatOne) if infoframe is not None: info() elif themeset == "Light": themeset = "Dark" PlayerForm.configure(background='#000') MusicListBox.configure(selectbackground="#1e88e5", foreground='#fff', background='#000') s.configure("G.Horizontal.TProgressbar", foreground='#1e88e5', background='#1e88e5', lightcolor='#1e88e5', darkcolor='#1e88e5', bordercolor='#000', troughcolor='#000') s.configure("W.TLabel", foreground='#fff', background='#000', border='0') s.configure("TButton", background='#000', relief="flat") s.configure("TScale", troughcolor='#000', background='#1e88e5', relief="FLAT") VerButton.configure(image=InfoD) DirectoryChangeButton.configure(image=FileimgD) RefreshButton.configure(image=RefreshLabelimgD) NextButton.configure(image=ForwardimgD) PreviousButton.configure(image=PreviousimgD) PlayImg.configure(image=PlayPhotoimgD) if playbuttonstate == 1: PlayButton.configure(image=PauseimgD) elif playbuttonstate == 0: PlayButton.configure(image=PlayimgD) if mode == 0: ModeButton.configure(image=RepeatNoneD) elif mode == 1: ModeButton.configure(image=RepeatAllD) else: ModeButton.configure(image=RepeatOneD) if infoframe is not None: info() def soundertime(): asec = 0 amin = 0 while True: time.sleep(1) asec += 1 if asec == 60: amin += 1 asec = 0 Avtime.set("Sounder has been running for {}:{}".format(str(amin), str(asec).zfill(2))) MusicProgressBar = ttk.Progressbar(PlayerForm, orient=HORIZONTAL, length=200, mode="determinate", style="G.Horizontal" ".TProgressbar") PlayLabel = ttk.Label(PlayerForm, textvariable=PlayLabelText, font='Bahnschrift 11', style="W.TLabel") GenreLabel = ttk.Label(PlayerForm, textvariable=GenreLabelText, font='Bahnschrift 11', style="W.TLabel") PlayBitrate = ttk.Label(PlayerForm, textvariable=BitrateLabelText, font='Bahnschrift 11', style="W.TLabel") VerButton = ttk.Button(PlayerForm, image=Info, cursor="hand2", takefocus=0, command=info) DirectoryChangeButton = ttk.Button(PlayerForm, image=Fileimg, cursor="hand2", takefocus=0, command=changedirectory) RefreshButton = ttk.Button(PlayerForm, image=RefreshLabelimg, cursor="hand2", takefocus=0, command=refreshdirectory) DirectoryLabel = ttk.Label(PlayerForm, font='Bahnschrift 11', textvariable=DirectoryLabelText, style="W.TLabel") PlayButton = ttk.Button(PlayerForm, image=Playimg, cursor="hand2", takefocus=0, command=playsong) NextButton = ttk.Button(PlayerForm, image=Forwardimg, cursor="hand2", takefocus=0, command=nextsong) PreviousButton = ttk.Button(PlayerForm, image=Previousimg, cursor="hand2", takefocus=0, command=previoussong) MusicListBox = Listbox(PlayerForm, font='Bahnschrift 11', cursor="hand2", bd=0, activestyle="none", selectbackground="#000", takefocus=0) PlayImg = ttk.Label(PlayerForm, image=PlayPhotoimg, style="W.TLabel") VolumeSlider = ttk.Scale(PlayerForm, from_=0, to=99, orient=HORIZONTAL, command=volume, cursor="hand2") ModeButton = ttk.Button(PlayerForm, image=RepeatNone, cursor="hand2", takefocus=0, command=switchmode) InfoLabel = ttk.Label(PlayerForm, text="File Info", font='Bahnschrift 11', style="W.TLabel") YearLabel = ttk.Label(PlayerForm, textvariable=YearLabelText, font='Bahnschrift 11', style="W.TLabel") TimeLabel = ttk.Label(PlayerForm, textvariable=TimeLabelText, font='Bahnschrift 11', style="W.TLabel") SampleLabel = ttk.Label(PlayerForm, textvariable=SampleLabelText, font='Bahnschrift 11', style="W.TLabel") InfoSeparator = ttk.Separator(PlayerForm, orient=HORIZONTAL) SouInfo = ttk.Label(PlayerForm, text="Info", font='Bahnschrift 11', style="W.TLabel") SouSeperator = ttk.Separator(PlayerForm, orient=HORIZONTAL) TotalSongs = ttk.Label(PlayerForm, textvariable=TSongs, font='Bahnschrift 11', style="W.TLabel") VolumeInfo = ttk.Label(PlayerForm, textvariable=TVol, font='Bahnschrift 11', style="W.TLabel") ElapsedTime = ttk.Label(PlayerForm, textvariable=ETimeVar, font='Bahnschrift 10', style="W.TLabel") # init ui firststart() mixer.music.set_volume(0.50) VolumeSlider.set(50) Avtime.set("It has been running for 0:00") GenreLabelText.set("Genre: ") if themeset == "Dark": PlayLabelText.set("I'm blue da ba dee da ba daa") else: PlayLabelText.set("Never gonna give you up") BitrateLabelText.set("Bitrate: ") YearLabelText.set("Year: ") TimeLabelText.set("Time: ") SampleLabelText.set("Sample Rate: ") ETimeVar.set("0:00") DirectoryLabelText.set(directory) update(state) activetime = threading.Thread(target=soundertime, args=()) activetime.daemon = True activetime.start() # end MusicProgressBar.place(x=1, y=492, width=800, height=9) DirectoryChangeButton.place(x=32, y=0) RefreshButton.place(x=1, y=0) DirectoryLabel.place(x=66, y=2, width=651, height=28) MusicListBox.place(x=1, y=32, width=550, height=388) SampleLabel.place(x=597, y=145) PlayBitrate.place(x=597, y=115) GenreLabel.place(x=597, y=85) InfoLabel.place(x=652, y=50) YearLabel.place(x=597, y=175) TimeLabel.place(x=597, y=205) PlayImg.place(x=6, y=438) PreviousButton.place(x=530, y=442) PlayButton.place(x=574, y=442) NextButton.place(x=618, y=442) ModeButton.place(x=494, y=445) VolumeSlider.place(x=670, y=454) VerButton.place(x=763, y=0) InfoSeparator.place(x=592, y=80, width=170, height=2) SouInfo.place(x=666, y=250) SouSeperator.place(x=592, y=280, width=170, height=2) TotalSongs.place(x=592, y=285) VolumeInfo.place(x=592, y=315) PlayLabel.place(x=62, y=442) ElapsedTime.place(x=62, y=462) MusicListBox.bind("<<ListboxSelect>>", musiclistboxpointer) PlayerForm.protocol("WM_DELETE_WINDOW", close) PlayerForm.mainloop()
#simple sphinx extension to add json support def setup(app): from sphinx.highlighting import lexers import pygments.lexers lexers['json'] =pygments.lexers.get_lexer_by_name('javascript')
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from subprocess import check_output import io import bson # this is installed with the pymongo package import matplotlib.pyplot as plt from skimage.data import imread # or, whatever image library you prefer import multiprocessing as mp # will come in handy due to the size of the data import os from tqdm import * import struct from collections import defaultdict import cv2 from keras import backend as K import threading from keras.preprocessing.image import load_img, img_to_array import tensorflow as tf from keras.preprocessing.image import Iterator from keras.preprocessing.image import ImageDataGenerator from keras import backend as K from keras.models import Sequential from keras.layers import Dropout, Flatten, Dense from keras.layers.convolutional import Conv2D from keras.layers.pooling import MaxPooling2D, GlobalAveragePooling2D from keras.callbacks import EarlyStopping, ModelCheckpoint from skimage.color import rgb2yuv ############################################################################ __GLOBAL_PARAMS__ = { 'MODEL' : "Starter" , 'DEBUG' : True, 'NORMALIZATION' : False, 'YUV' : False , 'MULTI_SCALE' : False } ######## if __GLOBAL_PARAMS__['MULTI_SCALE']: raise Exception("MULTI_SCALE not supported yet!") __MODEL__KEY__ = "" for k in sorted(__GLOBAL_PARAMS__.keys()): if not k.startswith("_"): __MODEL__KEY__ += "__" + str(k) + "_" + str(__GLOBAL_PARAMS__[k]) if (__GLOBAL_PARAMS__['DEBUG']): LOG_FILE = "simple.log" else: LOG_FILE = "log" + __MODEL__KEY__ + ".log" SUB_FILE = "sub" + __MODEL__KEY__ + ".csv.gz" import logging logging.basicConfig(format='%(asctime)s %(message)s', filename=LOG_FILE,level=logging.DEBUG) #logging.debug('This message should go to the log file') if (__GLOBAL_PARAMS__['DEBUG']): logging.info('** DEBUG: '+__MODEL__KEY__+' ****************************************************************') else: logging.info('** PRODUCTION:'+__MODEL__KEY__+' ****************************************************************') #logging.warning('And this, too') ########### -------------> FUNC def preprocess_image(x): if __GLOBAL_PARAMS__['NORMALIZATION']: x = (x - 128.0) / 128.0 if __GLOBAL_PARAMS__['YUV']: x = np.array([rgb2yuv(x.reshape((1,180,180,3)))]) x = x.reshape((3,180,180)) return x class BSONIterator(Iterator): def __init__(self, bson_file, images_df, offsets_df, num_class, image_data_generator, lock, target_size=(180, 180), with_labels=True, batch_size=32, shuffle=False, seed=None): self.file = bson_file self.images_df = images_df self.offsets_df = offsets_df self.with_labels = with_labels self.samples = len(images_df) self.num_class = num_class self.image_data_generator = image_data_generator self.target_size = tuple(target_size) self.image_shape = self.target_size + (3,) print("Found %d images belonging to %d classes." % (self.samples, self.num_class)) super(BSONIterator, self).__init__(self.samples, batch_size, shuffle, seed) self.lock = lock def _get_batches_of_transformed_samples(self, index_array): batch_x = np.zeros((len(index_array),) + self.image_shape, dtype=K.floatx()) if self.with_labels: batch_y = np.zeros((len(batch_x), self.num_class), dtype=K.floatx()) for i, j in enumerate(index_array): # Protect file and dataframe access with a lock. with self.lock: image_row = self.images_df.iloc[j] product_id = image_row["product_id"] offset_row = self.offsets_df.loc[product_id] # Read this product's data from the BSON file. self.file.seek(offset_row["offset"]) item_data = self.file.read(offset_row["length"]) # Grab the image from the product. item = bson.BSON.decode(item_data) img_idx = image_row["img_idx"] bson_img = item["imgs"][img_idx]["picture"] # Load the image. img = load_img(io.BytesIO(bson_img), target_size=self.target_size) # Preprocess the image. x = img_to_array(img) x = preprocess_image(x) #x = self.image_data_generator.random_transform(x) #x = self.image_data_generator.standardize(x) # Add the image and the label to the batch (one-hot encoded). batch_x[i] = x if self.with_labels: batch_y[i, image_row["category_idx"]] = 1 if self.with_labels: return batch_x, batch_y else: return batch_x def next(self): with self.lock: index_array = next(self.index_generator) return self._get_batches_of_transformed_samples(index_array[0]) def make_category_tables(): cat2idx = {} idx2cat = {} for ir in categories_df.itertuples(): category_id = ir[0] category_idx = ir[4] cat2idx[category_id] = category_idx idx2cat[category_idx] = category_id return cat2idx, idx2cat def read_bson(bson_path, num_records, with_categories): rows = {} with open(bson_path, "rb") as f, tqdm(total=num_records) as pbar: offset = 0 while True: item_length_bytes = f.read(4) if len(item_length_bytes) == 0: break length = struct.unpack("<i", item_length_bytes)[0] f.seek(offset) item_data = f.read(length) assert len(item_data) == length item = bson.BSON.decode(item_data) product_id = item["_id"] num_imgs = len(item["imgs"]) row = [num_imgs, offset, length] if with_categories: row += [item["category_id"]] rows[product_id] = row offset += length f.seek(offset) pbar.update() columns = ["num_imgs", "offset", "length"] if with_categories: columns += ["category_id"] df = pd.DataFrame.from_dict(rows, orient="index") df.index.name = "product_id" df.columns = columns df.sort_index(inplace=True) return df def make_val_set(df, split_percentage=0.2, drop_percentage=0.): # Find the product_ids for each category. category_dict = defaultdict(list) for ir in tqdm(df.itertuples()): category_dict[ir[4]].append(ir[0]) train_list = [] val_list = [] with tqdm(total=len(df)) as pbar: for category_id, product_ids in category_dict.items(): category_idx = cat2idx[category_id] # Randomly remove products to make the dataset smaller. keep_size = int(len(product_ids) * (1. - drop_percentage)) if keep_size < len(product_ids): product_ids = np.random.choice(product_ids, keep_size, replace=False) # Randomly choose the products that become part of the validation set. val_size = int(len(product_ids) * split_percentage) if val_size > 0: val_ids = np.random.choice(product_ids, val_size, replace=False) else: val_ids = [] # Create a new row for each image. for product_id in product_ids: row = [product_id, category_idx] for img_idx in range(df.loc[product_id, "num_imgs"]): if product_id in val_ids: val_list.append(row + [img_idx]) else: train_list.append(row + [img_idx]) pbar.update() columns = ["product_id", "category_idx", "img_idx"] train_df = pd.DataFrame(train_list, columns=columns) val_df = pd.DataFrame(val_list, columns=columns) return train_df, val_df ########### -------------> MAIN categories_path = os.path.join("data", "category_names.csv") categories_df = pd.read_csv(categories_path, index_col="category_id") # Maps the category_id to an integer index. This is what we'll use to # one-hot encode the labels. print(">>> Mapping category_id to an integer index ... ") categories_df["category_idx"] = pd.Series(range(len(categories_df)), index=categories_df.index) print(categories_df.head()) cat2idx, idx2cat = make_category_tables() # Test if it works: print(cat2idx[1000012755], idx2cat[4] , len(cat2idx)) print(">>> Train set ... ") data_dir = "data" if (__GLOBAL_PARAMS__['DEBUG']): print(">>> DEBUG mode ... ") train_bson_path = os.path.join(data_dir, "train_example.bson") num_train_products = 82 else: print(">>> PRODUCTION mode ... ") train_bson_path = os.path.join(data_dir, "train.bson") num_train_products = 7069896 test_bson_path = os.path.join(data_dir, "test.bson") num_test_products = 1768182 print(train_bson_path,num_train_products) if (not __GLOBAL_PARAMS__['DEBUG']): if os.path.isfile("train_offsets.csv"): print(">> reading from file train_offsets ... ") train_offsets_df = pd.read_csv("train_offsets.csv") train_offsets_df.set_index( "product_id" , inplace= True) train_offsets_df.sort_index(inplace=True) else: train_offsets_df = read_bson(train_bson_path, num_records=num_train_products, with_categories=True) train_offsets_df.to_csv("train_offsets.csv") print(train_offsets_df.head()) if os.path.isfile("train_images.csv"): print(">> reading from file train_images / val_images ... ") train_images_df = pd.read_csv("train_images.csv") train_images_df = train_images_df[['product_id','category_idx','img_idx']] val_images_df = pd.read_csv("val_images.csv") val_images_df = val_images_df[['product_id', 'category_idx', 'img_idx']] else: train_images_df, val_images_df = make_val_set(train_offsets_df, split_percentage=0.2, drop_percentage=0) train_images_df.to_csv("train_images.csv") val_images_df.to_csv("val_images.csv") print(train_images_df.head()) print(val_images_df.head()) categories_df.to_csv("categories.csv") else: train_offsets_df = read_bson(train_bson_path, num_records=num_train_products, with_categories=True) train_images_df, val_images_df = make_val_set(train_offsets_df, split_percentage=0.2, drop_percentage=0) print(train_images_df.head()) print(val_images_df.head()) ## Generator print(">>> Generator ... ") # Tip: use ImageDataGenerator for data augmentation and preprocessing ?? train_bson_file = open(train_bson_path, "rb") lock = threading.Lock() num_classes = len(cat2idx) num_train_images = len(train_images_df) num_val_images = len(val_images_df) batch_size = 256 train_datagen = ImageDataGenerator() train_gen = BSONIterator(train_bson_file, train_images_df, train_offsets_df, num_classes, train_datagen, lock, batch_size=batch_size, shuffle=True) val_datagen = ImageDataGenerator() val_gen = BSONIterator(train_bson_file, val_images_df, train_offsets_df, num_classes, val_datagen, lock, batch_size=batch_size, shuffle=True) ## Model model = Sequential() model.add(Conv2D(32, 3, padding="same", activation="relu", input_shape=(180, 180, 3))) model.add(MaxPooling2D()) model.add(Conv2D(64, 3, padding="same", activation="relu")) model.add(MaxPooling2D()) model.add(Conv2D(128, 3, padding="same", activation="relu")) model.add(MaxPooling2D()) model.add(GlobalAveragePooling2D()) model.add(Dense(num_classes, activation="softmax")) model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) model.summary() early_stopping = EarlyStopping(monitor='val_loss', patience=0 ) bst_model_path = "mod" + __MODEL__KEY__ + '.h5' model_checkpoint = ModelCheckpoint(bst_model_path, save_best_only=True, save_weights_only=True) # To train the model: history = model.fit_generator(train_gen, epochs=200, steps_per_epoch = num_train_images // batch_size + 1, validation_data = val_gen, validation_steps = num_val_images // batch_size + 1, callbacks=[early_stopping, model_checkpoint]) print(history.history.keys()) # logging logging.info('N. epochs == '+str(len(history.history['val_acc']))) logging.info('Val accuracy == '+str(max(history.history['val_acc']))) ## Predict on Test-set print(">>> Predicting on test-set ... ") submission_df = pd.read_csv("data/sample_submission.csv") print(submission_df.head()) test_datagen = ImageDataGenerator() data = bson.decode_file_iter(open(test_bson_path, "rb")) with tqdm(total=num_test_products) as pbar: for c, d in enumerate(data): product_id = d["_id"] num_imgs = len(d["imgs"]) batch_x = np.zeros((num_imgs, 180, 180, 3), dtype=K.floatx()) for i in range(num_imgs): bson_img = d["imgs"][i]["picture"] # Load and preprocess the image. img = load_img(io.BytesIO(bson_img), target_size=(180, 180)) x = img_to_array(img) x = preprocess_image(x) # = test_datagen.random_transform(x) # = test_datagen.standardize(x) # Add the image to the batch. batch_x[i] = x prediction = model.predict(batch_x, batch_size=num_imgs) avg_pred = prediction.mean(axis=0) cat_idx = np.argmax(avg_pred) submission_df.iloc[c]["category_id"] = idx2cat[cat_idx] pbar.update() submission_df.to_csv(SUB_FILE, compression="gzip", index=False)
"""Hyperparameter search strategies.""" import itertools import json import random def generate_trials(strategy, flat_params, nb_trials=None): r"""Generates the parameter combinations to search. Two search strategies are implemented: 1. `grid_search`: creates a search space that consists of the product of all flat_params. If `nb_trials` is specified the first `nb_trials` combinations are searched. 2. `random_search`: Creates random combinations of the hyperparameters. Can be used for a more efficient search. See (Bergstra and Bengio, 2012) for more details. :param strategy: The hyperparameter search to strategy. Can be one of: {`grid_search`, `random`}. :param flat_params: The hyperparameter arguments to iterate over. :param nb_trials: The number of hyperparameter combinations to try. Generates the parameter combinations for each requested trial :param strategy: :param flat_params: :param nb_trials: The number of trials to un. :return: """ if strategy == 'grid_search': trials = generate_grid_search_trials(flat_params, nb_trials) return trials elif strategy == 'random_search': trials = generate_random_search_trials(flat_params, nb_trials) return trials else: raise ValueError( ('Unknown strategy "{}". Must be one of ' '{{grid_search, random_search}}').format(strategy)) def generate_grid_search_trials(flat_params, nb_trials): """ Standard grid search. Takes the product of `flat_params` to generate the search space. :param params: The hyperparameters options to search. :param nb_trials: Returns the first `nb_trials` from the combinations space. If this is None, all combinations are returned. :return: A dict containing the hyperparameters. """ trials = list(itertools.product(*flat_params)) if nb_trials: trials = trials[0:nb_trials] return trials def generate_random_search_trials(params, nb_trials): """ Generates random combination of hyperparameters to try. See (Bergstra and Bengio, 2012) for more details. :param params: The hyperparameters options to search. :param nb_trials: The number of trials to run. :return: A dict containing the hyperparameters. """ if nb_trials is None: raise TypeError( '`random_search` strategy requires nb_trails to be an int.') results = [] # ensures we have unique results seen_trials = set() # shuffle each param list potential_trials = 1 for param in params: random.shuffle(param) potential_trials *= len(param) # we can't sample more trials than are possible max_iters = min(potential_trials, nb_trials) # then for the nb of trials requested, create a new param tuple # by picking a random integer at each param level while len(results) < max_iters: trial = [] for param in params: sampled_param = random.sample(param, 1)[0] trial.append(sampled_param) # verify this is a unique trial so we # don't duplicate work trial_str = json.dumps(trial) if trial_str not in seen_trials: seen_trials.add(trial_str) results.append(trial) return results
from .src.core import show_dataset, list_datasets, get_dataset __version__ ="0.0.1" __author__ = "Siddesh Sambasivam Suseela"
import time import sqlite3 as db from datetime import datetime as dt con = db.connect("parentsdb.db") with con: #hostsPath="hosts" hostsPath="C:\Windows\System32\drivers\etc\hosts" redirect="127.0.0.1" cur = con.cursor() phone_number = int(input("Enter phone numer :")) web = ('SELECT websites FROM parents WHERE phone_no = ?') cur.execute(web,[(phone_number)]) websites = cur.fetchone() while True: if dt(dt.now().year,dt.now().month,dt.now().day,8) < dt.now() < dt(dt.now().year,dt.now().month,dt.now().day,22): print ("Working hours...") with open(hostsPath,'r+') as file: content=file.read() for site in websites: if site in content: pass else: file.write(redirect+" "+site+"\n") else: with open(hostsPath,'r+') as file: content=file.readlines() file.seek(0) for line in content: if not any(site in line for site in websites): file.write(line) file.truncate() print ("Fun hours...") time.sleep(5)
from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from app.config import settings from app.routes import sentence, text_complexity, tokens app = FastAPI( title=settings.PROJECT_NAME, docs_url=f"{settings.API_STR}/docs", openapi_url=f"{settings.API_STR}/openapi.json", ) app.add_middleware( CORSMiddleware, allow_origins=[str(origin) for origin in settings.BACKEND_CORS_ORIGINS], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.include_router(tokens.router, prefix=settings.API_STR) app.include_router(sentence.router, prefix=settings.API_STR) app.include_router(text_complexity.router, prefix=settings.API_STR)
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # __author__ = "ajsanchezsanz" __copyright__ = "2015" __credits__ = ["ajsanchezsanz","ffranz"] __license__ = "Apache" __version__ = "0.0.1" __maintainer__ = "ajsanchezsanz,ffranz" __email__ = "alberto@sinfonier-project.net" __status__ = "Developing" import requests class StormUIAPI: def __init__(self, stormhost="localhost", stormport=8080): self.HOST = "http://"+stormhost+":"+str(stormport) # GET Operations ###################################### # /api/v1/cluster/configuration (GET) # Returns the cluster configuration. ###################################### def getClusterConfiguration(self): url = self.HOST+"/api/v1/cluster/configuration" return requests.get(url).json() ###################################### # /api/v1/cluster/summary (GET) # Returns cluster summary information such as nimbus uptime or number of supervisors. ###################################### def getClusterSummary(self): url = self.HOST+"/api/v1/cluster/summary" return requests.get(url).json() ###################################### # /api/v1/supervisor/summary (GET) # Returns summary information for all supervisors. ###################################### def getSupervisorSummary(self): url = self.HOST+"/api/v1/supervisor/summary" return requests.get(url).json() ###################################### # /api/v1/topology/summary (GET) # Returns summary information for all topologies. ###################################### def getTopologySummary(self): url = self.HOST+"/api/v1/topology/summary" return requests.get(url).json() ###################################### # /api/v1/topology/:id (GET) # Returns topology information and statistics. Substitute id with topology id. ###################################### def getTopology(self,topologyid): url = self.HOST+"/api/v1/topology/"+topologyid return requests.get(url).json() ###################################### # /api/v1/topology/:id/component/:component (GET) # Returns detailed metrics and executor information ###################################### def getTopologyComponent(self,topologyid, componentid): url = self.HOST+"/api/v1/topology/"+topologyid+"/component/"+componentid return requests.get(url).json() # POST Operations ###################################### # /api/v1/uploadTopology (POST) # uploads a topology. ###################################### def uploadTopology(self,topologyConfig, topologyJar): return "Not implemented yet in this version" #url = self.HOST+"/api/v1/uploadTopology" #return requests.get(url).json() ###################################### # /api/v1/topology/:id/activate (POST) # Activates a topology. ###################################### def activateTopology(self,topologyid): url = self.HOST+"/api/v1/topology/"+topologyid+"/activate" return requests.post(url).json() ###################################### # /api/v1/topology/:id/deactivate (POST) # Deactivates a topology. ###################################### def deactivateTopology(self,topologyid): url = self.HOST+"/api/v1/topology/"+topologyid+"/deactivate" return requests.post(url).json() ###################################### # /api/v1/topology/:id/rebalance/:wait-time (POST) # Rebalances a topology. # rebalanceOptions = {"rebalanceOptions": {"numWorkers": 2, "executors": { "spout" : "5", "split": 7, "count": 5 }}, "callback":"foo"} ###################################### def rebalanceTopology(self,topologyid, wait_time, rebalanceOptions={}): url = self.HOST+"/api/v1/topology/"+topologyid+"/rebalance/"+wait_time headers = {"Content-Type" : "application/json"} return requests.post(url, data=json.dumps(rebalanceOptions), headers=headers).json() ###################################### # /api/v1/topology/:id/kill/:wait-time (POST) # Kills a topology. ###################################### def killTopology(self,topologyid, wait_time): url = self.HOST+"/api/v1/topology/"+topologyid+"/kill/"+wait_time return requests.post(url).json() ###################################### ###################################### # Get topology summary by name (GET) # This function makes 1 StormUI API query ###################################### def getTopologySummaryByName(self,topologyname): response = self.getTopologySummary() topologies = response["topologies"] for topo in topologies: if topo["name"] == topologyname: return topo return {} ###################################### # Get topology detail by name (GET) # This function makes 2 StormUI API queries ###################################### def getTopologyByName(self,topologyname): response = self.getTopologySummary() topologies = response["topologies"] for topo in topologies: if topo["name"] == topologyname: response = self.getTopology(topo["id"]) return response return {} ###################################### # Get worker by ID (GET) # This function makes 2 StormUI API queries ###################################### ## Return workers list from all spouts and all executors of the topology. Without duplicates. def getWorkersByTopologyID(self,topologyid): topo = self.getTopology(topologyid) spoutids = [spout["spoutId"] for spout in topo["spouts"]] workersLinks = list() for spoutid in spoutids: component = self.getTopologyComponent(topologyid, spoutid) for executor in component["executorStats"]: workersLinks.append(executor["workerLogLink"]) return list(set(workersLinks)) ###################################### # Get worker by Name (GET) # This function makes 3 StormUI API queries ###################################### ## Return workers list from all spouts and all executors of the topology. Without duplicates. def getWorkersByTopologyName(self,topologyname): topo = self.getTopologyByName(topologyname) spoutids = [spout["spoutId"] for spout in topo["spouts"]] workersLinks = list() for spoutid in spoutids: component = self.getTopologyComponent(topo["id"], spoutid) for executor in component["executorStats"]: workersLinks.append(executor["workerLogLink"]) return list(set(workersLinks)) ###################################### # Get error in topology by topology Name (GET) # This function makes 2 StormUI API queries ###################################### def getErrorInTopologyByName(self,topologyname): topo = self.getTopologyByName(topologyname) if topo: # Return True if there is an error in any module of the topology and False if not return any(module["lastError"] for module in (topo["spouts"]+topo["bolts"])) ###################################### # Get error details in topology by topology Name (GET) # This function makes 2 StormUI API queries ###################################### def getErrorDetailsInTopologyByName(self,topologyname): topo = self.getTopologyByName(topologyname) return [{module["spoutId"] : module["lastError"]} for module in topo["spouts"]]+[{module["boltId"] : module["lastError"]} for module in topo["bolts"]] if topo else None
from src.data.preprocessing.AbstractPreprocessing import AbstractPreprocessing from skimage.transform import resize class Resize5050(AbstractPreprocessing): def preprocess(self, x): return resize(x, [50, 50])
from .base import * # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False TEMPLATE_DEBUG = False # CHANGE THE ALLOWED_HOSTS LIST TO FIT YOUR NEEDS ALLOWED_HOSTS = ['.borsachart.herokuapp.com', 'localhost', '127.0.0.1', '[::1]'] ADMINS = [(os.environ.get('ADMIN_USER'), os.environ.get('ADMIN_EMAIL'))] # Email EMAIL_HOST = 'smtp.yandex.ru' EMAIL_USE_TLS = True EMAIL_PORT = 587 EMAIL_HOST_USER = os.environ.get('EMAIL_USER') EMAIL_HOST_PASSWORD = os.environ.get('EMAIL_PASS') DEFAULT_FROM_EMAIL = os.environ.get('EMAIL_USER') SERVER_EMAIL = os.environ.get('EMAIL_USER') # Database # Heroku: Update database configuration from $DATABASE_URL. import dj_database_url DATABASES = { 'default': dj_database_url.config( default=os.environ.get('DATABASE_URL') ) } import os import urlparse redis_url = urlparse.urlparse(os.environ.get('REDIS_URL')) CACHES = { "default": { "BACKEND": "redis_cache.RedisCache", "LOCATION": "{0}:{1}".format(redis_url.hostname, redis_url.port), "OPTIONS": { "PASSWORD": redis_url.password, "DB": 0, } } } REDIS_HOST = redis_url.hostname REDIS_PORT = redis_url.port CHANNEL_LAYERS = { "default": { "BACKEND": "asgi_redis.RedisChannelLayer", "CONFIG": { "hosts": [(REDIS_HOST, REDIS_PORT)], }, "ROUTING": "charts.routing.channel_routing", }, } BROKER_URL = 'redis://{}:{}'.format(REDIS_HOST, REDIS_PORT) CELERY_RESULT_BACKEND = 'redis://{}:{}'.format(REDIS_HOST, REDIS_PORT) CELERY_ACCEPT_CONTENT = ['application/json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ.get('SECRET_KEY') SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Simplified static file serving. # https://warehouse.python.org/project/whitenoise/ STATICFILES_STORAGE = 'whitenoise.django.GzipManifestStaticFilesStorage' # Disable browsable API # REST_FRAMEWORK = { # 'DEFAULT_RENDERER_CLASSES': ( # 'rest_framework.renderers.JSONRenderer', # ) # } # LOGGING LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'verbose': { 'format': "[%(asctime)s] [%(levelname)s] [%(name)s] [%(lineno)s] %(message)s", 'datefmt': "%d/%m/%Y %H:%M:%S" }, 'simple': { 'format': '%(levelname)s %(message)s' }, }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler' }, 'console': { 'class': 'logging.StreamHandler', 'formatter': 'simple', }, 'assets_rotating_file': { 'class': 'logging.handlers.RotatingFileHandler', 'formatter': 'verbose', 'filename': os.path.join(logsdir, 'assets.log'), 'maxBytes': 1024 * 1024 * 10, 'backupCount': 10, }, 'template_loader_rotating_file': { 'class': 'logging.handlers.RotatingFileHandler', 'formatter': 'verbose', 'filename': os.path.join(logsdir, 'template_loader.log'), 'maxBytes': 1024 * 1024 * 10, 'backupCount': 10, }, }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, 'assets': { 'handlers': ['assets_rotating_file'], 'level': 'INFO', }, 'template_loader': { 'handlers': ['template_loader_rotating_file'], 'level': 'INFO', }, } }
import os import yaml import numpy as np from mspasspy.ccore.utility import MetadataDefinitions from mspasspy.ccore.utility import MDtype from mspasspy.ccore.utility import MsPASSError def index_data(filebase, db, ext='d3C', verbose=False): """ Import function for data from antelope export_to_mspass. This function is an import function for Seismogram objects created by the antelope program export_to_mspass. That program writes header data as a yaml file and the sample data as a raw binary fwrite of the data matrix (stored in fortran order but written as a contiguous block of 3*npts (number of samples) double values. This function parses the yaml file and adds three critical metadata entries: dfile, dir, and foff. To get foff values the function reads the binary data file and gets foff values by calls to tell. It then writes these entries into MongoDB in the wf collection of a database. Readers that want to read this raw data will need to use dir, dfile, and foff to find the right file and read point. :param filebase: is the base name of the dataset to be read and indexed. The function will look for filebase.yaml for the header data and filebase.ext (Arg 3 defaulting to d3C). :param db: is the MongoDB database handler :param ext: is the file extension for the sample data (default is 'd3C'). """ # This loads default mspass schema mdef=MetadataDefinitions() yamlfile=filebase+'.yaml' fh=open(yamlfile) d=yaml.load(fh,Loader=yaml.FullLoader) if(verbose): print('Read data for ',len(d),' objects') fh.close() # Set up to add to wf collection # This is not general, but works of this test with mongo running under docker collection=db.wf dfile=filebase+'.'+ext fh=open(dfile) # This is needed by the numpy reader dtyp=np.dtype('f8') dir=os.path.dirname(os.path.realpath(dfile)) dfile = os.path.basename(os.path.realpath(dfile)) if(verbose): print('Setting dir =',dir,' and dfile=',dfile,' for all input') print('Make sure this file exists before trying to read these data') print('This program only builds the wf collection in the database') print('Readers of the raw data will access the sample data from the dir+dfile path') for i in range(len(d)): pyd={} # this is essentially a required python declaration # Since the source is assumed an antelope css3.0 database we # assume these will be defined. Relating them back to the original # source would be impossible without these in css3.0 so shouldn't be # an issue if(verbose): print('Working on sta=',d[i]['sta'],' and evid=',d[i]['evid']) keys=d[i].keys() for k in keys: try: typ=mdef.type(k) if(typ==MDtype.Double or typ==MDtype.Real64 or typ==MDtype.Real32): pyd[k]=float(d[i][k]) elif(typ==MDtype.Int64 or typ==MDtype.Int32): pyd[k]=int(d[i][k]) elif(typ==MDtype.String): pyd[k]=str(d[i][k]) elif(type==MDtype.Boolean): pyd[k]=bool(d[i][k]) else: # These are not optional - always print these if # this happens to warn user print("Warning(index_data): undefined type for key=",k) print("attribute will not be copied to database") except MsPASSError: # as above always print this as a warning print("Warning(index_data): key =",k," is undefined - skipped") pyd['dir']=dir pyd['dfile']=dfile ns=pyd['npts'] ns3c=3*ns foff=fh.tell() pyd['foff']=foff wfid=collection.insert_one(pyd).inserted_id junk=np.fromfile(fh,dtype=dtyp,count=ns3c) if(verbose): print("Finished with file=",dfile) print("Size of wf collection is now ",collection.count_documents({})," documents")
from server.api import api, custom_types from flask_restful import Resource, reqparse, abort, marshal, marshal_with from server import auth, db from server.models.orm import TeacherModel, ClassroomModel from server.parsing import parser from server.parsing.utils import create_students_df import pandas as pd from server.config import RestErrors, ValidatorsConfig from server.models.marshals import classrooms_list_fields, classroom_resource_fields class ClassroomsResource(Resource): method_decorators = [auth.login_required] def __init__(self): super().__init__() self._post_args = reqparse.RequestParser(bundle_errors=True) self._post_args.add_argument('name', type=str, required=True) self._post_args.add_argument('students_file', type=custom_types.students_file, location='files', required=True) self._put_args = reqparse.RequestParser(bundle_errors=True) self._put_args.add_argument('new_name', type=str, location="json", required=True) def get(self, class_id=None): if class_id is None: return marshal(auth.current_user().classrooms, classrooms_list_fields) current_class = ClassroomModel.query.filter_by(id=class_id, teacher=auth.current_user()).first() # Making sure the class belongs to the current user if current_class is None: abort(400, message=RestErrors.INVALID_CLASS) return marshal(current_class, classroom_resource_fields) @marshal_with(classroom_resource_fields) def post(self, class_id=None): if class_id: abort(404, message=RestErrors.INVALID_ROUTE) if len(auth.current_user().classrooms) >= ValidatorsConfig.MAX_CLASSROOMS: abort(400, message=RestErrors.MAX_CLASSROOMS) args = self._post_args.parse_args() new_class = ClassroomModel(name=args['name'], teacher=auth.current_user()) db.session.add(new_class) db.session.commit() args['students_file']['class_id'] = pd.Series([new_class.id] * args['students_file'].shape[0]) args['students_file'].to_sql('student', con=db.engine, if_exists="append", index=False) return new_class def put(self, class_id=None): if class_id is None: abort(404, message=RestErrors.INVALID_ROUTE) args = self._put_args.parse_args() current_class = ClassroomModel.query.filter_by(id=class_id, teacher=auth.current_user()).first() # Making sure the class belongs to the current user if current_class is None: abort(400, message=RestErrors.INVALID_CLASS) current_class.name = args['new_name'] db.session.commit() return "", 204 def delete(self, class_id=None): if class_id is None: # Deleting all classes teacher_classes_id = db.session.query(ClassroomModel.id).filter_by(teacher=auth.current_user()).all() for class_data in teacher_classes_id: current_class = ClassroomModel.query.filter_by(id=class_data.id, teacher=auth.current_user()).first() db.session.delete(current_class) db.session.commit() return "", 204 current_class = ClassroomModel.query.filter_by(id=class_id, teacher=auth.current_user()).first() # Making sure the class belongs to the current user if current_class is None: abort(400, message=RestErrors.INVALID_CLASS) db.session.delete(current_class) db.session.commit() return "", 204 api.add_resource(ClassroomsResource, "/classrooms", "/classrooms/<int:class_id>")
import sys sys.path.append('../..') from pyramid.config import Configurator from pyramid.session import UnencryptedCookieSessionFactoryConfig from sqlalchemy import engine_from_config from social.apps.pyramid_app.models import init_social from .models import DBSession, Base def main(global_config, **settings): """This function returns a Pyramid WSGI application.""" engine = engine_from_config(settings, 'sqlalchemy.') DBSession.configure(bind=engine) Base.metadata.bind = engine session_factory = UnencryptedCookieSessionFactoryConfig('thisisasecret') config = Configurator(settings=settings, session_factory=session_factory, autocommit=True) config.add_static_view('static', 'static', cache_max_age=3600) config.add_request_method('example.auth.get_user', 'user', reify=True) config.add_route('home', '/') config.add_route('done', '/done') config.include('example.settings') config.include('example.local_settings') config.include('social.apps.pyramid_app') init_social(config, Base, DBSession) config.scan() config.scan('social.apps.pyramid_app') return config.make_wsgi_app()
# Generated by Django 2.2 on 2019-05-28 22:47 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import taggit.managers class Migration(migrations.Migration): initial = True dependencies = [ ('sites', '0002_alter_domain_unique'), ('taggit', '0002_auto_20150616_2121'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Badge', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('desc', models.CharField(default='', max_length=200)), ('type', models.IntegerField(choices=[(0, 'Bronze'), (1, 'Silver'), (2, 'Gold')], default=0)), ('icon', models.CharField(default='', max_length=250)), ('uid', models.CharField(max_length=32, unique=True)), ], ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status', models.IntegerField(choices=[(0, 'Pending'), (1, 'Open'), (2, 'Closed'), (3, 'Deleted')], db_index=True, default=1)), ('type', models.IntegerField(choices=[(0, 'Question'), (1, 'Answer'), (6, 'Comment'), (2, 'Job'), (3, 'Forum'), (8, 'Tutorial'), (7, 'Data'), (4, 'Page'), (10, 'Tool'), (11, 'News'), (5, 'Blog'), (9, 'Bulletin Board')], db_index=True)), ('title', models.CharField(db_index=True, max_length=200)), ('rank', models.FloatField(blank=True, db_index=True, default=0)), ('answer_count', models.IntegerField(blank=True, db_index=True, default=0)), ('accept_count', models.IntegerField(blank=True, default=0)), ('reply_count', models.IntegerField(blank=True, db_index=True, default=0)), ('comment_count', models.IntegerField(blank=True, default=0)), ('vote_count', models.IntegerField(blank=True, db_index=True, default=0)), ('thread_votecount', models.IntegerField(db_index=True, default=0)), ('view_count', models.IntegerField(blank=True, db_index=True, default=0)), ('book_count', models.IntegerField(default=0)), ('subs_count', models.IntegerField(default=0)), ('creation_date', models.DateTimeField(db_index=True)), ('lastedit_date', models.DateTimeField(db_index=True)), ('sticky', models.BooleanField(default=False)), ('content', models.TextField(default='')), ('html', models.TextField(default='')), ('tag_val', models.CharField(blank=True, default='', max_length=100)), ('uid', models.CharField(db_index=True, max_length=32, unique=True)), ('spam', models.IntegerField(choices=[(0, 'Spam'), (1, 'Not spam'), (2, 'Default')], default=2)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('last_contributor', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='contributor', to=settings.AUTH_USER_MODEL)), ('lastedit_user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='editor', to=settings.AUTH_USER_MODEL)), ('parent', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='children', to='forum.Post')), ('root', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='descendants', to='forum.Post')), ('site', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='sites.Site')), ('tags', taggit.managers.TaggableManager(help_text='A comma-separated list of tags.', through='taggit.TaggedItem', to='taggit.Tag', verbose_name='Tags')), ('thread_users', models.ManyToManyField(related_name='thread_users', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Vote', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.IntegerField(choices=[(0, 'Upvote'), (4, 'Empty'), (1, 'DownVote'), (2, 'Bookmark'), (3, 'Accept')], db_index=True, default=4)), ('date', models.DateTimeField(auto_now_add=True, db_index=True)), ('uid', models.CharField(max_length=32, unique=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='votes', to='forum.Post')), ], ), migrations.CreateModel( name='PostView', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ip', models.GenericIPAddressField(blank=True, default='', null=True)), ('date', models.DateTimeField(auto_now_add=True)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='post_views', to='forum.Post')), ], ), migrations.CreateModel( name='Award', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date', models.DateTimeField()), ('uid', models.CharField(max_length=32, unique=True)), ('badge', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='forum.Badge')), ('post', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='forum.Post')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Subscription', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('uid', models.CharField(max_length=32, unique=True)), ('type', models.IntegerField(choices=[(2, 'no messages'), (3, 'default'), (0, 'local messages'), (1, 'email'), (4, 'email for every new thread (mailing list mode)')], default=0)), ('date', models.DateTimeField()), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='subs', to='forum.Post')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'unique_together': {('user', 'post')}, }, ), ]
""" Plot matrix of pairwise distance histograms for two sets of conformations. """ from conformation.compare_pairwise_distance_histograms import compare_pairwise_distance_histograms, Args if __name__ == '__main__': compare_pairwise_distance_histograms(Args().parse_args())
import numpy as np import sys sys.setrecursionlimit(10000) class Knapsack: def __init__(self, txt_name): self.size = 0 self.num_items = 0 self.items = [(0, 0)] # (value, weight) self.array = np.array([]) self.read_txt(txt_name) self.cache = {} self.value = self.compute_value(self.size, self.num_items) def read_txt(self, txt_name): with open(txt_name) as f: first_line = f.readline().rstrip("\n").split(" ") print("Knapsack size: " + first_line[0]) self.size = int(first_line[0]) print("Number of items: " + first_line[1]) self.num_items = int(first_line[1]) self.array = np.zeros(shape=(self.num_items+0, self.size), dtype=int) # add one row of 0 for line in f: str_list = line.rstrip("\n").split(' ') item = tuple(map(int, str_list)) self.items.append(item) def compute_value(self, weight, index): if index == 0 or weight == 0: return 0 (this_value, this_weight) = self.items[index] # thie item weight is bigger than the weight size, no solution, decrease the index if this_weight > weight: if (weight, index - 1) not in self.cache: self.cache[(weight, index - 1)] = self.compute_value(weight, index - 1) return self.cache[(weight, index - 1)] else: # solution including this item if (weight - this_weight, index - 1) not in self.cache: self.cache[(weight - this_weight, index - 1)] = self.compute_value(weight - this_weight, index - 1) solution_including_this_item = this_value + self.cache[(weight - this_weight, index - 1)] if (weight, index - 1) not in self.cache: self.cache[(weight, index - 1)] = self.compute_value(weight, index - 1) solution_without_this_item = self.cache[(weight, index - 1)] return max(solution_including_this_item, solution_without_this_item) if __name__ == "__main__": # k = Knapsack("knapsack1.txt") k = Knapsack("knapsack_big.txt") print(k.value)
from flask import render_template, request, session, redirect from . import app, db, default_error, send_email from .models import School, Department, Course, CourseRequest @app.route('/') def index(): """ Renders the home page where the user selects their school. """ return render_template('index.html', schools=School.query.all()) def GetSchool(school): """ Converts a school name into the database object if it exists. """ return School.query.filter_by(name=school).first() def GetCourses(school, department): """ Gets a department's courses from its name and the schools name. """ school = GetSchool(school) if school is None: return None department = Department.query.filter(Department.school_id == school.id, Department.name == department).first() if department is None: return None return department.courses.all() @app.route('/<school_name>/') def department_page(school_name): """ Renders the page where the user selects their department. """ school = School.query.filter(School.name == school_name).first() if school is None: return default_error, 400 return render_template('departments.html', departments=school.departments.all()) @app.route('/<school>/<department>') def course_page(school, department): """ Renders the page where the user selects their course. """ courses = GetCourses(school, department) if courses is None: return default_error, 400 return render_template('courses.html', courses=courses) @app.route('/email', methods=['POST']) def email_page(): """ Renders the email page. """ if 'course' in request.form: return render_template('email.html', course_id=request.form['course']) return default_error, 400 @app.route('/confirmation', methods=['POST']) def confirmation_page(): """ Renders the confirmation page if the users request is successful or an already exists page. """ if 'course' in request.form and 'email' in request.form: email = request.form['email'] course_id = request.form['course'] course = Course.query.filter(Course.id == course_id).first() if course is None: return default_error, 400 previous_request = CourseRequest.query.filter(CourseRequest.email == email, CourseRequest.course_id == course_id).first() if previous_request is not None: return render_template('alreadyexists.html', course=course, email=email) db.session.add(CourseRequest(email=email, course_id=course_id)) db.session.commit() send_email([email], 'Course Watcher Conformation', 'This email confirms that we will send you an email when %s opens.' % (course.name)) return render_template('confirmation.html', course=course, email=email) return default_error, 400
from pynput import keyboard import pyglet from motor_test import motor M1 = motor(18, 20) M2 = motor(12, 21) M3 = motor(13, 5) M4 = motor(19, 6) motors = [M1, M2, M3, M4] window = pyglet.window.Window(width=10, height=10) @window.event def on_key_press(key, mod): key = chr(key) print("Pressed", key) if (key == "w"): for mot in motors: mot.setDirection(1, 0) mot.setSpeed(50) elif (key == "s"): for mot in motors: mot.setDirection(0, 1) mot.setSpeed(50) elif (key == "d"): for mot in motors: mot.setSpeed(50) motors[0].setDirection(1,0) motors[1].setDirection(1,0) motors[2].setDirection(0,1) motors[3].setDirection(0,1) elif (key == "a"): for mot in motors: mot.setSpeed(50) motors[0].setDirection(0,1) motors[1].setDirection(0,1) motors[2].setDirection(1,0) motors[3].setDirection(1,0) elif (key == "q"): for mot in motors: mot.setSpeed(0) def rel(key): print("Something released") #listener = keyboard.Listener(onpress=on_press, onrelease=rel) #with keyboard.Listener(onpress=on_press, onrelease=rel) as l: # l.join() pyglet.app.run() listener.start() import time while (True): print("Hello") time.sleep(1)
""" Data wrapper class Manages loading data and prepping batches. Dynamically stores and loads chunks of data to disk to support datasets larger than the available RAM. Uses numpy for saving and loading data, as it is much faster than pickle and allows compression. It can be instantiated with 4 different shuffle_* flags, each responsible for random behavior. If a deterministic order of data is required in an already existing object, it is enough to temporarily set shuffle_batch_on_return and shuffle_in_chunk_on_chunk_reload flags to False before iterating. Parameters: data_path - str or list - path to file(s) containing data train_ids - int or list - ids specifying datasets used for training, may be one or multiple files valid_id - int - id specifying dataset used for validation, has to be one file only test_id - int or None - id specifying dataset used for testing, may be one file or none eval_ids - int or list or None - ids specifying datasets that are used for neither of the above purposes, but just evaluation create_chunks - bool - if False, does not load the data from the files specified, but from temporary chunks. If chunks do not exist the program fails. Use it to speed up loading huge datasets. chunk_size - int - number of tweets in one chunk batch_size - int - number of tweets in one training batch shuffle_chunks_on_load - bool - if True, shuffles the chunks while loading data from files shuffle_in_chunks_on_load - bool - if True, shuffles tweets inside chunks while loading data from files shuffle_batch_on_return - bool - if True, shuffles tweets inside batch while iterating on dataset shuffle_in_chunk_on_chunk_reload - bool - if True, shuffles tweets inside the chunk whenever chunk is loaded rng_seed - int or None - random number generator seed temp_dir - str - path to the directory to store the chunks in """ from __future__ import print_function import cPickle as pickle import numpy as np import os __all__ = [ "DataWrapper" ] class DataWrapper: def __init__(self, data_path, train_ids, valid_id, test_id=None, eval_ids=None, create_chunks=True, chunk_size=10000, batch_size=200, shuffle_chunks_on_load=True, shuffle_in_chunks_on_load=True, shuffle_batch_on_return=True, shuffle_in_chunk_on_chunk_reload=True, rng_seed=None, temp_dir='temp_chunks', print_progress=True): self.data_path = data_path if isinstance(self.data_path, basestring): self.data_path = [self.data_path] self.dataset_names = [] for path in self.data_path: self.dataset_names.append(os.path.basename(path)) self.temp_dir = temp_dir self.chunk_size = chunk_size // batch_size * batch_size # make chunk_size a multiple of batch_size self.batch_size = batch_size self.shuffle_chunks_on_load = shuffle_chunks_on_load self.shuffle_in_chunks_on_load = shuffle_in_chunks_on_load self.shuffle_batch_on_return = shuffle_batch_on_return self.shuffle_in_chunk_on_chunk_reload = shuffle_in_chunk_on_chunk_reload if rng_seed is not None: np.random.seed(rng_seed) self.rng_seed = rng_seed self.create_chunks = create_chunks self.n_datasets = len(self.data_path) self.print_progress = print_progress if train_ids is None: raise ValueError('Specify at least one train id.') if isinstance(train_ids, (int, long)): train_ids = [train_ids] self.train_ids = train_ids if valid_id is None: raise ValueError('Specify at least one validation id.') self.valid_id = valid_id self.test_id = test_id if isinstance(eval_ids, (int, long)): eval_ids = [eval_ids] if eval_ids is None: eval_ids = [] self.eval_ids = eval_ids self.max_len = 0 self.labels = [] self.n_labels = 0 self.charset_map = {} self.charset_size = 0 self.n_tweets = [] self.n_chunks = [] self.n_batches = [] self.x = None self.x_mask = None self.y = None self.current_batch = 0 self.current_chunk = 0 self.current_data = 0 self.__load_data_params() self.__load_data() def __iter__(self): return self def next(self): if self.current_batch < self.n_batches[self.current_data]: batch = self.__get_batch(self.current_batch) self.current_batch += 1 return batch else: self.current_batch = 0 raise StopIteration() def set_current_data(self, no): if 0 <= no < len(self.data_path): self.current_data = no self.current_batch = 0 self.current_chunk = 0 self.__load_chunk(0) def __get_batch(self, batch_id): if self.n_chunks[self.current_data] == 1: current_batch_in_chunk = batch_id else: # Load another chunk if necessary if not self.__is_batch_in_chunk(batch_id, self.current_chunk): self.__load_chunk(self.__get_chunk_id_of_batch(batch_id)) current_batch_in_chunk = batch_id % (self.chunk_size / self.batch_size) current_slice = range(current_batch_in_chunk * self.batch_size, (current_batch_in_chunk + 1) * self.batch_size) if self.shuffle_batch_on_return: np.random.shuffle(current_slice) return self.x[current_slice], self.x_mask[current_slice], self.y[current_slice] def __is_batch_in_chunk(self, batch_id, chunk_id): return self.chunk_size * chunk_id <= batch_id * self.batch_size < self.chunk_size * (chunk_id + 1) def __get_chunk_id_of_batch(self, batch_id): return batch_id * self.batch_size // self.chunk_size def __load_data_params(self): if self.create_chunks: for i_path, path in enumerate(self.data_path): with open(path, 'rb') as pfile: tweets = pickle.load(pfile) self.n_tweets.append(len(tweets)) for iTweet, tweet_entry in enumerate(tweets): tweet_text = tweet_entry[1] tweet_sentiment = tweet_entry[2] if len(tweet_text) > self.max_len: self.max_len = len(tweet_text) for symbol in tweet_text: if symbol not in self.charset_map: self.charset_map[symbol] = self.charset_size self.charset_size += 1 if tweet_sentiment not in self.labels: self.labels.append(tweet_sentiment) self.n_labels += 1 self.n_chunks.append((self.n_tweets[i_path] - 1) / self.chunk_size + 1) self.n_batches.append((self.n_tweets[i_path] - 1) / self.batch_size + 1) self.__save_chunk_info() else: self.__load_chunk_info() def __save_chunk_info(self): if not os.path.isdir(self.temp_dir): os.mkdir(self.temp_dir) with open(os.path.join(self.temp_dir, 'chunk_info.p'), 'wb') as pfile: pickle.dump([self.max_len, self.labels, self.n_labels, self.charset_map, self.charset_size, self.n_tweets, self.n_chunks, self.n_batches], pfile) def __load_chunk_info(self): with open(os.path.join(self.temp_dir, 'chunk_info.p'), 'rb') as pfile: [self.max_len, self.labels, self.n_labels, self.charset_map, self.charset_size, self.n_tweets, self.n_chunks, self.n_batches] = pickle.load(pfile) def __load_data(self): if self.create_chunks: self.symbols_loaded = 0 for i_path, path in enumerate(self.data_path): self.current_data = i_path with open(path, 'rb') as pfile: if self.print_progress: print(self.dataset_names[i_path] + ': ', end='') step = max(self.n_tweets[i_path] // 10 + 1, 1) offset = step * 10 - self.n_tweets[i_path] + 1 if self.print_progress and self.n_tweets[i_path] < 10: print('.' * (10 - self.n_tweets[i_path]), end='') chunk_ids = range(self.n_chunks[i_path]) if self.shuffle_chunks_on_load: # leave the last chunk at its place as it is most probably not full last_id = chunk_ids[-1] chunk_ids = chunk_ids[:-1] np.random.shuffle(chunk_ids) chunk_ids.append(last_id) # limit the size in case there is not enough data to fill the whole chunk if self.n_chunks[i_path] > 1: data_size = self.chunk_size else: data_size = self.n_batches[i_path] * self.batch_size tweets = pickle.load(pfile) self.__reset_data(data_size) chunk_id = 0 for iTweet, tweet_entry in enumerate(tweets): if self.print_progress and not (iTweet + offset) % step: print('.', end='') iTweet %= self.chunk_size tweet_text = tweet_entry[1] tweet_sentiment = tweet_entry[2] for iSym, symbol in enumerate(tweet_text): self.x[iTweet, iSym] = self.charset_map[symbol] self.x_mask[iTweet, iSym] = 1 self.symbols_loaded += 1 self.y[iTweet] = int(tweet_sentiment) if iTweet == self.chunk_size - 1: # chunk full - save if self.shuffle_in_chunks_on_load: self.__shuffle_data() self.__save_chunk(chunk_ids[chunk_id]) if chunk_id == self.n_chunks[self.current_data] - 2: # the last chunk may be smaller data_size = (self.n_batches[i_path] * self.batch_size) % self.chunk_size self.__reset_data(data_size) chunk_id += 1 if chunk_id == self.n_chunks[self.current_data] - 1: if self.shuffle_in_chunks_on_load: self.__shuffle_data() self.__save_chunk(chunk_ids[chunk_id]) if self.print_progress: print('') self.current_data = 0 self.__load_chunk(0) def __encode1hot(self): x_1hot = np.zeros((self.x.shape[0], self.x.shape[1], self.charset_size)) for iTweet, tweet in enumerate(self.x): for iSym, symbol in enumerate(tweet): if self.x_mask[iTweet, iSym] == 1: x_1hot[iTweet, iSym, symbol] = 1 return x_1hot def __reset_data(self, data_size): self.x = np.zeros((data_size, self.max_len), dtype=np.uint32) self.x_mask = np.zeros((data_size, self.max_len), dtype=np.uint32) self.y = np.zeros(data_size, dtype=np.uint32) def __shuffle_data(self): current_slice = range(self.y.shape[0]) np.random.shuffle(current_slice) self.x = self.x[current_slice] self.x_mask = self.x_mask[current_slice] self.y = self.y[current_slice] def __save_chunk(self, chunk_id): if not os.path.isdir(self.temp_dir): os.mkdir(self.temp_dir) file_path = os.path.join(self.temp_dir, 'chunk_' + str(self.current_data) + '_' + str(chunk_id) + '.npz') with open(file_path, 'wb') as pfile: np.savez_compressed(pfile, x=self.x, x_mask=self.x_mask, y=self.y) def __load_chunk(self, chunk_id): file_path = os.path.join(self.temp_dir, 'chunk_' + str(self.current_data) + '_' + str(chunk_id) + '.npz') with np.load(file_path) as vals: self.x = vals['x'] self.x_mask = vals['x_mask'] self.y = vals['y'] self.current_chunk = chunk_id if self.shuffle_in_chunk_on_chunk_reload: self.__shuffle_data() self.x = self.__encode1hot()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from telegram.ext import Updater, MessageHandler, Filters import yaml from telegram_util import log_on_fail, AlbumResult import album_sender with open('token') as f: tele = Updater(f.read().strip(), use_context=True) debug_group = tele.bot.get_chat(-1001198682178) @log_on_fail(debug_group) def cut(update, context): msg = update.effective_message if msg.chat_id == debug_group.id or msg.media_group_id: return file = msg.document or (msg.photo and msg.photo[-1]) file_path = (file and file.get_file().file_path) or msg.text or '' if not file_path.startswith('http'): return result = AlbumResult() result.cap = msg.caption_markdown or msg.text_markdown or '' result.imgs = [file_path] album_sender.send_v2(msg.chat, result, send_all=True, size_factor=2.1) tele.dispatcher.add_handler(MessageHandler(Filters.all, cut)) tele.start_polling() tele.idle()
#!/usr/bin/env python #-*- encoding=utf-8 -*- ''' purpose: 实现命令行下的EMS(邮件营销系统)的管理 author : set_daemon@126.com date : 2017-06-23 history: ''' import sys file_dir = sys.path[0] sys.path.insert(0, file_dir + "/./") sys.path.insert(0, file_dir + "/../") sys.path.insert(0, file_dir + "/../common") sys.path.insert(0, file_dir + "/../clients") reload(sys) import threading import uuid import json import base64 import datetime from msg_client import MsgClient from proto import msg_pb2 from utils import * from mail_creator import MailCreator from node_client import NodeClient,NodeInfo class MailShell(object): ''' 通过scheduler来最终执行命令,包括: 1)邮箱管理:上线、更新、下线,查看邮箱状态 2)Job管理:上线、更新、下线,查看Job状态 3)任务管理:(由scheduler自动调配),可通过Job查询任务执行状态 4)Worker管理:上线、下线、更新工作邮箱,查看worker信息 ''' cmds = [ "quit", "exit", "help", "mail", "job", "worker", "msg", "scheduler" ] def __del__(self): self.node_client.destroy(self.node_info) def __init__(self, config): self.config = config self.start_time = datetime.datetime.now() self.node_info = NodeInfo() self.node_info.create(**{ "nodeType": "shell", "nodeId": uuid.uuid1(), "msgScheme": self.config["shell_config"]["scheme"], "status": 1 }) self.node_info.set(**{ "channel": "msgchn:%s:%s" %(self.node_info.info["nodeType"] ,self.node_info.info["nodeId"]), "instId": self.node_info.info["nodeId"], "logTime": datetime.datetime.strftime(self.start_time, "%Y-%m-%d %H:%M:%S") }) # 节点管理信息 self.node_client = NodeClient(self.config["node_config"]) self.node_client.sync_node(self.node_info) # 节点消息通道 self.msg_cli = MsgClient(**{ "scheme": self.config["shell_config"]["scheme"], "channel_name": self.node_info.info["channel"], }) # scheduler消息通道 node_keys = self.node_client.get_nodes("scheduler") node_info = None for key in node_keys: key = key.lstrip('node:') node_info = self.node_client.get_node_info(key) if node_info.info["status"] == "1": break self.sch_msg_cli = MsgClient(**{ "scheme": node_info.info["msgScheme"], "channel_name": node_info.info["channel"] }) @staticmethod def arg_parse(args, flags_predef): ''' 解析有名和无名参数 参数格式 -n huang -a 12 flags格式,参数名之间以分号分隔,举例: n/name:- 表示参数名称为name,简写为n,参数值取到下一个以"-"开始的参数为止 n/name:+ 表示参数名为name,简写为n,参数为1个,以+的个数为参数个数 n/name: 表示参数名为name,简写为n,无参数 ''' arg_defs = {} flags = flags_predef.split(';') for flag in flags: segs = flag.split(':') arg_name_segs = segs[0].split('/') arg_num = 0 end_flag = '' if segs[1] == '-': end_flag = '-' arg_num = -1 elif segs[1] == '': arg_num = 0 else: arg_num = len(segs[1].split('+')) # split的段落个数要比+个数多1 if arg_num > 0: arg_num -= 1 for arg_name in arg_name_segs: arg_defs[arg_name] = { 'end_flag': end_flag, 'arg_num': arg_num } kv = { "__NN":[] } i = 0 arg_len = len(args) while i < arg_len: arg = args[i] if arg.startswith('-'): arg_name = arg.lstrip('-') if arg_name in arg_defs: arg_def = arg_defs[arg_name] kv[arg_name] = [] # 判断结束符 if arg_def['end_flag'] == '-': # 该参数名的值取到下一个-开始 i += 1 while i < arg_len and args[i].startswith('-') != True: arg_v = args[i] kv[arg_name].append(arg_v) i += i else: # 按数量取 k = 0 i += 1 while i < arg_len and k < arg_def["arg_num"]: arg_v = args[i] kv[arg_name].append(arg_v) k += 1 i += 1 else: # 不在定义范围,则将参数值取完直到参数为-开头 kv[arg_name] = [] i += 1 while i < arg_len and args[i].startswith('-') != True: arg_v = args[i] kv[arg_name].append(arg_v) i += 1 else: kv["__NN"].append(arg) i += 1 return kv def parse_cmd(self, cmdline): segs = cmdline.strip('\t \n').split(' ') seg_len = len(segs) if seg_len < 1: return None cmd_name = segs[0] if cmd_name not in MailShell.cmds: return None cmd = { "name": cmd_name, "op": "", "params": None } if cmd_name == "quit" or cmd_name == "exit" or cmd_name == "help": pass else: if seg_len < 2: return None cmd["op"] = segs[1] if cmd_name == "mail": cmd["params"] = MailShell.arg_parse(segs[2:], 'a/account:+;A/alias:+;p/password:+;h/host:+;P/port:+;s/ssl:+') elif cmd_name == "job": cmd["params"] = MailShell.arg_parse(segs[2:], 'j/job:+;f/job_file:+') elif cmd_name == "worker": cmd["params"] = MailShell.arg_parse(segs[2:], 'w/worker:+') elif cmd_name == "scheduler": pass elif cmd_name == "msg": #cmd["params"] = MailShell.arg_parse(segs[2:], '') pass else: pass return cmd def exec_mail_cmd(self, cmd): op = cmd["op"] msg_data = "" if op == "on": # 检查及合并参数 req = msg_pb2.MailOnReq() req.header.type = msg_pb2.MAIL_ON_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name for key in cmd["params"].keys(): param_v = cmd["params"][key] if key in ["a", "account"]: req.account = param_v[0] elif key in ["A", "alias"]: req.alias = unicode(param_v[0],"utf-8") elif key in ["p", "password"]: req.password = param_v[0] elif key in ["h", "host"]: req.smtpHost = param_v[0] elif key in ["P", "port"]: req.smtpPort = param_v[0] elif key in ["s", "ssl"]: ssl = int(param_v[0]) req.useSsl = (ssl == 1) msg_data = json.dumps({ "msg_type": msg_pb2.MAIL_ON_REQ, "msg_data": base64.b64encode(req.SerializeToString()) }) elif op == "off": req = msg_pb2.MailOffReq() req.header.type = msg_pb2.MAIL_OFF_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name for key in cmd["params"].keys(): param_v = cmd["params"][key] if key in ["a", "account"]: req.account = param_v[0] msg_data = json.dumps({ "msg_type": msg_pb2.MAIL_OFF_REQ, "msg_data": base64.b64encode(req.SerializeToString()) }) elif op == "update": req = msg_pb2.MailUpdateReq() req.header.type = msg_pb2.MAIL_UPDATE_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name for key in cmd["params"].keys(): param_v = cmd["params"][key] if key in ["a", "account"]: req.account = param_v[0] elif key in ["A", "alias"]: req.alias = unicode(param_v[0], 'utf-8') elif key in ["p", "password"]: req.password = param_v[0] elif key in ["h", "host"]: req.smtpHost = param_v[0] elif key in ["P", "port"]: req.smtpPort = param_v[0] elif key in ["s", "ssl"]: if param_v[0] == "0": req.useSsl = False else: req.useSsl = True msg_data = json.dumps({ "msg_type": msg_pb2.MAIL_UPDATE_REQ, "msg_data": base64.b64encode(req.SerializeToString()) }) elif op == "status": req = msg_pb2.MailStatusReq() req.header.type = msg_pb2.MAIL_STATUS_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name for key in cmd["params"].keys(): param_v = cmd["params"][key] if key in ["a", "account"]: req.account = param_v[0] msg_data = json.dumps({ "msg_type": msg_pb2.MAIL_STATUS_REQ, "msg_data": base64.b64encode(req.SerializeToString()) }) else: pass self.sch_msg_cli.send_msg(msg_data) def exec_job_cmd(self, cmd): op = cmd["op"] msg_data = "" if op == "on": req = msg_pb2.JobOnReq() req.header.type = msg_pb2.JOB_ON_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name for key in cmd["params"].keys(): param_v = cmd["params"][key] if key in ["f", "job_file"]: # 读取job文件 job_file = param_v[0] file_data = open(job_file, 'r').read() jobj = json.loads(file_data) req.owner = jobj["owner"] senders = get_mails(jobj["senders"]) req.senderAccounts.extend(senders) to_accounts = get_mails(jobj["to"]) req.toAccounts.extend(to_accounts) mail_desc_file = jobj["mail_desc_file"] mail_creator = MailCreator() mail_creator.load(mail_desc_file) req.mailData = mail_creator.to_msg() msg_data = json.dumps({ "msg_type": msg_pb2.JOB_ON_REQ, "msg_data": base64.b64encode(req.SerializeToString()) }) elif op == "off": req = msg_pb2.JobOffReq() req.header.type = msg_pb2.JOB_OFF_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name for key in cmd["params"].keys(): param_v = cmd["params"][key] if key in ["j", "job_id"]: job_id = param_v[0] req.jobId = job_id msg_data = json.dumps({ "msg_type": msg_pb2.JOB_OFF_REQ, "msg_data": base64.b64encode(req.SerializeToString()) }) elif op == "update": req = msg_pb2.JobUpdateReq() req.header.type = msg_pb2.JOB_UPDATE_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name for key in cmd["params"].keys(): param_v = cmd["params"][key] if key in ["f", "job_file"]: # 读取job文件 job_file = param_v[0] file_data = open(job_file, 'r').read() jobj = json.loads(file_data) req.owner = jobj["owner"] senders = get_mails(jobj["senders"]) req.senderAccounts.extend(senders) to_accounts = get_mails(jobj["to"]) req.toAccounts.extend(to_accounts) mail_desc_file = jobj["mail_desc_file"] mail_creator = MailCreator() mail_creator.load(mail_desc_file) req.mailData = mail_creator.to_msg() elif key in ["j", "job_id"]: req.jobId = param_v[0] msg_data = json.dumps({ "msg_type": msg_pb2.JOB_UPDATE_REQ, "msg_data": base64.b64encode(req.SerializeToString()) }) elif op == "status": req = msg_pb2.JobStatusReq() req.header.type = msg_pb2.JOB_STATUS_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name for key in cmd["params"].keys(): param_v = cmd["params"][key] if key in ["j", "job_id"]: job_id = param_v[0] req.jobId = job_id # 检查参数 msg_data = json.dumps({ "msg_type": msg_pb2.JOB_STATUS_REQ, "msg_data": base64.b64encode(req.SerializeToString()) }) elif op == "list": req = msg_pb2.JobListReq() req.header.type = msg_pb2.JOB_LIST_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name msg_data = json.dumps({ "msg_type": req.header.type, "msg_data": base64.b64encode(req.SerializeToString()) }) else: pass self.sch_msg_cli.send_msg(msg_data) def exec_worker_cmd(self, cmd): msg_data = "" op = cmd["op"] if op == "off": req = msg_pb2.WorkerOffReq() req.header.type = msg_pb2.WORKER_OFF_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name for key in cmd["params"].keys(): param_v = cmd["params"][key] if key in ["w", "worker_id"]: worker_id = param_v[0] req.workerId = worker_id msg_data = json.dumps({ "msg_type": req.header.type, "msg_data": base64.b64encode(req.SerializeToString()) }) else: pass if msg_data != "": self.sch_msg_cli.send_msg(msg_data) def exec_scheduler_cmd(self, cmd): msg_data = "" op = cmd["op"] if op == "off": req = msg_pb2.SchedulerOffReq() req.header.type = msg_pb2.SCHEDULER_OFF_REQ req.header.source = "%s:%s" %(self.node_info.info["nodeType"], self.node_info.info["nodeId"]) req.header.dest = "scheduler" req.header.feedback = self.msg_cli.chn_name msg_data = json.dumps({ "msg_type": req.header.type, "msg_data": base64.b64encode(req.SerializeToString()) }) else: pass if msg_data != "": self.sch_msg_cli.send_msg(msg_data) def exec_msg_cmd(self, cmd): op = cmd["op"] if op == "view": # 读取消息通道 msgs = self.msg_cli.get_msgs(-1) if msgs is not None and len(msgs) > 0: for msg in msgs: self.process_msg(msg) def process_msg(self, msg): if msg.header.type == msg_pb2.MAIL_ON_RSP: print "mail on account %s, returned %d, %s" %(msg.account, msg.code, msg.reason) elif msg.header.type == msg_pb2.MAIL_OFF_RSP: print "mail off account %s, returned %d, %s" %(msg.account, msg.code, msg.reason) elif msg.header.type == msg_pb2.MAIL_UPDATE_RSP: print "mail update account %s, returned %d, %s" %(msg.account, msg.code, msg.reason) elif msg.header.type == msg_pb2.MAIL_STATUS_RSP: print "mail status account %s, returned %d, %s; %s,%s,%s,%s,%d,%d" %(msg.account, msg.code, msg.reason, msg.alias, msg.password, msg.smtpHost, msg.smtpPort, msg.useSsl, msg.status) elif msg.header.type == msg_pb2.JOB_ON_RSP: print "job on job %s, returned %d, %s" %(msg.jobId, msg.code, msg.reason) elif msg.header.type == msg_pb2.JOB_OFF_RSP: print "job off job %s, returned %d, %s" %(msg.jobId, msg.code, msg.reason) elif msg.header.type == msg_pb2.JOB_UPDATE_RSP: print "job update job %s, returned %d, %s" %(msg.jobId, msg.code, msg.reason) elif msg.header.type == msg_pb2.JOB_STATUS_RSP: print "job status job %s, returned %d, %s; %d, %d, %d" %(msg.jobId, msg.code, msg.reason, msg.completedNum, msg.successNum, msg.totalNum) elif msg.header.type == msg_pb2.JOB_LIST_RSP: print "job list {%s}, returned %d, %s" %(",".join(msg.jobList), msg.code, msg.reason) elif msg.header.type == msg_pb2.WORKER_LIST_RSP: pass elif msg.header.type == msg_pb2.WORKER_STATUS_RSP: pass else: pass def exec_help(self): print " quit or exit" print " msg {view}" print " mail {on/off/update/status} -a account -A alias -p password -h smtp_host -P smtp_port -s security" print " job {on/off/update/status/list} -j job_id -f job_file" print " worker {list/status/off} -w worker_id" print " scheduler {off}" def run(self): ''' 启动运行,并接受命令输入 命令格式: quit exit mail {on/off/update/status} -a account -A alias -p password -h smtp_host -P smtp_port -s security job {on/off/update/status/list} -j job_id -f job_file worker {list/status} -w worker_id scheduler {off} msg view ''' while True: cmdline = raw_input("%s-%s>> " %(self.node_info.info["nodeType"], self.node_info.info["nodeId"])) # 解析命令 cmd = self.parse_cmd(cmdline) if cmd is None: print "command %s does not support!" %(cmdline) continue if cmd["name"] == "quit" or cmd["name"] == "exit": print "Quit..." break elif cmd["name"] == "help": self.exec_help() elif cmd["name"] == "mail": self.exec_mail_cmd(cmd) elif cmd["name"] == "job": self.exec_job_cmd(cmd) elif cmd["name"] == "worker": self.exec_worker_cmd(cmd) elif cmd["name"] == "msg": self.exec_msg_cmd(cmd) elif cmd["name"] == "scheduler": self.exec_scheduler_cmd(cmd) else: pass if __name__ == "__main__": from config import global_config shell = MailShell(global_config) shell.run() ''' '''
import re, cStringIO, logging import striga.core.context from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText try: import html2text except: html2text = None ### #TODO: Based on security settings send only partial information (no version) StrigaVersion = 'Striga Server %s' % striga.Version ### L = logging.getLogger('mail.context') ### class Request(striga.core.context.Request): def __init__(self, Path, RemoteAddress): striga.core.context.Request.__init__(self, Path, RemoteAddress) ### class Response(striga.core.context.Response): def __init__(self): striga.core.context.Response.__init__(self, contexttype='text/plain') self.Subject = None self.From = None self.To = [] self.CC = [] self.BCC = [] self.ReplyTo = None self.Attachments = [] self.__OutputBuffer = cStringIO.StringIO() def SetCacheAge(self, age): #TODO: Generalize this ... pass def Write(self, data): self.__OutputBuffer.write(data) def WriteFile(self, inpfile): bufsize = 32*1024 while 1: data = inpfile.read(bufsize) if len(data) == 0: break self.__OutputBuffer.write(data) def Flush(self): pass def AddAttachment(self, mimeobj, filename): mimeobj.add_header('Content-Disposition', 'attachment', filename=filename) self.Attachments.append(mimeobj) def AddContent(self, mimeobj, contentid): mimeobj.add_header('Content-ID', "<"+contentid+">") self.Attachments.append(mimeobj) ContentTypeRG = re.compile('[a-zA-Z0-9]+/[a-zA-Z0-9]+') def GetMessage(self): assert self.Subject is not None, "You need to set ctx.res.Subject for mail" assert self.From is not None, "You need to set ctx.res.From for mail" ct = self.ContentTypeRG.findall(self.ContentType)[0] msg = MIMEMultipart('related', charset='utf-8') msg.preamble = 'This is a multi-part message in MIME format.' msg['X-Powered-By'] = StrigaVersion msg['Subject'] = self.Subject msg['From'] = self.From msg['To'] = ', '.join(self.To) if len(self.CC) > 0: msg['CC'] = ', '.join(self.CC) if self.ReplyTo is not None: msg['Reply-To'] = self.ReplyTo if ct == 'text/html': msgAlternative = MIMEMultipart('alternative') msg.attach(msgAlternative) if html2text is not None: txt = self.__OutputBuffer.getvalue() #TODO: Following code is quite heavy - but as html2text has problem handling utf-8, we need to convert to Unicode and then back txt = txt.decode('utf-8') # Convert to Unicode txt = html2text.html2text(txt) txt = txt.encode('utf-8') # Convert to UTF-8 part1 = MIMEText(txt, 'plain', _charset='utf-8') del txt msgAlternative.attach(part1) del part1 else: L.warning("Python module html2text not found - use 'easy_install-2.7 html2text' to install that") part2 = MIMEText(self.__OutputBuffer.getvalue(), 'html', _charset='utf-8') self.__OutputBuffer.close() msgAlternative.attach(part2) del part2 #TODO: Implement support for 'text/plain' and binaries (images) ... else: raise NotImplementedError("Mail response cannot handle content type of '{0}' (yet)".format(ct)) for atta in self.Attachments: msg.attach(atta) return msg.as_string()
from selenium.webdriver.support.ui import Select from model.contact import Contact import re class ContactHelper: def __init__(self, app): self.app = app def add(self, contact): # Add Contact wd = self.app.wd self.app.wd.get("http://localhost/addressbook/edit.php") wd.find_element_by_name("firstname").click() wd.find_element_by_name("firstname").clear() wd.find_element_by_name("firstname").send_keys(contact.firstname) wd.find_element_by_name("middlename").clear() wd.find_element_by_name("middlename").send_keys(contact.middlename) wd.find_element_by_name("lastname").clear() wd.find_element_by_name("lastname").send_keys(contact.lastname) wd.find_element_by_name("nickname").clear() wd.find_element_by_name("nickname").send_keys(contact.nickname) wd.find_element_by_name("title").click() wd.find_element_by_name("title").clear() wd.find_element_by_name("title").send_keys(contact.photo_title) wd.find_element_by_name("company").click() wd.find_element_by_name("company").clear() wd.find_element_by_name("company").send_keys(contact.company) wd.find_element_by_name("address").click() wd.find_element_by_name("address").clear() wd.find_element_by_name("address").send_keys(contact.address) wd.find_element_by_name("home").click() wd.find_element_by_name("home").clear() wd.find_element_by_name("home").send_keys(contact.home_phone) wd.find_element_by_name("mobile").click() wd.find_element_by_name("mobile").clear() wd.find_element_by_name("mobile").send_keys(contact.mobile_phone) wd.find_element_by_name("work").click() wd.find_element_by_name("work").clear() wd.find_element_by_name("work").send_keys(contact.work_phone) wd.find_element_by_name("fax").click() wd.find_element_by_name("fax").clear() wd.find_element_by_name("fax").send_keys(contact.fax) wd.find_element_by_name("email").click() wd.find_element_by_name("email").clear() wd.find_element_by_name("email").send_keys(contact.email) wd.find_element_by_name("email2").click() wd.find_element_by_name("email2").clear() wd.find_element_by_name("email2").send_keys(contact.email2) wd.find_element_by_name("email3").click() wd.find_element_by_name("email3").clear() wd.find_element_by_name("email3").send_keys(contact.email3) wd.find_element_by_name("homepage").click() wd.find_element_by_name("homepage").clear() wd.find_element_by_name("homepage").send_keys(contact.homepage) wd.find_element_by_name("bday").click() Select(wd.find_element_by_name("bday")).select_by_visible_text("1") wd.find_element_by_name("bmonth").click() Select(wd.find_element_by_name("bmonth")).select_by_visible_text("June") wd.find_element_by_name("byear").click() wd.find_element_by_name("byear").send_keys(contact.byears) wd.find_element_by_name("aday").click() Select(wd.find_element_by_name("aday")).select_by_visible_text("9") wd.find_element_by_name("amonth").click() Select(wd.find_element_by_name("amonth")).select_by_visible_text("July") wd.find_element_by_name("ayear").click() wd.find_element_by_name("ayear").clear() wd.find_element_by_name("ayear").send_keys(contact.byears) wd.find_element_by_name("address2").click() wd.find_element_by_name("address2").clear() wd.find_element_by_name("address2").send_keys(contact.address2) wd.find_element_by_name("phone2").click() wd.find_element_by_name("phone2").clear() wd.find_element_by_name("phone2").send_keys(contact.phone2) wd.find_element_by_name("notes").click() wd.find_element_by_name("notes").clear() wd.find_element_by_name("notes").send_keys(contact.notes) wd.find_element_by_xpath("(//input[@name='submit'])[2]").click() wd.find_element_by_link_text("home page").click() self.contact_cache = None def delete_contact_by_index(self, index): wd = self.app.wd self.app.open_homepage() wd.find_elements_by_name("selected[]")[index].click() wd.find_element_by_xpath("//input[@value='Delete']").click() wd.switch_to_alert().accept() wd.find_element_by_link_text("home").click() self.contact_cache = None def delete_first_contact(self): self.delete_contact_by_index(0) def edit_first_contact(self): self.edit_contact_by_index(0) def edit_contact_by_index(self, index, contact): wd = self.app.wd self.select_contact_by_index(index) self.edit_contact(contact) wd.find_element_by_name("update").click() wd.find_element_by_link_text("home page").click() self.contact_cache = None def select_contact_by_index(self, index): wd = self.app.wd self.app.open_homepage() wd.find_elements_by_name("selected[]")[index].click() wd.find_elements_by_xpath("(//img[@alt='Edit'])")[index].click() def edit_contact(self, contact): self.change_field_value("firstname", contact.firstname) self.change_field_value("middlename", contact.middlename) self.change_field_value("lastname", contact.lastname) self.change_field_value("nickname", contact.nickname) self.change_field_value("photo_title", contact.photo_title) self.change_field_value("company", contact.company) self.change_field_value("address", contact.address) self.change_field_value("home", contact.home_phone) self.change_field_value("mobile", contact.mobile_phone) self.change_field_value("fax", contact.fax) self.change_field_value("work", contact.work_phone) self.change_field_value("email", contact.email) self.change_field_value("email2", contact.email2) self.change_field_value("email3", contact.email3) self.change_field_value("homepage", contact.homepage) self.change_field_value("bday", contact.bday) self.change_field_value("bmonth", contact.bmonth) self.change_field_value("byears", contact.byears) self.change_field_value("address2", contact.address2) self.change_field_value("phone2", contact.phone2) self.change_field_value("notes", contact.notes) self.contact_cache = None def count(self): wd = self.app.wd self.app.wd.get("http://localhost/addressbook/index.php") return len(wd.find_elements_by_name("selected[]")) contact_cache = None def get_contact_list(self): if self.contact_cache is None: wd = self.app.wd self.app.wd.get("http://localhost/addressbook/index.php") self.contact_cache = [] for element in wd.find_elements_by_xpath("//tr[@name='entry']"): firstname = element.find_element_by_css_selector("td:nth-child(3)").text lastname = element.find_element_by_css_selector("td:nth-child(2)").text address = element.find_element_by_css_selector("td:nth-child(4)").text all_emails = element.find_element_by_css_selector("td:nth-child(5)").text id = element.find_element_by_name("selected[]").get_attribute("value") all_phones = element.find_element_by_css_selector("td:nth-child(6)").text self.contact_cache.append(Contact(firstname=firstname, lastname=lastname, address=address, all_emails_from_home_page=all_emails, id=id, all_tels_from_home_page=all_phones)) return list(self.contact_cache) def change_field_value(self, field_name, text): wd = self.app.wd if text is not None: wd.find_element_by_name(field_name).click() wd.find_element_by_name(field_name).clear() wd.find_element_by_name(field_name).send_keys(text) def get_contact_info_from_edit_page(self, index): wd = self.app.wd self.select_contact_by_index(index) firstname = wd.find_element_by_name("firstname").get_attribute("value") lastname = wd.find_element_by_name("lastname").get_attribute("value") address = wd.find_element_by_name("address").text email = wd.find_element_by_name("email").get_attribute("value") email2 = wd.find_element_by_name("email2").get_attribute("value") email3 = wd.find_element_by_name("email3").get_attribute("value") id = wd.find_element_by_name("id").get_attribute("value") home_phone = wd.find_element_by_name("home").get_attribute("value") work_phone = wd.find_element_by_name("work").get_attribute("value") mobile_phone = wd.find_element_by_name("mobile").get_attribute("value") phone2 = wd.find_element_by_name("phone2").get_attribute("value") return Contact(firstname=firstname, lastname=lastname, address=address, email=email, email2=email2, email3=email3, id=id, home_phone=home_phone, mobile_phone=mobile_phone, work_phone=work_phone, phone2=phone2) def get_contact_from_view_page(self, index): wd = self.app.wd self.app.open_homepage() wd.find_elements_by_xpath("(//img[@alt='Details'])")[index].click() text = wd.find_element_by_id("content").text home_phone = re.search("H: (.*)", text).group(1) work_phone = re.search("W: (.*)", text).group(1) mobile_phone = re.search("M: (.*)", text).group(1) phone2 = re.search("P: (.*)", text).group(1) return Contact(home_phone=home_phone, mobile_phone=mobile_phone, work_phone=work_phone, phone2=phone2)
from bs4 import BeautifulSoup import requests import json url = "http://nutrias.org/~nopl/photos/wpa/wpa30.htm" all_my_data = [] home_page = requests.get(url) home_page_html = home_page.text soup = BeautifulSoup(home_page_html, 'html.parser') column_map = { 1: "series_number", 2: "project", 3: "series_title", 4: "description", 5: "date_taken", 6: "project_dates", 7: "OP", 8: "negatives", 9: "contact_prints", 10: "8x10_prints", 11: "digital_photos", } records = soup.find_all('tr') for record in records: my_data = { } fields = record.find_all("td") counter = 0 for entry in fields: counter = counter + 1 label = column_map[counter] try: data_rows = entry.find("font") data_rows = data_rows.text my_data[label] = data_rows except AttributeError: continue image_urls = [] item_link = record.find_all('a') for link in item_link: abs_url = "http://nutrias.org/~nopl/photos/wpa/" + link['href'] image_urls.append(abs_url) my_data[label] = image_urls all_my_data.append(my_data) with open('WPA_Music_Collection.json', 'w') as f_object: json.dump(all_my_data, f_object, indent=2) print("Your file is now ready")
import os, os.path as p import logzero import logging from logzero import logger LOG_LEVEL = logging.INFO logdir = p.abspath(p.join(p.dirname(__file__), "../logs")) os.makedirs(logdir, exist_ok=True) logfile = "logs.txt" # Setup rotating logfile with 3 rotations, each with a maximum filesize of 1MB: logzero.logfile(p.join(logdir, logfile), maxBytes=1e6, backupCount=3) logzero.loglevel(LOG_LEVEL)
# Approach 1: def N_Largest_Elements(Arr, Upto): result = [] for i in range(0, Upto): max = 0 for j in range(0, len(Arr)): if Arr[j] > max: max = Arr[j] Arr.remove(max) result.append(max) return result Given_List = [] n = int(input("How Many Elements: ")) print("Enter The Elements: ") for i in range(0, n): element = int(input()) Given_List.append(element) Upto = int(input("Upto Which Number: ")) print(N_Largest_Elements(Given_List, Upto)) # Approach 2: def N_Largest_Elemnts(Arr, Upto): return sorted(Arr)[-Upto:] Given_List = [] n = int(input("How Many Elements: ")) print("Enter The Elements: ") for i in range(0, n): element = int(input()) Given_List.append(element) Upto = int(input("Upto Which Number: ")) print(N_Largest_Elemnts(Given_List, Upto))
# coding: utf-8 # # Tables (2) - Making a table # In this lesson we're going to learn how make a table in Plotly. # # We'll learn how to make one from a list and a Pandas DataFrame. # ## Module Imports # In[1]: #plotly.offline doesn't push your charts to the clouds import plotly.offline as pyo #allows us to create the Data and Figure objects from plotly.graph_objs import * #plotly.plotly pushes your charts to the cloud import plotly.plotly as py #pandas is a data analysis library import pandas as pd from pandas import DataFrame # #### New Modules: # # In order to make a table in Plotly, we have to use a different library called the <code>'FigureFactory'</code>. This is an in-development part of the Plotly codebase and is liable to change without notice. # # The <code>'FigureFactory'</code> gives options for creating many different types of chart . . . I suggest trying a few of them out if you're curious! # In[2]: from plotly.tools import FigureFactory as FF # In[3]: #lets us see the charts in an iPython Notebook pyo.offline.init_notebook_mode() # run at the start of every ipython # ## Making a table from a list # # We can use the <code>FigureFactory.create_table()</code> function to create a table. This function actually uses the Heatmap chart type (which we won't cover in this course) to create a table, and we'll use different aspects of the Heatmap chart to make stylistic changes to our tables. # # It's very simple to create a table from a list, provided that the list is in the correct format. # # The list must be comprised of several sublists. Each sublist will be a row in the table, and the first sublist will be the column titles. # # Let's try this out and create a table showing the population and area of the different countries in the United Kingdom. I sourced this data from <a href = "https://en.wikipedia.org/wiki/Population_of_the_countries_of_the_United_Kingdom">Wikipedia</a>. # # Here's our table data with the row for the column headings and space for the data: # In[4]: tableData = [['Country','Population','Area (km2)'], [], [], [], []] # Here's the table data with the values completed: # In[5]: tableData = [['Country','Population','Area (km2)'], ['England',53865800, 130395], ['Scotland',5327700, 78772], ['Wales',3082400,20779], ['Northern Ireland', 1829700, 13843]] # We can now pass this into the <code>FF.create_table()</code> function and create an object to plot: # In[6]: UKCountries = FF.create_table(tableData) pyo.iplot(UKCountries) py.image.save_as(UKCountries, r"C:\Users\Rytch\Google Drive\Financial\Passive Income\Online courses\Plotly\Course Content\Lessons\(09) Tables\Notebooks\images\Tables (2) - Making a table\pyo.iplot-0.png") # # You can see that Plotly follows many of the recommendations for designing clear tables. The header row is a different colour, the row colours alternate, and the font allows for comparisons between the numbers. # # There are still improvements to make which we will look at later in this section. # # #### The structure of a table object # # Let's have a look at the structure of our table object. # # You can see that the data displayed in the table is not contained within the data element of the figure. The data element actually contains the instructions for colouring the rows and header. # # The data displayed in the table is stored as annotations which are positioned by the <code>FF.create_table()</code> function. We will use this knowledge later to allow us to style the data in the table. # In[7]: UKCountries # ## Making a table from a DataFrame # # Let's get the same data that we used earlier, but rather than writing it out in a dictionary, we'll get it as a csv: # In[8]: df = pd.read_csv('http://richard-muir.com/data/public/csv/UKCountryPopulation.csv', index_col = 0) df # We can now pass this DataFrame directly into the <code>create_table()</code> function: # In[9]: UKCountryInfo = FF.create_table(df) pyo.iplot(UKCountryInfo) py.image.save_as(UKCountryInfo, r"C:\Users\Rytch\Google Drive\Financial\Passive Income\Online courses\Plotly\Course Content\Lessons\(09) Tables\Notebooks\images\Tables (2) - Making a table\pyo.iplot-1.png") # # So you can see that the entire DataFrame gets translated into a Plotly table, but it looks a bit cramped. We could increase the size of the table to include all the information, but for now, let's reduce the number of columns. We'll take the column for 2011 because we'll use data from another source for 2011 in a later lesson in this section. # In[10]: df = df[['Name','Population (2011)', 'Area (km2)']] UKCountryInfo = FF.create_table(df) pyo.iplot(UKCountryInfo) py.image.save_as(UKCountryInfo, r"C:\Users\Rytch\Google Drive\Financial\Passive Income\Online courses\Plotly\Course Content\Lessons\(09) Tables\Notebooks\images\Tables (2) - Making a table\pyo.iplot-2.png") # # ### What have we learnt this lesson? # In this lesson we've seen how to create a table from a list or a DataFrame using the <code>FigureFactory.create_table()</code> function. # # We've seen that the <code>create_table()</code> function actually uses the Plotly heatmap as a base for the table, and that the information in the table rows is actually stored as annotations. # # In the next lesson we'll learn how to add an index column to the table. # If you have any questions, please ask in the comments section or email <a href="mailto:me@richard-muir.com">me@richard-muir.com</a>
from kronos_modeller.strategy_base import StrategyBase class FillingStrategy(StrategyBase): required_config_fields = [ "type", "priority" ]
__author__ = "Dave Wapstra <dwapstra@cisco.com>" import warnings from unicon.plugins.iosxe.sdwan import SDWANSingleRpConnection class SDWANConnection(SDWANSingleRpConnection): os = 'sdwan' platform = 'iosxe' def __init__(self, *args, **kwargs): warnings.warn(message = "This plugin is deprecated and replaced by 'iosxe/sdwan'", category = DeprecationWarning) super().__init__(*args, **kwargs)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.fluid as fluid import math class FullyConnected3D(object): def __init__(self, input_dim, output_dim, active_op='prelu', version="default"): self.active_op = active_op self.version = version self.input_dim = input_dim self.output_dim = output_dim def call(self, bottom_data): print "call FullyConnected3D" net_out = paddle.static.nn.fc( bottom_data, size=self.output_dim, num_flatten_dims=2, activation=None, weight_attr=paddle.framework.ParamAttr( name="fc_w_%s" % self.version, initializer=fluid.initializer.Normal(scale=1.0 / math.sqrt( (self.input_dim)))), bias_attr=fluid.ParamAttr( name="fc_b_%s" % self.version, initializer=fluid.initializer.Constant(0.1))) # net_out = paddle.static.nn.fc( # bottom_data, # size=self.output_dim, # num_flatten_dims=2, # activation=None, # weight_attr=paddle.framework.ParamAttr( # name="fc_w_%s" % self.version, # initializer=fluid.initializer.Constant(1.0 / math.sqrt((self.input_dim)))), # bias_attr=fluid.ParamAttr( # name="fc_b_%s" % self.version, # initializer=fluid.initializer.Constant(0.1))) if self.active_op == 'prelu': print "in FullyConnected3D use prelu" net_out = paddle.static.nn.prelu( net_out, 'channel', paddle.framework.ParamAttr( name='alpha_1_%s' % self.version, initializer=paddle.nn.initializer.Constant(0.25))) return net_out class paddle_dnn_layer(object): def __init__(self, input_dim, output_dim, active_op='prelu', use_batch_norm=False, version="default"): self.active_op = active_op self.use_batch_norm = use_batch_norm self.version = version self.input_dim = input_dim self.output_dim = output_dim def call(self, bottom_data): print "if mx.symbol.FullyConnected" out = paddle.static.nn.fc( bottom_data, size=self.output_dim, activation=None, weight_attr=paddle.framework.ParamAttr( name="fc_w_%s" % self.version, initializer=fluid.initializer.Normal(scale=1.0 / math.sqrt( (self.input_dim)))), bias_attr=fluid.ParamAttr( name="fc_b_%s" % self.version, initializer=fluid.initializer.Constant(0.1))) # out = paddle.static.nn.fc( # bottom_data, # size=self.output_dim, # activation=None, # weight_attr=paddle.framework.ParamAttr( # name="fc_w_%s" % self.version, # initializer=fluid.initializer.Constant(1.0 / math.sqrt((self.input_dim)))), # bias_attr=fluid.ParamAttr( # name="fc_b_%s" % self.version, # initializer=fluid.initializer.Constant(0.1))) if self.use_batch_norm: print "if self.use_batch_norm:" batch_norm = paddle.nn.BatchNorm( self.output_dim, epsilon=1e-03, param_attr=fluid.ParamAttr( name="bn_gamma_1_%s" % self.version, initializer=fluid.initializer.Constant(1.0)), bias_attr=fluid.ParamAttr( name="bn_bias_1_%s" % self.version, initializer=fluid.initializer.Constant(0.0))) out = batch_norm(out) if self.active_op == 'prelu': print "if self.active_op == 'prelu':" out = paddle.static.nn.prelu( out, 'channel', paddle.framework.ParamAttr( name='alpha_1_%s' % self.version, initializer=paddle.nn.initializer.Constant(0.25))) return out def dnn_model_define(user_input, unit_id_emb, node_emb_size=24, fea_groups="20,20,10,10,2,2,2,1,1,1", active_op='prelu', use_batch_norm=True, with_att=False): fea_groups = [int(s) for s in fea_groups.split(',')] total_group_length = np.sum(np.array(fea_groups)) print "fea_groups", fea_groups, "total_group_length", total_group_length, "eb_dim", node_emb_size layer_data = [] # start att if with_att: print("TDM Attention DNN") att_user_input = paddle.concat( user_input, axis=1) # [bs, total_group_length, emb_size] att_node_input = fluid.layers.expand( unit_id_emb, expand_times=[1, total_group_length, 1]) att_din = paddle.concat( [att_user_input, att_user_input * att_node_input, att_node_input], axis=2) att_active_op = 'prelu' att_layer_arr = [] att_layer1 = FullyConnected3D( 3 * node_emb_size, 36, active_op=att_active_op, version=1) att_layer_arr.append(att_layer1) att_layer2 = FullyConnected3D( 36, 1, active_op=att_active_op, version=2) att_layer_arr.append(att_layer2) layer_data.append(att_din) for layer in att_layer_arr: layer_data.append(layer.call(layer_data[-1])) att_dout = layer_data[-1] att_dout = fluid.layers.expand( att_dout, expand_times=[1, 1, node_emb_size]) user_input = att_user_input * att_dout else: print("TDM DNN") user_input = paddle.concat( user_input, axis=1) # [bs, total_group_length, emb_size] # end att idx = 0 grouped_user_input = [] for group_length in fea_groups: block_before_sum = paddle.slice( user_input, axes=[1], starts=[idx], ends=[idx + group_length]) block = paddle.sum(block_before_sum, axis=1) / group_length grouped_user_input.append(block) idx += group_length grouped_user_input = paddle.concat( grouped_user_input, axis=1) # [bs, 10 * emb_size] din = paddle.concat( [grouped_user_input, paddle.squeeze( unit_id_emb, axis=1)], axis=1) net_version = "d" layer_arr = [] layer1 = paddle_dnn_layer( 11 * node_emb_size, 128, active_op=active_op, use_batch_norm=use_batch_norm, version="%d_%s" % (1, net_version)) layer_arr.append(layer1) layer2 = paddle_dnn_layer( 128, 64, active_op=active_op, use_batch_norm=use_batch_norm, version="%d_%s" % (2, net_version)) layer_arr.append(layer2) layer3 = paddle_dnn_layer( 64, 32, active_op=active_op, use_batch_norm=use_batch_norm, version="%d_%s" % (3, net_version)) layer_arr.append(layer3) layer4 = paddle_dnn_layer( 32, 2, active_op='', use_batch_norm=False, version="%d_%s" % (4, net_version)) layer_arr.append(layer4) layer_data.append(din) for layer in layer_arr: layer_data.append(layer.call(layer_data[-1])) dout = layer_data[-1] return dout # if is_infer: # softmax_prob = paddle.nn.functional.softmax(dout) # positive_prob = paddle.slice( # softmax_prob, axes=[1], starts=[1], ends=[2]) # prob_re = paddle.reshape(positive_prob, [-1]) # _, topk_i = paddle.topk(prob_re, k=topk) # topk_node = paddle.index_select(label, topk_i) # return topk_node # else: # cost, softmax_prob = paddle.nn.functional.softmax_with_cross_entropy( # logits=dout, label=label, return_softmax=True, ignore_index=-1) # ignore_label = paddle.full_like(label, fill_value=-1) # avg_cost = paddle.sum(cost) / paddle.sum( # paddle.cast( # paddle.not_equal(label, ignore_label), dtype='int32')) # return avg_cost, softmax_prob
from abc import ABCMeta from torch import nn, Tensor import torch import torch.nn as nn import torch.nn.functional as F from typing import Callable from torch.utils.data import DataLoader from torch.optim.optimizer import Optimizer class Discriminator(nn.Module): def __init__(self, in_size): super().__init__() self.in_size = in_size modules = [] in_channels = self.in_size[0] out_channels = 1024 modules.append(nn.Conv2d(in_channels, 128, kernel_size=4, stride=2, padding=1)) modules.append(nn.BatchNorm2d(128)) modules.append(nn.ReLU()) # 128 x 32 x 32 modules.append(nn.Dropout(0.2)) modules.append(nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)) modules.append(nn.BatchNorm2d(256)) modules.append(nn.ReLU()) # 256 x 16 x 16 modules.append(nn.Dropout(0.2)) modules.append(nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1)) modules.append(nn.BatchNorm2d(512)) modules.append(nn.ReLU()) # 512 x 8 x 8 modules.append(nn.Dropout(0.2)) modules.append(nn.Conv2d(512, out_channels, kernel_size=4, stride=2, padding=1)) # out_channels x 4 x 4 modules.append(nn.MaxPool2d(kernel_size=4)) #FC layers self.cnn = nn.Sequential(*modules) self.linaer1 = nn.Linear(1024, 256) self.relu = nn.ReLU() self.dropout = nn.Dropout() self.linaer2 = nn.Linear(256, 1) def forward(self, x): x = self.cnn(x) batch_size = x.shape[0] x = x.view(batch_size, -1) x = self.linaer1(x) x = self.relu(x) x = self.dropout(x) y = self.linaer2(x) return y class Generator(nn.Module): def __init__(self, z_dim, featuremap_size=4, out_channels=3): super().__init__() self.z_dim = z_dim modules = [] self.in_channels = z_dim modules.append(nn.ConvTranspose2d(self.in_channels, 1024, kernel_size=4)) modules.append(nn.BatchNorm2d(1024)) modules.append(nn.ReLU()) # 1024 x 4 x 4 modules.append(nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)) modules.append(nn.BatchNorm2d(512)) modules.append(nn.ReLU()) # 512 x 8 x 8 modules.append(nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)) modules.append(nn.BatchNorm2d(256)) modules.append(nn.ReLU()) # 256 x 16 x 16 modules.append(nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)) modules.append(nn.BatchNorm2d(128)) modules.append(nn.ReLU()) # 128 x 32 x 32 modules.append(nn.ConvTranspose2d(128, 3, kernel_size=4, stride=2, padding=1)) # 3 x 64 x 64 self.cnn = nn.Sequential(*modules) def sample(self, n, features, with_grad=False): device = next(self.parameters()).device continuous = self.z_dim - features.shape[1] if with_grad: continuous_part = torch.randn((n, continuous), device=device, requires_grad=with_grad) z = torch.cat((continuous_part, features), 1) samples = self.forward(z) else: with torch.no_grad(): continuous_part = torch.randn((n, continuous), device=device, requires_grad=with_grad) z = torch.cat((continuous_part, features), 1) samples = self.forward(z) return samples def forward(self, z): x = torch.tanh(self.cnn(z.view(z.shape[0], -1, 1, 1))) return x
from django.db import models from core.models import TimeStampedEnabledModel, Cities class AbstractBuilding(TimeStampedEnabledModel): city = models.ForeignKey(Cities, on_delete=models.DO_NOTHING, null=False) name = models.CharField(max_length=50) desc = models.CharField(max_length=100, blank=True) address = models.CharField(max_length=50) img_src = models.ImageField(upload_to='buildings/', default=None, null=True) creator = models.ForeignKey('users.User', on_delete=models.DO_NOTHING, null=False, default=None) class Meta: abstract = True class Building(AbstractBuilding): class Meta: db_table = 'building' ordering = ['-updated'] def __str__(self): return self.name class BuildingHistory(AbstractBuilding): building = models.ForeignKey(Building, on_delete=models.DO_NOTHING, null=False) img_src = models.ImageField(upload_to='buildings/history/', default=None, null=True) class Meta: db_table = 'building_history' ordering = ['-pk']
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Aug 1 08:02:39 2020 @author: Edson Cilos """ #Standard packages import os import numpy as np import pandas as pd #Sklearning package from sklearn.preprocessing import MinMaxScaler #Graphics packages from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap import seaborn as sns #Project packages import config from utils import classes_names from table import best_results #Still beta, several updates required! #Best model path: best_path = os.path.join('results', 'mccv', 'baseline_over_SVC_linear_100.0', 'detailed_score.csv') mccv_path = config._get_path('mccv') graphics_path = config._get_path('graphics') def gs_heatmap(output_name = 'gs_table'): df, _ = best_results() c_map = plt.get_cmap('YlGnBu') c_map = ListedColormap(c_map(np.linspace(0.1, 0.7, 256))) fig, ax = plt.subplots(figsize=(12, 7)) heat = sns.heatmap(df, annot=True, linewidths= 1, cmap=c_map, ax = ax, fmt='.4f') #Ad-hoc for text in heat.texts: txt = text.get_text() n = float(txt) if(n == 0 or n ==1 ): text.set_text('Yes' if n else 'No') ax.set_title('Grid Search') fig.savefig(os.path.join(graphics_path, output_name + '.png'), dpi = 1200, bbox_inches = "tight") return df def total_score_plot_all(): _total_score_plot(mccv_files(), "Best models") def _total_score_plot(name_list, main_name): df_tuples = [] for name in name_list: df = pd.read_csv(os.path.join(mccv_path, name, 'total_score.csv')) std = np.std(df[df.columns[1]]) mean = np.mean(df[df.columns[1]]) #label1 = name label1 = name + ' loss: ' + str(round(mean, 5)) + \ ', std: ' + str(round(std, 5)) std = np.std(df[df.columns[3]]) mean = np.mean(df[df.columns[3]]) #label2 = name label2 = name + ' score: ' + str(round(mean, 5)) + \ ', std: ' + str(round(std, 5)) df_tuples.append((df, label1, label2)) total_score_plot(df_tuples, main_name) def total_score_plot(df_tuples, name): sns.set_palette(sns.color_palette("hls", len(df_tuples))) for tup in df_tuples: plot = sns.distplot(tup[0]["Cross_Entropy_val"], axlabel = 'Cross Entropy (validation)', label=tup[1], ) plt.legend(loc="center", bbox_to_anchor=(0.5, -0.35)) fig = plot.get_figure() fig.savefig(os.path.join(graphics_path, name + '_cross_entropy.png'), dpi = 1200, bbox_inches = "tight") plt.show() plt.close() ##The same for accuracy sns.set_palette(sns.color_palette("hls", len(df_tuples))) for tup in df_tuples: plot = sns.distplot(tup[0]["Accuracy_val"], axlabel = 'Accuracy (validation)', label=tup[2]) plt.legend(loc="center", bbox_to_anchor=(0.5, -0.35)) fig = plot.get_figure() fig.savefig(os.path.join(graphics_path, name + '_accuracy.png'), dpi = 1200, bbox_inches = "tight") plt.show() plt.close() def self_heatmap(): df = pd.read_csv(os.path.join('results', 'SelfTraining.csv'), index_col=0) df.index.name = None df.drop(['base_path'], axis=1, inplace=True) rename = {'time' : 'Time (s)', 'amount_labaled' : 'Samples labeled', 'accuracy' : 'Accuracy', 'log_loss' : 'Log-los', 'std_log_loss' : 'log-los (std)'} df.rename(columns = rename, inplace=True) scaler = MinMaxScaler() df_dual = pd.DataFrame(data = scaler.fit_transform(df), columns = df.columns, index = df.index) heat0 = sns.heatmap(df, annot=True, linewidths= 1, fmt='.3f') fig, ax = plt.subplots(figsize=(12, 5)) color_map = plt.get_cmap('YlGnBu') color_map = ListedColormap(color_map(np.linspace(0.1, 0.75, 256))) heat = sns.heatmap(df_dual, annot=True, linewidths= 1, cmap= color_map, ax = ax, fmt='.3f') colorbar = ax.collections[0].colorbar colorbar.set_ticks([0.1, 0.5, 1]) colorbar.set_ticklabels(['Low', 'Middle', 'High']) for t in range(len(heat0.texts)): txt = heat0.texts[t].get_text() heat.texts[t].set_text(txt) ax.set_title('SelfTraining Table (5-fold cross validation)') fig.savefig(os.path.join(graphics_path, 'SelfTraining_table.png'), dpi = 1200,) def best_model_results(model_name = 'baseline_over_SVC_linear_100.0'): path = os.path.join(mccv_path, model_name) probability_heatmap(pd.read_csv(os.path.join(path,'probability.csv')), model_name) cross_heatmap(pd.read_csv(os.path.join(path,'cross_matrix.csv')), model_name) detailed_score_heatmap(pd.read_csv(os.path.join(path, 'detailed_score.csv')), model_name) def probability_heatmap(df, name): names, classes = classes_names() w = df.mean(axis=0).values.reshape(classes, classes) #ndarray w = np.around(w, decimals=3) prob_frame = pd.DataFrame(data = w, columns = names, index = names) fig, ax = plt.subplots(figsize=(12, 7)) sns.heatmap(prob_frame, annot=True, linewidths= 1, cmap="YlGnBu", ax = ax) ax.set_title('True class v.s. Predicted Probability Class') fig.savefig(os.path.join(graphics_path, name + '_probability.png'), dpi = 1200, bbox_inches = "tight") def cross_heatmap(df, name): names, classes = classes_names() w = df.mean(axis=0).values.reshape(classes, classes) #ndarray for i in range(classes): w[i] /= np.sum(w[i]) w = np.around(w, decimals=3) cross_frame = pd.DataFrame(data = w, columns = names, index = names) fig, ax = plt.subplots(figsize=(12, 7)) sns.heatmap(cross_frame, annot=True, linewidths= 1, cmap="YlGnBu", ax = ax) ax.set_title('True class v.s. Predicted Class (mean)') fig.savefig(os.path.join(graphics_path, name + '_cross_prediction.png'), dpi = 1200, bbox_inches = "tight") def mccv_detailed_score_heatmap(): models = mccv_files() for model_name in models: df = pd.read_csv(os.path.join(mccv_path,model_name, 'detailed_score.csv')) detailed_score_heatmap(df, model_name) def detailed_score_heatmap(df, name): names, classes = classes_names() w = df.mean(axis=0).values.reshape(classes, 4) w = np.around(w, decimals=3) score_frame = pd.DataFrame(data = w, columns=['sensitivity', 'specificity', 'precision', 'f1_score'], index = names) fig, ax = plt.subplots(figsize=(7, 7)) #color_map = plt.get_cmap('YlGnBu_r') #color_map = ListedColormap(color_map(np.linspace(0.1, 0.6, 256))) sns.heatmap(score_frame, annot=True, linewidths= 0.05, cmap='YlGnBu', ax = ax) ax.set_title(name + ' Scores') fig.savefig(os.path.join(graphics_path, name + '_detailed_score.png'), dpi = 1200, bbox_inches = "tight") def final_table(): names, classes = classes_names() ked_et_al = {'Cellulose acetate': 0.97, 'Cellulose like': 0.65, 'Ethylene propylene rubber': 0.76, 'Morphotype 1': 0.89, 'Morphotype 2': 0.88, 'PEVA': 0.74, 'Poly(amide)': 1, 'Poly(ethylene)' : 1, 'Poly(ethylene) + fouling' : 0.88, 'Poly(ethylene) like' : 0.69, 'Poly(propylene)' : 0.99, 'Poly(propylene) like' : 0.51, 'Poly(styrene)' : 0.99, 'Unknown' : 0 } w0 = [] for n in names: w0.append(ked_et_al[n]) w0 = np.array(w0) #Load model's sensitivity mccv data (using Kedzierski et. al methodology) df1 = pd.read_csv(os.path.join('results', 'final_model_mccv_all_data_detailed_score.csv') ) w1 = df1.mean(axis=0).values.reshape(classes, 4) w1 = np.around(w1, decimals=3)[:, 0] #Load MCCV results (best model) df2 = pd.read_csv(best_path) w2 = df2.mean(axis=0).values.reshape(classes, 4) w2 = np.around(w2, decimals=3)[:, 0] #Load model's sensitivity test result df3 = pd.read_csv(os.path.join('results','final_test_detailed_score.csv')) w3 = df3.mean(axis=0).values.reshape(classes, 4) w3 = np.around(w3, decimals=3)[:, 0] w = np.stack((w0, w1, w2, w3), axis=0) df = pd.DataFrame(data = w, columns= names, index = ["Kedzierski et al.", "SVC + Kedzierski et al", "SVC + MCCV", "SVC Final test"]) fig, ax = plt.subplots(figsize=(12, 5)) ax.set_title('Sensitivity comparison') sns.heatmap(df, annot=True, linewidths= 0.05, cmap='YlGnBu', ax = ax) fig.savefig(os.path.join(graphics_path, 'sensitivity_final_table.png'), dpi = 1200, bbox_inches = "tight") return df def mccv_files(): return [model for model in os.listdir(mccv_path) if os.path.isdir(os.path.join(mccv_path, model)) ]
import smart_imports smart_imports.all() class HeroDescriptionTests(utils_testcase.TestCase): def setUp(self): super().setUp() game_logic.create_test_map() account = self.accounts_factory.create_account(is_fast=True) self.storage = game_logic_storage.LogicStorage() self.storage.load_account_data(account) self.hero = self.storage.accounts_to_heroes[account.id] def test_no_description(self): self.assertEqual(logic.get_hero_description(self.hero.id), '') def test_has_description(self): logic.set_hero_description(self.hero.id, 'bla-bla') self.assertEqual(logic.get_hero_description(self.hero.id), 'bla-bla') def test_update_description(self): logic.set_hero_description(self.hero.id, 'bla-bla') logic.set_hero_description(self.hero.id, 'new description') self.assertEqual(logic.get_hero_description(self.hero.id), 'new description') class CreateHero(utils_testcase.TestCase): def setUp(self): super().setUp() game_logic.create_test_map() self.account = accounts_prototypes.AccountPrototype.create(nick='nick-xxx', email='test@test.test', is_fast=False) self.attributes = {'is_fast': False, 'is_bot': False, 'might': 0, 'active_state_end_at': datetime.datetime.now() + datetime.timedelta(days=3), 'premium_state_end_at': datetime.datetime.fromtimestamp(0), 'ban_state_end_at': datetime.datetime.fromtimestamp(0)} def test_default(self): logic.create_hero(account_id=self.account.id, attributes=self.attributes) hero = logic.load_hero(self.account.id) self.assertEqual(hero.id, self.account.id) self.assertEqual(hero.account_id, self.account.id) self.assertIn(hero.gender, (game_relations.GENDER.MALE, game_relations.GENDER.FEMALE)) self.assertEqual(hero.preferences.energy_regeneration_type, hero.race.energy_regeneration) self.assertEqual(hero.habit_honor.raw_value, 0) self.assertEqual(hero.habit_peacefulness.raw_value, 0) self.assertTrue(hero.preferences.archetype.is_NEUTRAL) self.assertTrue(hero.upbringing.is_PHILISTINE) self.assertTrue(hero.first_death.is_FROM_THE_MONSTER_FANGS) self.assertTrue(hero.death_age.is_MATURE) def test_account_attributes_required(self): for attribute in self.attributes.keys(): with self.assertRaises(exceptions.HeroAttributeRequiredError): logic.create_hero(account_id=self.account.id, attributes={key: value for key, value in self.attributes.items() if key != attribute }) def test_account_attributes(self): attributes = {'is_fast': random.choice((True, False)), 'is_bot': random.choice((True, False)), 'might': random.randint(1, 1000), 'active_state_end_at': datetime.datetime.fromtimestamp(1), 'premium_state_end_at': datetime.datetime.fromtimestamp(2), 'ban_state_end_at': datetime.datetime.fromtimestamp(3)} logic.create_hero(account_id=self.account.id, attributes=attributes) hero = logic.load_hero(self.account.id) self.assertEqual(hero.is_fast, attributes['is_fast']) self.assertEqual(hero.is_bot, attributes['is_bot']) self.assertEqual(hero.might, attributes['might']) self.assertEqual(hero.active_state_end_at, attributes['active_state_end_at']) self.assertEqual(hero.premium_state_end_at, attributes['premium_state_end_at']) self.assertEqual(hero.ban_state_end_at, attributes['ban_state_end_at']) def test_attributes(self): self.attributes.update({'race': game_relations.RACE.random(), 'gender': game_relations.GENDER.random(), 'name': game_names.generator().get_name(game_relations.RACE.random(), game_relations.GENDER.random()), 'peacefulness': random.randint(-c.HABITS_BORDER, c.HABITS_BORDER), 'honor': random.randint(-c.HABITS_BORDER, c.HABITS_BORDER), 'archetype': game_relations.ARCHETYPE.random(), 'upbringing': tt_beings_relations.UPBRINGING.random(), 'first_death': tt_beings_relations.FIRST_DEATH.random(), 'death_age': tt_beings_relations.AGE.random()}) logic.create_hero(account_id=self.account.id, attributes=self.attributes) hero = logic.load_hero(self.account.id) self.assertEqual(hero.race, self.attributes['race']) self.assertEqual(hero.gender, self.attributes['gender']) self.assertEqual(hero.utg_name, self.attributes['name']) self.assertEqual(hero.habit_peacefulness.raw_value, self.attributes['peacefulness']) self.assertEqual(hero.habit_honor.raw_value, self.attributes['honor']) self.assertEqual(hero.preferences.archetype, self.attributes['archetype']) self.assertEqual(hero.upbringing, self.attributes['upbringing']) self.assertEqual(hero.first_death, self.attributes['first_death']) self.assertEqual(hero.death_age, self.attributes['death_age']) class RegisterSpendingTests(utils_testcase.TestCase): def setUp(self): super().setUp() self.places = game_logic.create_test_map() account = self.accounts_factory.create_account() self.storage = game_logic_storage.LogicStorage() self.storage.load_account_data(account) self.hero = self.storage.accounts_to_heroes[account.id] self.hero.premium_state_end_at game_tt_services.debug_clear_service() @mock.patch('the_tale.game.heroes.objects.Hero.can_change_place_power', lambda hero, place: True) def test_not_in_place(self): self.hero.position.set_position(0, 0) self.assertEqual(self.hero.position.place_id, None) logic.register_spending(self.hero, 100) impacts = game_tt_services.money_impacts.cmd_get_targets_impacts(targets=[(tt_api_impacts.OBJECT_TYPE.PLACE, self.places[0].id)]) self.assertEqual(impacts, []) @mock.patch('the_tale.game.heroes.objects.Hero.can_change_place_power', lambda hero, place: False) def test_can_not_change_place_power(self): self.hero.position.set_place(self.places[0]) logic.register_spending(self.hero, 100) impacts = game_tt_services.money_impacts.cmd_get_targets_impacts(targets=[(tt_api_impacts.OBJECT_TYPE.PLACE, self.places[0].id)]) self.assertEqual(impacts, []) @mock.patch('the_tale.game.heroes.objects.Hero.can_change_place_power', lambda hero, place: True) def test_can_change_place_power(self): self.hero.position.set_place(self.places[0]) logic.register_spending(self.hero, 100) impacts = game_tt_services.money_impacts.cmd_get_targets_impacts(targets=[(tt_api_impacts.OBJECT_TYPE.PLACE, self.places[0].id)]) self.assertEqual(len(impacts), 1) self.assertEqual(impacts[0].amount, 100) self.assertTrue(impacts[0].target_type.is_PLACE) self.assertEqual(impacts[0].target_id, self.places[0].id) @mock.patch('the_tale.game.heroes.objects.Hero.can_change_place_power', lambda hero, place: True) def test_can_change_place_power__below_zero(self): self.hero.position.set_place(self.places[0]) logic.register_spending(self.hero, 100) logic.register_spending(self.hero, -50) impacts = game_tt_services.money_impacts.cmd_get_targets_impacts(targets=[(tt_api_impacts.OBJECT_TYPE.PLACE, self.places[0].id)]) self.assertEqual(len(impacts), 1) self.assertEqual(impacts[0].amount, 150) class GetPlacesPathModifiersTests(places_helpers.PlacesTestsMixin, utils_testcase.TestCase): def setUp(self): super().setUp() self.places = game_logic.create_test_map() account = self.accounts_factory.create_account(is_fast=True) self.storage = game_logic_storage.LogicStorage() self.storage.load_account_data(account) self.hero = self.storage.accounts_to_heroes[account.id] def place_0_cost(self): return logic.get_places_path_modifiers(self.hero)[self.places[0].id] def test_every_place_has_modifier(self): modifiers = logic.get_places_path_modifiers(self.hero) self.assertEqual(set(modifiers.keys()), {place.id for place in self.places}) def test_race_bonus(self): self.places[0].race = game_relations.RACE.random(exclude=(self.hero.race,)) with self.check_almost_delta(self.place_0_cost, -c.PATH_MODIFIER_MINOR_DELTA): self.places[0].race = self.hero.race def test_modifier_bonus(self): self.assertFalse(self.places[0].is_modifier_active()) with self.check_almost_delta(self.place_0_cost, -c.PATH_MODIFIER_MINOR_DELTA): self.places[0].set_modifier(places_modifiers.CITY_MODIFIERS.FORT) self.create_effect(self.places[0].id, value=100500, attribute=places_relations.ATTRIBUTE.MODIFIER_FORT, delta=0) self.places[0].refresh_attributes() self.assertTrue(self.places[0].is_modifier_active()) def test_home_place(self): with self.check_almost_delta(self.place_0_cost, -c.PATH_MODIFIER_NORMAL_DELTA): self.hero.preferences.set(relations.PREFERENCE_TYPE.PLACE, self.places[0]) def test_friend(self): with self.check_almost_delta(self.place_0_cost, -c.PATH_MODIFIER_NORMAL_DELTA): self.hero.preferences.set(relations.PREFERENCE_TYPE.FRIEND, self.places[0].persons[0]) def test_enemy(self): with self.check_almost_delta(self.place_0_cost, c.PATH_MODIFIER_NORMAL_DELTA): self.hero.preferences.set(relations.PREFERENCE_TYPE.ENEMY, self.places[0].persons[0]) def test_tax(self): self.places[0].attrs.size = 10 self.places[0].refresh_attributes() self.assertEqual(self.places[0].attrs.tax, 0) with self.check_almost_delta(self.place_0_cost, c.PATH_MODIFIER_NORMAL_DELTA): self.create_effect(self.places[0].id, value=100, attribute=places_relations.ATTRIBUTE.TAX, delta=0) self.places[0].refresh_attributes() HABITS_DELTAS = [(-1, -1, -c.PATH_MODIFIER_MINOR_DELTA), (-1, 0, 0), (-1, +1, +c.PATH_MODIFIER_MINOR_DELTA), ( 0, -1, 0), ( 0, 0, 0), ( 0, +1, 0), (+1, -1, +c.PATH_MODIFIER_MINOR_DELTA), (+1, 0, 0), (+1, +1, -c.PATH_MODIFIER_MINOR_DELTA)] def test_habits__honor(self): for place_direction, hero_direction, expected_delta in self.HABITS_DELTAS: self.places[0].habit_honor.set_habit(0) self.hero.habit_honor.set_habit(0) with self.check_almost_delta(self.place_0_cost, expected_delta): self.places[0].habit_honor.set_habit(place_direction * c.HABITS_BORDER) self.hero.habit_honor.set_habit(hero_direction * c.HABITS_BORDER) def test_habits__peacefulness(self): for place_direction, hero_direction, expected_delta in self.HABITS_DELTAS: self.places[0].habit_peacefulness.set_habit(0) self.hero.habit_peacefulness.set_habit(0) with self.check_almost_delta(self.place_0_cost, expected_delta): self.places[0].habit_peacefulness.set_habit(place_direction * c.HABITS_BORDER) self.hero.habit_peacefulness.set_habit(hero_direction * c.HABITS_BORDER)
import ray import pytest from ray.tests.conftest import * # noqa import numpy as np from ray import workflow from ray.workflow.tests import utils from ray.workflow import workflow_storage @ray.remote def checkpoint_dag(checkpoint): @ray.remote def large_input(): return np.arange(2 ** 24) @ray.remote def identity(x): return x @ray.remote def average(x): return np.mean(x) x = utils.update_workflow_options( large_input, name="large_input", checkpoint=checkpoint ).bind() y = utils.update_workflow_options( identity, name="identity", checkpoint=checkpoint ).bind(x) return workflow.continuation( utils.update_workflow_options(average, name="average").bind(y) ) def _assert_step_checkpoints(wf_storage, step_id, mode): result = wf_storage.inspect_step(step_id) if mode == "all_skipped": assert not result.output_object_valid assert result.output_step_id is None assert not result.args_valid assert not result.func_body_valid assert not result.step_options elif mode == "output_skipped": assert not result.output_object_valid assert result.output_step_id is None assert result.args_valid assert result.func_body_valid assert result.step_options is not None elif mode == "checkpointed": assert result.output_object_valid or result.output_step_id is not None else: raise ValueError("Unknown mode.") def test_checkpoint_dag_skip_all(workflow_start_regular_shared): outputs = utils.run_workflow_dag_with_options( checkpoint_dag, (False,), workflow_id="checkpoint_skip", name="checkpoint_dag", checkpoint=False, ) assert np.isclose(outputs, 8388607.5) recovered = ray.get(workflow.resume("checkpoint_skip")) assert np.isclose(recovered, 8388607.5) wf_storage = workflow_storage.WorkflowStorage("checkpoint_skip") _assert_step_checkpoints(wf_storage, "checkpoint_dag", mode="output_skipped") _assert_step_checkpoints(wf_storage, "large_input", mode="all_skipped") _assert_step_checkpoints(wf_storage, "identity", mode="all_skipped") _assert_step_checkpoints(wf_storage, "average", mode="all_skipped") def test_checkpoint_dag_skip_partial(workflow_start_regular_shared): outputs = utils.run_workflow_dag_with_options( checkpoint_dag, (False,), workflow_id="checkpoint_partial", name="checkpoint_dag", ) assert np.isclose(outputs, 8388607.5) recovered = ray.get(workflow.resume("checkpoint_partial")) assert np.isclose(recovered, 8388607.5) wf_storage = workflow_storage.WorkflowStorage("checkpoint_partial") _assert_step_checkpoints(wf_storage, "checkpoint_dag", mode="checkpointed") _assert_step_checkpoints(wf_storage, "large_input", mode="output_skipped") _assert_step_checkpoints(wf_storage, "identity", mode="output_skipped") _assert_step_checkpoints(wf_storage, "average", mode="checkpointed") def test_checkpoint_dag_full(workflow_start_regular_shared): outputs = utils.run_workflow_dag_with_options( checkpoint_dag, (True,), workflow_id="checkpoint_whole", name="checkpoint_dag" ) assert np.isclose(outputs, 8388607.5) recovered = ray.get(workflow.resume("checkpoint_whole")) assert np.isclose(recovered, 8388607.5) wf_storage = workflow_storage.WorkflowStorage("checkpoint_whole") _assert_step_checkpoints(wf_storage, "checkpoint_dag", mode="checkpointed") _assert_step_checkpoints(wf_storage, "large_input", mode="checkpointed") _assert_step_checkpoints(wf_storage, "identity", mode="checkpointed") _assert_step_checkpoints(wf_storage, "average", mode="checkpointed") if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", __file__]))
# -*- coding: UTF-8 -*- import numpy as np from scipy.optimize import minimize from scipy.linalg import kron, circulant, inv from scipy.sparse.linalg import cg from scipy.sparse import csr_matrix, diags from scipy.io import mmwrite, mmread # ---------------- #MINIMIZE = True MINIMIZE = False COST = 0 #method = 'CG' method = 'BFGS' tol = 1.e-7 verbose = True MAXITER = 100 FREQ = 10 list_iters = list(range(0,MAXITER,FREQ))[1:] # ---------------- norm = lambda M: np.linalg.norm(M, 'fro') # ... M = mmread("figa/My.mtx") M = M.tocsr() # ... # ... #from scipy.linalg import toeplitz #import numpy as np #p = 3 #n = 128 #a=np.zeros(n) ; b=np.zeros(n) #a[:p+1] = np.random.random(p+1) #a[n-p:] = np.random.random(p) #b[:p+1] = np.random.random(p+1) #b[n-p:] = np.random.random(p) #a[0] = 1. #b[0] = a[0] #M = toeplitz(a,b) # ... # ... if MINIMIZE: M = csr_matrix(M) diag = M.diagonal() shift = 0 D = diags(diag,shift) Z = M-D n,m = M.shape # ... # ... def cost0(c): C = circulant(c) nr = norm(M-C) return nr # ... # ... def cost1(c): C = circulant(c) invC = inv(C) I = np.eye(n) nr = norm(I-invC*M) return nr # ... # ... def cost2(c): C = circulant(c) nr = norm(Z-C) return nr # ... # ... if COST == 0: cost = cost0 if COST == 1: cost = cost1 if COST == 2: cost = cost2 # ... # ... x0 = np.zeros(n) x0[0] = 1. res = minimize( cost, x0 \ , method=method \ , options={'gtol': tol, 'disp': verbose}) c = res.x # ... else: # ... n,m = M.shape MD = M.todense() c = np.zeros(n) for k in range(0,n): c1 =0.; c2=0. for i in range(0,n-k): c1 += MD[i,k+i] for i in range(n-k,n): c2 += MD[i,k+i-n] c[k] = ( c1 + c2 ) / n # ... # ... C = circulant(c) invC = inv(C) C = csr_matrix(C) # ... # ... if COST in [0,1]: P = invC if COST in [2]: _P = D + C _P = _P.todense() P = inv(_P) # idiag = np.array([1./d for d in diag]) # shift = 0 # invD = diags(idiag,shift) # P = invD + invC # ... # ... b = np.ones(n) print("----- stand-alone cg ----") for maxiter in list_iters: x,niter = cg(M, b, maxiter=maxiter) print("Error after ", maxiter, " iterations : ", np.linalg.norm(M*x-b)) print("----- preconditionned cg ----") for maxiter in list_iters: x,niter = cg(M, b, M=P, maxiter=maxiter) print("Error after ", maxiter, " iterations : ", np.linalg.norm(M*x-b)) # ... mmwrite("/home/ratnani/M.mtx", M) mmwrite("/home/ratnani/P.mtx", C)
""" Number of Connected Components in an Undirected Graph You have a graph of n nodes. You are given an integer n and an array edges where edges[i] = [ai, bi] indicates that there is an edge between ai and bi in the graph. Return the number of connected components in the graph. Example 1: Input: n = 5, edges = [[0,1],[1,2],[3,4]] Output: 2 Example 2: Input: n = 5, edges = [[0,1],[1,2],[2,3],[3,4]] Output: 1 Constraints: 1 <= n <= 2000 1 <= edges.length <= 5000 edges[i].length == 2 0 <= ai <= bi < n ai != bi There are no repeated edges. """ class Solution: def countComponents(self, n, edges): count = 0 graph = [[] for _ in range(n)] seen = [False for _ in range(n)] for a, b in edges: graph[a].append(b) graph[b].append(a) def dfs(node): for adj in graph[node]: if not seen[adj]: seen[adj] = True dfs(adj) for i in range(n): if not seen[i]: count += 1 seen[i] = True dfs(i) return count
from .autogen import DocumentationGenerator from .gathering_members import get_methods from .gathering_members import get_classes from .gathering_members import get_functions
import torch import torch.nn as nn import numpy as np import model_search from genotypes import PRIMITIVES from genotypes import Genotype import torch.nn.functional as F from operations import * class AutoDeeplab (nn.Module) : def __init__(self, num_classes, num_layers, criterion, num_channel = 20, multiplier = 5, step = 5, cell=model_search.Cell, crop_size=320, lambda_latency=0.0004): super(AutoDeeplab, self).__init__() self.level_2 = [] self.level_4 = [] self.level_8 = [] self.level_16 = [] self.level_32 = [] self.cells = nn.ModuleList() self._num_layers = num_layers self._num_classes = num_classes self._step = step self._multiplier = multiplier self._num_channel = num_channel self._crop_size = crop_size self._criterion = criterion self._initialize_alphas () self.lambda_latency=lambda_latency self.stem0 = nn.Sequential( nn.Conv2d(3, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU () ) self.stem1 = nn.Sequential( nn.Conv2d(64, 64, 3, padding=1), nn.BatchNorm2d(64), nn.ReLU () ) self.stem2 = nn.Sequential( nn.Conv2d(64, 128, 3, stride=2, padding=1), nn.BatchNorm2d(128), nn.ReLU () ) C_prev_prev = 64 C_prev = 128 for i in range (self._num_layers) : # def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, rate) : rate = 0 , 1, 2 reduce rate if i == 0 : cell1 = cell (self._step, self._multiplier, -1, C_prev, self._num_channel, 1) cell2 = cell (self._step, self._multiplier, -1, C_prev, self._num_channel * 2, 2) self.cells += [cell1] self.cells += [cell2] elif i == 1 : cell1_1 = cell (self._step, self._multiplier, C_prev, self._num_channel, self._num_channel, 1) cell1_2 = cell (self._step, self._multiplier, C_prev, self._num_channel * 2, self._num_channel, 0) cell2_1 = cell (self._step, self._multiplier, -1, self._num_channel, self._num_channel * 2, 2) cell2_2 = cell (self._step, self._multiplier, -1, self._num_channel * 2, self._num_channel * 2, 1) cell3 = cell (self._step, self._multiplier, -1, self._num_channel * 2, self._num_channel * 4, 2) self.cells += [cell1_1] self.cells += [cell1_2] self.cells += [cell2_1] self.cells += [cell2_2] self.cells += [cell3] elif i == 2 : cell1_1 = cell (self._step, self._multiplier, self._num_channel, self._num_channel, self._num_channel, 1) cell1_2 = cell (self._step, self._multiplier, self._num_channel, self._num_channel * 2, self._num_channel, 0) cell2_1 = cell (self._step, self._multiplier, self._num_channel * 2, self._num_channel, self._num_channel * 2, 2) cell2_2 = cell (self._step, self._multiplier, self._num_channel * 2, self._num_channel * 2, self._num_channel * 2, 1) cell2_3 = cell (self._step, self._multiplier, self._num_channel * 2, self._num_channel * 4, self._num_channel * 2, 0) cell3_1 = cell (self._step, self._multiplier, -1, self._num_channel * 2, self._num_channel * 4, 2) cell3_2 = cell (self._step, self._multiplier, -1, self._num_channel * 4, self._num_channel * 4, 1) cell4 = cell (self._step, self._multiplier, -1, self._num_channel * 4, self._num_channel * 8, 2) self.cells += [cell1_1] self.cells += [cell1_2] self.cells += [cell2_1] self.cells += [cell2_2] self.cells += [cell2_3] self.cells += [cell3_1] self.cells += [cell3_2] self.cells += [cell4] elif i == 3 : cell1_1 = cell (self._step, self._multiplier, self._num_channel, self._num_channel, self._num_channel, 1) cell1_2 = cell (self._step, self._multiplier, self._num_channel, self._num_channel * 2, self._num_channel, 0) cell2_1 = cell (self._step, self._multiplier, self._num_channel * 2, self._num_channel, self._num_channel * 2, 2) cell2_2 = cell (self._step, self._multiplier, self._num_channel * 2, self._num_channel * 2, self._num_channel * 2, 1) cell2_3 = cell (self._step, self._multiplier, self._num_channel * 2, self._num_channel * 4, self._num_channel * 2, 0) cell3_1 = cell (self._step, self._multiplier, self._num_channel * 4, self._num_channel * 2, self._num_channel * 4, 2) cell3_2 = cell (self._step, self._multiplier, self._num_channel * 4, self._num_channel * 4, self._num_channel * 4, 1) cell3_3 = cell (self._step, self._multiplier, self._num_channel * 4, self._num_channel * 8, self._num_channel * 4, 0) cell4_1 = cell (self._step, self._multiplier, -1, self._num_channel * 4, self._num_channel * 8, 2) cell4_2 = cell (self._step, self._multiplier, -1, self._num_channel * 8, self._num_channel * 8, 1) self.cells += [cell1_1] self.cells += [cell1_2] self.cells += [cell2_1] self.cells += [cell2_2] self.cells += [cell2_3] self.cells += [cell3_1] self.cells += [cell3_2] self.cells += [cell3_3] self.cells += [cell4_1] self.cells += [cell4_2] else : cell1_1 = cell (self._step, self._multiplier, self._num_channel, self._num_channel, self._num_channel, 1) cell1_2 = cell (self._step, self._multiplier, self._num_channel, self._num_channel * 2, self._num_channel, 0) cell2_1 = cell (self._step, self._multiplier, self._num_channel * 2, self._num_channel, self._num_channel * 2, 2) cell2_2 = cell (self._step, self._multiplier, self._num_channel * 2, self._num_channel * 2, self._num_channel * 2, 1) cell2_3 = cell (self._step, self._multiplier, self._num_channel * 2, self._num_channel * 4, self._num_channel * 2, 0) cell3_1 = cell (self._step, self._multiplier, self._num_channel * 4, self._num_channel * 2, self._num_channel * 4, 2) cell3_2 = cell (self._step, self._multiplier, self._num_channel * 4, self._num_channel * 4, self._num_channel * 4, 1) cell3_3 = cell (self._step, self._multiplier, self._num_channel * 4, self._num_channel * 8, self._num_channel * 4, 0) cell4_1 = cell (self._step, self._multiplier, self._num_channel * 8, self._num_channel * 4, self._num_channel * 8, 2) cell4_2 = cell (self._step, self._multiplier, self._num_channel * 8, self._num_channel * 8, self._num_channel * 8, 1) self.cells += [cell1_1] self.cells += [cell1_2] self.cells += [cell2_1] self.cells += [cell2_2] self.cells += [cell2_3] self.cells += [cell3_1] self.cells += [cell3_2] self.cells += [cell3_3] self.cells += [cell4_1] self.cells += [cell4_2] self.aspp_device=nn.ModuleList() for i in range(7): self.aspp_device.append(nn.ModuleList()) for j in range(4): self.aspp_device[i].append(nn.Sequential ( ASPP (self._num_channel*(2**j), 96//(4*(2**j)), 96//(4*(2**j)), self._num_classes) ) ) self.device_output=[[]]*7 self.aspp_4 = nn.Sequential ( ASPP (self._num_channel, 24, 24, self._num_classes) ) self.aspp_8 = nn.Sequential ( ASPP (self._num_channel * 2, 12, 12, self._num_classes) ) self.aspp_16 = nn.Sequential ( ASPP (self._num_channel * 4, 6, 6, self._num_classes) ) self.aspp_32 = nn.Sequential ( ASPP (self._num_channel * 8, 3, 3, self._num_classes) ) def forward (self, x) : self.level_2 = [] self.level_4 = [] self.level_8 = [] self.level_16 = [] self.level_32 = [] self.la_4=[] self.la_8=[] self.la_16=[] self.la_32=[] self.la_4.append(0) self.latency = [[0]*4 for _ in range(7)] # self._init_level_arr (x) temp = self.stem0 (x) self.level_2.append (self.stem1 (temp)) self.level_4.append (self.stem2 (self.level_2[-1])) weight_cell=F.softmax(self.alphas_cell, dim=-1) weight_network=F.softmax(self.alphas_network, dim=-1) weight_part=F.softmax(self.alphas_part, dim=-1) device_output=[[]]*7 count = 0 for layer in range (self._num_layers) : if layer == 0 : level4_new = self.cells[count] (None, self.level_4[-1], weight_cell) la_4_new = self.cells[count].latency(None, self.la_4[-1], weight_cell) count += 1 level8_new = self.cells[count] (None, self.level_4[-1], weight_cell) la_8_new = self.cells[count].latency(None, self.la_4[-1], weight_cell) count += 1 self.level_4.append (level4_new * weight_network[layer][0][0]) self.level_8.append (level8_new * weight_network[layer][1][0]) self.la_4.append (la_4_new * weight_network[layer][0][0]) self.la_8.append (la_8_new * weight_network[layer][1][0]) # print ((self.level_4[-2]).size (), (self.level_4[-1]).size()) elif layer == 1 : level4_new_1 = self.cells[count] (self.level_4[-2], self.level_4[-1], weight_cell) la_4_new_1 = self.cells[count].latency(self.la_4[-2],self.la_4[-1] , weight_cell) count += 1 level4_new_2 = self.cells[count] (self.level_4[-2], self.level_8[-1], weight_cell) la_4_new_2 = self.cells[count].latency(self.la_4[-2], self.la_8[-1], weight_cell) count += 1 level4_new = weight_network[layer][0][0] * level4_new_1 + weight_network[layer][0][1] * level4_new_2 la_4_new = weight_network[layer][0][0] * la_4_new_1 + weight_network[layer][0][1] * la_4_new_2 level8_new_1 = self.cells[count] (None, self.level_4[-1], weight_cell) la_8_new_1 = self.cells[count].latency(None, self.la_4[-1], weight_cell) count += 1 level8_new_2 = self.cells[count] (None, self.level_8[-1], weight_cell) la_8_new_2 = self.cells[count].latency(None, self.la_8[-1], weight_cell) count += 1 level8_new = weight_network[layer][1][0] * level8_new_1 + weight_network[layer][1][1] * level8_new_2 la_8_new = weight_network[layer][1][0] * la_8_new_1 + weight_network[layer][1][1] * la_8_new_2 level16_new = self.cells[count] (None, self.level_8[-1], weight_cell) la_16_new = self.cells[count].latency (None, self.la_8[-1], weight_cell) level16_new = level16_new * weight_network[layer][2][0] la_16_new = la_16_new * weight_network[layer][2][0] count += 1 self.level_4.append (level4_new) self.level_8.append (level8_new) self.level_16.append (level16_new) self.la_4.append (la_4_new) self.la_8.append (la_8_new) self.la_16.append (la_16_new) elif layer == 2 : level4_new_1 = self.cells[count] (self.level_4[-2], self.level_4[-1], weight_cell) la_4_new_1 = self.cells[count].latency (self.la_4[-2], self.la_4[-1], weight_cell) count += 1 level4_new_2 = self.cells[count] (self.level_4[-2], self.level_8[-1], weight_cell) la_4_new_2 = self.cells[count].latency (self.la_4[-2], self.la_8[-1], weight_cell) count += 1 level4_new = weight_network[layer][0][0] * level4_new_1 + weight_network[layer][0][1] * level4_new_2 la_4_new = weight_network[layer][0][0] * la_4_new_1 + weight_network[layer][0][1] * la_4_new_2 level8_new_1 = self.cells[count] (self.level_8[-2], self.level_4[-1], weight_cell) la_8_new_1 = self.cells[count].latency (self.la_8[-2], self.la_4[-1], weight_cell) count += 1 level8_new_2 = self.cells[count] (self.level_8[-2], self.level_8[-1], weight_cell) la_8_new_2 = self.cells[count].latency (self.la_8[-2], self.la_8[-1], weight_cell) count += 1 # print (self.level_8[-1].size(),self.level_16[-1].size()) level8_new_3 = self.cells[count] (self.level_8[-2], self.level_16[-1], weight_cell) la_8_new_3 = self.cells[count].latency (self.la_8[-2], self.la_16[-1], weight_cell) count += 1 level8_new = weight_network[layer][1][0] * level8_new_1 + weight_network[layer][1][1] * level8_new_2 + weight_network[layer][1][2] * level8_new_3 la_8_new = weight_network[layer][1][0] * la_8_new_1 + weight_network[layer][1][1] * la_8_new_2 +weight_network[layer][1][2] * la_8_new_3 level16_new_1 = self.cells[count] (None, self.level_8[-1], weight_cell) la_16_new_1 = self.cells[count].latency (None, self.la_8[-1], weight_cell) count += 1 level16_new_2 = self.cells[count] (None, self.level_16[-1], weight_cell) la_16_new_2 = self.cells[count].latency (None, self.la_16[-1], weight_cell) count += 1 la_16_new = weight_network[layer][2][0] * la_16_new_1 + weight_network[layer][2][1] * la_16_new_2 level16_new = weight_network[layer][2][0] * level16_new_1 + weight_network[layer][2][1] * level16_new_2 level32_new = self.cells[count] (None, self.level_16[-1], weight_cell) la_32_new = self.cells[count].latency (None, self.la_16[-1], weight_cell) level32_new = level32_new * weight_network[layer][3][0] la_32_new = la_32_new * weight_network[layer][3][0] count += 1 self.level_4.append (level4_new) self.level_8.append (level8_new) self.level_16.append (level16_new) self.level_32.append (level32_new) self.la_4.append (la_4_new) self.la_8.append (la_8_new) self.la_16.append (la_16_new) self.la_32.append (la_32_new) elif layer == 3 : level4_new_1 = self.cells[count] (self.level_4[-2], self.level_4[-1], weight_cell) la_4_new_1 = self.cells[count].latency (self.la_4[-2], self.la_4[-1], weight_cell) count += 1 level4_new_2 = self.cells[count] (self.level_4[-2], self.level_8[-1], weight_cell) la_4_new_2 = self.cells[count].latency (self.la_4[-2], self.la_8[-1], weight_cell) count += 1 level4_new = weight_network[layer][0][0] * level4_new_1 + weight_network[layer][0][1] * level4_new_2 la_4_new = weight_network[layer][0][0] * la_4_new_1 + weight_network[layer][0][1] * la_4_new_2 level8_new_1 = self.cells[count] (self.level_8[-2], self.level_4[-1], weight_cell) la_8_new_1 = self.cells[count].latency (self.la_8[-2], self.la_4[-1], weight_cell) count += 1 level8_new_2 = self.cells[count] (self.level_8[-2], self.level_8[-1], weight_cell) la_8_new_2 = self.cells[count].latency (self.la_8[-2], self.la_8[-1], weight_cell) count += 1 level8_new_3 = self.cells[count] (self.level_8[-2], self.level_16[-1], weight_cell) la_8_new_3 = self.cells[count].latency (self.la_8[-2], self.la_16[-1], weight_cell) count += 1 level8_new = weight_network[layer][1][0] * level8_new_1 + weight_network[layer][1][1] * level8_new_2 + weight_network[layer][1][2] * level8_new_3 la_8_new = weight_network[layer][1][0] * la_8_new_1 + weight_network[layer][1][1] * la_8_new_2 + weight_network[layer][1][2] * la_8_new_3 level16_new_1 = self.cells[count] (self.level_16[-2], self.level_8[-1], weight_cell) la_16_new_1 = self.cells[count].latency (self.la_16[-2], self.la_8[-1], weight_cell) count += 1 level16_new_2 = self.cells[count] (self.level_16[-2], self.level_16[-1], weight_cell) la_16_new_2 = self.cells[count].latency (self.la_16[-2], self.la_16[-1], weight_cell) count += 1 level16_new_3 = self.cells[count] (self.level_16[-2], self.level_32[-1], weight_cell) la_16_new_3 = self.cells[count].latency (self.la_16[-2], self.la_32[-1], weight_cell) count += 1 level16_new = weight_network[layer][2][0] * level16_new_1 + weight_network[layer][2][1] * level16_new_2 + weight_network[layer][2][2] * level16_new_3 la_16_new = weight_network[layer][2][0] * la_16_new_1 + weight_network[layer][2][1] * la_16_new_2 + weight_network[layer][2][2] * la_16_new_3 level32_new_1 = self.cells[count] (None, self.level_16[-1], weight_cell) la_32_new_1 = self.cells[count].latency (None, self.la_16[-1], weight_cell) count += 1 level32_new_2 = self.cells[count] (None, self.level_32[-1], weight_cell) la_32_new_2 = self.cells[count].latency (None, self.la_32[-1], weight_cell) count += 1 level32_new = weight_network[layer][3][0] * level32_new_1 + weight_network[layer][3][1] * level32_new_2 la_32_new = weight_network[layer][3][0] * la_32_new_1 + weight_network[layer][3][1] * la_32_new_2 self.level_4.append (level4_new) self.level_8.append (level8_new) self.level_16.append (level16_new) self.level_32.append (level32_new) self.la_4.append (la_4_new) self.la_8.append (la_8_new) self.la_16.append (la_16_new) self.la_32.append (la_32_new) else : level4_new_1 = self.cells[count] (self.level_4[-2], self.level_4[-1], weight_cell) la_4_new_1 = self.cells[count].latency (self.la_4[-2], self.la_4[-1], weight_cell) count += 1 level4_new_2 = self.cells[count] (self.level_4[-2], self.level_8[-1], weight_cell) la_4_new_2 = self.cells[count].latency (self.la_4[-2], self.la_8[-1], weight_cell) count += 1 level4_new = weight_network[layer][0][0] * level4_new_1 + weight_network[layer][0][1] * level4_new_2 la_4_new = weight_network[layer][0][0] * la_4_new_1 + weight_network[layer][0][1] * la_4_new_2 if layer<11: device_output[layer-4].append(self.aspp_device[layer-4][0](level4_new)) self.latency[layer-4][0]=la_4_new level8_new_1 = self.cells[count] (self.level_8[-2], self.level_4[-1], weight_cell) la_8_new_1 = self.cells[count].latency (self.la_8[-2], self.la_4[-1], weight_cell) count += 1 level8_new_2 = self.cells[count] (self.level_8[-2], self.level_8[-1], weight_cell) la_8_new_2 = self.cells[count].latency (self.la_8[-2], self.la_8[-1], weight_cell) count += 1 level8_new_3 = self.cells[count] (self.level_8[-2], self.level_16[-1], weight_cell) la_8_new_3 = self.cells[count].latency (self.la_8[-2], self.la_16[-1], weight_cell) count += 1 level8_new = weight_network[layer][1][0] * level8_new_1 + weight_network[layer][1][1] * level8_new_2 + weight_network[layer][1][2] * level8_new_3 la_8_new = weight_network[layer][1][0] * la_8_new_1 + weight_network[layer][1][1] * la_8_new_2 + weight_network[layer][1][2] * la_8_new_3 if layer<11: device_output[layer-4].append(self.aspp_device[layer-4][1](level8_new)) self.latency[layer-4][1]=la_8_new level16_new_1 = self.cells[count] (self.level_16[-2], self.level_8[-1], weight_cell) la_16_new_1 = self.cells[count].latency (self.la_16[-2], self.la_8[-1], weight_cell) count += 1 level16_new_2 = self.cells[count] (self.level_16[-2], self.level_16[-1], weight_cell) la_16_new_2 = self.cells[count].latency (self.la_16[-2], self.la_16[-1], weight_cell) count += 1 level16_new_3 = self.cells[count] (self.level_16[-2], self.level_32[-1], weight_cell) la_16_new_3 = self.cells[count].latency (self.la_16[-2], self.la_32[-1], weight_cell) count += 1 level16_new = weight_network[layer][2][0] * level16_new_1 + weight_network[layer][2][1] * level16_new_2 + weight_network[layer][2][2] * level16_new_3 la_16_new = weight_network[layer][2][0] * la_16_new_1 + weight_network[layer][2][1] * la_16_new_2 + weight_network[layer][2][2] * la_16_new_3 if layer<11: device_output[layer-4].append(self.aspp_device[layer-4][2](level16_new)) self.latency[layer-4][2]=la_16_new level32_new_1 = self.cells[count] (self.level_32[-2], self.level_16[-1], weight_cell) la_32_new_1 = self.cells[count].latency (self.la_32[-2], self.la_16[-1], weight_cell) count += 1 level32_new_2 = self.cells[count] (self.level_32[-2], self.level_32[-1], weight_cell) la_32_new_2 = self.cells[count].latency (self.la_32[-2], self.la_32[-1], weight_cell) count += 1 level32_new = weight_network[layer][3][0] * level32_new_1 + weight_network[layer][3][1] * level32_new_2 la_32_new = weight_network[layer][3][0] * la_32_new_1 + weight_network[layer][3][1] * la_32_new_2 if layer<11: device_output[layer-4].append(self.aspp_device[layer-4][3](level32_new)) self.latency[layer-4][3]=la_32_new self.level_4.append (level4_new) self.level_8.append (level8_new) self.level_16.append (level16_new) self.level_32.append (level32_new) self.la_4.append (la_4_new) self.la_8.append (la_8_new) self.la_16.append (la_16_new) self.la_32.append (la_32_new) # print (self.level_4[-1].size(),self.level_8[-1].size(),self.level_16[-1].size(),self.level_32[-1].size()) # concate_feature_map = torch.cat ([self.level_4[-1], self.level_8[-1],self.level_16[-1], self.level_32[-1]], 1) aspp_result_4 = self.aspp_4 (self.level_4[-1]) aspp_result_8 = self.aspp_8 (self.level_8[-1]) aspp_result_16 = self.aspp_16 (self.level_16[-1]) aspp_result_32 = self.aspp_32 (self.level_32[-1]) upsample = nn.Upsample(size=x.size()[2:], mode='bilinear', align_corners=True) aspp_result_4 = upsample (aspp_result_4) aspp_result_8 = upsample (aspp_result_8) aspp_result_16 = upsample (aspp_result_16) aspp_result_32 = upsample (aspp_result_32) sum_feature_map1 = torch.add (aspp_result_4, aspp_result_8) sum_feature_map2 = torch.add (aspp_result_16, aspp_result_32) sum_feature_map = torch.add (sum_feature_map1, sum_feature_map2) device_out=[0]*7 for i in range(len(device_output)): device_output[i][0] = upsample (device_output[i][0]) device_output[i][1] = upsample (device_output[i][1]) device_output[i][2] = upsample (device_output[i][2]) device_output[i][3] = upsample (device_output[i][3]) #device_out[i] = torch.add(device_output[i][0],device_output[i][1],device_output[i][2],device_output[i][3]) add1=torch.add(device_output[i][0],device_output[i][1]) add2=torch.add(device_output[i][2],device_output[i][3]) device_out[i]=torch.add(add1,add2) device_out[i]=device_out[i]*weight_part[i] device_logits=device_out[0] for i in range(1,len(device_out)): device_logits=torch.add(device_out[i], device_logits) #device_out=torch.sum(device_out) latency_loss=[0]*7 for i in range(7): for j in range(4): latency_loss[i]+=self.latency[i][j] latency_loss[i]*=weight_part[i] total_latency_loss=sum(latency_loss) return sum_feature_map, device_logits, total_latency_loss def _initialize_alphas(self): k = sum(1 for i in range(self._step) for n in range(2+i)) num_ops = len(PRIMITIVES) self.alphas_cell = torch.tensor (1e-3*torch.randn(k, num_ops).cuda(), requires_grad=True) self.alphas_network = torch.tensor (1e-3*torch.randn(self._num_layers, 4, 3).cuda(), requires_grad=True) self.alphas_part = torch.tensor (1e-3*torch.randn(7).cuda(), requires_grad=True) # self.alphas_cell = self.alphas_cell.cuda () # self.alphas_network = self.alphas_network.cuda () self._arch_parameters = [ self.alphas_cell, self.alphas_network, self.alphas_part ] def decode_network (self) : best_result = [] max_prop = 0 def _parse (weight_network, layer, curr_value, curr_result, last) : nonlocal best_result nonlocal max_prop if layer == self._num_layers : if max_prop < curr_value : # print (curr_result) best_result = curr_result[:] max_prop = curr_value return if layer == 0 : print ('begin0') num = 0 if last == num : curr_value = curr_value * weight_network[layer][num][0] curr_result.append ([num,0]) _parse (weight_network, layer + 1, curr_value, curr_result, 0) curr_value = curr_value / weight_network[layer][num][0] curr_result.pop () print ('end0-1') curr_value = curr_value * weight_network[layer][num][1] curr_result.append ([num,1]) _parse (weight_network, layer + 1, curr_value, curr_result, 1) curr_value = curr_value / weight_network[layer][num][1] curr_result.pop () elif layer == 1 : print ('begin1') num = 0 if last == num : curr_value = curr_value * weight_network[layer][num][0] curr_result.append ([num,0]) _parse (weight_network, layer + 1, curr_value, curr_result, 0) curr_value = curr_value / weight_network[layer][num][0] curr_result.pop () print ('end1-1') curr_value = curr_value * weight_network[layer][num][1] curr_result.append ([num,1]) _parse (weight_network, layer + 1, curr_value, curr_result, 1) curr_value = curr_value / weight_network[layer][num][1] curr_result.pop () num = 1 if last == num : curr_value = curr_value * weight_network[layer][num][0] curr_result.append ([num,0]) _parse (weight_network, layer + 1, curr_value, curr_result, 0) curr_value = curr_value / weight_network[layer][num][0] curr_result.pop () curr_value = curr_value * weight_network[layer][num][1] curr_result.append ([num,1]) _parse (weight_network, layer + 1, curr_value, curr_result, 1) curr_value = curr_value / weight_network[layer][num][1] curr_result.pop () curr_value = curr_value * weight_network[layer][num][2] curr_result.append ([num,2]) _parse (weight_network, layer + 1, curr_value, curr_result, 2) curr_value = curr_value / weight_network[layer][num][2] curr_result.pop () elif layer == 2 : print ('begin2') num = 0 if last == num : curr_value = curr_value * weight_network[layer][num][0] curr_result.append ([num,0]) _parse (weight_network, layer + 1, curr_value, curr_result, 0) curr_value = curr_value / weight_network[layer][num][0] curr_result.pop () print ('end2-1') curr_value = curr_value * weight_network[layer][num][1] curr_result.append ([num,1]) _parse (weight_network, layer + 1, curr_value, curr_result, 1) curr_value = curr_value / weight_network[layer][num][1] curr_result.pop () num = 1 if last == num : curr_value = curr_value * weight_network[layer][num][0] curr_result.append ([num,0]) _parse (weight_network, layer + 1, curr_value, curr_result, 0) curr_value = curr_value / weight_network[layer][num][0] curr_result.pop () curr_value = curr_value * weight_network[layer][num][1] curr_result.append ([num,1]) _parse (weight_network, layer + 1, curr_value, curr_result, 1) curr_value = curr_value / weight_network[layer][num][1] curr_result.pop () curr_value = curr_value * weight_network[layer][num][2] curr_result.append ([num,2]) _parse (weight_network, layer + 1, curr_value, curr_result, 2) curr_value = curr_value / weight_network[layer][num][2] curr_result.pop () num = 2 if last == num : curr_value = curr_value * weight_network[layer][num][0] curr_result.append ([num,0]) _parse (weight_network, layer + 1, curr_value, curr_result, 1) curr_value = curr_value / weight_network[layer][num][0] curr_result.pop () curr_value = curr_value * weight_network[layer][num][1] curr_result.append ([num,1]) _parse (weight_network, layer + 1, curr_value, curr_result, 2) curr_value = curr_value / weight_network[layer][num][1] curr_result.pop () curr_value = curr_value * weight_network[layer][num][2] curr_result.append ([num,2]) _parse (weight_network, layer + 1, curr_value, curr_result, 3) curr_value = curr_value / weight_network[layer][num][2] curr_result.pop () else : num = 0 if last == num : curr_value = curr_value * weight_network[layer][num][0] curr_result.append ([num,0]) _parse (weight_network, layer + 1, curr_value, curr_result, 0) curr_value = curr_value / weight_network[layer][num][0] curr_result.pop () curr_value = curr_value * weight_network[layer][num][1] curr_result.append ([num,1]) _parse (weight_network, layer + 1, curr_value, curr_result, 1) curr_value = curr_value / weight_network[layer][num][1] curr_result.pop () num = 1 if last == num : curr_value = curr_value * weight_network[layer][num][0] curr_result.append ([num,0]) _parse (weight_network, layer + 1, curr_value, curr_result, 0) curr_value = curr_value / weight_network[layer][num][0] curr_result.pop () curr_value = curr_value * weight_network[layer][num][1] curr_result.append ([num,1]) _parse (weight_network, layer + 1, curr_value, curr_result, 1) curr_value = curr_value / weight_network[layer][num][1] curr_result.pop () curr_value = curr_value * weight_network[layer][num][2] curr_result.append ([num,2]) _parse (weight_network, layer + 1, curr_value, curr_result, 2) curr_value = curr_value / weight_network[layer][num][2] curr_result.pop () num = 2 if last == num : curr_value = curr_value * weight_network[layer][num][0] curr_result.append ([num,0]) _parse (weight_network, layer + 1, curr_value, curr_result, 1) curr_value = curr_value / weight_network[layer][num][0] curr_result.pop () curr_value = curr_value * weight_network[layer][num][1] curr_result.append ([num,1]) _parse (weight_network, layer + 1, curr_value, curr_result, 2) curr_value = curr_value / weight_network[layer][num][1] curr_result.pop () curr_value = curr_value * weight_network[layer][num][2] curr_result.append ([num,2]) _parse (weight_network, layer + 1, curr_value, curr_result, 3) curr_value = curr_value / weight_network[layer][num][2] curr_result.pop () num = 3 if last == num : curr_value = curr_value * weight_network[layer][num][0] curr_result.append ([num,0]) _parse (weight_network, layer + 1, curr_value, curr_result, 2) curr_value = curr_value / weight_network[layer][num][0] curr_result.pop () curr_value = curr_value * weight_network[layer][num][1] curr_result.append ([num,1]) _parse (weight_network, layer + 1, curr_value, curr_result, 3) curr_value = curr_value / weight_network[layer][num][1] curr_result.pop () network_weight = F.softmax(self.alphas_network, dim=-1) * 5 network_weight = network_weight.data.cpu().numpy() _parse (network_weight, 0, 1, [],0) print (max_prop) return best_result def arch_parameters (self) : return self._arch_parameters def genotype(self): def _parse(weights): gene = [] n = 2 start = 0 for i in range(self._step): end = start + n W = weights[start:end].copy() edges = sorted (range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2] for j in edges: k_best = None for k in range(len(W[j])): if k != PRIMITIVES.index('none'): if k_best is None or W[j][k] > W[j][k_best]: k_best = k gene.append((PRIMITIVES[k_best], j)) start = end n += 1 return gene gene_cell = _parse(F.softmax(self.alphas_cell, dim=-1).data.cpu().numpy()) concat = range(2+self._step-self._multiplier, self._step+2) genotype = Genotype( cell=gene_cell, cell_concat=concat ) return genotype def softmax_network(self): weight_network=F.softmax(self.alphas_network, dim = -1).clone().detach() helper1=torch.ones(1).cuda() helper2=torch.ones(2).cuda() helper1=1 helper2[0]=1 for layer in range(12): if layer==0: weight_network[layer][0][0]=torch.ones(1, requires_grad=True) weight_network[layer][1][0]=torch.ones(1, requires_grad=True) if layer==1: weight_network[layer][0][:2]=F.softmax(weight_network[layer][0][:2], dim = -1) weight_network[layer][2][0]=torch.ones(1, requires_grad=True) if layer==2: weight_network[layer][0][:2]=F.softmax(weight_network[layer][0][:2], dim = -1) weight_network[layer][2][:2]=F.softmax(weight_network[layer][2][:2], dim = -1) weight_network[layer][3][0]=torch.ones(1, requires_grad=True) else: weight_network[layer][0][:2]=F.softmax(weight_network[layer][0][:2], dim = -1) weight_network[layer][3][:2]=F.softmax(weight_network[layer][3][:2], dim = -1) return weight_network def _loss (self, input, target) : logits, device_logits, latency_loss= self (input) lambda_latency=self.lambda_latency stem_latency = 7.8052422817230225 latency_loss = latency_loss + stem_latency #weight_part=F.softmax(self.alphas_part, dim = -1) # for i in range(len(device_logits)): # device_loss.append(self._criterion(device_logits[i], target)* self.alphas_part[i]) # device_loss=sum(device_loss) loss = self._criterion (logits, target) device_loss=self._criterion(device_logits, target) return logits, device_logits, device_loss + loss + lambda_latency*latency_loss, lambda_latency*latency_loss, loss, device_loss def main () : model = AutoDeeplab (5, 12, None) x = torch.tensor (torch.ones (4, 3, 224, 224)) result = model.decode_network () print (result) print (model.genotype()) # x = x.cuda() # y = model (x) # print (model.arch_parameters ()) # print (y.size()) if __name__ == '__main__' : main ()
from .individual_history_resource import *
""" This file includes the reimplementations of GSLIB functionality in Python. While this code will not be as well-tested and robust as the original GSLIB, it does provide the opportunity to build 2D spatial modeling projects in Python without the need to rely on compiled Fortran code from GSLIB. If you want to use the GSLIB compiled code called from Python workflows use the functions available with geostatspy.GSLIB. This file includes the (1) GSLIB subroutines (converted to Python), followed by the (2) functions: declus, gam, gamv, nscore, kb2d (more added all the time) Note: some GSLIB subroutines are not included as they were replaced by available NumPy and SciPy functionality or they were not required as we don't have to deal with graphics and files in the same manner as GSLIB. The original GSLIB code is from GSLIB: Geostatistical Library by Deutsch and Journel, 1998. The reimplementation is by Michael Pyrcz, Associate Professor, the University of Texas at Austin. """ import math # for trig functions etc. from copy import copy # to not change objects passed by ref from bisect import bisect # for maintaining array elements sorted import numpy as np # for ndarrays import numpy.linalg as linalg # for linear algebra import scipy.spatial as sp # for fast nearest neighbor search import numba as nb # for numerical speed up from numba import jit # for numerical speed up from numba.typed import Dict # typing of dictionaries from statsmodels.stats.weightstats import DescrStatsW JITKW = dict(nopython=True, cache=True, fastmath=True) JITPL = dict(parallel=False) def backtr(df, vcol, vr, vrg, zmin, zmax, ltail, ltpar, utail, utpar): """Back transform an entire DataFrame column with a provided transformation table and tail extrapolation. :param df: the source DataFrame :param vcol: the column with the variable to transfrom :param vr: the transformation table, 1D ndarray with the original values :param vrg: the transformation table, 1D ndarray with the trasnformed variable :param zmin: lower trimming limits :param zmax: upper trimming limits :param ltail: lower tail value :param ltpar: lower tail extrapolation parameter :param utail: upper tail value :param utpar: upper tail extrapolation parameter :return: TODO """ EPSLON = 1.0e-20 nd = len(df) nt = len(vr) # number of data to transform and number of data in table backtr = np.zeros(nd) vrgs = df[vcol].values # Value in the lower tail? 1=linear, 2=power, (3 and 4 are invalid): for id in range(0, nd): if vrgs[id] <= vrg[0]: backtr[id] = vr[0] cdflo = gcum(vrg[0]) cdfbt = gcum(vrgs[id]) if ltail == 1: backtr[id] = powint(0.0, cdflo, zmin, vr[0], cdfbt, 1.0) elif ltail == 2: cpow = 1.0 / ltpar backtr[id] = powint(0.0, cdflo, zmin, vr[0], cdfbt, cpow) # Value in the upper tail? 1=linear, 2=power, 4=hyperbolic: elif vrgs[id] >= vrg[nt-1]: backtr[id] = vr[nt-1] cdfhi = gcum(vrg[nt-1]) cdfbt = gcum(vrgs[id]) if utail == 1: backtr[id] = powint(cdfhi, 1.0, vr[nt-1], zmax, cdfbt, 1.0) elif utail == 2: cpow = 1.0 / utpar backtr[id] = powint(cdfhi, 1.0, vr[nt-1], zmax, cdfbt, cpow) elif utail == 4: plambda = (vr[nt-1]**utpar)*(1.0-gcum(vrg[nt-1])) backtr[id] = (plambda/(1.0-gcum(vrgs)))**(1.0/utpar) else: # Value within the transformation table: j = locate(vrg, 1, nt, vrgs[id]) j = max(min((nt-2), j), 1) backtr[id] = powint(vrg[j], vrg[j+1], vr[j], vr[j+1], vrgs[id], 1.0) return backtr def backtr_value(vrgs, vr, vrg, zmin, zmax, ltail, ltpar, utail, utpar): """Back transform a single value with a provided transformation table and tail extrapolation. :param vrgs: value to transform :param vr: the transformation table, 1D ndarray with the original values :param vrg: the transformation table, 1D ndarray with the trasnformed variable :param zmin: lower trimming limits :param zmax: upper trimming limits :param ltail: lower tail value :param ltpar: lower tail extrapolation parameter :param utail: upper tail value :param utpar: upper tail extrapolation parameter :return: TODO """ EPSLON = 1.0e-20 nt = len(vr) # number of data to transform # Value in the lower tail? 1=linear, 2=power, (3 and 4 are invalid): if vrgs <= vrg[0]: backtr = vr[0] cdflo = gcum(vrg[0]) cdfbt = gcum(vrgs) if ltail == 1: backtr = dpowint(0.0, cdflo, zmin, vr[0], cdfbt, 1.0) elif ltail == 2: cpow = 1.0 / ltpar backtr = dpowint(0.0, cdflo, zmin, vr[0], cdfbt, cpow) # Value in the upper tail? 1=linear, 2=power, 4=hyperbolic: elif vrgs >= vrg[nt-1]: backtr = vr[nt-1] cdfhi = gcum(vrg[nt-1]) cdfbt = gcum(vrgs) if utail == 1: backtr = dpowint(cdfhi, 1.0, vr[nt-1], zmax, cdfbt, 1.0) elif utail == 2: cpow = 1.0 / utpar backtr = dpowint(cdfhi, 1.0, vr[nt-1], zmax, cdfbt, cpow) elif utail == 4: plambda = (vr[nt-1]**utpar)*(1.0-gcum(vrg[nt-1])) backtr = (plambda/(1.0-gcum(vrgs)))**(1.0/utpar) else: # Value within the transformation table: j = dlocate(vrg, 1, nt, vrgs) j = max(min((nt-2), j), 1) backtr = dpowint(vrg[j], vrg[j+1], vr[j], vr[j+1], vrgs, 1.0) return backtr def gcum(x): """Calculate the cumulative probability of the standard normal distribution. :param x: the value from the standard normal distribution :return: TODO """ z = x if z < 0: z = -z t = 1./(1. + 0.2316419*z) gcum = t*(0.31938153 + t*(-0.356563782 + t * (1.781477937 + t*(-1.821255978 + t*1.330274429)))) e2 = 0. # 6 standard deviations out gets treated as infinity: if z <= 6.: e2 = np.exp(-z*z/2.)*0.3989422803 gcum = 1.0 - e2 * gcum if x >= 0: return gcum gcum = 1.0 - gcum return gcum def locate(xx, iis, iie, x): """Return value `j` such that `x` is between `xx[j]` and `xx[j+1]`, where `xx` is an array of length `n`, and `x` is a given value. `xx` must be monotonic, either increasing or decreasing (GSLIB version). :param xx: array :param iis: start point :param iie: end point :param x: given value :return: TODO """ n = len(xx) # Initialize lower and upper methods: if iis <= 0: iis = 0 if iie >= n: iie = n-1 jl = iis-1 ju = iie if xx[n-1] <= x: j = iie return j # If we are not done then compute a midpoint: while (ju-jl) > 1: jm = int((ju+jl)/2) # Replace the lower or upper limit with the midpoint: if (xx[iie] > xx[iis]) == (x > xx[jm]): jl = jm else: ju = jm # Return with the array index: j = jl return j def dlocate(xx, iis, iie, x): """Return value `j` such that `x` is between `xx[j]` and `xx[j+1]`, where `xx` is an array of length `n`, and `x` is a given value. `xx` must be monotonic, either increasing or decreasing (updated with Python bisect) :param xx: array :param iis: start point :param iie: end point :param x: given value :return: TODO """ n = len(xx) if iie <= iis: iis = 0 iie = n - 1 array = xx[iis: iie - 1] # this is accounting for swith to 0,...,n-1 index j = bisect(array, x) return j def powint(xlow, xhigh, ylow, yhigh, xval, power): """Power-based interpolator :param xlow: x lower interval :param xhigh: x upper interval :param ylow: y lower interval :param yhigh: y upper interval :param xval: value on x :param power: power for interpolation :return: TODO """ EPSLON = 1.0e-20 if (xhigh-xlow) < EPSLON: powint = (yhigh+ylow)/2.0 else: powint = ylow + (yhigh-ylow)*(((xval-xlow)/(xhigh-xlow))**power) return powint def dsortem(ib, ie, a, iperm, b=0, c=0, d=0, e=0, f=0, g=0, h=0): """Sort array in ascending order. :param ib: start index :param ie: end index :param a: array :param iperm: 0 no other array is permuted. 1 array b is permuted according to array a. 2 arrays b, c are permuted. 3 arrays b, c, d are permuted. 4 arrays b, c, d, e are permuted. 5 arrays b, c, d, e, f are permuted. 6 arrays b, c, d, e, f, g are permuted. 7 arrays b, c, d, e, f, g, h are permuted. >7 no other array is permuted. :param b: array to be permuted according to array a. :param c: array to be permuted according to array a. :param d: array to be permuted according to array a. :param e: array to be permuted according to array a. :param f: array to be permuted according to array a. :param g: array to be permuted according to array a. :param h: array to be permuted according to array a. :return: a: the array, a portion of which has been sorted. b, c, d, e, f, g, h: arrays permuted according to array a (see iperm) """ a = a[ib:ie] inds = a.argsort() a = np.copy(a[inds]) # deepcopy forces pass to outside scope if iperm == 1: return a b_slice = b[ib:ie] b = b_slice[inds] if iperm == 2: return a, b c_slice = c[ib:ie] c = c_slice[inds] if iperm == 3: return a, b, c d_slice = d[ib:ie] d = d_slice[inds] if iperm == 4: return a, b, c, d e_slice = e[ib:ie] e = e_slice[inds] if iperm == 5: return a, b, c, d, e f_slice = f[ib:ie] f = f_slice[inds] if iperm == 6: return a, b, c, d, e, f g_slice = g[ib:ie] g = g_slice[inds] if iperm == 7: return a, b, c, d, e, f, g # TODO: changed from 'a, b, c, d, e, f, h' h_slice = h[ib:ie] h = h_slice[inds] return a, b, c, d, e, f, g, h # TODO: changed from 'a, b, c, d, e, f, h' def gauinv(p): """Compute the inverse of the standard normal cumulative distribution function. :param p: cumulative probability value :return: TODO """ lim = 1.0e-10 p0 = -0.322_232_431_088 p1 = -1.0 p2 = -0.342_242_088_547 p3 = -0.020_423_121_024_5 p4 = -0.000_045_364_221_014_8 q0 = 0.099_348_462_606_0 q1 = 0.588_581_570_495 q2 = 0.531_103_462_366 q3 = 0.103_537_752_850 q4 = 0.003_856_070_063_4 # Check for an error situation if p < lim: xp = -1.0e10 return xp if p > (1.0 - lim): xp = 1.0e10 return xp # Get k for an error situation pp = p if p > 0.5: pp = 1 - pp xp = 0.0 if p == 0.5: return xp # Approximate the function y = np.sqrt(np.log(1.0 / (pp * pp))) xp = float( y + ((((y * p4 + p3) * y + p2) * y + p1) * y + p0) / ((((y * q4 + q3) * y + q2) * y + q1) * y + q0) ) if float(p) == float(pp): xp = -xp return xp def gcum(x): """Evaluate the standard normal cdf given a normal deviate `x`. `gcum` is the area under a unit normal curve to the left of `x`. The results are accurate only to about 5 decimal places. :param x: TODO :return: TODO """ z = x if z < 0: z = -z t = 1.0 / (1.0 + 0.231_641_9 * z) gcum_ = t * ( 0.319_381_53 + t * ( -0.356_563_782 + t * (1.781_477_937 + t * (-1.821_255_978 + t * 1.330_274_429)) ) ) e2 = 0.0 # Standard deviations out gets treated as infinity if z <= 6: e2 = np.exp(-z * z / 2.0) * 0.398_942_280_3 gcum_ = 1.0 - e2 * gcum_ if x >= 0.0: return gcum_ gcum_ = 1.0 - gcum_ return gcum_ def dpowint(xlow, xhigh, ylow, yhigh, xval, pwr): """Power interpolate the value of `y` between (`xlow`, `ylow`) and (`xhigh`, `yhigh`) for a value of `x` and a power `pwr`. :param xlow: TODO :param xhigh: TODO :param ylow: TODO :param yhigh: TODO :param xval: TODO :param pwr: power :return: TODO """ EPSLON = 1.0e-20 if (xhigh - xlow) < EPSLON: dpowint_ = (yhigh + ylow) / 2.0 else: dpowint_ = ylow + (yhigh - ylow) * ( ((xval - xlow) / (xhigh - xlow)) ** pwr ) return dpowint_ # @jit(**JITKW) # all NumPy array operations included in this function for precompile with NumBa def setup_rotmat2(c0, nst, it, cc, ang): DTOR = 3.14159265/180.0 EPSLON = 0.000000 PI = 3.141593 # The first time around, re-initialize the cosine matrix for the # variogram structures: rotmat = np.zeros((4, nst)) maxcov = c0 for js in range(0, nst): azmuth = (90.0-ang[js])*DTOR rotmat[0, js] = math.cos(azmuth) rotmat[1, js] = math.sin(azmuth) rotmat[2, js] = -1*math.sin(azmuth) rotmat[3, js] = math.cos(azmuth) if it[js] == 4: maxcov = maxcov + 9999.9 else: maxcov = maxcov + cc[js] return rotmat, maxcov @jit(**JITKW) def setup_rotmat(c0, nst, it, cc, ang, pmx): """Setup rotation matrix. :param c0: nugget constant (isotropic) :param nst: number of nested structures (max. 4) :param it: TODO :param cc: multiplicative factor of each nested structure :param ang: TODO :param pmx: TODO :return: TODO """ PI = 3.141_592_65 DTOR = PI / 180.0 # The first time around, re-initialize the cosine matrix for the variogram # structures rotmat = np.zeros((4, nst)) maxcov = c0 for js in range(0, nst): azmuth = (90.0 - ang[js]) * DTOR rotmat[0, js] = math.cos(azmuth) rotmat[1, js] = math.sin(azmuth) rotmat[2, js] = -1 * math.sin(azmuth) rotmat[3, js] = math.cos(azmuth) if it[js] == 4: maxcov = maxcov + pmx else: maxcov = maxcov + cc[js] return rotmat, maxcov @jit(**JITKW) def cova2(x1, y1, x2, y2, nst, c0, pmx, cc, aa, it, ang, anis, rotmat, maxcov): """Calculate the covariance associated with a variogram model specified by a nugget effect and nested variogram structures. :param x1: x coordinate of first point :param y1: y coordinate of first point :param x2: x coordinate of second point :param y2: y coordinate of second point :param nst: number of nested structures (maximum of 4) :param c0: isotropic nugget constant (TODO: not used) :param pmx: TODO :param cc: multiplicative factor of each nested structure :param aa: parameter `a` of each nested structure :param it: TODO :param ang: TODO: not used :param anis: TODO :param rotmat: rotation matrices :param maxcov: TODO :return: TODO """ EPSLON = 0.000001 # Check for very small distance dx = x2 - x1 dy = y2 - y1 if (dx * dx + dy * dy) < EPSLON: cova2_ = maxcov return cova2_ # Non-zero distance, loop over all the structures cova2_ = 0.0 for js in range(0, nst): # Compute the appropriate structural distance dx1 = dx * rotmat[0, js] + dy * rotmat[1, js] dy1 = (dx * rotmat[2, js] + dy * rotmat[3, js]) / anis[js] h = math.sqrt(max((dx1 * dx1 + dy1 * dy1), 0.0)) if it[js] == 1: # Spherical model hr = h / aa[js] if hr < 1.0: cova2_ = cova2_ + cc[js] * (1.0 - hr * (1.5 - 0.5 * hr * hr)) elif it[js] == 2: # Exponential model cova2_ = cova2_ + cc[js] * np.exp(-3.0 * h / aa[js]) elif it[js] == 3: # Gaussian model hh = -3.0 * (h * h) / (aa[js] * aa[js]) cova2_ = cova2_ + cc[js] * np.exp(hh) elif it[js] == 4: # Power model cov1 = pmx - cc[js] * (h ** aa[js]) cova2_ = cova2_ + cov1 return cova2_ def sqdist(x1, y1, z1, x2, y2, z2, ind, rotmat): # Compute component distance vectors and the squared distance: dx = x1 - x2 dy = y1 - y2 dz = 0.0 sqdist = 0.0 for i in range(0, 2): cont = rotmat[ind, i, 1] * dx + rotmat[ind, i, 2] * dy sqdist = sqdist + cont * cont return sqdist def sqdist2(x1, y1, x2, y2, ist, rotmat, anis): """Calculate the 2D square distance based on geometric ani :param x1: x coordinate of first point :param y1: y coordinate of first point :param x2: x coordinate of second point :param y2: y coordinate of second point :param ist: structure index :param rotmat: 2d rotation matrix :param anis: 2D anisotropy ratio :return: TODO """ # Compute component distance vectors and the squared distance: dx = x1 - x2 dy = y1 - y2 dx1 = (dx*rotmat[0, ist] + dy*rotmat[1, ist]) dy1 = (dx*rotmat[2, ist] + dy*rotmat[3, ist])/anis[ist] sqdist_ = (dx1*dx1+dy1*dy1) return sqdist_ def setrot(ang1, ang2, sang1, anis1, anis2, sanis1, nst, MAXROT): """GSLIB's SETROT subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only. """ DEG2RAD = 3.141592654/180.0 EPSLON = 1.e-20 rotmat = np.zeros((MAXROT+1, 3, 3)) if ang1 >= 0.0 and ang1 < 270.0: alpha = (90.0 - ang1) * DEG2RAD else: alpha = (450.0 - ang1) * DEG2RAD # Get the required sines and cosines: sina = math.sin(alpha) cosa = math.cos(alpha) # Construct the rotation matrix in the required memory: afac1 = 1.0 / (max(anis1, EPSLON)) rotmat[0, 1, 1] = cosa rotmat[0, 1, 2] = sina rotmat[0, 2, 1] = afac1*(-sina) rotmat[0, 2, 2] = afac1*(cosa) # 2nd structure if present if nst > 1: if ang2 >= 0.0 and ang2 < 270.0: alpha = (90.0 - ang2) * DEG2RAD else: alpha = (450.0 - ang2) * DEG2RAD # Get the required sines and cosines: sina = math.sin(alpha) cosa = math.cos(alpha) # Construct the rotation matrix in the required memory: afac2 = 1.0 / (max(anis2, EPSLON)) rotmat[1, 1, 1] = cosa rotmat[1, 1, 2] = sina rotmat[1, 2, 1] = afac1*(-sina) rotmat[1, 2, 2] = afac1*(cosa) # search rotation if sang1 >= 0.0 and sang1 < 270.0: alpha = (90.0 - sang1) * DEG2RAD else: alpha = (450.0 - sang1) * DEG2RAD # Get the required sines and cosines: sina = math.sin(alpha) cosa = math.cos(alpha) # Construct the rotation matrix in the required memory: afac1 = 1.0 / (max(sanis1, EPSLON)) rotmat[MAXROT, 1, 1] = cosa rotmat[MAXROT, 1, 2] = sina rotmat[MAXROT, 2, 1] = afac1*(-sina) rotmat[MAXROT, 2, 2] = afac1*(cosa) # Return to calling program: return rotmat @jit(**JITKW) def ksol_numpy(neq, a, r): """Find solution of a system of linear equations. :param neq: number of equations :param a: upper triangular left hand side matrix :param r: right hand side matrix :return: solution array, same dimension as `r` """ a = a[0: neq * neq] # trim the array a = np.reshape(a, (neq, neq)) # reshape to 2D ainv = linalg.inv(a).copy() # invert matrix r = r[0: neq] # trim the array # s = np.matmul(ainv, r) # matrix multiplication s = ainv @ r # matrix multiplication return s def ctable(MAXNOD, MAXCXY, MAXCTX, MAXCTY, MAXXYZ, xsiz, ysiz, isrot, nx, ny, nst, c0, cc, aa, it, ang, anis, global_rotmat, radsqd): """GSLIB's CTABLE subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only, WARNING: only spiral search setup works currently. """ # Declare constants TINY = 1.0e-10 PMX = 9999.9 MAXROT = 2 # Size of the look-up table: tmp = np.zeros(MAXXYZ) MAXORD = MAXXYZ if (nx*ny) < MAXCXY: MAXORD = MAXCXY order = np.zeros(MAXORD) nctx = int(min(((MAXCTX-1)/2), (nx-1))) ncty = int(min(((MAXCTY-1)/2), (ny-1))) # print('CTable check') # print('nctx ' + str(nctx) + ', ncty ' + str(ncty)) ixnode = np.zeros(MAXXYZ) iynode = np.zeros(MAXXYZ) covtab = np.zeros((MAXCTX, MAXCTY)) # Initialize the covariance subroutine and cbb at the same time: rotmat, maxcov = setup_rotmat2(c0, nst, it, cc, ang) cbb = cova2(0.0, 0.0, 0.0, 0.0, nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) # Now, set up the table and keep track of the node offsets that are # within the search radius: nlooku = -1 # adjusted for 0 origin for i in range(-nctx, nctx+1): # cover entire range xx = i * xsiz ic = nctx + i for j in range(-ncty, ncty+1): # cover entire range yy = j * ysiz jc = ncty + j covtab[ic, jc] = cova2( 0.0, 0.0, xx, yy, nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) # print('cov table offset'); print(xx,yy); print(covtab[ic,jc]) hsqd = sqdist(0.0, 0.0, 0.0, xx, yy, 0.0, MAXROT, global_rotmat) if hsqd <= radsqd: nlooku = nlooku + 1 # We want to search by closest variogram distance (and use the # anisotropic Euclidean distance to break ties: tmp[nlooku] = - (covtab[ic, jc] - TINY*hsqd) order[nlooku] = (jc)*MAXCTX+ic # print('populated presort'); print(tmp,order) # Finished setting up the look-up table, now order the nodes such # that the closest ones, according to variogram distance, are searched # first. Note: the "loc" array is used because I didn't want to make # special allowance for 2 byte integers in the sorting subroutine: nlooku = nlooku + 1 # print('nlooku' + str(nlooku)); print('MAXCTX' + str(MAXCTX)) tmp, order = dsortem(0, nlooku, tmp, 2, b=order) # print('populated postsort'); print(tmp,order) for il in range(0, nlooku): loc = int(order[il]) iy = int((loc-0)/MAXCTX) ix = loc - (iy-0)*MAXCTX iynode[il] = int(iy) ixnode[il] = int(ix) # print('populated ix, iy node list'); print(ixnode, iynode) return covtab, tmp, order, ixnode, iynode, nlooku, nctx, ncty def srchnd(ix, iy, nx, ny, xmn, ymn, xsiz, ysiz, sim, noct, nodmax, ixnode, iynode, nlooku, nctx, ncty, UNEST): """GSLIB's SRCHND subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only. """ # Consider all the nearby nodes until enough have been found: ncnode = 0 icnode = np.zeros(nodmax, dtype=int) icnode.fill(-1) cnodev = np.zeros(nodmax) cnodex = np.zeros(nodmax) cnodey = np.zeros(nodmax) # print('Node search at '); print(ix,iy) # print('nlooku'); print(nlooku) if noct > 0: ninoct = np.zeros(8) for il in range(0, nlooku): if ncnode == nodmax: return ncnode, icnode, cnodev, cnodex, cnodey i = ix + (int(ixnode[il])-nctx) j = iy + (int(iynode[il])-ncty) # print('i,j'); print(i,j) if i < 0 or j < 0: continue if i >= nx or j >= ny: continue ind = i + (j)*nx if sim[ind] > UNEST: icnode[ncnode] = il cnodex[ncnode] = xmn + (i)*xsiz # adjust for 0 origin cnodey[ncnode] = ymn + (j)*ysiz cnodev[ncnode] = sim[ind] # print('srchnd found at index - ' +str(ind) + ' at x and y ' + str(cnodex[ncnode]) + ',' + str(cnodey[ncnode])) # print(' ix = ' + str(i) + ' and iy = ' + str(j)) # print(' value = ' + str(sim[ind])) ncnode = ncnode + 1 # moved to account for origin 0 return ncnode, icnode, cnodev, cnodex, cnodey def beyond(ivtype, nccut, ccut, ccdf, ncut, cut, cdf, zmin, zmax, ltail, ltpar, middle, mpar, utail, utpar, zval, cdfval): """GSLIB's BEYOND subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only. """ EPSLON = 1.0e-20 UNEST = -1.0 # Check for both "zval" and "cdfval" defined or undefined: ierr = 1 if zval > UNEST and cdfva > UNEST: return -1 if zval <= UNEST and cdfval <= UNEST: return - 1 # Handle the case of a categorical variable: if ivtype == 0: cum = 0 for i in range(0, nccut): cum = cum + ccdf[i] if cdfval <= cum: zval = ccut[i] return zval return zval # Figure out what part of distribution: ipart = 0 - lower tail # ipart = 1 - middle # ipart = 2 - upper tail ierr = 0 ipart = 1 if zva > UNEST: if zval <= ccut[0]: ipart = 0 if zval >= ccut[nccut-1]: ipart = 2 else: if cdfval <= ccdf[0]: ipart = 0 if cdfval >= ccdf[nccut-1]: ipart = 2 # ARE WE IN THE LOWER TAIL? if ipart == 0: if ltail == 1: # Straight Linear Interpolation: powr = 1.0 if zval > UNEST: cdfval = powint(zmin, ccut[0], 0.0, ccdf[0], zval, powr) else: zval = powint(0.0, ccdf[0], zmin, ccut[0], cdfval, powr) elif ltail == 2: # Power Model interpolation to lower limit "zmin"? if zval > UNEST: cdfval = powint(zmin, ccut[0], 0.0, ccdf[0], zval, ltpar) else: powr = 1.0 / ltpar zval = powint(0.0, ccdf[0], zmin, ccut[0], cdfval, powr) # Linear interpolation between the rescaled global cdf? elif ltail == 3: if zval > UNEST: # Computing the cdf value. Locate the point and the class bound: idat = locate(cut, 1, ncut, zval) iupp = locate(cut, ncut, 1, ncut, ccut[0]) # Straight linear interpolation if no data; otherwise, linear: if idat <= -1 or idat >= ncut - 1 or iupp <= -1 or iupp >= ncut-1: # modfity for 0 index cdfval = powint(zmin, cut[0], 0.0, cdf[0], zval, 1.) else: temp = powint(cut[idat], cut[idat+1], cdf[idat], cdf[idat+1], zval, 1.) cdfval = temp*ccdf[0]/cdf[iupp] else: # Computing Z value: Are there any data out in the tail? iupp = locate(cut, ncut, 1, ncut, ccut[0]) # Straight linear interpolation if no data; otherwise, local linear # interpolation: if iupp <= 0 or iupp >= ncut: zval = powint(0.0, cdf[0], zmin, cut[0], cdfval, 1.) else: temp = cdfval*cdf[iupp]/ccdf[1] idat = locate(cdf, ncut, 1, ncut, temp) if idat <= -1 or idat >= ncut-1: # adjusted for 0 origin zval = powint(0.0, cdf[0], zmin, cut[0], cdfval, 1.) else: zval = powint(cdf[idat], cdf[idat+1], cut[dat], cut[idat+1], temp, 1.) else: # Error situation - unacceptable option: ierr = 2 return -1 # FINISHED THE LOWER TAIL, ARE WE IN THE MIDDLE? if ipart == 1: # Establish the lower and upper limits: if zval > UNEST: cclow = locate(ccut, 1, nccut, zval) else: cclow = locate(ccdf, 1, nccut, cdfval) cchigh = cclow + 1 if middle == 1: # Straight Linear Interpolation: powr = 1.0 if zval > UNEST: cdfval = powint(ccut[cclow], ccut[cchigh], ccdf[cclow], ccdf[cchigh], zval, powr) else: zval = powint(ccdf[cclow], ccdf[cchigh], ccut[cclow], ccut[cchigh], cdfval, powr) # Power interpolation between class bounds? elif middle == 2: if zval > UNEST: cdfval = powint(ccut[cclow], ccut[cchigh], ccdf[cclow], ccdf[cchigh], zval, mpar) else: powr = 1.0 / mpar zval = powint(ccdf[cclow], ccdf[cchigh], ccut[cclow], ccut[cchigh], cdfval, powr) # Linear interpolation between the rescaled global cdf? elif middle == 3: ilow = locate(cut, ncut, 1, ncut, ccut[cclow]) iupp = locate(cut, ncut, 1, ncut, ccut[cchigh]) if cut[ilow] < ccut[cclow]: ilow = ilow + 1 if cut[iupp] > ccut[cchigh]: iupp = iupp - 1 if zval > UNEST: idat = locate(cut, 1, ncut, zval) # Straight linear interpolation if no data; otherwise, local linear # interpolation: if idat <= -1 or idat >= ncut-1 or ilow <= -1 or ilow >= ncut-1 or iupp <= -1 or iupp >= ncut-1 or iupp <= ilow: cdfval = powint(ccut[cclow], ccut[cchigh], ccdf[cclow], ccdf[cchigh], zval, 1.) else: temp = powint(cut[idat], cut[idat+1], cdf[idat], cdf[idat+1], zval, 1.) cdfval = powint(cdf[ilow], cdf[iupp], ccdf[cclow], ccdf[cchigh], temp, 1.) else: # Straight linear interpolation if no data; otherwise, local linear # interpolation: if ilow <= -1 or ilow >= ncut-1 or iup <= -1 or iupp >= ncut-1 or iupp < ilow: zval = powint(ccdf[cclow], ccdf[cchigh], ccut[cclow], ccut[cchigh], cdfval, 1.) else: temp = powint(ccdf[cclow], ccdf[cchigh], cdf[ilow], cdf[iupp], cdfval, 1.) idat = locate(cdf, 1, ncut, temp) if cut[idat] < ccut[cclow]: idat = idat+1 if idat <= -1 or idat >= ncut-1 or cut[idat+1] > ccut[cchigh]: zval = powint(ccdf[cclow], ccdf[cchigh], ccut[cclow], ccut[cchigh], cdfval, 1.) else: zval = powint(cdf[idat], cdf[idat+1], cut[idat], cut[idat+1], temp, 1.) zval = powint(cdf[idat], cdf[idat+1], cut[idat], cut[idat+1], temp, 1.) else: # Error situation - unacceptable option: ierr = 2 return -1 # FINISHED THE MIDDLE, ARE WE IN THE UPPER TAIL? if ipart == 2: if utail == 1: powr = 1.0 if zval > UNEST: cdfval = powint(ccut(nccut), zmax, ccdf(nccut), 1.0, zval, powr) else: zval = powint(ccdf(nccut), 1.0, ccut( nccut), zmax, cdfval, powr) elif utail == 2: # Power interpolation to upper limit "utpar"? if zval > UNEST: cdfval = powint(ccut(nccut), zmax, ccdf( nccut), 1.0, zval, utpar) else: powr = 1.0 / utpar zval = powint(ccdf(nccut), 1.0, ccut( nccut), zmax, cdfval, powr) # Linear interpolation between the rescaled global cdf? elif utail == 3: if zval > UNEST: # Approximately Locate the point and the class bound: idat = locate(cut, 1, ncut, zval, idat) ilow = locate(cut, 1, ncut, ccut(nccut), ilow) if cut[idat] < zval: idat = idat + 1 if cut[ilow] < ccut[nccut-1]: ilow = ilow + 1 # Straight linear interpolation if no data; otherwise, local linear # interpolation: if idat < -1 or idat >= ncut-1 or ilow <= -1 or ilow >= ncut-1: cdfval = powint(ccut(nccut), zmax, ccdf(nccut), 1.0, zval, 1.) else: temp = powint(cut(idat), cut(idat+1), cdf(idat), cdf(idat+1), zval, 1.) cdfval = powint(cdf(ilow), 1.0, ccdf(nccut), 1.0, temp, 1.) else: # Computing Z value: Are there any data out in the tail? ilow = locate(cut, ncut, 1, ncut, ccut(nccut), ilow) if cut[ilow] < ccut[nccut-1]: ilow = ilow + 1 # Straight linear interpolation if no data; otherwise, local linear # interpolation: if ilow <= -1 or ilow >= ncut-1: zval = powint(ccdf(nccut), 1.0, ccut( nccut), zmax, cdfval, 1.) else: temp = powint(ccdf(nccut), 1.0, cdf(ilow), 1.0, cdfval, 1.) idat = locate(cdf, ncut, 1, ncut, temp) if cut[idat] < ccut[nccut-1]: idat = idat+1 if idat >= ncut-1: zval = powint(ccdf[nccut-1], 1.0, ccut[nccut-1], zmax, cdfval, 1.) else: zval = powint(cdf[idat], cdf[idat+1], cut[idat], cut[idat+1], temp, 1.) # Fit a Hyperbolic Distribution? elif utail == 4: # Figure out "lambda" and required info: lambd = math.pow(ccut[nccut], utpar)*(1.0-ccdf[nccut-1]) if zval > UNEST: cdfval = 1.0 - (lambd/(math.pow(zval, utpar))) else: zval = (lambd/math.pow((1.0-cdfval), (1.0/utpar))) else: # Error situation - unacceptable option: ierr = 2 return -1 if zval < zmin: zval = zmin if zval > zmax: zval = zmax # All finished - return: return zval def krige(ix, iy, nx, ny, xx, yy, lktype, x, y, vr, sec, colocorr, lvm, close, covtab, nctx, ncty, icnode, ixnode, iynode, cnodev, cnodex, cnodey, nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov, MAXCTX, MAXCTY, MAXKR1, MAXKR2): """GSLIB's KRIGE subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only. """ EPSLON = 1.0e-20 cur_index = ix + (iy)*nx # print('krige at grid '); print(ix,iy) # print('krige at node '); print(xx,yy) # print('grid index = '); print(cur_index) # print('Check ixnode '); print(ixnode); print(iynode) nclose = len(close) ncnode = (icnode >= 0).sum() # print('In kriging, maxcov = ' + str(maxcov)) # print('kriging') # print('nclose ' + str(nclose) + ', ncnode ' + str(ncnode)) # print('MAXKR1'); print(MAXKR1) vra = np.zeros(MAXKR1) vrea = np.zeros(MAXKR1) r = np.zeros(MAXKR1) rr = np.zeros(MAXKR1) s = np.zeros(MAXKR1) a = np.zeros(MAXKR2) cbb = cova2(0, 0, 0, 0, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) # print(r.shape) # Local mean if lktype == 2: gmean = lvm[cur_index] else: gmean = 0.0 # Size of the kriging system: first = False na = nclose + ncnode # print('lktype' + str(lktype)) if lktype == 0: neq = na if lktype == 1: # print('ordinary kriging') neq = na + 1 if lktype == 2: neq = na if lktype == 3: neq = na + 2 if lktype == 4: neq = na + 1 # print('prior matrix build neq'); print(neq) # print('na'); print(na) # Set up kriging matrices: iin = -1 # acocunting for 0 origin # print('krige na' + str(na)) for j in range(0, na): # Sort out the actual location of point "j" if j < nclose: # adjusted for 0 index origin index = int(close[j]) x1 = x[index] y1 = y[index] vra[j] = vr[index] # print('data: index = ' + str(index) + ', x,y ' + str(x1) + ',' + str(y1) + ', value = ' + str(vra[j])) if sec.shape[0] > 1: vrea[j] = sec[index] else: vrea[j] = 0.0 # added this - no effect if lktype == 2: vra[j] = vra[j] - vrea[j] else: # It is a previously simulated node (keep index for table look-up): # print(j) index = j-(nclose) # adjust for 0 index x1 = cnodex[index] y1 = cnodey[index] vra[j] = cnodev[index] ind = icnode[index] # print('prev node: index = ' + str(index) + ', x,y ' + str(x1) + ',' + str(y1) + ', value = ' + str(vra[j])) ix1 = ix + (int(ixnode[ind])-nctx-1) iy1 = iy + (int(iynode[ind])-ncty-1) # print('ix1, iy1 = '); print(ix1,iy1) index = ix1 + (iy1-1)*nx if lktype == 2: vrea[j] = lvm[index] vra[j] = vra[j] - vrea[j] for i in range(0, na): # we need the full matrix # print('kriging indice populated' + str(j) + ',' + str(i)) # Sort out the actual location of point "i" if i < nclose: index = int(close[i]) # adjust for 0 index x2 = x[index] y2 = y[index] else: # It is a previously simulated node (keep index for table look-up): #print('i = ' + str(i) + ',nclose = ' + str(nclose) + ', na = ' + str(na)) index = i-(nclose) x2 = cnodex[index] y2 = cnodey[index] ind = icnode[index] # print('previous node index' + str(ind)) ix2 = ix + (int(ixnode[ind])-nctx-1) iy2 = iy + (int(iynode[ind])-ncty-1) # Now, get the covariance value: iin = iin + 1 # print('kriging data location = '); print(x2,y2) # Decide whether or not to use the covariance look-up table: if j <= nclose or i <= nclose: cov = cova2(x1, y1, x2, y2, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) a[iin] = cov else: # Try to use the covariance look-up (if the distance is in range): # ii = nctx + 1 + (ix1 - ix2) # jj = ncty + 1 + (iy1 - iy2) cov = cova2(x1, y1, x2, y2, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) # if ii < 0 or ii >= MAXCTX or jj < 0 or jj >= MAXCTY: # cov = cova2(x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # else: # cov = covtab[ii,jj] # print(x1,y1,x2,y2,cov) a[iin] = cov # Get the RHS value (possibly with covariance look-up table): if j <= nclose: # print(cc,aa,it,ang,anis,rotmat,maxcov) cov = cova2(xx, yy, x1, y1, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) # if cov >= 1.0: # print('cov of 1.0 RHS for data ') # print('ix,iy ='); print(xx,xx) # print('ix1,iy1'); print(x1,y1) r[j] = cov else: # Try to use the covariance look-up (if the distance is in range): # ii = nctx + 1 + (ix - ix1) # jj = ncty + 1 + (iy - iy1) # print('RHS ctable coord' + str(ii) + ',' + str(jj)) # print('ix,iy ='); print(ix,iy) # print('ix1,iy1'); print(ix1,iy1) # if ii < 0 or ii >= MAXCTX or jj < 0 or jj >= MAXCTY: # adjusted for origin 0 # print('Not using covariance table') # cov = cova2(xx,yy,x1,y1,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # else: # cov = covtab[ii,jj] cov = cova2(xx, yy, x1, y1, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) # if cov >= 1.0: # print('cov of 1.0 RHS for node ' + str(j)) # print('ix,iy ='); print(xx,xx) # print('ix1,iy1'); print(x1,y1) r[j] = cov # print('kriging, writing RHS '+ str(j) + ',' + str(cov) + 'loc_est' + str(xx) + ',' + str(yy) + 'data' + str(x1) + ',' + str(y1)) rr[j] = r[j] if lktype == 1: # we need the full array iin = iin + 1 a[iin] = 1.0 if lktype == 4: # we need the full array iin = iin + 1 a[iin] = colocorr*r[j] # Addition of OK constraint: if lktype == 1 or lktype == 3: for i in range(0, na): iin = iin + 1 a[iin] = 1.0 iin = iin + 1 a[iin] = 0.0 r[na] = 1.0 rr[na] = 1.0 # Addition of the External Drift Constraint: if lktype == 3: edmin = 999999. edmax = -999999. for i in range(0, na): iin = iin + 1 a[iin] = vrea(i) if a[iin] < edmin: edmin = a[iin] if a[iin] > edmax: edmax = a[iin] iin = iin + 1 a[iin] = 0.0 iin = iin + 1 a[iin] = 0.0 ind = ix + (iy-1)*nx r[na+1] = lvm[ind] rr[na+1] = r[na+1] if (edmax-edmin) < EPSLON: neq = neq - 1 # Addition of Collocated Cosimulation Constraint: if lktype == 4: colc = True sfmin = 1.0e21 sfmax = -1.0e21 for i in range(0, na): iin = iin + 1 a[iin] = colocorr*r[i] if a[iin] < sfmin: sfmin = a[iin] if a[iin] > sfmax: sfmax = a[iin] iin = iin + 1 a[iin] = 1.0 ii = na r[ii] = colocorr rr[ii] = r[ii] # if (sfmax-sfmin) < EPSLON: # neq = neq - 1 # colc = False # Solve the Kriging System: # print('neq = ' + str(neq)); # print('a'); print(a) # print('r'); print(r) # print('data'); print(vra) if neq == 1 and lktype != 3: # print('neq = 1 '); print(a,r) s[0] = r[0] / a[0] else: # print('neq prior ksol' + str(neq)) s = ksol_numpy(neq, a, r) # print('neq post ksol' + str(neq)) # if s.shape[0]< neq: # print('s shape'); print(s.shape) # print('a'); print(a) # print('r'); print(r) ising = 0 # need to figure this out # print('s'); print(s) # Compute the estimate and kriging variance. Recall that kriging type # 0 = Simple Kriging: # 1 = Ordinary Kriging: # 2 = Locally Varying Mean: # 3 = External Drift: # 4 = Collocated Cosimulation: # print('kriging weights'); print(s) cmean = 0.0 # print('cbb = ' + str(cbb)) cstdev = cbb sumwts = 0.0 for i in range(0, na): cmean = cmean + s[i]*vra[i] cstdev = cstdev - s[i]*rr[i] sumwts = sumwts + s[i] if lktype == 1: cstdev = cstdev - s[na] # print('Ordinary Weight' + str(s[na])) if lktype == 2: cmean = cmean + gmean if lktype == 4 and colc == True: # we may drop colocated if low covariance dispersion ind = ix + (iy-1)*nx # print(ind) # print('neq'); print(neq) # print('s'); print(s.shape) # print('lvm'); print(lvm.shape) # print('colc wt = ' + str(s[na]) + ' for ' + str(lvm[cur_index]) + ' at index ' + str(cur_index)) cmean = cmean + s[na]*lvm[cur_index] cstdev = cstdev - s[na] * rr[na] # Error message if negative variance: if cstdev < 0.0: # print('ERROR: Negative Variance: ' + str(cstdev)) cstdev = 0.0 cstdev = math.sqrt(max(cstdev, 0.0)) # print('kriging estimate and variance' + str(cmean) + ', ' + str(cstdev)) return cmean, cstdev def ikrige(ix, iy, nx, ny, xx, yy, lktype, x, y, vr, sec, colocorr, gmean, lvm, close, covtab, nctx, ncty, icnode, ixnode, iynode, cnodev, cnodex, cnodey, nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov, MAXCTX, MAXCTY, MAXKR1, MAXKR2): """GSLIB's KRIGE subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python and modified for indicator kriging by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only. WARNING: tested only for ktype 0,1,2 (2 is local proportion model / local mean provided, not residual approach) """ EPSLON = 1.0e-20 cur_index = ix + (iy)*nx # print('krige at grid '); print(ix,iy) # print('krige at node '); print(xx,yy) # print('grid index = '); print(cur_index) # print('Check ixnode '); print(ixnode); print(iynode) nclose = len(close) ncnode = (icnode >= 0).sum() # print('In kriging, maxcov = ' + str(maxcov)) # print('kriging') # print('nclose ' + str(nclose) + ', ncnode ' + str(ncnode)) # print('MAXKR1'); print(MAXKR1) vra = np.zeros(MAXKR1) vrea = np.zeros(MAXKR1) r = np.zeros(MAXKR1) rr = np.zeros(MAXKR1) s = np.zeros(MAXKR1) a = np.zeros(MAXKR2) cbb = cova2(0, 0, 0, 0, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) # print(r.shape) # Local mean # just pass the local probability as gmean # if lktype == 2: # gmean = lvm[cur_index] # keep input gmean otherwise # Size of the kriging system: first = False na = nclose + ncnode # print('lktype' + str(lktype)) if lktype == 0: neq = na if lktype == 1: # print('ordinary kriging') neq = na + 1 if lktype == 2: neq = na if lktype == 3: neq = na + 2 if lktype == 4: neq = na + 1 # print('prior matrix build neq'); print(neq) # print('na'); print(na) # print('kriging data close'); print(close) # print('kriging node close'); print(icnode) # Set up kriging matrices: iin = -1 # acocunting for 0 origin # print('krige na' + str(na)) for j in range(0, na): # Sort out the actual location of point "j" if j < nclose: # adjusted for 0 index origin index = int(close[j]) x1 = x[index] y1 = y[index] vra[j] = vr[index] # print('data: index = ' + str(index) + ', x,y ' + str(x1) + ',' + str(y1) + ', value = ' + str(vra[j])) # if lvm.shape[0] > 1: # vrea[j]= sec[index]; # else: vrea[j] = 0.0 # added this - no effect # if lktype == 2: vra[j] = vra[j] - vrea[j] # just using local variable mean not full residual approach else: # It is a previously simulated node (keep index for table look-up): # print(j) index = j-(nclose) # adjust for 0 index x1 = cnodex[index] y1 = cnodey[index] vra[j] = cnodev[index] ind = icnode[index] # print('prev node: index = ' + str(index) + ', x,y ' + str(x1) + ',' + str(y1) + ', value = ' + str(vra[j])) ix1 = ix + (int(ixnode[ind])-nctx-1) iy1 = iy + (int(iynode[ind])-ncty-1) # print('ix1, iy1 = '); print(ix1,iy1) index = ix1 + (iy1-1)*nx # if lktype == 2: # vrea[j]= lvm[index] # vra[j] = vra[j] - vrea[j] for i in range(0, na): # we need the full matrix # print('kriging indice populated' + str(j) + ',' + str(i)) # Sort out the actual location of point "i" if i < nclose: index = int(close[i]) # adjust for 0 index x2 = x[index] y2 = y[index] else: # It is a previously simulated node (keep index for table look-up): #print('i = ' + str(i) + ',nclose = ' + str(nclose) + ', na = ' + str(na)) index = i-(nclose) x2 = cnodex[index] y2 = cnodey[index] ind = icnode[index] # print('previous node index' + str(ind)) ix2 = ix + (int(ixnode[ind])-nctx-1) iy2 = iy + (int(iynode[ind])-ncty-1) # Now, get the covariance value: iin = iin + 1 # print('kriging data location = '); print(x2,y2) # Decide whether or not to use the covariance look-up table: if j <= nclose or i <= nclose: # print('x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov') # print(x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) cov = cova2(x1, y1, x2, y2, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) # print('cov'); print(cov) a[iin] = cov else: # Try to use the covariance look-up (if the distance is in range): # ii = nctx + 1 + (ix1 - ix2) # jj = ncty + 1 + (iy1 - iy2) cov = cova2(x1, y1, x2, y2, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) # if ii < 0 or ii >= MAXCTX or jj < 0 or jj >= MAXCTY: # cov = cova2(x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # else: # cov = covtab[ii,jj] # print(x1,y1,x2,y2,cov) a[iin] = cov # Get the RHS value (possibly with covariance look-up table): if j <= nclose: # print(cc,aa,it,ang,anis,rotmat,maxcov) cov = cova2(xx, yy, x1, y1, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) # if cov >= 1.0: # print('cov of 1.0 RHS for data ') # print('ix,iy ='); print(xx,xx) # print('ix1,iy1'); print(x1,y1) r[j] = cov else: # Try to use the covariance look-up (if the distance is in range): # ii = nctx + 1 + (ix - ix1) # jj = ncty + 1 + (iy - iy1) # print('RHS ctable coord' + str(ii) + ',' + str(jj)) # print('ix,iy ='); print(ix,iy) # print('ix1,iy1'); print(ix1,iy1) # if ii < 0 or ii >= MAXCTX or jj < 0 or jj >= MAXCTY: # adjusted for origin 0 # print('Not using covariance table') # cov = cova2(xx,yy,x1,y1,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # else: # cov = covtab[ii,jj] cov = cova2(xx, yy, x1, y1, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) # if cov >= 1.0: # print('cov of 1.0 RHS for node ' + str(j)) # print('ix,iy ='); print(xx,xx) # print('ix1,iy1'); print(x1,y1) r[j] = cov # print('kriging, writing RHS '+ str(j) + ',' + str(cov) + 'loc_est' + str(xx) + ',' + str(yy) + 'data' + str(x1) + ',' + str(y1)) rr[j] = r[j] if lktype == 1: # we need the full array iin = iin + 1 a[iin] = 1.0 if lktype == 4: # we need the full array iin = iin + 1 a[iin] = colocorr*r[j] # Addition of OK constraint: if lktype == 1 or lktype == 3: for i in range(0, na): iin = iin + 1 a[iin] = 1.0 iin = iin + 1 a[iin] = 0.0 r[na] = 1.0 rr[na] = 1.0 # Addition of the External Drift Constraint: if lktype == 3: edmin = 999999. edmax = -999999. for i in range(0, na): iin = iin + 1 a[iin] = vrea(i) if a[iin] < edmin: edmin = a[iin] if a[iin] > edmax: edmax = a[iin] iin = iin + 1 a[iin] = 0.0 iin = iin + 1 a[iin] = 0.0 ind = ix + (iy-1)*nx r[na+1] = lvm[ind] rr[na+1] = r[na+1] if (edmax-edmin) < EPSLON: neq = neq - 1 # Addition of Collocated Cosimulation Constraint: if lktype == 4: colc = True sfmin = 1.0e21 sfmax = -1.0e21 for i in range(0, na): iin = iin + 1 a[iin] = colocorr*r[i] if a[iin] < sfmin: sfmin = a[iin] if a[iin] > sfmax: sfmax = a[iin] iin = iin + 1 a[iin] = 1.0 ii = na r[ii] = colocorr rr[ii] = r[ii] # if (sfmax-sfmin) < EPSLON: # neq = neq - 1 # colc = False # Solve the Kriging System: # print('Kriging equations neq = ' + str(neq)); # print('a'); print(a) # print('r'); print(r) # print('data'); print(vra) if neq == 1 and lktype != 3: # print('neq = 1 '); print(a,r) s[0] = r[0] / a[0] else: # print('neq prior ksol' + str(neq)) s = ksol_numpy(neq, a, r) # print('neq post ksol' + str(neq)) # if s.shape[0]< neq: # print('s shape'); print(s.shape) # print('a'); print(a) # print('r'); print(r) ising = 0 # need to figure this out # print('s'); print(s) # Compute the estimate and kriging variance. Recall that kriging type # 0 = Simple Kriging: # 1 = Ordinary Kriging: # 2 = Locally Varying Mean: # 3 = External Drift: # 4 = Collocated Cosimulation: # print('kriging weights'); print(s) cmean = 0.0 # print('cbb = ' + str(cbb)) cstdev = cbb sumwts = 0.0 for i in range(0, na): cmean = cmean + s[i]*vra[i] cstdev = cstdev - s[i]*rr[i] sumwts = sumwts + s[i] if lktype == 1: cstdev = cstdev - s[na] # print('Ordinary Weight' + str(s[na])) # if lktype == 2: cmean = cmean + gmean if lktype == 4 and colc == True: # we may drop colocated if low covariance dispersion ind = ix + (iy-1)*nx # print(ind) # print('neq'); print(neq) # print('s'); print(s.shape) # print('lvm'); print(lvm.shape) # print('colc wt = ' + str(s[na]) + ' for ' + str(lvm[cur_index]) + ' at index ' + str(cur_index)) cmean = cmean + s[na]*lvm[cur_index] cstdev = cstdev - s[na] * rr[na] if lktype == 0 or lktype == 2: cmean = cmean + (1.0-sumwts)*gmean # print('cmean'); print(cmean) # Error message if negative variance: if cstdev < 0.0: # print('ERROR: Negative Variance: ' + str(cstdev)) cstdev = 0.0 cstdev = math.sqrt(max(cstdev, 0.0)) # print('kriging estimate and variance' + str(cmean) + ', ' + str(cstdev)) return cmean, cstdev def getindex(nc, cmn, csiz, loc): ic = min(int((loc - cmn) / csiz), nc - 1) return ic def correct_trend(trend): """Correct a indicator based trend model for closure (probabilities sum to 1.0). :param trend: ndarray [ny,nx,ncut] :return: nadarray [ny,nx,ncut] corrected for closure """ ny = trend.shape[0] nx = trend.shape[1] ncut = trend.shape[2] for iy in range(0, ny): for ix in range(0, nx): sum = 0.0 for ic in range(0, ncut): sum = sum + trend[iy, ix, ic] if sum > 0.0: for icut in range(0, ncut): trend[iy, ix, ic] = trend[iy, ix, ic] / sum return trend def ordrel(ivtype, ncut, ccdf): """Correct a indicator based CDF for order relations. :param ivtype: variable type, 0 - categorical and 1 - continuous :param ncut: number of categories or thresholds :param ccdf: input cumulative distribution function :return: cumulative distribution function correct for order relations """ # print('input ordering relations'); print(ccdf) ccdfo = np.zeros(ncut) ccdf1 = np.zeros(ncut) ccdf2 = np.zeros(ncut) # do we need MAXCUT = 100 for these 2? # Make sure conditional cdf is within [0,1]: for i in range(0, ncut): if ccdf[i] < 0.0: ccdf1[i] = 0.0 ccdf2[i] = 0.0 elif ccdf[i] > 1.0: ccdf1[i] = 1.0 ccdf2[i] = 1.0 else: ccdf1[i] = ccdf[i] ccdf2[i] = ccdf[i] # print('ordering relations'); print(ccdf1,ccdf2) # Correct sequentially up, then down, and then average: if ivtype == 0: sumcdf = 0.0 for i in range(0, ncut): sumcdf = sumcdf + ccdf1[i] if sumcdf <= 0.0: sumcdf = 1.0 for i in range(0, ncut): ccdfo[i] = ccdf1[i] / sumcdf else: for i in range(1, ncut): if ccdf1[i] < ccdf1[i-1]: ccdf1[i] = ccdf1[i-1] for i in range(ncut-2, 0, -1): if ccdf2[i] > ccdf2[i+1]: ccdf2[i] = ccdf2[i+1] for i in range(0, ncut): ccdfo[i] = 0.5*(ccdf1[i]+ccdf2[i]) # Return with corrected CDF: return ccdfo def declus(df, xcol, ycol, vcol, iminmax, noff, ncell, cmin, cmax): """GSLIB's DECLUS program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). Note this was simplified to 2D only. :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column :param iminmax: 1 / True: for use cell size with max decluster mean 0 / False: for declustered mean minimizing cell size :param noff: number of offsets :param ncell: number of cell sizes :param cmin: min cell size :param cmax: max cell size :return: TODO """ # Load data and set up arrays nd = len(df) x = df[xcol].values y = df[ycol].values v = df[vcol].values wt = np.zeros(nd) wtopt = np.ones(nd) index = np.zeros(nd, np.int32) xcs_mat = np.zeros(ncell + 2) # we use 1,...,n for this array vrcr_mat = np.zeros(ncell + 2) # we use 1,...,n for this array anisy = 1.0 # hard code the cells to 2D isotropic roff = float(noff) # Calculate extents xmin = np.min(x) xmax = np.max(x) ymin = np.min(y) ymax = np.max(y) # Calculate summary statistics vmean = np.mean(v) vstdev = np.std(v) vmin = np.min(v) vmax = np.max(v) xcs_mat[0] = 0.0 vrcr_mat[0] = vmean vrop = vmean # include the naive case print(f"There are {nd} data with:") print(f" mean of {vmean} ") print(f" min and max {vmin} and {vmax}") print(f" standard dev {vstdev} ") # Define a "lower" origin to use for the cell sizes xo1 = xmin - 0.01 yo1 = ymin - 0.01 # Define the increment for the cell size xinc = (cmax - cmin) / ncell yinc = xinc # Loop over "ncell+1" cell sizes in the grid network ncellx = int((xmax - (xo1 - cmin)) / cmin) + 1 ncelly = int((ymax - (yo1 - cmin * anisy)) / cmin) + 1 ncellt = ncellx * ncelly cellwt = np.zeros(ncellt) xcs = cmin - xinc ycs = (cmin * anisy) - yinc # Main loop over cell sizes # 0 index is the 0.0 cell, note n + 1 in Fortran for lp in range(1, ncell + 2): xcs = xcs + xinc ycs = ycs + yinc # Initialize the weights to zero wt.fill(0.0) # Determine the maximum number of grid cells in the network ncellx = int((xmax - (xo1 - xcs)) / xcs) + 1 ncelly = int((ymax - (yo1 - ycs)) / ycs) + 1 ncellt = float(ncellx * ncelly) # TODO: not used # Loop over all the origin offsets selected xfac = min((xcs / roff), (0.5 * (xmax - xmin))) yfac = min((ycs / roff), (0.5 * (ymax - ymin))) for kp in range(1, noff + 1): xo = xo1 - (float(kp) - 1.0) * xfac yo = yo1 - (float(kp) - 1.0) * yfac # Initialize the cumulative weight indicators cellwt.fill(0.0) # Determine which cell each datum is in for i in range(0, nd): icellx = int((x[i] - xo) / xcs) + 1 icelly = int((y[i] - yo) / ycs) + 1 icell = icellx + (icelly - 1) * ncellx index[i] = icell cellwt[icell] = cellwt[icell] + 1.0 # The weight assigned to each datum is inversely proportional to the # number of data in the cell. We first need to get the sum of # weights so that we can normalize the weights to sum to one sumw = 0.0 for i in range(0, nd): ipoint = index[i] sumw = sumw + (1.0 / cellwt[ipoint]) sumw = 1.0 / sumw # Accumulate the array of weights (that now sum to one) for i in range(0, nd): ipoint = index[i] wt[i] = wt[i] + (1.0 / cellwt[ipoint]) * sumw # End loop over all offsets # Compute the weighted average for this cell size sumw = 0.0 sumwg = 0.0 for i in range(0, nd): sumw = sumw + wt[i] sumwg = sumwg + wt[i] * v[i] vrcr = sumwg / sumw vrcr_mat[lp] = vrcr xcs_mat[lp] = xcs # See if this weighting is optimal if iminmax and vrcr < vrop or not iminmax and vrcr > vrop or ncell == 1: best = xcs # TODO: not used vrop = vrcr wtopt = wt.copy() # deep copy # End main loop over all cell sizes # Get the optimal weights sumw = 0.0 for i in range(0, nd): sumw = sumw + wtopt[i] wtmin = np.min(wtopt) # TODO: not used wtmax = np.max(wtopt) # TODO: not used facto = float(nd) / sumw wtopt = wtopt * facto return wtopt, xcs_mat, vrcr_mat def gam(array, tmin, tmax, xsiz, ysiz, ixd, iyd, nlag, isill): """GSLIB's GAM program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). :param array: 2D gridded data / model :param tmin: property trimming limit :param tmax: property trimming limit :param xsiz: grid cell extents in x direction :param ysiz: grid cell extents in y direction :param ixd: lag offset in grid cells :param iyd: lag offset in grid cells :param nlag: number of lags to calculate :param isill: 1 for standardize sill :return: TODO """ if array.ndim == 2: ny, nx = array.shape elif array.ndim == 1: ny, nx = 1, len(array) nvarg = 1 # for multiple variograms repeat the program nxy = nx * ny # TODO: not used mxdlv = nlag # Allocate the needed memory lag = np.zeros(mxdlv) vario = np.zeros(mxdlv) hm = np.zeros(mxdlv) tm = np.zeros(mxdlv) hv = np.zeros(mxdlv) # TODO: not used npp = np.zeros(mxdlv) ivtail = np.zeros(nvarg + 2) ivhead = np.zeros(nvarg + 2) ivtype = np.zeros(nvarg + 2) ivtail[0] = 0 ivhead[0] = 0 ivtype[0] = 0 # Summary statistics for the data after trimming inside = (array > tmin) & (array < tmax) avg = array[(array > tmin) & (array < tmax)].mean() # TODO: not used stdev = array[(array > tmin) & (array < tmax)].std() var = stdev ** 2.0 vrmin = array[(array > tmin) & (array < tmax)].min() # TODO: not used vrmax = array[(array > tmin) & (array < tmax)].max() # TODO: not used num = ((array > tmin) & (array < tmax)).sum() # TODO: not used # For the fixed seed point, loop through all directions for iy in range(0, ny): for ix in range(0, nx): if inside[iy, ix]: vrt = array[iy, ix] ixinc = ixd iyinc = iyd ix1 = ix iy1 = iy for il in range(0, nlag): ix1 = ix1 + ixinc if 0 <= ix1 < nx: iy1 = iy1 + iyinc if 1 <= iy1 < ny: if inside[iy1, ix1]: vrh = array[iy1, ix1] npp[il] = npp[il] + 1 tm[il] = tm[il] + vrt hm[il] = hm[il] + vrh vario[il] = vario[il] + ((vrh - vrt) ** 2.0) # Get average values for gam, hm, tm, hv, and tv, then compute the correct # "variogram" measure for il in range(0, nlag): if npp[il] > 0: rnum = npp[il] lag[il] = np.sqrt((ixd * xsiz * il) ** 2 + (iyd * ysiz * il) ** 2) vario[il] = vario[il] / float(rnum) hm[il] = hm[il] / float(rnum) tm[il] = tm[il] / float(rnum) # Standardize by the sill if isill == 1: vario[il] = vario[il] / var # Semivariogram vario[il] = 0.5 * vario[il] return lag, vario, npp def gamv(df, xcol, ycol, vcol, tmin, tmax, xlag, xltol, nlag, azm, atol, bandwh, isill): """GSLIB's GAMV program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). Note simplified for 2D, semivariogram only and one direction at a time. :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column :param tmin: property trimming limit :param tmax: property trimming limit :param xlag: lag distance :param xltol: lag distance tolerance :param nlag: number of lags to calculate :param azm: azimuth :param atol: azimuth tolerance :param bandwh: horizontal bandwidth / maximum distance offset orthogonal to azimuth :param isill: 1 for standardize sill :return: TODO """ # Load the data # Trim values outside tmin and tmax df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] nd = len(df_extract) # TODO: not used x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values return _gamv(nd, x, y, vr, xcol, ycol, vcol, tmin, tmax, xlag, xltol, nlag, azm, atol, bandwh, isill) @jit(**JITKW, **JITPL) def _gamv(nd, x, y, vr, xcol, ycol, vcol, tmin, tmax, xlag, xltol, nlag, azm, atol, bandwh, isill): # Summary statistics for the data after trimming avg = vr.mean() # TODO: not used stdev = vr.std() sills = stdev ** 2.0 ssq = sills # TODO: not used vrmin = vr.min() # TODO: not used vrmax = vr.max() # TODO: not used # Define the distance tolerance if it isn't already if xltol < 0.0: xltol = 0.5 * xlag # Loop over combinatorial of data pairs to calculate the variogram dis, vario, npp = variogram_loop( x, y, vr, xlag, xltol, nlag, azm, atol, bandwh ) # Standardize sill to one by dividing all variogram values by the variance for il in nb.prange(0, nlag + 2): if isill == 1: vario[il] = vario[il] / sills # Apply 1/2 factor to go from variogram to semivariogram vario[il] = 0.5 * vario[il] return dis, vario, npp @jit(**JITKW, **JITPL) def variogram_loop(x, y, vr, xlag, xltol, nlag, azm, atol, bandwh): """Calculate the variogram by looping over combinatorial of data pairs. :param x: x values :param y: y values :param vr: property values :param xlag: lag distance :param xltol: lag distance tolerance :param nlag: number of lags to calculate :param azm: azimuth :param atol: azimuth tolerance :param bandwh: horizontal bandwidth / maximum distance offset orthogonal to azimuth :return: TODO """ # Allocate the needed memory nvarg = 1 mxdlv = nlag + 2 # in gamv the npp etc. arrays go to nlag + 2 dis = np.zeros(mxdlv) lag = np.zeros(mxdlv) # TODO: not used vario = np.zeros(mxdlv) hm = np.zeros(mxdlv) tm = np.zeros(mxdlv) hv = np.zeros(mxdlv) # TODO: not used npp = np.zeros(mxdlv) ivtail = np.zeros(nvarg + 2) ivhead = np.zeros(nvarg + 2) ivtype = np.ones(nvarg + 2) ivtail[0] = 0 ivhead[0] = 0 ivtype[0] = 0 EPSLON = 1.0e-20 nd = len(x) # The mathematical azimuth is measured counterclockwise from EW and # not clockwise from NS as the conventional azimuth is azmuth = (90.0 - azm) * math.pi / 180.0 uvxazm = math.cos(azmuth) uvyazm = math.sin(azmuth) if atol <= 0.0: csatol = math.cos(45.0 * math.pi / 180.0) else: csatol = math.cos(atol * math.pi / 180.0) # Initialize the arrays for each direction, variogram, and lag nsiz = nlag + 2 # TODO: not used dismxs = ((float(nlag) + 0.5 - EPSLON) * xlag) ** 2 # Main loop over all pairs for i in nb.prange(0, nd): for j in nb.prange(0, nd): # Definition of the lag corresponding to the current pair dx = x[j] - x[i] dy = y[j] - y[i] dxs = dx * dx dys = dy * dy hs = dxs + dys if hs <= dismxs: if hs < 0.0: hs = 0.0 h = np.sqrt(hs) # Determine which lag this is and skip if outside the defined # distance tolerance if h <= EPSLON: lagbeg = 0 lagend = 0 else: lagbeg = -1 lagend = -1 for ilag in range(1, nlag + 1): # reduced to -1 if ( (xlag * float(ilag - 1) - xltol) <= h <= (xlag * float(ilag - 1) + xltol) ): if lagbeg < 0: lagbeg = ilag lagend = ilag if lagend >= 0: # Definition of the direction corresponding to the current # pair. All directions are considered (overlapping of # direction tolerance cones is allowed) # Check for an acceptable azimuth angle dxy = np.sqrt(max((dxs + dys), 0.0)) if dxy < EPSLON: dcazm = 1.0 else: dcazm = (dx * uvxazm + dy * uvyazm) / dxy # Check the horizontal bandwidth criteria (maximum deviation # perpendicular to the specified direction azimuth) band = uvxazm * dy - uvyazm * dx # Apply all the previous checks at once to avoid a lot of # nested if statements if (abs(dcazm) >= csatol) and (abs(band) <= bandwh): # Check whether or not an omni-directional variogram is # being computed omni = False if atol >= 90.0: omni = True # For this variogram, sort out which is the tail and # the head value iv = 0 # hardcoded just one variogram it = ivtype[iv] # TODO: not used if dcazm >= 0.0: vrh = vr[i] vrt = vr[j] if omni: vrtpr = vr[i] vrhpr = vr[j] else: vrh = vr[j] vrt = vr[i] if omni: vrtpr = vr[j] vrhpr = vr[i] # Reject this pair on the basis of missing values # Data was trimmed at the beginning # The Semivariogram (all other types of measures are # removed for now) for il in range(lagbeg, lagend + 1): npp[il] = npp[il] + 1 dis[il] = dis[il] + h tm[il] = tm[il] + vrt hm[il] = hm[il] + vrh vario[il] = vario[il] + ((vrh - vrt) * (vrh - vrt)) if omni: npp[il] = npp[il] + 1.0 dis[il] = dis[il] + h tm[il] = tm[il] + vrtpr hm[il] = hm[il] + vrhpr vario[il] = vario[il] + ( (vrhpr - vrtpr) * (vrhpr - vrtpr) ) # Get average values for gam, hm, tm, hv, and tv, then compute the correct # "variogram" measure for il in range(0, nlag + 2): i = il if npp[i] > 0: rnum = npp[i] dis[i] = dis[i] / rnum vario[i] = vario[i] / rnum hm[i] = hm[i] / rnum tm[i] = tm[i] / rnum return dis, vario, npp def varmapv(df, xcol, ycol, vcol, tmin, tmax, nxlag, nylag, dxlag, dylag, minnp, isill): """Calculate the variogram map from irregularly spaced data. :param df: DataFrame with the spatial data, xcol, ycol, vcol coordinates and property columns :param xcol: DataFrame column with x coordinate :param ycol: DataFrame column with y coordinate :param vcol: DataFrame column with value of interest :param tmin: lower trimming limit :param tmax: upper trimming limit :param nxlag: number of lags in the x direction :param nxlag: number of lags in the y direction :param dxlag: size of the lags in the x direction :param dylag: size of the lags in the y direction :param minnp: minimum number of pairs to calculate a variogram value :param isill: standardize sill to be 1.0 :return: TODO """ # Load the data # trim values outside tmin and tmax df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] nd = len(df_extract) x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values return _varmapv(nd, x, y, vr, xcol, ycol, vcol, tmin, tmax, nxlag, nylag, dxlag, dylag, minnp, isill) @jit(**JITKW, **JITPL) # runs faster not in parallel def _varmapv(nd, x, y, vr, xcol, ycol, vcol, tmin, tmax, nxlag, nylag, dxlag, dylag, minnp, isill): """Calculate the variogram map from irregularly spaced data. :param df: DataFrame with the spatial data, xcol, ycol, vcol coordinates and property columns :param xcol: DataFrame column with x coordinate :param ycol: DataFrame column with y coordinate :param vcol: DataFrame column with value of interest :param tmin: lower trimming limit :param tmax: upper trimming limit :param nxlag: number of lags in the x direction :param nxlag: number of lags in the y direction :param dxlag: size of the lags in the x direction :param dylag: size of the lags in the y direction :param minnp: minimum number of pairs to calculate a variogram value :param isill: standardize sill to be 1.0 :return: TODO """ # Summary statistics for the data after trimming avg = vr.mean() stdev = vr.std() sills = stdev**2.0 ssq = sills vrmin = vr.min() vrmax = vr.max() # Initialize the summation arrays npp = np.zeros((nylag*2+1, nxlag*2+1)) gam = np.zeros((nylag*2+1, nxlag*2+1)) nppf = np.zeros((nylag*2+1, nxlag*2+1)) gamf = np.zeros((nylag*2+1, nxlag*2+1)) hm = np.zeros((nylag*2+1, nxlag*2+1)) tm = np.zeros((nylag*2+1, nxlag*2+1)) hv = np.zeros((nylag*2+1, nxlag*2+1)) tv = np.zeros((nylag*2+1, nxlag*2+1)) # First fix the location of a seed point: for i in nb.prange(0, nd): # Second loop over the data: for j in nb.prange(0, nd): # The lag: ydis = y[j] - y[i] iyl = nylag + int(ydis/dylag) if iyl < 0 or iyl > nylag*2: # acocunting for 0,...,n-1 array indexing continue xdis = x[j] - x[i] ixl = nxlag + int(xdis/dxlag) if ixl < 0 or ixl > nxlag*2: # acocunting for 0,...,n-1 array indexing continue # We have an acceptable pair, therefore accumulate all the statistics # that are required for the variogram: # our ndarrays read from the base to top, so we flip npp[iyl, ixl] = npp[iyl, ixl] + 1 tm[iyl, ixl] = tm[iyl, ixl] + vr[i] hm[iyl, ixl] = hm[iyl, ixl] + vr[j] tv[iyl, ixl] = tm[iyl, ixl] + vr[i]*vr[i] hv[iyl, ixl] = hm[iyl, ixl] + vr[j]*vr[j] gam[iyl, ixl] = gam[iyl, ixl] + ((vr[i]-vr[j])*(vr[i]-vr[j])) # Get average values for gam, hm, tm, hv, and tv, then compute # the correct "variogram" measure: for iy in nb.prange(0, nylag*2+1): for ix in nb.prange(0, nxlag*2+1): if npp[iy, ix] <= minnp: gam[iy, ix] = -999. hm[iy, ix] = -999. tm[iy, ix] = -999. hv[iy, ix] = -999. tv[iy, ix] = -999. else: rnum = npp[iy, ix] gam[iy, ix] = gam[iy, ix] / (2*rnum) # semivariogram hm[iy, ix] = hm[iy, ix] / rnum tm[iy, ix] = tm[iy, ix] / rnum hv[iy, ix] = hv[iy, ix] / rnum - hm[iy, ix]*hm[iy, ix] tv[iy, ix] = tv[iy, ix] / rnum - tm[iy, ix]*tm[iy, ix] # Attempt to standardize: if isill > 0: gamf[iy, ix] = gamf[iy, ix]/sills for iy in nb.prange(0, nylag*2+1): for ix in nb.prange(0, nxlag*2+1): gamf[iy, ix] = gam[nylag*2-iy, ix] nppf[iy, ix] = npp[nylag*2-iy, ix] return gamf, nppf def vmodel( nlag, xlag, azm, vario ): """GSLIB's VMODEL program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Mar, 2019). :param nlag: number of variogram lags :param xlag: size of the lags :param axm: direction by 2D azimuth, 000 is y positive, 090 is x positive :param vario: dictionary with the variogram parameters :return: """ # Parameters MAXNST = 4 DEG2RAD = 3.14159265/180.0 MAXROT = MAXNST+1 EPSLON = 1.0e-20 VERSION = 1.01 # Declare arrays index = np.zeros(nlag+1) h = np.zeros(nlag+1) gam = np.zeros(nlag+1) cov = np.zeros(nlag+1) ro = np.zeros(nlag+1) # Load the variogram nst = vario["nst"] cc = np.zeros(nst) aa = np.zeros(nst) it = np.zeros(nst) ang = np.zeros(nst) anis = np.zeros(nst) c0 = vario["nug"] cc[0] = vario["cc1"] it[0] = vario["it1"] ang[0] = vario["azi1"] aa[0] = vario["hmaj1"] anis[0] = vario["hmin1"] / vario["hmaj1"] if nst == 2: cc[1] = vario["cc2"] it[1] = vario["it2"] ang[1] = vario["azi2"] aa[1] = vario["hmaj2"] anis[1] = vario["hmin2"] / vario["hmaj2"] xoff = math.sin(DEG2RAD*azm)*xlag yoff = math.cos(DEG2RAD*azm)*xlag print(' x,y,z offsets = ' + str(xoff) + ',' + str(yoff)) rotmat, maxcov = setup_rotmat(c0, nst, it, cc, ang, 99999.9) xx = 0.0 yy = 0.0 for il in range(0, nlag+1): index[il] = il cov[il] = cova2(0.0, 0.0, xx, yy, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat, maxcov) gam[il] = maxcov - cov[il] ro[il] = cov[il]/maxcov h[il] = math.sqrt(max((xx*xx+yy*yy), 0.0)) xx = xx + xoff yy = yy + yoff # finished return index, h, gam, cov, ro def nscore( df, vcol, wcol=None, ismooth=False, dfsmooth=None, smcol=0, smwcol=0 ): """GSLIB's NSCORE program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). :param df: pandas DataFrame with the spatial data :param vcol: name of the variable column :param wcol: name of the weight column, if None assumes equal weighting :param ismooth: if True then use a reference distribution :param dfsmooth: pandas DataFrame required if reference distribution is used :param smcol: reference distribution property (required if reference distribution is used) :param smwcol: reference distribution weight (required if reference distribution is used) :return: TODO """ # Set constants np.random.seed(73073) pwr = 1.0 # interpolation power, hard coded to 1.0 in GSLIB EPSILON = 1.0e-20 # Decide which file to use for establishing the transformation table if ismooth: nd = len(dfsmooth) vr = dfsmooth[smcol].values wt_ns = np.ones(nd) if smwcol != 0: wt_ns = dfsmooth[smwcol].values else: nd = len(df) vr = df[vcol].values wt_ns = np.ones(nd) if wcol is not None: wt_ns = df[wcol].values twt = np.sum(wt_ns) # Sort data by value istart = 0 iend = nd vr, wt_ns = dsortem(istart, iend, vr, 2, wt_ns) # Compute the cumulative probabilities and write transformation table wtfac = 1.0 / twt oldcp = 0.0 cp = 0.0 for j in range(istart, iend): w = wtfac * wt_ns[j] cp = cp + w wt_ns[j] = (cp + oldcp) / 2.0 vrrg = gauinv(wt_ns[j]) vrg = float(vrrg) oldcp = cp # Now, reset the weight to the normal scores value wt_ns[j] = vrg # Normal scores transform nd_trans = len(df) ns = np.zeros(nd_trans) val = df[vcol].values for i in range(0, nd_trans): vrr = val[i] + np.random.rand() * EPSILON # Now, get the normal scores value for "vrr" j = dlocate(vr, 1, nd, vrr) j = min(max(1, j), (nd - 1)) ns[i] = dpowint(vr[j], vr[j + 1], wt_ns[j], wt_ns[j + 1], vrr, pwr) return ns, vr, wt_ns def kb2d( df, xcol, ycol, vcol, tmin, tmax, nx, xmn, xsiz, ny, ymn, ysiz, nxdis, nydis, ndmin, ndmax, radius, ktype, skmean, vario, ): """GSLIB's KB2D program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column :param tmin: property trimming limit :param tmax: property trimming limit :param nx: definition of the grid system (x axis) :param xmn: definition of the grid system (x axis) :param xsiz: definition of the grid system (x axis) :param ny: definition of the grid system (y axis) :param ymn: definition of the grid system (y axis) :param ysiz: definition of the grid system (y axis) :param nxdis: number of discretization points for a block :param nydis: number of discretization points for a block :param ndmin: minimum number of data points to use for kriging a block :param ndmax: maximum number of data points to use for kriging a block :param radius: maximum isotropic search radius :param ktype: :param skmean: :param vario: :return: """ # Constants UNEST = -999. EPSLON = 1.0e-10 VERSION = 2.907 first = True PMX = 9999.0 MAXSAM = ndmax + 1 MAXDIS = nxdis * nydis MAXKD = MAXSAM + 1 MAXKRG = MAXKD * MAXKD # load the variogram nst = vario['nst'] cc = np.zeros(nst) aa = np.zeros(nst) it = np.zeros(nst) ang = np.zeros(nst) anis = np.zeros(nst) c0 = vario['nug'] cc[0] = vario['cc1'] it[0] = vario['it1'] ang[0] = vario['azi1'] aa[0] = vario['hmaj1'] anis[0] = vario['hmin1']/vario['hmaj1'] if nst == 2: cc[1] = vario['cc2'] it[1] = vario['it2'] ang[1] = vario['azi2'] aa[1] = vario['hmaj2'] anis[1] = vario['hmin2']/vario['hmaj2'] # Allocate the needed memory: xdb = np.zeros(MAXDIS) ydb = np.zeros(MAXDIS) xa = np.zeros(MAXSAM) ya = np.zeros(MAXSAM) vra = np.zeros(MAXSAM) dist = np.zeros(MAXSAM) nums = np.zeros(MAXSAM) r = np.zeros(MAXKD) rr = np.zeros(MAXKD) s = np.zeros(MAXKD) a = np.zeros(MAXKRG) kmap = np.zeros((nx, ny)) vmap = np.zeros((nx, ny)) # Load the data # trim values outside tmin and tmax df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] nd = len(df_extract) ndmax = min(ndmax, nd) x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values # Make a KDTree for fast search of nearest neighbours dp = list((y[i], x[i]) for i in range(0, nd)) data_locs = np.column_stack((y, x)) tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) # Summary statistics for the data after trimming avg = vr.mean() stdev = vr.std() ss = stdev**2.0 vrmin = vr.min() vrmax = vr.max() # Set up the discretization points per block. Figure out how many # are needed, the spacing, and fill the xdb and ydb arrays with the # offsets relative to the block center (this only gets done once): ndb = nxdis * nydis if ndb > MAXDIS: print('ERROR KB2D: Too many discretization points ') print(' Increase MAXDIS or lower n[xy]dis') return kmap xdis = xsiz / max(float(nxdis), 1.0) ydis = ysiz / max(float(nydis), 1.0) xloc = -0.5*(xsiz+xdis) i = -1 # accounting for 0 as lowest index for ix in range(0, nxdis): xloc = xloc + xdis yloc = -0.5*(ysiz+ydis) for iy in range(0, nydis): yloc = yloc + ydis i = i+1 xdb[i] = xloc ydb[i] = yloc # Initialize accumulators: cbb = 0.0 rad2 = radius*radius # Calculate Block Covariance. Check for point kriging. rotmat, maxcov = setup_rotmat(c0, nst, it, cc, ang, PMX) cov = cova2(xdb[0], ydb[0], xdb[0], ydb[0], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) # Keep this value to use for the unbiasedness constraint: unbias = cov first = False if ndb <= 1: cbb = cov else: for i in range(0, ndb): for j in range(0, ndb): cov = cova2(xdb[i], ydb[i], xdb[j], ydb[j], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) if i == j: cov = cov - c0 cbb = cbb + cov cbb = cbb/real(ndb*ndb) # MAIN LOOP OVER ALL THE BLOCKS IN THE GRID: nk = 0 ak = 0.0 vk = 0.0 for iy in range(0, ny): yloc = ymn + (iy-0)*ysiz for ix in range(0, nx): xloc = xmn + (ix-0)*xsiz current_node = (yloc, xloc) # Find the nearest samples within each octant: First initialize # the counter arrays: na = -1 # accounting for 0 as first index dist.fill(1.0e+20) nums.fill(-1) # use kd tree for fast nearest data search dist, nums = tree.query( current_node, ndmax, distance_upper_bound=radius) # remove any data outside search radius na = len(dist) nums = nums[dist < radius] dist = dist[dist < radius] na = len(dist) # Is there enough samples? if na + 1 < ndmin: # accounting for min index of 0 est = UNEST estv = UNEST print('UNEST at ' + str(ix) + ',' + str(iy)) else: # Put coordinates and values of neighborhood samples into xa,ya,vra: for ia in range(0, na): jj = int(nums[ia]) xa[ia] = x[jj] ya[ia] = y[jj] vra[ia] = vr[jj] # Handle the situation of only one sample: if na == 0: # accounting for min index of 0 - one sample case na = 0 cb1 = cova2(xa[0], ya[0], xa[0], ya[0], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) xx = xa[0] - xloc yy = ya[0] - yloc # Establish Right Hand Side Covariance: if ndb <= 1: cb = cova2( xx, yy, xdb[0], ydb[0], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) else: cb = 0.0 for i in range(0, ndb): cb = cb + \ cova2( xx, yy, xdb[i], ydb[i], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) dx = xx - xdb[i] dy = yy - ydb[i] if (dx*dx+dy*dy) < EPSLON: cb = cb - c0 cb = cb / real(ndb) if ktype == 0: s[0] = cb/cbb est = s[0]*vra[0] + (1.0-s[0])*skmean estv = cbb - s[0] * cb else: est = vra[0] estv = cbb - 2.0*cb + cb1 else: # Solve the Kriging System with more than one sample: neq = na + ktype # accounting for first index of 0 # print('NEQ' + str(neq)) nn = (neq + 1)*neq/2 # Set up kriging matrices: iin = -1 # accounting for first index of 0 for j in range(0, na): # Establish Left Hand Side Covariance Matrix: for i in range(0, na): # was j - want full matrix iin = iin + 1 a[iin] = cova2( xa[i], ya[i], xa[j], ya[j], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) if ktype == 1: iin = iin + 1 a[iin] = unbias xx = xa[j] - xloc yy = ya[j] - yloc # Establish Right Hand Side Covariance: if ndb <= 1: cb = cova2( xx, yy, xdb[0], ydb[0], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) else: cb = 0.0 for j1 in range(0, ndb): cb = cb + \ cova2( xx, yy, xdb[j1], ydb[j1], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) dx = xx - xdb[j1] dy = yy - ydb[j1] if (dx*dx+dy*dy) < EPSLON: cb = cb - c0 cb = cb / real(ndb) r[j] = cb rr[j] = r[j] # Set the unbiasedness constraint: if ktype == 1: for i in range(0, na): iin = iin + 1 a[iin] = unbias iin = iin + 1 a[iin] = 0.0 r[neq-1] = unbias rr[neq-1] = r[neq] # Solve the Kriging System: # print('NDB' + str(ndb)) # print('NEQ' + str(neq) + ' Left' + str(a) + ' Right' + str(r)) # stop s = ksol_numpy(neq, a, r) ising = 0 # need to figure this out # print('weights' + str(s)) # stop # Write a warning if the matrix is singular: if ising != 0: print('WARNING KB2D: singular matrix') print(' for block' + str(ix) + ',' + str(iy) + ' ') est = UNEST estv = UNEST else: # Compute the estimate and the kriging variance: est = 0.0 estv = cbb sumw = 0.0 if ktype == 1: estv = estv - (s[na])*unbias for i in range(0, na): sumw = sumw + s[i] est = est + s[i]*vra[i] estv = estv - s[i]*rr[i] if ktype == 0: est = est + (1.0-sumw)*skmean kmap[ny-iy-1, ix] = est vmap[ny-iy-1, ix] = estv if est > UNEST: nk = nk + 1 ak = ak + est vk = vk + est*est # END OF MAIN LOOP OVER ALL THE BLOCKS: if nk >= 1: ak = ak / float(nk) vk = vk/float(nk) - ak*ak print(' Estimated ' + str(nk) + ' blocks ') print(' average ' + str(ak) + ' variance ' + str(vk)) return kmap, vmap def kb2d_jit( df, xcol, ycol, vcol, tmin, tmax, nx, xmn, xsiz, ny, ymn, ysiz, nxdis, nydis, ndmin, ndmax, radius, ktype, skmean, vario, ): """GSLIB's KB2D program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column :param tmin: property trimming limit :param tmax: property trimming limit :param nx: definition of the grid system (x axis) :param xmn: definition of the grid system (x axis) :param xsiz: definition of the grid system (x axis) :param ny: definition of the grid system (y axis) :param ymn: definition of the grid system (y axis) :param ysiz: definition of the grid system (y axis) :param nxdis: number of discretization points for a block :param nydis: number of discretization points for a block :param ndmin: minimum number of data points to use for kriging a block :param ndmax: maximum number of data points to use for kriging a block :param radius: maximum isotropic search radius :param ktype: :param skmean: :param vario: :return: """ # Load the data # trim values outside tmin and tmax df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] nd = len(df_extract) x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values # Make a KDTree for fast search of nearest neighbours # dp = list((y[i], x[i]) for i in range(0,nd)) data_locs = np.column_stack((y, x)) import scipy.spatial as sp _tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) vario_int = Dict.empty( key_type=nb.types.unicode_type, value_type=nb.types.i8 ) vario_float = Dict.empty( key_type=nb.types.unicode_type, value_type=nb.f8 ) vario = copy(vario) vario_float['nug'] = vario.pop('nug') vario_float['cc1'] = vario.pop('cc1') vario_float['cc2'] = vario.pop('cc2') for key in vario.keys(): vario_int[key] = vario[key] tree = Dict.empty( key_type=nb.types.Tuple((nb.f8, nb.f8)), value_type=nb.types.Tuple((nb.f8[:], nb.i4[:])) ) for iy in range(0, ny): yloc = ymn + (iy-0)*ysiz for ix in range(0, nx): xloc = xmn + (ix-0)*xsiz current_node = (yloc, xloc) tree[current_node] = _tree.query( current_node, ndmax, distance_upper_bound=radius) kmap, vmap = _kb2d_jit( tree, nd, x, y, vr, xcol, ycol, vcol, tmin, tmax, nx, xmn, xsiz, ny, ymn, ysiz, nxdis, nydis, ndmin, ndmax, radius, ktype, skmean, vario_int, vario_float) return kmap, vmap @jit(**JITKW) # numba crashed on parallel=True def _kb2d_jit( tree, nd, x, y, vr, xcol, ycol, vcol, tmin, tmax, nx, xmn, xsiz, ny, ymn, ysiz, nxdis, nydis, ndmin, ndmax, radius, ktype, skmean, vario_int, vario_float): # Constants UNEST = -999. EPSLON = 1.0e-10 VERSION = 2.907 first = True PMX = 9999.0 MAXSAM = ndmax + 1 MAXDIS = nxdis * nydis MAXKD = MAXSAM + 1 MAXKRG = MAXKD * MAXKD ndmax = min(ndmax, nd) # load the variogram nst = vario_int['nst'] cc = np.zeros(nst) aa = np.zeros(nst) it = np.zeros(nst) ang = np.zeros(nst) anis = np.zeros(nst) # Allocate the needed memory: xdb = np.zeros(MAXDIS) ydb = np.zeros(MAXDIS) xa = np.zeros(MAXSAM) ya = np.zeros(MAXSAM) vra = np.zeros(MAXSAM) # dist = np.zeros(MAXSAM) # nums = np.zeros(MAXSAM) r = np.zeros(MAXKD) rr = np.zeros(MAXKD) s = np.zeros(MAXKD) a = np.zeros(MAXKRG) kmap = np.zeros((nx, ny)) vmap = np.zeros((nx, ny)) c0 = vario_float['nug'] cc[0] = vario_float['cc1'] it[0] = vario_int['it1'] ang[0] = vario_int['azi1'] aa[0] = vario_int['hmaj1'] anis[0] = vario_int['hmin1']/vario_int['hmaj1'] if nst == 2: cc[1] = vario_float['cc2'] it[1] = vario_int['it2'] ang[1] = vario_int['azi2'] aa[1] = vario_int['hmaj2'] anis[1] = vario_int['hmin2']/vario_int['hmaj2'] # Summary statistics for the data after trimming avg = np.mean(vr) stdev = np.std(vr) ss = stdev ** 2.0 vrmin = np.min(vr) vrmax = np.max(vr) # Set up the discretization points per block. Figure out how many # are needed, the spacing, and fill the xdb and ydb arrays with the # offsets relative to the block center (this only gets done once): ndb = nxdis * nydis if ndb > MAXDIS: print('ERROR KB2D: Too many discretization points ') print(' Increase MAXDIS or lower n[xy]dis') # return kmap xdis = xsiz / max(float(nxdis), 1.0) ydis = ysiz / max(float(nydis), 1.0) xloc = -0.5 * (xsiz + xdis) i = -1 # accounting for 0 as lowest index for ix in range(0, nxdis): xloc = xloc + xdis yloc = -0.5 * (ysiz+ydis) for iy in range(0, nydis): yloc = yloc + ydis i += 1 xdb[i] = xloc ydb[i] = yloc # Initialize accumulators: cbb = 0.0 rad2 = radius * radius # Calculate Block Covariance. Check for point kriging. rotmat, maxcov = setup_rotmat(c0, nst, it, cc, ang, PMX) cov = cova2(xdb[0], ydb[0], xdb[0], ydb[0], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) # Keep this value to use for the unbiasedness constraint: unbias = cov first = False if ndb <= 1: cbb = cov else: for i in nb.prange(0, ndb): for j in nb.prange(0, ndb): cov = cova2(xdb[i], ydb[i], xdb[j], ydb[j], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) if i == j: cov = cov - c0 cbb += cov # print(real) # cbb = cbb/real(ndb*ndb) # TODO: undefined? # MAIN LOOP OVER ALL THE BLOCKS IN THE GRID: nk = 0 ak = 0.0 vk = 0.0 for iy in nb.prange(0, ny): yloc = ymn + (iy-0)*ysiz for ix in nb.prange(0, nx): xloc = xmn + (ix-0)*xsiz current_node = (yloc, xloc) # Find the nearest samples within each octant: First initialize # the counter arrays: na = -1 # accounting for 0 as first index # dist.fill(1.0e+20) # nums.fill(-1) # dist, nums = tree.query(current_node,ndmax, distance_upper_bound=radius) # use kd tree for fast nearest data search dist, nums = tree[current_node] # remove any data outside search radius nums = nums[dist < radius] dist = dist[dist < radius] na = len(dist) # Is there enough samples? if na + 1 < ndmin: # accounting for min index of 0 est = UNEST estv = UNEST # print('UNEST at ' + str(ix) + ',' + str(iy)) else: # Put coordinates and values of neighborhood samples into xa,ya,vra: for ia in range(0, na): jj = int(nums[ia]) xa[ia] = x[jj] ya[ia] = y[jj] vra[ia] = vr[jj] # Handle the situation of only one sample: if na == 0: # accounting for min index of 0 - one sample case na = 0 cb1 = cova2(xa[0], ya[0], xa[0], ya[0], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) xx = xa[0] - xloc yy = ya[0] - yloc # Establish Right Hand Side Covariance: if ndb <= 1: cb = cova2( xx, yy, xdb[0], ydb[0], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) else: cb = 0.0 for i in range(0, ndb): cb = cb + \ cova2( xx, yy, xdb[i], ydb[i], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) dx = xx - xdb[i] dy = yy - ydb[i] if (dx*dx+dy*dy) < EPSLON: cb = cb - c0 # cb = cb / real(ndb) # TODO: undefined? if ktype == 0: s[0] = cb/cbb est = s[0]*vra[0] + (1.0-s[0])*skmean estv = cbb - s[0] * cb else: est = vra[0] estv = cbb - 2.0*cb + cb1 else: # Solve the Kriging System with more than one sample: neq = na + ktype # accounting for first index of 0 # print('NEQ' + str(neq)) nn = (neq + 1)*neq/2 # Set up kriging matrices: iin = -1 # accounting for first index of 0 for j in range(0, na): # Establish Left Hand Side Covariance Matrix: for i in range(0, na): # was j - want full matrix iin = iin + 1 a[iin] = cova2( xa[i], ya[i], xa[j], ya[j], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) if ktype == 1: iin = iin + 1 a[iin] = unbias xx = xa[j] - xloc yy = ya[j] - yloc # Establish Right Hand Side Covariance: if ndb <= 1: cb = cova2( xx, yy, xdb[0], ydb[0], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) else: cb = 0.0 for j1 in range(0, ndb): cb = cb + \ cova2( xx, yy, xdb[j1], ydb[j1], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) dx = xx - xdb[j1] dy = yy - ydb[j1] if (dx*dx+dy*dy) < EPSLON: cb = cb - c0 # cb = cb / real(ndb) # TODO: undefined? r[j] = cb rr[j] = r[j] # Set the unbiasedness constraint: if ktype == 1: for i in range(0, na): iin = iin + 1 a[iin] = unbias iin = iin + 1 a[iin] = 0.0 r[neq-1] = unbias rr[neq-1] = r[neq] # Solve the Kriging System: # print('NDB' + str(ndb)) # print('NEQ' + str(neq) + ' Left' + str(a) + ' Right' + str(r)) # stop s = ksol_numpy(neq, a, r) ising = 0 # need to figure this out # print('weights' + str(s)) # stop # Write a warning if the matrix is singular: if ising != 0: # print('WARNING KB2D: singular matrix') # print(' for block' + str(ix) + ',' + str(iy)+ ' ') est = UNEST estv = UNEST else: # Compute the estimate and the kriging variance: est = 0.0 estv = cbb sumw = 0.0 if ktype == 1: estv = estv - (s[na])*unbias for i in range(0, na): sumw = sumw + s[i] est = est + s[i]*vra[i] estv = estv - s[i]*rr[i] if ktype == 0: est = est + (1.0-sumw)*skmean kmap[ny-iy-1, ix] = est vmap[ny-iy-1, ix] = estv if est > UNEST: nk = nk + 1 ak = ak + est vk = vk + est*est if nk >= 1: ak = ak / float(nk) vk = vk/float(nk) - ak*ak # print(' Estimated ' + str(nk) + ' blocks ') # print(' average ' + str(ak) + ' variance ' + str(vk)) return kmap, vmap def ik2d(df, xcol, ycol, vcol, ivtype, koption, ncut, thresh, gcdf, trend, tmin, tmax, nx, xmn, xsiz, ny, ymn, ysiz, ndmin, ndmax, radius, ktype, vario): """A 2D version of GSLIB's IK3D Indicator Kriging program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column (cateogorical or continuous - note continuous is untested) :param ivtype: variable type, 0 - categorical, 1 - continuous :param koption: kriging option, 0 - estimation, 1 - cross validation (under construction) :param ncut: number of categories or continuous thresholds :param thresh: an ndarray with the category labels or continuous thresholds :param gcdf: global CDF, not used if trend is present :param trend: an ndarray [ny,ny,ncut] with the local trend proportions or cumulative CDF values :param tmin: property trimming limit :param tmax: property trimming limit :param nx: definition of the grid system (x axis) :param xmn: definition of the grid system (x axis) :param xsiz: definition of the grid system (x axis) :param ny: definition of the grid system (y axis) :param ymn: definition of the grid system (y axis) :param ysiz: definition of the grid system (y axis) :param nxdis: number of discretization points for a block :param nydis: number of discretization points for a block :param ndmin: minimum number of data points to use for kriging a block :param ndmax: maximum number of data points to use for kriging a block :param radius: maximum isotropic search radius :param ktype: kriging type, 0 - simple kriging and 1 - ordinary kriging :param vario: list with all of the indicator variograms (sill of 1.0) in consistent order with above parameters :return: """ # Find the needed paramters: PMX = 9999.9 MAXSAM = ndmax + 1 MAXEQ = MAXSAM + 1 mik = 0 # full indicator kriging use_trend = False if trend.shape[0] == nx and trend.shape[1] == ny and trend.shape[2] == ncut: use_trend = True # load the variogram MAXNST = 2 nst = np.zeros(ncut, dtype=int) c0 = np.zeros(ncut) cc = np.zeros((MAXNST, ncut)) aa = np.zeros((MAXNST, ncut), dtype=int) it = np.zeros((MAXNST, ncut), dtype=int) ang = np.zeros((MAXNST, ncut)) anis = np.zeros((MAXNST, ncut)) for icut in range(0, ncut): nst[icut] = int(vario[icut]['nst']) c0[icut] = vario[icut]['nug'] cc[0, icut] = vario[icut]['cc1'] it[0, icut] = vario[icut]['it1'] ang[0, icut] = vario[icut]['azi1'] aa[0, icut] = vario[icut]['hmaj1'] anis[0, icut] = vario[icut]['hmin1']/vario[icut]['hmaj1'] if nst[icut] == 2: cc[1, icut] = vario[icut]['cc2'] it[1, icut] = vario[icut]['it2'] ang[1, icut] = vario[icut]['azi2'] aa[1, icut] = vario[icut]['hmaj2'] anis[1, icut] = vario[icut]['hmin2']/vario[icut]['hmaj2'] # Load the data # trim values outside tmin and tmax df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] MAXDAT = len(df_extract) MAXCUT = ncut MAXNST = 2 MAXROT = MAXNST*MAXCUT + 1 ikout = np.zeros((nx, ny, ncut)) maxcov = np.zeros(ncut) # Allocate the needed memory: xa = np.zeros(MAXSAM) ya = np.zeros(MAXSAM) vra = np.zeros(MAXSAM) dist = np.zeros(MAXSAM) nums = np.zeros(MAXSAM) r = np.zeros(MAXEQ) rr = np.zeros(MAXEQ) s = np.zeros(MAXEQ) a = np.zeros(MAXEQ*MAXEQ) ikmap = np.zeros((nx, ny, ncut)) vr = np.zeros((MAXDAT, MAXCUT+1)) nviol = np.zeros(MAXCUT) aviol = np.zeros(MAXCUT) xviol = np.zeros(MAXCUT) ccdf = np.zeros(ncut) ccdfo = np.zeros(ncut) ikout = np.zeros((nx, ny, ncut)) x = df_extract[xcol].values y = df_extract[ycol].values v = df_extract[vcol].values # The indicator data are constructed knowing the thresholds and the # data value. if ivtype == 0: for icut in range(0, ncut): vr[:, icut] = np.where( (v <= thresh[icut] + 0.5) & (v > thresh[icut] - 0.5), '1', '0') else: for icut in range(0, ncut): vr[:, icut] = np.where(v <= thresh[icut], '1', '0') vr[:, ncut] = v # Make a KDTree for fast search of nearest neighbours dp = list((y[i], x[i]) for i in range(0, MAXDAT)) data_locs = np.column_stack((y, x)) tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) # Summary statistics of the input data avg = vr[:, ncut].mean() stdev = vr[:, ncut].std() ss = stdev**2.0 vrmin = vr[:, ncut].min() vrmax = vr[:, ncut].max() print('Data for IK3D: Variable column ' + str(vcol)) print(' Number = ' + str(MAXDAT)) ndh = MAXDAT actloc = np.zeros(MAXDAT, dtype=int) for i in range(1, MAXDAT): actloc[i] = i # Set up the rotation/anisotropy matrices that are needed for the # variogram and search: print('Setting up rotation matrices for variogram and search') radsqd = radius * radius rotmat = [] for ic in range(0, ncut): rotmat_temp, maxcov[ic] = setup_rotmat(c0[ic], int( nst[ic]), it[:, ic], cc[:, ic], ang[:, ic], 9999.9) rotmat.append(rotmat_temp) # Initialize accumulators: # not setup yet nk = 0 xk = 0.0 vk = 0.0 for icut in range(0, ncut): nviol[icut] = 0 aviol[icut] = 0.0 xviol[icut] = -1.0 nxy = nx*ny print('Working on the kriging') # Report on progress from time to time: if koption == 0: nxy = nx*ny nloop = nxy irepo = max(1, min((nxy/10), 10000)) else: nloop = 10000000 irepo = max(1, min((nd/10), 10000)) ddh = 0.0 # MAIN LOOP OVER ALL THE BLOCKS IN THE GRID: for index in range(0, nloop): if (int(index/irepo)*irepo) == index: print(' currently on estimate ' + str(index)) if koption == 0: iy = int((index)/nx) ix = index - (iy)*nx xloc = xmn + (ix)*xsiz yloc = ymn + (iy)*ysiz else: ddh = 0.0 # TODO: pass the cross validation value # Find the nearest samples within each octant: First initialize the counter arrays: na = -1 # accounting for 0 as first index dist.fill(1.0e+20) nums.fill(-1) current_node = (yloc, xloc) # use kd tree for fast nearest data search dist, close = tree.query(current_node, ndmax) # remove any data outside search radius close = close[dist < radius] dist = dist[dist < radius] nclose = len(dist) # Is there enough samples? if nclose < ndmin: # accounting for min index of 0 for i in range(0, ncut): ccdfo[i] = UNEST print('UNEST at ' + str(ix) + ',' + str(iy)) else: # Loop over all the thresholds/categories: for ic in range(0, ncut): krig = True if mik == 1 and ic >= 1: krig = False # Identify the close data (there may be a different number of data at # each threshold because of constraint intervals); however, if # there are no constraint intervals then this step can be avoided. nca = -1 for ia in range(0, nclose): j = int(close[ia]+0.5) ii = actloc[j] accept = True if koption != 0 and (abs(x[j]-xloc) + abs(y[j]-yloc)).lt.EPSLON: accept = False if accept: nca = nca + 1 vra[nca] = vr[ii, ic] xa[nca] = x[j] ya[nca] = y[j] # If there are no samples at this threshold then use the global cdf: if nca == -1: if use_trend: ccdf[ic] = trend[ny-iy-1, ix, ic] else: ccdf[ic] = gcdf[ic] else: # Now, only load the variogram, build the matrix,... if kriging: neq = nclose + ktype na = nclose # Set up kriging matrices: iin = -1 # accounting for first index of 0 for j in range(0, na): # Establish Left Hand Side Covariance Matrix: for i in range(0, na): # was j - want full matrix iin = iin + 1 a[iin] = cova2(xa[i], ya[i], xa[j], ya[j], nst[ic], c0[ic], PMX, cc[:, ic], aa[:, ic], it[:, ic], ang[:, ic], anis[:, ic], rotmat[ic], maxcov[ic]) if ktype == 1: iin = iin + 1 a[iin] = maxcov[ic] r[j] = cova2(xloc, yloc, xa[j], ya[j], nst[ic], c0[ic], PMX, cc[:, ic], aa[:, ic], it[:, ic], ang[:, ic], anis[:, ic], rotmat[ic], maxcov[ic]) # Set the unbiasedness constraint: if ktype == 1: for i in range(0, na): iin = iin + 1 a[iin] = maxcov[ic] iin = iin + 1 a[iin] = 0.0 r[neq-1] = maxcov[ic] rr[neq-1] = r[neq] # Solve the system: if neq == 1: ising = 0.0 s[0] = r[0] / a[0] else: s = ksol_numpy(neq, a, r) # Finished kriging (if it was necessary): # Compute Kriged estimate of cumulative probability: sumwts = 0.0 ccdf[ic] = 0.0 for i in range(0, nclose): ccdf[ic] = ccdf[ic] + vra[i]*s[i] sumwts = sumwts + s[i] if ktype == 0: if use_trend == True: ccdf[ic] = ccdf[ic] + \ (1.0-sumwts)*trend[ny-iy-1, ix, ic] else: ccdf[ic] = ccdf[ic] + (1.0-sumwts)*gcdf[ic] # Keep looping until all the thresholds are estimated: # Correct and write the distribution to the output file: nk = nk + 1 ccdfo = ordrel(ivtype, ncut, ccdf) # Write the IK CCDF for this grid node: if koption == 0: ikout[ny-iy-1, ix, :] = ccdfo else: print('TBD') return ikout def sgsim(df, xcol, ycol, vcol, wcol, scol, tmin, tmax, itrans, ismooth, dftrans, tcol, twtcol, zmin, zmax, ltail, ltpar, utail, utpar, nsim, nx, xmn, xsiz, ny, ymn, ysiz, seed, ndmin, ndmax, nodmax, mults, nmult, noct, radius, radius1, sang1, mxctx, mxcty, ktype, colocorr, sec_map, vario): # Parameters from sgsim.inc MAXNST = 2 MAXROT = 2 UNEST = -99.0 EPSLON = 1.0e-20 VERSION = 2.907 KORDEI = 12 MAXOP1 = KORDEI+1 MAXINT = 2**30 # Set other parameters np.random.seed(seed) nxy = nx*ny sstrat = 0 # search data and nodes by default, turned off if unconditional radsqd = radius * radius sanis1 = radius1/radius if ktype == 4: varred = 1.0 # load the variogram nst = int(vario['nst']) cc = np.zeros(nst) aa = np.zeros(nst) it = np.zeros(nst, dtype=int) ang = np.zeros(nst) anis = np.zeros(nst) c0 = vario['nug'] cc[0] = vario['cc1'] it[0] = vario['it1'] ang[0] = vario['azi1'] aa[0] = vario['hmaj1'] anis[0] = vario['hmin1']/vario['hmaj1'] if nst == 2: cc[1] = vario['cc2'] it[1] = vario['it2'] ang[1] = vario['azi2'] aa[1] = vario['hmaj2'] anis[1] = vario['hmin2']/vario['hmaj2'] # Set the constants MAXCTX = mxctx MAXCTY = mxcty MAXCXY = MAXCTX * MAXCTY MAXX = nx MAXY = ny MAXZ = 1 # assuming 2D for now MXY = MAXX * MAXY if MXY < 100: MXY = 100 MAXNOD = nodmax MAXSAM = ndmax MAXKR1 = MAXNOD + MAXSAM + 1 # print('MAXKR1'); print(MAXKR1) MAXKR2 = MAXKR1 * MAXKR1 MAXSBX = 1 if nx > 1: MAXSBX = int(nx/2) if MAXSBX > 50: MAXSBX = 50 MAXSBY = 1 if ny > 1: MAXSBY = int(ny/2) if MAXSBY > 50: MAXSBY = 50 MAXSBZ = 1 MAXSB = MAXSBX*MAXSBY*MAXSBZ # Declare arrays dist = np.zeros(ndmax) nums = np.zeros(ndmax, dtype=int) # Perform some quick checks if nx > MAXX or ny > MAXY: print('ERROR: available grid size: ' + str(MAXX) + ',' + str(MAXY) + ',' + str(MAXZ) + '.') print(' you have asked for : ' + str(nx) + ',' + str(ny) + ',' + str(nz) + '.') return sim if ltail != 1 and ltail != 2: print('ERROR invalid lower tail option ' + str(ltail)) print(' only allow 1 or 2 - see GSLIB manual ') return sim if utail != 1 and utail != 2 and utail != 4: print('ERROR invalid upper tail option ' + str(ltail)) print(' only allow 1,2 or 4 - see GSLIB manual ') return sim if utail == 4 and utpar < 1.0: print('ERROR invalid power for hyperbolic tail' + str(utpar)) print(' must be greater than 1.0!') return sim if ltail == 2 and ltpar < 0.0: print('ERROR invalid power for power model' + str(ltpar)) print(' must be greater than 0.0!') return sim if utail == 2 and utpar < 0.0: print('ERROR invalid power for power model' + str(utpar)) print(' must be greater than 0.0!') return sim # Load the data # trim values outside tmin and tmax df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] nd = len(df_extract) ndmax = min(ndmax, nd) x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values vr_orig = np.copy(vr) # print('size of data extract'); print(len(vr)) wt = [] wt = np.array(wt) if wcol > -1: wt = df_extract[wcol].values else: wt = np.ones(nd) sec = [] sec = np.array(sec) if scol > -1: sec = df_extract[scol].values if itrans == 1: if ismooth == 1: dftrans_extract = dftrans.loc[( dftrans[tcol] >= tmin) & (dftrans[tcol] <= tmax)] ntr = len(dftrans_extract) vrtr = dftrans_extrac[tcol].values if twtcol > -1: vrgtr = dftrans_extrac[tcol].values else: vrgtr = np.ones(ntr) else: vrtr = df_extract[vcol].values ntr = len(df_extract) vrgtr = np.copy(wt) twt = np.sum(vrgtr) # sort vrtr, vrgtr = dsortem(0, ntr, vrtr, 2, b=vrgtr) # Compute the cumulative probabilities and write transformation table twt = max(twt, EPSLON) oldcp = 0.0 cp = 0.0 # print('ntr'); print(ntr) for j in range(0, ntr): cp = cp + vrgtr[j]/twt w = (cp + oldcp)*0.5 vrg = gauinv(w) oldcp = cp # Now, reset the weight to the normal scores value: vrgtr[j] = vrg twt = np.sum(wt) # Normal scores transform the data for id in range(0, nd): if itrans == 1: vrr = vr[id] j = dlocate(vrtr, 1, nd, vrr) j = min(max(0, j), (nd-2)) vrg = dpowint(vrtr[j], vrtr[j+1], vrgtr[j], vrgtr[j+1], vrr, 1.0) if vrg < vrgtr[0]: vrg = vrgtr[0] if(vrg > vrgtr[nd-1]): vrg = vrgtr[nd-1] vr[id] = vrg weighted_stats_orig = DescrStatsW(vr_orig, weights=wt) orig_av = weighted_stats_orig.mean orig_ss = weighted_stats_orig.var weighted_stats = DescrStatsW(vr, weights=wt) av = weighted_stats.mean ss = weighted_stats.var print('\n Data for SGSIM: Number of acceptable data = ' + str(nd)) print(' Number trimmed = ' + str(len(df) - nd)) print(' Weighted Average = ' + str(round(orig_av, 4))) print(' Weighted Variance = ' + str(round(orig_ss, 4))) print(' Weighted Transformed Average = ' + str(round(av, 4))) print(' Weighted Transformed Variance = ' + str(round(ss, 4))) # Read in secondary data sim = np.random.rand(nx*ny) index = 0 for ixy in range(0, nxy): sim[index] = index lvm = [] lvm = np.array(lvm) if ktype >= 2: #lvm = np.copy(sec_map.flatten()) ind = 0 lvm = np.zeros(nxy) for iy in range(0, ny): for ix in range(0, nx): lvm[ind] = sec_map[ny-iy-1, ix] ind = ind + 1 if ktype == 2 and itrans == 1: for ixy in range(0, nxy): # Do we to transform the secondary variable for a local mean? vrr = lvm[ixy] j = dlocate(vrtr, 1, ntr, vrr) j = min(max(0, j), (ntr-2)) vrg = dpowint(vrtr[j], vrtr[j+1], vrgtr[j], vrgtr[j+1], vrr, 1.0) if vrg < vrgtr[0]: vrg = vrgtr[0] if(vrg > vrgtr[ntr-1]): vrg = vrgtr[nd-1] lvm[ixy] = vrg av = np.average(lvm) ss = np.var(lvm) print(' Secondary Data: Number of data = ' + str(nx*ny)) print(' Equal Weighted Average = ' + str(round(av, 4))) print(' Equal Weighted Variance = ' + str(round(ss, 4))) # Do we need to work with data residuals? (Locally Varying Mean) if ktype == 2: sec = np.zeros(nd) for idd in range(0, nd): ix = getindex(nx, xmn, xsiz, x[idd]) iy = getindex(ny, ymn, ysiz, y[idd]) index = ix + (iy-1)*nx sec[idd] = lvm[index] # Calculation of residual moved to krige subroutine: vr(i)=vr(i)-sec(i) # Do we need to get an external drift attribute for the data? if ktype == 3: for idd in range(0, nd): if sec[i] != UNEST: ix = getindx(nx, xmn, xsiz, x[idd]) iy = getindx(ny, ymn, ysiz, y[idd]) ind = ix + (iy)*nx sec[ind] = lvm[ind] # Transform the secondary attribute to normal scores? if ktype == 4: order_sec = np.zeros(nxy) ind = 0 for ixy in range(0, nxy): order_sec[ixy] = ind ind = ind + 1 print(' Transforming Secondary Data with') print(' variance reduction of ' + str(varred)) lvm, order_sec = dsortem(0, nxy, lvm, 2, b=order_sec) oldcp = 0.0 cp = 0.0 for i in range(0, nxy): cp = cp + (1.0/(nxy)) w = (cp + oldcp)/2.0 lvm[i] = gauinv(w) lvm[i] = lvm[i] * varred oldcp = cp order_sec, lvm = dsortem(0, nxy, order_sec, 2, b=lvm) # return np.reshape(lvm,(ny,nx)) # check the transform # Set up the rotation/anisotropy matrices that are needed for the # variogram and search. print('Setting up rotation matrices for variogram and search') if nst == 1: rotmat = setrot(ang[0], ang[0], sang1, anis[0], anis[0], sanis1, nst, MAXROT=2) else: rotmat = setrot(ang[0], ang[1], sang1, anis[0], anis[1], sanis1, nst, MAXROT=2) isrot = 2 # search rotation is appended as 3rd rotmat_2d, maxcov = setup_rotmat2( c0, nst, it, cc, ang) # will use one in the future # print('MaxCov = ' + str(maxcov)) # Make a KDTree for fast search of nearest neighbours dp = list((y[i], x[i]) for i in range(0, nd)) data_locs = np.column_stack((y, x)) tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) # Set up the covariance table and the spiral search: cov_table, tmp, order, ixnode, iynode, nlooku, nctx, ncty = ctable(MAXNOD, MAXCXY, MAXCTX, MAXCTY, MXY, xsiz, ysiz, isrot, nx, ny, nst, c0, cc, aa, it, ang, anis, rotmat, radsqd) # print('Covariance Table'); print(cov_table) # MAIN LOOP OVER ALL THE SIMULAUTIONS: for isim in range(0, nsim): # Work out a random path for this realization: sim = np.random.rand(nx*ny) order = np.zeros(nxy) ind = 0 for ixy in range(0, nxy): order[ixy] = ind ind = ind + 1 # The multiple grid search works with multiples of 4 (yes, that is # somewhat arbitrary): if mults == 1: for imult in range(0, nmult): nny = int(max(1, ny/((imult+1)*4))) nnx = int(max(1, nx/((imult+1)*4))) # print('multi grid - nnx, nny'); print(nnx,nny) jy = 1 jx = 1 for iy in range(0, nny): if nny > 0: jy = iy*(imult+1)*4 for ix in range(0, nnx): if nnx > 0: jx = ix*(imult+1)*4 index = jx + (jy-1)*nx sim[index] = sim[index] - (imult+1) # Initialize the simulation: sim, order = dsortem(0, nxy, sim, 2, b=order) sim.fill(UNEST) print('Working on realization number ' + str(isim)) # Assign the data to the closest grid node: TINY = 0.0001 for idd in range(0, nd): # print('data'); print(x[idd],y[idd]) ix = getindex(nx, xmn, xsiz, x[idd]) iy = getindex(ny, ymn, ysiz, y[idd]) ind = ix + (iy-1)*nx xx = xmn + (ix)*xsiz yy = ymn + (iy)*ysiz # print('xx, yy' + str(xx) + ',' + str(yy)) test = abs(xx-x[idd]) + abs(yy-y[idd]) # Assign this data to the node (unless there is a closer data): if sstrat == 1: if sim[ind] > 0.0: id2 = int(sim[ind]+0.5) test2 = abs(xx-x(id2)) + abs(yy-y(id2)) if test <= test2: sim[ind] = idd else: sim[ind] = id2 # Assign a flag so that this node does not get simulated: if sstrat == 0 and test <= TINY: sim[ind] = 10.0*UNEST # Now, enter data values into the simulated grid: for ind in range(0, nxy): idd = int(sim[ind]+0.5) if idd > 0: sim[ind] = vr[id] irepo = max(1, min((nxy/10), 10000)) # MAIN LOOP OVER ALL THE NODES: for ind in range(0, nxy): if (int(ind/irepo)*irepo) == ind: print(' currently on node ' + str(ind)) # Figure out the location of this point and make sure it has # not been assigned a value already: index = int(order[ind]+0.5) if (sim[index] > (UNEST+EPSLON)) or (sim[index] < (UNEST*2.0)): continue iy = int((index)/nx) ix = index - (iy)*nx xx = xmn + (ix)*xsiz yy = ymn + (iy)*ysiz current_node = (yy, xx) # print('Current_node'); print(current_node) # Now, we'll simulate the point ix,iy,iz. First, get the close data # and make sure that there are enough to actually simulate a value, # we'll only keep the closest "ndmax" data, and look for previously # simulated grid nodes: if sstrat == 0: # print('searching for nearest data') na = -1 # accounting for 0 as first index if ndmax == 1: dist = np.zeros(1) nums = np.zeros(1) # use kd tree for fast nearest data search dist[0], nums[0] = tree.query(current_node, ndmax) else: dist, nums = tree.query(current_node, ndmax) # remove any data outside search radius # print('nums'); print(nums) # print('dist'); print(dist) na = len(dist) nums = nums[dist < radius] dist = dist[dist < radius] na = len(dist) if na < ndmin: continue # bail if not enough data # print('Found ' + str(na) + 'neighbouring data') # print('node search inputs') # print('nodmax ' + str(nodmax)) # print('ixnode'); print(ixnode) ncnode, icnode, cnodev, cnodex, cnodey = srchnd( ix, iy, nx, ny, xmn, ymn, xsiz, ysiz, sim, noct, nodmax, ixnode, iynode, nlooku, nctx, ncty, UNEST) # print('srchnd'); print(ncnode,icnode,cnodev,cnodex,cnodey) # print('Result of srchnd, cnodex = '); print(cnodex) nclose = na # print('srch node, nclose ' + str(nclose) + ', ncnode ' + str(ncnode)) # print('nums'); print(nums) # Calculate the conditional mean and standard deviation. This will be # done with kriging if there are data, otherwise, the global mean and # standard deviation will be used: if ktype == 2: gmean = lvm[index] else: gmean = 0.0 if nclose+ncnode < 1: cmean = gmean cstdev = 1.0 # Perform the kriging. Note that if there are fewer than four data # then simple kriging is prefered so that the variance of the # realization does not become artificially inflated: else: lktype = ktype if ktype == 1 and (nclose+ncnode) < 4: lktype = 0 cmean, cstdev = krige(ix, iy, nx, ny, xx, yy, lktype, x, y, vr, sec, colocorr, lvm, nums, cov_table, nctx, ncty, icnode, ixnode, iynode, cnodev, cnodex, cnodey, nst, c0, 9999.9, cc, aa, it, ang, anis, rotmat_2d, maxcov, MAXCTX, MAXCTY, MAXKR1, MAXKR2) # Draw a random number and assign a value to this node: p = np.random.rand() xp = gauinv(p) sim[index] = xp * cstdev + cmean # print('simulated value = ' + str(sim[index])) # Quick check for far out results: if abs(cmean) > 5.0 or abs(cstdev) > 5.0 or abs(sim[index]) > 6.0: print('WARNING: grid node location: ' + str(ix) + ',' + str(iy)) print(' conditional mean and stdev: ' + str(cmean) + ',' + str(cstdev)) print(' simulated value: ' + str(sim[index])) # Do we need to reassign the data to the grid nodes? if sstrat == 0: print('Reassigning data to nodes') for iid in range(0, nd): ix = getindex(nx, xmn, xsiz, x[iid]) iy = getindex(ny, ymn, ysiz, y[iid]) xx = xmn + (ix)*xsiz yy = ymn + (iy)*ysiz ind = ix + (iy-1)*nx test = abs(xx-x[iid])+abs(yy-y[iid]) if test <= TINY: sim[ind] = vr[iid] # Back transform each value and write results: ne = 0 av = 0.0 ss = 0.0 for ind in range(0, nxy): iy = int((index-1)/nx) + 1 ix = index - (iy-1)*nx simval = sim[ind] if simval > -9.0 and simval < 9.0: ne = ne + 1 av = av + simval ss = ss + simval*simval if itrans == 1 and simval > (UNEST+EPSLON): simval = backtr_value( simval, vrtr, vrgtr, zmin, zmax, ltail, ltpar, utail, utpar) if simval < zmin: simval = zmin if simval > zmax: simval = zmax sim[ind] = simval # print('simulated value = ' + str(sim[ind]) + ' at location index = ' + str(ind)) av = av / max(ne, 1.0) ss = (ss / max(ne, 1.0)) - av * av print('\n Realization ' + str(isim) + ': number = ' + str(ne)) print(' mean = ' + str(round(av, 4)) + ' (close to 0.0?)') print(' variance = ' + str(round(ss, 4)) + ' (close to gammabar(V,V)? approx. 1.0)') # END MAIN LOOP OVER SIMULATIONS: sim_out = np.zeros((ny, nx)) for ind in range(0, nxy): iy = int((ind)/nx) ix = ind - (iy)*nx sim_out[ny-iy-1, ix] = sim[ind] return sim_out def sisim(df, xcol, ycol, vcol, ivtype, koption, ncut, thresh, gcdf, trend, tmin, tmax, zmin, zmax, ltail, ltpar, middle, mpar, utail, utpar, nx, xmn, xsiz, ny, ymn, ysiz, seed, ndmin, ndmax, nodmax, mults, nmult, noct, radius, ktype, vario): """A 2D version of GSLIB's SISIM Indicator Simulation program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). WARNING: only tested for cateogrical ktype 0, 1 and 2 (locally variable proportion). :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column (cateogorical or continuous - note continuous is untested) :param ivtype: variable type, 0 - categorical, 1 - continuous :param koption: kriging option, 0 - estimation, 1 - cross validation (under construction) :param ncut: number of categories or continuous thresholds :param thresh: an ndarray with the category labels or continuous thresholds :param gcdf: global CDF, not used if trend is present :param trend: an ndarray [ny,ny,ncut] with the local trend proportions or cumulative CDF values :param tmin: property trimming limit :param tmax: property trimming limit :param nx: definition of the grid system (x axis) :param xmn: definition of the grid system (x axis) :param xsiz: definition of the grid system (x axis) :param ny: definition of the grid system (y axis) :param ymn: definition of the grid system (y axis) :param ysiz: definition of the grid system (y axis) :param nxdis: number of discretization points for a block :param nydis: number of discretization points for a block :param ndmin: minimum number of data points to use for kriging a block :param ndmax: maximum number of data points to use for kriging a block :param radius: maximum isotropic search radius :param ktype: kriging type, 0 - simple kriging and 1 - ordinary kriging :param vario: list with all of the indicator variograms (sill of 1.0) in consistent order with above parameters :return: """ # Checks if utail == 3 or ltail == 3 or middle == 3: print('ERROR - distribution extrapolation option 3 with table is not available') return sim_out if xcol == "" or ycol == "": print('ERROR - must have x and y column in the DataFrame') return sim_out # Set parameters from the include UNEST = -99.0 EPSLON = 1.0e-20 VERSION = 0.001 np.random.seed(seed) colocorr = 0.0 # no collocated cokriging lvm = 0 # no kriging with a locally variable mean sec = [] sec = np.array(sec) # no secondary data ng = 0 # no tabulated values # Find the needed paramters: PMX = 9999.9 MAXSAM = ndmax + 1 MAXEQ = MAXSAM + 1 nxy = nx*ny mik = 0 # full indicator kriging use_trend = False trend1d = np.zeros((nxy, 1)) # no trend make a dummy trend if trend.shape[0] == nx and trend.shape[1] == ny and trend.shape[2] == ncut: trend1d = np.zeros((nxy, ncut)) use_trend = True index = 0 for iy in range(0, ny): for ix in range(0, nx): for ic in range(0, ncut): trend1d[index, ic] = trend[ny-iy-1, ix, ic] # copy trend index = index + 1 MAXORD = nxy MAXNOD = nodmax cnodeiv = np.zeros((ncut+1, MAXNOD)) tmp = np.zeros(MAXORD) sstrat = 0 # search data and nodes by default, turned off if unconditional sang1 = 0 # using isotropic search now sanis1 = 1.0 # No covariance lookup table mxctx = int(radius/xsiz)*2+1 mxcty = int(radius/xsiz)*2+1 # print('cov table / spiral search nx, ny '); print(mxctx); print(mxcty) MAXCTX = mxctx MAXCTY = mxcty MAXCXY = MAXCTX * MAXCTY # Grid extents MAXX = nx MAXY = ny MXY = MAXX * MAXY # Kriging system MAXKR1 = 2 * MAXNOD + 2 * MAXSAM + 1 MAXKR2 = MAXKR1 * MAXKR1 MAXSBX = 1 if nx > 1: MAXSBX = int(nx/2) if MAXSBX > 50: MAXSBX = 50 MAXSBY = 1 if ny > 1: MAXSBY = int(ny/2) if MAXSBY > 50: MAXSBY = 50 # print('ncut'); print(ncut) # load the variogram MAXNST = 2 nst = np.zeros(ncut, dtype=int) c0 = np.zeros(ncut) cc = np.zeros((ncut, MAXNST)) aa = np.zeros((ncut, MAXNST), dtype=int) it = np.zeros((ncut, MAXNST), dtype=int) ang = np.zeros((ncut, MAXNST)) anis = np.zeros((ncut, MAXNST)) # print('varios - 1 vario'); print(vario[1]) for icut in range(0, ncut): # print('icut'); print(icut) nst[icut] = int(vario[icut]['nst']) c0[icut] = vario[icut]['nug'] cc[icut, 0] = vario[icut]['cc1'] it[icut, 0] = vario[icut]['it1'] ang[icut, 0] = vario[icut]['azi1'] aa[icut, 0] = vario[icut]['hmaj1'] anis[icut, 0] = vario[icut]['hmin1']/vario[icut]['hmaj1'] if nst[icut] == 2: cc[icut, 1] = vario[icut]['cc2'] it[icut, 1] = vario[icut]['it2'] ang[icut, 1] = vario[icut]['azi2'] aa[icut, 1] = vario[icut]['hmaj2'] anis[icut, 1] = vario[icut]['hmin2']/vario[icut]['hmaj2'] # print('check loaded cov model- icut '); print(icut) # print(cc[icut],aa[icut],it[icut],ang[icut],anis[icut]) # Load the data # trim values outside tmin and tmax df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] MAXDAT = len(df_extract) nd = MAXDAT MAXCUT = ncut MAXNST = 2 MAXROT = MAXNST*MAXCUT + 1 ikout = np.zeros((nx, ny, ncut)) maxcov = np.zeros(ncut) # Allocate the needed memory: xa = np.zeros(MAXSAM) ya = np.zeros(MAXSAM) vra = np.zeros(MAXSAM) dist = np.zeros(MAXSAM) nums = np.zeros(MAXSAM) r = np.zeros(MAXEQ) rr = np.zeros(MAXEQ) s = np.zeros(MAXEQ) a = np.zeros(MAXEQ*MAXEQ) ikmap = np.zeros((nx, ny, ncut)) vr = np.zeros((MAXDAT, MAXCUT+1)) nviol = np.zeros(MAXCUT) aviol = np.zeros(MAXCUT) xviol = np.zeros(MAXCUT) ccdf = np.zeros(ncut) ccdfo = np.zeros(ncut) ikout = np.zeros((nx, ny, ncut)) x = df_extract[xcol].values y = df_extract[ycol].values v = df_extract[vcol].values MAXTAB = MAXDAT + MAXCUT # tabulated probabilities not used gcut = np.zeros(MAXTAB) # The indicator data are constructed knowing the thresholds and the # data value. # print('ncut'); print(ncut) if ivtype == 0: for icut in range(0, ncut): vr[:, icut] = np.where( (v <= thresh[icut] + 0.5) & (v > thresh[icut] - 0.5), '1', '0') else: for icut in range(0, ncut): vr[:, icut] = np.where(v <= thresh[icut], '1', '0') vr[:, ncut] = v # print('loaded data '); print(vr) # Make a KDTree for fast search of nearest neighbours dp = list((y[i], x[i]) for i in range(0, MAXDAT)) data_locs = np.column_stack((y, x)) tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) # Summary statistics of the input data avg = vr[:, ncut].mean() stdev = vr[:, ncut].std() ss = stdev**2.0 vrmin = vr[:, ncut].min() vrmax = vr[:, ncut].max() print('Data for IK3D: Variable column ' + str(vcol)) print(' Number = ' + str(MAXDAT)) ndh = MAXDAT # need to set up data at node locations actloc = np.zeros(MAXDAT, dtype=int) for i in range(1, MAXDAT): actloc[i] = i # Set up the rotation/anisotropy matrices that are needed for the # variogram and search: print('Setting up rotation matrices for variogram and search') radsqd = radius * radius rotmat = [] for ic in range(0, ncut): rotmat_temp, maxcov[ic] = setup_rotmat( c0[ic], int(nst[ic]), it[ic], cc[ic], ang[ic], 9999.9) rotmat.append(rotmat_temp) # return rotmat # Set up the covariance table and the spiral search based just on the first variogram # This is ok as we are not using the covariance look up table, just spiral search for previous nodes isrot = MAXNST*MAXCUT + 1 # note I removed anisotropic search here # print('ang[0]'); print(ang[0]) if nst[0] == 1: global_rotmat = setrot( ang[0, 0], ang[0, 0], sang1, anis[0, 0], anis[0, 0], sanis1, nst[0], MAXROT=2) else: global_rotmat = setrot( ang[0, 0], ang[1, 0], sang1, anis[0, 0], anis[1, 0], sanis1, nst[0], MAXROT=2) cov_table, tmp2, order, ixnode, iynode, nlooku, nctx, ncty = ctable(MAXNOD, MAXCXY, MAXCTX, MAXCTY, MXY, xsiz, ysiz, isrot, nx, ny, nst[0], c0[0], cc[0], aa[0], it[0], ang[0], anis[0], global_rotmat, radsqd) # print('spiral search number nodes '); print(nlooku) # print('ixnode,iynode'); print(ixnode,iynode) # Initialize accumulators: # not setup yet nk = 0 xk = 0.0 vk = 0.0 for icut in range(0, ncut): nviol[icut] = 0 aviol[icut] = 0.0 xviol[icut] = -1.0 # print('Working on the kriging') # Report on progress from time to time: if koption == 0: nxy = nx*ny nloop = nxy irepo = max(1, min((nxy/10), 10000)) else: nloop = 10000000 irepo = max(1, min((nd/10), 10000)) ddh = 0.0 # MAIN LOOP OVER ALL THE SIMULAUTIONS: # for isim in range(0,nsim): # will add multiple realizations soon # Work out a random path for this realization: sim = np.random.rand(nx*ny) order = np.zeros(nxy) ind = 0 for ixy in range(0, nxy): order[ixy] = ind ind = ind + 1 # Multiple grid search works with multiples of 4 (yes, that is # soat arbitrary): if mults == 1: for imult in range(0, nmult): nny = int(max(1, ny/((imult+1)*4))) nnx = int(max(1, nx/((imult+1)*4))) # print('multi grid - nnx, nny'); print(nnx,nny) jy = 1 jx = 1 for iy in range(0, nny): if nny > 0: jy = iy*(imult+1)*4 for ix in range(0, nnx): if nnx > 0: jx = ix*(imult+1)*4 index = jx + (jy-1)*nx sim[index] = sim[index] - (imult+1) # Inlize the simulation: sim, order = dsortem(0, nxy, sim, 2, b=order) sim.fill(UNEST) tmp.fill(0.0) print('Working on a single realization, seed ' + str(seed)) # print('Random Path'); print(order) # As the data to the closest grid node: TINY = 0.0001 for idd in range(0, nd): # print('data'); print(x[idd],y[idd]) ix = getindex(nx, xmn, xsiz, x[idd]) iy = getindex(ny, ymn, ysiz, y[idd]) ind = ix + (iy-1)*nx xx = xmn + (ix)*xsiz yy = ymn + (iy)*ysiz # print('xx, yy' + str(xx) + ',' + str(yy)) test = abs(xx-x[idd]) + abs(yy-y[idd]) # As this data to the node (unless there is a closer data): if sstrat == 1 or (sstrat == 0 and test <= TINY): if sim[ind] > UNEST: id2 = int(sim[ind]+0.5) test2 = abs(xx-x[id2]) + abs(yy-y[id2]) if test <= test2: sim[ind] = idd else: sim[ind] = idd # As a flag so that this node does not get simulated: # Another data values into the simulated grid: for ind in range(0, nxy): idd = int(sim[ind]+0.5) if idd > 0: sim[ind] = vr[idd] else: tmp[ind] = sim[ind] sim[ind] = UNEST irepo = max(1, min((nxy/10), 10000)) # LOOP OVER ALL THE NODES: for ind in range(0, nxy): if (int(ind/irepo)*irepo) == ind: print(' currently on node ' + str(ind)) # Find the index on the random path, check if assigned data and get location index = int(order[ind]+0.5) if (sim[index] > (UNEST+EPSLON)) or (sim[index] < (UNEST*2.0)): continue iy = int((index)/nx) ix = index - (iy)*nx xx = xmn + (ix)*xsiz yy = ymn + (iy)*ysiz current_node = (yy, xx) # print('Current_node'); print(current_node) # Now we'll simulate the point ix,iy,iz. First, get the close data # and make sure that there are enough to actually simulate a value, # we'll only keep the closest "ndmax" data, and look for previously # simulated grid nodes: if sstrat == 0: # print('searching for nearest data') na = -1 # accounting for 0 as first index if ndmax == 1: dist = np.zeros(1) nums = np.zeros(1) # use kd tree for fast nearest data search dist[0], nums[0] = tree.query(current_node, ndmax) else: dist, nums = tree.query(current_node, ndmax) # remove any data outside search radius # print('nums'); print(nums) # print('dist'); print(dist) na = len(dist) nums = nums[dist < radius] dist = dist[dist < radius] na = len(dist) if na < ndmin: continue # bail if not enough data # print('Found ' + str(na) + 'neighbouring data') # print('node search inputs') # print('nodmax ' + str(nodmax)) # print('ixnode'); print(ixnode) # Indicator transform the nearest node data # print('start node search') ncnode, icnode, cnodev, cnodex, cnodey = srchnd( ix, iy, nx, ny, xmn, ymn, xsiz, ysiz, sim, noct, nodmax, ixnode, iynode, nlooku, nctx, ncty, UNEST) if ncnode > 0: for icut in range(0, ncut): cnodeiv[icut, :] = np.where( (cnodev <= thresh[icut] + 0.5) & (cnodev > thresh[icut] - 0.5), '1', '0') else: for icut in range(0, ncut): cnodeiv[icut, :] = np.where(cnodev <= thresh[icut], '1', '0') cnodeiv[ncut, :] = cnodev # print('indicator transformed nearest nodes'); print(cnodeiv) # print('srchnd'); print(ncnode,icnode,cnodev,cnodex,cnodey) # print('Result of srchnd, cnodex = '); print(cnodex) nclose = na # print('*****srch node, nclose ' + str(nclose) + ', ncnode ' + str(ncnode)) # print('near data'); print(nums) # print('near data distance'); print(dist) # print('nums'); print(nums) # What cdf value are we looking for? zval = UNEST cdfval = np.random.rand() # Use the global distribution? # check inputs # print('nst'); print(nst) if nclose + ncnode <= 0: # print('nclose & ncnode'); print(nclose, ncnode) zval = beyond(ivtype, ncut, thresh, gcdf, ng, gcut, gcdf, zmin, zmax, ltail, ltpar, middle, mpar, utail, utpar, zval, cdfval) else: # print('kriging') # Estimate the local distribution by indicator kriging: # print('maxcov'); print(maxcov) for ic in range(0, ncut): # print('check kriging cov model- icut '); print(ic) # print('node data values for kriging'); print(cnodev) # print(cc[ic],aa[ic],it[ic],ang[ic],anis[ic],rotmat[ic],maxcov[ic]) # ccdf([ic] = krige(ix,iy,iz,xx,yy,zz,ic,cdf(ic),MAXCTX,MAXCTY,MAXCTZ,MAXKR1,ccdf(ic),MAXROT) if ktype == 0: gmean = gcdf[ic] elif ktype == 2: gmean = trend1d[index, ic] else: gmean = 0 # if locally variable mean it is set from trend in ikrige, otherwise not used # print('gmean'); print(gmean) ccdf[ic], cstdev = ikrige(ix, iy, nx, ny, xx, yy, ktype, x, y, vr[:, ic], sec, colocorr, gmean, trend[:, ic], nums, cov_table, nctx, ncty, icnode, ixnode, iynode, cnodeiv[ic], cnodex, cnodey, nst[ic], c0[ ic], 9999.9, cc[ic], aa[ic], it[ic], ang[ic], anis[ic], rotmat[ic], maxcov[ic], MAXCTX, MAXCTY, MAXKR1, MAXKR2) # print('ccdf'); print(ccdf) # Correct order relations: ccdfo = ordrel(ivtype, ncut, ccdf) # Draw from the local distribution: zval = beyond(ivtype, ncut, thresh, ccdfo, ng, gcut, gcdf, zmin, zmax, ltail, ltpar, middle, mpar, utail, utpar, zval, cdfval) sim[index] = zval # print('zval'); print(zval) # END MAIN LOOP OVER SIMULATIONS: sim_out = np.zeros((ny, nx)) for ind in range(0, nxy): iy = int((ind)/nx) ix = ind - (iy)*nx sim_out[ny-iy-1, ix] = sim[ind] return sim_out def kb2d_locations( df, xcol, ycol, vcol, tmin, tmax, df_loc, xcol_loc, ycol_loc, ndmin, ndmax, radius, ktype, skmean, vario, ): """GSLIB's KB2D program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). Version for kriging at a set of spatial locations. :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column :param tmin: property trimming limit :param tmax: property trimming limit :param df_loc: pandas DataFrame with the locations to krige :param xcol: name of the x coordinate column for locations to krige :param ycol: name of the y coordinate column for locations to krige :param ndmin: minimum number of data points to use for kriging a block :param ndmax: maximum number of data points to use for kriging a block :param radius: maximum isotropic search radius :param ktype: :param skmean: :param vario: :return: """ # Constants UNEST = -999. EPSLON = 1.0e-10 VERSION = 2.907 first = True PMX = 9999.0 MAXSAM = ndmax + 1 MAXKD = MAXSAM + 1 MAXKRG = MAXKD * MAXKD # load the variogram nst = vario['nst'] cc = np.zeros(nst) aa = np.zeros(nst) it = np.zeros(nst) ang = np.zeros(nst) anis = np.zeros(nst) c0 = vario['nug'] cc[0] = vario['cc1'] it[0] = vario['it1'] ang[0] = vario['azi1'] aa[0] = vario['hmaj1'] anis[0] = vario['hmin1']/vario['hmaj1'] if nst == 2: cc[1] = vario['cc2'] it[1] = vario['it2'] ang[1] = vario['azi2'] aa[1] = vario['hmaj2'] anis[1] = vario['hmin2']/vario['hmaj2'] # Allocate the needed memory: xa = np.zeros(MAXSAM) ya = np.zeros(MAXSAM) vra = np.zeros(MAXSAM) dist = np.zeros(MAXSAM) nums = np.zeros(MAXSAM) r = np.zeros(MAXKD) rr = np.zeros(MAXKD) s = np.zeros(MAXKD) a = np.zeros(MAXKRG) klist = np.zeros(len(df_loc)) # list of kriged estimates vlist = np.zeros(len(df_loc)) # Load the data # trim values outside tmin and tmax df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] nd = len(df_extract) ndmax = min(ndmax, nd) x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values # Load the estimation loactions nd_loc = len(df_loc) x_loc = df_loc[xcol].values y_loc = df_loc[ycol].values vr_loc = df_loc[vcol].values # Make a KDTree for fast search of nearest neighbours dp = list((y[i], x[i]) for i in range(0, nd)) data_locs = np.column_stack((y, x)) tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) # Summary statistics for the data after trimming avg = vr.mean() stdev = vr.std() ss = stdev**2.0 vrmin = vr.min() vrmax = vr.max() # Initialize accumulators: cbb = 0.0 rad2 = radius*radius # Calculate Block Covariance. Check for point kriging. rotmat, maxcov = setup_rotmat(c0, nst, it, cc, ang, PMX) cov = cova2(0.0, 0.0, 0.0, 0.0, nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) # Keep this value to use for the unbiasedness constraint: unbias = cov cbb = cov first = False # MAIN LOOP OVER ALL THE BLOCKS IN THE GRID: nk = 0 ak = 0.0 vk = 0.0 for idata in range(len(df_loc)): print('Working on location ' + str(idata)) xloc = x_loc[idata] yloc = y_loc[idata] current_node = (yloc, xloc) # Find the nearest samples within each octant: First initialize # the counter arrays: na = -1 # accounting for 0 as first index dist.fill(1.0e+20) nums.fill(-1) # use kd tree for fast nearest data search dist, nums = tree.query(current_node, ndmax) # remove any data outside search radius na = len(dist) nums = nums[dist < radius] dist = dist[dist < radius] na = len(dist) # Is there enough samples? if na + 1 < ndmin: # accounting for min index of 0 est = UNEST estv = UNEST print('UNEST for Data ' + str(idata) + ', at ' + str(xloc) + ',' + str(yloc)) else: # Put coordinates and values of neighborhood samples into xa,ya,vra: for ia in range(0, na): jj = int(nums[ia]) xa[ia] = x[jj] ya[ia] = y[jj] vra[ia] = vr[jj] # Handle the situation of only one sample: if na == 0: # accounting for min index of 0 - one sample case na = 0 cb1 = cova2(xa[0], ya[0], xa[0], ya[0], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) xx = xa[0] - xloc yy = ya[0] - yloc # Establish Right Hand Side Covariance: cb = cova2(xx, yy, 0.0, 0.0, nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) if ktype == 0: s[0] = cb/cbb est = s[0]*vra[0] + (1.0-s[0])*skmean estv = cbb - s[0] * cb else: est = vra[0] estv = cbb - 2.0*cb + cb1 else: # Solve the Kriging System with more than one sample: neq = na + ktype # accounting for first index of 0 # print('NEQ' + str(neq)) nn = (neq + 1)*neq/2 # Set up kriging matrices: iin = -1 # accounting for first index of 0 for j in range(0, na): # Establish Left Hand Side Covariance Matrix: for i in range(0, na): # was j - want full matrix iin = iin + 1 a[iin] = cova2(xa[i], ya[i], xa[j], ya[j], nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) if ktype == 1: iin = iin + 1 a[iin] = unbias xx = xa[j] - xloc yy = ya[j] - yloc # Establish Right Hand Side Covariance: cb = cova2(xx, yy, 0.0, 0.0, nst, c0, PMX, cc, aa, it, ang, anis, rotmat, maxcov) r[j] = cb rr[j] = r[j] # Set the unbiasedness constraint: if ktype == 1: for i in range(0, na): iin = iin + 1 a[iin] = unbias iin = iin + 1 a[iin] = 0.0 r[neq-1] = unbias rr[neq-1] = r[neq] # Solve the Kriging System: # print('NDB' + str(ndb)) # print('NEQ' + str(neq) + ' Left' + str(a) + ' Right' + str(r)) # stop s = ksol_numpy(neq, a, r) ising = 0 # need to figure this out # print('weights' + str(s)) # stop # Write a warning if the matrix is singular: if ising != 0: print('WARNING KB2D: singular matrix') print(' for block' + str(ix) + ',' + str(iy) + ' ') est = UNEST estv = UNEST else: # Compute the estimate and the kriging variance: est = 0.0 estv = cbb sumw = 0.0 if ktype == 1: estv = estv - (s[na])*unbias for i in range(0, na): sumw = sumw + s[i] est = est + s[i]*vra[i] estv = estv - s[i]*rr[i] if ktype == 0: est = est + (1.0-sumw)*skmean klist[idata] = est vlist[idata] = estv if est > UNEST: nk = nk + 1 ak = ak + est vk = vk + est*est # END OF MAIN LOOP OVER ALL THE BLOCKS: if nk >= 1: ak = ak / float(nk) vk = vk/float(nk) - ak*ak print(' Estimated ' + str(nk) + ' blocks ') print(' average ' + str(ak) + ' variance ' + str(vk)) return klist, vlist # Partial Correlation in Python (clone of Matlab's partialcorr) # This uses the linear regression approach to compute the partial correlation # (might be slow for a huge number of variables). The algorithm is detailed here: # http://en.wikipedia.org/wiki/Partial_correlation#Using_linear_regression # Taking X and Y two variables of interest and Z the matrix with all the variable minus {X, Y}, # the algorithm can be summarized as # 1) perform a normal linear least-squares regression with X as the target and Z as the predictor # 2) calculate the residuals in Step #1 # 3) perform a normal linear least-squares regression with Y as the target and Z as the predictor # 4) calculate the residuals in Step #3 # 5) calculate the correlation coefficient between the residuals from Steps #2 and #4; # The result is the partial correlation between X and Y while controlling for the effect of Z # Date: Nov 2014 # Author: Fabian Pedregosa-Izquierdo, f@bianp.net # Testing: Valentina Borghesani, valentinaborghesani@gmail.com def partial_corr(C): # Returns the sample linear partial correlation coefficients between pairs of variables in C, controlling # for the remaining variables in C. # Parameters # C : array-like, shape (n, p) # Array with the different variables. Each column of C is taken as a variable # Returns # P : array-like, shape (p, p) # P[i, j] contains the partial correlation of C[:, i] and C[:, j] controlling # for the remaining variables in C. C = np.asarray(C) p = C.shape[1] P_corr = np.zeros((p, p), dtype=np.float) for i in range(p): P_corr[i, i] = 1 for j in range(i+1, p): idx = np.ones(p, dtype=np.bool) idx[i] = False idx[j] = False beta_i = linalg.lstsq(C[:, idx], C[:, j])[0] beta_j = linalg.lstsq(C[:, idx], C[:, i])[0] res_j = C[:, j] - C[:, idx].dot(beta_i) res_i = C[:, i] - C[:, idx].dot(beta_j) corr = stats.pearsonr(res_i, res_j)[0] P_corr[i, j] = corr P_corr[j, i] = corr return P_corr def semipartial_corr(C): # Michael Pyrcz modified the function above by Fabian Pedregosa-Izquierdo, f@bianp.net for semipartial correlation C = np.asarray(C) p = C.shape[1] P_corr = np.zeros((p, p), dtype=np.float) for i in range(p): P_corr[i, i] = 1 for j in range(i+1, p): idx = np.ones(p, dtype=np.bool) idx[i] = False idx[j] = False beta_i = linalg.lstsq(C[:, idx], C[:, j])[0] res_j = C[:, j] - C[:, idx].dot(beta_i) res_i = C[:, i] # just use the value, not a residual corr = stats.pearsonr(res_i, res_j)[0] P_corr[i, j] = corr P_corr[j, i] = corr return P_corr
from collections import deque chocolate = [int(num) for num in input().split(",")] milk = deque([int(num) for num in input().split(",")]) milkshakes = 0 milkshakes_success = False while chocolate and milk: current_chocolate = chocolate[-1] current_milk = milk[0] if current_chocolate <= 0 and current_milk <= 0: chocolate.pop() milk.popleft() continue if current_chocolate <= 0: chocolate.pop() continue elif current_milk <= 0: milk.popleft() continue if current_chocolate == current_milk: chocolate.pop() milk.popleft() milkshakes += 1 if milkshakes == 5: milkshakes_success = True break else: milk.append(milk.popleft()) current_chocolate -= 5 if milkshakes_success: print("Great! You made all the chocolate milkshakes needed!") else: print("Not enough milkshakes.") if chocolate: print(f"Chocolate: {', '.join([str(x) for x in chocolate])}") else: print("Chocolate: empty") if milk: print(f"Milk: {', '.join([str(x) for x in milk])}") else: print("Milk: empty")
# -*- coding: utf-8 -*- """ Language, locale and alphabet encapsulation module Copyright (C) 2020 Miðeind ehf. Original author: Vilhjálmur Þorsteinsson The GNU General Public License, version 3, applies to this software. For further information, see https://github.com/mideind/Netskrafl The classes in this module encapsulate particulars of supported languages, including the character set, scores, tiles in the initial bag, sorting, etc. Currently the only supported language is Icelandic. """ import functools class Alphabet: """ This implementation of the Alphabet class encapsulates particulars of the Icelandic language. Other languages can be supported by modifying or subclassing this class. """ # Sort ordering of allowed Icelandic letters def __init__(self): pass order = u'aábdðeéfghiíjklmnoóprstuúvxyýþæö' # Upper case version of the order string upper = u'AÁBDÐEÉFGHIÍJKLMNOÓPRSTUÚVXYÝÞÆÖ' # All tiles including wildcard '?' all_tiles = order + u'?' # Sort ordering of all valid letters full_order = u'aábcdðeéfghiíjklmnoópqrstuúvwxyýzþæö' # Upper case version of the full order string full_upper = u'AÁBCDÐEÉFGHIÍJKLMNOÓPQRSTUÚVWXYÝZÞÆÖ' # Map letters to bits letter_bit = {letter: 1 << ix for ix, letter in enumerate(order)} # Locale collation (sorting) map, initialized in _init() _lcmap = None # Case sensitive _lcmap_nocase = None # Case insensitive @staticmethod def bit_pattern(word): """ Return a pattern of bits indicating which letters are present in the word """ return functools.reduce(lambda x, y: x | y, [Alphabet.letter_bit[c] for c in word], 0) @staticmethod def bit_of(c): """ Returns the bit corresponding to a character in the alphabet """ return Alphabet.letter_bit[c] @staticmethod def all_bits_set(): """ Return a bit pattern where the bits for all letters in the Alphabet are set """ return 2 ** len(Alphabet.order) - 1 @staticmethod def lowercase(ch): """ Convert an uppercase character to lowercase """ return Alphabet.full_order[Alphabet.full_upper.index(ch)] @staticmethod def tolower(s): """ Return the argument string converted to lowercase """ return u''.join([Alphabet.lowercase(c) if c in Alphabet.full_upper else c for c in s]) @staticmethod def sort(l): """ Sort a list in-place by lexicographic ordering according to this Alphabet """ l.sort(key=Alphabet.sortkey) @staticmethod def sorted(l): """ Return a list sorted by lexicographic ordering according to this Alphabet """ return sorted(l, key=Alphabet.sortkey) @staticmethod def string_subtract(a, b): """ Subtract all letters in b from a, counting each instance separately """ # Note that this cannot be done with sets, as they fold multiple letter instances into one lcount = [a.count(c) - b.count(c) for c in Alphabet.all_tiles] return u''.join( [ Alphabet.all_tiles[ix] * lcount[ix] for ix in range(len(lcount)) if lcount[ix] > 0 ] ) # noinspection PyUnusedLocal @staticmethod def format_timestamp(ts): """ Return a timestamp formatted as a readable string """ # Currently always returns the full ISO format: YYYY-MM-DD HH:MM:SS return u"" + ts.isoformat(' ')[0:19] # noinspection PyUnusedLocal @staticmethod def format_timestamp_short(ts): """ Return a timestamp formatted as a readable string """ # Returns a short ISO format: YYYY-MM-DD HH:MM return u"" + ts.isoformat(' ')[0:16] @staticmethod def _init(): """ Create a collation (sort) mapping for the Icelandic language """ lcmap = [i for i in range(0, 256)] def rotate(letter, sort_after): """ Modifies the lcmap so that the letter is sorted after the indicated letter """ sort_as = lcmap[sort_after] + 1 letter_val = lcmap[letter] # We only support the case where a letter is moved forward in the sort order if letter_val > sort_as: for i in range(0, 256): if (lcmap[i] >= sort_as) and (lcmap[i] < letter_val): lcmap[i] += 1 lcmap[letter] = sort_as def adjust(s): """ Ensure that the sort order in the lcmap is in ascending order as in s """ # This does not need to be terribly efficient as the code is # only run once, during initialization for i in range(1, len(s) - 1): rotate(ord(s[i]), ord(s[i-1])) adjust(Alphabet.full_upper) # Uppercase adjustment adjust(Alphabet.full_order) # Lowercase adjustment # Now we have a case-sensitive sorting map: copy it Alphabet._lcmap = lcmap[:] # Create a case-insensitive sorting map, where the lower case # characters have the same sort value as the upper case ones for i, c in enumerate(Alphabet.full_order): lcmap[ord(c)] = lcmap[ord(Alphabet.full_upper[i])] # Store the case-insensitive sorting map Alphabet._lcmap_nocase = lcmap @staticmethod def sortkey(lstr): """ Key function for locale-based sorting """ assert Alphabet._lcmap return [Alphabet._lcmap[ord(c)] if ord(c) <= 255 else 256 for c in lstr] @staticmethod def sortkey_nocase(lstr): """ Key function for locale-based sorting, case-insensitive """ assert Alphabet._lcmap_nocase return [Alphabet._lcmap_nocase[ord(c)] if ord(c) <= 255 else 256 for c in lstr] # Initialize the locale collation (sorting) map Alphabet._init() # pylint: disable=W0212 # noinspection PyUnresolvedReferences class TileSet(object): """ Abstract base class for tile sets. Concrete classes are found below. """ # The following will be overridden in derived classes scores = dict() bag_tiles = [] @classmethod def score(cls, tiles): """ Return the net (plain) score of the given tiles """ if not tiles: return 0 return sum([cls.scores[tile] for tile in tiles]) @classmethod def full_bag(cls): """ Return a full bag of tiles """ if not hasattr(cls, "_full_bag"): # Cache the bag cls._full_bag = u''.join([tile * count for (tile, count) in cls.bag_tiles]) return cls._full_bag @classmethod def num_tiles(cls): """ Return the total number of tiles in this tile set """ return sum(n for letter, n in cls.bag_tiles) class OldTileSet(TileSet): """ The old (original) Icelandic tile set """ # Letter scores in the old (original) Icelandic tile set scores = { u'a': 1, u'á': 4, u'b': 6, u'd': 4, u'ð': 2, u'e': 1, u'é': 6, u'f': 3, u'g': 2, u'h': 3, u'i': 1, u'í': 4, u'j': 5, u'k': 2, u'l': 2, u'm': 2, u'n': 1, u'o': 3, u'ó': 6, u'p': 8, u'r': 1, u's': 1, u't': 1, u'u': 1, u'ú': 8, u'v': 3, u'x': 10, u'y': 7, u'ý': 9, u'þ': 4, u'æ': 5, u'ö': 7, u'?': 0 } # Tiles in initial bag, with frequencies bag_tiles = [ (u"a", 10), (u"á", 2), (u"b", 1), (u"d", 2), (u"ð", 5), (u"e", 6), (u"é", 1), (u"f", 3), (u"g", 4), (u"h", 2), (u"i", 8), (u"í", 2), (u"j", 1), (u"k", 3), (u"l", 3), (u"m", 3), (u"n", 8), (u"o", 3), (u"ó", 1), (u"p", 1), (u"r", 7), (u"s", 6), (u"t", 5), (u"u", 6), (u"ú", 1), (u"v", 2), (u"x", 1), (u"y", 1), (u"ý", 1), (u"þ", 1), (u"æ", 1), (u"ö", 1), (u"?", 2) # Blank tiles ] # Number of tiles in bag OldTileSet.BAG_SIZE = OldTileSet.num_tiles() class NewTileSet(TileSet): """ The new Icelandic tile set, created by Skraflfélag Íslands """ # Scores in new Icelandic tile set scores = { u'a': 1, u'á': 3, u'b': 5, u'd': 5, u'ð': 2, u'e': 3, u'é': 7, u'f': 3, u'g': 3, u'h': 4, u'i': 1, u'í': 4, u'j': 6, u'k': 2, u'l': 2, u'm': 2, u'n': 1, u'o': 5, u'ó': 3, u'p': 5, u'r': 1, u's': 1, u't': 2, u'u': 2, u'ú': 4, u'v': 5, u'x': 10, u'y': 6, u'ý': 5, u'þ': 7, u'æ': 4, u'ö': 6, u'?': 0 } # New Icelandic tile set bag_tiles = [ (u"a", 11), (u"á", 2), (u"b", 1), (u"d", 1), (u"ð", 4), (u"e", 3), (u"é", 1), (u"f", 3), (u"g", 3), (u"h", 1), (u"i", 7), (u"í", 1), (u"j", 1), (u"k", 4), (u"l", 5), (u"m", 3), (u"n", 7), (u"o", 1), (u"ó", 2), (u"p", 1), (u"r", 8), (u"s", 7), (u"t", 6), (u"u", 6), (u"ú", 1), (u"v", 1), (u"x", 1), (u"y", 1), (u"ý", 1), (u"þ", 1), (u"æ", 2), (u"ö", 1), (u"?", 2) # Blank tiles ] # Number of tiles in bag NewTileSet.BAG_SIZE = NewTileSet.num_tiles()
import pandas as pd from pulp import * def remove_prefix(text, prefix): if text.startswith(prefix): return text[len(prefix):] return text def best_reco(required_resources, instance_df): prob = LpProblem("InstanceRecommender", LpMinimize) instances = instance_df['name'].values instance_dict = instance_df.set_index('name').T.to_dict() instance_vars = LpVariable.dicts( "Instance", instances, lowBound=0, cat='Integer') prob += lpSum([instance_dict[i]['price'] * instance_vars[i] for i in instances]) prob += lpSum([instance_dict[i]['vcpus'] * instance_vars[i] for i in instances]) >= required_resources['vcpus'] prob += lpSum([instance_dict[i]['memory'] * instance_vars[i] for i in instances]) >= required_resources['memory'] prob.solve() print("Status:", LpStatus[prob.status]) best_reco = pd.DataFrame([ {'name': remove_prefix(v.name, "Instance_"), 'units': v.varValue} for v in prob.variables() if v.varValue > 0] ) best_reco = best_reco.merge(instance_df) return best_reco
import os import sys from setuptools import setup, find_packages extra = {} if sys.version_info < (3, 2): extra['install_requires'] = "futures >= 2.1.6" # backport of py32 concurrent.futures module if sys.version_info >= (3,): extra['use_2to3'] = True setup( name='pySmartDL', version='1.2.5', url='http://pypi.python.org/pypi/pySmartDL/', author='Itay Brandes', author_email='itay.brandes+pysmartdl@gmail.com', license='Public Domain', packages=find_packages(), description='A Smart Download Manager for Python', long_description=open('README.md').read(), test_suite = "test.test_pySmartDL.test_suite", classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Environment :: Console', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', "License :: Public Domain", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Topic :: Internet :: WWW/HTTP", "Topic :: Software Development :: Libraries :: Python Modules", ], **extra )
import logging import sys import os # SECRETS DATABASE_URL = os.getenv('DATABASE_URL') # Logger logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter('[%(asctime)s][%(levelname)s] - %(message)s') handler = logging.StreamHandler(sys.stdout) handler.setFormatter(formatter) logger.addHandler(handler)
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class TaxSummary(object): """ Tax implication that current tenant may be eligible while using specific listing """ def __init__(self, **kwargs): """ Initializes a new TaxSummary object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param code: The value to assign to the code property of this TaxSummary. :type code: str :param name: The value to assign to the name property of this TaxSummary. :type name: str :param country: The value to assign to the country property of this TaxSummary. :type country: str :param url: The value to assign to the url property of this TaxSummary. :type url: str """ self.swagger_types = { 'code': 'str', 'name': 'str', 'country': 'str', 'url': 'str' } self.attribute_map = { 'code': 'code', 'name': 'name', 'country': 'country', 'url': 'url' } self._code = None self._name = None self._country = None self._url = None @property def code(self): """ **[Required]** Gets the code of this TaxSummary. Unique code for the tax. :return: The code of this TaxSummary. :rtype: str """ return self._code @code.setter def code(self, code): """ Sets the code of this TaxSummary. Unique code for the tax. :param code: The code of this TaxSummary. :type: str """ self._code = code @property def name(self): """ Gets the name of this TaxSummary. Name of the tax code. :return: The name of this TaxSummary. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this TaxSummary. Name of the tax code. :param name: The name of this TaxSummary. :type: str """ self._name = name @property def country(self): """ Gets the country of this TaxSummary. Country, which imposes the tax. :return: The country of this TaxSummary. :rtype: str """ return self._country @country.setter def country(self, country): """ Sets the country of this TaxSummary. Country, which imposes the tax. :param country: The country of this TaxSummary. :type: str """ self._country = country @property def url(self): """ Gets the url of this TaxSummary. The URL with more details about this tax. :return: The url of this TaxSummary. :rtype: str """ return self._url @url.setter def url(self, url): """ Sets the url of this TaxSummary. The URL with more details about this tax. :param url: The url of this TaxSummary. :type: str """ self._url = url def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
from moto.iam.responses import IamResponse, GENERIC_EMPTY_TEMPLATE from moto.iam.models import iam_backend as moto_iam_backend from localstack import config from localstack.constants import DEFAULT_PORT_IAM_BACKEND from localstack.services.infra import start_moto_server def patch_moto(): def delete_policy(self): policy_arn = self._get_param('PolicyArn') moto_iam_backend.managed_policies.pop(policy_arn, None) template = self.response_template(GENERIC_EMPTY_TEMPLATE) return template.render(name='DeletePolicyResponse') if not hasattr(IamResponse, 'delete_policy'): IamResponse.delete_policy = delete_policy def start_iam(port=None, asynchronous=False, update_listener=None): port = port or config.PORT_IAM patch_moto() return start_moto_server('iam', port, name='IAM', asynchronous=asynchronous, backend_port=DEFAULT_PORT_IAM_BACKEND, update_listener=update_listener)
# 200. Number of Islands ''' Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water. Example 1: Input: grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ] Output: 1 Example 2: Input: grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ] Output: 3 ''' class Solution: ''' In-storage replacement + DFS. O(mn) runtime, O(mn) storage for call stack. Beat 99% runtime, 52% storage of all Leetcode submissions. ''' def numIslands(self, grid): m = len(grid) if m == 0: return 0 def exploreIsland(i,j): grid[i][j] = '0' if j > 0 and grid[i][j-1] == '1': exploreIsland(i,j-1) if j < n-1 and grid[i][j+1] == '1': exploreIsland(i,j+1) if i > 0 and grid[i-1][j] == '1': exploreIsland(i-1,j) if i < m-1 and grid[i+1][j] == '1': exploreIsland(i+1,j) n,out = len(grid[0]),0 for i in range(m): for j in range(n): if grid[i][j] == '1': out += 1 exploreIsland(i,j) return out ''' In-storage replacemen + BFS. O(mn) runtime, O(min(m,n)) storage. See explanation why it is O(min(m,n)) from smeanionn: https://imgur.com/gallery/M58OKvB. Beat 99% runtime, 82% storage of all Leetcode submissions. ''' def numIslands2(self, grid): m = len(grid) if m == 0: return 0 n,out = len(grid[0]),0 for i in range(m): for j in range(n): if grid[i][j] == '1': layer = set([(i,j)]) while layer: new_layer = set() # Use set instead of list. Otherwise, you may add same item more than 1 time. for i1,j1 in layer: grid[i1][j1] = '0' if i1 > 0 and grid[i1-1][j1] == '1': new_layer.add((i1-1,j1)) if i1 < m-1 and grid[i1+1][j1] == '1': new_layer.add((i1+1,j1)) if j1 > 0 and grid[i1][j1-1] == '1': new_layer.add((i1,j1-1)) if j1 < n-1 and grid[i1][j1+1] == '1': new_layer.add((i1,j1+1)) layer = new_layer out += 1 return out # Tests. assert(Solution().numIslands([ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ]) == 1) assert(Solution().numIslands([ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ]) == 3) assert(Solution().numIslands([ ["1","1","0","0","0"], ["1","1","1","0","0"], ["0","0","1","0","0"], ["0","1","1","1","1"] ]) == 1) assert(Solution().numIslands([]) == 0) assert(Solution().numIslands([["0","1","0","1","0"]]) == 2) assert(Solution().numIslands([["0"],["1"],["1"],["1"],["0"]]) == 1) assert(Solution().numIslands2([ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ]) == 1) assert(Solution().numIslands2([ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ]) == 3) assert(Solution().numIslands2([ ["1","1","0","0","0"], ["1","1","1","0","0"], ["0","0","1","0","0"], ["0","1","1","1","1"] ]) == 1) assert(Solution().numIslands2([]) == 0) assert(Solution().numIslands2([["0","1","0","1","0"]]) == 2) assert(Solution().numIslands2([["0"],["1"],["1"],["1"],["0"]]) == 1)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from azure.mgmt.core import AsyncARMPipelineClient from msrest import Serializer, Deserializer from azure.profiles import KnownProfiles, ProfileDefinition from azure.profiles.multiapiclient import MultiApiClientMixin from ._configuration_async import ResourceManagementClientConfiguration class _SDKClient(object): def __init__(self, *args, **kwargs): """This is a fake class to support current implemetation of MultiApiClientMixin." Will be removed in final version of multiapi azure-core based client """ pass class ResourceManagementClient(MultiApiClientMixin, _SDKClient): """Provides operations for working with resources and resource groups. This ready contains multiple API versions, to help you deal with all of the Azure clouds (Azure Stack, Azure Government, Azure China, etc.). By default, it uses the latest API version available on public Azure. For production, you should stick to a particular api-version and/or profile. The profile sets a mapping between an operation group and its API version. The api-version parameter sets the default API version if the operation group is not described in the profile. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str :param str api_version: API version to use if no profile is provided, or if missing in profile. :param str base_url: Service URL :param profile: A profile definition, from KnownProfiles to dict. :type profile: azure.profiles.KnownProfiles :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ DEFAULT_API_VERSION = '2019-10-01' _PROFILE_TAG = "azure.mgmt.resource.ResourceManagementClient" LATEST_PROFILE = ProfileDefinition({ _PROFILE_TAG: { None: DEFAULT_API_VERSION, }}, _PROFILE_TAG + " latest" ) def __init__( self, credential, # type: "AsyncTokenCredential" subscription_id, # type: str api_version=None, base_url=None, profile=KnownProfiles.default, **kwargs # type: Any ) -> None: if not base_url: base_url = 'https://management.azure.com' self._config = ResourceManagementClientConfiguration(credential, subscription_id, **kwargs) self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) super(ResourceManagementClient, self).__init__( credential, self._config, api_version=api_version, profile=profile ) @classmethod def _models_dict(cls, api_version): return {k: v for k, v in cls.models(api_version).__dict__.items() if isinstance(v, type)} @classmethod def models(cls, api_version=DEFAULT_API_VERSION): """Module depends on the API version: * 2016-02-01: :mod:`v2016_02_01.models<azure.mgmt.resource.v2016_02_01.models>` * 2016-09-01: :mod:`v2016_09_01.models<azure.mgmt.resource.v2016_09_01.models>` * 2017-05-10: :mod:`v2017_05_10.models<azure.mgmt.resource.v2017_05_10.models>` * 2018-02-01: :mod:`v2018_02_01.models<azure.mgmt.resource.v2018_02_01.models>` * 2018-05-01: :mod:`v2018_05_01.models<azure.mgmt.resource.v2018_05_01.models>` * 2019-05-01: :mod:`v2019_05_01.models<azure.mgmt.resource.v2019_05_01.models>` * 2019-05-10: :mod:`v2019_05_10.models<azure.mgmt.resource.v2019_05_10.models>` * 2019-07-01: :mod:`v2019_07_01.models<azure.mgmt.resource.v2019_07_01.models>` * 2019-08-01: :mod:`v2019_08_01.models<azure.mgmt.resource.v2019_08_01.models>` * 2019-10-01: :mod:`v2019_10_01.models<azure.mgmt.resource.v2019_10_01.models>` """ if api_version == '2016-02-01': from ..v2016_02_01 import models return models elif api_version == '2016-09-01': from ..v2016_09_01 import models return models elif api_version == '2017-05-10': from ..v2017_05_10 import models return models elif api_version == '2018-02-01': from ..v2018_02_01 import models return models elif api_version == '2018-05-01': from ..v2018_05_01 import models return models elif api_version == '2019-05-01': from ..v2019_05_01 import models return models elif api_version == '2019-05-10': from ..v2019_05_10 import models return models elif api_version == '2019-07-01': from ..v2019_07_01 import models return models elif api_version == '2019-08-01': from ..v2019_08_01 import models return models elif api_version == '2019-10-01': from ..v2019_10_01 import models return models raise NotImplementedError("APIVersion {} is not available".format(api_version)) @property def deployment_operations(self): """Instance depends on the API version: * 2016-02-01: :class:`DeploymentOperationsOperations<azure.mgmt.resource.v2016_02_01.aio.operations_async.DeploymentOperationsOperations>` * 2016-09-01: :class:`DeploymentOperationsOperations<azure.mgmt.resource.v2016_09_01.aio.operations_async.DeploymentOperationsOperations>` * 2017-05-10: :class:`DeploymentOperationsOperations<azure.mgmt.resource.v2017_05_10.aio.operations_async.DeploymentOperationsOperations>` * 2018-02-01: :class:`DeploymentOperationsOperations<azure.mgmt.resource.v2018_02_01.aio.operations_async.DeploymentOperationsOperations>` * 2018-05-01: :class:`DeploymentOperationsOperations<azure.mgmt.resource.v2018_05_01.aio.operations_async.DeploymentOperationsOperations>` * 2019-05-01: :class:`DeploymentOperationsOperations<azure.mgmt.resource.v2019_05_01.aio.operations_async.DeploymentOperationsOperations>` * 2019-05-10: :class:`DeploymentOperationsOperations<azure.mgmt.resource.v2019_05_10.aio.operations_async.DeploymentOperationsOperations>` * 2019-07-01: :class:`DeploymentOperationsOperations<azure.mgmt.resource.v2019_07_01.aio.operations_async.DeploymentOperationsOperations>` * 2019-08-01: :class:`DeploymentOperationsOperations<azure.mgmt.resource.v2019_08_01.aio.operations_async.DeploymentOperationsOperations>` * 2019-10-01: :class:`DeploymentOperationsOperations<azure.mgmt.resource.v2019_10_01.aio.operations_async.DeploymentOperationsOperations>` """ api_version = self._get_api_version('deployment_operations') if api_version == '2016-02-01': from ..v2016_02_01.aio.operations_async import DeploymentOperationsOperations as OperationClass elif api_version == '2016-09-01': from ..v2016_09_01.aio.operations_async import DeploymentOperationsOperations as OperationClass elif api_version == '2017-05-10': from ..v2017_05_10.aio.operations_async import DeploymentOperationsOperations as OperationClass elif api_version == '2018-02-01': from ..v2018_02_01.aio.operations_async import DeploymentOperationsOperations as OperationClass elif api_version == '2018-05-01': from ..v2018_05_01.aio.operations_async import DeploymentOperationsOperations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations_async import DeploymentOperationsOperations as OperationClass elif api_version == '2019-05-10': from ..v2019_05_10.aio.operations_async import DeploymentOperationsOperations as OperationClass elif api_version == '2019-07-01': from ..v2019_07_01.aio.operations_async import DeploymentOperationsOperations as OperationClass elif api_version == '2019-08-01': from ..v2019_08_01.aio.operations_async import DeploymentOperationsOperations as OperationClass elif api_version == '2019-10-01': from ..v2019_10_01.aio.operations_async import DeploymentOperationsOperations as OperationClass else: raise NotImplementedError("APIVersion {} is not available".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def deployments(self): """Instance depends on the API version: * 2016-02-01: :class:`DeploymentsOperations<azure.mgmt.resource.v2016_02_01.aio.operations_async.DeploymentsOperations>` * 2016-09-01: :class:`DeploymentsOperations<azure.mgmt.resource.v2016_09_01.aio.operations_async.DeploymentsOperations>` * 2017-05-10: :class:`DeploymentsOperations<azure.mgmt.resource.v2017_05_10.aio.operations_async.DeploymentsOperations>` * 2018-02-01: :class:`DeploymentsOperations<azure.mgmt.resource.v2018_02_01.aio.operations_async.DeploymentsOperations>` * 2018-05-01: :class:`DeploymentsOperations<azure.mgmt.resource.v2018_05_01.aio.operations_async.DeploymentsOperations>` * 2019-05-01: :class:`DeploymentsOperations<azure.mgmt.resource.v2019_05_01.aio.operations_async.DeploymentsOperations>` * 2019-05-10: :class:`DeploymentsOperations<azure.mgmt.resource.v2019_05_10.aio.operations_async.DeploymentsOperations>` * 2019-07-01: :class:`DeploymentsOperations<azure.mgmt.resource.v2019_07_01.aio.operations_async.DeploymentsOperations>` * 2019-08-01: :class:`DeploymentsOperations<azure.mgmt.resource.v2019_08_01.aio.operations_async.DeploymentsOperations>` * 2019-10-01: :class:`DeploymentsOperations<azure.mgmt.resource.v2019_10_01.aio.operations_async.DeploymentsOperations>` """ api_version = self._get_api_version('deployments') if api_version == '2016-02-01': from ..v2016_02_01.aio.operations_async import DeploymentsOperations as OperationClass elif api_version == '2016-09-01': from ..v2016_09_01.aio.operations_async import DeploymentsOperations as OperationClass elif api_version == '2017-05-10': from ..v2017_05_10.aio.operations_async import DeploymentsOperations as OperationClass elif api_version == '2018-02-01': from ..v2018_02_01.aio.operations_async import DeploymentsOperations as OperationClass elif api_version == '2018-05-01': from ..v2018_05_01.aio.operations_async import DeploymentsOperations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations_async import DeploymentsOperations as OperationClass elif api_version == '2019-05-10': from ..v2019_05_10.aio.operations_async import DeploymentsOperations as OperationClass elif api_version == '2019-07-01': from ..v2019_07_01.aio.operations_async import DeploymentsOperations as OperationClass elif api_version == '2019-08-01': from ..v2019_08_01.aio.operations_async import DeploymentsOperations as OperationClass elif api_version == '2019-10-01': from ..v2019_10_01.aio.operations_async import DeploymentsOperations as OperationClass else: raise NotImplementedError("APIVersion {} is not available".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def operations(self): """Instance depends on the API version: * 2018-05-01: :class:`Operations<azure.mgmt.resource.v2018_05_01.aio.operations_async.Operations>` * 2019-05-01: :class:`Operations<azure.mgmt.resource.v2019_05_01.aio.operations_async.Operations>` * 2019-05-10: :class:`Operations<azure.mgmt.resource.v2019_05_10.aio.operations_async.Operations>` * 2019-07-01: :class:`Operations<azure.mgmt.resource.v2019_07_01.aio.operations_async.Operations>` * 2019-08-01: :class:`Operations<azure.mgmt.resource.v2019_08_01.aio.operations_async.Operations>` * 2019-10-01: :class:`Operations<azure.mgmt.resource.v2019_10_01.aio.operations_async.Operations>` """ api_version = self._get_api_version('operations') if api_version == '2018-05-01': from ..v2018_05_01.aio.operations_async import Operations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations_async import Operations as OperationClass elif api_version == '2019-05-10': from ..v2019_05_10.aio.operations_async import Operations as OperationClass elif api_version == '2019-07-01': from ..v2019_07_01.aio.operations_async import Operations as OperationClass elif api_version == '2019-08-01': from ..v2019_08_01.aio.operations_async import Operations as OperationClass elif api_version == '2019-10-01': from ..v2019_10_01.aio.operations_async import Operations as OperationClass else: raise NotImplementedError("APIVersion {} is not available".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def providers(self): """Instance depends on the API version: * 2016-02-01: :class:`ProvidersOperations<azure.mgmt.resource.v2016_02_01.aio.operations_async.ProvidersOperations>` * 2016-09-01: :class:`ProvidersOperations<azure.mgmt.resource.v2016_09_01.aio.operations_async.ProvidersOperations>` * 2017-05-10: :class:`ProvidersOperations<azure.mgmt.resource.v2017_05_10.aio.operations_async.ProvidersOperations>` * 2018-02-01: :class:`ProvidersOperations<azure.mgmt.resource.v2018_02_01.aio.operations_async.ProvidersOperations>` * 2018-05-01: :class:`ProvidersOperations<azure.mgmt.resource.v2018_05_01.aio.operations_async.ProvidersOperations>` * 2019-05-01: :class:`ProvidersOperations<azure.mgmt.resource.v2019_05_01.aio.operations_async.ProvidersOperations>` * 2019-05-10: :class:`ProvidersOperations<azure.mgmt.resource.v2019_05_10.aio.operations_async.ProvidersOperations>` * 2019-07-01: :class:`ProvidersOperations<azure.mgmt.resource.v2019_07_01.aio.operations_async.ProvidersOperations>` * 2019-08-01: :class:`ProvidersOperations<azure.mgmt.resource.v2019_08_01.aio.operations_async.ProvidersOperations>` * 2019-10-01: :class:`ProvidersOperations<azure.mgmt.resource.v2019_10_01.aio.operations_async.ProvidersOperations>` """ api_version = self._get_api_version('providers') if api_version == '2016-02-01': from ..v2016_02_01.aio.operations_async import ProvidersOperations as OperationClass elif api_version == '2016-09-01': from ..v2016_09_01.aio.operations_async import ProvidersOperations as OperationClass elif api_version == '2017-05-10': from ..v2017_05_10.aio.operations_async import ProvidersOperations as OperationClass elif api_version == '2018-02-01': from ..v2018_02_01.aio.operations_async import ProvidersOperations as OperationClass elif api_version == '2018-05-01': from ..v2018_05_01.aio.operations_async import ProvidersOperations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations_async import ProvidersOperations as OperationClass elif api_version == '2019-05-10': from ..v2019_05_10.aio.operations_async import ProvidersOperations as OperationClass elif api_version == '2019-07-01': from ..v2019_07_01.aio.operations_async import ProvidersOperations as OperationClass elif api_version == '2019-08-01': from ..v2019_08_01.aio.operations_async import ProvidersOperations as OperationClass elif api_version == '2019-10-01': from ..v2019_10_01.aio.operations_async import ProvidersOperations as OperationClass else: raise NotImplementedError("APIVersion {} is not available".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def resource_groups(self): """Instance depends on the API version: * 2016-02-01: :class:`ResourceGroupsOperations<azure.mgmt.resource.v2016_02_01.aio.operations_async.ResourceGroupsOperations>` * 2016-09-01: :class:`ResourceGroupsOperations<azure.mgmt.resource.v2016_09_01.aio.operations_async.ResourceGroupsOperations>` * 2017-05-10: :class:`ResourceGroupsOperations<azure.mgmt.resource.v2017_05_10.aio.operations_async.ResourceGroupsOperations>` * 2018-02-01: :class:`ResourceGroupsOperations<azure.mgmt.resource.v2018_02_01.aio.operations_async.ResourceGroupsOperations>` * 2018-05-01: :class:`ResourceGroupsOperations<azure.mgmt.resource.v2018_05_01.aio.operations_async.ResourceGroupsOperations>` * 2019-05-01: :class:`ResourceGroupsOperations<azure.mgmt.resource.v2019_05_01.aio.operations_async.ResourceGroupsOperations>` * 2019-05-10: :class:`ResourceGroupsOperations<azure.mgmt.resource.v2019_05_10.aio.operations_async.ResourceGroupsOperations>` * 2019-07-01: :class:`ResourceGroupsOperations<azure.mgmt.resource.v2019_07_01.aio.operations_async.ResourceGroupsOperations>` * 2019-08-01: :class:`ResourceGroupsOperations<azure.mgmt.resource.v2019_08_01.aio.operations_async.ResourceGroupsOperations>` * 2019-10-01: :class:`ResourceGroupsOperations<azure.mgmt.resource.v2019_10_01.aio.operations_async.ResourceGroupsOperations>` """ api_version = self._get_api_version('resource_groups') if api_version == '2016-02-01': from ..v2016_02_01.aio.operations_async import ResourceGroupsOperations as OperationClass elif api_version == '2016-09-01': from ..v2016_09_01.aio.operations_async import ResourceGroupsOperations as OperationClass elif api_version == '2017-05-10': from ..v2017_05_10.aio.operations_async import ResourceGroupsOperations as OperationClass elif api_version == '2018-02-01': from ..v2018_02_01.aio.operations_async import ResourceGroupsOperations as OperationClass elif api_version == '2018-05-01': from ..v2018_05_01.aio.operations_async import ResourceGroupsOperations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations_async import ResourceGroupsOperations as OperationClass elif api_version == '2019-05-10': from ..v2019_05_10.aio.operations_async import ResourceGroupsOperations as OperationClass elif api_version == '2019-07-01': from ..v2019_07_01.aio.operations_async import ResourceGroupsOperations as OperationClass elif api_version == '2019-08-01': from ..v2019_08_01.aio.operations_async import ResourceGroupsOperations as OperationClass elif api_version == '2019-10-01': from ..v2019_10_01.aio.operations_async import ResourceGroupsOperations as OperationClass else: raise NotImplementedError("APIVersion {} is not available".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def resources(self): """Instance depends on the API version: * 2016-02-01: :class:`ResourcesOperations<azure.mgmt.resource.v2016_02_01.aio.operations_async.ResourcesOperations>` * 2016-09-01: :class:`ResourcesOperations<azure.mgmt.resource.v2016_09_01.aio.operations_async.ResourcesOperations>` * 2017-05-10: :class:`ResourcesOperations<azure.mgmt.resource.v2017_05_10.aio.operations_async.ResourcesOperations>` * 2018-02-01: :class:`ResourcesOperations<azure.mgmt.resource.v2018_02_01.aio.operations_async.ResourcesOperations>` * 2018-05-01: :class:`ResourcesOperations<azure.mgmt.resource.v2018_05_01.aio.operations_async.ResourcesOperations>` * 2019-05-01: :class:`ResourcesOperations<azure.mgmt.resource.v2019_05_01.aio.operations_async.ResourcesOperations>` * 2019-05-10: :class:`ResourcesOperations<azure.mgmt.resource.v2019_05_10.aio.operations_async.ResourcesOperations>` * 2019-07-01: :class:`ResourcesOperations<azure.mgmt.resource.v2019_07_01.aio.operations_async.ResourcesOperations>` * 2019-08-01: :class:`ResourcesOperations<azure.mgmt.resource.v2019_08_01.aio.operations_async.ResourcesOperations>` * 2019-10-01: :class:`ResourcesOperations<azure.mgmt.resource.v2019_10_01.aio.operations_async.ResourcesOperations>` """ api_version = self._get_api_version('resources') if api_version == '2016-02-01': from ..v2016_02_01.aio.operations_async import ResourcesOperations as OperationClass elif api_version == '2016-09-01': from ..v2016_09_01.aio.operations_async import ResourcesOperations as OperationClass elif api_version == '2017-05-10': from ..v2017_05_10.aio.operations_async import ResourcesOperations as OperationClass elif api_version == '2018-02-01': from ..v2018_02_01.aio.operations_async import ResourcesOperations as OperationClass elif api_version == '2018-05-01': from ..v2018_05_01.aio.operations_async import ResourcesOperations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations_async import ResourcesOperations as OperationClass elif api_version == '2019-05-10': from ..v2019_05_10.aio.operations_async import ResourcesOperations as OperationClass elif api_version == '2019-07-01': from ..v2019_07_01.aio.operations_async import ResourcesOperations as OperationClass elif api_version == '2019-08-01': from ..v2019_08_01.aio.operations_async import ResourcesOperations as OperationClass elif api_version == '2019-10-01': from ..v2019_10_01.aio.operations_async import ResourcesOperations as OperationClass else: raise NotImplementedError("APIVersion {} is not available".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def tags(self): """Instance depends on the API version: * 2016-02-01: :class:`TagsOperations<azure.mgmt.resource.v2016_02_01.aio.operations_async.TagsOperations>` * 2016-09-01: :class:`TagsOperations<azure.mgmt.resource.v2016_09_01.aio.operations_async.TagsOperations>` * 2017-05-10: :class:`TagsOperations<azure.mgmt.resource.v2017_05_10.aio.operations_async.TagsOperations>` * 2018-02-01: :class:`TagsOperations<azure.mgmt.resource.v2018_02_01.aio.operations_async.TagsOperations>` * 2018-05-01: :class:`TagsOperations<azure.mgmt.resource.v2018_05_01.aio.operations_async.TagsOperations>` * 2019-05-01: :class:`TagsOperations<azure.mgmt.resource.v2019_05_01.aio.operations_async.TagsOperations>` * 2019-05-10: :class:`TagsOperations<azure.mgmt.resource.v2019_05_10.aio.operations_async.TagsOperations>` * 2019-07-01: :class:`TagsOperations<azure.mgmt.resource.v2019_07_01.aio.operations_async.TagsOperations>` * 2019-08-01: :class:`TagsOperations<azure.mgmt.resource.v2019_08_01.aio.operations_async.TagsOperations>` * 2019-10-01: :class:`TagsOperations<azure.mgmt.resource.v2019_10_01.aio.operations_async.TagsOperations>` """ api_version = self._get_api_version('tags') if api_version == '2016-02-01': from ..v2016_02_01.aio.operations_async import TagsOperations as OperationClass elif api_version == '2016-09-01': from ..v2016_09_01.aio.operations_async import TagsOperations as OperationClass elif api_version == '2017-05-10': from ..v2017_05_10.aio.operations_async import TagsOperations as OperationClass elif api_version == '2018-02-01': from ..v2018_02_01.aio.operations_async import TagsOperations as OperationClass elif api_version == '2018-05-01': from ..v2018_05_01.aio.operations_async import TagsOperations as OperationClass elif api_version == '2019-05-01': from ..v2019_05_01.aio.operations_async import TagsOperations as OperationClass elif api_version == '2019-05-10': from ..v2019_05_10.aio.operations_async import TagsOperations as OperationClass elif api_version == '2019-07-01': from ..v2019_07_01.aio.operations_async import TagsOperations as OperationClass elif api_version == '2019-08-01': from ..v2019_08_01.aio.operations_async import TagsOperations as OperationClass elif api_version == '2019-10-01': from ..v2019_10_01.aio.operations_async import TagsOperations as OperationClass else: raise NotImplementedError("APIVersion {} is not available".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) async def close(self): await self._client.close() async def __aenter__(self): await self._client.__aenter__() return self async def __aexit__(self, *exc_details): await self._client.__aexit__(*exc_details)
from flask import Flask app = Flask(__name__) @app.route('/') def hello(): name = "Hello World" return name @app.route('/good') def good(): name = "Good" return name # メイン・プログラムとして走らせるとき。 if __name__ == "__main__": app.run(debug=True)
def main(): print("In Bake")
import tarfile import os import numpy as np import cv2 import h5py import random # Parameters test_count = 1000 dataset_name = "basic_io" directory = "/media/neduchal/data2/datasety/miniplaces/images" categories_filename = "./categories_io.txt" output_path = "/media/neduchal/data2/datasety/places365_256x256_prepared" val_path = "/media/neduchal/data2/datasety/miniplaces/miniplaces/data/val.txt" print("Creating dataset " + dataset_name) print() desc_file = open(categories_filename, "r").read().split("\n") print("loading classes") if desc_file[-1] == "": desc_file = desc_file[:-1] # Classes loading classes = [] classes_nums = [] classes_io = [] for row in desc_file: items = row.split(" ") classes.append(items[0]) classes_nums.append(items[1]) classes_io.append(items[2]) # Get directories train_directory = os.path.join(directory, "train") test_directory = os.path.join(directory, "test") val_directory = os.path.join(directory, "val") # Get number of chars of directory fname_begin_train = len(train_directory) fname_begin_test = len(test_directory) fname_begin_val = len(val_directory) # Set output directory and creates it if it is not exists output_directory = os.path.join(output_path, dataset_name) if not os.path.exists(output_directory): os.makedirs(output_directory) print("VAL") print("loading val files") val_names = [] for root, dirs, files in os.walk(val_directory): for name in files: val_names.append(os.path.join(root, name)) classes_val = open(val_path).read().split("\n") print("loading val data") val_data_x = [] val_data_y = [] val_data_y_io = [] for i, filename in enumerate(val_names): print(int(100*(i/len(val_names)))) im = cv2.imread(filename) index = classes_val.index(filename[fname_begin_val:-13]) val_data_x.append(im) inout = int(classes_io[int(classes_val[i].split(" ")[1])]) val_data_y.append(int(classes_val[i].split(" ")[1])) val_data_y_io.append(inout) print("saving val data") val_f = h5py.File(os.path.join(output_directory, 'val.h5'), 'w') val_f["data_x"] = val_data_x val_f["data_y"] = val_data_y val_f["data_y_io"] = val_data_y_io val_f.flush() val_f.close() del(val_data_x) del(val_data_y) print("TRAIN") desc_file = open("./categories_io.txt", "r").read().split("\n") print("loading classes") if desc_file[-1] == "": desc_file = desc_file[:-1] classes = [] classes_nums = [] classes_io = [] classes_count = [] for row in desc_file: items = row.split(" ") classes.append(items[0]) classes_nums.append(items[1]) classes_io.append(items[2]) classes_count.append(0) print("loading train data") train_names = [] for root, dirs, files in os.walk(train_directory): for name in files: train_names.append(os.path.join(root, name)) random.shuffle(train_names) test_names = train_names[0:int(0.1 * len(train_names))] train_names = train_names[int(0.1 * len(train_names)):] print(len(test_names), train_names) train_data_x = [] train_data_y = [] train_data_y_io = [] print("processing train data") for i, filename in enumerate(train_names): if (i % 5000) == 0: print(int(100*(i/len(train_names)))) index = classes.index(filename[fname_begin_train:-13]) if classes_count[index] >= 100: continue classes_count[index] += 1 im = cv2.imread(filename) train_data_x.append(im) train_data_y.append(int(classes_nums[index])) train_data_y_io.append(int(classes_io[index])) print("saving train data") train_f = h5py.File(os.path.join(output_directory, 'train.h5'), 'w') train_f["data_x"] = train_data_x train_f["data_y"] = train_data_y train_f["data_y_io"] = train_data_y_io train_f.flush() train_f.close() del(train_data_x) del(train_data_y) del(train_data_y_io) print("TEST") print("loading test data") test_data_x = [] test_data_y = [] test_data_y_io = [] for i, filename in enumerate(test_names): if (i % 100) == 0: print(int(100*(i/test_count))) if i >= test_count: break im = cv2.imread(filename) index = classes.index(filename[fname_begin_train:-13]) test_data_x.append(im) test_data_y.append(int(classes_nums[index])) test_data_y_io.append(int(classes_io[index])) print("saving test h5 file") test_f = h5py.File(os.path.join(output_directory, 'test.h5'), 'w') test_f["data_x"] = test_data_x test_f["data_y"] = test_data_y test_f["data_y_io"] = test_data_y_io test_f.flush() test_f.close() del(test_data_x) del(test_data_y) del(test_data_y_io) print("DONE")
import RPi.GPIO as GPIO import time front_lights_left_pin = 5 front_lights_right_pin = 6 rear_lights_pin = 13 power_pin = 12 fwd_pin = 17 back_pin = 27 left_pin = 24 right_pin = 23 pwm_fwd = None pwm_back = None pwm_left = None pwm_right = None pwm_front_lights_left = None pwm_front_lights_right = None pwm_rear_lights = None blink = 0 def init(): global fwd_pin, back_pin global pwm_fwd, pwm_back global left_pin, right_pin global pwm_left, pwm_right global front_lights_left_pin, front_lights_right_pin global rear_lights_pin, pwm_front_lights_left, pwm_front_lights_right, pwm_rear_lights GPIO.setmode(GPIO.BCM) GPIO.setup(front_lights_left_pin, GPIO.OUT) GPIO.setup(front_lights_right_pin, GPIO.OUT) GPIO.setup(rear_lights_pin, GPIO.OUT) pwm_front_lights_left = GPIO.PWM(front_lights_left_pin, 120) pwm_front_lights_right = GPIO.PWM(front_lights_right_pin, 120) pwm_rear_lights = GPIO.PWM(rear_lights_pin, 120) #GPIO.setup(power_pin, GPIO.OUT) GPIO.setup(left_pin, GPIO.OUT) pwm_left = GPIO.PWM(left_pin, 100) GPIO.setup(right_pin, GPIO.OUT) pwm_right = GPIO.PWM(right_pin, 100) GPIO.setup(fwd_pin, GPIO.OUT) pwm_fwd = GPIO.PWM(fwd_pin, 100) GPIO.setup(back_pin, GPIO.OUT) pwm_back = GPIO.PWM(back_pin, 100) def changeDutyCycle(pwm, dc, hz): if dc == 0: pwm.stop() else: pwm.ChangeFrequency(hz) pwm.start(dc) def apply_state(state): global pwm_fwd, pwm_back global pwm_left, pwm_right global pwm_front_lights_left, pwm_front_lights_right, pwm_rear_lights changeDutyCycle(pwm_rear_lights, state['rear_lights'], 120) blink = state['blink'] if blink == -1: changeDutyCycle(pwm_front_lights_left, 50, 1) changeDutyCycle(pwm_front_lights_right, state['front_lights'], 120) elif blink == 1: changeDutyCycle(pwm_front_lights_left, state['front_lights'], 120) changeDutyCycle(pwm_front_lights_right, 50, 1) else: changeDutyCycle(pwm_front_lights_left, state['front_lights'], 120) changeDutyCycle(pwm_front_lights_right, state['front_lights'], 120) changeDutyCycle(pwm_fwd, state['fwd'] * state['pwm_move'], 100) changeDutyCycle(pwm_back, state['back'] * state['pwm_move'], 100) changeDutyCycle(pwm_left, state['left'] * state['pwm_steer'], 100) changeDutyCycle(pwm_right, state['right'] * state['pwm_steer'], 100) def cleanup(): global pwm_fwd, pwm_back global pwm_left, pwm_right global pwm_front_lights_left, pwm_front_lights_right, pwm_rear_lights pwm_fwd.stop() pwm_back.stop() pwm_left.stop() pwm_right.stop() pwm_front_lights_left.stop() pwm_front_lights_right.stop() pwm_rear_lights.stop() GPIO.cleanup()
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'Soulweaver' import os import logging import argparse from randomizer import PROG_NAME, PROG_VERSION, config, Randomizer def add_enable_disable_argument(p, name, default=False, help_enable=None, help_disable=None, default_passage=' (Default)', dest_name=None, **kwargs): dest_name = dest_name if dest_name else name.replace('-', '_') if help_enable is not None: help_enable += default_passage if default else '' if help_disable is not None: help_disable += default_passage if not default else '' group = p.add_mutually_exclusive_group(required=False) group.add_argument('--' + name, dest=dest_name, action='store_true', help=help_enable, **kwargs) group.add_argument('--no-' + name, dest=dest_name, action='store_false', help=help_disable, **kwargs) p.set_defaults(**{dest_name: default}) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Randomizes a Pokémon Colosseum or XD ISO.", add_help=False ) parser_behavior_group = parser.add_argument_group('Tool behavior') parser_behavior_group.add_argument( '-v', '--version', action='version', help="Display the program version and exit.", version="{} version {}".format(PROG_NAME, PROG_VERSION) ) parser_behavior_group.add_argument( '-h', '--help', action='help', help="Display this help message and exit." ) parser_behavior_group.add_argument( 'iso_path', action='store', help='A path to the ISO file to be randomized. Required.', metavar='isopath' ) parser_behavior_group.add_argument( '-o', '--output-path', action='store', help='The path where the randomized ISO file will be written. Required unless --in-place is set, ' 'in which case its value is ignored.', metavar='PATH' ) parser_behavior_group.add_argument( '--in-place', action='store_true', help='Do the randomization in-place. This means the original ISO file will be overwritten!' ) parser_behavior_group.add_argument( '-l', '--loglevel', action='store', help='The desired verbosity level. Any messages with the same or higher ' 'level than the chosen one will be displayed. ' 'Available values: critical, error, warning, info, debug. Default: info.', choices=['critical', 'error', 'warning', 'info', 'debug'], type=str.lower, default='info', metavar='level' ) parser_behavior_group.add_argument( '--dump-files', action='store_true', help='Dumps the files extracted from the ISO and the files to be written to the ISO. ' 'This option is only useful to you if you are a developer.' ) parser_behavior_group.add_argument( '--seed', action='store', type=int, metavar='SEED', help='Set the randomizer seed. Using the same randomizer version with the same ISO, same options and ' 'the same seed results in identical randomization results. By default, a random seed provided by your ' 'operating system will be used.' ) parser_pkmn_randomization_group = parser.add_argument_group('Pokémon randomization options') add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkstats', default=config.rng_pkstats, help_enable='Enable Pokémon base stats randomization.', help_disable='Keep the original Pokémon base stats. Other --rng-pkstats flags take no effect.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkstats-retain-bst', default=config.rng_pkstats_retain_bst, help_enable='Redistribute the Pokémon\'s base stat total rather than ' 'setting the values to fully random values.', help_disable='Ignore the Pokémon\'s original base stat total.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkstats-family', default=config.rng_pkstats_family, help_enable='Try to make the stat distributions consistent within each evolution family.', help_disable='Ignore the stat distribution of other evolution family members.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkstats-family-vary-branched-evo', default=config.rng_pkstats_family_vary_branched_evo, help_enable='Shuffle the base stat factors for evolutions other than the first when the Pokémon has more ' 'than one evolution.', help_disable='Use the same base stat factors even with branched evolutions, leading to branches having ' 'very similar stats.' ) parser_pkmn_randomization_group.add_argument( '--rng-pkstats-variance', action='store', default=config.rng_pkstats_variance, type=float, metavar='VAR', help='Decides the variance for the Gauss distribution according to which the base stat factors are generated. ' 'Lower values result in more uniform stats, while higher values result in more extreme stats. ' '(Default: 0.35)' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkstats-wg-1hp', default=config.rng_pkstats_wg_1hp, help_enable='A Pokémon that has Wonder Guard is also always set to have 1 HP.', help_disable='A Pokémon with Wonder Guard is randomized like any other Pokémon.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pktypes', default=config.rng_pktypes, help_enable='Enable Pokémon type randomization.', help_disable='Keep the original Pokémon types. Other --rng-pktypes flags take no effect.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pktypes-family', default=config.rng_pktypes_family, help_enable='Try to make typing in evolution families more natural. Evolutions keep the primary type of the ' 'previous stage Pokémon and may gain or alter the second type.', help_disable='Ignore the types of other evolution family members.' ) parser_pkmn_randomization_group.add_argument( '--rng-pktypes-family-change-ratio', action='store', default=config.rng_pktypes_family_change_ratio, type=int, metavar='RATIO', help='Control the percentage probability of an evolved form gaining a new type. ' 'Only used if --rng-pktypes-family is also enabled. ' '(Default: 33)' ) parser_pkmn_randomization_group.add_argument( '--rng-pktypes-monotype-ratio', action='store', default=config.rng_pktypes_monotype_ratio, type=int, metavar='RATIO', help='Control the percentage probability of the randomizer forcing a Pokémon to only have a single type. ' 'This restriction does not apply to evolved forms if --rng-pktypes-family is enabled. ' '(Default: 33)' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkabi', default=config.rng_pkabi, help_enable='Enable Pokémon ability randomization.', help_disable='Keep the original Pokémon abilities. Other --rng-pkabi flags take no effect.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkabi-family', default=config.rng_pkabi_family, help_enable='Try to make abilities in evolution families more natural. Evolutions have a chance of keeping ' 'the abilities of the previous stage Pokémon.', help_disable='Ignore the types of other evolution family members.' ) parser_pkmn_randomization_group.add_argument( '--rng-pkabi-family-change-ratio', action='store', default=config.rng_pkabi_family_change_ratio, type=int, metavar='RATIO', help='Control the percentage probability of an evolved form getting its abilities also randomized. ' 'Only used if --rng-pkabi-family is also enabled. ' '(Default: 33)' ) parser_pkmn_randomization_group.add_argument( '--rng-pkabi-monoabi-ratio', action='store', default=config.rng_pkabi_monoabi_ratio, type=int, metavar='RATIO', help='Control the percentage probability of the randomizer forcing a Pokémon to only have a single ability. ' 'This restriction does not apply to evolved forms if --rng-pkabi-family is enabled. ' '(Default: 33)' ) parser_pkmn_randomization_group.add_argument( '--rng-pkabi-ban', nargs='*', metavar='ABILITY', help='Forbid specific abilities to be given to any Pokémon whose ability is randomized. ' 'A list of abilities in upper case, with spaces converted to underscores, is expected. ' 'You can allow all abilities by providing the single ability name NONE. ' '(Default: ' + (', '.join(config.rng_pkabi_ban)) + ')' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkmoves', default=config.rng_pkmoves, help_enable='Enable Pokémon moveset randomization.', help_disable='Keep the original Pokémon movesets. Other --rng-pkmoves flags take no effect.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkmoves-dmg-progression', default=config.rng_pkmoves_dmg_progression, help_enable='Rearrange damaging moves so that weaker moves are learned first.', help_disable='Don\'t rearrange damaging moves.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkmoves-lv1-fullset', default=config.rng_pkmoves_lv1_fullset, help_enable='Provide every Pokémon with four moves at level one.', help_disable='Do not add additional level one move slots.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkmoves-ensure-damaging-first', default=config.rng_pkmoves_lv1_ensure_damaging, help_enable='Make sure that the first move the Pokémon learns is a damaging move.', help_disable='The first move the Pokémon learns can be a status move.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkmoves-ensure-damaging-interval', default=config.rng_pkmoves_ensure_damaging_interval, help_enable='Make sure at least every fourth move the Pokémon learns is a damaging move.', help_disable='The spacing of damaging moves is not controlled.' ) parser_pkmn_randomization_group.add_argument( '--rng-pkmoves-any-type-ratio', action='store', default=config.rng_pkmoves_any_type_ratio, type=int, metavar='RATIO', help='Control the probability percentage of a movepool of a randomized learned move containing damaging moves ' 'of a type the Pokémon doesn\'t have. All non-damaging moves will still be available for each move slot, ' 'as well as Normal-type moves, unless otherwise enforced by --rng-pkmoves-min-own-type-ratio. ' '(Default: 25)' ) parser_pkmn_randomization_group.add_argument( '--rng-pkmoves-min-damaging-ratio', action='store', default=config.rng_pkmoves_min_damaging_ratio, type=int, metavar='RATIO', help='Control the probability percentage of a movepool for choosing a randomized learned move only containing ' 'damaging moves. ' '(Default: 25)' ) parser_pkmn_randomization_group.add_argument( '--rng-pkmoves-min-own-type-ratio', action='store', default=config.rng_pkmoves_min_own_type_ratio, type=int, metavar='RATIO', help='Control the probability percentage of a movepool for choosing a randomized learned move only containing ' ' moves with a type of that Pokémon itself. ' '(Default: 15)' ) parser_pkmn_randomization_group.add_argument( '--rng-pkmoves-ban', nargs='*', metavar='MOVE', help='Forbid specific moves to be put into the moveset of any Pokémon whose move pool is randomized. ' 'A list of moves in upper case, with spaces converted to underscores, is expected. ' 'You can allow all moves by providing the single move name NONE. ' '(Default: ' + (', '.join(config.rng_pkmoves_ban)) + ')' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkmoves-no-dupes', default=config.rng_pkmoves_no_dupes, help_enable='Make sure any Pokémon doesn\'t learn the same move twice.', help_disable='Pokémon are allowed to learn the same move multiple times.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pktm', default=config.rng_pktm, help_enable='Enable Pokémon TM learnset randomization.', help_disable='Keep the original Pokémon TM learnsets. Other --rng-pktm flags take no effect.' ) parser_pkmn_randomization_group.add_argument( '--rng-pktm-min-own-type-ratio', action='store', default=config.rng_pktm_min_own_type_ratio, type=int, metavar='RATIO', help='Control the probability percentage of the Pokémon being able to learn TMs that contain damaging moves ' 'with the same type as the Pokémon itself. ' '(Default: 90)' ) parser_pkmn_randomization_group.add_argument( '--rng-pktm-min-normal-type-ratio', action='store', default=config.rng_pktm_min_normal_type_ratio, type=int, metavar='RATIO', help='Control the probability percentage of the Pokémon being able to learn TMs that contain Normal-type ' 'damaging moves. This ratio is not used for Normal-type Pokémon themselves. ' '(Default: 75)' ) parser_pkmn_randomization_group.add_argument( '--rng-pktm-min-other-type-ratio', action='store', default=config.rng_pktm_min_other_type_ratio, type=int, metavar='RATIO', help='Control the probability percentage of the Pokémon being able to learn TMs that contain damaging moves ' 'with a different type as the Pokémon itself, excluding Normal-type moves. ' '(Default: 40)' ) parser_pkmn_randomization_group.add_argument( '--rng-pktm-min-status-ratio', action='store', default=config.rng_pktm_min_status_ratio, type=int, metavar='RATIO', help='Control the probability percentage of the Pokémon being able to learn TMs that contain non-damaging' ' moves. (Default: 75)' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pktm-family', default=config.rng_pktm_family, help_enable='Allow evolved Pokémon to always learn all TMs their pre-evolutions can learn.', help_disable='Pre-evolution TM learnsets are not considered.' ) parser_pkmn_randomization_group.add_argument( '--rng-pktm-full-compat', action='store_true', help='All Pokémon learn all TMs. This is a shorthand for setting all the other TM ratio variables to 100.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkevo', default=config.rng_pkevo, help_enable='Randomize the evolutions of Pokémon that originally evolve.', help_disable='Keep original Pokémon evolutions.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkevo-shuffle', default=config.rng_pkevo_shuffle, help_enable='Shuffle existing evolutions rather than fully randomizing each evolution independently.', help_disable='Pick every evolution at random.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkevo-samestage', default=config.rng_pkevo_samestage, help_enable='Limit randomization so that first stages only evolve into second stages and second stages ' 'into third stages. Note that baby Pokémon are considered first stages for the purposes of the ' 'randomizer.', help_disable='Allow evolutions to randomize to any other Pokémon. This may lead into strong Pokémon evolving ' 'into weak Pokémon and long or circular evolution chains.' ) add_enable_disable_argument( parser_pkmn_randomization_group, 'rng-pkitem', default=config.rng_pkitem, help_enable='Randomize the items the wild Pokémon can be holding.', help_disable='Keep original items.' ) parser_pkmn_randomization_group.add_argument( '--rng-pkitem-ratio', action='store', default=config.rng_pkitem_ratio, type=int, metavar='NUM', help='Control the probability of a wild Pokémon holding an item in the first place. (Default: 33)' ) parser_move_randomization_group = parser.add_argument_group('Move randomization options') add_enable_disable_argument( parser_move_randomization_group, 'rng-tm-moves', default=config.rng_tm_moves, help_enable='Randomize the moves taught by the 50 Technical Machines.', help_disable='Keep the original TM moves.' ) add_enable_disable_argument( parser_move_randomization_group, 'rng-move-power', default=config.rng_move_power, help_enable='Randomize the base power of each damaging move to a value between 10 and 180, divisible by 5.', help_disable='Do not change the move base powers.' ) add_enable_disable_argument( parser_move_randomization_group, 'rng-move-types', default=config.rng_move_types, help_enable='Randomize the type of every move except Curse and Struggle. Note that this cannot make normal ' 'moves shadow moves and vice versa. The resulting types will be used when determining Pokémon ' 'learn-up movesets if --rng-pkmoves is enabled.', help_disable='Do not change the typing of moves.' ) add_enable_disable_argument( parser_move_randomization_group, 'rng-move-accuracy', default=config.rng_move_accuracy, help_enable='Randomize the accuracy of every move that uses the accuracy check. The accuracy of each move ' 'will be between 30%% and 100%%, divisible by 5, with a tendency towards 100%% accurate moves.', help_disable='Do not change the accuracy of moves.' ) add_enable_disable_argument( parser_move_randomization_group, 'rng-move-pp', default=config.rng_move_pp, help_enable='Randomize the PP of every move to a value between 5 and 40, divisible by 5.', help_disable='Do not change the PP of moves.' ) parser_trainer_randomization_group = parser.add_argument_group('Trainer randomization options') add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers', default=config.rng_trainers, help_enable='Enable randomization of trainers\' Pokémon.', help_disable='Do not randomize trainer Pokémon.' ) add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers-cat-story', default=config.rng_trainers_cat_story, help_enable='Randomize story related trainers.', help_disable='Keep original teams for story related trainers.' ) add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers-cat-mt-battle', default=config.rng_trainers_cat_mt_battle, help_enable='Randomize Mt. Battle related trainers. ' 'The same data is also used in Colosseum for the Battle Now mode.', help_disable='Keep original teams for Mt. Battle related trainers.' ) add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers-cat-colo-battle', default=config.rng_trainers_cat_colo_battle, help_enable='Randomize the Pokémon pools in the Colosseum Battle mode. (Colo only)', help_disable='Keep original Pokémon in Colosseum Battle Mode.' ) add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers-cat-quick-battle', default=config.rng_trainers_cat_quick_battle, help_enable='Randomize the Pokémon pools in the Quick Battle mode. (XD only)', help_disable='Keep original Pokémon in Quick Battle Mode.' ) add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers-cat-bingo', default=config.rng_trainers_cat_bingo, help_enable='Randomize the Pokémon in Battle Bingo. May result in unwinnable bingo cards. (XD only)', help_disable='Keep original Pokémon in Battle Bingo. The bingo cards may be winnable depending on other ' 'randomization options.' ) add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers-cat-battle-sim', default=config.rng_trainers_cat_battle_sim, help_enable='Randomize the Pokémon in Battle CDs. May result in unwinnable scenarios. (XD only)', help_disable='Keep original Pokémon in Battle CDs. The setups may be winnable depending on other randomization ' 'options.' ) add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers-unique-shadow', default=config.rng_trainers_unique_shadow, help_enable='Ensure that all Shadow Pokémon are unique.', help_disable='Allow duplicate Shadow Pokémon.' ) add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers-power-progression', default=config.rng_trainers_power_progression, help_enable='The average base stat total of Pokémon in trainers\' teams rises by the Pokémon level, leading to ' 'natural power progression where early game trainers are weak and late game trainers are strong.', help_disable='Don\'t restrict Pokémon based on their power.' ) add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers-level-up-only', default=config.rng_trainers_level_up_only, help_enable='Trainers\' Pokémon only use the last four level-up moves based on the current level.', help_disable='Trainers\' Pokémon can have any level-up or TM moves up to the current level.' ) add_enable_disable_argument( parser_trainer_randomization_group, 'rng-trainers-item', default=config.rng_trainers_item, help_enable='Randomize the items the Pokémon can be holding.', help_disable='Keep original items.' ) parser_trainer_randomization_group.add_argument( '--rng-trainers-item-ratio', action='store', default=config.rng_trainers_item_ratio, type=int, metavar='NUM', help='Control the probability of a trainer Pokémon holding an item in the first place. (Default: 33)' ) parser_item_randomization_group = parser.add_argument_group('Item randomization options') add_enable_disable_argument( parser_item_randomization_group, 'rng-items', default=config.rng_items, help_enable='Enable randomization of items lying around in Orre.', help_disable='Do not randomize item boxes.' ) add_enable_disable_argument( parser_item_randomization_group, 'rng-items-shuffle', default=config.rng_items_shuffle, help_enable='Redistribute the existing items into the different boxes.', help_disable='Randomize each item individually.' ) parser_item_randomization_group.add_argument( '--rng-items-berry-reroll', action='store', default=config.rng_items_berry_reroll, type=int, metavar='NUM', help='Reroll the random item this many times if the result was a berry. Has no effect if --rng-items-shuffle ' 'is enabled. (Default: 1)' ) add_enable_disable_argument( parser_item_randomization_group, 'rng-items-random-qty', default=config.rng_items_random_qty, help_enable='Randomize the quantities of items.', help_disable='Keep original quantities.' ) parser_gift_pkmn_randomization_group = parser.add_argument_group('Gift/Starter Pokémon options') add_enable_disable_argument( parser_gift_pkmn_randomization_group, 'rng-starters', default=config.rng_starters, help_enable='Enable editing starter Pokémon.', help_disable='The default starter Pokémon are used.' ) parser_gift_pkmn_randomization_group.add_argument( '--rng-starters-fixed', nargs='*', metavar='SPECIES', help='Rather than randomizing the starter Pokémon, specify which species the starter(s) should be. ' 'For Colosseum, provide two species, and for XD, provide one. Note the non-standard spellings of the ' 'following Pokémon that must be used: NIDORAN_F, NIDORAN_M, FARFETCH_D, MR_MIME, HO_OH' ) parser_gift_pkmn_randomization_group.add_argument( '--rng-starters-max-bst', type=int, metavar='BST', default=config.rng_starters_max_bst, help='Limit the base stats total of the starter Pokémon to be smaller or equal to this value. Set to a ' 'high value to allow all Pokémon as starters. (Default: 500)' ) add_enable_disable_argument( parser_gift_pkmn_randomization_group, 'rng-trade-wants', default=config.rng_trade_wants, help_enable='Randomize the Pokémon requested by NPCs who can trade with the player. In XD, Hordel is also ' 'normalized to accept the purified form of the same Pokémon he originally gives to you.', help_disable='Keep the requested Pokémon for trades as they are. In XD, Hordel will also always accept ' 'a purified Togepi or Togetic, overriding --rng-gifts if set.' ) add_enable_disable_argument( parser_gift_pkmn_randomization_group, 'rng-trade-offers', default=config.rng_trade_offers, help_enable='Randomize the Pokémon received from the NPC trades.', help_disable='Keep the original Pokémon the NPCs trade to you.' ) add_enable_disable_argument( parser_gift_pkmn_randomization_group, 'rng-gifts', default=config.rng_gifts, help_enable='Randomize the gift Pokémon the NPCs give to the player.', help_disable='Retain the original gift Pokémon.' ) parser_tutor_randomization_group = parser.add_argument_group('Tutor randomization options (XD)') add_enable_disable_argument( parser_move_randomization_group, 'rng-tutor-moves', default=config.rng_tutor_moves, help_enable='Randomize the moves taught by the Move Tutor in Agate Village.', help_disable='Keep the original tutor moves.' ) add_enable_disable_argument( parser_tutor_randomization_group, 'rng-pktutor', default=config.rng_pktutor, help_enable='Enable Pokémon tutor learnset randomization.', help_disable='Keep the original Pokémon tutor learnsets. Other --rng-pktutor flags take no effect.' ) parser_tutor_randomization_group.add_argument( '--rng-pktutor-min-own-type-ratio', action='store', default=config.rng_pktutor_min_own_type_ratio, type=int, metavar='RATIO', help='Control the probability percentage of the Pokémon being able to learn damaging tutor moves with the same ' 'type as the Pokémon itself. ' '(Default: 90)' ) parser_tutor_randomization_group.add_argument( '--rng-pktutor-min-normal-type-ratio', action='store', default=config.rng_pktutor_min_normal_type_ratio, type=int, metavar='RATIO', help='Control the probability percentage of the Pokémon being able to learn damaging Normal-type tutor moves. ' 'This ratio is not used for Normal-type Pokémon themselves. ' '(Default: 75)' ) parser_tutor_randomization_group.add_argument( '--rng-pktutor-min-other-type-ratio', action='store', default=config.rng_pktutor_min_other_type_ratio, type=int, metavar='RATIO', help='Control the probability percentage of the Pokémon being able to learn damaging tutor moves with a ' 'different type as the Pokémon itself, excluding Normal-type moves. ' '(Default: 40)' ) parser_tutor_randomization_group.add_argument( '--rng-pktutor-min-status-ratio', action='store', default=config.rng_pktutor_min_status_ratio, type=int, metavar='RATIO', help='Control the probability percentage of the Pokémon being able to learn non-damaging tutor moves. ' '(Default: 75)' ) add_enable_disable_argument( parser_tutor_randomization_group, 'rng-pktutor-family', default=config.rng_pktutor_family, help_enable='Allow evolved Pokémon to always learn all tutor moves their pre-evolutions can learn.', help_disable='Pre-evolution tutor learnsets are not considered.' ) parser_tutor_randomization_group.add_argument( '--rng-pktutor-full-compat', action='store_true', help='All Pokémon learn all tutor moves. This is a shorthand for setting all the other tutor ratio variables ' 'to 100.' ) add_enable_disable_argument( parser_tutor_randomization_group, 'early-tutors', dest_name='patch_early_tutors', default=config.patch_early_tutors, help_enable='Make all tutor moves available from the start of the game.', help_disable='Let tutor moves stay locked until specific game events.' ) parser_wild_randomization_group = parser.add_argument_group('Poké Spot randomization options (XD)') add_enable_disable_argument( parser_wild_randomization_group, 'rng-pokespot', default=config.rng_pokespot, help_enable='Randomizes the species available from Poké Spots.', help_disable='Retain the original Poké Spot species.' ) add_enable_disable_argument( parser_wild_randomization_group, 'rng-pokespot-improve-levels', default=config.rng_pokespot_improve_levels, help_enable='Raises the range of available Pokémon in Poké Spots.', help_disable='Retain the original Poké Spot levels.' ) add_enable_disable_argument( parser_wild_randomization_group, 'rng-pokespot-bst-based', default=config.rng_pokespot_bst_based, help_enable='Allow only Pokémon with suitable base stat total (using the same algorithm as ' '--rng-trainers-power-progression) to appear at Poké Spots.', help_disable='Any Pokémon can appear at Poké Spots.' ) parser_patches_group = parser.add_argument_group('Miscellaneous patches') add_enable_disable_argument( parser_patches_group, 'update-evolutions', dest_name='patch_impossible_evolutions', default=config.patch_impossible_evolutions, help_enable='Alter evolutions that would otherwise require connecting to another game to happen on a specific ' 'level or with a specific evolution item instead. Note that evolutions are changed before they are ' 'randomized, if --rng-pkevo is enabled. Evolutions are changed as follows: ' 'Kadabra evolves into Alakazam at level 32. ' 'Machoke, Graveler and Haunter evolve into Machamp, Golem and Gengar at level 37. ' 'Onix, Porygon, Scyther and Feebas evolve into Steelix, Porygon2, Scizor and Milotic at level 30. ' 'Seadra evolves into Kingdra at level 42. ' 'Poliwhirl and Clamperl evolve into Politoed and Gorebyss with a Sun Stone. ' 'Slowpoke and Clamperl evolve into Politoed and Huntail with a Moon Stone. ' 'Additionally, in Colosseum, Eevee will also evolve into Espeon and Umbreon with Sun and Moon ' 'Stone, respectively.', help_disable='Do not change evolution methods. Some evolutions will be unavailable.' ) add_enable_disable_argument( parser_patches_group, 'improve-catch-rate', default=config.improve_catch_rate, help_enable='Improve the catch rates of Pokémon.', help_disable='Keep original catch rates.' ) parser_patches_group.add_argument( '--improve-catch-rate-minimum', action='store', default=config.improve_catch_rate_minimum, type=int, metavar='NUM', help='Set the minimum catch rate allowed for a Pokémon, from 1 to 255. Pokémon whose catch rate is higher ' 'will keep their original catch rates. (Default: 90)' ) add_enable_disable_argument( parser_patches_group, 'fix-name-casing', default=config.fix_name_casing, help_enable='If the ISO region is either USA or Europe, change the Pokémon, item, etc. names to use ' 'natural casing rather than all uppercase.', help_disable='Do not alter name casing.' ) args = parser.parse_args() if args.in_place is not True and args.output_path is None or args.output_path == args.iso_path: print('Error: a unique output path must be specified when not randomizing in-place!') exit(1) logging.basicConfig(level=getattr(logging, args.loglevel.upper()), format="{asctime} [{levelname}] {message}", style='{') config.configure(working_dir=os.path.dirname(__file__), **vars(args)) randomizer = Randomizer(rom_path=args.iso_path, output_path=args.output_path, in_place=args.in_place) randomizer.randomize()
import sys # For argv import getopt # For options import re # regex replacing import numpy as np from itertools import combinations class Coalition: def __init__(self,coalition,numplayers): self.input_coalitions = coalition self.numplayers = numplayers self.best_structure = {} self.key_value = {} self.best_val = 0 self.best_coalition = "" def permutes(self,key): unformatted_combos = [] for i in range(1,len(key)//2 + 1): unformatted_combos += list(combinations(key,i)) combos = [""]*len(unformatted_combos) for i in range(len(unformatted_combos)): combos[i] = "".join(unformatted_combos[i][:]) combos = [combos[i] + "," for i in range(len(combos))] for i in range(len(combos)): for j in range(len(key)): if key[j] not in combos[i]: combos[i] += key[j] # Only do assert from here because we have some redundancies in the small # keys. # Commenting out checks because you might run different code #if key == "123": # assert(combos==['1,23','2,13','3,12']) #elif key == '124': # assert(combos==['1,24','2,14','4,12']) #elif key == '134': # assert(combos==['1,34','3,14','4,13']) #elif key == '234': # assert(combos==['2,34','3,24','4,23']) #elif key == "1234": # # up to -1 because our method gives a '34,12' which is redundant # assert(combos[:-1]==['1,234','2,134','3,124','4,123','12,34','13,24','14,23','23,14','24,13']) return combos # Originally did this to check the answer. Then checked above version with # these keys. They appear to match #if key == "12": # return ["1,2"] #elif key == '13': # return ['1,3'] #elif key == '14': # return ['1,4'] #elif key == '23': # return ['2,3'] #elif key == '24': # return ['2,4'] #elif key == '34': # return ['3,4'] #elif key == "123": # return ['1,23','2,13','3,12'] #elif key == '124': # return ['1,24','2,14','4,12'] #elif key == '134': # return ['1,34','3,14','4,13'] #elif key == '234': # return ['2,34','3,24','4,23'] #elif key == "1234": # return ['1,234','2,134','3,124','4,123','12,34','13,24','14,23','23,14','24,13'] def set_structure(self,key,val): n_key = sort(key) if n_key in best_strcuture: print("This key is already here") exit(1) self.best_structure[n_key] = key self.key_value[n_key] = val if self.best_val is None: self.best_val = val elif val > self.best_val: self.best_val = val def get_value(self,key): t = 0 for k in key.split(','): #if k == ',': continue #if self.has_key(k): if k in self.key_value: tt = self.key_value[k] else: t_key = [key[i] for i in k.split(',')] tt = max([max(t,t_key[i]) for i in range(len(tk))]) t += tt return t def optimal_val(self,key): if key not in self.key_value: #self.key_value[key] = max(self.input_coalitions[key],max([self.get_value(k) for k in self.permutes(key)])) self.best_structure[key] = key self.key_value[key] = self.input_coalitions[key] permutes = self.permutes(key) for k in permutes: if self.get_value(k) > self.key_value[key]: self.key_value[key] = self.get_value(k) self.best_structure[key] = k if self.key_value[key] > self.best_val: self.best_val = self.key_value[key] def get_optimal(self): for key in self.input_coalitions: if len(key) == 1: self.key_value[key] = self.input_coalitions[key] self.best_structure[key] = key else: self.optimal_val(key) #print(self.best_val) self.best_coalition = self.get_best_coalition(key) #print(self.best_coalition) def get_best_coalition(self,key): keys = self.best_structure[key].split(',') return ','.join((self.best_structure[k] for k in keys)) def print_to_file(self,output): s = '{{' + self.best_coalition.replace(',','},{') + "}}" s += "," + str(self.best_val) + "\n" with open(output,'w') as _file: _file.write(s) _file.close() def readfile(filename:str, d:str=None,dtype_=str): r""" numpy read file wrapper """ return np.loadtxt(str(filename), delimiter=d, dtype=dtype_) def print_usage(): r""" Prints file usage """ print("usage: coalition.py -i <input file> -o <output file>") print("-h, --help\t prints this message") print("-i, --input\t sets the input file") print("-o, --output\t sets the output file: defaults to optimalCS.txt") def command_line_args(argv): r""" Handles the command line arguments """ try: opts, args = getopt.getopt(argv,"h:i:o:d:",["help","input=",\ "output=","delimiter="]) except getopt.GetoptError: print_usage() exit(1) output = "optimalCS.txt" for opt, arg in opts: if opt in ("-h", "--help"): print_usage() exit(0) elif opt in ("-i", "--input"): in_file = readfile(str(arg)) elif opt in ("-o", "--output"): output = str(arg) return in_file,output def format_input(input_file): #r""" Returns arrays of the coalitions and rewards """ r""" Returns dictionary of the coalitions and rewards """ numplayers = np.int(input_file[0]) coalitions = {} for i in range(1,len(input_file)): data = re.sub("{|}","",input_file[i]).rsplit(',',1) coalitions[re.sub(",","",data[0])] = np.float(data[1]) return numplayers,coalitions def main(argv): in_file,out_file = command_line_args(argv) n,c = format_input(in_file) C = Coalition(c,n) C.get_optimal() C.print_to_file(out_file) if __name__ == '__main__': if len(sys.argv) <= 2: print_usage() exit(1) main(sys.argv[1:])
''' Base class for the test cases. Python ``unittest`` framework does not allows large scale of parameterized tests. This simple base class is just a workaround to allow to run the tests for various conditions. ''' import unittest import numpy as np import torch FLOAT_TOLPLACES = 2 FLOAT_TOL = 10 ** (-FLOAT_TOLPLACES) DOUBLE_TOLPLACES = 6 DOUBLE_TOL = 10 ** (-DOUBLE_TOLPLACES) class BaseTest(unittest.TestCase): def __init__(self, methodName='runTest', tensor_type='float', gpu=False, seed=13): super().__init__(methodName) self.tensor_type = tensor_type self.gpu = gpu self.seed(seed) @property def tol(self): return FLOAT_TOL if self.tensor_type == 'float' else DOUBLE_TOL @property def tolplaces(self): return FLOAT_TOLPLACES if self.tensor_type == 'float' else \ DOUBLE_TOLPLACES @property def type(self): return torch.FloatTensor if self.tensor_type == 'float' else \ torch.DoubleTensor def seed(self, seed): torch.manual_seed(seed) if self.gpu: torch.cuda.manual_seed(seed) def assertArraysAlmostEqual(self, arr1, arr2): try: fail = False self.assertTrue(np.allclose(arr1, arr2, atol=self.tol)) except AssertionError as error: fail = True raise error finally: if fail: print(arr1, arr2) @staticmethod def get_testsuite(class_name, tensor_type='float', gpu=False, seed=13): testloader = unittest.TestLoader() testnames = testloader.getTestCaseNames(class_name) suite = unittest.TestSuite() for name in testnames: suite.addTest(class_name(name, tensor_type, gpu, seed)) return suite
# coding: utf-8 from PIL import Image, ImageFont, ImageDraw from subprocess import call class WordGenerator: """ Generates pithy statements for our visual content """ source = None @staticmethod def get_content(length=100): return "I sat on a rug, biding my time, drinking her wine" class ImageGenerator: """ Steals pretty images for the content to sit on """ @staticmethod def get_image(): return "test:Boat" class BitterGravelist: word_generator = None image_generator = None def __init__(self, word_generator=WordGenerator(), image_generator=ImageGenerator): self.word_generator = word_generator self.image_generator = image_generator def generate_gravel(self): image = Image.open(self.image_generator.get_image()) draw = ImageDraw.Draw(image) color = '#ffc800' # create border padding = 10 thickness = 5 top = padding left = padding right = image.size[0] - padding bottom = image.size[1] - padding # turns out the method wants left, *then* top. switch. draw.rectangle((top, left, bottom, left+thickness), fill=color) draw.rectangle((top, left, top+thickness, right), fill=color) draw.rectangle((top, right, bottom, right-thickness), fill=color) draw.rectangle((bottom, left+thickness, bottom, right-thickness), fill=color) text = self.word_generator.get_content() font = ImageFont.truetype("Helvetica", 16) draw.text((10, 25), text, font=font) image_save_file_name = '/Users/danieljilg//Desktop/output.png' image.show() # image.save(image_save_file_name, 'PNG') # call(['open', image_save_file_name]) if __name__ == '__main__': BitterGravelist().generate_gravel()
#!/usr/bin/python -u # From https://learn.adafruit.com/adafruits-raspberry-pi-lesson-11-ds18b20-temperature-sensing/software import os import glob import time os.system('modprobe w1-gpio') os.system('modprobe w1-therm') base_dir = '/sys/bus/w1/devices/' # Grabs the first probe out of the directory device_folder = glob.glob(base_dir + '28*')[0] device_file = device_folder + '/w1_slave' def c_to_f(c): return c * 9.0 / 5.0 + 32.0 def read_temp_raw(): f = open(device_file, 'r') lines = f.readlines() f.close() return lines def read_temp(): lines = read_temp_raw() while lines[0].strip()[-3:] != 'YES': time.sleep(0.2) lines = read_temp_raw() equals_pos = lines[1].find('t=') if equals_pos != -1: temp_string = lines[1][equals_pos+2:] return float(temp_string) / 1000.0 while True: temp = read_temp() print(temp, c_to_f(temp)) time.sleep(1)
def curry(f, *a, **kw): def curried(*more_a, **more_kw): return f(*(a+more_a), dict(kw, **more_kw)) return curried
from setuptools import setup, find_packages import codecs import os with open("README.md", "r") as fh: long_description = fh.read() # Setting up setup( name="auto-machine-learning", version='0.0.12', license='MIT', author="Mihir Gada, Zenil Haria, Arnav Mankad, Kaustubh Damania", author_email="", url = 'https://github.com/mihir2510/AutoML_library', download_url ='https://pypi.org/project/auto-machine-learning/', project_urls={ "Documentation": "https://github.com/mihir2510/AutoML_library", "Source Code": "https://github.com/mihir2510/AutoML_library", }, description='This is an python Library for AutoML which works for prediction and classification tasks.', long_description_content_type="text/markdown", long_description=long_description, packages=find_packages(), install_requires=[ 'imblearn', 'pandas', 'scikit-optimize', 'hyperopt', 'scikit-learn==0.24.1', 'kiwisolver==1.3.1', 'matplotlib==3.3.4', 'Pillow==8.1.0', 'openpyxl', 'plotly', 'pytest', 'pytest-runner', 'seaborn', 'psutil', 'kaleido', ], keywords=['automl', 'data preprocessing','feature engineering','ensembling','super learner'], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], include_package_data=True )
# Generated by Django 3.1.1 on 2020-11-13 19:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mascotas', '0001_initial'), ] operations = [ migrations.CreateModel( name='Mascotas', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ide', models.CharField(max_length=10)), ('codigo', models.CharField(max_length=10)), ('ide_tipo', models.CharField(max_length=10)), ('ide_raza', models.CharField(max_length=10)), ('nombre', models.CharField(max_length=100)), ('tiene_vacunas', models.CharField(max_length=100)), ('estado', models.CharField(max_length=100)), ('fecha_creacion', models.CharField(max_length=100)), ('fecha_modificacion', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='Razas', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ide', models.CharField(max_length=10)), ('code', models.CharField(max_length=10)), ('nombre', models.CharField(max_length=100)), ('abreviatura', models.CharField(max_length=100)), ('id_tipo', models.CharField(max_length=10)), ('estado', models.CharField(max_length=100)), ('fecha_creacion', models.CharField(max_length=100)), ('fecha_modificacion', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='Tipos', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ide', models.CharField(max_length=10)), ('code', models.CharField(max_length=10)), ('nombre', models.CharField(max_length=100)), ('abreviatura', models.CharField(max_length=100)), ('estado', models.CharField(max_length=100)), ('fecha_creacion', models.CharField(max_length=100)), ('fecha_modificacion', models.CharField(max_length=100)), ], ), migrations.DeleteModel( name='Afiliados', ), ]
import graphene from .book import BookCreateMutation, BookDeleteMutation from .auth import AuthMutation, RefreshMutation class MainMutation(graphene.ObjectType): book = BookCreateMutation.Field() delete = BookDeleteMutation.Field() auth = AuthMutation.Field() refresh = RefreshMutation.Field()
from . import _endpoints as endpoints import requests import json from statham.schema.elements import Object from statham.schema.constants import NotPassed class StathamJSONEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, Object): return {type(o).properties[k].source: v for k, v in o._dict.items() if not isinstance(v, NotPassed)} return json.JSONEncoder.default(self, o) class Client: def __init__(self, api_key, api_endpoint_base='https://api2.toshl.com'): self.api_key = api_key self.api_endpoint_base = api_endpoint_base self.accounts = endpoints.Accounts(self) self.budgets = endpoints.Budgets(self) self.categories = endpoints.Categories(self) self.currencies = endpoints.Currencies(self) self.entries = endpoints.Entries(self) self.exports = endpoints.Exports(self) self.images = endpoints.Images(self) self.me = endpoints.Me(self) self.tags = endpoints.Tags(self) def request(self, href, method, argument_type=None, return_type=None, **kwargs): options = {} if argument_type: # Remap kwargs (which are modified to avoid Python reserved keywords) back into # the source keys of the argument object. remap = {} for k, v in kwargs.items(): remap[argument_type.properties[k].source] = v # Construct the argument, which will validate all kwargs. argument = argument_type(remap) # If we GET, use the original remap, otherwise, JSON encode the argument. if method == 'GET': options['params'] = remap else: options['data'] = json.dumps(argument, cls=StathamJSONEncoder) options['headers'] = {'Content-Type': 'application/json'} # Do the request. response = requests.request(method, self.api_endpoint_base + href.format(**kwargs), auth=(self.api_key, ''), **options) # Check if the response is OK. if response.ok: # Attempt to construct the return type, handling lists, and some # dicts especially (Toshl decided that on some endpoints such as # the currencies list that they'd actually return a dict). if return_type: plain = response.json() if isinstance(plain, list): return [return_type(p) for p in plain] elif set(plain.keys()).issubset(set(p.source for p in return_type.properties.values())): return return_type(response.json()) elif isinstance(plain, dict): return {k: return_type(v) for k, v in plain.items()} else: return plain else: response.raise_for_status()
from typing import Optional from xml.dom import minidom as dom import time class Message: 'Represents a fragment of message.' def __init__(self, user: Optional[str], message: str, timestamp: float): 'Initializes a new instance.' self._user = user self._message = message self._timestamp = timestamp @property def user(self) -> Optional[str]: 'The user who sent this message.' return self._user @property def message(self) -> str: 'The message text.' return self._message @property def timestamp(self) -> float: 'The timestamp of this message.' return self._timestamp class MessageManager: 'Represents a collection of messages.' def __init__(self, room_name: str): 'Initializes with a room name.' self._messages = [] self._roomName = room_name def messageReceived(self, user: str, message: str) -> None: 'Called when a new message occurred.' timestamp = time.time() self._messages.append(Message(user, message, timestamp)) def metaMessage(self, message: str) -> None: 'Called when a meta message was received.' timestamp = time.time() self._messages.append(Message(None, message, timestamp)) def exportMessages(self) -> str: 'Exports the messages as xml.' doc = dom.getDOMImplementation().createDocument(None, 'messages', dom.DocumentType('messages')) doc.documentElement.setAttribute("room", self._roomName) for message in self._messages: elem = doc.createElement("message") elem.setAttribute("user", message.user) elem.setAttribute("timestamp", str(message.timestamp)) elem.appendChild( doc.createTextNode(message.message) ) doc.documentElement.appendChild(elem) return doc.toprettyxml(indent=' ')
import atexit import collections import logging import os import os.path import re from pathlib import Path from tempfile import NamedTemporaryFile, gettempdir from typing import IO, Any, Dict, List, Optional import mypy from mypy import api as mypy_api from mypy.defaults import CONFIG_FILES as MYPY_CONFIG_FILES from pylsp import hookimpl from pylsp.config.config import Config from pylsp.workspace import Document, Workspace line_pattern = re.compile(r"((?:^[a-z]:)?[^:]+):(?:(\d+):)?(?:(\d+):)? (\w+): (.*)") logger = logging.getLogger("pylsp.plugins.mypy_rnx") logger.info(f"Using mypy located at: {mypy.__file__}") def _get_dmypy_status_filepath() -> Path: tmpdir = Path(gettempdir()) unique_mypy_path_per_python_exec = Path(mypy.__file__).parent.relative_to( Path.home() ) dmypy_status_dirpath = tmpdir / unique_mypy_path_per_python_exec if not dmypy_status_dirpath.exists(): dmypy_status_dirpath.mkdir(parents=True) return dmypy_status_dirpath / "dmypy-status.json" class State: initialized: bool = False mypy_config_file: Optional[str] = None livemode_tmpfile: IO[str] = NamedTemporaryFile("w", delete=False) # In non-live-mode the file contents aren't updated. # Returning an empty diagnostic clears the diagnostic result, # so store a cache of last diagnostics for each file a-la the pylint plugin, # so we can return some potentially-stale diagnostics. # https://github.com/python-lsp/python-lsp-server/blob/v1.0.1/pylsp/plugins/pylint_lint.py#L55-L62 last_diagnostics: Dict[str, List[Any]] = collections.defaultdict(list) # dmypy stuff (keep one state file per mypy executable): dmypy_daemon_status: Optional[int] = None dmypy_status_file: str = _get_dmypy_status_filepath().as_posix() def parse_line( line: str, document: Optional[Document] = None ) -> Optional[Dict[str, Any]]: result = line_pattern.match(line) logger.info(line) if not result: return None file_path, linenoStr, offsetStr, severity, msg = result.groups() if file_path != "<string>": # live mode # results from other files can be included, but we cannot return them. if document and document.path and not document.path.endswith(file_path): msg = f"discarding result for {file_path} against {document.path}" logger.warning(msg) return None lineno = int(linenoStr or 1) - 1 # 0-based line number offset = int(offsetStr or 1) - 1 # 0-based offset errno = 1 if severity == "error" else 2 range_diag = { "start": {"line": lineno, "character": offset}, # There may be a better solution, but mypy does not provide end "end": {"line": lineno, "character": offset + 1}, } diag: Dict[str, Any] = { "source": "mypy", "range": range_diag, "message": msg, "severity": errno, } if document: # although mypy does not provide the end of the affected range, we # can make a good guess by highlighting the word that Mypy flagged word = document.word_at_position(diag["range"]["start"]) if word: diag["range"]["end"]["character"] = diag["range"]["start"][ "character" ] + len(word) return diag def _ensure_finding_config_file(config: Config) -> None: # Check for mypy config file to be used if State.mypy_config_file: return workspace = config._root_path logger.info(f"Searching for mypy config file from {workspace}") for filepath in MYPY_CONFIG_FILES: location = os.path.join(workspace, filepath) if os.path.isfile(location): State.mypy_config_file = location logger.info(f"Found mypy config file at {State.mypy_config_file}") break @hookimpl def pylsp_settings(config: Config) -> Dict[str, Any]: _ensure_finding_config_file(config) return { "plugins": { "pylsp_mypy_rnx": { "enabled": True, "live_mode": True, "args": [], "dmypy": False, "daemon_args": {}, } } } def parse_run( document: Document, report: str, errors: str, exit_status: int ) -> List[Dict[str, Any]]: logger.debug(f"report:\n{report}") if errors: logger.warning(f"errors:\n{errors}") logger.warning(f"exit_status: {exit_status}") last_diags = [] for line in report.splitlines(): logger.debug("parsing: line = %r", line) diag = parse_line(line, document) if diag: last_diags.append(diag) logger.info("pylsp_mypy_rnx len(diagnostics) = %s", len(last_diags)) State.last_diagnostics[document.path] = last_diags return last_diags def _to_dmypy_cmd(cmd: List[str]) -> str: return f"'dmypy {' '.join(cmd)}'" @hookimpl def pylsp_lint( workspace: Workspace, document: Document, is_saved: bool ) -> List[Dict[str, Any]]: config = workspace._config settings = config.plugin_settings("pylsp_mypy_rnx", document_path=document.path) if not State.initialized: logger.info(f"lint settings: {settings}") logger.info(f"document.path: {document.path}") State.initialized = True live_mode = settings["live_mode"] dmypy = settings["dmypy"] if dmypy and live_mode: # dmypy can only be efficiently run on files that have been saved, see: # https://github.com/python/mypy/issues/9309 logger.warning("live_mode is not supported with dmypy, disabling") live_mode = False args = settings["args"] args = [ *args, "--show-column-numbers", "--follow-imports", "normal", "--incremental", ] if State.mypy_config_file: args.extend(["--config-file", State.mypy_config_file]) if not is_saved: if not live_mode: # Early return in case of not saved and not live-mode last_diags = State.last_diagnostics.get(document.path, []) msg = f"non-live, returning cached diagnostics ({len(last_diags)})" logger.debug(msg) return last_diags else: # use shadow file in live-mode logger.info(f"live_mode with tmpfile: {State.livemode_tmpfile.name}") with open(State.livemode_tmpfile.name, "w") as f: f.write(document.source) args.extend(["--shadow-file", document.path, State.livemode_tmpfile.name]) if not dmypy: cmd = [*args, document.path] logger.info(f"executing: 'mypy {' '.join(cmd)}") report, errors, exit_status = mypy_api.run(cmd) return parse_run(document, report, errors, exit_status) daemon_args = ["--status-file", State.dmypy_status_file] if State.dmypy_daemon_status is None: msg = f"dmypy - status file can be found at {State.dmypy_status_file}" logger.info(msg) # First check if no daemon already running cmd = [*daemon_args, "status"] logger.info(f"call dmypy status: {_to_dmypy_cmd(cmd)}") result, errors, State.dmypy_daemon_status = mypy_api.run_dmypy(cmd) if State.dmypy_daemon_status != 0: # not yet up and running logger.debug(errors) daemon_args_start = [ *daemon_args, "start", *(settings.get("daemon_args", {}).get("start", [])), ] cmd = [*daemon_args_start, "--", *args, document.path] logger.info(f"call dmypy start: {_to_dmypy_cmd(cmd)}") _, errors, State.dmypy_daemon_status = mypy_api.run_dmypy(cmd) if State.dmypy_daemon_status != 0: logger.warning(errors) logger.debug(f"current dmypy daemon status: {State.dmypy_daemon_status}") daemon_args_check = [ *daemon_args, "check", *(settings.get("daemon_args", {}).get("check", [])), ] cmd = [*daemon_args_check, document.path] logger.info(f"call dmypy check: {_to_dmypy_cmd(cmd)}") report, errors, exit_status = mypy_api.run_dmypy(cmd) return parse_run(document, report, errors, exit_status) @atexit.register def close() -> None: if State.dmypy_daemon_status is not None: daemon_args = ["--status-file", State.dmypy_status_file] cmd = [*daemon_args, "kill"] logger.info(f"call dmypy kill: {_to_dmypy_cmd(cmd)}") mypy_api.run_dmypy(cmd) if State.livemode_tmpfile: os.unlink(State.livemode_tmpfile.name) # cleanup tmpfile
# Copyright (c) 2012-2021, Mark Peek <mark@peek.org> # All rights reserved. # # See LICENSE file for full license. from .aws import Action as BaseAction from .aws import BaseARN service_name = "AWS Elemental Appliances and Software Activation Service" prefix = "elemental-activations" class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: super().__init__( service=prefix, resource=resource, region=region, account=account ) CompleteAccountRegistration = Action("CompleteAccountRegistration") CompleteFileUpload = Action("CompleteFileUpload") DownloadSoftware = Action("DownloadSoftware") GenerateLicenses = Action("GenerateLicenses") GetActivation = Action("GetActivation") ListTagsForResource = Action("ListTagsForResource") StartAccountRegistration = Action("StartAccountRegistration") StartFileUpload = Action("StartFileUpload") TagResource = Action("TagResource") UntagResource = Action("UntagResource")
import torch import torch.nn as nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.modeling_outputs import SequenceClassifierOutputWithPast from .modeling_hart import HaRTBasePreTrainedModel from .hart import HaRTPreTrainedModel class HaRTForSequenceClassification(HaRTBasePreTrainedModel): # _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] def __init__(self, config, model_name_or_path=None, pt_model=None): super().__init__(config) self.freeze_model = config.freeze_model self.num_labels = config.num_labels self.finetuning_task = config.finetuning_task self.use_history_output = config.use_history_output self.use_hart_no_hist = config.use_hart_no_hist if model_name_or_path: self.transformer = HaRTPreTrainedModel.from_pretrained(model_name_or_path) elif pt_model: self.transformer = pt_model else: self.transformer = HaRTPreTrainedModel(config) self.init_weights() if not self.freeze_model and not self.finetuning_task=='ope' and not self.finetuning_task=='user': self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) if self.finetuning_task=='age': self.transform = nn.Linear(config.n_embd, config.n_embd) self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) # Model parallel self.model_parallel = False self.device_map = None def get_pooled_logits(self, logits, input_ids, inputs_embeds): if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 # since we want the index of the last predicted token of the last block only. sequence_lengths = sequence_lengths[:, -1] else: sequence_lengths = -1 self.logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) # get the logits corresponding to the indices of the last pred tokens (of the last blocks) of each user pooled_logits = logits[range(batch_size), sequence_lengths] return pooled_logits def forward( self, input_ids=None, user_ids=None, history=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, history=history, output_block_last_hidden_states=True, output_block_extract_layer_hs=True, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) all_blocks_last_hidden_states = transformer_outputs.all_blocks_extract_layer_hs if self.freeze_model else transformer_outputs.all_blocks_last_hidden_states if self.finetuning_task=='user' or self.finetuning_task=='ope' or self.finetuning_task=='age': if self.use_history_output: states = transformer_outputs.history[0] masks = transformer_outputs.history[1] multiplied = tuple(l * r for l, r in zip(states, masks)) all_blocks_user_states = torch.stack(multiplied, dim=1) all_blocks_masks = torch.stack(masks, dim=1) sum = torch.sum(all_blocks_user_states, dim=1) divisor = torch.sum(all_blocks_masks, dim=1) hidden_states = sum/divisor else: raise ValueError("Since you don't want to use the user-states/history output for a user-level task, please customize the code as per your requirements.") else: hidden_states = torch.stack(all_blocks_last_hidden_states, dim=1) if self.use_hart_no_hist: logits = self.score(all_blocks_last_hidden_states[0]) if self.freeze_model else self.score(self.ln_f(all_blocks_last_hidden_states[0])) batch_size, _, sequence_length = input_ids.shape sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 pooled_logits = logits[range(batch_size), sequence_lengths.squeeze()] else: if self.finetuning_task=='ope' or self.finetuning_task=='user' or self.freeze_model: logits = self.score(hidden_states) elif self.finetuning_task=='age': self.score(self.transform(self.ln_f(hidden_states))) else: logits = self.score(self.ln_f(hidden_states)) pooled_logits = logits if (user_ids is None or self.use_history_output) else \ self.get_pooled_logits(logits, input_ids, inputs_embeds) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1)) else: labels = labels.long() loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
import torch import torch.nn as nn import logging logger = logging.getLogger(__name__) def get_concat(concat: str, embedding_dim: int): """ :param concat: Concatenation style :param embedding_dim: Size of inputs that are subject to concatenation :return: Function that performs concatenation, Size of concatenation output """ concat_func = None concat_dim = None if concat == 'simple': concat_func = lambda a, b: torch.cat((a, b), dim=1) concat_dim = 2 * embedding_dim elif concat == 'dif': # x = np.abs(a-b) concat_func = lambda a, b: (a - b).abs() concat_dim = 1 * embedding_dim elif concat == 'prod': # x = a * b concat_func = lambda a, b: a * b concat_dim = 1 * embedding_dim elif concat == 'dif-prod': # x = np.hstack((np.abs(a-b), a * b)) concat_func = lambda a, b: torch.cat(((a - b).abs(), a * b), dim=1) concat_dim = 2 * embedding_dim elif concat == '3d-prod': # x = np.hstack((a, b, a*b)) concat_func = lambda a, b: torch.cat((a, b, a * b), dim=1) concat_dim = 3 * embedding_dim elif concat == '3d-dif': # x = np.hstack((a, b, np.abs(a-b))) concat_func = lambda a, b: torch.cat((a, b, (a - b).abs()), dim=1) concat_dim = 3 * embedding_dim elif concat == '4d-prod-dif': # x = np.hstack((a, b, a*b, np.abs(a-b))) concat_func = lambda a, b: torch.cat((a, b, a * b, (a - b).abs()), dim=1) concat_dim = 4 * embedding_dim else: raise ValueError('Unsupported concat mode') logger.debug(f'concat_dim = {concat_dim} ({concat})') return concat_func, concat_dim def get_mlp(input_dim, output_dim, hidden_dim, hidden_layers_count=1, dropout_p=0., activation_cls=nn.ReLU): """ Generate a fully-connected layer (MLP) with dynamic input, output and hidden dimension, and hidden layer count. - when dropout_p > 0, then dropout is applied with given probability after the activation function. :param input_dim: :return: Sequential layer """ layers = [ # first layer nn.Linear(input_dim, hidden_dim), activation_cls(), ] if dropout_p > 0: layers.append(nn.Dropout(dropout_p)) for layer_idx in range(1, hidden_layers_count): layers.append(nn.Linear(hidden_dim, hidden_dim)), layers.append(activation_cls()), if dropout_p > 0: layers.append(nn.Dropout(dropout_p)) # last layer layers.append(nn.Linear(hidden_dim, output_dim)) # TODO fill linear layers # nn.init.xavier_normal_(self.classifier.weight) # Fills the input Tensor with values according to the method described in “Understanding the difficulty of training deep feedforward neural networks” - Glorot, X. & Bengio, Y. (2010), using a normal distribution. # kaiming_normal_ # Fills the input Tensor with values according to the method described in “Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification” - He, K. et al. (2015), using a normal distribution. return nn.Sequential(*layers)
# Generated by Django 3.1.4 on 2021-12-12 17:00 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='Questions', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.TextField()), ('answer', models.TextField()), ('created_at', models.DateTimeField(auto_now_add=True)), ('category', models.ForeignKey(default='No Category', on_delete=django.db.models.deletion.SET_DEFAULT, to='faq.category')), ], ), ]
from selenium import webdriver from selenium.webdriver.common.keys import Keys driver = webdriver.Firefox(executable_path = '/media/vivek/Coding Stuffs/Python_Projects/geckodriver') driver.get("http://wwww.python.org") assert "Python" in driver.title elem = driver.find_element_by_name("q") elem.clear() elem.send_keys("pycon") elem.send_keys(Keys.RETURN) assert "No results found." not in driver.page_source driver.close()
n = input() s = "" for i in n: if i==" ": s += i elif i.isdigit(): s += i elif i.islower(): j = ord(i)+13 s += chr(j) if j<123 else chr(j-26) elif i.isupper(): j = ord(i)+13 s += chr(j) if j<91 else chr(j-26) print(s)
import os import shutil SOURCE = 'source' QRC_FILE = 'resource.qrc' primary_icons = os.listdir(SOURCE) contex = [ ('disabled', '#ff0000'), ('primary', '#0000ff'), ] qrc = { 'icon': [], } # ---------------------------------------------------------------------- def replace_color(content, replace, color='#0000ff'): """""" colors = [color] + [''.join(list(color)[:i] + ['\\\n'] + list(color)[i:]) for i in range(1, 7)] for c in colors: content = content.replace(c, replace) replace = '#ffffff00' color = '#000000' colors = [color] + [''.join(list(color)[:i] + ['\\\n'] + list(color)[i:]) for i in range(1, 7)] for c in colors: content = content.replace(c, replace) return content # ---------------------------------------------------------------------- def create_qrc(qrc): """""" with open(QRC_FILE, 'w') as file: file.write('<RCC>\n') for key in qrc: file.write(f' <qresource prefix="{key}">\n') for icon in qrc[key]: # icon = icon.replace(f'{key}/', '') file.write(f' <file>{icon}</file>\n') file.write(f' </qresource>\n') file.write('</RCC>\n') for folder, _ in contex: shutil.rmtree(folder, ignore_errors=True) os.mkdir(folder) # qrc[folder] = [] for icon in primary_icons: if not icon.endswith('.svg'): continue with open(os.path.join(SOURCE, icon), 'r') as file_input: original = file_input.read() for folder, color in contex: new_content = replace_color(original, color) file_to_write = os.path.join(folder, icon) # qrc[folder] += [file_to_write] qrc['icon'] += [file_to_write] with open(file_to_write, 'w') as file_output: file_output.write(new_content) # print(f"created {file_to_write}") create_qrc(qrc) # RCC = '/usr/lib/python3.8/site-packages/PySide2/rcc' RCC = 'rcc -g python --no-compress --verbose' command = f"{RCC} {QRC_FILE} -o {QRC_FILE.replace('.qrc', '_rc.py')}" # print(command) os.system(command)
import feedparser import html from datetime import datetime from park_api.geodata import GeoData from park_api.util import utc_now geodata = GeoData(__file__) def parse_html(xml_data): feed = feedparser.parse(xml_data) try: last_updated = feed["entries"][0]["updated"] last_updated = datetime.strptime(last_updated[5:25], "%d %b %Y %H:%M:%S").isoformat() except KeyError: last_updated = utc_now() data = { "lots": [], "last_updated": last_updated } for entry in feed["entries"]: summary = parse_summary(entry["summary"]) title_elements = parse_title(entry["title"]) lot_identifier = html.unescape((title_elements[2] + " " + title_elements[0]).strip()) lot = geodata.lot(lot_identifier) data["lots"].append({ "name": html.unescape(title_elements[0]), "address": lot.address, "id": html.unescape(lot.id), "state": "open", "free": summary[1], "total": lot.total, "coords": lot.coords, "forecast": False, "lot_type": title_elements[2] }) return data def parse_summary(summary): """Parse a string from the format 'Anzahl freie Parkpl&auml;tze: 179' into both its params""" summary = summary.split(":") summary[0] = summary[0].strip() if "?" in summary[0]: summary[0] = "nodata" try: summary[1] = int(summary[1]) except ValueError: summary[1] = 0 return summary def parse_title(title): """ Parse a string from the format 'Parkhaus Bad. Bahnhof' """ types = ["Parkhaus", "Parkplatz"] name = title address = '' type = "" if name.split(" ")[0] in types: type = name.split(" ")[0] name = " ".join(name.split(" ")[1:]) return name, address, type
""" molconfviewer - Visualize molecule conformations in Jupyter """ __version__ = "0.1.0" import ipywidgets import py3Dmol from ipywidgets import interact, fixed from rdkit import Chem from rdkit.Chem.rdchem import Mol from typing import Tuple class MolConfViewer(): """Class to generate views of molecule conformations :param widget_size: canvas size :type widget_size: tuple(int, int) :param style: type of drawing molecule, see 3dmol.js :type style: str in ['line', 'stick', 'sphere', 'cartoon'] :param draw_surface: display SAS :type draw_surface: bool :param opacity: opacity of surface, ranging from 0 to 1 :type opacity: float """ def __init__(self, widget_size: Tuple[int, int] = (300, 300), style: str = "stick", draw_surface: bool = False, opacity: float = 0.5): """Setup the viewer """ self.widget_size = widget_size assert style in ('line', 'stick', 'sphere', 'cartoon') self.style = style self.draw_surface = draw_surface self.opacity = opacity def view(self, mol: Mol) : """View a RDKit molecule in 3D, with a slider to explore conformations. Largely inspired from https://birdlet.github.io/2019/10/02/py3dmol_example/ :param mol: molecule to show conformers for :type mol: Mol :return: Nothing, prints a jupyter widget to show the molecule """ max_conf_id = mol.GetNumConformers() - 1 conf_id_slider = ipywidgets.IntSlider(min=0, max=max_conf_id, step=1) interact(self.get_viewer, mol=fixed(mol), conf_id=conf_id_slider) def get_viewer(self, mol: Mol, conf_id: int = -1) -> py3Dmol.view: """Draw a given conformation for a molecule in 3D using 3Dmol.js :param mol: molecule to show conformers for :type mol: Mol :param conf_id: id of the RDKit Conformer in the Mol to visualize :type conf_id: int :return: molecule viewer for given conf_id :rtype: py3Dmol.view """ mblock = Chem.MolToMolBlock(mol, confId=conf_id) viewer = py3Dmol.view(width=self.widget_size[0], height=self.widget_size[1]) viewer.addModel(mblock, 'mol') viewer.setStyle({self.style:{}}) if self.draw_surface: viewer.addSurface(py3Dmol.SAS, {'opacity': self.opacity}) viewer.zoomTo() return viewer
#!/usr/bin/python ################### # Library Imports # ################### from Oedipus.utils.data import * from Oedipus.utils.misc import * from Oedipus.utils.graphics import * from sklearn import metrics from sklearn.feature_selection import SelectKBest from sklearn.decomposition import PCA from sklearn.cross_validation import KFold from sklearn import tree from sklearn.naive_bayes import MultinomialNB # Multinomial Naive Bayes import numpy from numpy.random import randn # For tree visualization from sklearn.externals.six import StringIO import pydot import sys, os ##################### # Utility Functions # ##################### def numOfMismatches(s1, s2): """ Returns number of character mismatches in two strings """ s1Letters = {k: s1.count(k) for k in s1} s2Letters = {k: s2.count(k) for k in s2} # Compare matches s = {} for k2 in s2Letters: if k2 in s1Letters.keys(): s[k2] = abs(s1Letters[k2] - s2Letters[k2]) else: s[k2] = s2Letters[k2] # Sum up remaining matches mismatches = sum(s.values()) return mismatches def findTrend(trend, trendList): """ Finds a specific trend tuple within a list of tuples """ # Assuming the lack of duplicates for tIndex in range(len(trendList)): if len(trendList[tIndex]) == 2: if trendList[tIndex][0] == trend: return tIndex, trendList[tIndex] return -1, () def mergeTrends(oldTrends, newTrends): """ Merges two lists of trend tuples, updating the count on-the-fly """ tempTrends = [] + oldTrends for tIndex in range(len(newTrends)): trend = newTrends[tIndex] oldTrendIndex, oldTrend = findTrend(trend[0], tempTrends) if oldTrendIndex != -1 and len(oldTrend) > 0: nTrend = (oldTrend[0], oldTrend[1]+trend[1]) tempTrends.pop(oldTrendIndex) tempTrends.append(nTrend) else: tempTrends.append(trend) return tempTrends def cmpTuple(x,y): """ Compares two tuples to the end of sorting a list of tuples """ if x[1] > y[1]: return -1 elif x[1] < y[1]: return 1 else: return 0 ################## # Main functions # ################## def classifyNaiveBayes(Xtr, ytr, Xte, yte, reduceDim="none", targetDim=0): """ Classified data using Naive Bayes """ try: accuracyRate, timing, probabilities = 0.0, 0.0, [] # Reduce dimensionality if requested Xtr = reduceDimensionality(Xtr, ytr, reduceDim, targetDim) if reduceDim != "none" else Xtr Xte = reduceDimensionality(Xte, yte, reduceDim, targetDim) if reduceDim != "none" else Xte # Make sure values are positive because MultinomialNB doesn't take negative features Xtr = flipSign(Xtr, "+") Xte = flipSign(Xte, "+") # Perform classification nbClassifier = MultinomialNB() prettyPrint("Training the Naive Bayes algorithm", "debug") startTime = time.time() nbClassifier.fit(numpy.array(Xtr), numpy.array(ytr)) # Now test the trained algorithm prettyPrint("Submitting the test samples", "debug") predicted = nbClassifier.predict(Xte) endTime = time.time() # Compare the predicted and ground truth accuracyRate = round(metrics.accuracy_score(predicted, yte), 2) probabilities = nbClassifier.predict_proba(Xte) # Finally, calculate the time taken to train and classify timing = endTime-startTime except Exception as e: prettyPrint("Error encountered in \"classifyNaiveBayes\": %s" % e, "error") return accuracyRate, timing, probabilities, predicted def classifyNaiveBayesKFold(X, y, kFold=2, reduceDim="none", targetDim=0): """ Classifies data using Naive Bayes and K-Fold cross validation """ try: groundTruthLabels, predictedLabels = [], [] accuracyRates = [] # Meant to hold the accuracy rates # Split data into training and test datasets trainingDataset, testDataset = [], [] trainingLabels, testLabels = [], [] accuracyRates = [] probabilities = [] timings = [] # Reduce dimensionality if requested if reduceDim != "none": X_new = reduceDimensionality(X, y, reduceDim, targetDim) else: X_new = X # Now carry on with classification kFoldValidator = KFold(n=len(X_new), n_folds=kFold, shuffle=False) # Make sure values are positive because MultinomialNB doesn't take negative features X_new = flipSign(X_new, "+") for trainingIndices, testIndices in kFoldValidator: # Prepare the training and testing datasets for trIndex in trainingIndices: trainingDataset.append(X_new[trIndex]) trainingLabels.append(y[trIndex]) for teIndex in testIndices: testDataset.append(X_new[teIndex]) testLabels.append(y[teIndex]) # Perform classification startTime = time.time() nbClassifier = MultinomialNB() prettyPrint("Training the Naive Bayes algorithm", "debug") nbClassifier.fit(numpy.array(trainingDataset), numpy.array(trainingLabels)) prettyPrint("Submitting test samples", "debug") predicted = nbClassifier.predict(testDataset) endTime = time.time() # Add that to the groundTruthLabels and predictedLabels matrices groundTruthLabels.append(testLabels) predictedLabels.append(predicted) # Compare the predicted and ground truth and appent to list accuracyRates.append(round(metrics.accuracy_score(predicted, testLabels), 2)) # Also append the probability estimates probs = nbClassifier.predict_proba(testDataset) probabilities.append(probs) timings.append(endTime-startTime) # Keep track of performance trainingDataset, trainingLabels = [], [] testDataset, testLabels = [], [] except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() prettyPrint("Error encountered in \"classifyNaiveBayesKFold\" +%s: %s" % (exc_tb.tb_lineno, e), "error") return [], [], [] return accuracyRates, probabilities, timings, groundTruthLabels, predictedLabels def classifyTree(Xtr, ytr, Xte, yte, splitCriterion="gini", maxDepth=0, visualizeTree=False): """ Classifies data using CART """ try: accuracyRate, probabilities, timing = 0.0, [], 0.0 # Perform classification cartClassifier = tree.DecisionTreeClassifier(criterion=splitCriterion, max_depth=maxDepth) startTime = time.time() prettyPrint("Training a CART tree for classification using \"%s\" and maximum depth of %s" % (splitCriterion, maxDepth), "debug") cartClassifier.fit(numpy.array(Xtr), numpy.array(ytr)) prettyPrint("Submitting the test samples", "debug") predicted = cartClassifier.predict(Xte) endTime = time.time() # Compare the predicted and ground truth and append result to list accuracyRate = round(metrics.accuracy_score(predicted, yte), 2) # Also append the probability estimates probs = cartClassifier.predict_proba(Xte) probabilities.append(probs) timing = endTime-startTime # Keep track of performance if visualizeTree: # Visualize the tree dot_data = StringIO() tree.export_graphviz(cartClassifier, out_file=dot_data) graph = pydot.graph_from_dot_data(dot_data.getvalue()) prettyPrint("Saving learned CART to \"tritonTree_%s.pdf\"" % getTimestamp(), "debug") graph.write_pdf("tree_%s.pdf" % getTimestamp()) except Exception as e: prettyPrint("Error encountered in \"classifyTree\": %s" % e, "error") return accuracyRate, timing, probabilities, predicted def classifyTreeKFold(X, y, kFold=2, splitCriterion="gini", maxDepth=0, visualizeTree=False): """ Classifies data using CART and K-Fold cross validation """ try: groundTruthLabels, predictedLabels = [], [] accuracyRates = [] # Meant to hold the accuracy rates # Split data into training and test datasets trainingDataset, testDataset = [], [] trainingLabels, testLabels = [], [] accuracyRates = [] probabilities = [] timings = [] kFoldValidator = KFold(n=len(X), n_folds=kFold, shuffle=False) currentFold = 1 for trainingIndices, testIndices in kFoldValidator: # Prepare the training and testing datasets for trIndex in trainingIndices: trainingDataset.append(X[trIndex]) trainingLabels.append(y[trIndex]) for teIndex in testIndices: testDataset.append(X[teIndex]) testLabels.append(y[teIndex]) # Perform classification startTime = time.time() cartClassifier = tree.DecisionTreeClassifier(criterion=splitCriterion, max_depth=maxDepth) prettyPrint("Training a CART tree for classification using \"%s\" and maximum depth of %s" % (splitCriterion, maxDepth), "debug") cartClassifier.fit(numpy.array(trainingDataset), numpy.array(trainingLabels)) prettyPrint("Submitting the test samples", "debug") predicted = cartClassifier.predict(testDataset) endTime = time.time() # Add that to the groundTruthLabels and predictedLabels matrices groundTruthLabels.append(testLabels) predictedLabels.append(predicted) # Compare the predicted and ground truth and append result to list accuracyRates.append(round(metrics.accuracy_score(predicted, testLabels), 2)) # Also append the probability estimates probs = cartClassifier.predict_proba(testDataset) probabilities.append(probs) timings.append(endTime-startTime) # Keep track of performance if visualizeTree: # Visualize the tree dot_data = StringIO() tree.export_graphviz(cartClassifier, out_file=dot_data) graph = pydot.graph_from_dot_data(dot_data.getvalue()) prettyPrint("Saving learned CART to \"tritonTree_%s.pdf\"" % currentFold, "debug") graph.write_pdf("tritonTree_%s.pdf" % currentFold) trainingDataset, trainingLabels = [], [] testDataset, testLabels = [], [] currentFold += 1 except Exception as e: prettyPrint("Error encountered in \"classifyTreeKFold\": %s" % e, "error") return [], [], [] return accuracyRates, probabilities, timings, groundTruthLabels, predictedLabels def reduceDimensionality(X, y, method="selectkbest", targetDim=10): """ Reduces the dimensionality of [X] to [targetDim] """ try: # Check for the required methodology first if method.lower() == "selectkbest": prettyPrint("Selecting %s best features from dataset" % targetDim, "debug") kBestSelector = SelectKBest(k=targetDim) X_new = kBestSelector.fit_transform(X, y).tolist() elif method.lower() == "pca": prettyPrint("Extracting %s features from dataset using PCA" % targetDim, "debug") pcaExtractor = PCA(n_components=targetDim) # Make sure vectors in X are positive X_new = pcaExtractor.fit_transform(X, y).tolist() else: prettyPrint("Unknown dimensionality reduction method \"%s\"" % method, "warning") return X except Exception as e: prettyPrint("Error encountered in \"reduceDimensionality\": %s" % e, "error") return X # Return the reduced dataset return X_new def gatherStatsFromLog(fileName, expType, accuracyMode): """ Parses a classification dump file to calculate accuracies and confusion matrix """ if not os.path.exists(fileName): prettyPrint("File \"%s\" does not exist. Exiting." % fileName, "warning") return False fileContent = open(fileName).read() # Group results by tree depth allLines = fileContent.split('\n') allDepths = {} currentDepth, currentTrends = "", [] skip = True #TODO contributes to focusing on a certain depth/dimensionality print "[*] Parsing content..." lineCount = 0 for line in allLines: if line.lower().find("tree depth:") != -1 or line.lower().find("target dimensionality:") != -1: # TODO: Focusing on the tree depth of 8 and the target dimensionality of 64 if line.lower().find("tree depth: 8") == -1 and line.lower().find("target dimensionality: 64") == -1: prettyPrint("Skipping %s" % line, "debug") # Make sure we merge the 10th iteration if len(currentTrends) > 0: if currentDepth in allDepths.keys(): prettyPrint("Merging trends at %s" % line, "debug") allDepths[currentDepth] = mergeTrends(allDepths[currentDepth], currentTrends) currentTrends = [] skip = True continue skip = False currentDepth = line.split(": ")[1] prettyPrint("Processing %s:" % line, "debug") if len(currentTrends) > 0: # Store previous depth and reset it if currentDepth in allDepths.keys(): prettyPrint("Merging trends at %s" % line, "debug") allDepths[currentDepth] = mergeTrends(allDepths[currentDepth], currentTrends) else: prettyPrint("Adding new trend's list at %s" % line, "debug") allDepths[currentDepth] = currentTrends currentTrends = [] elif line.find("Class") != -1 and not skip: #lineCount += 1 # Extract class and predicted if expType == "exp1": currentClass = line.split(',')[0].split(':')[1] currentPredicted = line.split(',')[1].split(':')[1] elif expType == "exp2": currentClass = line.split()[2][:-1] currentPredicted = line.split()[-1] else: prettyPrint("Unsupported experiment type \"%s\". Exiting" % expType, "debug") trend = "%s (as) %s" % (currentClass, currentPredicted) # Check whether trend exists in current trends trendIndex, oldTrend = findTrend(trend, currentTrends) if trendIndex != -1 and len(oldTrend) > 0: # If yes, update count newTrend = (trend, currentTrends[trendIndex][1]+1) #print newTrend currentTrends.pop(trendIndex) # Add to currentTrends currentTrends.append(newTrend) else: # else, add and set to zero newTrend = (trend, 1) # Add to currentTrends currentTrends.append(newTrend) # Now sort the trends for all Depths prettyPrint("Sorting trends according to occurrence.") for tDepth in allDepths: allDepths[tDepth].sort(cmp=cmpTuple) # Display ordered trends keys = [int(x) for x in allDepths.keys()] keys.sort() allClasses, trends = [], [] for tDepth in keys: print len(allDepths[str(tDepth)]) print "================================" print "[*] Dimensionality / Depth: %s" % tDepth print "================================" total = 0 for trend in allDepths[str(tDepth)]: trends.append(trend) print "[*] %s encountered %s time(s)" % (trend[0], trend[1]) total += trend[1] # Parse trend name class1 = trend[0].split(" (as) ")[0] class2 = trend[0].split(" (as) ")[1] if not class1 in allClasses: allClasses.append(class1) if not class2 in allClasses: allClasses.append(class2) # Sort classes alphabetically allClasses.sort() encodedClasses = {i+1: allClasses[i] for i in range(len(allClasses))} print "----------------------------------" print "[*] Total trend occurrences: %s" % total print "----------------------------------" # 2- Build a matrix of zeros confusionMatrix = numpy.zeros((len(allClasses), len(allClasses))) # 3- iterate over trends and extraxt classes for trend in trends: class1, class2 = trend[0].split(" (as) ")[0], trend[0].split(" (as) ")[1] count = trend[1] # 4- Populate corresponding cells #print allClasses.index(class1), allClasses.index(class2), count confusionMatrix[allClasses.index(class1)][allClasses.index(class2)] += count # 5-Save to file newFileName = fileName.replace("classificationlog", "confusionmatrix").replace(".txt", ".csv") numpy.savetxt(newFileName, confusionMatrix, delimiter=',', fmt='%i') # 6- Save class indices to file #f = open(fileName.replace("classificationlog", "confusionMatrix"), "a") correct = int(confusionMatrix.trace()) # Update the count of correct instances according to the accuracy mode for trend in trends: original, classified = trend[0].split(" (as) ")[0], trend[0].split(" (as) ")[1] if accuracyMode == "viceversa": # Count (A+B) classified as (B+A) as correct. if original != classified and numOfMismatches(original, classified) <= 1: correct += trend[1] prettyPrint("Vice-versa trend %s found. Updating correctly-classified trends." % trend[0], "debug") elif accuracyMode == "jit": # Count (X+Jit) classified as (Jit) as correct ==> Jit is dominant if original != classified and original.find("Ji") != -1 and classified.find("Ji") != -1: correct += trend[1] prettyPrint("Jit trend %s found. Updating correctly-classified trends." % trend[0], "debug") elif accuracyMode == "both": # Implement both accuracy modes if original != classified and original.find("Ji") != -1 and classified.find("Ji") != -1: correct += trend[1] prettyPrint("Jit trend %s found. Updating correctly-classified trends." % trend[0], "debug") elif original != classified and numOfMismatches(original, classified) <= 1: correct += trend[1] prettyPrint("Vice-versa trend %s found. Updating correctly-classified trends." % trend[0], "debug") incorrect = int(total - correct) accuracy = round((float(correct)/float(total))*100.0, 2) #f.write("\n Correctly classified: %s, incorrectly classified: %s, Classification accuracy: %s%%, Total trends: %s\n" % (correct, incorrect, accuracy, total)) #f.write("\n %s" % str(encodedClasses)) #f.close() #print lineCount print "----------------------------------" print "[*] Accuracy mode: %s\n[*] Correctly classified: %s\n[*] Incorrectly classified: %s\n[*] Classification accuracy: %s%%\n[*] Total trends: %s" % (accuracyMode, correct, incorrect, accuracy, total) print "----------------------------------" allKeys = encodedClasses.keys() allKeys.sort() for k in allKeys: print "[%s] => \"%s\" => %s" % (k, chr(k+96).upper(), encodedClasses[k])
class Swimmers: def getSwimTimes(self, distances, speeds, current): def time(d, s): if d == 0: return 0 if s <= current: return -1 d = float(d) return int(d / (s + current) + d / (s - current)) return map(time, distances, speeds)
#%% # import packages import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import datetime from finrl.apps import config from finrl.marketdata.yahoodownloader import YahooDownloader from finrl.preprocessing.preprocessors import FeatureEngineer from finrl.preprocessing.data import data_split from finrl.env.environment import EnvSetup from finrl.env.EnvMultipleStock_train import StockEnvTrain from finrl.env.EnvMultipleStock_trade import StockEnvTrade from finrl.model.models import DRLAgent from finrl.trade.backtest import BackTestStats, BaselineStats, BackTestPlot, backtest_strat, baseline_strat from finrl.trade.backtest import backtest_strat, baseline_strat import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) #%% # Download and save the data in a pandas DataFrame: df = YahooDownloader(start_date = '2008-01-01', end_date = '2020-12-01', ticker_list = config.DOW_30_TICKER).fetch_data() #%% # Perform Feature Engineering: df = FeatureEngineer(df.copy(), use_technical_indicator=True, use_turbulence=False).preprocess_data() # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.head() #%% stock_dimension = len(train.tic.unique()) state_space = stock_dimension # Initialize env: env_setup = EnvSetup(stock_dim = stock_dimension, state_space = state_space, initial_amount = 1000000, tech_indicator_list = config.TECHNICAL_INDICATORS_LIST) env_train = env_setup.create_env_training(data = train, env_class = StockPortfolioEnv)
import unittest from libpysal.examples import load_example import geopandas as gpd import numpy as np from segregation.aspatial import Dissim from segregation.decomposition import DecomposeSegregation class Decomposition_Tester(unittest.TestCase): def test_Decomposition(self): s_map = gpd.read_file(load_example("Sacramento1").get_path("sacramentot2.shp")) index1 = Dissim(s_map, 'HISP_', 'TOT_POP') index2 = Dissim(s_map, 'BLACK_', 'TOT_POP') res = DecomposeSegregation(index1, index2, counterfactual_approach = "composition") np.testing.assert_almost_equal(res.c_a, -0.16138819842911295) np.testing.assert_almost_equal(res.c_s, -0.005104643275796905) res.plot(plot_type = 'cdfs') res.plot(plot_type = 'maps') res = DecomposeSegregation(index1, index2, counterfactual_approach = "share") np.testing.assert_almost_equal(res.c_a, -0.1543828579279878) np.testing.assert_almost_equal(res.c_s, -0.012109983776922045) res.plot(plot_type = 'cdfs') res.plot(plot_type = 'maps') res = DecomposeSegregation(index1, index2, counterfactual_approach = "dual_composition") np.testing.assert_almost_equal(res.c_a, -0.16159526946235048) np.testing.assert_almost_equal(res.c_s, -0.004897572242559378) res.plot(plot_type = 'cdfs') res.plot(plot_type = 'maps') if __name__ == '__main__': unittest.main()
#!/usr/bin/python3 from typing import List import re class GanetiNode: name = "" shortname = "" total_memory = 0 used_memory = 0 free_memory = 0 total_disk = 0 free_disk = 0 total_cpus = 0 status = "" group_uuid = "" spindles = 0 tags: List[str] = [] exclusive_storage = "" free_spindles = 0 node_cpus = 0 cpu_speed = "" def __init__(self, name, total_memory, used_memory, free_memory, total_disk, free_disk, total_cpus, status, group_uuid, spindles, tags, exclusive_storage, free_spindles, node_cpus, cpu_speed): self.name = name self.shortname = re.sub(r'\..*', '', name) self.total_memory = total_memory self.used_memory = used_memory self.free_memory = free_memory self.total_disk = total_disk self.free_disk = free_disk self.total_cpus = total_cpus self.status = status self.group_uuid = group_uuid self.spindles = spindles self.tags = tags self.exclusive_storage = exclusive_storage self.free_spindles = free_spindles self.node_cpus = node_cpus self.cpu_speed = cpu_speed def __eq__(self, other): return self.name == other.name
from __future__ import print_function import argparse import codecs import logging import time import numpy import pandas as pd from pandas.io.json import json_normalize import os import json def read_data(folderpath): start = time.time() logging.debug("reading data from %s", folderpath) # creating empty df tracks_df = pd.DataFrame(columns=['pid','track_uri']) path_to_json = folderpath json_files = [pos_json for pos_json in os.listdir(path_to_json) if pos_json.endswith('.json')] json_files.sort() # we need both the json and an index number so use enumerate() for index, js in enumerate(json_files): s = time.time() with open(os.path.join(path_to_json, js)) as json_file: j = json.load(json_file) # extracting tracks from playlists in each slice tracks = json_normalize(j['playlists'], record_path='tracks', meta=['pid']) # append tracks to tracks_df tracks = tracks[['pid', 'track_uri']] tracks_df = tracks_df.append(tracks) #print('reading slice #'+ str(index) + ' in : '+ str(s-time.time())) logging.debug("read data file in %s", time.time() - start) start = time.time() logging.debug("writing data to file") tracks_df.to_csv('../my_data/mpd.tsv', sep='\t', index=False) logging.debug("wrote data file in %s", time.time() - start) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Reads the MPD, trims and saves it to a .tsv file", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--input', type=str, dest='folderpath', help='specify path to folder with spotify-mpd json slices', required=True) args = parser.parse_args() logging.basicConfig(level=logging.DEBUG) read_data(args.folderpath)
import rospy from visualization_msgs.msg import Marker from . import make_markers class MarkerHelper(object): def __init__(self, topic, frame_id='/world'): self.pub = rospy.Publisher(topic, Marker) self.frame_id = frame_id def publish(self, marker): self.pub.publish(marker.to_msg(frame_id=self.frame_id)) def wireframe_box(*args, **kwargs): marker = make_markers.WireframeBoxMarker(*args, **kwargs) self.publish(marker)
import importlib import logging logger = logging.getLogger(__name__) class CI: def __init__(self, module): self.module = module def __enter__(self): try: importlib.import_module(self.module) self.module_available = True except ModuleNotFoundError: self.module_available = False def __exit__(self, type, value, traceback): if type == ModuleNotFoundError and not self.module_available: logger.debug( "Module '{}' is not available, discarding import error...".format( self.module ) ) return True
#! python3 """Prints a grid from a list of lists of characters.""" test_grid = [['.', '.', '.', '.', '.', '.'], ['.', 'O', 'O', '.', '.', '.'], ['O', 'O', 'O', 'O', '.', '.'], ['O', 'O', 'O', 'O', 'O', '.'], ['.', 'O', 'O', 'O', 'O', 'O'], ['O', 'O', 'O', 'O', 'O', '.'], ['O', 'O', 'O', 'O', '.', '.'], ['.', 'O', 'O', '.', '.', '.'], ['.', '.', '.', '.', '.', '.']] def picture_grid(grid): """Takes a list of lists containing characters and prints a grid. Args: grid: The list of lists containing the characters. """ for column in range(len(grid[0])): for row in range(len(grid)): print(grid[row][column], end = "") print("") picture_grid(test_grid)
# Hash Table; Trie # In English, we have a concept called root, which can be followed by some other words to form another longer word - let's call this word successor. For example, the root an, followed by other, which can form another word another. # # Now, given a dictionary consisting of many roots and a sentence. You need to replace all the successor in the sentence with the root forming it. If a successor has many roots can form it, replace it with the root with the shortest length. # # You need to output the sentence after the replacement. # # Example 1: # Input: dict = ["cat", "bat", "rat"] # sentence = "the cattle was rattled by the battery" # Output: "the cat was rat by the bat" # Note: # The input will only have lower-case letters. # 1 <= dict words number <= 1000 # 1 <= sentence words number <= 1000 # 1 <= root length <= 100 # 1 <= sentence words length <= 1000 class Solution: def replaceWords(self, dict, sentence): """ :type dict: List[str] :type sentence: str :rtype: str """ dict = set(dict) sentenceList = sentence.split() for idx, val in enumerate(sentenceList): for i in range(1, len(val)): if val[:i] in dict: sentenceList[idx] = val[:i] break return " ".join(sentenceList)
import io import re from setuptools import setup from setuptools import find_packages DESCRIPTION = "Python client for the https://api.radio-browser.info" def get_version(): content = open("pyradios/__init__.py").read() mo = re.search(r"__version__\s+=\s+'([^']+)'", content) if not mo: raise RuntimeError( 'Unable to find version string in pyradios/__init__.py' ) return mo[1] def readme(): with io.open("README.md", "r", encoding="utf-8") as f: return f.read() def required(sfx=''): with open(f"requirements{sfx}.txt") as f: return f.read().splitlines() setup( name="pyradios", version=get_version(), description=DESCRIPTION, long_description=readme(), long_description_content_type="text/markdown", keywords="pyradios wrapper radios api", author="André P. Santos", author_email="andreztz@gmail.com", url="https://github.com/andreztz/pyradios", license="MIT", packages=find_packages(), install_requires=required(), extras_require={'dev': required('-dev')}, classifiers=[ "Development Status :: 1 - Planning", "Environment :: Console", "Programming Language :: Python :: 3", "Operating System :: OS Independent", "Intended Audience :: Developers", ], python_requires=">=3.6", project_urls={ "Source": "https://github.com/andreztz/pyradios/", "Upstream": "https://api.radio-browser.info/", }, )
"""This module calculates max ramp rates for each plant component in the EPA CEMS dataset. Outputs: <user_arg>.csv: component-level aggregates. See results/README.md for field descriptions. <user_arg>_crosswalk_with_IDs.csv: inner join of EPA crosswalk and CEMS id columns. This can be used to inspect the EPA/EIA units that make up a component. You can also compare to the original crosswalk or original CEMS to see which units failed to join and were thus excluded from this analysis.""" import argparse from pathlib import Path import sys from typing import Optional, Sequence import pandas as pd from tqdm import tqdm # from pudl.constants import us_states from ramprate.load_dataset import load_epacems, load_epa_crosswalk, ALL_STATES from ramprate.build_features import process_subset, _remove_irrelevant # territories are not in EPA CEMS. District of Columbia is. TERRITORIES = {"MP", "PR", "AS", "GU", "NA", "VI"} def process( out_path: str, chunk_size: int, start_year: int, end_year: int, state_subset: Optional[Sequence[str]] = None, ) -> None: """calculate max ramp rates and other metrics per connected subcomponent in EPA CEMS""" out_path = Path(out_path) if not out_path.parent.exists(): raise ValueError(f"Parent directory does not exist: {out_path.parent.absolute()}") if state_subset is None: # state_subset = us_states.keys() # all states state_subset = ALL_STATES # exlude territories, which are not in EPA CEMS states = [state for state in state_subset if state not in TERRITORIES] # minimum subset of columns to load cems_cols = [ "plant_id_eia", "unitid", "operating_datetime_utc", "gross_load_mw", "unit_id_epa", ] years = list(range(start_year, end_year + 1)) crosswalk = load_epa_crosswalk() crosswalk = _remove_irrelevant(crosswalk) # remove unmatched or non-exporting # process in chunks due to memory constraints. # If you use an instance with 10+ GB memory per year of data analyzed, this won't be necessary. aggregates = [] modified_crosswalk = [] offset = 0 chunks = [states[i : i + chunk_size] for i in range(0, len(states), chunk_size)] for subset_states in tqdm(chunks): cems = load_epacems(states=subset_states, years=years, columns=cems_cols, engine="pandas") cems.set_index( ["unit_id_epa", "operating_datetime_utc"], drop=False, inplace=True, ) cems.sort_index(inplace=True) outputs = process_subset(cems, crosswalk, component_id_offset=offset) agg = outputs["component_aggs"] # convert iterable types to something more amenable to csv agg["EIA_UNIT_TYPE"] = agg["EIA_UNIT_TYPE"].transform(lambda x: str(tuple(x))) aggregates.append(agg) modified_crosswalk.append(outputs["key_map"]) offset += agg.index.max() + 1 # prevent ID overlap when using chunking aggregates = pd.concat(aggregates, axis=0) aggregates.to_csv(out_path) modified_crosswalk = pd.concat(modified_crosswalk, axis=0) modified_crosswalk.to_csv(out_path.parent / f"{out_path.stem}_crosswalk_with_IDs.csv") return def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("out_path", type=str, help="""Output path of csv file""") parser.add_argument( "--chunk_size", type=int, default=5, help="""processing is chunked by US states. This arg selects the number of states per chunk. Default is 5. If your instance has 10+ GB memory per year of data analyzed, chunking is unnecessary so set to 55""", ) parser.add_argument( "--start_year", type=int, default=2015, help="""first year of CEMS data to include in analysis. Inclusive. Default is 2015.""", ) parser.add_argument( "--end_year", type=int, default=2019, help="""last year of CEMS data to include in analysis. Inclusive. Default is 2019.""", ) parser.add_argument( "--state_subset", type=str, default=None, nargs="*", help="""optional list of state abbreviations to include in the analysis. Default is all states""", ) args = parser.parse_args(sys.argv[1:]) sys.exit( process( args.out_path, chunk_size=args.chunk_size, start_year=args.start_year, end_year=args.end_year, state_subset=args.state_subset, ) )
""" Event store. """ import psycopg2 from microcosm_postgres.models import Model from microcosm_postgres.store import Store from sqlalchemy.dialects.postgresql import insert from sqlalchemy.exc import OperationalError from microcosm_eventsource.errors import ( ConcurrentStateConflictError, ContainerLockNotAvailableRetry, ) class EventStore(Store): """ Event persistence operations. """ def retrieve_most_recent(self, **kwargs): """ Retrieve the most recent by container id and event type. """ container_id = kwargs.pop(self.model_class.container_id_name) return self._retrieve_most_recent( self.model_class.container_id == container_id, ) def retrieve_most_recent_by_event_type(self, event_type, **kwargs): """ Retrieve the most recent by container id and event type. """ container_id = kwargs.pop(self.model_class.container_id_name) return self._retrieve_most_recent( self.model_class.container_id == container_id, self.model_class.event_type == event_type, ) def retrieve_most_recent_with_update_lock(self, **kwargs): """ Retrieve the most recent by container id, while taking a ON UPDATE lock with NOWAIT OPTION. If another instance of event is being processed simultaneously, it would raise LockNotAvailable error. This method it to serialize event sourcing, if they are processing the same container instance. """ container_id = kwargs.pop(self.model_class.container_id_name) try: return self._retrieve_most_recent( self.model_class.container_id == container_id, for_update=True ) except OperationalError as exc: if isinstance(exc.orig, psycopg2.errors.LockNotAvailable): raise ContainerLockNotAvailableRetry() raise def upsert_index_elements(self): """ Can be overriden by implementations of event source to upsert based on other index elements Requires a unique constraint to exist on the index elements """ return ["parent_id"] def upsert_on_index_elements(self, instance): """ Upsert an event by index elements. Uses ON CONFLICT ... DO NOTHING to handle uniqueness constraint violations without invalidating the current transactions completely. Depends on an unique constraint on index elements to find the resulting entry. """ with self.flushing(): insert_statement = insert(self.model_class).values( instance._members(), ) upsert_statement = insert_statement.on_conflict_do_nothing( index_elements=self.upsert_index_elements(), ) for member in instance.__dict__.values(): if isinstance(member, Model): self.session.add(member) self.session.execute(upsert_statement) most_recent = self._retrieve_most_recent( *[ getattr(self.model_class, elem) == getattr(instance, elem) for elem in self.upsert_index_elements() ] ) if not most_recent.is_similar_to(instance): raise ConcurrentStateConflictError() return most_recent def _filter(self, query, event_type=None, clock=None, min_clock=None, max_clock=None, parent_id=None, version=None, **kwargs): """ Filter events by standard criteria. """ container_id = kwargs.pop(self.model_class.container_id_name, None) if container_id is not None: query = query.filter(self.model_class.container_id == container_id) if event_type is not None: query = query.filter(self.model_class.event_type == event_type) if clock is not None: query = query.filter(self.model_class.clock == clock) if min_clock is not None: query = query.filter(self.model_class.clock >= min_clock) if max_clock is not None: query = query.filter(self.model_class.clock <= max_clock) if parent_id is not None: query = query.filter(self.model_class.parent_id == parent_id) if version is not None: query = query.filter(self.model_class.version == version) return super(EventStore, self)._filter(query, **kwargs) def _order_by(self, query, sort_by_clock=False, sort_clock_in_ascending_order=False, **kwargs): """ Order events by logical clock. """ if sort_by_clock: if sort_clock_in_ascending_order: return query.order_by( self.model_class.clock.asc(), ) else: return query.order_by( self.model_class.clock.desc(), ) return query.order_by( self.model_class.container_id.desc(), self.model_class.clock.desc(), ) def _retrieve_most_recent(self, *criterion, for_update=False): """ Retrieve the most recent event by some criterion. Note that the default `_order_by` enforces clock ordering. """ query = self._order_by(self._query( *criterion )) if for_update: return query.with_for_update(nowait=True).first() else: return query.first()
# image process import cv2 import os import numpy as np IMGDIR="D:/apidoc/python/OpenCV-3.2.0" img = cv2.imread(IMGDIR + os.sep + "roi.jpg", ) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) lower_blue = np.array([110,50,50]) upper_blue = np.array([130,255,255]) mask = cv2.inRange(hsv, lowerb=lower_blue, upperb=upper_blue) for line in mask: print(line) res = cv2.bitwise_and(img, img, mask=mask) cv2.imshow('orig', img) cv2.imshow('mask', mask) cv2.imshow('res', res) k = cv2.waitKey(0) while k != ord('q'): k = cv2.waitKey(0) & 0xFF cv2.destroyAllWindows()
''' Author: Ful Chou Date: 2021-01-07 11:38:03 LastEditors: Ful Chou LastEditTime: 2021-01-07 11:38:33 FilePath: /leetcode/flatten-binary-tree-to-linked-list.py Description: What this document does 链接:https://leetcode-cn.com/problems/flatten-binary-tree-to-linked-list/ ''' class Solution: def flatten(self, root: TreeNode) -> None: """ Do not return anything, modify root in-place instead. 写递归的思路: 不要进入递归函数里面去想,要想好当前函数是做什么事情,然后假定 递归函数 已经按照你当前定义的函数做好了, 写好当前定义就好了,递归会自己执行好 """ if root == None: return if root.left: # 以为少一层堆栈可以节约内容,结果看没太大的帮助 self.flatten(root.left) if root.right: self.flatten(root.right) child_right = root.right root.right = root.left root.left = None # 原来的左子树 要记得清零 p = root while p.right: p = p.right p.right = child_right