content
stringlengths
5
1.05M
from django.shortcuts import render from django.views.generic import View from .models import Story, Gallery, Comment from django.contrib.auth import authenticate, login from django.http import HttpResponseRedirect, HttpResponse from django.db.models import Q from utils.email_send import send_register_email from django.contrib.auth.hashers import make_password from django.contrib import auth import os, base64, datetime, json from django.conf import settings from django.views.decorators.csrf import csrf_exempt # Create your views here. class IndexView(View): """ 首页 """ def get(self, request): story_list = Story.objects.all() return render(request, 'index.html', context={'story_list': story_list}) def post(self, request): return render(request, 'index.html') class GalleryView(View): """ 照片墙 """ def get(self, request): gallery_list = Gallery.objects.all() return render(request, 'gallery.html', context={'gallery_list': gallery_list}) def post(self, request): return render(request, 'index.html') class StoryShareView(View): """ 故事分享 """ def get(self, request): return render(request, 'story_share.html') def post(self, request): user = request.user if user.is_authenticated: story = Story() title = request.POST.get('title' , '') content = request.POST.get('content', '') longitude = float(request.POST.get('y', '0')) latitude = float(request.POST.get('x', '0')) story.title = title story.content = content story.longitude = longitude story.latitude = latitude story.user_belong = user story.save() return HttpResponse('{"status": "success", "msg": "分享成功"}', content_type='application/json') return HttpResponse('{"status": "fail", "msg": "尚未登录"}', content_type='application/json') class StoryListView(View): """ 故事列表 """ def get(self, request): story_list = Story.objects.all() return render(request, 'story_list.html', context={'story_list': story_list}) def post(self, request): return render(request, 'story_post.html') class StoryDetailView(View): def get(self, request, story_id): story = Story.objects.get(id = story_id) story.click_num += 1 story.save() hot_list = Story.objects.all().order_by('-click_num')[0:2] comment_list = Comment.objects.filter(story_belong = story) return render(request, 'story_detail.html', context={'story': story, 'hot_list': hot_list, 'comment_list': comment_list}) def post(self, request, story_id): user = request.user if user.is_authenticated: story = Story.objects.get(id=story_id) if story: comment = Comment() comment.content = request.POST.get('message', '') comment.user_belong = request.user comment.story_belong = story comment.save() return HttpResponse('{"status": "success", "msg": "评论成功"}', content_type='application/json') else: return HttpResponse('{"status": "fail", "msg": "未找到所属故事"}', content_type='application/json') else: return HttpResponse('{"status": "fail", "msg": "尚未登录"}', content_type='application/json') class WangEditor_uploadView(View): """ 富文本编辑器图片上传 """ def post(self,request): gallery = Gallery() user = request.user user_name = str(user) files = request.FILES.get('images') # 得到文件对象 file_dir = settings.STATICFILES_DIRS[0] + '/story_image/' if not os.path.exists(file_dir): os.makedirs(file_dir) file_path = file_dir + '%s_' %(user_name) + files.name open(file_path, 'wb+').write(files.read()) # 上传文件 upload_info = {"errno":0, "data":[settings.STATIC_URL + '/story_image/' + '%s_' %(user_name) + files.name]} upload_info = json.dumps(upload_info) #wangeditor返回值json格式比较特殊,需要按照上面配置 gallery.photo_name = '%s_' %(user_name) + files.name gallery.photo_url = 'story_image/' + '%s_' %(user_name) + files.name gallery.user_belong = user gallery.save() return HttpResponse(upload_info, content_type="application/json")
import hashlib try: from urllib.parse import urlencode except ImportError: from urllib import urlencode from django.apps import apps from django.contrib.contenttypes.models import ContentType from django.contrib.sites.shortcuts import get_current_site from django.utils import formats from django.utils.html import escape from django.utils.translation import ugettext as _, activate, get_language from django_comments_tree import get_form from django_comments_tree.models import TreeCommentFlag from django_comments_tree.signals import comment_will_be_posted, comment_was_posted from rest_framework import serializers from django_comments_tree import signed from django_comments_tree.views import comments as views from django_comments_tree.conf import settings from django_comments_tree.models import (TmpTreeComment, TreeComment, LIKEDIT_FLAG, DISLIKEDIT_FLAG) from django_comments_tree.signals import confirmation_received from django_comments_tree.utils import has_app_model_option DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" COMMENT_MAX_LENGTH = getattr(settings, 'COMMENT_MAX_LENGTH', 3000) class SerializerSaveMixin: def on_save(self, **kwargs): resp = { 'code': 200, 'comment': self.instance, } # Signal that the comment is about to be saved responses = comment_will_be_posted.send(sender=self.instance.__class__, comment=self.instance, request=self.request) for (receiver, response) in responses: if response is False: resp['code'] = 403 # Rejected. return resp return resp class APICommentSerializer(SerializerSaveMixin, serializers.ModelSerializer): class Meta: model = TreeComment fields = ['id', 'user', 'user_name', 'user_email', 'user_url', 'comment', 'comment_markup_type', 'submit_date', 'updated_on', 'ip_address', 'is_public', 'is_removed', 'followup', ] def __init__(self, *args, **kwargs): if kwargs.get('context'): self.request = kwargs.get('context').get('request') super().__init__(*args, **kwargs) def to_representation(self, instance): obj = super().to_representation(instance) obj['submit_date'] = instance.submit_date.strftime(DATETIME_FORMAT) return obj def create(self, validated_data): if 'parent' in validated_data: p = validated_data.pop('parent') instance = p.add_child(**validated_data) return instance return super().create(validated_data) def update(self, instance, validated_data): return super().update(instance, validated_data) def save(self, **kwargs): created = kwargs.pop('create', False) result = super().save(**kwargs) # Call after save, or instance won't be set response = self.on_save(**kwargs) if response.get('code') != 200: return response.get('code') comment_was_posted.send(sender=self.instance.__class__, comment=self.instance, request=self.request, created=created) return result class WriteCommentSerializer(serializers.Serializer): content_type = serializers.CharField() object_id = serializers.CharField() timestamp = serializers.CharField() security_hash = serializers.CharField() honeypot = serializers.CharField(allow_blank=True) name = serializers.CharField(allow_blank=True) email = serializers.EmailField(allow_blank=True) url = serializers.URLField(required=False) comment = serializers.CharField(max_length=COMMENT_MAX_LENGTH) followup = serializers.BooleanField(default=False) reply_to = serializers.IntegerField(default=0) def __init__(self, *args, **kwargs): self.request = kwargs['context']['request'] self.form = None super().__init__(*args, **kwargs) def validate_name(self, value): if not len(value): fnl = len(self.request.user.get_full_name()) if not fnl or not self.request.user.is_authenticated: raise serializers.ValidationError("This field is required") else: return self.request.user.get_full_name() or self.request.user.get_username() return value def validate_email(self, value): if not len(value): eml = len(self.request.user.email) if not eml or not self.request.user.is_authenticated: raise serializers.ValidationError("This field is required") else: return self.request.user.email return value def validate(self, data): ctype = data.get("content_type") object_id = data.get("object_id") if ctype is None or object_id is None: return serializers.ValidationError("Missing content_type or " "object_id field.") try: model = apps.get_model(*ctype.split(".", 1)) target = model._default_manager.get(pk=object_id) except TypeError: return serializers.ValidationError("Invalid content_type value: %r" % escape(ctype)) except AttributeError: return serializers.ValidationError("The given content-type %r does " "not resolve to a valid model." % escape(ctype)) except model.ObjectDoesNotExist: return serializers.ValidationError( "No object matching content-type %r and object ID %r exists." % (escape(ctype), escape(object_id))) except (ValueError, serializers.ValidationError) as e: return serializers.ValidationError( "Attempting go get content-type %r and object ID %r exists " "raised %s" % (escape(ctype), escape(object_id), e.__class__.__name__)) self.form = get_form()(target, data=data) # Check security information if self.form.security_errors(): return serializers.ValidationError( "The comment form failed security verification: %s" % escape(str(self.form.security_errors()))) if self.form.errors: return serializers.ValidationError(self.form.errors) return data def save(self): # resp object is a dictionary. The code key indicates the possible # four states the comment can be in: # * Comment created (http 201), # * Confirmation sent by mail (http 204), # * Comment in moderation (http 202), # * Comment rejected (http 403). site = get_current_site(self.request) resp = { 'code': -1, 'comment': self.form.get_comment_object(site_id=site.id) } resp['comment'].ip_address = self.request.META.get("REMOTE_ADDR", None) if self.request.user.is_authenticated: resp['comment'].user = self.request.user # Signal that the comment is about to be saved responses = comment_will_be_posted.send(sender=TmpTreeComment, comment=resp['comment'], request=self.request) for (receiver, response) in responses: if response is False: resp['code'] = 403 # Rejected. return resp # Replicate logic from django_comments_tree.views.comments.on_comment_was_posted. if not settings.COMMENTS_TREE_CONFIRM_EMAIL or self.request.user.is_authenticated: if not views._comment_exists(resp['comment']): new_comment = views._create_comment(resp['comment']) resp['comment'].tree_comment = new_comment confirmation_received.send(sender=TmpTreeComment, comment=resp['comment'], request=self.request) comment_was_posted.send(sender=new_comment.__class__, comment=new_comment, request=self.request) if resp['comment'].is_public: resp['code'] = 201 views.notify_comment_followers(new_comment) else: resp['code'] = 202 else: key = signed.dumps(resp['comment'], compress=True, extra_key=settings.COMMENTS_TREE_SALT) views.send_email_confirmation_request(resp['comment'], key, site) resp['code'] = 204 # Confirmation sent by mail. return resp class ReadCommentSerializer(serializers.ModelSerializer): user_name = serializers.CharField(max_length=50, read_only=True) user_url = serializers.CharField(read_only=True) user_moderator = serializers.SerializerMethodField() user_avatar = serializers.SerializerMethodField() submit_date = serializers.SerializerMethodField() parent_id = serializers.IntegerField(default=0, read_only=True) level = serializers.IntegerField(read_only=True) is_removed = serializers.BooleanField(read_only=True) comment = serializers.SerializerMethodField() allow_reply = serializers.SerializerMethodField() permalink = serializers.SerializerMethodField() flags = serializers.SerializerMethodField() class Meta: model = TreeComment fields = ('id', 'user_name', 'user_url', 'user_moderator', 'user_avatar', 'permalink', 'comment', 'submit_date', 'parent_id', 'level', 'is_removed', 'allow_reply', 'flags') def __init__(self, *args, **kwargs): self.request = kwargs['context']['request'] super().__init__(*args, **kwargs) def get_submit_date(self, obj): activate(get_language()) return formats.date_format(obj.submit_date, 'DATETIME_FORMAT', use_l10n=True) def get_comment(self, obj): if obj.is_removed: return _("This comment has been removed.") else: return obj.comment def get_user_moderator(self, obj): try: if obj.user and obj.user.has_perm('comments.can_moderate'): return True else: return False except Exception: return None def get_flags(self, obj): flags = { 'like': {'active': False, 'users': None}, 'dislike': {'active': False, 'users': None}, 'removal': {'active': False, 'count': None}, } users_likedit, users_dislikedit = None, None if has_app_model_option(obj)['allow_flagging']: users_flagging = obj.users_flagging(TreeCommentFlag.SUGGEST_REMOVAL) if self.request.user in users_flagging: flags['removal']['active'] = True if self.request.user.has_perm("django_comments.can_moderate"): flags['removal']['count'] = len(users_flagging) opt = has_app_model_option(obj) if opt['allow_feedback'] or opt['show_feedback']: users_likedit = obj.users_flagging(LIKEDIT_FLAG) users_dislikedit = obj.users_flagging(DISLIKEDIT_FLAG) if has_app_model_option(obj)['allow_feedback']: if self.request.user in users_likedit: flags['like']['active'] = True elif self.request.user in users_dislikedit: flags['dislike']['active'] = True if has_app_model_option(obj)['show_feedback']: flags['like']['users'] = [ "%d:%s" % (user.id, settings.COMMENTS_TREE_API_USER_REPR(user)) for user in users_likedit] flags['dislike']['users'] = [ "%d:%s" % (user.id, settings.COMMENTS_TREE_API_USER_REPR(user)) for user in users_dislikedit] return flags def get_allow_reply(self, obj): return obj.allow_thread() def get_user_avatar(self, obj): path = hashlib.md5(obj.user_email.lower().encode('utf-8')).hexdigest() param = urlencode({'s': 48}) return "https://www.gravatar.com/avatar/%s?%s&d=mm" % (path, param) def get_permalink(self, obj): return obj.get_absolute_url() class FlagSerializer(serializers.ModelSerializer): flag_choices = {'like': LIKEDIT_FLAG, 'dislike': DISLIKEDIT_FLAG, 'report': TreeCommentFlag.SUGGEST_REMOVAL} class Meta: model = TreeCommentFlag fields = ('comment', 'flag',) def validate(self, data): # Validate flag. if data['flag'] not in self.flag_choices: raise serializers.ValidationError("Invalid flag.") # Check commenting options on object being commented. option = '' if data['flag'] in ['like', 'dislike']: option = 'allow_feedback' elif data['flag'] == 'report': option = 'allow_flagging' comment = data['comment'] if not has_app_model_option(comment)[option]: ctype = ContentType.objects.get_for_model(comment.content_object) raise serializers.ValidationError( "Comments posted to instances of '%s.%s' are not explicitly " "allowed to receive '%s' flags. Check the " "COMMENTS_TREE_APP_MODEL_OPTIONS setting." % ( ctype.app_label, ctype.model, data['flag'] ) ) data['flag'] = self.flag_choices[data['flag']] return data
""" Plotting convenience functions. """ from math import ceil import ipywidgets as widgets import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np from model_base import get_ext_input # define basics prop_cycle = plt.rcParams["axes.prop_cycle"] colors = prop_cycle.by_key()["color"] plt.style.use("seaborn-muted") INPUT_START = 1000 # dt, i.e. 100ms LABEL_SIZE = 16 def setup_sliders_layout(model_specific_sliders): """ Set up interactive part of the plot, i.e. sliders and grid layout. model_params: list of model parameters names """ assert isinstance(model_specific_sliders, dict) num_model_sliders = len(model_specific_sliders) # define general sliders I_m_slider = widgets.FloatSlider( min=-5, max=20, step=0.5, value=10.0, description="I max" ) T_slider = widgets.IntSlider( min=500, max=2000, step=5, value=750, description="time" ) I_types = widgets.ToggleButtons( options=["constant", "sq. pulse", "sine", "ramp", "Ornstein-Uhlenbeck"], value="constant", description="Current type", disabled=False, layout=widgets.Layout(height="auto", width="auto"), ) I_period = widgets.FloatSlider( min=10, max=1000, step=5, value=200, description="I period" ) # define grid grid = widgets.GridspecLayout(ceil(5 + num_model_sliders / 2), 2) grid[0, :] = widgets.Button( description="Model parameters", layout=widgets.Layout(height="auto", width="auto"), ) # assign model sliders for idx, (_, slider) in enumerate(model_specific_sliders.items()): grid[idx // 2 + 1, idx % 2] = slider grid[idx // 2 + 2, :] = widgets.Button( description="External current parameters", layout=widgets.Layout(height="auto", width="auto"), ) grid[idx // 2 + 3, 0] = I_period grid[idx // 2 + 4, 0] = I_m_slider grid[idx // 2 + 4, 1] = T_slider grid[idx // 2 + 5, :] = I_types sliders = { **model_specific_sliders, "I_max": I_m_slider, "I_period": I_period, "T": T_slider, "current_type": I_types, } for _, slider in sliders.items(): # lower number of "waiting" updates in the pipe slider.msg_throttle = 1 return grid, sliders def integrate_and_plot(model_cls, **kwargs): """ Integrate the model given its parameters and plot. """ T = kwargs.pop("T") I_max = kwargs.pop("I_max") I_period = kwargs.pop("I_period") current_type = kwargs.pop("current_type") model = model_cls(parameters=kwargs, T=T) ext_current = np.zeros((model.n_points + 1)) input_length = ext_current.shape[0] - INPUT_START ext_current[INPUT_START:] = get_ext_input( I_max, I_period, current_type, model.T_total, input_length ) model.set_input(ext_current) t, y = model.integrate() # set up figure fig = plt.figure(constrained_layout=True, figsize=(15, 8)) spec = gridspec.GridSpec(ncols=3, nrows=3, figure=fig) # set up axis for timeseries of input current ax2 = fig.add_subplot(spec[2, :2]) ax2.set_ylim([-20, 30]) ax2.set_ylabel("INPUT CURRENT [AU]", size=LABEL_SIZE) ax2.set_xlabel("TIME [ms]", size=LABEL_SIZE) ax2.axvline(100.0, 0, 1, linestyle="--", color="grey", linewidth=0.7) ax2.spines["right"].set_visible(False) ax2.spines["top"].set_visible(False) ax2.tick_params(axis="both", which="major", labelsize=LABEL_SIZE - 2) # set up axis for timeseries of state vector ax1 = fig.add_subplot(spec[:2, :2], sharex=ax2) ax1.set_ylim([-90, 30]) ax1.set_ylabel("MEMBRANE POTENTIAL [mV]", size=LABEL_SIZE) ax1.spines["right"].set_visible(False) ax1.spines["top"].set_visible(False) ax1.spines["bottom"].set_visible(False) ax1.axvline(100.0, 0, 1, linestyle="--", color="grey", linewidth=0.7) ax1.tick_params(axis="both", which="major", labelsize=LABEL_SIZE - 2) ax12 = ax1.twinx() ax12.set_ylim([-20, 10]) ax12.set_yticklabels([]) ax12.set_yticks([]) ax12.spines["right"].set_visible(False) ax12.spines["top"].set_visible(False) ax12.spines["bottom"].set_visible(False) ax12.tick_params(axis="both", which="major", labelsize=LABEL_SIZE - 2) # set up axis for scatter u vs v ax3 = fig.add_subplot(spec[:2, 2], sharey=ax1) ax3.spines["right"].set_visible(False) ax3.spines["top"].set_visible(False) ax3.set_xlabel("MEMBRANE RECOVERY", size=LABEL_SIZE) scatter_colors = colors[3] ax3.set_ylim([-90, 30]) ax3.set_xlim([-20, 10]) ax3.tick_params(axis="both", which="major", labelsize=LABEL_SIZE - 2) # plot ax1.plot(t, y[0, :], color=colors[0], linewidth=2.5) ax12.plot(t, y[1:, :].T, color=colors[1]) ax2.plot(t, model.ext_current[1:], color=colors[2]) ax3.scatter(y[1, :], y[0, :], s=7, c=scatter_colors) plt.suptitle(f"Number of spikes: {model.num_spikes}", size=LABEL_SIZE + 3)
# -*- coding: utf-8 -*- """ Created on Sat Oct 23 08:58:37 2021 @author: michp-ai """ # This script is web automation for the Capstone project on ML rapid text labeling # Before running this script in a different console start the web server by running main.py for the web app # This is a simple demo script to illustrate how selenium interacts with the web app #%% from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriver.chrome.options import Options import numpy as np import pandas as pd from sklearn.metrics import accuracy_score import re import string import os from time import sleep import datetime import pickle from zipfile import ZipFile import sys sys.path.insert(1, '../baseline-classifier/utilities') import dt_utilities as utils #%% #set a timer starttime = datetime.datetime.now() #%% # Get the data we'll need for evaluation consolidated_disaster_tweet_data_df = \ utils.get_consolidated_disaster_tweet_data(root_directory="../baseline-classifier/data/", event_type_directory="HumAID_data_event_type", events_set_directories=["HumAID_data_events_set1_47K", "HumAID_data_events_set2_29K"], include_meta_data=True) train_df = consolidated_disaster_tweet_data_df[consolidated_disaster_tweet_data_df["data_type"]=="train"].reset_index(drop=True) test_df = consolidated_disaster_tweet_data_df[consolidated_disaster_tweet_data_df["data_type"]=="test"].reset_index(drop=True) vectorizer_needs_transform = True #%% download_dir = os.path.join(os.getcwd(), "models") chrome_options = Options() chrome_options.add_experimental_option('prefs', { "download.default_directory": download_dir, "download.prompt_for_download": False, "download.directory_upgrade": True, } ) #%% # PARAMETERS mpath = os.getcwd() + "\chromedriver.exe" wait_time = 0#.75 #0.75 scroll_wait_seconds = 0#1.75 #1.75 #%% driver = webdriver.Chrome(mpath, options = chrome_options) #%% # load the webpage driver.get("http://127.0.0.1:5000/") driver.maximize_window() #sleep(2) #for demo #%% # navigate landing page driver.find_element_by_xpath('//*[@id="bodyLeftTable1"]/tbody/tr[1]/td[1]/a').click() driver.find_element_by_id('config1').click() driver.find_element_by_id('loadDataSetButton').click() #%% # identify radio buttons def get_radio_buttons(): radio_buttons = [] radio_buttons.append(driver.find_element_by_id('category1')) radio_buttons.append(driver.find_element_by_id('category2')) radio_buttons.append(driver.find_element_by_id('category3')) radio_buttons.append(driver.find_element_by_id('category4')) return radio_buttons def select_label_one_text(xpath, radio_button_id, wait_time=0.75): # select a text from the list of all texts driver.find_element_by_xpath(xpath).click() sleep(wait_time) # we select the correct radio button radio_buttons = get_radio_buttons() sleep(wait_time) radio_buttons[radio_button_id].click() # label one example button_label_single = driver.find_element_by_id('labelButtonSingle') button_label_single.click() sleep(wait_time) def select_label_multi_text(xpath, radio_button_id, wait_time=0.75, max_options=1, label_type="SimilarTexts", min_recommender_labels=1000): total_unlabeled, total_labeled = get_total_unlabeled(get_labeled=True) # select a text from the list of all texts driver.find_element_by_xpath(xpath).click() sleep(wait_time) # we select the correct radio button radio_buttons = get_radio_buttons() sleep(wait_time) radio_buttons[radio_button_id].click() # op_xpath = op_base_xpath + str(max_options) + ']' driver.find_element_by_xpath(op_xpath).click() # label multi example if (label_type=="SimilarTexts") | (total_labeled < min_recommender_labels) | (total_unlabeled < min_recommender_labels): driver.find_element_by_id("buttonSimilarTexts1Buttons").click() button_label_ten = driver.find_element_by_id('group1Button') elif label_type=="RecommendedTexts": driver.find_element_by_id("buttonSimilarTexts2Buttons").click() button_label_ten = driver.find_element_by_id('group2Button') sleep(wait_time) button_label_ten.click() def click_difficult_texts(wait_time=0.75): sleep(wait_time) button_difficult_texts = driver.find_element_by_id('generateDifficultTextsButton') button_difficult_texts.click() def scroll_label_ten(radio_button_id, scroll_wait_seconds = 1.75): #we scroll down the results list for scr in range(2,10,2): scr_xpath = '//*[@id="group1Table"]/tbody/tr[' + str(scr) + ']/td[1]/a' print(scr_xpath) link_scroll = driver.find_element_by_xpath(scr_xpath) driver.execute_script("return arguments[0].scrollIntoView(true);", link_scroll) sleep(scroll_wait_seconds) radio_buttons = get_radio_buttons() radio_buttons[radio_button_id].click() sleep(wait_time) # we apply a group label after checking all 10 suggested are correct button_label_ten = driver.find_element_by_id('group1Button') sleep(wait_time) button_label_ten.click() def search_phrase(phrase): # Search for a phrase phrase = "richter" element = driver.find_element_by_id("searchAllTexts") element.send_keys(phrase) driver.find_element_by_id("searchAllTextsButton").click() def search_label(phrases, reps, label_type): for r in range(reps): for k, v in phrases.items(): search_phrase(k) if label_type=='single': select_label_one_text('//*[@id="allTextsTable"]/tbody/tr[' + str (r+1) + ']/td[1]', v, wait_time=wait_time) def get_total_unlabeled(get_labeled=False): total_unlabeled = driver.find_element_by_xpath('//*[@id="summarySectionTable"]/tbody/tr[3]/td[2]').text.replace(',', '') total_unlabeled = int(total_unlabeled) if get_labeled: total_labeled = driver.find_element_by_xpath('//*[@id="summarySectionTable"]/tbody/tr[4]/td[2]').text.replace(',', '') total_labeled = int(total_labeled) return total_unlabeled, total_labeled else: return total_unlabeled def get_overall_quality_score(): overall_quality_score = driver.find_element_by_xpath('//*[@id="difficultTextSummaryTable"]/tbody/tr[1]/td[2]').text return overall_quality_score def export_model(): driver.find_element_by_id("exportRecordsButton").click() # Create a ZipFile Object and load sample.zip in it for n in range(5000): try: with ZipFile('models/rapid-labeling-results.zip', 'r') as zipObj: # Extract all the contents of zip file in current directory zipObj.extractall() break except: sleep(0.01) os.remove("models/rapid-labeling-results.zip") #def check_if_vectorizer_needs_transform(): def get_accuracy_score(vectorizer_needs_transform): # load the model from disk model_filename = os.path.join("output", "trained-classifier.sav") loaded_model = pickle.load(open(model_filename, 'rb')) if vectorizer_needs_transform: #vectorizer_needs_transform = False vectorizer_filename = os.path.join("output", "fitted-vectorizer.sav") #print(vectorizer_filename) vectorizer = pickle.load(open(vectorizer_filename, 'rb')) #X_train = vectorizer.transform(train_df["tweet_text"]) X_test = vectorizer.transform(test_df["tweet_text"]) y_test = test_df["event_type"] y_pred = [x.lower() for x in loaded_model.predict(X_test)] test_accuracy_score = accuracy_score(y_test, y_pred) #print(test_accuracy_score) return test_accuracy_score, vectorizer_needs_transform def get_tracker_row(vectorizer_needs_transform): overall_quality_score = get_overall_quality_score() _, total_labeled = get_total_unlabeled(get_labeled=True) test_accuracy_score = 0. try: export_model() test_accuracy_score, vectorizer_needs_transform = get_accuracy_score(vectorizer_needs_transform) except: pass currenttime = datetime.datetime.now() elapsedtime = currenttime - starttime tracker_row = {'labels': total_labeled, 'overall_quality_score': overall_quality_score, 'accuracy': test_accuracy_score, 'elapsed_time': elapsedtime } #print(tracker_row) return tracker_row, vectorizer_needs_transform #%% df_tracker = pd.DataFrame(columns=['labels', 'overall_quality_score', 'accuracy', 'elapsed_time']) #%% # read the contents of the text sectionstarttime = datetime.datetime.now() phrases = { 'earthquake': 0, 'wildfire': 1, 'hurricane': 3, 'flooding': 2, 'fire': 1, 'richter': 0, 'smoke': 1, 'floods': 2, 'mph': 3, 'cyclone': 3, 'heat': 1, 'quake': 0, 'tornado': 3, 'Dorian': 3, } # label_type = "RecommendedTexts" # list of valid values ["SimilarTexts", "RecommendedTexts"] min_recommender_labels = 1000 max_display_options = 4 # range 1 to 6 txts_per_page = 50 pages_per_max_display_option = 1071 #20 label_applied = False for op in range(max_display_options + 1): # check how many are unlabelled if get_total_unlabeled()==0: break if label_type == "SimilarTexts": op_base_xpath = '//*[@id="group1_table_limit"]/option[' elif label_type == "RecommendedTexts": op_base_xpath = '//*[@id="group2_table_limit"]/option[' for pg in range(pages_per_max_display_option): # check how many are unlabelled if get_total_unlabeled()==0: break # loop through page for rrow in range(1,txts_per_page + 1): # check how many are unlabelled if get_total_unlabeled()==0: break xpath_base = '//*[@id="allTextsTable"]/tbody/tr[' + str(rrow) + ']/td[' tweet_text = str.lower(driver.find_element_by_xpath(xpath_base + '2]').text) #print(tweet_text) for k, v in phrases.items(): # label based on text contents if k in tweet_text: # check how many are unlabelled if get_total_unlabeled()==0: break try: select_label_multi_text(xpath_base + '1]/a', v, wait_time=wait_time, max_options=max_display_options, label_type=label_type, min_recommender_labels=min_recommender_labels) label_applied = True if label_applied==True: click_difficult_texts() tracker_row, vectorizer_needs_transform = get_tracker_row(vectorizer_needs_transform) print(tracker_row) df_tracker = df_tracker.append(tracker_row, ignore_index=True) except: break break # go to next page driver.find_element_by_xpath('//*[@id="allTextTableNextButtons"]/a[6]').click() max_display_options = max_display_options - 1 sectionendtime = datetime.datetime.now() elapsedsectiontime = sectionendtime - sectionstarttime print("Elapsed section time", elapsedsectiontime) #%% # # Label difficult texts with single labels # # read the contents of the text # sectionstarttime = datetime.datetime.now() # phrases = { # 'earthquake': 0, # 'wildfire': 1, # 'hurricane': 3, # 'flooding': 2, # 'fire': 1, # 'richter': 0, # 'smoke': 1, # 'floods': 2, # 'mph': 3, # 'cyclone': 3, # 'heat': 1, # 'quake': 0, # } # for pg in range(20): # if get_total_unlabeled()==0: # break # # loop through page # for rrow in range(1,51): # if get_total_unlabeled()==0: # break # xpath_base = '//*[@id="allTextsTable"]/tbody/tr[' + str(rrow) + ']/td[' # tweet_text = str.lower(driver.find_element_by_xpath(xpath_base + '2]').text) # #print(tweet_text) # for k, v in phrases.items(): # # label based on text contents # if get_total_unlabeled()==0: # break # if k in tweet_text: # try: # select_label_one_text(xpath_base + '1]/a', v, wait_time=wait_time) # except: # break # break # # go to next page # driver.find_element_by_xpath('//*[@id="allTextTableNextButtons"]/a[6]').click() # sectionendtime = datetime.datetime.now() # elapsedsectiontime = sectionendtime - sectionstarttime # print("Elapsed section time", elapsedsectiontime) #%% df_tracker.to_csv("tracker_output.csv") print(df_tracker.head(20)) print(df_tracker.tail(20)) #%% driver.close() #%% #os.remove("output/fitted-vectorizer.sav") #%% endtime = datetime.datetime.now() elapsedtime = endtime - starttime print("Elapsed time", elapsedtime)
#!/Users/robertpoenaru/.pyenv/shims/python import numpy as np import matplotlib.pyplot as plt from numpy import random as rd CHARGE_E = 1 # return the radius of a nuclei with respect to the total number of nucleus (assuming a constant density) class Charge_Distribution: def __init__(self, A, Z, diffuseness, beta): self.A = A self.Z = Z self.a = diffuseness self.beta = beta R0 = 1.25 # the constant nuclear charge density rho_0 = lambda A, Z, e: 0.17 * Z * e / A R = lambda A: Charge_Distribution.R0 * np.power(A, 1.0 / 3.0) R_half = lambda A: 1.128 * \ np.power(A, 1.0 / 3.0) - 0.89**np.power(A, 1.0 / 3.0) # create the Fermi-function which describes the nuclear charge distribution within the nucleus @staticmethod def Fermi_Distribution(x, x0, a): T = 1.0 + np.exp(x / a) return x0 / T @staticmethod def rho_charge(A, Z, e, a, r): # evaluate the function under the integrand for the RMS radius of the charge distribution RHO0 = Charge_Distribution.rho_0(A, Z, e) R_HALF = Charge_Distribution.R_half(A) # declare the diffuseness parameter a # a_diffuse = 0.524 # a_diffuse = 2.4 rho = Charge_Distribution.Fermi_Distribution(r - R_HALF, RHO0, a) return rho @staticmethod def RMS_ConstantDensity(A): # evaluate the rms function with the constant term proportional to the square of nuclear radius # radius is given as a function of nuclear mass number A r_const = Charge_Distribution.R(A) rms = 3.0 / 5.0 * np.power(r_const, 2) return rms @staticmethod def RMS_Deformed(A, beta): r_sph = Charge_Distribution.RMS_ConstantDensity(A) r_def = r_sph * (1.0 + 5.0 / (4.0 * np.pi) * np.power(beta, 2)) return r_def
import producer_ipc import consumer_ipc
#!/usr/bin/env python3 import sys if sys.version_info[0] != 3 or sys.version_info[1] < 5: print("Holo requires Python version 3.5 or greater") sys.exit(1) # Metadata name = "Holo" description = "episode discussion bot" version = "0.1.1" # Ensure proper files can be access if running with cron import os from pathlib import Path os.chdir(str(Path(__file__).parent.parent)) # Do the things from data import database import services def main(config, extra_args): from logging import debug, info, warning, error, exception # Set things up db = database.living_in(config.database) if not db: error("Cannot continue running without a database") return services.setup_services(config) # Run the requested module try: debug("Running module {}".format(config.module)) if config.module == "setup": info("Setting up database") db.setup_tables() info("Registering services") db.register_services(services.get_service_handlers()) db.register_link_sites(services.get_link_handlers()) elif config.module == "edit": info("Editing database") import module_edit as m m.main(config, db, *extra_args) elif config.module == "episode": info("Finding new episodes") import module_find_episodes as m m.main(config, db, debug=config.debug) elif config.module == "find": info("Finding new shows") import module_find_shows as m m.main(config, db) elif config.module == "update": info("Updating shows") import module_update_shows as m m.main(config, db) else: warning("This should never happen or you broke it!") except: exception("Unknown exception or error") db.rollback() db.close() if __name__ == "__main__": # Parse args import argparse parser = argparse.ArgumentParser(description="{}, {}".format(name, description)) parser.add_argument("--no-input", dest="no_input", action="store_true", help="run without stdin and write to a log file") parser.add_argument("-m", "--module", dest="module", nargs=1, choices=["setup", "edit", "episode", "update", "find"], default=["episode"], help="runs the specified module") parser.add_argument("-c", "--config", dest="config_file", nargs=1, default=["config.ini"], help="use or create the specified database location") parser.add_argument("-d", "--database", dest="db_name", nargs=1, default=None, help="use or create the specified database location") parser.add_argument("-s", "--subreddit", dest="subreddit", nargs=1, default=None, help="set the subreddit on which to make posts") parser.add_argument("-L", "--log-dir", dest="log_dir", nargs=1, default=["logs"], help="set the log directory") parser.add_argument("-v", "--version", action="version", version="{} v{}, {}".format(name, version, description)) parser.add_argument("--debug", action="store_true", default=False) parser.add_argument("extra", nargs="*") args = parser.parse_args() # Load config file import config as config_loader c = config_loader.from_file(args.config_file[0]) # Override config with args c.debug = args.debug c.module = args.module[0] c.log_dir = args.log_dir[0] if args.db_name is not None: c.database = args.db_name[0] if args.subreddit is not None: c.subreddit = args.subreddit[0] # Start use_log = args.no_input import logging from logging.handlers import TimedRotatingFileHandler if use_log: os.makedirs(c.log_dir, exist_ok=True) #from datetime import datetime #log_file = "logs/{date}_{mod}.log".format(date=datetime.now().strftime("%Y-%m-%dT%H:%M:%S"), mod=c.module) log_file = "{dir}/holo_{mod}.log".format(dir=c.log_dir, mod=c.module) logging.basicConfig( #filename=log_file, handlers=[TimedRotatingFileHandler(log_file, when="midnight", backupCount=7, encoding="UTF-8")], format="%(asctime)s | %(name)s | %(levelname)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.DEBUG if c.debug else logging.INFO) else: logging.basicConfig(format="%(levelname)s | %(message)s", level=logging.DEBUG if c.debug else logging.INFO) logging.getLogger("requests").setLevel(logging.WARNING) logging.getLogger("praw-script-oauth").setLevel(logging.WARNING) from logging import info, warning from time import time if use_log: info("------------------------------------------------------------") err = config_loader.validate(c) if err: warning("Configuration state invalid: {}".format(err)) start_time = time() main(c, args.extra) end_time = time() time_diff = end_time - start_time info("") info("Run time: {:.6} seconds".format(time_diff)) if use_log: info("------------------------------------------------------------\n")
import mtfl from mtfl.hypothesis import MetricTemporalLogicStrategy from hypothesis import given @given(MetricTemporalLogicStrategy) def test_identities(phi): assert mtfl.TOP == mtfl.TOP | phi assert mtfl.BOT == mtfl.BOT & phi assert mtfl.TOP == phi | mtfl.TOP assert mtfl.BOT == phi & mtfl.BOT assert phi == phi & mtfl.TOP assert phi == phi | mtfl.BOT assert mtfl.TOP == mtfl.TOP & mtfl.TOP assert mtfl.BOT == mtfl.BOT | mtfl.BOT assert mtfl.TOP == mtfl.TOP | mtfl.BOT assert mtfl.BOT == mtfl.TOP & mtfl.BOT assert ~mtfl.BOT == mtfl.TOP assert ~mtfl.TOP == mtfl.BOT assert ~~mtfl.BOT == mtfl.BOT assert ~~mtfl.TOP == mtfl.TOP assert (phi & phi) & phi == phi & (phi & phi) assert (phi | phi) | phi == phi | (phi | phi) assert ~~phi == phi def test_walk(): phi = mtfl.parse( '(([ ][0, 1] ap1 & < >[1,2] ap2) | (@ap1 U ap2))') assert len(list((~phi).walk())) == 18
import pytest from fastapi import FastAPI from fastapi.testclient import TestClient from fastapi_for_firebase.cache_control import middleware @pytest.mark.parametrize( "max_age,s_maxage,header_value", [(30, 60, "public, max-age=30, s-maxage=60"), (30, None, "public, max-age=30")], ) def test_cache_control__get(max_age, s_maxage, header_value): app = FastAPI() client = TestClient(app) app.middleware("http")(middleware.cache_control(max_age, s_maxage)) app.get("/")(lambda: "OK") response = client.get("/") assert response.text == '"OK"' assert response.headers["Cache-Control"] == header_value def test_cache_control__post(): app = FastAPI() client = TestClient(app) app.middleware("http")(middleware.cache_control()) app.post("/")(lambda: "OK") response = client.post("/") assert response.text == '"OK"' assert "Cache-Control" not in response.headers
import django.forms.widgets as widgets class AbilityListBoxSelect(widgets.SelectMultiple): template_name = 'dnd5e/widgets/ability_list_box.html' option_template_name = 'dnd5e/widgets/ability_list_box_option.html' class Media: css = {'all': ('css/ability_listbox.css',)} js = ('js/ability_listbox.js',)
""" Common utilities between parsing and retrieval lambdas. TODO: Considering structuring this as a class (if that's workable with AWS Lambda layers). Many methods accept similar parameters, in order to accomplish API calls, and it's information that could be easily encoded as state in an object. """ import os import re import json import tempfile import requests import functools import google import google.auth.transport.requests from enum import Enum from pathlib import Path from google.oauth2 import service_account E2E_MOCK_SOURCE_URL = os.environ.get("MOCK_SOURCE_DATA_ADDRESS", "") REGISTRATION_ENDPOINT = os.environ.get("REGISTRATION_ENDPOINT", "http://localhost:3001/auth/register") _ENV_TO_SOURCE_API_URL = { "locale2e": E2E_MOCK_SOURCE_URL, "local": "http://localhost:3001/api", "dev": "https://dev-data.covid-19.global.health/api", "prod": "https://data.covid-19.global.health/api" } _SERVICE_ACCOUNT_CRED_FILE = "covid-19-map-277002-0943eeb6776b.json" _METADATA_BUCKET = "epid-ingestion" MIN_SOURCE_ID_LENGTH, MAX_SOURCE_ID_LENGTH = 24, 24 class UploadError(Enum): """Upload error categories corresponding to the G.h Source API.""" INTERNAL_ERROR = 1 SOURCE_CONFIGURATION_ERROR = 2 SOURCE_CONFIGURATION_NOT_FOUND = 3 SOURCE_CONTENT_NOT_FOUND = 4 SOURCE_CONTENT_DOWNLOAD_ERROR = 5 PARSING_ERROR = 6 DATA_UPLOAD_ERROR = 7 VALIDATION_ERROR = 8 def create_upload_record(env, source_id, headers, cookies): """Creates an upload resource via the G.h Source API.""" post_api_url = f"{get_source_api_url(env)}/sources/{source_id}/uploads" print(f"Creating upload via {post_api_url}") res = requests.post(post_api_url, json={"status": "IN_PROGRESS", "summary": {}}, cookies=cookies, headers=headers) if res and res.status_code == 201: res_json = res.json() return res_json["_id"] e = RuntimeError( f"Error creating upload record, status={res.status_code}, response={res.text}") complete_with_error(e) def finalize_upload( env, source_id, upload_id, headers, cookies, count_created=None, count_updated=None, count_error=None, error=None): """Records the results of an upload via the G.h Source API.""" put_api_url = f"{get_source_api_url(env)}/sources/{source_id}/uploads/{upload_id}" print(f"Updating upload via {put_api_url}") update = {"summary": {}} if error: update["status"] = "ERROR" update["summary"]["error"] = error.name else: update["status"] = "SUCCESS" if count_created: update["summary"]["numCreated"] = count_created if count_updated: update["summary"]["numUpdated"] = count_updated if count_error: update["summary"]["numError"] = count_error res = requests.put(put_api_url, json=update, headers=headers, cookies=cookies) return res.status_code, res.text def complete_with_error( exception, env=None, upload_error=None, source_id=None, upload_id=None, headers=None, cookies=None, count_created=0, count_updated=0, count_error=0): """ Logs and raises the provided exception. If upload details are provided, updates the indicated upload with the provided data. """ print(exception) if env and upload_error and source_id and upload_id: finalize_upload(env, source_id, upload_id, headers, cookies, error=upload_error, count_created=count_created, count_updated=count_updated, count_error=count_error) raise exception def login(email: str): """Logs-in a local curator server instance for testing. Returns the cookie of the now logged-in user. """ print("Logging-in user", email) endpoint = REGISTRATION_ENDPOINT res = requests.post(endpoint, json={ "email": email, "roles": ["curator"], }) if not res or res.status_code != 200: raise RuntimeError( f"Error registering local user, status={res.status_code}, response={res.text}") return res.cookies def obtain_api_credentials(s3_client): """ Creates HTTP headers credentialed for access to the Global Health Source API. """ try: fd, local_creds_file_name = tempfile.mkstemp() with os.fdopen(fd) as _: print( "Retrieving service account credentials from " f"s3://{_METADATA_BUCKET}/{_SERVICE_ACCOUNT_CRED_FILE}") s3_client.download_file(_METADATA_BUCKET, _SERVICE_ACCOUNT_CRED_FILE, local_creds_file_name) credentials = service_account.Credentials.from_service_account_file( local_creds_file_name, scopes=["email"]) headers = {} request = google.auth.transport.requests.Request() credentials.refresh(request) credentials.apply(headers) return headers except Exception as e: print(e) raise e def get_source_api_url(env): """ Returns the URL at which to reach the Source API for the provided environment. """ if env not in _ENV_TO_SOURCE_API_URL: raise ValueError(f"No source API URL found for provided env: {env}") return _ENV_TO_SOURCE_API_URL[env] def python_module(folder: Path, root: Path): """Returns the unique python module in folder relative to root""" modules = [f for f in Path(folder).glob("*.py") if "test" not in str(f) and "__init__.py" not in str(f)] if len(modules) == 1: # Ensure there is a unique python module return str(modules[0].relative_to(root)).replace('/', '.')[:-3] else: return None def get_parser_module(parser): parser_name = re.sub(r"-ingestor-\w+", r"", parser) parser_name = re.sub(r"-", r".", parser_name) return f"parsing.{parser_name}" @functools.lru_cache def get_source_id_parser_map(parser_root: Path = None): """Returns a mapping of source IDs to parser information""" parser_root = parser_root or Path(__file__).parent.parent input_event_files = [ f for f in parser_root.rglob("input_event.json") if all(not str(f).startswith(prefix) for prefix in [".aws-sam", "common", "parsing/example"]) ] m = {} # map from source id -> parser information for input_event_file in input_event_files: input_event = json.loads(input_event_file.read_text()) sourceId = input_event["sourceId"] if not MIN_SOURCE_ID_LENGTH <= len(sourceId) <= MAX_SOURCE_ID_LENGTH: continue del input_event["sourceId"] m[sourceId] = input_event m[sourceId]["python_module"] = python_module(input_event_file.parent, parser_root) return m
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from argparse import RawTextHelpFormatter from jdcloud_cli.cement.ext.ext_argparse import expose from jdcloud_cli.controllers.base_controller import BaseController from jdcloud_cli.client_factory import ClientFactory from jdcloud_cli.parameter_builder import collect_user_args, collect_user_headers from jdcloud_cli.printer import Printer from jdcloud_cli.skeleton import Skeleton class MonitorController(BaseController): class Meta: label = 'monitor' help = 'JCLOUD MONITOR API' description = ''' monitor cli 子命令,monitor API。 OpenAPI文档地址为:https://docs.jdcloud.com/cn/monitoring/api/overview ''' stacked_on = 'base' stacked_type = 'nested' @expose( arguments=[ (['--page-number'], dict(help="""(int) 当前所在页,默认为1 """, dest='pageNumber', type=int, required=False)), (['--page-size'], dict(help="""(int) 页面大小,默认为20;取值范围[1, 100] """, dest='pageSize', type=int, required=False)), (['--service-code'], dict(help="""(string) 产品线标识,同一个产品线下可能存在多个product,如(redis下有redis2.8cluster、redis4.0) """, dest='serviceCode', required=False)), (['--product'], dict(help="""(string) 产品标识,如redis下分多个产品(redis2.8cluster、redis4.0)。同时指定serviceCode与product时,product优先生效 """, dest='product', required=False)), (['--dimension'], dict(help="""(string) 产品下的维度标识,指定dimension时必须指定product """, dest='dimension', required=False)), (['--rule-name'], dict(help="""(string) 规则名称 """, dest='ruleName', required=False)), (['--rule-type'], dict(help="""(int) 规则类型, 1表示资源监控,6表示站点监控,7表示可用性监控 """, dest='ruleType', type=int, required=False)), (['--enabled'], dict(help="""(int) 规则状态:1为启用,0为禁用 """, dest='enabled', type=int, required=False)), (['--rule-status'], dict(help="""(int) 资源的规则状态 2:报警、4:数据不足 """, dest='ruleStatus', type=int, required=False)), (['--filters'], dict(help="""(array: filter) 服务码或资源Id列表; products - 产品product,精确匹配,支持多个; resourceIds - 资源Id,精确匹配,支持多个(必须指定serviceCode、product或dimension,否则该参数不生效); alarmIds - 规则id,精确匹配,支持多个 """, dest='filters', required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 查询规则列表 ''', description=''' 查询规则列表。 示例: jdc monitor describe-alarms ''', ) def describe_alarms(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DescribeAlarmsRequest import DescribeAlarmsRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DescribeAlarmsRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--auto-scaling-policy-id'], dict(help="""(string) 弹性伸缩组Id。注:仅ag\asg产品线内部使用 """, dest='autoScalingPolicyId', required=False)), (['--base-contact'], dict(help="""(array: baseContact) 告警通知联系人 """, dest='baseContact', required=False)), (['--client-token'], dict(help="""(string) 幂等性校验参数,最长36位,若两个请求clientToken相等,则返回第一次创建的规则id,只创建一次规则 """, dest='clientToken', required=True)), (['--dimension'], dict(help="""(string) 资源维度,可用的维度请使用 describeProductsForAlarm接口查询 """, dest='dimension', required=False)), (['--enabled'], dict(help="""(int) 是否启用, 1表示启用规则,0表示禁用规则,默认为1 """, dest='enabled', type=int, required=False)), (['--notice-option'], dict(help="""(array: noticeOption) 通知策略 """, dest='noticeOption', required=False)), (['--product'], dict(help="""(string) 资源类型, 可用的资源类型列表请使用 describeProductsForAlarm接口查询。 """, dest='product', required=True)), (['--resource-option'], dict(help="""(resourceOption) NA """, dest='resourceOption', required=True)), (['--rule-name'], dict(help="""(string) 规则名称,规则名称,最大长度42个字符,只允许中英文、数字、''-''和"_" """, dest='ruleName', required=True)), (['--rule-option'], dict(help="""(ruleOption) NA """, dest='ruleOption', required=True)), (['--rule-type'], dict(help="""(string) 规则类型, 默认为resourceMonitor """, dest='ruleType', required=False)), (['--tags'], dict(help="""(object) 资源维度,指定监控数据实例的维度标签,如resourceId=id。(请确认资源的监控数据带有该标签,否则规则会报数据不足) """, dest='tags', required=False)), (['--web-hook-option'], dict(help="""(webHookOption) NA """, dest='webHookOption', required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 创建报警规则 ''', description=''' 创建报警规则。 示例: jdc monitor create-alarm --client-token xxx --product xxx --resource-option '{"":""}' --rule-name xxx --rule-option '{"":""}' ''', ) def create_alarm(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.CreateAlarmRequest import CreateAlarmRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = CreateAlarmRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--alarm-id'], dict(help="""(string) 规则id """, dest='alarmId', required=True)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 查询规则详情 ''', description=''' 查询规则详情。 示例: jdc monitor describe-alarm --alarm-id xxx ''', ) def describe_alarm(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DescribeAlarmRequest import DescribeAlarmRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DescribeAlarmRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--alarm-id'], dict(help="""(string) 规则id """, dest='alarmId', required=True)), (['--auto-scaling-policy-id'], dict(help="""(string) 弹性伸缩组Id。注:仅ag\asg产品线内部使用 """, dest='autoScalingPolicyId', required=False)), (['--base-contact'], dict(help="""(array: baseContact) 告警通知联系人 """, dest='baseContact', required=False)), (['--dimension'], dict(help="""(string) 资源维度,可用的维度请使用 describeProductsForAlarm接口查询 """, dest='dimension', required=False)), (['--enabled'], dict(help="""(int) 是否启用, 1表示启用规则,0表示禁用规则,默认为1 """, dest='enabled', type=int, required=False)), (['--notice-option'], dict(help="""(array: noticeOption) 通知策略 """, dest='noticeOption', required=False)), (['--product'], dict(help="""(string) 资源类型, 可用的资源类型列表请使用 describeProductsForAlarm接口查询。 """, dest='product', required=True)), (['--resource-option'], dict(help="""(resourceOption) NA """, dest='resourceOption', required=True)), (['--rule-name'], dict(help="""(string) 规则名称,规则名称,最大长度42个字符,只允许中英文、数字、''-''和"_" """, dest='ruleName', required=True)), (['--rule-option'], dict(help="""(ruleOption) NA """, dest='ruleOption', required=True)), (['--rule-type'], dict(help="""(string) 规则类型, 默认为resourceMonitor """, dest='ruleType', required=False)), (['--tags'], dict(help="""(object) 资源维度,指定监控数据实例的维度标签,如resourceId=id。(请确认资源的监控数据带有该标签,否则规则会报数据不足) """, dest='tags', required=False)), (['--web-hook-option'], dict(help="""(webHookOption) NA """, dest='webHookOption', required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 修改已创建的报警规则 ''', description=''' 修改已创建的报警规则。 示例: jdc monitor update-alarm --alarm-id xxx --product xxx --resource-option '{"":""}' --rule-name xxx --rule-option '{"":""}' ''', ) def update_alarm(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.UpdateAlarmRequest import UpdateAlarmRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = UpdateAlarmRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--alarm-id'], dict(help="""(string) 规则id """, dest='alarmId', required=True)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 删除规则 ''', description=''' 删除规则。 示例: jdc monitor delete-alarms --alarm-id xxx ''', ) def delete_alarms(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DeleteAlarmsRequest import DeleteAlarmsRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DeleteAlarmsRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--alarm-id'], dict(help="""(string) 规则id """, dest='alarmId', required=True)), (['--page-number'], dict(help="""(int) 当前所在页,默认为1 """, dest='pageNumber', type=int, required=False)), (['--page-size'], dict(help="""(int) 页面大小,默认为20;取值范围[1, 100] """, dest='pageSize', type=int, required=False)), (['--reference-type'], dict(help="""(int) 联系人类型。0,联系人分组; 1,联系人 """, dest='referenceType', type=int, required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 查询规则的报警联系人 ''', description=''' 查询规则的报警联系人。 示例: jdc monitor describe-alarm-contacts --alarm-id xxx ''', ) def describe_alarm_contacts(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DescribeAlarmContactsRequest import DescribeAlarmContactsRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DescribeAlarmContactsRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--service-code'], dict(help="""(string) 产品线 """, dest='serviceCode', required=False)), (['--product'], dict(help="""(string) 产品类型,如redis2.8cluster(集群)\redis2.8MS(主从)。当serviceCode与product同时指定时,product优先级更高 """, dest='product', required=False)), (['--dimension'], dict(help="""(string) 产品维度,必须指定serviceCode或product才生效。 """, dest='dimension', required=False)), (['--metric-type'], dict(help="""(int) metric类型,取值0、1;默认值:0(常规指标,用于控制台创建报警规则)、1(其它) """, dest='metricType', type=int, required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 查询可用于创建监控规则的指标列表,metric介绍:<a href="https://docs.jdcloud.com/cn/monitoring/metrics">Metrics</a> ''', description=''' 查询可用于创建监控规则的指标列表,metric介绍:<a href="https://docs.jdcloud.com/cn/monitoring/metrics">Metrics</a>。 示例: jdc monitor describe-metrics-for-alarm ''', ) def describe_metrics_for_alarm(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DescribeMetricsForAlarmRequest import DescribeMetricsForAlarmRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DescribeMetricsForAlarmRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--service-code'], dict(help="""(string) 产品线,从产品线维度筛选 """, dest='serviceCode', required=False)), (['--product'], dict(help="""(string) 产品类型,从产品维度筛选、如redis2.8cluster\redis2.8instance。当serviceCode与product同时指定时,product优先级更高 """, dest='product', required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 查询可用于创建监控规则的产品列表 ''', description=''' 查询可用于创建监控规则的产品列表。 示例: jdc monitor describe-products-for-alarm ''', ) def describe_products_for_alarm(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DescribeProductsForAlarmRequest import DescribeProductsForAlarmRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DescribeProductsForAlarmRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--alarm-ids'], dict(help="""(array: string) 告警规则的ID列表 """, dest='alarmIds', required=False)), (['--state'], dict(help="""(int) 启用:1,禁用0, """, dest='state', type=int, required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 启用、禁用规则 ''', description=''' 启用、禁用规则。 示例: jdc monitor enable-alarms ''', ) def enable_alarms(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.EnableAlarmsRequest import EnableAlarmsRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = EnableAlarmsRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--page-number'], dict(help="""(int) 当前所在页,默认为1 """, dest='pageNumber', type=int, required=False)), (['--page-size'], dict(help="""(int) 页面大小,默认为20;取值范围[1, 100] """, dest='pageSize', type=int, required=False)), (['--service-code'], dict(help="""(string) 产品线标识,同一个产品线下可能存在多个product,如(redis下有redis2.8cluster、redis4.0) """, dest='serviceCode', required=False)), (['--product'], dict(help="""(string) 产品标识,默认返回该product下所有dimension的数据。eg:product=redis2.8cluster(redis2.8cluster产品下包含redis2.8-shard与redis2.8-proxy、redis2.8-instance多个维度)。 """, dest='product', required=False)), (['--dimension'], dict(help="""(string) 维度标识、指定该参数时,查询只返回该维度的数据。如redis2.8cluster下存在实例、分片等多个维度 """, dest='dimension', required=False)), (['--region'], dict(help="""(string) 根据region筛选对应region的资源的报警历史 """, dest='region', required=False)), (['--is-alarming'], dict(help="""(int) 正在报警, 取值为1 """, dest='isAlarming', type=int, required=False)), (['--status'], dict(help="""(int) 报警的状态,1为报警恢复、2为报警、4为报警恢复无数据 """, dest='status', type=int, required=False)), (['--start-time'], dict(help="""(string) 开始时间 """, dest='startTime', required=False)), (['--end-time'], dict(help="""(string) 结束时间 """, dest='endTime', required=False)), (['--rule-type'], dict(help="""(int) 规则类型,默认查询1, 1表示资源监控,6表示站点监控,7表示可用性监控 """, dest='ruleType', type=int, required=False)), (['--rule-name'], dict(help="""(string) 规则名称模糊搜索 """, dest='ruleName', required=False)), (['--filters'], dict(help="""(array: filter) serviceCodes - 产品线servicecode,精确匹配,支持多个; resourceIds - 资源Id,精确匹配,支持多个(必须指定serviceCode才会在该serviceCode下根据resourceIds过滤,否则该参数不生效); alarmIds - 规则Id,精确匹配,支持多个 """, dest='filters', required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 查询报警历史 ''', description=''' 查询报警历史。 示例: jdc monitor describe-alarm-history ''', ) def describe_alarm_history(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DescribeAlarmHistoryRequest import DescribeAlarmHistoryRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DescribeAlarmHistoryRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--service-code'], dict(help="""(string) 资源的类型,取值vm, lb, ip, database 等。<a href="https://docs.jdcloud.com/cn/monitoring/api/describeservices?content=API&SOP=JDCloud">describeServices</a>:查询己接入云监控的产品线列表 """, dest='serviceCode', required=True)), (['--dimension'], dict(help="""(string) NA """, dest='dimension', required=False)), (['--type'], dict(help="""(int) metric的类型,取值0(控制台展示)、1(内部使用,控制台不展示)、2(所有).默认取0 """, dest='type', type=int, required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 根据产品线查询可用监控项列表,metric介绍:<a href="https://docs.jdcloud.com/cn/monitoring/metrics">Metrics</a> ''', description=''' 根据产品线查询可用监控项列表,metric介绍:<a href="https://docs.jdcloud.com/cn/monitoring/metrics">Metrics</a>。 示例: jdc monitor describe-metrics --service-code xxx ''', ) def describe_metrics(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DescribeMetricsRequest import DescribeMetricsRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DescribeMetricsRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--region-id'], dict(help="""(string) 地域 Id """, dest='regionId', required=False)), (['--metric'], dict(help="""(string) 监控项英文标识(id) """, dest='metric', required=True)), (['--service-code'], dict(help="""(string) 资源的类型,取值vm, lb, ip, database 等。可用的serviceCode请使用describeServices接口查询 """, dest='serviceCode', required=True)), (['--dimension'], dict(help="""(string) 资源的维度。serviceCode下可用的dimension请使用describeServices接口查询 """, dest='dimension', required=False)), (['--resource-id'], dict(help="""(string) 资源的uuid,支持多个resourceId批量查询,每个id用竖线分隔。 如:id1|id2|id3|id4 """, dest='resourceId', required=True)), (['--tags'], dict(help="""(array: tagFilter) 自定义标签 """, dest='tags', required=False)), (['--start-time'], dict(help="""(string) 查询时间范围的开始时间, UTC时间,格式:2016-12-11T00:00:00+0800(早于30d时,将被重置为30d)(注意在url中+要转译为%2B故url中为2016-12-11T00:00:00%2B0800) """, dest='startTime', required=False)), (['--end-time'], dict(help="""(string) 查询时间范围的结束时间, UTC时间,格式:2016-12-11T00:00:00+0800(为空时,将由startTime与timeInterval计算得出)(注意在url中+要转译为%2B故url中为2016-12-11T00:00:00%2B0800) """, dest='endTime', required=False)), (['--time-interval'], dict(help="""(string) 查询的时间间隔,最大不超过30天,支持分钟级别,小时级别,天级别,例如:1m、1h、1d """, dest='timeInterval', required=False)), (['--aggr-type'], dict(help="""(string) 聚合方式:max avg min等,用于不同维度之间聚合 """, dest='aggrType', required=False)), (['--down-aggr-type'], dict(help="""(string) 聚合方式:max avg min等,用于将维度内一个周期数据聚合为一个点的聚合方式,默认last """, dest='downAggrType', required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 根据不同的聚合方式将metric的数据聚合为一个点。downAggrType:last(最后一个点)、max(最大值)、min(最小值)、avg(平均值)。该接口返回值为上报metric的原始值,没有做单位转换。metric介绍:<a href="https://docs.jdcloud.com/cn/monitoring/metrics">Metrics</a> ''', description=''' 根据不同的聚合方式将metric的数据聚合为一个点。downAggrType:last(最后一个点)、max(最大值)、min(最小值)、avg(平均值)。该接口返回值为上报metric的原始值,没有做单位转换。metric介绍:<a href="https://docs.jdcloud.com/cn/monitoring/metrics">Metrics</a>。 示例: jdc monitor describe-one-data-point --metric xxx --service-code xxx --resource-id xxx ''', ) def describe_one_data_point(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DescribeOneDataPointRequest import DescribeOneDataPointRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DescribeOneDataPointRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--region-id'], dict(help="""(string) 地域 Id """, dest='regionId', required=False)), (['--metric'], dict(help="""(string) 监控项英文标识(id) """, dest='metric', required=True)), (['--aggr-type'], dict(help="""(string) 聚合方式,用于不同时间轴上的聚合。如balance产品同一个resourceId下存在port=80和port=8080等多种维度。可选值参考:sum、avg、min、max """, dest='aggrType', required=False)), (['--down-sample-type'], dict(help="""(string) 采样方式,用于在时间轴维度上将聚合周期内的数据聚合为一个点。可选值参考:sum(聚合周期内的数据求和)、avg(求平均)、last(最新值)、min(最小值)、max(最大值) """, dest='downSampleType', required=False)), (['--start-time'], dict(help="""(string) 查询时间范围的开始时间, UTC时间,格式:2016-12-11T00:00:00+0800(注意在url中+要转译为%2B故url中为2016-12-11T00:00:00%2B0800) """, dest='startTime', required=False)), (['--end-time'], dict(help="""(string) 查询时间范围的结束时间, UTC时间,格式:2016-12-11T00:00:00+0800(为空时,将由startTime与timeInterval计算得出)(注意在url中+要转译为%2B故url中为2016-12-11T00:00:00%2B0800) """, dest='endTime', required=False)), (['--time-interval'], dict(help="""(string) 时间间隔:1h,6h,12h,1d,3d,7d,14d,固定时间间隔,timeInterval默认为1h,当前时间往 前1h """, dest='timeInterval', required=False)), (['--tags'], dict(help="""(array: tagFilter) 监控指标数据的维度信息,根据tags来筛选指标数据不同的维度 """, dest='tags', required=False)), (['--group-by'], dict(help="""(bool) 是否对查询的tags分组 """, dest='groupBy', required=False)), (['--rate'], dict(help="""(bool) 是否求速率 """, dest='rate', required=False)), (['--service-code'], dict(help="""(string) 资源的类型,取值vm, lb, ip, database 等,<a href="https://docs.jdcloud.com/cn/monitoring/api/describeservices?content=API&SOP=JDCloud">describeServices</a>:查询己接入云监控的产品线列表 """, dest='serviceCode', required=False)), (['--dimension'], dict(help="""(string) 资源的维度。查询serviceCode下可用的维度请使用describeServices接口 """, dest='dimension', required=False)), (['--resource-id'], dict(help="""(string) 资源的uuid """, dest='resourceId', required=True)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 查看某资源单个监控项数据,metric介绍:<a href="https://docs.jdcloud.com/cn/monitoring/metrics">Metrics</a>,可以使用接口<a href="https://docs.jdcloud.com/cn/monitoring/metrics">describeMetrics</a>:查询产品线可用的metric列表。 ''', description=''' 查看某资源单个监控项数据,metric介绍:<a href="https://docs.jdcloud.com/cn/monitoring/metrics">Metrics</a>,可以使用接口<a href="https://docs.jdcloud.com/cn/monitoring/metrics">describeMetrics</a>:查询产品线可用的metric列表。。 示例: jdc monitor describe-metric-data --metric xxx --resource-id xxx ''', ) def describe_metric_data(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DescribeMetricDataRequest import DescribeMetricDataRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DescribeMetricDataRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--filters'], dict(help="""(array: filter) 服务码列表; filter name 为serviceCodes表示查询多个产品线的规则 """, dest='filters', required=False)), (['--product-type'], dict(help="""(int) 要查询的产品线类型 0:all 1:资源监控 2:其它 默认:1。若指定了查询的serviceCode,则忽略该参数 """, dest='productType', type=int, required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 查询监控图可用的产品线列表 ''', description=''' 查询监控图可用的产品线列表。 示例: jdc monitor describe-services ''', ) def describe_services(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.DescribeServicesRequest import DescribeServicesRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = DescribeServicesRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--metric-data-list'], dict(help="""(array: metricDataCm) 数据参数 """, dest='metricDataList', required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 该接口为自定义监控数据上报的接口,方便您将自己采集的时序数据上报到云监控。不同region域名上报不同region的数据,参考:<a href="https://docs.jdcloud.com/cn/monitoring/reporting-monitoring-data">调用说明</a>可上报原始数据和已聚合的统计数据。支持批量上报方式。单次请求最多包含 50 个数据点;数据大小不超过 256k。 ''', description=''' 该接口为自定义监控数据上报的接口,方便您将自己采集的时序数据上报到云监控。不同region域名上报不同region的数据,参考:<a href="https://docs.jdcloud.com/cn/monitoring/reporting-monitoring-data">调用说明</a>可上报原始数据和已聚合的统计数据。支持批量上报方式。单次请求最多包含 50 个数据点;数据大小不超过 256k。。 示例: jdc monitor put-custom-metric-data ''', ) def put_custom_metric_data(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.PutMetricDataRequest import PutMetricDataRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = PutMetricDataRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--metric-data-list'], dict(help="""(array: metricDataCm) 数据参数 """, dest='metricDataList', required=False)), (['--input-json'], dict(help='(json) 以json字符串或文件绝对路径形式作为输入参数。\n字符串方式举例:--input-json \'{"field":"value"}\';\n文件格式举例:--input-json file:///xxxx.json', dest='input_json', required=False)), (['--headers'], dict(help="""(json) 用户自定义Header,举例:'{"x-jdcloud-security-token":"abc","test":"123"}'""", dest='headers', required=False)), ], formatter_class=RawTextHelpFormatter, help=''' 该接口为自定义监控数据上报的接口,方便您将自己采集的时序数据上报到云监控。不同region域名上报不同region的数据,参考:<a href="https://docs.jdcloud.com/cn/monitoring/reporting-monitoring-data">调用说明</a>可上报原始数据和已聚合的统计数据。支持批量上报方式。单次请求最多包含 50 个数据点;数据大小不超过 256k。 ''', description=''' 该接口为自定义监控数据上报的接口,方便您将自己采集的时序数据上报到云监控。不同region域名上报不同region的数据,参考:<a href="https://docs.jdcloud.com/cn/monitoring/reporting-monitoring-data">调用说明</a>可上报原始数据和已聚合的统计数据。支持批量上报方式。单次请求最多包含 50 个数据点;数据大小不超过 256k。。 示例: jdc monitor put-custom-metric-data ''', ) def put_custom_metric_data(self): client_factory = ClientFactory('monitor') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.monitor.apis.PutCustomMetricDataRequest import PutCustomMetricDataRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = PutCustomMetricDataRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e) @expose( arguments=[ (['--api'], dict(help="""(string) api name """, choices=['describe-alarms','create-alarm','describe-alarm','update-alarm','delete-alarms','describe-alarm-contacts','describe-metrics-for-alarm','describe-products-for-alarm','enable-alarms','describe-alarm-history','describe-metrics','describe-one-data-point','describe-metric-data','describe-services','put-custom-metric-data','put-custom-metric-data',], required=True)), ], formatter_class=RawTextHelpFormatter, help=''' 生成单个API接口的json骨架空字符串 ''', description=''' 生成单个API接口的json骨架空字符串。 示例: jdc nc generate-skeleton --api describeContainer ''', ) def generate_skeleton(self): skeleton = Skeleton('monitor', self.app.pargs.api) skeleton.show()
import csv import argparse import sys def get_args(argv): """ Parse arguments from command line """ args = argparse.ArgumentParser() args.add_argument('-u', required = True, metavar = '<bed>', help = 'Patcher output') args.add_argument('-r1', required = True, metavar = '<bed>', help = 'Sim3C R1') args.add_argument('-r2', required = True, metavar = '<bed>', help = 'Sim3C R2') args.add_argument('-wm', action = 'store_true', help = 'Write matched reads to file (default: off)') args.add_argument('-wu', action = 'store_true', help = 'Write unmatched reads to file (default: off)') return(args.parse_args()) def match_reads(u_file, r1_file, r2_file, write_m, write_u): """ Match IDs between PAtChER reads and Sim3C reads Count how many start at the same position """ u = open(u_file, mode='r') r1 = open(r1_file, mode='r') r2 = open(r2_file, mode='r') if write_m: wm = open(u_file.replace('.bed', '_matched.bed'), mode='w') wm_csv = csv.writer(wm, delimiter='\t') if write_u: wu = open(u_file.replace('.bed', '_unmatched.bed'), mode='w') wu_csv = csv.writer(wu, delimiter='\t') wu_csv.writerow(['p.chr','p.start','p.end','id','s.chr','s.start','s.end','dist']) u_csv = csv.reader(u, delimiter='\t') r1_csv = csv.reader(r1, delimiter='\t') r2_csv = csv.reader(r2, delimiter='\t') tcount, mcount = 0, 0 r1_row = r1_csv.__next__() r2_row = r2_csv.__next__() for row in u_csv: rid = row[3].split('_') rnum = rid[1].split(':')[0] if rnum == '1': #look in R1 file while True: if r1_row[3] == row[3]: if r1_row[0] == row[0]: dist = abs(int(row[1])-int(r1_row[1])) else: dist = 1e9 break r1_row = r1_csv.__next__() else: #look in R2 file while True: if r2_row[3] == row[3]: if r2_row[0] == row[0]: dist = abs(int(row[2])-int(r2_row[2])) else: dist = 1e9 break r2_row = r2_csv.__next__() tcount += 1 if dist == 0: mcount += 1 if write_m: wm_csv.writerow(row) elif write_u: if rnum == '1': wu_csv.writerow(row[0:4] + r1_row[0:3] + [dist]) else: wu_csv.writerow(row[0:4] + r2_row[0:3] + [dist]) print('File: ' + u_file) print(f'Total PAtChER reads: {tcount}') print(f'Total matched reads: {mcount}') u.close() r1.close() r2.close() if write_m: wm.close() if write_u: wu.close() if __name__ == '__main__': args = get_args(sys.argv[1:]) match_reads(u_file=args.u, r1_file=args.r1, r2_file=args.r2, write_m=args.wm, write_u=args.wu)
from costf import calculate_cost def schedule_permutation(num_phar): for i in range(1, num_phar - 4 + 1): for j in range(1, num_phar - i - 3 + 1): for k in range(1, num_phar - i - j - 2 + 1): for l in range(1, num_phar - i - j - k - 1 + 1): m = num_phar - i - j - k - l yield [i, j, k, l, m] def naivepermutation(): best = float('inf') for i in schedule_permutation(11): cost = calculate_cost(i) if cost < best: best = cost print(i, cost)
import torch def compute_pairwise_cosine_distances(minibatch_embeddings, full_matrix=False): # cosine_distance = 1 - cosine_similarity # cosine similarity (A,B)= cos(theta) = (A . B ) / (||A||*||B||) , # constrainining embeddings into a hypersphere (unit-sphere) so all norms are 1 reduces this to a matrix multiplication (A.B) D = 1 - torch.mm(minibatch_embeddings, torch.transpose(minibatch_embeddings, 0, 1)) if not full_matrix: tri_idx = torch.triu_indices(minibatch_embeddings.shape[0],minibatch_embeddings.shape[0],1) pairwise_dist_vector = D[tri_idx[0],tri_idx[1]] return pairwise_dist_vector else: return D def compute_pairwise_euclidean_distances(minibatch_embeddings, d, n, full_matrix=False ): # as per https://www.robots.ox.ac.uk/~albanie/notes/Euclidean_distance_trick.pdf alg.1 X_view1 = minibatch_embeddings.reshape(d, n, 1) X_view2 = minibatch_embeddings.reshape(d,1,n) diff_mat = X_view1-X_view2 D = torch.sum(diff_mat**2,dim=0) if not full_matrix: tri_idx = torch.triu_indices(n,n,1) pairwise_dist_vector = D[tri_idx[0],tri_idx[1]] return torch.sqrt(pairwise_dist_vector) else : return torch.sqrt(D)
genetic_code = { 'ttt': 'F', 'tct': 'S', 'tat': 'Y', 'tgt': 'C', 'ttc': 'F', 'tcc': 'S', 'tac': 'Y', 'tgc': 'C', 'tta': 'L', 'tca': 'S', 'taa': '*', 'tga': '*', 'ttg': 'L', 'tcg': 'S', 'tag': '*', 'tgg': 'W', 'ctt': 'L', 'cct': 'P', 'cat': 'H', 'cgt': 'R', 'ctc': 'L', 'ccc': 'P', 'cac': 'H', 'cgc': 'R', 'cta': 'L', 'cca': 'P', 'caa': 'Q', 'cga': 'R', 'ctg': 'L', 'ccg': 'P', 'cag': 'Q', 'cgg': 'R', 'att': 'I', 'act': 'T', 'aat': 'N', 'agt': 'S', 'atc': 'I', 'acc': 'T', 'aac': 'N', 'agc': 'S', 'ata': 'I', 'aca': 'T', 'aaa': 'K', 'aga': 'R', 'atg': 'M', 'acg': 'T', 'aag': 'K', 'agg': 'R', 'gtt': 'V', 'gct': 'A', 'gat': 'D', 'ggt': 'G', 'gtc': 'V', 'gcc': 'A', 'gac': 'D', 'ggc': 'G', 'gta': 'V', 'gca': 'A', 'gaa': 'E', 'gga': 'G', 'gtg': 'V', 'gcg': 'A', 'gag': 'E', 'ggg': 'G' } def translate(nuc_seq, code): prot_seq = '' n = 0 # to avoid to compute len(seq)/3 at each loop # I compute it once and use a reference # it could be expensive if the sequence is very long. cycle = len(nuc_seq)/3 while n < cycle: start = n * 3 end = start + 3 codon = nuc_seq[start:end] codon = codon.lower() if codon in code: prot_seq += code[codon] else: raise RuntimeError("unknow codon: " + codon) n += 1 return prot_seq def translate2(nuc_seq, code, phase = 1): prot_seq = '' if 0 < phase < 4 : start = phase - 1 elif -4 < phase < 0: start = -phase - 1 nuc_seq = nuc_seq[::-1] # an other way to determine the end of looping stop_iteration = len(nuc_seq) while (start + 2) < stop_iteration: end = start + 3 codon = nuc_seq[start:end].lower() if codon in code: prot_seq += code[codon] else: raise RuntimeError("unknow codon") start += 3 return prot_seq
from typing import Any, Callable, List, Dict, Union, Optional, Sequence, Tuple from numpy import ndarray from collections import OrderedDict from scipy import sparse import os import sklearn import numpy import typing # Custom import commands if any from sklearn.preprocessing import StandardScaler from d3m.container.numpy import ndarray as d3m_ndarray from d3m.container import DataFrame as d3m_dataframe from d3m.metadata import hyperparams, params, base as metadata_base from d3m import utils from d3m.base import utils as base_utils from d3m.exceptions import PrimitiveNotFittedError from d3m.primitive_interfaces.base import CallResult, DockerContainer # from d3m.primitive_interfaces.supervised_learning import SupervisedLearnerPrimitiveBase from d3m.primitive_interfaces.unsupervised_learning import UnsupervisedLearnerPrimitiveBase from d3m.primitive_interfaces.transformer import TransformerPrimitiveBase from d3m.primitive_interfaces.base import ProbabilisticCompositionalityMixin, ContinueFitMixin from d3m import exceptions import pandas from d3m import container, utils as d3m_utils import uuid Inputs = d3m_dataframe # Inputs = container.Dataset Outputs = d3m_dataframe __all__ = ('SKStandardScalerPrimitive',) class Params(params.Params): scale_: Optional[ndarray] mean_: Optional[ndarray] var_: Optional[ndarray] n_samples_seen_: Optional[numpy.int64] # Keep previous input_column_names: Optional[Any] target_names_: Optional[Sequence[Any]] training_indices_: Optional[Sequence[int]] target_column_indices_: Optional[Sequence[int]] target_columns_metadata_: Optional[List[OrderedDict]] class Hyperparams(hyperparams.Hyperparams): # Added by Guanchu with_mean = hyperparams.UniformBool( default=True, description='If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory.', semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'] ) with_std = hyperparams.UniformBool( default=True, description='If True, scale the data to unit variance (or equivalently, unit standard deviation).', semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'] ) # copy = hyperparams.UniformBool( # default=True, # description='If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned.', # semantic_types=['https://metadata.datadrivendiscovery.org/types/TuningParameter'] # ) # Keep previous use_columns = hyperparams.Set( elements=hyperparams.Hyperparameter[int](-1), default=(), semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="A set of column indices to force primitive to operate on. If any specified column cannot be parsed, it is skipped.", ) exclude_columns = hyperparams.Set( elements=hyperparams.Hyperparameter[int](-1), default=(), semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="A set of column indices to not operate on. Applicable only if \"use_columns\" is not provided.", ) return_result = hyperparams.Enumeration( values=['append', 'replace', 'new'], default='new', semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Should parsed columns be appended, should they replace original columns, or should only parsed columns be returned? This hyperparam is ignored if use_semantic_types is set to false.", ) use_semantic_types = hyperparams.UniformBool( default=False, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Controls whether semantic_types metadata will be used for filtering columns in input dataframe. Setting this to false makes the code ignore return_result and will produce only the output dataframe" ) add_index_columns = hyperparams.UniformBool( default=False, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Also include primary index columns if input data has them. Applicable only if \"return_result\" is set to \"new\".", ) error_on_no_input = hyperparams.UniformBool( default=True, semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'], description="Throw an exception if no input column is selected/provided. Defaults to true to behave like sklearn. To prevent pipelines from breaking set this to False.", ) return_semantic_type = hyperparams.Enumeration[str]( values=['https://metadata.datadrivendiscovery.org/types/Attribute', 'https://metadata.datadrivendiscovery.org/types/ConstructedAttribute'], default='https://metadata.datadrivendiscovery.org/types/Attribute', description='Decides what semantic type to attach to generated attributes', semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'] ) class SKStandardScalerPrimitive(UnsupervisedLearnerPrimitiveBase[Inputs, Outputs, Params, Hyperparams]): """ Standardize features by removing the mean and scaling to unit variance. See `sklearn documentation <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html?highlight=standardscaler#sklearn.preprocessing.StandardScaler>`_ for more details. Parameters ---------- with_mean : bool If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : bool If True, scale the data to unit variance (or equivalently, unit standard deviation). Attributes ---------- scale_: ndarray or None, shape (n_features,) Per feature relative scaling of the data. This is calculated using np.sqrt(var_). Equal to None when with_std=False. mean_: ndarray or None, shape (n_features,) The mean value for each feature in the training set. Equal to None when with_mean=False. var_: ndarray or None, shape (n_features,) The variance for each feature in the training set. Used to compute scale_. Equal to None when with_std=False. n_samples_seen_: int or array, shape (n_features,) The number of samples processed by the estimator for each feature. If there are not missing samples, the n_samples_seen will be an integer, otherwise it will be an array. Will be reset on new calls to fit, but increments across partial_fit calls. """ metadata = metadata_base.PrimitiveMetadata({ "__author__": "DATA Lab @Taxes A&M University", "name": "Standard_scaler", "python_path": "d3m.primitives.tods.timeseries_processing.transformation.standard_scaler", "source": { 'name': "DATA Lab @ Taxes A&M University", 'contact': 'mailto:khlai037@tamu.edu', }, "hyperparams_to_tune": ['with_mean', 'with_std'], "algorithm_types": [ metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE, ], "primitive_family": metadata_base.PrimitiveFamily.DATA_TRANSFORMATION, "version": "0.0.1", "id": str(uuid.uuid3(uuid.NAMESPACE_DNS, 'SKStandardScaler')), }) def __init__(self, *, hyperparams: Hyperparams, random_seed: int = 0, docker_containers: Dict[str, DockerContainer] = None) -> None: super().__init__(hyperparams=hyperparams, random_seed=random_seed, docker_containers=docker_containers) # False self._clf = StandardScaler(with_mean=self.hyperparams['with_mean'], with_std=self.hyperparams['with_std'], # copy=self.hyperparams['copy'], ) self._inputs = None self._outputs = None self._training_inputs = None self._training_outputs = None self._target_names = None self._training_indices = None self._target_column_indices = None self._target_columns_metadata: List[OrderedDict] = None self._input_column_names = None self._fitted = False # print(self._clf.get_params(deep=True)) # print(getattr(self._clf, 'lambdas_')) # print(dir(self._clf)) def set_training_data(self, *, inputs: Inputs) -> None: """ Set training data for Standardizer. Args: inputs: Container DataFrame Returns: None """ self._inputs = inputs self._fitted = False def fit(self, *, timeout: float = None, iterations: int = None) -> CallResult[None]: """ Fit model with training data. Args: *: Container DataFrame. Time series data up to fit. Returns: None """ if self._fitted: # pragma: no cover return CallResult(None) self._training_inputs, self._training_indices = self._get_columns_to_fit(self._inputs, self.hyperparams) self._input_column_names = self._training_inputs.columns if self._training_inputs is None: # pragma: no cover return CallResult(None) if len(self._training_indices) > 0: self._clf.fit_transform(self._training_inputs) self._fitted = True else: # pragma: no cover if self.hyperparams['error_on_no_input']: raise RuntimeError("No input columns were selected") self.logger.warn("No input columns were selected") # print(self._training_inputs.std()) return CallResult(None) def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> CallResult[Outputs]: """ Process the testing data. Args: inputs: Container DataFrame. Time series data up to standardlize. Returns: Container DataFrame after standardlization. """ if not self._fitted: raise PrimitiveNotFittedError("Primitive not fitted.") sk_inputs = inputs if self.hyperparams['use_semantic_types']: # pragma: no cover sk_inputs = inputs.iloc[:, self._training_indices] output_columns = [] if len(self._training_indices) > 0: sk_output = self._clf.transform(sk_inputs) if sparse.issparse(sk_output): # pragma: no cover sk_output = sk_output.toarray() outputs = self._wrap_predictions(inputs, sk_output) if len(outputs.columns) == len(self._input_column_names): outputs.columns = self._input_column_names output_columns = [outputs] else: # pragma: no cover if self.hyperparams['error_on_no_input']: raise RuntimeError("No input columns were selected") self.logger.warn("No input columns were selected") # print(outputs.metadata.to_internal_simple_structure()) outputs = base_utils.combine_columns(return_result=self.hyperparams['return_result'], add_index_columns=self.hyperparams['add_index_columns'], inputs=inputs, column_indices=self._training_indices, columns_list=output_columns) # print(inputs) # print(outputs) # print(inputs.metadata.to_internal_simple_structure()) # print(outputs.metadata.to_internal_simple_structure()) return CallResult(outputs) def get_params(self) -> Params: """ Return parameters. Args: None Returns: class Params """ if not self._fitted: return Params( scale_=None, mean_=None, var_=None, n_sample_seen_=None, # Keep previous input_column_names=self._input_column_names, training_indices_=self._training_indices, target_names_=self._target_names, target_column_indices_=self._target_column_indices, target_columns_metadata_=self._target_columns_metadata ) # print(self._clf.n_samples_seen_.shape) # print(type(self._clf.n_samples_seen_)) # print(type(self._clf.mean_)) return Params( scale_=getattr(self._clf, 'scale_', None), mean_=getattr(self._clf, 'mean_', None), var_=getattr(self._clf, 'var_', None), n_samples_seen_=getattr(self._clf, 'n_samples_seen_', None), # Keep previous input_column_names=self._input_column_names, training_indices_=self._training_indices, target_names_=self._target_names, target_column_indices_=self._target_column_indices, target_columns_metadata_=self._target_columns_metadata, ) def set_params(self, *, params: Params) -> None: """ Set parameters for Standardizer. Args: params: class Params Returns: None """ self._clf.scale_ = params['scale_'] self._clf.mean_ = params['mean_'] self._clf.var_ = params['var_'] self._clf.n_samples_seen_ = params['n_samples_seen_'] # Keep previous self._input_column_names = params['input_column_names'] self._training_indices = params['training_indices_'] self._target_names = params['target_names_'] self._target_column_indices = params['target_column_indices_'] self._target_columns_metadata = params['target_columns_metadata_'] if params['scale_'] is not None: self._fitted = True if params['mean_'] is not None: self._fitted = True if params['var_'] is not None: self._fitted = True if params['n_samples_seen_'] is not None: self._fitted = True @classmethod def _get_columns_to_fit(cls, inputs: Inputs, hyperparams: Hyperparams): # pragma: no cover """ Select columns to fit. Args: inputs: Container DataFrame hyperparams: d3m.metadata.hyperparams.Hyperparams Returns: list """ if not hyperparams['use_semantic_types']: return inputs, list(range(len(inputs.columns))) inputs_metadata = inputs.metadata def can_produce_column(column_index: int) -> bool: return cls._can_produce_column(inputs_metadata, column_index, hyperparams) columns_to_produce, columns_not_to_produce = base_utils.get_columns_to_use(inputs_metadata, use_columns=hyperparams['use_columns'], exclude_columns=hyperparams[ 'exclude_columns'], can_use_column=can_produce_column) return inputs.iloc[:, columns_to_produce], columns_to_produce # return columns_to_produce @classmethod def _can_produce_column(cls, inputs_metadata: metadata_base.DataMetadata, column_index: int, hyperparams: Hyperparams) -> bool: # pragma: no cover """ Output whether a column can be processed. Args: inputs_metadata: d3m.metadata.base.DataMetadata column_index: int Returns: bool """ column_metadata = inputs_metadata.query((metadata_base.ALL_ELEMENTS, column_index)) accepted_structural_types = (int, float, numpy.integer, numpy.float64) accepted_semantic_types = set() accepted_semantic_types.add("https://metadata.datadrivendiscovery.org/types/Attribute") if not issubclass(column_metadata['structural_type'], accepted_structural_types): return False semantic_types = set(column_metadata.get('semantic_types', [])) # print(semantic_types) if len(semantic_types) == 0: cls.logger.warning("No semantic types found in column metadata") return False # Making sure all accepted_semantic_types are available in semantic_types if len(accepted_semantic_types - semantic_types) == 0: return True return False @classmethod def _get_target_columns_metadata(cls, outputs_metadata: metadata_base.DataMetadata, hyperparams) -> List[OrderedDict]: # pragma: no cover """ Output metadata of selected columns. Args: outputs_metadata: metadata_base.DataMetadata hyperparams: d3m.metadata.hyperparams.Hyperparams Returns: d3m.metadata.base.DataMetadata """ outputs_length = outputs_metadata.query((metadata_base.ALL_ELEMENTS,))['dimension']['length'] target_columns_metadata: List[OrderedDict] = [] for column_index in range(outputs_length): column_metadata = OrderedDict(outputs_metadata.query_column(column_index)) # Update semantic types and prepare it for predicted targets. semantic_types = set(column_metadata.get('semantic_types', [])) semantic_types_to_remove = set([]) add_semantic_types = [] add_semantic_types.add(hyperparams["return_semantic_type"]) semantic_types = semantic_types - semantic_types_to_remove semantic_types = semantic_types.union(add_semantic_types) column_metadata['semantic_types'] = list(semantic_types) target_columns_metadata.append(column_metadata) return target_columns_metadata @classmethod def _update_predictions_metadata(cls, inputs_metadata: metadata_base.DataMetadata, outputs: Optional[Outputs], target_columns_metadata: List[OrderedDict]) -> metadata_base.DataMetadata: # pragma: no cover """ Updata metadata for selected columns. Args: inputs_metadata: metadata_base.DataMetadata outputs: Container Dataframe target_columns_metadata: list Returns: d3m.metadata.base.DataMetadata """ outputs_metadata = metadata_base.DataMetadata().generate(value=outputs) for column_index, column_metadata in enumerate(target_columns_metadata): column_metadata.pop("structural_type", None) outputs_metadata = outputs_metadata.update_column(column_index, column_metadata) return outputs_metadata def _wrap_predictions(self, inputs: Inputs, predictions: ndarray) -> Outputs: # pragma: no cover """ Wrap predictions into dataframe Args: inputs: Container Dataframe predictions: array-like data (n_samples, n_features) Returns: Dataframe """ outputs = d3m_dataframe(predictions, generate_metadata=True) target_columns_metadata = self._copy_inputs_metadata(inputs.metadata, self._training_indices, outputs.metadata, self.hyperparams) outputs.metadata = self._update_predictions_metadata(inputs.metadata, outputs, target_columns_metadata) # print(outputs.metadata.to_internal_simple_structure()) return outputs @classmethod def _copy_inputs_metadata(cls, inputs_metadata: metadata_base.DataMetadata, input_indices: List[int], outputs_metadata: metadata_base.DataMetadata, hyperparams): # pragma: no cover """ Updata metadata for selected columns. Args: inputs_metadata: metadata.base.DataMetadata input_indices: list outputs_metadata: metadata.base.DataMetadata hyperparams: d3m.metadata.hyperparams.Hyperparams Returns: d3m.metadata.base.DataMetadata """ outputs_length = outputs_metadata.query((metadata_base.ALL_ELEMENTS,))['dimension']['length'] target_columns_metadata: List[OrderedDict] = [] for column_index in input_indices: column_name = inputs_metadata.query((metadata_base.ALL_ELEMENTS, column_index)).get("name") if column_name is None: column_name = "output_{}".format(column_index) column_metadata = OrderedDict(inputs_metadata.query_column(column_index)) semantic_types = set(column_metadata.get('semantic_types', [])) semantic_types_to_remove = set([]) add_semantic_types = set() add_semantic_types.add(hyperparams["return_semantic_type"]) semantic_types = semantic_types - semantic_types_to_remove semantic_types = semantic_types.union(add_semantic_types) column_metadata['semantic_types'] = list(semantic_types) column_metadata["name"] = str(column_name) target_columns_metadata.append(column_metadata) # If outputs has more columns than index, add Attribute Type to all remaining if outputs_length > len(input_indices): for column_index in range(len(input_indices), outputs_length): column_metadata = OrderedDict() semantic_types = set() semantic_types.add(hyperparams["return_semantic_type"]) column_name = "output_{}".format(column_index) column_metadata["semantic_types"] = list(semantic_types) column_metadata["name"] = str(column_name) target_columns_metadata.append(column_metadata) return target_columns_metadata SKStandardScalerPrimitive.__doc__ = SKStandardScalerPrimitive.__doc__
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT import time import board import busio import neopixel from adafruit_seesaw.seesaw import Seesaw from digitalio import DigitalInOut import adafruit_requests as requests import adafruit_esp32spi.adafruit_esp32spi_socket as socket from adafruit_esp32spi import adafruit_esp32spi URL = "https://api.thingspeak.com/update?api_key={token}&field1={value}" i2c = busio.I2C(board.GP9, board.GP8) ss = Seesaw(i2c, addr=0x36) pixel_pin = board.GP0 num_pixels = 1 ORDER = neopixel.RGBW pixels = neopixel.NeoPixel( pixel_pin, num_pixels, brightness=0.2, auto_write=False, pixel_order=ORDER ) esp32_cs = DigitalInOut(board.GP7) esp32_ready = DigitalInOut(board.GP10) esp32_reset = DigitalInOut(board.GP11) # Get wifi details and more from a secrets.py file try: from secrets import secrets except ImportError: print("WiFi secrets are kept in secrets.py, please add them there!") raise spi = busio.SPI(board.GP18, board.GP19, board.GP16) esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset) requests.set_socket(socket, esp) if esp.status == adafruit_esp32spi.WL_IDLE_STATUS: print("ESP32 found and in idle mode") print("Firmware vers.", esp.firmware_version) print("MAC addr:", [hex(i) for i in esp.MAC_address]) print("Connecting to AP...") while not esp.is_connected: try: esp.connect_AP(secrets["ssid"], secrets["password"]) except RuntimeError as e: print("could not connect to AP, retrying: ", e) continue print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi) print("My IP address is", esp.pretty_ip(esp.ip_address)) token = secrets["thingspeak_token"] while True: # read moisture level touch = ss.moisture_read() # read temperature from the temperature sensor temp = ss.get_temp() print("temp: " + str(temp) + " moisture: " + str(touch)) if touch < 500: pixels.fill((0, 0, 255, 0)) pixels.show() time.sleep(0.250) pixels.fill((0, 0, 0, 0)) pixels.show() time.sleep(0.250) try: r = requests.get(URL.format(token=token, value=str(touch))) except: print("Failed to publish value") else: print("-" * 40) print(r.json()) print("-" * 40) r.close() time.sleep(2)
""" This file is part of python-tdbus. Python-tdbus is free software available under the terms of the MIT license. See the file "LICENSE" that was provided together with this source file for the licensing terms. Copyright (c) 2012 the python-tdbus authors. See the file "AUTHORS" for a complete list. """ import unittest from tdbus import SimpleDBusConnection, GEventDBusConnection, DBUS_BUS_SESSION from .base import BaseTest class TestSimpleDBusConnection(unittest.TestCase, BaseTest): """Test suite for D-BUS connection.""" def test_connection_open(self): conn = SimpleDBusConnection(DBUS_BUS_SESSION) conn.open(DBUS_BUS_SESSION) conn.close() def test_connection_init(self): conn = SimpleDBusConnection(DBUS_BUS_SESSION) conn.close() def test_connection_multiple_open(self): conn = SimpleDBusConnection(DBUS_BUS_SESSION) conn.close() conn.open(DBUS_BUS_SESSION) conn.close() def test_get_unique_name(self): conn = SimpleDBusConnection(DBUS_BUS_SESSION) name = conn.get_unique_name() assert name.startswith(':') conn.close() class TestGeventDBusConnection(unittest.TestCase, BaseTest): """Test suite for D-BUS connection.""" def test_connection_open(self): conn = GEventDBusConnection(DBUS_BUS_SESSION) conn.open(DBUS_BUS_SESSION) conn.close() def test_connection_init(self): conn = GEventDBusConnection(DBUS_BUS_SESSION) conn.close() def test_connection_multiple_open(self): conn = GEventDBusConnection(DBUS_BUS_SESSION) conn.close() conn.open(DBUS_BUS_SESSION) conn.close() def test_get_unique_name(self): conn = GEventDBusConnection(DBUS_BUS_SESSION) name = conn.get_unique_name() assert name.startswith(':') conn.close()
''' Выполнить задание уровня pro Написать программу “Угадай число”. Программа должна с помощью наводящих вопросов отгадать число. ''' # https://github.com/vv31415926/python_lesson_02_Pro # Угадай число import random num = random.randint( 1,1000000 ) print('Игрок это не замечает: задумано '+str(num) ) print( 'Отгадайте заданное компьютером целое положительное число. (Отказ угадать:0)') count=1 while True: s = input( 'Попытка {}:'.format(count) ) if s.isdigit() == False: print( 'Ошибка ввода. Ввести надо целое положительное число') continue n = int( s ) if n == 0: print( 'Вы не захотели угадать число... Прощайте!') break if n > num: print( 'Много') elif n < num: print( 'Мало') else: print( 'Задуманное число {} угадано за {} попыток!'.format( n,count )) break count += 1
import threading import os from boottest import local_dict from datetime import datetime, timedelta from functools import wraps import traceback import json import hashlib from django.conf import settings __all__ = [ 'STATE_DEBUG', 'STATE_INFO', 'STATE_WARNING', 'STATE_ERROR', 'operation_writer', 'except_captured', 'record_traceback', ] # 状态常量 STATE_DEBUG = 'Debug' STATE_INFO = 'Info' STATE_WARNING = 'Warning' STATE_ERROR = 'Error' # 线程锁,用于对文件写入的排他性 __lock = threading.RLock() # 记录最低等级 __log_level = STATE_INFO # 文件操作体系 __log_root = "logstore" if not os.path.exists(__log_root): os.mkdir(__log_root) __log_root_path = os.path.join(os.getcwd(), __log_root) if os.getenv("YPPF_ENV") in ["PRODUCT", "TEST"]: __log_root_path = os.environ["YPPF_LOG_DIR"] __log_user = "user_detail" if not os.path.exists(os.path.join(__log_root_path, __log_user)): os.mkdir(os.path.join(__log_root_path, __log_user)) __log_user_path = os.path.join(__log_root_path, __log_user) __log_detailed_path = os.path.join(__log_root_path, "traceback_record") def status_enabled(status_code: str): # 待完善,半成品 level_up = [STATE_DEBUG, STATE_INFO, STATE_WARNING, STATE_ERROR] try: return level_up.index(status_code) >= level_up.index(__log_level) except: return False # 通用日志写入程序 写入时间(datetime.now()),操作主体(Sid),操作说明(Str),写入函数(Str) # 参数说明:第一为Sid也是文件名,第二位消息,第三位来源的函数名(类别) # 如果是系统相关的 请写local_dict["system_log"] def operation_writer(user, message, source=None, status_code: str=STATE_INFO): if not status_enabled(status_code): return __lock.acquire() try: timestamp = str(datetime.now()) source = str(source).ljust(30) status = status_code.ljust(10) message = f"{timestamp} {source}{status}: {message}\n" with open(os.path.join(__log_user_path, f"{str(user)}.log"), mode="a") as journal: journal.write(message) if status_code == STATE_ERROR and local_dict.get('debug_stuids'): from app.wechat_send import send_wechat receivers = list(local_dict['debug_stuids']) if isinstance(receivers, str): receivers = receivers.replace(' ', '').split(',') receivers = list(map(str, receivers)) send_message = message if len(send_message) > 400: send_message = '\n'.join([ send_message[:300], '...', send_message[-100:], '详情请查看log' ]) send_wechat(receivers, f'YPPF {settings.MY_ENV}发生异常\n' + send_message, card=len(message) < 200) except Exception as e: # 最好是发送邮件通知存在问题 # TODO: print(e) finally: __lock.release() def except_captured(return_value=None, except_type=Exception, log=True, show_traceback=False, record_args=False, record_user=False, record_request_args=False, source='utils[except_captured]', status_code=STATE_ERROR): """ Decorator that captures exception and log, raise or return specific value if `return_value` is assigned. """ def actual_decorator(view_function): @wraps(view_function) def _wrapped_view(*args, **kwargs): try: return view_function(*args, **kwargs) except except_type as e: if log: msg = f'发生意外的错误:{e}' if record_args: msg += f', 参数为:{args=}, {kwargs=}' if record_user: try: user = None if not args: if 'request' in kwargs.keys(): user = kwargs["request"].user elif 'user' in kwargs.keys(): user = kwargs["user"] else: user = args[0].user msg += f', 用户为{user.username}' try: msg += f', 姓名: {user.naturalperson}' except: pass try: msg += f', 组织名: {user.organization}' except: pass except: msg += f', 尝试追踪用户, 但未能找到该参数' if record_request_args: try: request = None if not args: request = kwargs["request"] else: request = args[0] infos = [] infos.append(f'请求方式: {request.method}, 请求地址: {request.path}') if request.GET: infos.append( 'GET参数: ' + ';'.join([f'{k}: {v}' for k, v in request.GET.items()]) ) if request.POST: infos.append( 'POST参数: ' + ';'.join([f'{k}: {v}' for k, v in request.POST.items()]) ) msg = msg + '\n' + '\n'.join(infos) except: msg += f'\n尝试记录请求体, 但未能找到该参数' if show_traceback: msg += '\n详细信息:\n\t' msg += traceback.format_exc().replace('\n', '\n\t') operation_writer(local_dict['system_log'], msg, source, status_code) if return_value is not None: return return_value raise return _wrapped_view return actual_decorator def record_traceback(request, e): '''尽量避免使用本函数''' d = {} d["time"] = datetime.now().strftime("%Y/%m/%d-%H%M") d["username"] = request.user.username d["request_path"] = request.path if request.GET: d["GET_Param"] = request.GET if request.POST: d["POST_Param"] = request.POST d["traceback"] = traceback.format_exc() hash_value = hashlib.sha1(json.dumps(d).encode()).digest().hex() __log_dir = os.path.join(__log_detailed_path, request.user.username) __log_path = os.path.join(__log_dir, hash_value + ".json") os.makedirs(__log_dir, exist_ok=True) with open(__log_path, "w") as f: json.dump(d, f) if local_dict.get('debug_stuids'): from app.wechat_send import send_wechat receivers = list(local_dict['debug_stuids']) if isinstance(receivers, str): receivers = receivers.replace(' ', '').split(',') receivers = list(map(str, receivers)) message = f"错误类型:{type(e)}\n + 记录路径:{__log_path}\n" send_wechat(receivers, f'YPPF {settings.MY_ENV} 记录到错误详情\n' + f"记录路径:{__log_path}")
import network import ujson import exception def connect_to_access_point(wifi_config_filename='wifi_config.json'): try: with open(wifi_config_filename) as f: json = f.read() except OSError: raise exception.FileNotFoundError(wifi_config_filename) config = ujson.loads(json) ssid = config['ssid'] password = config['key'] station = network.WLAN(network.STA_IF) if station.isconnected(): print('connection already exists') return station.ifconfig() station.active(True) station.connect(ssid, password) while not station.isconnected(): pass print('established a new connection') return station.ifconfig()
# Generated by Django 3.2.7 on 2021-10-19 04:33 from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('authors', '0017_alter_author_user'), ] operations = [ migrations.AlterField( model_name='author', name='id', field=models.CharField(default=uuid.uuid4, editable=False, max_length=200, primary_key=True, serialize=False), ), migrations.AlterField( model_name='inboxobject', name='object_id', field=models.CharField(max_length=200, null=True), ), ]
from setuptools import find_packages from setuptools import setup setup( name="estimagic", version="0.1.2", description="Tools for the estimation of (structural) econometric models.", long_description=""" Estimagic is a Python package that helps to build high-quality and user friendly implementations of (structural) econometric models. It is designed with large structural models in mind. However, it is also useful for any other estimator that numerically minimizes or maximizes a criterion function (Extremum Estimator). Examples are maximum likelihood estimation, generalized method of moments, method of simulated moments and indirect inference.""", license="BSD", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: BSD License", "Development Status :: 4 - Beta", ], keywords=["econometrics", "statistics", "extremum estimation", "optimization"], url="https://github.com/OpenSourceEconomics/estimagic", author="Janos Gabler", author_email="janos.gabler@gmail.com", packages=find_packages(exclude=["tests/*"]), entry_points={"console_scripts": ["estimagic=estimagic.cli:cli"]}, zip_safe=False, package_data={"estimagic": ["optimization/algo_dict.json"]}, include_package_data=True, )
import re import string with open("data/input_4.txt", "r") as f: data = list() one_pass = list() for line in f.readlines(): if line == "\n": data.append({i.split(":")[0]: i.split(":")[1] for i in one_pass}) one_pass = [] continue op = line.replace("\n", "").split() one_pass.extend(op) # def part_1(): # northpole_valid = sorted(["byr", "iyr", "eyr", "hgt", "hcl", "ecl", "pid"]) # passport_valid = sorted(["byr", "iyr", "eyr", "hgt", "hcl", "ecl", "pid", "cid"]) # valid_count = 0 # for d in data: # if ( # sorted(d.keys()) == northpole_valid or # sorted(d.keys()) == passport_valid # ): # valid_count+=1 # return valid_count # Optimized one line solution def part_1(): valid_fields = sorted(["byr", "iyr", "eyr", "hgt", "hcl", "ecl", "pid"]) return [all([field in passport for field in valid_fields]) for passport in data].count(True) a_f = [*string.ascii_lowercase[:6]] digits = [*string.digits] def part_2(): northpole_valid = sorted(["byr", "iyr", "eyr", "hgt", "hcl", "ecl", "pid"]) passport_valid = sorted(["byr", "iyr", "eyr", "hgt", "hcl", "ecl", "pid", "cid"]) valid_count = 0 for d in data: valid = True try: if ( sorted(d.keys()) == northpole_valid or sorted(d.keys()) == passport_valid ): for k, v in d.items(): if k == "byr": if len(v) == 4: assert int(v) >= 1920 and int(v) <=2002 if k == "iyr": if len(v) == 4: assert int(v) >= 2010 and int(v) <=2020 if k == "eyr": if len(v) == 4: assert int(v) >= 2020 and int(v) <=2030 if k == "hgt": match = re.match(r"([0-9]+)([a-z]+)", v, re.I) if match: items = match.groups() assert items[1] == "cm" or items[1] == "in" if items[1] == "cm": assert int(items[0]) >= 150 and int(items[0]) <=193 elif items[1] == "in": assert int(items[0]) >= 59 and int(items[0]) <=76 else: raise AssertionError if k == "hcl": match = re.match(r"^#([A-Fa-f0-9]{6})", v, re.I) if match is None: raise AssertionError if k == "ecl": assert v in ['amb', 'blu', 'brn', 'gry', 'grn', 'hzl', 'oth'] if k == "pid": assert len(v) == 9 match = re.match(r"([0-9]{9})", v) if match is None: raise AssertionError if valid: valid_count+=1 except AssertionError: valid = False return valid_count # print(part_2()) if __name__=="__main__": p1 = part_1() p2 = part_2() print("The Solution to part 1 is : {}".format(p1)) print("The Solution to part 2 is : {}".format(p2))
import ntpath import os import pickle from functools import partial from pathlib import Path from time import sleep import peewee from kivy.app import App from kivy.clock import Clock from kivy.event import EventDispatcher from kivy.logger import Logger from kivy.metrics import dp from kivy.properties import ( BooleanProperty, DictProperty, ListProperty, NumericProperty, ObjectProperty, StringProperty, ) from kivymd.toast.kivytoast.kivytoast import toast from kivy.network.urlrequest import UrlRequest from libs.utils.comic_server_conn import ComicServerConn from libs.utils.db_functions import Comic, ComicIndex, ReadingList from kivymd.uix.dialog import MDDialog CHECKBOX_STATE_BOOL = {"normal": False, "down": True} READINGLIST_DB_KEYS = [ "name", "cb_limit_active", "limit_num", "cb_only_read_active", "cb_purge_active", "cb_optimize_size_active", "sw_syn_this_active", "end_last_sync_num", "totalCount", "data", ] READINGLIST_SETTINGS_KEYS = [ "cb_limit_active", "limit_num", "cb_only_read_active", "cb_purge_active", "cb_optimize_size_active", "sw_syn_this_active", ] COMIC_DB_KEYS = [ "Id", "Series", "Number", "Volume", "Year", "Month", "UserCurrentPage", "UserLastPageRead", "PageCount", "Summary", "FilePath", "local_file", "data", "is_sync", ] def get_size(start_path="."): total_size = 0 for dirpath, dirnames, filenames in os.walk(start_path): for f in filenames: fp = os.path.join(dirpath, f) # skip if it is symbolic link if not os.path.islink(fp): total_size += os.path.getsize(fp) return total_size class ComicBook(EventDispatcher): """ class representing a single comic """ Id = StringProperty() __str__ = StringProperty() slug = StringProperty() name = StringProperty() Number = StringProperty() Series = StringProperty() date = StringProperty() Year = NumericProperty() Month = NumericProperty() UserLastPageRead = NumericProperty() UserCurrentPage = NumericProperty() PageCount = NumericProperty() Summary = StringProperty() FilePath = StringProperty() Volume = NumericProperty() readlist_obj = ObjectProperty() local_file = StringProperty("None") is_sync = BooleanProperty(False) data = DictProperty() order_index = NumericProperty() def __init__( self, data=None, readlist_obj=None, comic_Id="", comic_index=0, mode="Server", *args, **kwargs, ): self.readlist_obj = readlist_obj if mode in ("Server", "FileOpen"): if comic_Id == "": comic_data = data self.data = comic_data self.Id = comic_data["Id"] self.__str__ = "{} #{}".format( comic_data["Series"], comic_data["Number"] ) self.slug = str(comic_data["Id"]) self.name = f"{comic_data['Series']} #{comic_data['Number']}" self.Number = comic_data["Number"] self.Series = comic_data["Series"] self.date = f"{comic_data['Month']}/{comic_data['Year']}" self.Year = comic_data["Year"] self.Month = comic_data["Month"] self.UserLastPageRead = comic_data["UserLastPageRead"] self.UserCurrentPage = comic_data["UserCurrentPage"] self.PageCount = comic_data["PageCount"] self.Summary = comic_data["Summary"] self.FilePath = comic_data["FilePath"] self.Volume = comic_data["Volume"] app = App.get_running_app() self.comic_jsonstore = app.comic_db self.readlist_obj = readlist_obj self.comic_index = comic_index self.local_file = "" if mode != "FileOpen": Clock.schedule_once( lambda dt: self.get_or_create_db_item()) if mode == "db_data": self.Id = comic_Id if mode != "FileOpen": # Clock.schedule_once( # lambda dt: self.get_or_create_db_item()) self.get_or_create_db_item() def get_or_create_db_item(self): tmp_defaults = {} for key in COMIC_DB_KEYS: if key == "comic_index": pass elif key == "data": new_dict = {k: self.data[k] for k in self.data.keys()} tmp_defaults["data"] = new_dict else: tmp_defaults[key] = getattr(self, key) db_item, created = Comic.get_or_create( Id=self.Id, defaults=tmp_defaults ) if created is True: rl = self.readlist_obj db_item.comic_index.index = self.comic_index comic_index_db, created_index = ComicIndex.get_or_create( comic=db_item, readinglist=rl.db, index=self.comic_index ) db_item.save() if rl.slug not in [item.slug for item in db_item.readinglists]: rl.db.comics.add(db_item) else: for key in COMIC_DB_KEYS: if key == "comic_index": pass else: setattr(self, key, getattr(db_item, key)) self.__str__ = f"{db_item.Series} #{db_item.Number}" self.name = self.__str__ self.date = f"{db_item.Month}/{db_item.Year}" self.slug = str(self.Id) self.comic_index = db_item.comic_index.select( ReadingList.slug == self.readlist_obj.slug ) def update(self, key_list=()): for key, value in key_list: print(f"key:{key}\nval:{value}") def callback(self, store, key, result): pass def set_is_sync(self): try: db_item = ComicIndex.get( ComicIndex.comic == self.Id, ComicIndex.readinglist == self.readlist_obj.slug, ) if db_item: if db_item.is_sync: setattr(self, "is_sync", db_item.is_sync) except peewee.IntegrityError: Logger.error("Somthing went wrong") class ComicReadingList(EventDispatcher): # ids = DictProperty({}) name = StringProperty() comics = ListProperty() data = DictProperty() slug = StringProperty() comic_db = ObjectProperty() comic_json = ListProperty() cb_only_read_active = BooleanProperty(False) cb_only_read_active = BooleanProperty(False) cb_purge_active = BooleanProperty(False) cb_optimize_size_active = BooleanProperty(False) cb_limit_active = BooleanProperty(False) limit_num = NumericProperty(25) sw_syn_this_active = BooleanProperty(False) comic_db_in = BooleanProperty(False) db = ObjectProperty() comics_loaded = ObjectProperty(False) last_comic_read = NumericProperty() start_last_sync_num = NumericProperty(0) end_last_sync_num = NumericProperty(0) totalCount = NumericProperty() pickled_data = ObjectProperty() sync_list = ListProperty() def __init__(self, name="", data=None, slug="", mode="Server"): self.slug = slug self.name = name self.event = None if data != "db_data": self.pickled_data = pickle.dumps(data, -1) self.data = pickle.loads(self.pickled_data) self.comic_json = self.data["items"] if mode != "FileOpen": if name == "Single_FileLoad": self.totalCount = 0 else: self.totalCount = self.data["totalCount"] if mode != "FileOpen": self.get_or_create_db_item(mode=mode) def add_comic(self, comic, index=0): """ Add Single comic book to this colection """ self.comics.insert(0, comic) def get_or_create_db_item(self, mode): tmp_defaults = {} try: for key in READINGLIST_DB_KEYS: if key == "data": new_dict = {k: self.data[k] for k in self.data.keys()} tmp_defaults["data"] = new_dict else: tmp_defaults[key] = getattr(self, key) db_item, created = ReadingList.get_or_create( slug=self.slug, defaults=tmp_defaults ) self.db = db_item if db_item: for key in READINGLIST_DB_KEYS: setattr(self, key, getattr(db_item, key)) if created is True: len_dbcomics = len(db_item.comics) if ( len_dbcomics == len(self.comic_json) and len(self.comic_json) != 0 ): self.comic_db_in = True self.comics = self.db.comics.order_by( -Comic.comic_index.index ) else: self.comic_db_in = True comicindex_db = ComicIndex.get( ComicIndex.readinglist == self.slug ) if mode == "local_file": list_comics = self.db.comics.where( Comic.is_sync == True, Comic.local_file != "" ).order_by( # noqa comicindex_db.index ) print(f"len:{len(list_comics)}") else: list_comics = self.db.comics.order_by( comicindex_db.index ) for comic in list_comics: new_comic = ComicBook( comic_Id=comic.Id, readlist_obj=self, mode="db_data", ) self.comics.append(new_comic) self.comics_loaded = True except peewee.OperationalError: Logger.critical( "Somthing happened in get_or_create of readinglist" ) def save_settings(self, *args, **kwargs): try: rl = ReadingList.get(ReadingList.slug == self.slug) for key in READINGLIST_SETTINGS_KEYS: setattr(rl, key, kwargs[key]) setattr(self, key, kwargs[key]) rl.save() except peewee.OperationalError: pass def do_db_refresh(self, screen=None): def __finish_toast(dt): app = App.get_running_app() screen = app.manager.get_screen("server_readinglists_screen") screen.refresh_callback() toast("DataBase Refresh Complete") def __got_readlist_data(results): def __updated_progress(results): pass the_keys = [ "Id", "Series", "Number", "Volume", "Year", "Month", "UserCurrentPage", "UserLastPageRead", "PageCount", "Summary", "FilePath", ] for server_comic in results["items"]: for db_comic in self.comics: if db_comic.Id == server_comic["Id"]: for key in the_keys: if getattr(db_comic, key) != server_comic[key]: if key in ( "UserCurrentPage", "UserLastPageRead", ) and (db_comic.is_sync): if ( db_comic.UserLastPageRead > server_comic["UserLastPageRead"] ) or ( db_comic.UserCurrentPage > server_comic["UserCurrentPage"] ): if ( db_comic.UserCurrentPage > db_comic.UserLastPageRead ): current_page = ( db_comic.UserCurrentPage ) # noqa else: current_page = ( db_comic.UserLastPageRead ) # noqa update_url = "{}/Comics/{}/Progress".format( api_url, db_comic.Id ) self.fetch_data.update_progress( update_url, current_page, callback=lambda req, results: __updated_progress( results ), ) else: x_str = db_comic.__str__ Logger.info( "Updating DB Record for {} of {}".format( key, x_str ) ) toast( "Updating DB Record for {} of {}".format( key, x_str ) ) db_item = Comic.get( Comic.Id == db_comic.Id ) if db_item: setattr( db_item, key, server_comic[key] ) db_item.save() setattr(self, key, db_item) Clock.schedule_once(__finish_toast, 3) self.fetch_data = ComicServerConn() app = App.get_running_app() api_url = app.api_url server_url = f"{api_url}/Lists/{self.slug}/Comics/" self.fetch_data.get_server_data_callback( server_url, callback=lambda req, results: __got_readlist_data(results), ) def get_last_comic_read(self): last_read_comic = 0 for comic in self.comics: if ( comic.UserLastPageRead == comic.PageCount - 1 and comic.PageCount > 1 ): last_read_comic = self.comics.index(comic) return last_read_comic def do_sync(self): def _syncrun_callback(*args): pass app = App.get_running_app() if app.sync_is_running is True: self.please_wait_dialog = MDDialog( title="Sync Already in Progress", size_hint=(0.8, 0.4), text_button_ok="Ok", text=f"Please wait till current Sync is done", events_callback=_syncrun_callback, ) self.please_wait_dialog.open() return self.num_file_done = 0 sync_range = 0 self.fetch_data = ComicServerConn() rl_db = ReadingList.get(ReadingList.slug == self.slug) end_last_sync_num = rl_db.end_last_sync_num if end_last_sync_num != 0: end_last_sync_num = end_last_sync_num - 1 comicindex_db = ComicIndex.get(ComicIndex.readinglist == self.slug) last_read_comic_db = self.db.comics.where( (Comic.UserLastPageRead == Comic.PageCount - 1) & (Comic.PageCount > 1) ).order_by(comicindex_db.index) if len(last_read_comic_db) > 1: last_read_index = ComicIndex.get( ComicIndex.comic == last_read_comic_db[-1].Id, ComicIndex.readinglist == self.slug, ).index elif len(last_read_comic_db) != 0: last_read_index = ComicIndex.get( ComicIndex.comic == last_read_comic_db[0].Id, ComicIndex.readinglist == self.slug, ).index else: last_read_index = 0 if self.cb_limit_active: if self.cb_only_read_active: list_comics = self.db.comics.where( ~(Comic.UserLastPageRead == Comic.PageCount - 1) & (Comic.PageCount > 1) & (Comic.been_sync) != True ).order_by( comicindex_db.index ) # noqa: E712 if last_read_index < end_last_sync_num: sync_range = int(self.limit_num) tmp_comic_list = list_comics[0:int(sync_range)] else: sync_range = int(end_last_sync_num) + int(self.limit_num) tmp_comic_list = list_comics[end_last_sync_num:int(sync_range)] purge_list = self.db.comics.where( (Comic.UserLastPageRead == Comic.PageCount - 1) & (Comic.PageCount > 1) & (Comic.is_sync == True) ).order_by( comicindex_db.index ) # noqa: E712 else: list_comics = ( Comic.select() .where( (Comic.is_sync == False) & (Comic.been_sync == False) ) .order_by(comicindex_db.index) ) # noqa: E712,E501 sync_range = int(self.limit_num) tmp_comic_list = list_comics[0:int(sync_range)] purge_list = self.db.comics.where( Comic.is_sync == True ).order_by( comicindex_db.index ) # noqa: E712 else: sync_range = int(len(self.comics)) # rl_db.end_last_sync_num = new_end_last_sync_num # rl_db.save() if self.cb_only_read_active: list_comics = self.db.comics.where( ~(Comic.UserLastPageRead == Comic.PageCount - 1) & (Comic.PageCount > 1) ).order_by( comicindex_db.index ) # noqa: E712 tmp_comic_list = list_comics[0:int(sync_range)] else: list_comics = self.db.comics.where( (Comic.is_sync == False) & (Comic.been_sync == False) ).order_by( comicindex_db.index ) # noqa: E712,E501 tmp_comic_list = list_comics db_item = ReadingList.get(ReadingList.slug == self.slug) for key in READINGLIST_SETTINGS_KEYS: v = getattr(db_item, key) globals()["%s" % key] = v app = App.get_running_app() id_folder = os.path.join(app.sync_folder, self.slug) my_comic_dir = Path(os.path.join(id_folder, "comics")) if os.path.isdir(my_comic_dir): print(f"{get_size(my_comic_dir)/1000000} MB") sync_comic_list = [] for comic in tmp_comic_list: if comic.is_sync is False: sync_comic_list.append(comic) if self.cb_purge_active: for item in purge_list: os.remove(item.local_file) db_comic = Comic.get(Comic.Id == item.Id) db_comic.is_sync = False db_comic.local_file = "" db_comic.save() server_readinglists_screen = app.manager.get_screen( "server_readinglists_screen" ) server_readinglists_screen.file_sync_update(item.Id, False) self.sync_readinglist(comic_list=sync_comic_list) def get_server_file_download(self, req_url, callback, file_path): def is_finished(dt): if req.is_finished is True: app = App.get_running_app() screen = app.manager.get_screen("server_readinglists_screen") screen.ids.sync_button.enabled = True Clock.schedule_once(self.download_file) else: Clock.schedule_once(is_finished, 0.25) app = App.get_running_app() username = app.config.get("General", "username") api_key = app.config.get("General", "api_key") str_cookie = f"API_apiKey={api_key}; BCR_username={username}" head = { "Content-Type": "application/json", "Accept": "application/json", "Cookie": str_cookie, } req = UrlRequest( req_url, req_headers=head, on_success=callback, file_path=file_path ) app = App.get_running_app() screen = app.manager.get_screen("server_readinglists_screen") if len(self.sync_list) != 0: screen.ids.sync_status_lbl.text = ( f"Sync is Running Left in Que: {len(self.sync_list)}" ) Clock.schedule_once(is_finished, 0.25) else: toast("Reading List has been Synced, Refreshing Screen") screen.ids.sync_status_lbl.text = "" screen.ids.sync_button.enabled = True app.sync_is_running = False # screen.refresh_callback() def got_file(self, comic_obj, comic_file="", *args, **kwargs): def file_finished_toast(dt): toast(f"{os.path.basename(comic_file)} Synced") self.num_file_done += 1 Clock.schedule_once(file_finished_toast) self.file_download = True db_comic = Comic.get(Comic.Id == comic_obj.Id) db_comic.is_sync = True db_comic.save() db_comic = Comic.get(Comic.Id == comic_obj.Id) db_comic.local_file = comic_file db_comic.been_sync = True db_comic.save() rl_db = ReadingList.get(ReadingList.slug == self.slug) rl_db.end_last_sync_num += 1 rl_db.save() app = App.get_running_app() server_readinglists_screen = app.manager.get_screen( "server_readinglists_screen" ) server_readinglists_screen.file_sync_update(comic_obj.Id, True) def download_file(self, dt): def got_thumb(results): pass app = App.get_running_app() screen = app.manager.get_screen("server_readinglists_screen") screen.ids.sync_button.enabled = False if len(self.sync_list) == 0: toast("Reading List has been Synced, Refreshing Screen") app = App.get_running_app() screen = app.manager.get_screen("server_readinglists_screen") screen.ids.sync_status_lbl.text = "" screen.ids.sync_button.enabled = True app.sync_is_running = False # screen.refresh_callback() return comic = self.sync_list.pop(0) self.file_download = False file_name = ntpath.basename(comic.FilePath) y = 240 part_url = f"/Comics/{comic.Id}/Pages/0?" app = App.get_running_app() part_api = f"&apiKey={app.api_key}&height={round(dp(y))}" thumb_url = f"{app.api_url}{part_url}{part_api}" if self.cb_optimize_size_active is False: sync_url = f"{app.api_url}/Comics/{comic.Id}/Sync/File/" elif self.cb_optimize_size_active is True: sync_url = f"{app.api_url}/Comics/{comic.Id}/Sync/Webp" app = App.get_running_app() id_folder = os.path.join(app.sync_folder, self.slug) self.my_comic_dir = Path(os.path.join(id_folder, "comics")) self.my_thumb_dir = Path(os.path.join(id_folder, "thumb")) if not self.my_comic_dir.is_dir(): os.makedirs(self.my_comic_dir) if not self.my_thumb_dir.is_dir(): os.makedirs(self.my_thumb_dir) t_file = os.path.join(self.my_comic_dir, file_name) self.get_server_file_download( sync_url, callback=self.got_file(comic, comic_file=t_file), file_path=t_file, ) thumb_name = f"{comic.Id}.jpg" self.fetch_data.get_server_file_download( thumb_url, callback=lambda req, results: got_thumb(results), file_path=os.path.join(self.my_thumb_dir, thumb_name), ) def _finish_sync(self, comic_list, *largs): def __finish_toast(dt): toast("Reading List has been Synced, Refreshing Screen") # app = App.get_running_app() # screen = app.manager.get_screen("server_readinglists_screen") # screen.refresh_callback() list_comics = comic_list num_comic = len(list_comics) if self.num_file_done == num_comic: Clock.schedule_once(__finish_toast, 3) self.event.cancel() self.event = None def sync_readinglist(self, comic_list=[]): app = App.get_running_app() self.sync_list = comic_list app = App.get_running_app() screen = app.manager.get_screen("server_readinglists_screen") screen.ids.sync_status_lbl.text = ( f"Sync is Running Comics to Sync: {len(self.sync_list)}" ) app.sync_is_running = True screen.ids.sync_button.enabled = False Clock.schedule_once(self.download_file) # app.delayed_work( # self.download_file, list_comics, delay=.5) # self.event = Clock.schedule_interval( # partial(self._finish_sync, comic_list), 0.5 # )
import copy import numpy as np from utils.utils import getdtype from Ottergrad.autograd import Tensor, Func, checkTensor from Ottergrad.utils import * def ndot(a, b): res = np.dot(a, b) return res class _dot(Func): def __init__(self): super().__init__() def __call__(self, x, y): tensor = Tensor() tensor.type = np.dot tensor.left = x tensor.right = y tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) self.root = tensor self.input = tensor return tensor @staticmethod def _forwardfunc(node: Tensor): res = ndot(node.getleft().getdata(), node.getright().getdata()) node.setdata(res) @checkgradisnone def gradient(self): grad_l = ndot(self.root.getgrad(), self.root.getright().getdata().T) grad_r = ndot(self.root.getleft().getdata().T, self.root.getgrad()) self.root.getleft().setgrad(self.root.getgrad() + grad_l) self.root.getright().setgrad(self.root.getgrad() + grad_r) @staticmethod @checkgradisnone def _gradient(node): node.getleft().setgrad(node.getleft().getgrad() + ndot(node.getgrad(), node.getright().getdata().T)) node.getright().setgrad(node.getright().getgrad() + ndot(node.getleft().getdata().T, node.getgrad())) @checkTensor def dot(x, y): func = _dot() return func(x, y) class _abs(Func): def __init__(self, x=None): super().__init__() self.x = x def __call__(self, x): self.x = x tensor = Tensor() tensor.left = x tensor.type = np.abs tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node): node.setdata(np.abs(node.getleft().getdata(), dtype=getdtype())) @staticmethod @checkgradisnone def _gradient(node): condlist = [node.getleft().getdata() < 0, node.getleft().getdata() > 0] choicelist = [-1, 1] node.getleft().setgrad(node.getleft().getgrad() + np.select(condlist, choicelist)) def nabs(x): res = np.abs(x) return res @checkTensor def abs(x): func = _abs() return func(x) class _sum(Func): def __init__(self, x: Tensor = None, axis=None): super().__init__() self.x = x self.axis = axis def __call__(self, x: Tensor, axis=None): self.x = x self.axis = axis tensor = Tensor() tensor.left = x tensor.type = np.sum tensor.setkwargs({'axis': axis}) tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node: Tensor): node.setdata(nsum(node.getleft().getdata(), **node.getkwargs())) def gradient(self): self.root.getleft().setgrad(self.root.getleft().getgrad() + nsum(self.root.getgrad(), *self.root.getargs())) @staticmethod @checkgradisnone def _gradient(node: Tensor): node.getleft().setgrad(node.getleft().getgrad() + node.getgrad() * np.ones(node.getleft().getdata().shape)) def nsum(x, axis): res = np.sum(x, axis) return res def sum(x: Tensor, axis: int = None): func = _sum() return func(x, axis) class _concatenate(Func): def __init__(self, sets=None, axix=0): super().__init__() def __call__(self, sets: tuple, axis=0): assert len(sets) > 1, "must have two or more sets" isalldata = True for set in sets: assert type(set) is Tensor, "set type must be Tensor" isalldata = isalldata and (set.getdata() is not None) if isalldata: result = sets[0] for set in sets: nconcatenate((result, set), axis) return result else: result = sets[0] for set in sets[1:]: tensor = Tensor() tensor.left = result tensor.right = set tensor.type = np.concatenate tensor.setkwargs({'axis', axis}) tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) result = tensor return tensor @staticmethod def _forwardfunc(node: Tensor): node.setdata(nconcatenate((node.getleft().getdata(), node.getright().getdata()), **node.getkwargs())) @staticmethod @checkgradisnone def _gradient(node: Tensor): pass # @pyjit def nconcatenate(x, y, **kwargs): return np.concatenate(x, y, **kwargs) def concatenate(sets: tuple, axis=0): for set in sets: assert type(set) is Tensor, "set type must be Tensor" func = _concatenate() return func(sets, axis) class _split(Func): def __init__(self): super().__init__() def __call__(self, x: Tensor, indices, axis=0): if x.getdata() is not None: return np.split(x.getdata(), indices, axis) else: tensor = Tensor() tensor.left = x tensor.type = np.split tensor.setkwargs({"indices_or_sections": indices, 'axis': axis}) tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node: Tensor): node.setdata(nsplit(node.getleft().getdata(), **node.getkwargs())) @staticmethod @checkgradisnone def _gradient(node: Tensor): pass # @pyjit def nsplit(x, indices, axis=0): return np.split(x, indices, axis=axis) def split(x, indices, axis=0): func = _split() return func(x, indices, axis) class _ones(Func): def __init__(self, shape=None, dtype=getdtype()): super().__init__() self.shape = shape self.dtype = dtype def __call__(self, shape, dtype=getdtype()): tensor = Tensor() tensor.type = np.ones tensor.isgrad = False tensor.setargs({"shape": shape, "dtype": dtype}) tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) self.root = tensor return tensor @staticmethod def _forwardfunc(node): node.setdata(np.ones(*node.gettype())) def gradient(self): pass @staticmethod def _gradient(node): pass def ones(shape, dtype=getdtype()): func = _ones() return func(shape, dtype) class _shape(Func): def __init__(self, x=None): super().__init__() self.x = x def __call__(self, x): self.x = x if x.getdata() is not None: return np.shape(x.getdata()) else: tensor = Tensor() tensor.setleft(x) tensor.type = np.shape tensor.isgrad = False tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node): node.setdata(np.shape(node.getleft().getdata())) def gradient(self): pass @staticmethod def _gradient(*args): pass @checkTensor def shape(x): func = _shape() return func(x) class _take(Func): def __init__(self, x=None, choosen=None, axis=0): super().__init__() self.x = x self.choosen = choosen self.axis = axis def __call__(self, x, indices=None, axis=0): self.x = x self.indices = indices self.axis = axis if x.getdata() is not None: return np.take(x.getdata(), indices, axis) else: tensor = Tensor() tensor.setleft(x) tensor.type = np.take tensor.isgrad = False tensor.setkwargs({"indices": indices, "axis": axis}) tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node): node.setdata(ntake(node.getleft().getdata(), **node.getkwargs())) def gradient(self): pass @staticmethod def _gradient(*args): pass # @pyjit def ntake(x, indices=None, axis=0): return np.take(x, indices=indices, axis=axis) def take(x: Tensor, choosen, axis=0): func = _take() return func(x, choosen, axis) class _exp(Func): def __init__(self): super().__init__() def __call__(self, x, **kwargs): tensor = Tensor() tensor.left = x tensor.type = np.exp tensor.setkwargs(kwargs) tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) self.root = tensor return tensor @staticmethod def _forwardfunc(node): if node.getkwargs() != []: node.setdata(nexp(node.getleft().getdata(), **node.getkwargs())) else: node.setdata(nexp(node.getleft().getdata())) def gradient(self): self.root.getleft().setgrad(self.root.getleft().getgrad() + self.root.getgrad()) @staticmethod @checkgradisnone def _gradient(node): node.getleft().setgrad(node.getleft().getgrad() + (node.getgrad() * nexp(node.getleft().getdata()))) def nexp(x): return np.exp(x) def exp(x, **kwargs): func = _exp() return func(x, **kwargs) class _maximum(Func): def __init__(self): super().__init__() def __call__(self, x, y, **kwargs): tensor = Tensor() tensor.left = x tensor.right = y tensor.setkwargs(kwargs) tensor.type = np.maximum tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) self.root = tensor return tensor @staticmethod def _forwardfunc(node): if node.getkwargs() != []: node.setdata(nmaximum(node.getleft().getdata(), node.getright().getdata(), **node.getkwargs())) else: node.setdata(nmaximum(node.getleft().getdata(), node.getright().getdata())) def gradient(self): # grad = copy.deepcopy(node.getgrad()) # grad[grad <= 0] = 0 # node.getleft().grad = grad self.root.getleft().setgrad(nminimum(self.root.getleft().getdata(), self.root.getright().getdata())) self.root.getright().setgrad(nminimum(self.root.getright().getdata(), self.root.getleft().getdata())) @staticmethod @checkgradisnone def _gradient(node): node.getleft().setgrad( node.getleft().getgrad() + nminimum(node.getleft().getdata(), node.getright().getdata())) node.getright().setgrad( node.getright().getgrad() + nminimum(node.getright().getdata(), node.getleft().getdata())) # @pyjit def nmaximum(x, y): return np.maximum(x, y) # @pyjit def nminimum(x, y): return np.minimum(x, y) def maximum(x: [Tensor, int, float, np.ndarray], y: [Tensor, int, float, np.ndarray], **kwargs): if type(x) is not Tensor: x = Tensor(x) x.isgrad = False if type(y) is not Tensor: y = Tensor(y) y.isgrad = False func = _maximum() return func(x, y, **kwargs) class _tanh(Func): def __init__(self): super().__init__() def __call__(self, x): tensor = Tensor() tensor.setleft(x) tensor.type = np.tanh tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node): node.setdata(np.tanh(node.getleft().getdata())) def gradient(self): self.getroot().getleft().setgrad(self.getroot().getleft().getgrad() + np.multiply((np.ones(self.getroot().getgrad().shape) - ntanh(self.getroot().getgrad()) ** 2), self.getroot().getgrad())) @staticmethod @checkgradisnone def _gradient(node): node.getleft().setgrad(node.getleft().getgrad() + np.multiply((np.ones(node.getgrad().shape) - ntanh(node.getgrad()) ** 2), node.getgrad())) def ntanh(x): return np.tanh(x) @checkTensor def tanh(x): func = _tanh() return func(x) class _sin(Func): def __init__(self): super().__init__() def __call__(self, x): tensor = Tensor() tensor.setleft(x) tensor.type = np.sin tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node): node.setdata(np.sin(node.getleft().getdata())) def gradient(self): self.getroot().getleft().setgrad(self.getroot().getleft().getgrad() + np.multiply(self.root.getgrad(), np.cos(self.root.getleft().getdata()))) @staticmethod @checkgradisnone def _gradient(node): node.getleft().setgrad(node.getleft().getgrad() + np.multiply(node.getgrad(), np.cos(node.getleft().getdata()))) def nsin(x): return np.sin(x) @checkTensor def sin(x): func = _sin() return func(x) class _cos(Func): def __init__(self): super().__init__() def __call__(self, x): tensor = Tensor() tensor.setleft(x) tensor.type = np.cos tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node): node.setdata(np.cos(node.getleft().getdata())) def gradient(self): self.getroot().getleft().setgrad(self.getroot().getleft().getgrad() + np.multiply(self.root.getgrad(), -np.sin(self.root.getleft().getdata()))) @staticmethod @checkgradisnone def _gradient(node): node.getleft().setgrad(node.getleft().getgrad() + np.multiply(node.getgrad(), -np.sin(node.getleft().getdata()))) def ncos(x): return np.cos(x) @checkTensor def cos(x): func = _cos() return func(x) class _tan(Func): def __init__(self): super().__init__() def __call__(self, x): tensor = Tensor() tensor.setleft(x) tensor.type = np.tan tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node): node.setdata(np.tan(node.getleft().getdata())) def gradient(self): self.getroot().getleft().setgrad(self.getroot().getleft().getgrad() + np.multiply(self.root.getgrad(), 1 - np.tanh(self.root.getleft().getdata()) ** 2)) @staticmethod @checkgradisnone def _gradient(node): node.getleft().setgrad(node.getleft().getgrad() + np.multiply(node.getgrad(), 1 - np.tanh(node.getleft().getdata()) ** 2)) def ntan(x): return np.tan(x) @checkTensor def tan(x): func = _tan() return func(x) class _where(Func): def __init__(self): super().__init__() def __call__(self, condition: Tensor, x: Tensor = None, y: Tensor = None): tensor = Tensor() tensor.setleft(Func(condition).getinput()) tensor.type = np.where tensor.setargs([Func(condition), Func(x), Func(y)]) tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node): args = [] for arg in node.getargs(): arg.forward() args.append(arg.getroot().getdata()) node.setdata(np.where(*args)) def gradient(self): self.root.getleft().setgrad() @checkgradisnone @staticmethod def _gradient(node): node.getargs()[1].getroot().setgrad(node.getgrad()) node.getargs()[2].getroot().setgrad(node.getgrad()) x = copy.deepcopy(node.getargs()[1]) y = copy.deepcopy(node.getargs()[2]) x.backward() y.backward() node.getleft().setgrad(np.where(node.getargs()[0].getinput().getdata(), x.getinput().getgrad(), y.getinput().getgrad())) def nwhere(contition, x, y): return np.where(contition, x, y) @checkTensor def where(contition, x, y): func = _where() return func(contition, x, y) class _mean(Func): def __init__(self): super().__init__() def __call__(self, x: Tensor = None, axis=0): tensor = Tensor() tensor.setleft(x) tensor.type = np.mean tensor.setkwargs({"axis": axis}) tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node): node.setdata(np.mean(node.getleft().getdata(), **node.getkwargs())) @staticmethod @checkgradisnone def _gradient(node): shape = np.shape(node.getleft().getdata()) node.getleft().setgrad(node.getleft().getgrad() + 1 / shape[0] * np.ones(shape) * node.getgrad()) def nmean(x, axis=0): return np.mean(x, axis=axis) def mean(x: Tensor, axis=0): func = _mean() return func(x, axis) class _var(Func): def __init__(self): super().__init__() def __call__(self, x: Tensor = None, axis=0): tensor = 1 / shape(x)[0] * (x - mean(x, axis)) ** 2 return tensor @checkTensor def var(x, axis=0): func = _var() return func(x, axis) class _sqrt(Func): def __init__(self): super().__init__() def __call__(self, x: Tensor): self.x = x tensor = Tensor() tensor.setleft(x) tensor.type = np.sqrt tensor.setforwardfunc(self._forwardfunc) tensor.setgradfunc(self._gradient) return tensor @staticmethod def _forwardfunc(node): node.setdata(np.sqrt(node.getleft().getdata())) @staticmethod @checkgradisnone def _gradient(node): node.getleft().setgrad(node.getleft().getgrad() + 1 / 2 * node.getleft().getdata() ** (-1 / 2)) @checkTensor def sqrt(x): func = _sqrt() return func(x)
import sys import requests_html from requests.sessions import session from t.log import error def check_platform() -> dict: return { "darwin": {"audio": "afplay {}"}, "linux": {"audio": ""}, "win32": {"audio": ""}, }[sys.platform] def check_langs() -> list: session, langs = requests_html.HTMLSession(), {"english"} try: langs = langs.union( set( session.get("https://dictionary.cambridge.org/").html.xpath( "//a[@data-dictcode]/@data-dictcode" ) ) ) except Exception as e: error(e) return session, tuple(sorted(langs))
class RegressionPredictor(): def __init__(self, model): self.model = model def predict(self, X, decimals=2): """ Performs one Prediction. Parameters: - X: Input array compatible with model interface for inference. - decimals (int): Number of decimals required Returns: (int) Prediction result. """ prediction = self.model.predict(X)[0] if prediction < 0: prediction = 0 return [round(prediction, decimals)]
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict from pandas import DataFrame from lib.cast import safe_int_cast from lib.data_source import DataSource from lib.time import datetime_isoformat class SudanHumdataDataSource(DataSource): def parse_dataframes( self, dataframes: Dict[str, DataFrame], aux: Dict[str, DataFrame], **parse_opts ) -> DataFrame: # Rename the appropriate columns data = ( dataframes[0] .rename( columns={ "Report Date": "date", "State": "match_string", "Confirmed Cases": "total_confirmed", } ) .drop([0]) ) # The dates in the provided CSV are incorrect for one of the reports. # Replace with report date taken from text of report. data.loc[ data["Source"] == "https://reliefweb.int/sites/reliefweb.int/files/resources/Situation%20Report%20-%20Sudan%20-%207%20May%202020.pdf", "date", ] = "5/11/2020" data = data.drop(axis=1, columns=["As of Date", "Source"]) # Remove Abyei PCA, a disputed region with no data shown. data = data[data["match_string"] != "Abyei PCA"] # Data source uses different spelling from src/data/iso_3166_2_codes.csv data["match_string"].replace({"Gedaref": "Al Qadarif"}, inplace=True) data.date = data.date.apply(lambda x: datetime_isoformat(x, "%m/%d/%Y")) # Sudan data includes empty cells where there are no confirmed cases. # These get read in as NaN. Replace them with zeroes so that the # grouped_diff call to get new confirmed cases works for a state's first # day with a case. data["total_confirmed"] = data["total_confirmed"].fillna(0).apply(safe_int_cast) # Make sure all records have the country code data["country_code"] = "SD" # Output the results return data
#/************************************************************************************************************************ # Copyright (c) 2016, Imagination Technologies Limited and/or its affiliated group companies. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the # following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #************************************************************************************************************************/ import unittest from nose_parameterized import parameterized from nose.plugins.attrib import attr from framework.test_cases.gateway_client_test_case import GWClientTestCase from framework.operation_assertions import get_operation_assertions from framework.operation_assertions import set_operation_assertions from framework.operation_assertions import subscribe_operation_assertions from framework.operation_assertions import client_delete_assertions from framework.operation_assertions import client_define_assertions from framework.operation_assertions import client_get_definition_assertions from framework import test_assertions from framework.test_assertions import Assertion from framework.test_assertions import GetAssertion from framework.test_assertions import SetAssertion from framework.test_assertions import SubscribeAssertion from framework.test_assertions import DeleteAssertion from framework.test_assertions import DefineOperationAssertion from framework.test_assertions import GetDefinitionAssertion from framework.definitions import ObjectDefinitionSettings, ResourceDefinitionSettings from framework.test_objects import objectDefinition1000 from framework.test_objects import objectDefinition1001 from framework.test_objects import objectDefinition1002 from framework.test_objects import objectDefinition1003 from framework.test_objects import resourceDefinitions from framework.awa_enums import AwaResourceType from framework.awa_enums import AwaResourceOperations from framework import awa_constants from framework.nose_parameterised import noseParameterisedTestNameGenerator @attr("gateway_client") class CustomObjectDefineTestCases(GWClientTestCase): @parameterized.expand([ ["DefineAndGetObject1000Definition", (DefineOperationAssertion(client_define_assertions.CheckForSuccess, objectDefinition1000, resourceDefinitions), GetDefinitionAssertion(client_get_definition_assertions.CheckForSuccess, objectDefinition1000, resourceDefinitions), )], ["DefineAndGetObject1001Definition", (DefineOperationAssertion(client_define_assertions.CheckForSuccess, objectDefinition1001, resourceDefinitions), GetDefinitionAssertion(client_get_definition_assertions.CheckForSuccess, objectDefinition1001, resourceDefinitions), )], ["DefineAndGetObject1002Definition", (DefineOperationAssertion(client_define_assertions.CheckForSuccess, objectDefinition1002, resourceDefinitions), GetDefinitionAssertion(client_get_definition_assertions.CheckForSuccess, objectDefinition1002, resourceDefinitions), )], ["DefineAndGetObject1003Definition", (DefineOperationAssertion(client_define_assertions.CheckForSuccess, objectDefinition1003, resourceDefinitions), GetDefinitionAssertion(client_get_definition_assertions.CheckForSuccess, objectDefinition1003, resourceDefinitions), )], #Negative define test cases ["RedefineObject1000", (DefineOperationAssertion(client_define_assertions.CheckForSuccess, objectDefinition1000, resourceDefinitions), DefineOperationAssertion(client_define_assertions.CheckForAlreadyDefined, objectDefinition1000, resourceDefinitions),)], ["GetNotDefinedObjectDefinition", (GetDefinitionAssertion(client_get_definition_assertions.CheckForObjectNotDefined, ObjectDefinitionSettings(5000, "Object5000", 1, 1), ()), )], ["GetObjectDefinitionIDOutOfRange", (GetDefinitionAssertion(client_get_definition_assertions.CheckForObjectNotDefined, ObjectDefinitionSettings(-500, "Object500", 1, 1), ()), )], ["GetNotDefinedResourceDefinition", (DefineOperationAssertion(client_define_assertions.CheckForSuccess, objectDefinition1000, resourceDefinitions), GetDefinitionAssertion(client_get_definition_assertions.CheckForResourceNotDefined, objectDefinition1000, (ResourceDefinitionSettings(555, "Resource555", AwaResourceType.String, AwaResourceOperations.ReadWrite, 0, 1), )), )], ["DefineObjectIDOutOfRange", (DefineOperationAssertion(client_define_assertions.CheckForNullPointerException, ObjectDefinitionSettings(999999, "Object999999", 0, 1), ()), )], ["DefineResourceIDOutOfRange", (DefineOperationAssertion(client_define_assertions.CheckForSuccess, objectDefinition1000, resourceDefinitions), DefineOperationAssertion(client_define_assertions.CheckForIDInvalid, objectDefinition1000, (ResourceDefinitionSettings(999999, "Resource999999", AwaResourceType.String, AwaResourceOperations.ReadWrite, 0, 1), )), )], ["DefineObjectNegativeID", (DefineOperationAssertion(client_define_assertions.CheckForNullPointerException, ObjectDefinitionSettings(-123, "Object123", 0, 1), ()), )], ["DefineResourceNegativeID", (DefineOperationAssertion(client_define_assertions.CheckForSuccess, objectDefinition1000, resourceDefinitions), DefineOperationAssertion(client_define_assertions.CheckForIDInvalid, objectDefinition1000, (ResourceDefinitionSettings(-123, "Resource123", AwaResourceType.String, AwaResourceOperations.ReadWrite, 0, 1), )), )], ], testcase_func_name=noseParameterisedTestNameGenerator) def test(self, name, assertions): test_assertions.callAssertions(self, assertions) @attr("gateway_client") class CustomObjectCreateTestCases(GWClientTestCase): def setUp(self): super(CustomObjectCreateTestCases, self).setUp() self.topology.gatewayClients[0].DefineTestObjects() @parameterized.expand([ # Create object instance test cases ["CreateSingleOptionalObjectInstance", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0", None, None, True), )], ["CreateSingleMandatoryObjectInstance", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1001/0", None, None, True), )], ["CreateMultipleObjectInstance", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1002/0", None, None, True), )], ["CreateExistingSingleObjectInstance", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0", None, None, True), SetAssertion(set_operation_assertions.CheckForCannotCreate, "/1000/0", None, None, True), )], ["CreateExistingMultipleObjectInstance", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1002/0", None, None, True), SetAssertion(set_operation_assertions.CheckForCannotCreate, "/1002/0", None, None, True), )], ["CreateMultipleOnSingleObjectInstance", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0", None, None, True), SetAssertion(set_operation_assertions.CheckForCannotCreate, "/1000/1", None, None, True), )], ["CreateMultipleOnMultipleObjectInstance", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1002/0", None, None, True), SetAssertion(set_operation_assertions.CheckForSuccess, "/1002/1", None, None, True), )], # Create resource test cases ["CreateStringArrayResource", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0", None, None, True), SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0/109", AwaResourceType.StringArray, None, False, True), GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/109", AwaResourceType.StringArray, {1: "Sample1", 2: "Sample2", 3: "Sample3"}), )], ["CreateExistingStringArrayResource", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0", None, None, True), SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0/109", AwaResourceType.StringArray, None, False, True), SetAssertion(set_operation_assertions.CheckForCannotCreate, "/1000/0/109", AwaResourceType.StringArray, None, False, True), )], ["CreateStringArrayResourceWithValue", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0", None, None, True), SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0/109", AwaResourceType.StringArray, {0: "Sample0", 2: "Sample2"}, False, True), GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/109", AwaResourceType.StringArray, {0: "Sample0", 2: "Sample2"}), )], ], testcase_func_name=noseParameterisedTestNameGenerator) def test(self, name, assertions): test_assertions.callAssertions(self, assertions) @attr("gateway_client") class CustomObjectDeleteTestCases(GWClientTestCase): def setUp(self): super(CustomObjectDeleteTestCases, self).setUp() self.topology.gatewayClients[0].DefineTestObjects() self.topology.gatewayClients[0].CreateInstancesOfTestObjects() @parameterized.expand([ # Delete resource test cases ["DeleteMandatoryResource", (DeleteAssertion(client_delete_assertions.CheckForSuccess, "/1000/0/202"), )], ["DeleteOptionalResource", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0/102", AwaResourceType.String, None, False, True), DeleteAssertion(client_delete_assertions.CheckForSuccess, "/1000/0/102"), )], ["DeleteNonExistentResource", (DeleteAssertion(client_delete_assertions.CheckForPathNotFound, "/1000/0/102"), )], ["DeleteUndefinedResource", (DeleteAssertion(client_delete_assertions.CheckForPathNotFound, "/1000/0/999"), )], # Delete object instance success cases ["DeleteMandatoryObjectInstance", (DeleteAssertion(client_delete_assertions.CheckForSuccess, "/1001/0"), )], ["DeleteOptionalObjectInstance", (DeleteAssertion(client_delete_assertions.CheckForSuccess, "/1000/0"), )], ["DeleteNonExistentObjectInstance", (DeleteAssertion(client_delete_assertions.CheckForPathNotFound, "/1000/999"), )], ["DeleteUndefinedObject", (DeleteAssertion(client_delete_assertions.CheckForPathNotFound, "/9999"), )], # TODO delete whole object cases ], testcase_func_name=noseParameterisedTestNameGenerator) def test(self, name, assertions): test_assertions.callAssertions(self, assertions) @attr("gateway_client") class CustomObjectTestCases(GWClientTestCase): def setUp(self): super(CustomObjectTestCases, self).setUp() self.topology.gatewayClients[0].DefineTestObjects() self.topology.gatewayClients[0].CreateInstancesOfTestObjects() @parameterized.expand([ # Create object instance test cases ["SetGetMandatoryStringResource", (GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/202", AwaResourceType.String, "test"), SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0/202", AwaResourceType.String, "Imagination Technologies"), GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/202", AwaResourceType.String, "Imagination Technologies"), )], ["SetGetMandatoryStringArrayResource", (GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/209", AwaResourceType.StringArray, {1: "Sample1", 2: "Sample2", 3: "Sample3"}), SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0/209", AwaResourceType.StringArray, {0: "Sample0", 20: "Sample20"}), GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/209", AwaResourceType.StringArray, {0: "Sample0", 20: "Sample20"}), )], ["SetGetMandatoryIntegerArrayResource", (GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/210", AwaResourceType.IntegerArray, {0: 5, 1: 10, 2: 15}), SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0/210", AwaResourceType.IntegerArray, {3: 5, 4: 10, 5: 15}), GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/210", AwaResourceType.IntegerArray, {3: 5, 4: 10, 5: 15}), )], ["UpdateMandatoryIntegerArrayResource", (GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/210", AwaResourceType.IntegerArray, {3: 5, 4: 10, 5: 15}), SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0/210", AwaResourceType.IntegerArray, {6: 20}, False, False, True), GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/210", AwaResourceType.IntegerArray, {3: 5, 4: 10, 5: 15, 6: 20}), )], ["SetGetOptionalStringResource", (SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0/102", None, None, False, True), # create resource GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/102", AwaResourceType.String, "test"), SetAssertion(set_operation_assertions.CheckForSuccess, "/1000/0/102", AwaResourceType.String, "Imagination Technologies"), GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/102", AwaResourceType.String, "Imagination Technologies"), )], # Set negative test cases ["SetIntegerValueOnUndefinedObject", (SetAssertion(set_operation_assertions.CheckForNotDefinedWhenAddingValue, "/9999/0/0", AwaResourceType.Integer, 1234), )], ["SetIntegerValueOnUndefinedObjectInstance", (SetAssertion(set_operation_assertions.CheckForNotDefinedWhenAddingValue, "/1000/9999/0", AwaResourceType.Integer, 1234), )], ["SetIntegerValueOnUndefinedResource", (SetAssertion(set_operation_assertions.CheckForNotDefinedWhenAddingValue, "/1000/0/9999", AwaResourceType.Integer, 1234), )], ["SetIntegerValueOnInvalidPath", (SetAssertion(set_operation_assertions.CheckForPathInvalid, "/@%@!#$/0/9999", AwaResourceType.Integer, 1234), )], # Get negative test cases ["GetIntegerValueOnUndefinedObject", (GetAssertion(get_operation_assertions.CheckForPathNotFound, "/9999/0/0", AwaResourceType.Integer, 1234), )], ["GetIntegerValueOnUndefinedObjectInstance", (GetAssertion(get_operation_assertions.CheckForPathNotFound, "/1000/9999/0", AwaResourceType.Integer, 1234), )], ["GetIntegerValueOnUndefinedResource", (GetAssertion(get_operation_assertions.CheckForPathNotFound, "/1000/0/9999", AwaResourceType.Integer, 1234), )], ["GetIntegerValueOnInvalidPath", (GetAssertion(get_operation_assertions.CheckForPathInvalid, "/@%@!#$/0/9999", AwaResourceType.Integer, 1234), )], # subscribe test cases ["SubscribeToChangeStringResource", (GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/202", AwaResourceType.String, "test"), SubscribeAssertion(subscribe_operation_assertions.CheckForSuccess, "/1000/0/202", AwaResourceType.String, "test2", True), )], ["SubscribeToChangeStringArrayResource", (GetAssertion(get_operation_assertions.CheckForSuccess, "/1000/0/209", AwaResourceType.StringArray, {1: "Sample1", 2: "Sample2", 3: "Sample3"}), SubscribeAssertion(subscribe_operation_assertions.CheckForSuccess, "/1000/0/209", AwaResourceType.StringArray, {0: "Sample0", 5: "Sample5"}, True, True), )], ], testcase_func_name=noseParameterisedTestNameGenerator) def test(self, name, assertions): test_assertions.callAssertions(self, assertions)
from __future__ import division import cv2 import numpy as np import scipy.io import scipy.ndimage def padding(img, shape_r=240, shape_c=320, channels=3): img_padded = np.zeros((shape_r, shape_c, channels), dtype=np.uint8) if channels == 1: img_padded = np.zeros((shape_r, shape_c), dtype=np.uint8) original_shape = img.shape rows_rate = original_shape[0]/shape_r cols_rate = original_shape[1]/shape_c if rows_rate > cols_rate: new_cols = (original_shape[1] * shape_r) // original_shape[0] img = cv2.resize(img, (new_cols, shape_r)) if new_cols > shape_c: new_cols = shape_c img_padded[:, ((img_padded.shape[1] - new_cols) // 2):((img_padded.shape[1] - new_cols) // 2 + new_cols)] = img else: new_rows = (original_shape[0] * shape_c) // original_shape[1] img = cv2.resize(img, (shape_c, new_rows)) if new_rows > shape_r: new_rows = shape_r img_padded[((img_padded.shape[0] - new_rows) // 2):((img_padded.shape[0] - new_rows) // 2 + new_rows), :] = img return img_padded def resize_fixation(img, rows=480, cols=640): out = np.zeros((rows, cols)) factor_scale_r = rows / img.shape[0] factor_scale_c = cols / img.shape[1] coords = np.argwhere(img) for coord in coords: r = int(np.round(coord[0]*factor_scale_r)) c = int(np.round(coord[1]*factor_scale_c)) if r == rows: r -= 1 if c == cols: c -= 1 out[r, c] = 1 return out def padding_fixation(img, shape_r=480, shape_c=640): img_padded = np.zeros((shape_r, shape_c)) original_shape = img.shape rows_rate = original_shape[0]/shape_r cols_rate = original_shape[1]/shape_c if rows_rate > cols_rate: new_cols = (original_shape[1] * shape_r) // original_shape[0] img = resize_fixation(img, rows=shape_r, cols=new_cols) if new_cols > shape_c: new_cols = shape_c img_padded[:, ((img_padded.shape[1] - new_cols) // 2):((img_padded.shape[1] - new_cols) // 2 + new_cols)] = img else: new_rows = (original_shape[0] * shape_c) // original_shape[1] img = resize_fixation(img, rows=new_rows, cols=shape_c) if new_rows > shape_r: new_rows = shape_r img_padded[((img_padded.shape[0] - new_rows) // 2):((img_padded.shape[0] - new_rows) // 2 + new_rows), :] = img return img_padded def preprocess_images(paths, shape_r, shape_c): ims = np.zeros((len(paths), shape_r, shape_c, 3)) for i, path in enumerate(paths): original_image = cv2.imread(path) padded_image = padding(original_image, shape_r, shape_c, 3) ims[i] = padded_image ims[:, :, :, 0] -= 103.939 ims[:, :, :, 1] -= 116.779 ims[:, :, :, 2] -= 123.68 ims = ims.transpose((0, 3, 1, 2)) return ims def preprocess_maps(paths, shape_r, shape_c): ims = np.zeros((len(paths), 1, shape_r, shape_c)) for i, path in enumerate(paths): original_map = cv2.imread(path, 0) padded_map = padding(original_map, shape_r, shape_c, 1) ims[i, 0] = padded_map.astype(np.float32) ims[i, 0] /= 255.0 return ims def preprocess_fixmaps(paths, shape_r, shape_c): ims = np.zeros((len(paths), 1, shape_r, shape_c)) for i, path in enumerate(paths): fix_map = scipy.io.loadmat(path)["I"] ims[i, 0] = padding_fixation(fix_map, shape_r=shape_r, shape_c=shape_c) return ims def postprocess_predictions(pred, shape_r, shape_c): predictions_shape = pred.shape rows_rate = shape_r / predictions_shape[0] cols_rate = shape_c / predictions_shape[1] pred = pred / np.max(pred) * 255 if rows_rate > cols_rate: new_cols = (predictions_shape[1] * shape_r) // predictions_shape[0] pred = cv2.resize(pred, (new_cols, shape_r)) img = pred[:, ((pred.shape[1] - shape_c) // 2):((pred.shape[1] - shape_c) // 2 + shape_c)] else: new_rows = (predictions_shape[0] * shape_c) // predictions_shape[1] pred = cv2.resize(pred, (shape_c, new_rows)) img = pred[((pred.shape[0] - shape_r) // 2):((pred.shape[0] - shape_r) // 2 + shape_r), :] img = scipy.ndimage.filters.gaussian_filter(img, sigma=7) img = img / np.max(img) * 255 return img
# Generated by Django 3.0.2 on 2020-01-08 18:34 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('projectm', '0001_initial'), ] operations = [ migrations.AlterField( model_name='task', name='completed', field=models.BooleanField(default=False, help_text='Task completion status'), ), ]
''' Inference engine for sparse image pair correspondences ''' import time import random import numpy as np import torch from COTR.inference.inference_helper import THRESHOLD_SPARSE, THRESHOLD_AREA, cotr_flow, cotr_corr_base from COTR.inference.refinement_task import RefinementTask from COTR.utils import debug_utils, utils from COTR.cameras.capture import stretch_to_square_np class SparseEngine(): def __init__(self, model, batch_size, mode='stretching'): assert mode in ['stretching', 'tile'] self.model = model self.batch_size = batch_size self.total_tasks = 0 self.mode = mode def form_batch(self, tasks, zoom=None): counter = 0 task_ref = [] img_batch = [] query_batch = [] for t in tasks: if t.status == 'unfinished' and t.submitted == False: if zoom is not None and t.cur_zoom != zoom: continue task_ref.append(t) img, query = t.get_task() img_batch.append(img) query_batch.append(query) counter += 1 if counter >= self.batch_size: break if len(task_ref) == 0: return [], [], [] img_batch = torch.stack(img_batch) query_batch = torch.stack(query_batch) return task_ref, img_batch, query_batch def infer_batch(self, img_batch, query_batch): self.total_tasks += img_batch.shape[0] device = next(self.model.parameters()).device img_batch = img_batch.to(device) query_batch = query_batch.to(device) out = self.model(img_batch, query_batch)['pred_corrs'].clone().detach() out = out.cpu().numpy()[:, 0, :] if utils.has_nan(out): raise ValueError('NaN in prediction') return out def conclude_tasks(self, tasks, return_idx=False, force=False, offset_x_from=0, offset_y_from=0, offset_x_to=0, offset_y_to=0, img_a_shape=None, img_b_shape=None): corrs = [] idx = [] for t in tasks: if t.status == 'finished': out = t.conclude(force) if out is not None: corrs.append(np.array(out)) idx.append(t.identifier) corrs = np.array(corrs) idx = np.array(idx) if corrs.shape[0] > 0: corrs -= np.array([offset_x_from, offset_y_from, offset_x_to, offset_y_to]) if img_a_shape is not None and img_b_shape is not None and not force: border_mask = np.prod(corrs < np.concatenate([img_a_shape[::-1], img_b_shape[::-1]]), axis=1) border_mask = (np.prod(corrs > np.array([0, 0, 0, 0]), axis=1) * border_mask).astype(np.bool) corrs = corrs[border_mask] idx = idx[border_mask] if return_idx: return corrs, idx return corrs def num_finished_tasks(self, tasks): counter = 0 for t in tasks: if t.status == 'finished': counter += 1 return counter def num_good_tasks(self, tasks): counter = 0 for t in tasks: if t.result == 'good': counter += 1 return counter def gen_tasks_w_known_scale(self, img_a, img_b, queries_a, areas, zoom_ins=[1.0], converge_iters=1, max_corrs=1000): assert self.mode == 'tile' corr_a = cotr_corr_base(self.model, img_a, img_b, queries_a) tasks = [] for c in corr_a: tasks.append(RefinementTask(img_a, img_b, c[:2], c[2:], areas[0], areas[1], converge_iters, zoom_ins)) return tasks def gen_tasks(self, img_a, img_b, zoom_ins=[1.0], converge_iters=1, max_corrs=1000, queries_a=None, force=False, areas=None): if areas is not None: assert queries_a is not None assert force == True assert max_corrs >= queries_a.shape[0] return self.gen_tasks_w_known_scale(img_a, img_b, queries_a, areas, zoom_ins=zoom_ins, converge_iters=converge_iters, max_corrs=max_corrs) if self.mode == 'stretching': if img_a.shape[0] != img_a.shape[1] or img_b.shape[0] != img_b.shape[1]: img_a_shape = img_a.shape img_b_shape = img_b.shape img_a_sq = stretch_to_square_np(img_a.copy()) img_b_sq = stretch_to_square_np(img_b.copy()) corr_a, con_a, resample_a, corr_b, con_b, resample_b = cotr_flow(self.model, img_a_sq, img_b_sq ) corr_a = utils.float_image_resize(corr_a, img_a_shape[:2]) con_a = utils.float_image_resize(con_a, img_a_shape[:2]) resample_a = utils.float_image_resize(resample_a, img_a_shape[:2]) corr_b = utils.float_image_resize(corr_b, img_b_shape[:2]) con_b = utils.float_image_resize(con_b, img_b_shape[:2]) resample_b = utils.float_image_resize(resample_b, img_b_shape[:2]) else: corr_a, con_a, resample_a, corr_b, con_b, resample_b = cotr_flow(self.model, img_a, img_b ) elif self.mode == 'tile': corr_a, con_a, resample_a, corr_b, con_b, resample_b = cotr_flow(self.model, img_a, img_b ) else: raise ValueError(f'unsupported mode: {self.mode}') mask_a = con_a < THRESHOLD_SPARSE mask_b = con_b < THRESHOLD_SPARSE area_a = (con_a < THRESHOLD_AREA).sum() / mask_a.size area_b = (con_b < THRESHOLD_AREA).sum() / mask_b.size tasks = [] if queries_a is None: index_a = np.where(mask_a) index_a = np.array(index_a).T index_a = index_a[np.random.choice(len(index_a), min(max_corrs, len(index_a)))] index_b = np.where(mask_b) index_b = np.array(index_b).T index_b = index_b[np.random.choice(len(index_b), min(max_corrs, len(index_b)))] for pos in index_a: loc_from = pos[::-1] loc_to = (corr_a[tuple(np.floor(pos).astype('int'))].copy() * 0.5 + 0.5) * img_b.shape[:2][::-1] tasks.append(RefinementTask(img_a, img_b, loc_from, loc_to, area_a, area_b, converge_iters, zoom_ins)) for pos in index_b: ''' trick: suppose to fix the query point location(loc_from), but here it fixes the first guess(loc_to). ''' loc_from = pos[::-1] loc_to = (corr_b[tuple(np.floor(pos).astype('int'))].copy() * 0.5 + 0.5) * img_a.shape[:2][::-1] tasks.append(RefinementTask(img_a, img_b, loc_to, loc_from, area_a, area_b, converge_iters, zoom_ins)) else: if force: for i, loc_from in enumerate(queries_a): pos = loc_from[::-1] pos = np.array([np.clip(pos[0], 0, corr_a.shape[0] - 1), np.clip(pos[1], 0, corr_a.shape[1] - 1)], dtype=np.int) loc_to = (corr_a[tuple(pos)].copy() * 0.5 + 0.5) * img_b.shape[:2][::-1] tasks.append(RefinementTask(img_a, img_b, loc_from, loc_to, area_a, area_b, converge_iters, zoom_ins, identifier=i)) else: for i, loc_from in enumerate(queries_a): pos = loc_from[::-1] if (pos > np.array(img_a.shape[:2]) - 1).any() or (pos < 0).any(): continue if mask_a[tuple(np.floor(pos).astype('int'))]: loc_to = (corr_a[tuple(np.floor(pos).astype('int'))].copy() * 0.5 + 0.5) * img_b.shape[:2][::-1] tasks.append(RefinementTask(img_a, img_b, loc_from, loc_to, area_a, area_b, converge_iters, zoom_ins, identifier=i)) if len(tasks) < max_corrs: extra = max_corrs - len(tasks) counter = 0 for i, loc_from in enumerate(queries_a): if counter >= extra: break pos = loc_from[::-1] if (pos > np.array(img_a.shape[:2]) - 1).any() or (pos < 0).any(): continue if mask_a[tuple(np.floor(pos).astype('int'))] == False: loc_to = (corr_a[tuple(np.floor(pos).astype('int'))].copy() * 0.5 + 0.5) * img_b.shape[:2][::-1] tasks.append(RefinementTask(img_a, img_b, loc_from, loc_to, area_a, area_b, converge_iters, zoom_ins, identifier=i)) counter += 1 return tasks def cotr_corr_multiscale(self, img_a, img_b, zoom_ins=[1.0], converge_iters=1, max_corrs=1000, queries_a=None, return_idx=False, force=False, return_tasks_only=False, areas=None): ''' currently only support fixed queries_a ''' img_a = img_a.copy() img_b = img_b.copy() img_a_shape = img_a.shape[:2] img_b_shape = img_b.shape[:2] if queries_a is not None: queries_a = queries_a.copy() tasks = self.gen_tasks(img_a, img_b, zoom_ins, converge_iters, max_corrs, queries_a, force, areas) while True: num_g = self.num_good_tasks(tasks) print(f'{num_g} / {max_corrs} | {self.num_finished_tasks(tasks)} / {len(tasks)}') task_ref, img_batch, query_batch = self.form_batch(tasks) if len(task_ref) == 0: break if num_g >= max_corrs: break out = self.infer_batch(img_batch, query_batch) for t, o in zip(task_ref, out): t.step(o) if return_tasks_only: return tasks if return_idx: corrs, idx = self.conclude_tasks(tasks, return_idx=True, force=force, img_a_shape=img_a_shape, img_b_shape=img_b_shape,) corrs = corrs[:max_corrs] idx = idx[:max_corrs] return corrs, idx else: corrs = self.conclude_tasks(tasks, force=force, img_a_shape=img_a_shape, img_b_shape=img_b_shape,) corrs = corrs[:max_corrs] return corrs def cotr_corr_multiscale_with_cycle_consistency(self, img_a, img_b, zoom_ins=[1.0], converge_iters=1, max_corrs=1000, queries_a=None, return_idx=False, return_cycle_error=False, force=False): EXTRACTION_RATE = 0.3 temp_max_corrs = int(max_corrs / EXTRACTION_RATE) if queries_a is not None: temp_max_corrs = min(temp_max_corrs, queries_a.shape[0]) queries_a = queries_a.copy() corr_f, idx_f = self.cotr_corr_multiscale(img_a.copy(), img_b.copy(), zoom_ins=zoom_ins, converge_iters=converge_iters, max_corrs=temp_max_corrs, queries_a=queries_a, return_idx=True, force=force) assert corr_f.shape[0] > 0 corr_b, idx_b = self.cotr_corr_multiscale(img_b.copy(), img_a.copy(), zoom_ins=zoom_ins, converge_iters=converge_iters, max_corrs=corr_f.shape[0], queries_a=corr_f[:, 2:].copy(), return_idx=True, force=force) assert corr_b.shape[0] > 0 cycle_errors = np.linalg.norm(corr_f[idx_b][:, :2] - corr_b[:, 2:], axis=1) order = np.argsort(cycle_errors) out = [corr_f[idx_b][order][:max_corrs]] if return_idx: out.append(idx_f[idx_b][order][:max_corrs]) if return_cycle_error: out.append(cycle_errors[order][:max_corrs]) if len(out) == 1: out = out[0] return out class FasterSparseEngine(SparseEngine): ''' search and merge nearby tasks to accelerate inference speed. It will make spatial accuracy slightly worse. ''' def __init__(self, model, batch_size, mode='stretching', max_load=256): super().__init__(model, batch_size, mode=mode) self.max_load = max_load def infer_batch_grouped(self, img_batch, query_batch): device = next(self.model.parameters()).device img_batch = img_batch.to(device) query_batch = query_batch.to(device) out = self.model(img_batch, query_batch)['pred_corrs'].clone().detach().cpu().numpy() return out def get_tasks_map(self, zoom, tasks): maps = [] ids = [] for i, t in enumerate(tasks): if t.status == 'unfinished' and t.submitted == False and t.cur_zoom == zoom: t_info = t.peek() point = np.concatenate([t_info['loc_from'], t_info['loc_to']]) maps.append(point) ids.append(i) return np.array(maps), np.array(ids) def form_squad(self, zoom, pilot, pilot_id, tasks, tasks_map, task_ids, bookkeeping): assert pilot.status == 'unfinished' and pilot.submitted == False and pilot.cur_zoom == zoom SAFE_AREA = 0.5 pilot_info = pilot.peek() pilot_from_center_x = pilot_info['patch_from'].x + pilot_info['patch_from'].w/2 pilot_from_center_y = pilot_info['patch_from'].y + pilot_info['patch_from'].h/2 pilot_from_left = pilot_from_center_x - pilot_info['patch_from'].w/2 * SAFE_AREA pilot_from_right = pilot_from_center_x + pilot_info['patch_from'].w/2 * SAFE_AREA pilot_from_upper = pilot_from_center_y - pilot_info['patch_from'].h/2 * SAFE_AREA pilot_from_lower = pilot_from_center_y + pilot_info['patch_from'].h/2 * SAFE_AREA pilot_to_center_x = pilot_info['patch_to'].x + pilot_info['patch_to'].w/2 pilot_to_center_y = pilot_info['patch_to'].y + pilot_info['patch_to'].h/2 pilot_to_left = pilot_to_center_x - pilot_info['patch_to'].w/2 * SAFE_AREA pilot_to_right = pilot_to_center_x + pilot_info['patch_to'].w/2 * SAFE_AREA pilot_to_upper = pilot_to_center_y - pilot_info['patch_to'].h/2 * SAFE_AREA pilot_to_lower = pilot_to_center_y + pilot_info['patch_to'].h/2 * SAFE_AREA img, query = pilot.get_task() assert pilot.submitted == True members = [pilot] queries = [query] bookkeeping[pilot_id] = False loads = np.where(((tasks_map[:, 0] > pilot_from_left) & (tasks_map[:, 0] < pilot_from_right) & (tasks_map[:, 1] > pilot_from_upper) & (tasks_map[:, 1] < pilot_from_lower) & (tasks_map[:, 2] > pilot_to_left) & (tasks_map[:, 2] < pilot_to_right) & (tasks_map[:, 3] > pilot_to_upper) & (tasks_map[:, 3] < pilot_to_lower)) * bookkeeping)[0][: self.max_load] for ti in task_ids[loads]: t = tasks[ti] assert t.status == 'unfinished' and t.submitted == False and t.cur_zoom == zoom _, query = t.get_task_pilot(pilot) members.append(t) queries.append(query) queries = torch.stack(queries, axis=1) bookkeeping[loads] = False return members, img, queries, bookkeeping def form_grouped_batch(self, zoom, tasks): counter = 0 task_ref = [] img_batch = [] query_batch = [] tasks_map, task_ids = self.get_tasks_map(zoom, tasks) shuffle = np.random.permutation(tasks_map.shape[0]) tasks_map = np.take(tasks_map, shuffle, axis=0) task_ids = np.take(task_ids, shuffle, axis=0) bookkeeping = np.ones_like(task_ids).astype(bool) for i, ti in enumerate(task_ids): t = tasks[ti] if t.status == 'unfinished' and t.submitted == False and t.cur_zoom == zoom: members, img, queries, bookkeeping = self.form_squad(zoom, t, i, tasks, tasks_map, task_ids, bookkeeping) task_ref.append(members) img_batch.append(img) query_batch.append(queries) counter += 1 if counter >= self.batch_size: break if len(task_ref) == 0: return [], [], [] max_len = max([q.shape[1] for q in query_batch]) for i in range(len(query_batch)): q = query_batch[i] query_batch[i] = torch.cat([q, torch.zeros([1, max_len - q.shape[1], 2])], axis=1) img_batch = torch.stack(img_batch) query_batch = torch.cat(query_batch) return task_ref, img_batch, query_batch def cotr_corr_multiscale(self, img_a, img_b, zoom_ins=[1.0], converge_iters=1, max_corrs=1000, queries_a=None, return_idx=False, force=False, return_tasks_only=False, areas=None): ''' currently only support fixed queries_a ''' img_a = img_a.copy() img_b = img_b.copy() img_a_shape = img_a.shape[:2] img_b_shape = img_b.shape[:2] if queries_a is not None: queries_a = queries_a.copy() tasks = self.gen_tasks(img_a, img_b, zoom_ins, converge_iters, max_corrs, queries_a, force, areas) for zm in zoom_ins: print(f'======= Zoom: {zm} ======') while True: num_g = self.num_good_tasks(tasks) task_ref, img_batch, query_batch = self.form_grouped_batch(zm, tasks) if len(task_ref) == 0: break if num_g >= max_corrs: break out = self.infer_batch_grouped(img_batch, query_batch) num_steps = 0 for i, temp in enumerate(task_ref): for j, t in enumerate(temp): t.step(out[i, j]) num_steps += 1 print(f'solved {num_steps} sub-tasks in one invocation with {img_batch.shape[0]} image pairs') if num_steps <= self.batch_size: break # Rollback to default inference, because of too few valid tasks can be grouped together. while True: num_g = self.num_good_tasks(tasks) print(f'{num_g} / {max_corrs} | {self.num_finished_tasks(tasks)} / {len(tasks)}') task_ref, img_batch, query_batch = self.form_batch(tasks, zm) if len(task_ref) == 0: break if num_g >= max_corrs: break out = self.infer_batch(img_batch, query_batch) for t, o in zip(task_ref, out): t.step(o) if return_tasks_only: return tasks if return_idx: corrs, idx = self.conclude_tasks(tasks, return_idx=True, force=force, img_a_shape=img_a_shape, img_b_shape=img_b_shape,) corrs = corrs[:max_corrs] idx = idx[:max_corrs] return corrs, idx else: corrs = self.conclude_tasks(tasks, force=force, img_a_shape=img_a_shape, img_b_shape=img_b_shape,) corrs = corrs[:max_corrs] return corrs
#!/usr/bin/python3 # run this on bsd to create keys in dconf import os from gi.repository import Gio schema_source = Gio.SettingsSchemaSource.new_from_directory( # get default schema os.path.expanduser("../data"), Gio.SettingsSchemaSource.get_default(), False, ) schema = schema_source.lookup('com.github.darkoverlordofdata.catlock', False) settings = Gio.Settings.new_full(schema, None, None) settings.set_string('calendar-path',".local/share/catlock/us_en.ics") settings.set_string('pin',"999999")
"""Tests for module state accessors in the protocol engine state store.""" import pytest from pytest_lazyfixture import lazy_fixture # type: ignore[import] from decoy import Decoy from contextlib import nullcontext from typing import ContextManager, Dict, NamedTuple, Optional, Type, TypeVar, Union from opentrons.hardware_control.modules import AbstractModule, MagDeck, TempDeck from opentrons.types import DeckSlotName from opentrons.protocol_engine import errors from opentrons.protocol_engine.types import ( LoadedModule, DeckSlotLocation, ModuleDefinition, ModuleModel, ) from opentrons.protocol_engine.state.modules import ( ModuleView, ModuleState, HardwareModule, ) def make_module_view( slot_by_module_id: Optional[Dict[str, DeckSlotName]] = None, hardware_module_by_slot: Optional[Dict[DeckSlotName, HardwareModule]] = None, ) -> ModuleView: """Get a module view test subject with the specified state.""" state = ModuleState( slot_by_module_id=slot_by_module_id or {}, hardware_module_by_slot=hardware_module_by_slot or {}, ) return ModuleView(state=state) HardwareModuleT = TypeVar("HardwareModuleT", bound=AbstractModule) def make_hardware_module( decoy: Decoy, type: Type[HardwareModuleT], serial_number: str ) -> HardwareModuleT: """Return a mock hardware module with the specified type and serial number. Ideally, we wouldn't use mocks for this, since our subject uses these objects as pure input data, and doesn't call anything behavioral on them. But it's prohibitively difficult to instantiate these objects in tests otherwise. """ hardware_module = decoy.mock(cls=type) # "type: ignore" to override what's normally a read-only property. hardware_module.device_info = {"serial": serial_number} # type: ignore[misc] return hardware_module def test_initial_module_data_by_id() -> None: """It should raise if module ID doesn't exist.""" subject = make_module_view() with pytest.raises(errors.ModuleDoesNotExistError): subject.get("helloWorld") def test_get_missing_hardware() -> None: """It should raise if no loaded hardware.""" subject = make_module_view(slot_by_module_id={"module-id": DeckSlotName.SLOT_1}) with pytest.raises(errors.ModuleDoesNotExistError): subject.get("module-id") def test_get_module_data(tempdeck_v1_def: ModuleDefinition) -> None: """It should get module data from state by ID.""" subject = make_module_view( slot_by_module_id={"module-id": DeckSlotName.SLOT_1}, hardware_module_by_slot={ DeckSlotName.SLOT_1: HardwareModule( serial_number="serial-number", definition=tempdeck_v1_def, ) }, ) assert subject.get("module-id") == LoadedModule( id="module-id", model=ModuleModel.TEMPERATURE_MODULE_V1, location=DeckSlotLocation(slotName=DeckSlotName.SLOT_1), serialNumber="serial-number", definition=tempdeck_v1_def, ) def test_get_all_modules( tempdeck_v1_def: ModuleDefinition, tempdeck_v2_def: ModuleDefinition, ) -> None: """It should return all modules in state.""" subject = make_module_view( slot_by_module_id={ "module-1": DeckSlotName.SLOT_1, "module-2": DeckSlotName.SLOT_2, }, hardware_module_by_slot={ DeckSlotName.SLOT_1: HardwareModule( serial_number="serial-1", definition=tempdeck_v1_def, ), DeckSlotName.SLOT_2: HardwareModule( serial_number="serial-2", definition=tempdeck_v2_def, ), }, ) assert subject.get_all() == [ LoadedModule( id="module-1", serialNumber="serial-1", model=ModuleModel.TEMPERATURE_MODULE_V1, location=DeckSlotLocation(slotName=DeckSlotName.SLOT_1), definition=tempdeck_v1_def, ), LoadedModule( id="module-2", serialNumber="serial-2", model=ModuleModel.TEMPERATURE_MODULE_V2, location=DeckSlotLocation(slotName=DeckSlotName.SLOT_2), definition=tempdeck_v2_def, ), ] def test_get_properties_by_id( tempdeck_v1_def: ModuleDefinition, tempdeck_v2_def: ModuleDefinition, ) -> None: """It should return a loaded module's properties by ID.""" subject = make_module_view( slot_by_module_id={ "module-1": DeckSlotName.SLOT_1, "module-2": DeckSlotName.SLOT_2, }, hardware_module_by_slot={ DeckSlotName.SLOT_1: HardwareModule( serial_number="serial-1", definition=tempdeck_v1_def, ), DeckSlotName.SLOT_2: HardwareModule( serial_number="serial-2", definition=tempdeck_v2_def, ), }, ) assert subject.get_definition("module-1") == tempdeck_v1_def assert subject.get_dimensions("module-1") == tempdeck_v1_def.dimensions assert subject.get_model("module-1") == ModuleModel.TEMPERATURE_MODULE_V1 assert subject.get_serial_number("module-1") == "serial-1" assert subject.get_location("module-1") == DeckSlotLocation( slotName=DeckSlotName.SLOT_1 ) assert subject.get_definition("module-2") == tempdeck_v2_def assert subject.get_dimensions("module-2") == tempdeck_v2_def.dimensions assert subject.get_model("module-2") == ModuleModel.TEMPERATURE_MODULE_V2 assert subject.get_serial_number("module-2") == "serial-2" assert subject.get_location("module-2") == DeckSlotLocation( slotName=DeckSlotName.SLOT_2 ) def test_get_magnet_home_to_base_offset() -> None: """It should return the model-specific offset to bottom.""" subject = make_module_view() assert ( subject.get_magnet_home_to_base_offset( module_model=ModuleModel.MAGNETIC_MODULE_V1 ) == 2.5 ) assert ( subject.get_magnet_home_to_base_offset( module_model=ModuleModel.MAGNETIC_MODULE_V2 ) == 2.5 ) @pytest.mark.parametrize( "module_model", [ModuleModel.MAGNETIC_MODULE_V1, ModuleModel.MAGNETIC_MODULE_V2] ) def test_calculate_magnet_height(module_model: ModuleModel) -> None: """It should use true millimeters as hardware units.""" subject = make_module_view() assert ( subject.calculate_magnet_height( module_model=module_model, height_from_base=100, ) == 100 ) # todo(mm, 2022-02-28): # It's unclear whether this expected result should actually be the same # between GEN1 and GEN2. # The GEN1 homing backoff distance looks accidentally halved, for the same reason # that its heights are halved. If the limit switch hardware is the same for both # modules, we'd expect the backoff difference to cause a difference in the # height_from_home test, even though we're measuring everything in true mm. # https://github.com/Opentrons/opentrons/issues/9585 assert ( subject.calculate_magnet_height( module_model=module_model, height_from_home=100, ) == 97.5 ) assert ( subject.calculate_magnet_height( module_model=module_model, labware_default_height=100, offset_from_labware_default=10.0, ) == 110 ) class _CalculateMagnetHardwareHeightTestParams(NamedTuple): model: ModuleModel mm_from_base: float expected_result: Optional[float] expected_exception_type: Union[Type[Exception], None] @pytest.mark.parametrize( "model, mm_from_base, expected_result, expected_exception_type", [ # Happy cases: _CalculateMagnetHardwareHeightTestParams( model=ModuleModel.MAGNETIC_MODULE_V1, mm_from_base=10, # TODO(mm, 2022-03-09): It's unclear if this expected result is correct. # https://github.com/Opentrons/opentrons/issues/9585 expected_result=25, expected_exception_type=None, ), _CalculateMagnetHardwareHeightTestParams( model=ModuleModel.MAGNETIC_MODULE_V2, mm_from_base=10, expected_result=12.5, expected_exception_type=None, ), # Boundary conditions: # # TODO(mm, 2022-03-09): # In Python >=3.9, improve precision with math.nextafter(). # Also consider relying on shared constants instead of hard-coding bounds. # # TODO(mm, 2022-03-09): It's unclear if the bounds used for V1 modules # are physically correct. https://github.com/Opentrons/opentrons/issues/9585 _CalculateMagnetHardwareHeightTestParams( # V1 barely too low. model=ModuleModel.MAGNETIC_MODULE_V1, mm_from_base=-2.51, expected_result=None, expected_exception_type=errors.EngageHeightOutOfRangeError, ), _CalculateMagnetHardwareHeightTestParams( # V1 lowest allowed. model=ModuleModel.MAGNETIC_MODULE_V1, mm_from_base=-2.5, expected_result=0, expected_exception_type=None, ), _CalculateMagnetHardwareHeightTestParams( # V1 highest allowed. model=ModuleModel.MAGNETIC_MODULE_V1, mm_from_base=20, expected_result=45, expected_exception_type=None, ), _CalculateMagnetHardwareHeightTestParams( # V1 barely too high. model=ModuleModel.MAGNETIC_MODULE_V1, mm_from_base=20.01, expected_result=None, expected_exception_type=errors.EngageHeightOutOfRangeError, ), _CalculateMagnetHardwareHeightTestParams( # V2 barely too low. model=ModuleModel.MAGNETIC_MODULE_V2, mm_from_base=-2.51, expected_result=None, expected_exception_type=errors.EngageHeightOutOfRangeError, ), _CalculateMagnetHardwareHeightTestParams( # V2 lowest allowed. model=ModuleModel.MAGNETIC_MODULE_V2, mm_from_base=-2.5, expected_result=0, expected_exception_type=None, ), _CalculateMagnetHardwareHeightTestParams( # V2 highest allowed. model=ModuleModel.MAGNETIC_MODULE_V2, mm_from_base=22.5, expected_result=25, expected_exception_type=None, ), _CalculateMagnetHardwareHeightTestParams( # V2 barely too high. model=ModuleModel.MAGNETIC_MODULE_V2, mm_from_base=22.51, expected_result=None, expected_exception_type=errors.EngageHeightOutOfRangeError, ), # Bad model: _CalculateMagnetHardwareHeightTestParams( model=ModuleModel.TEMPERATURE_MODULE_V1, mm_from_base=0, expected_result=None, expected_exception_type=errors.WrongModuleTypeError, ), ], ) def test_calculate_magnet_hardware_height( model: ModuleModel, mm_from_base: float, expected_result: float, expected_exception_type: Union[Type[Exception], None], ) -> None: """It should return the expected height or raise the expected exception.""" subject = make_module_view() context: ContextManager[None] = ( # Not sure why mypy has trouble with this. nullcontext() # type: ignore[assignment] if expected_exception_type is None else pytest.raises(expected_exception_type) ) with context: result = subject.calculate_magnet_hardware_height( magnetic_module_model=model, mm_from_base=mm_from_base ) assert result == expected_result @pytest.mark.parametrize( argnames=["from_slot", "to_slot", "should_dodge"], argvalues=[ (DeckSlotName.SLOT_1, DeckSlotName.FIXED_TRASH, True), (DeckSlotName.FIXED_TRASH, DeckSlotName.SLOT_1, True), (DeckSlotName.SLOT_4, DeckSlotName.FIXED_TRASH, True), (DeckSlotName.FIXED_TRASH, DeckSlotName.SLOT_4, True), (DeckSlotName.SLOT_4, DeckSlotName.SLOT_9, True), (DeckSlotName.SLOT_9, DeckSlotName.SLOT_4, True), (DeckSlotName.SLOT_4, DeckSlotName.SLOT_8, True), (DeckSlotName.SLOT_8, DeckSlotName.SLOT_4, True), (DeckSlotName.SLOT_1, DeckSlotName.SLOT_8, True), (DeckSlotName.SLOT_8, DeckSlotName.SLOT_1, True), (DeckSlotName.SLOT_4, DeckSlotName.SLOT_11, True), (DeckSlotName.SLOT_11, DeckSlotName.SLOT_4, True), (DeckSlotName.SLOT_1, DeckSlotName.SLOT_11, True), (DeckSlotName.SLOT_11, DeckSlotName.SLOT_1, True), (DeckSlotName.SLOT_2, DeckSlotName.SLOT_4, False), ], ) def test_thermocycler_dodging( thermocycler_v1_def: ModuleDefinition, from_slot: DeckSlotName, to_slot: DeckSlotName, should_dodge: bool, ) -> None: """It should specify if thermocycler dodging is needed. It should return True if thermocycler exists and movement is between bad pairs of slot locations. """ subject = make_module_view( slot_by_module_id={"module-id": DeckSlotName.SLOT_1}, hardware_module_by_slot={ DeckSlotName.SLOT_1: HardwareModule( serial_number="serial-number", definition=thermocycler_v1_def, ) }, ) assert ( subject.should_dodge_thermocycler(from_slot=from_slot, to_slot=to_slot) is should_dodge ) def test_find_loaded_hardware_module( decoy: Decoy, magdeck_v1_def: ModuleDefinition ) -> None: """It should return the matching hardware module.""" matching = make_hardware_module( decoy=decoy, type=MagDeck, serial_number="serial-matching" ) non_matching = make_hardware_module( decoy=decoy, type=MagDeck, serial_number="serial-non-matching" ) another_non_matching = make_hardware_module( decoy=decoy, type=TempDeck, serial_number="serial-another-non-matching" ) attached = [non_matching, matching, another_non_matching] subject = make_module_view( hardware_module_by_slot={ DeckSlotName.SLOT_1: HardwareModule( serial_number="serial-non-matching", definition=magdeck_v1_def, ), DeckSlotName.SLOT_2: HardwareModule( serial_number="serial-matching", definition=magdeck_v1_def, ), DeckSlotName.SLOT_3: HardwareModule( serial_number="serial-another-non-matching", definition=magdeck_v1_def, ), }, slot_by_module_id={ "id-non-matching": DeckSlotName.SLOT_1, "id-matching": DeckSlotName.SLOT_2, "id-another-non-matching": DeckSlotName.SLOT_3, }, ) result = subject.find_loaded_hardware_module( module_id="id-matching", attached_modules=attached, expected_type=MagDeck, ) assert result == matching def test_find_loaded_hardware_module_raises_if_no_match_loaded( decoy: Decoy, ) -> None: """It should raise if the ID doesn't point to a loaded module.""" subject = make_module_view( hardware_module_by_slot={}, slot_by_module_id={}, ) with pytest.raises(errors.ModuleDoesNotExistError): subject.find_loaded_hardware_module( module_id="module-id", attached_modules=[], expected_type=MagDeck, ) def test_find_loaded_hardware_module_raises_if_match_not_attached( decoy: Decoy, magdeck_v1_def: ModuleDefinition ) -> None: """It should raise if a match was loaded but is not found in the attached list.""" subject = make_module_view( hardware_module_by_slot={ DeckSlotName.SLOT_1: HardwareModule( serial_number="serial-matching", definition=magdeck_v1_def, ), }, slot_by_module_id={ "id-matching": DeckSlotName.SLOT_1, }, ) with pytest.raises(errors.ModuleNotAttachedError): subject.find_loaded_hardware_module( module_id="id-matching", attached_modules=[], expected_type=MagDeck, ) def test_find_loaded_hardware_module_raises_if_match_is_wrong_type( decoy: Decoy, magdeck_v1_def: ModuleDefinition ) -> None: """It should raise if a match was found but is of an unexpected type.""" matching = make_hardware_module( decoy=decoy, type=MagDeck, serial_number="serial-matching" ) subject = make_module_view( hardware_module_by_slot={ DeckSlotName.SLOT_1: HardwareModule( serial_number="serial-matching", definition=magdeck_v1_def, ), }, slot_by_module_id={ "id-matching": DeckSlotName.SLOT_1, }, ) with pytest.raises(errors.WrongModuleTypeError): subject.find_loaded_hardware_module( module_id="id-matching", attached_modules=[matching], expected_type=TempDeck, # Will definitely not match. ) def test_select_hardware_module_to_load_rejects_missing() -> None: """It should raise if the correct module isn't attached.""" subject = make_module_view() with pytest.raises(errors.ModuleNotAttachedError): subject.select_hardware_module_to_load( model=ModuleModel.TEMPERATURE_MODULE_V1, location=DeckSlotLocation(slotName=DeckSlotName.SLOT_1), attached_modules=[], ) @pytest.mark.parametrize( argnames=["requested_model", "attached_definition"], argvalues=[ (ModuleModel.TEMPERATURE_MODULE_V1, lazy_fixture("tempdeck_v1_def")), (ModuleModel.TEMPERATURE_MODULE_V2, lazy_fixture("tempdeck_v2_def")), (ModuleModel.TEMPERATURE_MODULE_V1, lazy_fixture("tempdeck_v2_def")), (ModuleModel.TEMPERATURE_MODULE_V2, lazy_fixture("tempdeck_v1_def")), (ModuleModel.MAGNETIC_MODULE_V1, lazy_fixture("magdeck_v1_def")), (ModuleModel.MAGNETIC_MODULE_V2, lazy_fixture("magdeck_v2_def")), (ModuleModel.THERMOCYCLER_MODULE_V1, lazy_fixture("thermocycler_v1_def")), ], ) def test_select_hardware_module_to_load( requested_model: ModuleModel, attached_definition: ModuleDefinition, ) -> None: """It should return the first attached module that matches.""" subject = make_module_view() attached_modules = [ HardwareModule(serial_number="serial-1", definition=attached_definition), HardwareModule(serial_number="serial-2", definition=attached_definition), ] result = subject.select_hardware_module_to_load( model=requested_model, location=DeckSlotLocation(slotName=DeckSlotName.SLOT_1), attached_modules=attached_modules, ) assert result == attached_modules[0] def test_select_hardware_module_to_load_skips_non_matching( magdeck_v1_def: ModuleDefinition, magdeck_v2_def: ModuleDefinition, ) -> None: """It should skip over non-matching modules.""" subject = make_module_view() attached_modules = [ HardwareModule(serial_number="serial-1", definition=magdeck_v1_def), HardwareModule(serial_number="serial-2", definition=magdeck_v2_def), ] result = subject.select_hardware_module_to_load( model=ModuleModel.MAGNETIC_MODULE_V2, location=DeckSlotLocation(slotName=DeckSlotName.SLOT_1), attached_modules=attached_modules, ) assert result == attached_modules[1] def test_select_hardware_module_to_load_skips_already_loaded( magdeck_v1_def: ModuleDefinition, ) -> None: """It should skip over already assigned modules.""" subject = make_module_view( hardware_module_by_slot={ DeckSlotName.SLOT_1: HardwareModule( serial_number="serial-1", definition=magdeck_v1_def, ) } ) attached_modules = [ HardwareModule(serial_number="serial-1", definition=magdeck_v1_def), HardwareModule(serial_number="serial-2", definition=magdeck_v1_def), ] result = subject.select_hardware_module_to_load( model=ModuleModel.MAGNETIC_MODULE_V1, location=DeckSlotLocation(slotName=DeckSlotName.SLOT_3), attached_modules=attached_modules, ) assert result == attached_modules[1] def test_select_hardware_module_to_load_reuses_already_loaded( magdeck_v1_def: ModuleDefinition, ) -> None: """It should reuse over already assigned modules in the same location.""" subject = make_module_view( hardware_module_by_slot={ DeckSlotName.SLOT_1: HardwareModule( serial_number="serial-1", definition=magdeck_v1_def, ) } ) attached_modules = [ HardwareModule(serial_number="serial-1", definition=magdeck_v1_def), HardwareModule(serial_number="serial-2", definition=magdeck_v1_def), ] result = subject.select_hardware_module_to_load( model=ModuleModel.MAGNETIC_MODULE_V1, location=DeckSlotLocation(slotName=DeckSlotName.SLOT_1), attached_modules=attached_modules, ) assert result == attached_modules[0] def test_select_hardware_module_to_load_rejects_location_reassignment( magdeck_v1_def: ModuleDefinition, tempdeck_v1_def: ModuleDefinition, ) -> None: """It should raise if a non-matching module is already present in the slot.""" subject = make_module_view( hardware_module_by_slot={ DeckSlotName.SLOT_1: HardwareModule( serial_number="serial-1", definition=magdeck_v1_def, ) } ) attached_modules = [ HardwareModule(serial_number="serial-1", definition=magdeck_v1_def), HardwareModule(serial_number="serial-2", definition=tempdeck_v1_def), ] with pytest.raises(errors.ModuleAlreadyPresentError): subject.select_hardware_module_to_load( model=ModuleModel.TEMPERATURE_MODULE_V1, location=DeckSlotLocation(slotName=DeckSlotName.SLOT_1), attached_modules=attached_modules, )
import asyncio import pytest import zmq from zmq.utils import z85 from zope.interface.verify import verifyClass def test_noop_auth_backend_client(): from pseud.auth import NoOpAuthenticationBackendForClient from pseud.interfaces import IAuthenticationBackend assert verifyClass(IAuthenticationBackend, NoOpAuthenticationBackendForClient) def test_noop_auth_backend_server(): from pseud.auth import NoOpAuthenticationBackendForServer from pseud.interfaces import IAuthenticationBackend assert verifyClass(IAuthenticationBackend, NoOpAuthenticationBackendForServer) @pytest.mark.asyncio async def test_trusted_curve(loop, unused_tcp_port, trusted_curve_auth_backend): from pseud import Client, Server from pseud.utils import register_rpc server_id = b'server' endpoint = f'tcp://127.0.0.1:{unused_tcp_port}' server_public, server_secret = zmq.curve_keypair() security_plugin = 'trusted_curve' server = Server( server_id, security_plugin=security_plugin, public_key=server_public, secret_key=server_secret, loop=loop, ) server.bind(endpoint) bob_public, bob_secret = server.auth_backend.known_identities[b'bob'] client = Client( server_id, user_id=b'bob', security_plugin=security_plugin, public_key=bob_public, secret_key=bob_secret, peer_public_key=server_public, loop=loop, ) client.connect(endpoint) assert server.socket.mechanism == zmq.CURVE assert client.socket.mechanism == zmq.CURVE register_rpc(name='string.lower')(str.lower) async with server, client: result = await client.string.lower('FOO') assert result == 'foo' @pytest.mark.asyncio async def test_trusted_curve_with_wrong_peer_public_key(loop, unused_tcp_port_factory): from pseud import Client, Server from pseud.utils import register_rpc server_id = b'server' port = unused_tcp_port_factory() endpoint = f'tcp://127.0.0.1:{port}' server_public, server_secret = zmq.curve_keypair() server = Server( server_id, security_plugin='trusted_curve', public_key=server_public, secret_key=server_secret, loop=loop, ) server.bind(endpoint) alice_public, alice_secret = server.auth_backend.known_identities[b'alice'] client = Client( server_id, user_id=b'alice', security_plugin='trusted_curve', public_key=alice_public, secret_key=alice_secret, peer_public_key=z85.encode(b'R' * 32), timeout=0.5, loop=loop, ) client.connect(endpoint) assert server.socket.mechanism == zmq.CURVE assert client.socket.mechanism == zmq.CURVE register_rpc(name='string.lower')(str.lower) async with server, client: with pytest.raises(asyncio.TimeoutError): await client.string.lower('BAR') @pytest.mark.asyncio async def test_untrusted_curve_with_allowed_password( loop, unused_tcp_port, untrusted_curve_auth_backend ): from pseud import Client, Server from pseud.utils import register_rpc client_id = b'john' server_id = b'server' endpoint = f'tcp://127.0.0.1:{unused_tcp_port}' server_public, server_secret = zmq.curve_keypair() client_public, client_secret = zmq.curve_keypair() security_plugin = 'untrusted_curve' password = b's3cret!' client = Client( server_id, security_plugin=security_plugin, public_key=client_public, secret_key=client_secret, peer_public_key=server_public, user_id=client_id, password=password, loop=loop, ) server = Server( server_id, security_plugin=security_plugin, public_key=server_public, secret_key=server_secret, loop=loop, ) server.bind(endpoint) client.connect(endpoint) assert server.socket.mechanism == zmq.CURVE assert client.socket.mechanism == zmq.CURVE # configure manually authentication backend server.auth_backend.user_map[client_id] = password register_rpc(name='string.lower')(str.lower) async with server, client: result = await client.string.lower('FOO') result2 = await client.string.lower('FOO_JJ') result3 = await server.send_to(client_id).string.lower('ABC') assert result == 'foo' assert result2 == 'foo_jj' assert result3 == 'abc' @pytest.mark.asyncio async def test_untrusted_curve_with_allowed_password_and_client_disconnect( loop, unused_tcp_port ): from pseud import Client, Server client_id = b'john' server_id = b'server' endpoint = f'tcp://127.0.0.1:{unused_tcp_port}' server_public, server_secret = zmq.curve_keypair() client_public, client_secret = zmq.curve_keypair() security_plugin = 'untrusted_curve' password = b's3cret!' client = Client( server_id, security_plugin=security_plugin, public_key=client_public, secret_key=client_secret, peer_public_key=server_public, user_id=client_id, password=password, timeout=1, loop=loop, ) server = Server( server_id, security_plugin=security_plugin, public_key=server_public, secret_key=server_secret, loop=loop, ) server.bind(endpoint) client.connect(endpoint) assert server.socket.mechanism == zmq.CURVE assert client.socket.mechanism == zmq.CURVE # configure manually authentication backend server.auth_backend.user_map[client_id] = password server.register_rpc(name='string.lower')(str.lower) async with server, client: result = await client.string.lower('FOO') assert result == 'foo' # Simulate disconnection and reconnection with new identity client.disconnect(endpoint) client.connect(endpoint) await asyncio.sleep(0.1) result = await client.string.lower('ABC') assert result == 'abc' @pytest.mark.asyncio async def test_untrusted_curve_with_wrong_password(loop, unused_tcp_port): from pseud import Client, Server from pseud.interfaces import UnauthorizedError from pseud.utils import register_rpc client_id = b'john' server_id = b'server' endpoint = f'tcp://127.0.0.1:{unused_tcp_port}' server_public, server_secret = zmq.curve_keypair() client_public, client_secret = zmq.curve_keypair() security_plugin = 'untrusted_curve' password = b's3cret!' client = Client( server_id, user_id=client_id, security_plugin=security_plugin, public_key=client_public, secret_key=client_secret, peer_public_key=server_public, password=password, loop=loop, ) server = Server( server_id, security_plugin=security_plugin, public_key=server_public, secret_key=server_secret, loop=loop, ) server.bind(endpoint) client.connect(endpoint) assert server.socket.mechanism == zmq.CURVE assert client.socket.mechanism == zmq.CURVE # configure manually authentication backend server.auth_backend.user_map[client_id] = password + b'Looser' register_rpc(name='string.lower')(str.lower) async with server, client: with pytest.raises(UnauthorizedError): await client.string.lower(b'IMSCREAMING') @pytest.mark.asyncio async def test_client_can_reconnect(loop, unused_tcp_port_factory): from pseud import Client, Server port = unused_tcp_port_factory() server_id = b'server' endpoint = f'tcp://127.0.0.1:{port}' server_public, server_secret = zmq.curve_keypair() security_plugin = 'trusted_curve' server = Server( server_id, security_plugin=security_plugin, public_key=server_public, secret_key=server_secret, loop=loop, ) server.bind(endpoint) bob_public, bob_secret = server.auth_backend.known_identities[b'bob'] client = Client( server_id, user_id=b'bob', security_plugin=security_plugin, public_key=bob_public, secret_key=bob_secret, peer_public_key=server_public, loop=loop, ) client.connect(endpoint) assert server.socket.mechanism == zmq.CURVE assert client.socket.mechanism == zmq.CURVE server.register_rpc(name='string.upper')(str.upper) async with server, client: result = await client.string.upper('hello') assert result == 'HELLO' client.disconnect(endpoint) client.connect(endpoint) await asyncio.sleep(0.01) result = await client.string.upper('hello2') assert result == 'HELLO2' @pytest.mark.asyncio async def test_server_can_send_to_trustable_peer_identity(loop, unused_tcp_port): """ Uses internal metadata of zmq.Frame.get() to fetch identity of sender """ from pseud import Client, Server server_id = b'server' endpoint = f'tcp://127.0.0.1:{unused_tcp_port}' server_public, server_secret = zmq.curve_keypair() security_plugin = 'trusted_curve' server = Server( server_id, security_plugin=security_plugin, public_key=server_public, secret_key=server_secret, loop=loop, ) server.bind(endpoint) bob_public, bob_secret = server.auth_backend.known_identities[b'bob'] client = Client( server_id, user_id=b'bob', security_plugin=security_plugin, public_key=bob_public, secret_key=bob_secret, peer_public_key=server_public, loop=loop, ) client.connect(endpoint) assert server.socket.mechanism == zmq.CURVE assert client.socket.mechanism == zmq.CURVE @server.register_rpc(with_identity=True) def echo(peer_identity, message): return peer_identity, message async with server, client: result = await client.echo(b'one') if zmq.zmq_version_info() >= (4, 1, 0): assert result == (b'bob', b'one') else: assert result == (b'', b'one')
# -*- coding: utf-8 -*- """ Provide functions and classes: Model = Class for loading and using trained models from tensorflow create_cell = function for creatting RNN cells with wrappers """ import tensorflow as tf from tensorflow.python.ops.rnn_cell_impl import LSTMCell, ResidualWrapper, DropoutWrapper, MultiRNNCell class Model(): """Loading and running isolated tf graph.""" def __init__(self, loc, operation='activation', input_name='x'): """ loc: location of file containing saved model operation: name of operation for running the model input_name: name of input placeholder """ self.input = input_name + ":0" self.graph = tf.Graph() self.sess = tf.Session(graph=self.graph) with self.graph.as_default(): saver = tf.train.import_meta_graph(loc + '.meta', clear_devices=True) saver.restore(self.sess, loc) self.op = self.graph.get_operation_by_name(operation).outputs[0] def run(self, data): """Run the specified operation on given data.""" return self.sess.run(self.op, feed_dict={self.input: data}) def eval_feed(self, feed): """Run the specified operation with given feed.""" return self.sess.run(self.op, feed_dict=feed) def run_op(self, op, feed, output=True): """Run given operation with the feed.""" if output: return self.sess.run( self.graph.get_operation_by_name(op).outputs[0], feed_dict=feed) else: self.sess.run( self.graph.get_operation_by_name(op), feed_dict=feed) def _create_single_cell(cell_fn, num_units, is_residual=False, is_dropout=False, keep_prob=None): """Create single RNN cell based on cell_fn.""" cell = cell_fn(num_units) if is_dropout: cell = DropoutWrapper(cell, input_keep_prob=keep_prob) if is_residual: cell = ResidualWrapper(cell) return cell def create_cell(num_units, num_layers, num_residual_layers, is_dropout=False, keep_prob=None, cell_fn=LSTMCell): """Create corresponding number of RNN cells with given wrappers.""" cell_list = [] for i in range(num_layers): cell_list.append(_create_single_cell( cell_fn=cell_fn, num_units=num_units, is_residual=(i >= num_layers - num_residual_layers), is_dropout=is_dropout, keep_prob=keep_prob )) if num_layers == 1: return cell_list[0] return MultiRNNCell(cell_list)
import os from typing import Dict, List from . import config from .err import PinterestException from .util import pinterest_request class Pin: def __init__(self, token: str, pin_id: str = None): self.token = token self.pin_id = pin_id def create(self, board: str, note: str, link: str = None, image: str = None, image_url: str = None, image_base64: str = None, fields: List[str] = None) -> Dict: """ Creates a Pin for the authenticated user. The default response returns the note, URL, link and ID of the created Pin. board (required): The board you want the new Pin to be on. In the format <username>/<board_name>. note (required): The Pin’s description. link (optional): The URL the Pin will link to when you click through. And one of the following three options is required: image: Upload the image you want to pin using multipart form data. image_url: The link to the image that you want to Pin. image_base64: The link of a Base64 encoded image. fields: attribution, board, color, counts, created_at, creator, id, image, link, media, metadata, note, original_link, url POST /v1/pins/ """ if fields is None: fields = ['note', 'url', 'link', 'id'] url = config.api_url + '/v1/pins/' params = {'access_token': self.token, 'fields': ','.join(fields)} data = { 'board': board, 'note': note, 'link': link } files = {} if image is not None: if not os.path.exists(image): raise PinterestException("Pin: image does not exist") files['image'] = open(image, 'rb') elif image_url is not None: data['image_url'] = image_url elif image_base64 is not None: data['image_base64'] = image_base64 else: raise PinterestException("Pin: create() requires either image, image_url, or image_base64") return pinterest_request('post', url, params=params, data=data, files=files) def fetch(self, fields: List[str] = None) -> Dict: """ The default response returns the ID, link, URL and note of the Pin. fields: attribution, board, color, counts, created_at, creator, id, image, link, media, metadata, note, original_link, url GET /v1/pins/<pin>/ """ if fields is None: fields = ['id', 'link', 'url', 'note'] url = config.api_url + '/v1/pins/{pin_id}/'.format(pin_id=self.pin_id) params = {'access_token': self.token, 'fields': ','.join(fields)} return pinterest_request('get', url, params=params) def edit(self, board: str = None, note: str = None, link: str = None, fields: List[str] = None) -> Dict: """ Changes the board, description and/or link of the Pin. pin (required): The ID (unique string of numbers and letters) of the Pin you want to edit. board (optional): The board you want to move the Pin to, in the format <username>/<board_name>. note (optional): The new Pin description. link (optional): The new Pin link. Note: You can only edit the link of a repinned Pin if the pinner owns the domain of the Pin in question, or if the Pin itself has been created by the pinner. fields: attribution, board, color, counts, created_at, creator, id, image, link, media, metadata, note, original_link, url PATCH /v1/pins/<pin>/ """ if board is None and note is None and link is None: raise PinterestException("Pin: edit() requires valid board, note, or link") if fields is None: fields = ['id', 'link', 'url', 'note'] url = config.api_url + '/v1/pins/{pin_id}/'.format(pin_id=self.pin_id) params = {'access_token': self.token, 'fields': ','.join(fields)} data = {} if board is not None: data['board'] = board if note is not None: data['note'] = note if link is not None: data['link'] = link return pinterest_request('patch', url, params=params, data=data) def delete(self) -> Dict: """ Deletes the specified Pin. This action is permanent and cannot be undone. DELETE /v1/pins/<pin>/ """ url = config.api_url + '/v1/pins/{pin_id}/'.format(pin_id=self.pin_id) params = {'access_token': self.token} return pinterest_request('delete', url, params=params)
""" HTML renderer for mistletoe. """ import re import sys from itertools import chain from urllib.parse import quote from mistletoe.block_token import HTMLBlock from mistletoe.span_token import HTMLSpan from mistletoe.base_renderer import BaseRenderer import html class HTMLRenderer(BaseRenderer): """ HTML renderer class. See mistletoe.base_renderer module for more info. """ def __init__(self, *extras): """ Args: extras (list): allows subclasses to add even more custom tokens. """ self._suppress_ptag_stack = [False] super().__init__(*chain((HTMLBlock, HTMLSpan), extras)) # html.entities.html5 includes entitydefs not ending with ';', # CommonMark seems to hate them, so... self._stdlib_charref = html._charref _charref = re.compile( r"&(#[0-9]+;" r"|#[xX][0-9a-fA-F]+;" r"|[^\t\n\f <&#;]{1,32};)" ) html._charref = _charref def __exit__(self, *args): super().__exit__(*args) html._charref = self._stdlib_charref def render_to_plain(self, token): if hasattr(token, "children"): inner = [self.render_to_plain(child) for child in token.children] return "".join(inner) return self.escape_html(token.content) def render_strong(self, token): template = "<strong>{}</strong>" return template.format(self.render_inner(token)) def render_emphasis(self, token): template = "<em>{}</em>" return template.format(self.render_inner(token)) def render_inline_code(self, token): template = "<code>{}</code>" inner = html.escape(token.children[0].content) return template.format(inner) def render_strikethrough(self, token): template = "<del>{}</del>" return template.format(self.render_inner(token)) def render_image(self, token): template = '<img src="{}" alt="{}"{} />' if token.title: title = ' title="{}"'.format(self.escape_html(token.title)) else: title = "" return template.format(token.src, self.render_to_plain(token), title) def render_link(self, token): template = '<a href="{target}"{title}>{inner}</a>' target = self.escape_url(token.target) if token.title: title = ' title="{}"'.format(self.escape_html(token.title)) else: title = "" inner = self.render_inner(token) return template.format(target=target, title=title, inner=inner) def render_auto_link(self, token): template = '<a href="{target}">{inner}</a>' if token.mailto: target = "mailto:{}".format(token.target) else: target = self.escape_url(token.target) inner = self.render_inner(token) return template.format(target=target, inner=inner) def render_escape_sequence(self, token): return self.render_inner(token) def render_raw_text(self, token): return self.escape_html(token.content) @staticmethod def render_html_span(token): return token.content def render_heading(self, token): if token.level == 1 or token.level == 2: template = '<h{level}>{inner}</h{level}>' else: template = "<h{level}>{inner}</h{level}>" inner = self.render_inner(token) return template.format(level=token.level, inner=inner) def render_quote(self, token): elements = ["<blockquote>"] self._suppress_ptag_stack.append(False) elements.extend([self.render(child) for child in token.children]) self._suppress_ptag_stack.pop() elements.append("</blockquote>") return "\n".join(elements) def render_paragraph(self, token): if self._suppress_ptag_stack[-1]: return "{}".format(self.render_inner(token)) return "<p>{}</p>".format(self.render_inner(token)) def render_block_code(self, token): template = "<pre><code{attr}>{inner}</code></pre>" if token.language: attr = ' class="{}"'.format( "language-{}".format(self.escape_html(token.language)) ) else: attr = "" inner = html.escape(token.children[0].content) return template.format(attr=attr, inner=inner) def render_list(self, token): template = "<{tag}{attr}>\n{inner}\n</{tag}>" if token.start is not None: tag = "ol" attr = ' start="{}"'.format(token.start) if token.start != 1 else "" else: tag = "ul" attr = "" self._suppress_ptag_stack.append(not token.loose) inner = "\n".join([self.render(child) for child in token.children]) self._suppress_ptag_stack.pop() return template.format(tag=tag, attr=attr, inner=inner) def render_list_item(self, token): if len(token.children) == 0: return "<li></li>" inner = "\n".join([self.render(child) for child in token.children]) inner_template = "\n{}\n" if self._suppress_ptag_stack[-1]: if token.children[0].__class__.__name__ == "Paragraph": inner_template = inner_template[1:] if token.children[-1].__class__.__name__ == "Paragraph": inner_template = inner_template[:-1] return "<li>{}</li>".format(inner_template.format(inner)) def render_table(self, token): # This is actually gross and I wonder if there's a better way to do it. # # The primary difficulty seems to be passing down alignment options to # reach individual cells. template = "<table>\n{inner}</table>" if hasattr(token, "header"): head_template = "<thead>\n{inner}</thead>\n" head_inner = self.render_table_row(token.header, is_header=True) head_rendered = head_template.format(inner=head_inner) else: head_rendered = "" body_template = "<tbody>\n{inner}</tbody>\n" body_inner = self.render_inner(token) body_rendered = body_template.format(inner=body_inner) return template.format(inner=head_rendered + body_rendered) def render_table_row(self, token, is_header=False): template = "<tr>\n{inner}</tr>\n" inner = "".join( [self.render_table_cell(child, is_header) for child in token.children] ) return template.format(inner=inner) def render_table_cell(self, token, in_header=False): template = "<{tag}{attr}>{inner}</{tag}>\n" tag = "th" if in_header else "td" if token.align is None: align = "left" elif token.align == 0: align = "center" elif token.align == 1: align = "right" attr = ' align="{}"'.format(align) inner = self.render_inner(token) return template.format(tag=tag, attr=attr, inner=inner) @staticmethod def render_thematic_break(token): return "<hr />" @staticmethod def render_line_break(token): return "\n" if token.soft else "<br />\n" @staticmethod def render_html_block(token): return token.content def render_scaffold(self, body): css_link = """ <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/kognise/water.css@latest/dist/light.min.css"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.0.2/styles/default.min.css"> <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.0.2/highlight.min.js"></script> <script>hljs.initHighlightingOnLoad();</script> """ scaffold = f"<!DOCTYPE html>\n<html>\n<head>\n<meta charset='utf-8'>\n\n</head>\n<body class=\"container\">{body}</body>\n</html>" return scaffold def render_document(self, token): self.footnotes.update(token.footnotes) inner = "\n".join([self.render(child) for child in token.children]) return self.render_scaffold(inner) @staticmethod def escape_html(raw): return html.escape(html.unescape(raw)).replace("&#x27;", "'") @staticmethod def escape_url(raw): """ Escape urls to prevent code injection craziness. (Hopefully.) """ return html.escape(quote(html.unescape(raw), safe="/#:()*?=%@+,&"))
import scipy.misc import numpy as np def fractal_dimension(Z): # Only for 2d image assert(len(Z.shape) == 2) def boxcount(Z, k): S = np.add.reduceat( np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0), np.arange(0, Z.shape[1], k), axis=1) # We count non-empty (0) and non-full boxes (k*k) return len(np.where((S > 0) & (S < k*k))[0]) # Minimal dimension of image p = min(Z.shape) # Greatest power of 2 less than or equal to p n = 2**np.floor(np.log(p)/np.log(2)) # Extract the exponent n = int(np.log(n)/np.log(2)) # Build successive box sizes (from 2**n down to 2**1) sizes = 2**np.arange(n, 1, -1) # Actual box counting with decreasing size counts = [] for size in sizes: counts.append(boxcount(Z, size)) # Fit the successive log(sizes) with log (counts) coeffs = np.polyfit(np.log(sizes), np.log(counts), 1) return -coeffs[0] def vessel_density(Z): # Only for 2d image assert(len(Z.shape) == 2) vessel_total_count = np.sum(Z==1) pixel_total_count = Z.shape[0]*Z.shape[1] return vessel_total_count/pixel_total_count
import matplotlib.pyplot as plt def plot_drift_score_per_dimension(df_drift_scores, plot_file_name=False, latex_font=False): """ Parameters ---------- df_drift_scores: Data frame with drift scores plot_file_name: Name of plot file latex_font: Whether latex font should be used Returns ------- """ if latex_font: # Use LaTex Font plt.rc('text', usetex=True) plt.rc('font', family='serif') # Create plot plt.style.use('ggplot') plt.tight_layout() fontsize = 18 params = {'axes.labelsize': fontsize, 'axes.titlesize': fontsize, 'legend.fontsize': fontsize, 'xtick.labelsize': fontsize, 'ytick.labelsize': fontsize} plt.rcParams.update(params) groups = df_drift_scores.groupby('Dimension Type') # Plot fig, ax = plt.subplots() for name, group in groups: ax.scatter(x=group['Dimension'], y=group['Drift score'], label=name) ax.legend() plt.ylim(bottom=0, top=0.44) # plt.title(plot_title) plt.ylabel('Drift score') plt.xlabel('Dimension') if plot_file_name: plt.savefig("Plots/Where/" + str(plot_file_name), bbox_inches='tight') plt.show()
# -*- coding: utf-8 -*- # Problem Set 5: Experimental Analysis # Name: Brighton Ancelin # Collaborators (discussion): # Time: # SEARCH FOR "MY_CODE" COMMENT TO FIND MY CONTRIBUTIONS import pylab import numpy as np import re # cities in our weather data CITIES = [ 'BOSTON', 'SEATTLE', 'SAN DIEGO', 'PHILADELPHIA', 'PHOENIX', 'LAS VEGAS', 'CHARLOTTE', 'DALLAS', 'BALTIMORE', 'SAN JUAN', 'LOS ANGELES', 'MIAMI', 'NEW ORLEANS', 'ALBUQUERQUE', 'PORTLAND', 'SAN FRANCISCO', 'TAMPA', 'NEW YORK', 'DETROIT', 'ST LOUIS', 'CHICAGO' ] TRAINING_INTERVAL = range(1961, 2010) TESTING_INTERVAL = range(2010, 2016) """ Begin helper code """ class Climate(object): """ The collection of temperature records loaded from given csv file """ def __init__(self, filename): """ Initialize a Climate instance, which stores the temperature records loaded from a given csv file specified by filename. Args: filename: name of the csv file (str) """ self.rawdata = {} f = open(filename, 'r') header = f.readline().strip().split(',') for line in f: items = line.strip().split(',') date = re.match('(\d\d\d\d)(\d\d)(\d\d)', items[header.index('DATE')]) year = int(date.group(1)) month = int(date.group(2)) day = int(date.group(3)) city = items[header.index('CITY')] temperature = float(items[header.index('TEMP')]) if city not in self.rawdata: self.rawdata[city] = {} if year not in self.rawdata[city]: self.rawdata[city][year] = {} if month not in self.rawdata[city][year]: self.rawdata[city][year][month] = {} self.rawdata[city][year][month][day] = temperature f.close() def get_yearly_temp(self, city, year): """ Get the daily temperatures for the given year and city. Args: city: city name (str) year: the year to get the data for (int) Returns: a 1-d pylab array of daily temperatures for the specified year and city """ temperatures = [] assert city in self.rawdata, "provided city is not available" assert year in self.rawdata[city], "provided year is not available" for month in range(1, 13): for day in range(1, 32): if day in self.rawdata[city][year][month]: temperatures.append(self.rawdata[city][year][month][day]) return pylab.array(temperatures) def get_daily_temp(self, city, month, day, year): """ Get the daily temperature for the given city and time (year + date). Args: city: city name (str) month: the month to get the data for (int, where January = 1, December = 12) day: the day to get the data for (int, where 1st day of month = 1) year: the year to get the data for (int) Returns: a float of the daily temperature for the specified time (year + date) and city """ assert city in self.rawdata, "provided city is not available" assert year in self.rawdata[city], "provided year is not available" assert month in self.rawdata[city][year], "provided month is not available" assert day in self.rawdata[city][year][month], "provided day is not available" return self.rawdata[city][year][month][day] def se_over_slope(x, y, estimated, model): """ For a linear regression model, calculate the ratio of the standard error of this fitted curve's slope to the slope. The larger the absolute value of this ratio is, the more likely we have the upward/downward trend in this fitted curve by chance. Args: x: an 1-d pylab array with length N, representing the x-coordinates of the N sample points y: an 1-d pylab array with length N, representing the y-coordinates of the N sample points estimated: an 1-d pylab array of values estimated by a linear regression model model: a pylab array storing the coefficients of a linear regression model Returns: a float for the ratio of standard error of slope to slope """ assert len(y) == len(estimated) assert len(x) == len(estimated) EE = ((estimated - y)**2).sum() var_x = ((x - x.mean())**2).sum() SE = pylab.sqrt(EE/(len(x)-2)/var_x) return SE/model[0] """ End helper code """ def generate_models(x, y, degs): """ Generate regression models by fitting a polynomial for each degree in degs to points (x, y). Args: x: an 1-d pylab array with length N, representing the x-coordinates of the N sample points y: an 1-d pylab array with length N, representing the y-coordinates of the N sample points degs: a list of degrees of the fitting polynomial Returns: a list of pylab arrays, where each array is a 1-d array of coefficients that minimizes the squared error of the fitting polynomial """ # MY_CODE return [pylab.polyfit(x, y, deg) for deg in degs] def r_squared(y, estimated): """ Calculate the R-squared error term. Args: y: 1-d pylab array with length N, representing the y-coordinates of the N sample points estimated: an 1-d pylab array of values estimated by the regression model Returns: a float for the R-squared error term """ # MY_CODE return 1 - (np.sum((y - estimated) ** 2) / np.sum((y - np.mean(y)) ** 2)) def evaluate_models_on_training(x, y, models): """ For each regression model, compute the R-squared value for this model with the standard error over slope of a linear regression line (only if the model is linear), and plot the data along with the best fit curve. For the plots, you should plot data points (x,y) as blue dots and your best fit curve (aka model) as a red solid line. You should also label the axes of this figure appropriately and have a title reporting the following information: degree of your regression model, R-square of your model evaluated on the given data points, and SE/slope (if degree of this model is 1 -- see se_over_slope). Args: x: an 1-d pylab array with length N, representing the x-coordinates of the N sample points y: an 1-d pylab array with length N, representing the y-coordinates of the N sample points models: a list containing the regression models you want to apply to your data. Each model is a pylab array storing the coefficients of a polynomial. Returns: None """ # MY_CODE for model in models: pylab.figure() e = np.polyval(model, x) pylab.plot(x, y, 'b.') pylab.plot(x, e, 'r-') pylab.xlim(np.min(x)-1, np.max(x)+1) pylab.ylim(np.min(y)-1, np.max(y)+1) pylab.xlabel('Year') pylab.ylabel('Temperature (C)') deg = len(model) - 1 pylab.title('R^2={}, Deg={}'.format(r_squared(y, e), deg) + (', SE/slope={}'.format( se_over_slope(x, y, e, model)) if 1 == deg else '')) pylab.show() def gen_cities_avg(climate, multi_cities, years): """ Compute the average annual temperature over multiple cities. Args: climate: instance of Climate multi_cities: the names of cities we want to average over (list of str) years: the range of years of the yearly averaged temperature (list of int) Returns: a pylab 1-d array of floats with length = len(years). Each element in this array corresponds to the average annual temperature over the given cities for a given year. """ # MY_CODE return np.array([np.mean([np.mean(climate.get_yearly_temp(city, year)) for city in multi_cities]) for year in years]) def moving_average(y, window_length): """ Compute the moving average of y with specified window length. Args: y: an 1-d pylab array with length N, representing the y-coordinates of the N sample points window_length: an integer indicating the window length for computing moving average Returns: an 1-d pylab array with the same length as y storing moving average of y-coordinates of the N sample points """ # MY_CODE arr1 = np.array([np.mean(y[:(k+1)]) for k in range(window_length-1)]) arr2 = np.zeros((len(y) - window_length + 1)) sum = np.sum(y[:window_length]) arr2[0] = sum / window_length for start in range(len(y) - window_length): sum -= y[start] sum += y[start + window_length] arr2[start+1] = sum / window_length return np.concatenate((arr1, arr2)) def rmse(y, estimated): """ Calculate the root mean square error term. Args: y: an 1-d pylab array with length N, representing the y-coordinates of the N sample points estimated: an 1-d pylab array of values estimated by the regression model Returns: a float for the root mean square error term """ # MY_CODE return np.sqrt(np.mean((y - estimated) ** 2)) def gen_std_devs(climate, multi_cities, years): """ For each year in years, compute the standard deviation over the averaged yearly temperatures for each city in multi_cities. Args: climate: instance of Climate multi_cities: the names of cities we want to use in our std dev calculation (list of str) years: the range of years to calculate standard deviation for (list of int) Returns: a pylab 1-d array of floats with length = len(years). Each element in this array corresponds to the standard deviation of the average annual city temperatures for the given cities in a given year. """ # MY_CODE # clim_arr = np.array([np.array([climate.get_yearly_temp(city, year) # for city in multi_cities]) for year in years]) # clim_arr = np.mean(clim_arr, axis=1) # clim_arr = np.std(clim_arr, axis=1) clim_arr = np.zeros(len(years)) for i in range(len(years)): year = years[i] clim_dat = np.array([climate.get_yearly_temp(city, year) for city in multi_cities]) clim_dat = np.mean(clim_dat, axis=0) clim_dat = np.std(clim_dat) clim_arr[i] = clim_dat return clim_arr def evaluate_models_on_testing(x, y, models): """ For each regression model, compute the RMSE for this model and plot the test data along with the model’s estimation. For the plots, you should plot data points (x,y) as blue dots and your best fit curve (aka model) as a red solid line. You should also label the axes of this figure appropriately and have a title reporting the following information: degree of your regression model, RMSE of your model evaluated on the given data points. Args: x: an 1-d pylab array with length N, representing the x-coordinates of the N sample points y: an 1-d pylab array with length N, representing the y-coordinates of the N sample points models: a list containing the regression models you want to apply to your data. Each model is a pylab array storing the coefficients of a polynomial. Returns: None """ # MY_CODE for model in models: pylab.figure() e = np.polyval(model, x) pylab.plot(x, y, 'b.') pylab.plot(x, e, 'r-') pylab.xlim(np.min(x)-1, np.max(x)+1) pylab.ylim(np.min(y)-1, np.max(y)+1) pylab.xlabel('Year') pylab.ylabel('Temperature (C)') deg = len(model) - 1 pylab.title('RMSE={}, Deg={}'.format(rmse(y, e), deg)) pylab.show() # MY_CODE # === BEGIN MY CUSTOM CODE def gen_std_devs_BUT_BETTER(climate, multi_cities, years): """ So I was looking at the way that gen_std_devs computes its values and it does it by averaging the temperature across all cities on a particular day, then finding the std dev for the population of all days in that year. So I was thinking, "Hey, extreme weather doesn't mean that one day the entire globe goes cold and the next day the entire globe gets hot. It means that in all local regions, the variance in temperature from day to day should go up. In other words, we should be looking at the std devs of daily temperatures by city, and then averaging those. The way implemented in the instructions' version of gen_std_devs is kinda shit. It averages away most of our extrema by looking at temperatures all over the globe, when we're looking for extrema in local regions of the globe." Returns 1-d array where each entry is the average std dev (done this new way) for a given year. :param climate: :param multi_cities: :param years: :return: """ clim_arr = np.array([np.array([np.std(climate.get_yearly_temp(city, year)) for city in multi_cities]) for year in years]) clim_arr = np.mean(clim_arr, axis=1) return clim_arr if __name__ == '__main__': # PART 4 # MY_CODE climate = Climate('data.csv') x = np.array(TRAINING_INTERVAL[:]) city = 'NEW YORK' assert city in CITIES, 'Unknown city' y = np.array([climate.get_daily_temp(city, 1, 10, year) for \ year in x]) model = generate_models(x, y, [1]) # evaluate_models_on_training(x, y, model) y = np.array([np.mean(climate.get_yearly_temp(city, year)) for year in x]) model = generate_models(x, y, [1]) # evaluate_models_on_training(x, y, model) # Part B # MY_CODE y = gen_cities_avg(climate, CITIES, x) model = generate_models(x, y, [1]) # evaluate_models_on_training(x, y, model) # Part C # MY_CODE y = moving_average(y, 5) model = generate_models(x, y, [1]) # evaluate_models_on_training(x, y, model) # Part D.2 # MY_CODE models = generate_models(x, y, [1, 2, 20]) # evaluate_models_on_training(x, y, models) test_x = TESTING_INTERVAL[:] test_y = moving_average(gen_cities_avg(climate, CITIES, test_x), 5) # evaluate_models_on_testing(test_x, test_y, models) # Part E # MY_CODE stds = gen_std_devs(climate, CITIES, x) stds = moving_average(stds, 5) model = generate_models(x, stds, [1]) # evaluate_models_on_training(x, stds, model) # FURTHER ATTEMPTS # MY_CODE pylab.plot(climate.get_yearly_temp('NEW YORK', x[0]), 'b-') pylab.plot(climate.get_yearly_temp('NEW YORK', x[-1]), 'r-') pylab.show() # IDK, doesn't seem like the whole extreme weather is backed by data. # Std dev in yearly temperatures are slowly decreasing as the earth # warms, not the other way around. At least according to my rudimentary # analysis. # MY_CODE stds = gen_std_devs_BUT_BETTER(climate, CITIES, x) stds_1 = gen_std_devs(climate, CITIES, x) if np.all(stds > stds_1): print('Wow, all std devs are larger when done my way') stds = moving_average(stds, 5) model = generate_models(x, stds, [1]) evaluate_models_on_training(x, stds, model) test_stds = gen_std_devs_BUT_BETTER(climate, CITIES, test_x) test_stds = moving_average(test_stds, 5) evaluate_models_on_testing(test_x, test_stds, model)
from robot.exceptions import RobotError class InvalidJointAngleError(RobotError): def __init__(self, msg): super().__init__(msg) class InvalidJointDictError(RobotError): def __init__(self, msg): super().__init__(msg) class InvalidSerialDictError(RobotError): def __init__(self, msg): super().__init__(msg)
# Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os import dj_database_url from project_runpy import env BASE_DIR = os.path.dirname(__file__) SECRET_KEY = env.get("SECRET_KEY", "Rotom") DEBUG = env.get("DEBUG", False) ALLOWED_HOSTS = ["*"] INSTALLED_APPS = ( "bandc.apps.agenda.apps.AgendaConfig", "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", # support "django_extensions", "django_object_actions", "bootstrap_pagination", ) MIDDLEWARE = ( "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ) ROOT_URLCONF = "bandc.urls" WSGI_APPLICATION = "bandc.wsgi.application" # Database # https://docs.djangoproject.com/en/stable/ref/settings/#databases DATABASES = {"default": dj_database_url.config(default="sqlite:///bandc.db")} DEFAULT_AUTO_FIELD = "django.db.models.AutoField" # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator"}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"}, ] # Internationalization # https://docs.djangoproject.com/en/stable/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "America/Chicago" USE_I18N = False USE_L10N = False USE_TZ = True TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [os.path.join(BASE_DIR, "templates")], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "bandc.context_processors.base_url", ], "debug": DEBUG, }, }, ] # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/dev/howto/static-files/ STATIC_URL = "/static/" STATICFILES_DIRS = (os.path.join(BASE_DIR, "static"),) MEDIA_ROOT = os.path.join(BASE_DIR, "..", "media") MEDIA_URL = "/media/" LOGGING = { "version": 1, "disable_existing_loggers": False, "root": {"level": os.environ.get("LOG_LEVEL", "WARNING"), "handlers": ["console"]}, "formatters": { "dev": { "format": "%(levelname)s %(name)s %(message)s", # 'datefmt': '%Y-%m-%dT%H:%M:%S%z', # I want milliseconds but Python doesn't make it easy # "class": "pythonjsonlogger.jsonlogger.JsonFormatter", }, }, "filters": { "require_debug_false": {"()": "django.utils.log.RequireDebugFalse"}, "require_debug_true": {"()": "django.utils.log.RequireDebugTrue"}, "readable_sql": {"()": "project_runpy.ReadableSqlFilter"}, }, "handlers": { "console": { "level": "DEBUG", "formatter": "dev", "class": "project_runpy.ColorizingStreamHandler", }, }, "loggers": { "django.db.backends": { "level": "DEBUG" if env.get("SQL", False) else "INFO", "handlers": ["console"], "filters": ["require_debug_true", "readable_sql"], "propagate": False, }, "sh": {"level": "WARNING", "propagate": False}, "pdfminer": {"level": "WARNING", "propagate": False}, "factory": {"level": "ERROR", "propagate": False}, }, }
import io import pytest from cptv.bitstream import BitStream def test_single_bytes(): b = BitStream(io.BytesIO(b'\xff\xee\xdd')) assert b.bytes(1) == b'\xff' assert b.bytes(1) == b'\xee' assert b.bytes(1) == b'\xdd' def test_multi_bytes(): b = BitStream(io.BytesIO(b'\xff\xee\xdd')) assert b.bytes(3) == b'\xff\xee\xdd' def test_not_enough_bytes(): b = BitStream(io.BytesIO(b'\xff')) with pytest.raises(EOFError, match="short read. wanted 2, got 1"): b.bytes(2) def test_uint8(): b = BitStream(io.BytesIO(b'\xff\x01\x00')) assert b.uint8() == 255 assert b.uint8() == 1 assert b.uint8() == 0 def test_uint32(): b = BitStream(io.BytesIO(b'\xff\xee\xdd\xaa')) assert b.uint32() == 0xaaddeeff def test_uint64(): b = BitStream(io.BytesIO(b'\xff\xee\xdd\xcc\xbb\xaa\x00\x11')) assert b.uint64() == 0x1100aabbccddeeff def test_iter_int(): i = BitStream(io.BytesIO(b'\xf0\x13')).iter_int(2, 4) assert next(i) == -1 assert next(i) == 0x0 assert next(i) == 0x1 assert next(i) == 0x3
coordinates_01EE00 = ((123, 121), (123, 123), (124, 119), (124, 124), (124, 125), (124, 126), (124, 127), (124, 129), (125, 115), (125, 117), (125, 118), (125, 121), (125, 122), (125, 123), (125, 130), (125, 135), (126, 115), (126, 119), (126, 120), (126, 121), (126, 122), (126, 123), (126, 124), (126, 125), (126, 126), (126, 127), (126, 128), (126, 130), (126, 134), (126, 135), (127, 115), (127, 117), (127, 118), (127, 119), (127, 120), (127, 121), (127, 122), (127, 123), (127, 124), (127, 125), (127, 126), (127, 127), (127, 128), (127, 129), (127, 135), (128, 115), (128, 117), (128, 118), (128, 119), (128, 120), (128, 121), (128, 122), (128, 123), (128, 124), (128, 125), (128, 126), (128, 127), (128, 128), (128, 129), (128, 130), (128, 135), (129, 116), (129, 118), (129, 119), (129, 120), (129, 121), (129, 122), (129, 123), (129, 124), (129, 125), (129, 126), (129, 127), (129, 128), (129, 129), (129, 130), (129, 131), (129, 132), (129, 133), (129, 135), (130, 116), (130, 118), (130, 119), (130, 120), (130, 121), (130, 122), (130, 123), (130, 124), (130, 125), (130, 127), (130, 128), (130, 129), (130, 130), (130, 131), (130, 132), (130, 134), (131, 117), (131, 120), (131, 121), (131, 122), (131, 123), (131, 124), (131, 127), (131, 128), (131, 129), (131, 130), (131, 131), (131, 132), (131, 134), (132, 118), (132, 121), (132, 122), (132, 123), (132, 124), (132, 127), (132, 128), (132, 129), (132, 130), (132, 133), (133, 120), (133, 122), (133, 124), (133, 127), (133, 132), (134, 121), (134, 123), (134, 128), (134, 130), (135, 121), (135, 123), (135, 128), (136, 122), (137, 121), (138, 121), ) coordinates_00EE00 = ((110, 124), (110, 125), (111, 124), (111, 126), (112, 125), )
class PrintSetup(APIObject, IDisposable): """ Represents the Print Setup (Application Menu->Print->Print Setup) within Autodesk Revit. """ def Delete(self): """ Delete(self: PrintSetup) -> bool Delete the current print setting,and make the In-Session setting as the current one. Returns: False if Delete operation fails,otherwise true. """ pass def Dispose(self): """ Dispose(self: APIObject,A_0: bool) """ pass def ReleaseManagedResources(self, *args): """ ReleaseManagedResources(self: APIObject) """ pass def ReleaseUnmanagedResources(self, *args): """ ReleaseUnmanagedResources(self: APIObject) """ pass def Rename(self, newName): """ Rename(self: PrintSetup,newName: str) -> bool Rename the current print setting with the specified name. newName: print setting name to be renamed as. Returns: False if Rename operation fails,otherwise true. """ pass def Revert(self): """ Revert(self: PrintSetup) Revert the current print setting. """ pass def Save(self): """ Save(self: PrintSetup) -> bool Save the changes for the current print setting. Returns: False if save operation fails,otherwise True. """ pass def SaveAs(self, newName): """ SaveAs(self: PrintSetup,newName: str) -> bool Save the current print setting to another print setting with the specified name. newName: print setting name to be saved as. Returns: False if Save As operation fails,otherwise true. """ pass def __enter__(self, *args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self, *args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass CurrentPrintSetting = property( lambda self: object(), lambda self, v: None, lambda self: None ) """The current Print Setting of Print Setup. Get: CurrentPrintSetting(self: PrintSetup) -> IPrintSetting Set: CurrentPrintSetting(self: PrintSetup)=value """ InSession = property(lambda self: object(), lambda self, v: None, lambda self: None) """The in-session Print Setting of Print Setup. Get: InSession(self: PrintSetup) -> InSessionPrintSetting """
import pygame.sprite class Soldier(pygame.sprite.Sprite): def __init__(self, surface, char_type: str, x: int, y: int, scale: int, speed: int): pygame.sprite.Sprite.__init__(self) self.surface = surface self.char_type = char_type self.speed = speed self.direction = 1 # Faces right at startup. self.flip = False self.animation_list = [] self.action = 0 self.frame_index = 0 self.update_time = pygame.time.get_ticks() temp_list = [] for i in range(5): img = pygame.image.load(f"assets/{self.char_type}/Idle/{i}.png") img = pygame.transform.scale( img, (int(img.get_width() * scale), int(img.get_height() * scale)) ) temp_list.append(img) self.animation_list.append(temp_list) temp_list = [] for i in range(6): img = pygame.image.load(f"assets/{self.char_type}/Run/{i}.png") img = pygame.transform.scale( img, (int(img.get_width() * scale), int(img.get_height() * scale)) ) temp_list.append(img) self.animation_list.append(temp_list) self.image = self.animation_list[self.action][self.frame_index] self.rect = self.image.get_rect() self.rect.center = (x, y) def move(self, moving_left: bool, moving_right: bool): dx = 0 dy = 0 if moving_left: dx = -self.speed self.flip = True self.direction = 0 if moving_right: dx = self.speed self.flip = False self.direction = 1 self.rect.x += dx self.rect.y += dy def update_animation(self): ANIMATION_COOLDOWN = 100 self.image = self.animation_list[self.action][self.frame_index] if (pygame.time.get_ticks() - self.update_time) > ANIMATION_COOLDOWN: self.update_time = pygame.time.get_ticks() self.frame_index += 1 if self.frame_index >= len(self.animation_list[self.action]): self.frame_index = 0 def update_action(self, new_action: int): if new_action != self.action: self.action = new_action self.frame_index = 0 self.update_time = pygame.time.get_ticks() def draw(self): self.surface.blit( pygame.transform.flip(self.image, self.flip, False), self.rect )
import os from barbarika.helpers import logger from barbarika.aws import send_response, get_subnet_address, get_subnet_gateway from barbarika.citrixadc import CitrixADC current_aws_region = os.environ['AWS_DEFAULT_REGION'] def lambda_handler(event, context): fail_reason = None logger.info("event: {}".format(str(event))) request_type = event['RequestType'] response_status = 'FAILED' response_data = {} try: if request_type == 'Create': primary_instance_id = event['ResourceProperties']['PrimaryADCInstanceID'] primary_nsip = event['ResourceProperties']['PrimaryADCPrivateNSIP'] primary_server_subnet = event['ResourceProperties']['PrimaryADCServerPrivateSubnetID'] secondary_instance_id = event['ResourceProperties']['SecondaryADCInstanceID'] secondary_nsip = event['ResourceProperties']['SecondaryADCPrivateNSIP'] secondary_server_subnet = event['ResourceProperties']['SecondaryADCServerPrivateSubnetID'] primary = CitrixADC(nsip=primary_nsip, nsuser="nsroot", nspass=primary_instance_id) secondary = CitrixADC( nsip=secondary_nsip, nsuser="nsroot", nspass=secondary_instance_id) # Primary ADC to send traffic to all the servers (even in other availability zone) primary_server_subnet_address = get_subnet_address( primary_server_subnet) secondary_server_subnet_address = get_subnet_address( secondary_server_subnet) primary_server_gateway = get_subnet_gateway(primary_server_subnet) secondary_server_gateway = get_subnet_gateway( secondary_server_subnet) primary.add_route( network_ip=secondary_server_subnet_address[0], netmask=secondary_server_subnet_address[1], gateway_ip=primary_server_gateway) secondary.add_route( network_ip=primary_server_subnet_address[0], netmask=primary_server_subnet_address[1], gateway_ip=secondary_server_gateway) primary.save_config() secondary.save_config() response_status = 'SUCCESS' else: # request_type == 'Delete' | 'Update' response_status = 'SUCCESS' except Exception as e: fail_reason = str(e) logger.error(fail_reason) response_status = 'FAILED' finally: send_response(event, context, response_status, response_data, fail_reason=fail_reason)
import torch from torch.utils.data import Dataset from torchvision import transforms, datasets from torch.utils.data import ( DataLoader, RandomSampler, DistributedSampler, SequentialSampler, ) import scipy.io as sio from PIL import Image import numpy as np import heapq class load_prcc_dataset_scnn_pos(Dataset): def __init__(self, txt_path, crop_path, transform=None, train = True, N = 100,nuclues_size = 32): fh = open(txt_path, 'r') imgs = [] for line in fh: line = line.rstrip() words = line.split() imgs.append((words[0], int(words[1]))) self.imgs = imgs self.transform = transform self.train = train self.N = N self.nuclues_size = nuclues_size self.crop_path = crop_path def __getitem__(self,index): fn, label = self.imgs[index] slide_name = fn.split('/')[-2] patch_name = fn.split('/')[-1].strip('.png') crop_path = self.crop_path + '/' + str(self.nuclues_size) + '/' + slide_name+ '/' + patch_name + '.mat' crop = sio.loadmat(crop_path) nuclues = np.array(crop['nucleus']) cls_all = np.array(crop['class_all'])[0] cls_all=-cls_all cls_all.sort() cls_all = -cls_all cls_all = cls_all[:self.N] #print(len(cls_all)) cls_list = [0 for i in range(self.N)] cls_list[:len(cls_all)] = cls_all nuclues = nuclues[:self.N] patches = [] for i in nuclues : #temp =self.transform(self.train)(i) patches.append(i) pos = np.array(crop['cls_keep_xy']) pos = pos[:self.N] pos_list = [[0,0]for i in range(self.N)] pos_list[:len(pos)]=pos new_patch = np.zeros([3,self.nuclues_size,self.nuclues_size]) while len(patches)<self.N: patches.append(new_patch) patches = torch.from_numpy(np.asarray(patches)) cls_list = torch.as_tensor(np.asarray(cls_list), dtype=torch.int64) pos_list = torch.as_tensor(np.asarray(pos_list), dtype=torch.int64) return patches, cls_list, pos_list, label def __len__(self): return len(self.imgs)
# Autoencoder from .SSIM_loss import SSIM_loss from .Mutil_SSIM_loss import Multi_SSIM_loss from .VAE_loss import VAE_loss # GAN from .SRGAN_loss import GeneratorLoss as SRGAN_Gloss from .SRGAN_loss import DiscriminatorLoss as SRGAN_Dloss
#!/usr/bin/python # # Copyright 2015 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.4+ import os import sys import imp import base64 import re import json import platform import shutil import time import traceback import datetime import subprocess from AbstractPatching import AbstractPatching from Common import * from CommandExecutor import * class UbuntuPatching(AbstractPatching): def __init__(self, logger, distro_info): super(UbuntuPatching, self).__init__(distro_info) self.logger = logger self.command_executor = CommandExecutor(logger) self.base64_path = '/usr/bin/base64' self.bash_path = '/bin/bash' self.blkid_path = '/sbin/blkid' self.cat_path = '/bin/cat' self.cryptsetup_path = '/sbin/cryptsetup' self.dd_path = '/bin/dd' self.e2fsck_path = '/sbin/e2fsck' self.echo_path = '/bin/echo' self.lsblk_path = '/bin/lsblk' self.lsscsi_path = '/usr/bin/lsscsi' self.mkdir_path = '/bin/mkdir' self.mount_path = '/bin/mount' self.openssl_path = '/usr/bin/openssl' self.resize2fs_path = '/sbin/resize2fs' self.umount_path = '/bin/umount' self.touch_path = '/usr/bin/touch' def install_extras(self): """ install the sg_dd because the default dd do not support the sparse write """ cmd = " ".join(['apt-get', 'update']) self.command_executor.Execute(cmd) packages = ['at', 'cryptsetup-bin', 'lsscsi', 'python-six', 'python-parted', 'procps', 'psmisc', 'gcc', 'libssl-dev', 'libffi-dev', 'python-dev', 'python-pip'] cmd = " ".join(['apt-get', 'install', '-y'] + packages) self.command_executor.Execute(cmd) cmd = " ".join(['pip', 'install', 'adal']) self.command_executor.Execute(cmd)
"""Lefthook installer """ from ._core import run __version__ = '0.1.2' __all__ = ['run']
import logging import time class Heartbeat: @classmethod def init(cls, job_metadata): cls.iterations_count = 0 cls.previous_beat_at = time.time() cls.min_seconds_between_beats = 10 cls.job_metadata = job_metadata @classmethod def increase_iterations(cls, n_iter): cls.iterations_count += n_iter if cls.should_beat(): cls.beat() @classmethod def should_beat(cls): return time.time() - cls.previous_beat_at > cls.min_seconds_between_beats @classmethod def beat(cls): logging.info(cls.progress_report()) cls.previous_beat_at = time.time() @classmethod def new_point(cls, x, y, t): cls.increase_iterations(1) @classmethod def progress_report(cls): completed_percentage = (cls.iterations_count / cls.job_metadata.total_iterations) * 100 current_execution_time = int(time.time() - cls.job_metadata.start_time) time_in_minutes = f'{current_execution_time//60}:{(current_execution_time%60):02d}' return f'time: {time_in_minutes}, progress: {completed_percentage:.2f}%'
import datetime from django.test import TestCase from pytz import UTC from beers.models import ( Beer, Manufacturer, BeerAlternateName, ManufacturerAlternateName, BeerPrice, ServingSize, ) from taps.test.factories import TapFactory from venues.test.factories import VenueFactory from .factories import BeerFactory, ManufacturerFactory class BeerTestCase(TestCase): def setUp(self): self.manufacturer = ManufacturerFactory() self.new_time = UTC.localize(datetime.datetime(2018, 4, 3, 6, 2)) self.other_time = self.new_time + datetime.timedelta(days=30) self.beer1 = BeerFactory( manufacturer=self.manufacturer, untappd_url='http://localhost/123456', color_srm=None, time_first_seen=self.other_time, ) self.beer2 = BeerFactory( manufacturer=self.manufacturer, color_srm=55, stem_and_stein_pk=551, time_first_seen=self.new_time, ) self.tap = TapFactory(beer=self.beer2) self.venue2 = self.tap.venue self.venue1 = VenueFactory() self.serving_size = ServingSize.objects.create(name='foo', volume_oz=12) def test_merge(self): self.beer1.merge_from(self.beer2) self.assertEqual(self.beer1.color_srm, self.beer2.color_srm) self.tap.refresh_from_db() self.assertEqual(self.tap.beer, self.beer1) self.assertFalse(Beer.objects.filter(id=self.beer2.id).exists()) self.assertTrue(BeerAlternateName.objects.filter( name=self.beer2.name, beer=self.beer1, ).exists()) self.assertEqual(self.tap.beer.time_first_seen, self.new_time) self.assertEqual(self.tap.beer.stem_and_stein_pk, 551) def test_preserve_prices_no_overlap(self): BeerPrice.objects.create( beer=self.beer1, venue=self.venue1, price=15, serving_size=self.serving_size, ) BeerPrice.objects.create( beer=self.beer2, venue=self.venue2, price=10, serving_size=self.serving_size, ) self.beer1.merge_from(self.beer2) self.assertEqual(BeerPrice.objects.filter(beer=self.beer1).count(), 2) def test_preserve_prices_overlap(self): BeerPrice.objects.create( beer=self.beer1, venue=self.venue2, price=15, serving_size=self.serving_size, ) BeerPrice.objects.create( beer=self.beer2, venue=self.venue2, price=10, serving_size=self.serving_size, ) other_size = ServingSize.objects.create(name='bar', volume_oz=16) BeerPrice.objects.create( beer=self.beer2, venue=self.venue2, price=20, serving_size=other_size, ) self.beer1.merge_from(self.beer2) # Because we have an overlap in one unique condition (beer + venue + size), # we are going to take the safest route possible and ignore both of the # prices from beer2 for venue2. self.assertEqual(BeerPrice.objects.filter(beer=self.beer1).count(), 1) class ManufacturerTestCase(TestCase): def test_merge(self): new_time = UTC.localize(datetime.datetime(2018, 4, 3, 6, 2)) other_time = new_time + datetime.timedelta(days=30) mfg1 = ManufacturerFactory( untappd_url='http://localhost/123456', location='', time_first_seen=other_time, ) mfg2 = ManufacturerFactory( location='your house', time_first_seen=new_time, ) beer2 = BeerFactory(manufacturer=mfg2) mfg1.merge_from(mfg2) self.assertEqual(mfg1.location, mfg2.location) beer2.refresh_from_db() self.assertEqual(beer2.manufacturer, mfg1) self.assertFalse(Manufacturer.objects.filter(id=mfg2.id).exists()) self.assertTrue(ManufacturerAlternateName.objects.filter( name=mfg2.name, manufacturer=mfg1, ).exists()) self.assertEqual(beer2.manufacturer.time_first_seen, new_time)
from unittest import TestCase import tempfile import os from jinjawalk import JinjaWalk from typing import Callable, Dict import shutil def path_joiner(base: str) -> Callable[[str], str]: return lambda s: os.path.join(base, s) def dump_string(file_path: str, s: str): with open(file_path, "w") as of: print(s, file=of) def read_file(file_path: str) -> str: with open(file_path, "r") as f: content = f.read() return content class TestJinjaWalk(TestCase): @staticmethod def write_dummy_template(destination: str, conf: Dict[str, str], section_name: str = 'section_name', namespace: str = 'config') -> str: s = '\n'.join(["line" + str(i+1) + " with {{ " + namespace + "['" + section_name + "']['" + k + "'] }}" for i, k in enumerate(conf)]) dump_string(destination, s) expected_render = '\n'.join([f"line{i+1} with {conf[k]}" for i, k in enumerate(conf)]) return expected_render @staticmethod def write_dummy_conf_file(destination: str, conf: Dict[str, str], section_name='section_name'): s = f"[{section_name}]\n" + '\n'.join([f"{k} = {conf[k]}" for k in conf]) dump_string(destination, s) class TestMultipleInPlace(TestJinjaWalk): def setUp(self) -> None: self.work_dir = tempfile.mkdtemp() conf1 = {"key1": "value1"} conf2 = {"key2": "value2"} conf3 = {"key3": "value3"} self.conf_file_path1 = path_joiner(self.work_dir)('conf1.ini') self.conf_file_path2 = path_joiner(self.work_dir)('conf2.ini') self.conf_file_path3 = path_joiner(self.work_dir)('conf3.ini') self.write_dummy_conf_file(self.conf_file_path1, conf1) self.write_dummy_conf_file(self.conf_file_path2, conf2) self.write_dummy_conf_file(self.conf_file_path3, conf3) self.expected_render = self.write_dummy_template(path_joiner(self.work_dir)('template.txt'), {**conf1, **conf2, **conf3}) def tearDown(self) -> None: shutil.rmtree(self.work_dir) def test_multiple_in_place(self): walker = JinjaWalk() walker.walk([self.conf_file_path1, self.conf_file_path2, self.conf_file_path3], self.work_dir, self.work_dir) rendered_template = read_file(path_joiner(self.work_dir)('template.txt')) self.assertEqual(self.expected_render, rendered_template.strip('\n')) class TestDefaults(TestJinjaWalk): conf = {"key1": "value1", "key2": "value2"} list_of_dummy_subdirs = ['.', 'subdir1', 'subdir2'] list_of_dummy_templates = ['template1.txt', 'template2.txt'] def setUp(self) -> None: self.source_dir = tempfile.mkdtemp() self.conf_file_path = path_joiner(self.source_dir)('conf.ini') self.write_dummy_conf_file(self.conf_file_path, self.conf) subdirs_to_populate = map(path_joiner(self.source_dir), self.list_of_dummy_subdirs) for subdir in subdirs_to_populate: os.makedirs(subdir, exist_ok=True) templates_to_create = map(path_joiner(subdir), self.list_of_dummy_templates) for template_path in templates_to_create: self.expected_render = self.write_dummy_template(template_path, self.conf) self.output_dir = tempfile.mkdtemp() def tearDown(self) -> None: shutil.rmtree(self.source_dir) shutil.rmtree(self.output_dir) def test_subdirs(self): walker = JinjaWalk() walker.walk(self.conf_file_path, self.source_dir, self.output_dir) subdirs_to_check = map(path_joiner(self.output_dir), self.list_of_dummy_subdirs) for subdir in subdirs_to_check: rendered_templates_to_check = map(path_joiner(subdir), self.list_of_dummy_templates) for template_path in rendered_templates_to_check: with self.subTest(template=template_path): rendered_template = read_file(template_path) self.assertEqual(self.expected_render, rendered_template.strip('\n'))
# Author: a101269 # Date : 2020/3/4 import os from glob import glob import torch from argparse import ArgumentParser from config.config import configs from pre_process.vocab import load_vocab from pre_process.conll_processor import ConllProcessor from pre_process.dataloader import Dataloader from utils.utils import init_logger,logger,device,seed_everything from model.trainer import Trainer from model.parser_model import Parser_model def main(): parser = ArgumentParser() parser.add_argument("--arch", default='bert', type=str) parser.add_argument("--do_train", action='store_true') parser.add_argument("--do_test", action='store_true') parser.add_argument('--do_pre', action='store_true') parser.add_argument("--from_checkpoint", action='store_true') parser.add_argument("--epoch_continue", default=0, type=int) parser.add_argument("--n_gpu", type=str, default='0', help='"0,1,.." or "0" or "" ') parser.add_argument('--gradient_accumulation_steps', type=int, default=1) parser.add_argument('--fp16', action='store_true') parser.add_argument('--fp16_opt_level', type=str, default='O1') # O1混合精度训练 args = parser.parse_args() for k, v in configs.items(): setattr(args, k, v) args.device = device(args.use_cuda) if not args.do_test: args.gold_file = args.dev_file if args.from_checkpoint: args.epoch=args.epoch_continue args.warmup_prop=0 seed_everything(seed=args.seed) init_logger(log_file='myparser.log') logger.info(args) vocabs = load_vocab(args) # logger.warning(vocabs['know']._id2unit) processor = ConllProcessor(args,vocabs) dataloader= Dataloader(args, processor) model = Parser_model(args, vocabs) def test(): model.load_state_dict(torch.load(args.saved_model_path + '/pytorch_model.bin')) logger.info('Start testing-----------------') test_files=[args.test_file2, args.test_file1,args.test_file3,args.test_file4] # test_files = glob('dataset/*for_sdp.conllu') for test_file in test_files: args.gold_file = test_file test_dataloader, test_conllu_file = dataloader.load_data(test_file, args.batch_size, args.max_seq_len, mode='test') batch_num = len(test_dataloader) trainer = Trainer(args, model, batch_num) LAS, UAS = trainer.predict(test_dataloader, test_conllu_file) logger.warning(f"Test result in {test_file}: LAS:{LAS:.4f}, UAS:{UAS:.4f}") if not args.do_pre: reference_file = args.gold_file + '.sem16.sdp' os.system('python evalute.py --reference ' + reference_file) if args.from_checkpoint: model.load_state_dict(torch.load(args.saved_model_path + '/pytorch_model.bin')) train_dataloader, _ = dataloader.load_data(args.train_file,args.batch_size,args.max_seq_len, mode='train') dev_dataloader, dev_conllu_file = dataloader.load_data(args.dev_file,args.batch_size,args.max_seq_len, mode='dev') batch_num = len(train_dataloader) logger.info('Start training-----------------') trainer=Trainer(args,model,batch_num) trainer.train(train_dataloader,dev_dataloader,dev_conllu_file) test() elif args.do_test: test() else: train_dataloader, _ = dataloader.load_data(args.train_file,args.batch_size,args.max_seq_len, mode='train') dev_dataloader, dev_conllu_file = dataloader.load_data(args.dev_file,args.batch_size,args.max_seq_len, mode='dev') batch_num = len(train_dataloader) logger.info('Start training-----------------') trainer=Trainer(args,model,batch_num) trainer.train(train_dataloader,dev_dataloader,dev_conllu_file) test() if __name__ == '__main__': main() ''' /pytorch/aten/src/THC/THCTensorIndex.cu:361: void indexSelectLargeIndex(TensorInfo<T, IndexType>, TensorInfo<T, IndexType>, TensorInfo<long, IndexType>, int, int, IndexType, IndexType, long) [with T = float, IndexType = unsigned int, DstDim = 2, SrcDim = 2, IdxDim = -2, IndexIsMajor = true]: block: [392,0,0], thread: [94,0,0] Assertion `srcIndex < srcSelectDimSize` failed. 可能是数据集原因,未完全更新 '''
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' #============================================================================= # FileName: addtask # Desc: # Author: ge.jin # Email: ge.jin@woqutech.com # HomePage: wwww.woqutech.com # Version: 0.0.1 # LastChange: 5/3/16 9:33 AM # History: #============================================================================= ''' from celery import Celery, current_app app = Celery('celerybeat-sqlalchemy') app.config_from_object('settings') from model import PeriodicTask, CrontabSchedule, IntervalSchedule, get_session print current_app.conf.CELERYBEAT_MAX_LOOP_INTERVAL session = get_session() cs = CrontabSchedule(minute='*/5') iss = IntervalSchedule(every=30, period='seconds') session.add(cs) # pt = PeriodicTask(name="sdisfsdffaf124asf", task="task_hello", crontab=cs, interval=iss, args='[]', kwargs='{}') pt = PeriodicTask(name="sd124asf", task="task_hello", interval=iss, args='[]', kwargs='{}') session.add(pt) session.flush()
# Third order Newton's method max_steps = 50 ## max number of iterations to use x0 = 2. def f(x): return x**3 - 2. def fp(x): return 3*x**2 def fpp(x): return 6*x def third_order(): global x x = [] x.append(x0) for i in range(max_steps): x.append(x[i] - f(x[i])/fp(x[i]) - (fpp(x[i])*f(x[i])**2)/(fp(x[i])**3)) return x
""" This contains the unit tests for the cross_validate module. """ from __future__ import print_function import unittest from Analytics import cross_validate as cv from Parser import build_training as bt from Train import train_model as tm from copy import deepcopy import numpy as np from sklearn.preprocessing import Imputer _split_value = 70 _random = 12345 _n_iter = 10 class Object(object): pass class CrossValidateTests(unittest.TestCase): def setUp(self): """Create an instance of the read_training Read class""" print("Initializing test") compound = {'7844': {'predictor': '98.8', 'experimentalhash': {u'Density': 0.577, u'Vapor Density': 1.93, u'Boiling Point': -6.47, u'Rotatable Bond Count': 1.0, u'XLogP3': 2.4, u'Melting Point': -185.3, u'Flash Point': False, u'Undefined Atom Stereocenter Count': 0.0, u'Auto-Ignition': 725.0, u'Molecular Weight': 56.10632, u'LogP': 2.4, u'Complexity': 14.0, u'Vapor Pressure': 2253.0, u'Heavy Atom Count': 4.0, u'Exact Mass': 56.0626, u'Monoisotopic Mass': 56.0626}}, '19502': {'predictor': '57.6', 'experimentalhash': {u'Rotatable Bond Count': 1.0, u'Heavy Atom Count': 8.0, u'Undefined Atom Stereocenter Count': 3.0, u'Molecular Weight': 112.21264, u'Complexity': 66.4, u'Exact Mass': 112.125201, u'Monoisotopic Mass': 112.125201}}, '11610': {'predictor': '54.5', 'experimentalhash': {u'Density': 0.697, u'Vapor Density': 0.7, u'Boiling Point': 93.6, u'Rotatable Bond Count': 4.0, u'XLogP3': 4.0, u'Melting Point': -119.7, u'Flash Point': 32.0, u'Undefined Atom Stereocenter Count': 0.0, u'Auto-Ignition': 500.0, u'Molecular Weight': 98.18606, u'LogP': 3.99, u'Complexity': 37.3, u'Vapor Pressure': 59.3, u'Heavy Atom Count': 7.0, u'Exact Mass': 98.10955, u'Monoisotopic Mass': 98.10955}}, '7855': {'predictor': '98.8', 'experimentalhash': {u'Density': 0.577, u'Vapor Density': 1.93, u'Boiling Point': -6.47, u'Rotatable Bond Count': 1.0, u'XLogP3': 2.4, u'Melting Point': -185.3, u'Flash Point': False, u'Undefined Atom Stereocenter Count': 0.0, u'Auto-Ignition': 725.0, u'Molecular Weight': 56.10632, u'LogP': 2.4, u'Complexity': 14.0, u'Vapor Pressure': 2253.0, u'Heavy Atom Count': 4.0, u'Exact Mass': 56.0626, u'Monoisotopic Mass': 56.0626}}, '19503': {'predictor': '57.6', 'experimentalhash': {u'Rotatable Bond Count': 1.0, u'Heavy Atom Count': 8.0, u'Undefined Atom Stereocenter Count': 3.0, u'Molecular Weight': 112.21264, u'Complexity': 66.4, u'Exact Mass': 112.125201, u'Monoisotopic Mass': 112.125201}}, '11611': {'predictor': '54.5', 'experimentalhash': {u'Density': 0.697, u'Vapor Density': 0.7, u'Boiling Point': 93.6, u'Rotatable Bond Count': 4.0, u'XLogP3': 4.0, u'Melting Point': -119.7, u'Flash Point': 32.0, u'Undefined Atom Stereocenter Count': 0.0, u'Auto-Ignition': 500.0, u'Molecular Weight': 98.18606, u'LogP': 3.99, u'Complexity': 37.3, u'Vapor Pressure': 59.3, u'Heavy Atom Count': 7.0, u'Exact Mass': 98.10955, u'Monoisotopic Mass': 98.10955}}, '7864': {'predictor': '98.8', 'experimentalhash': {u'Density': 0.577, u'Vapor Density': 1.93, u'Boiling Point': -6.47, u'Rotatable Bond Count': 1.0, u'XLogP3': 2.4, u'Melting Point': -185.3, u'Flash Point': False, u'Undefined Atom Stereocenter Count': 0.0, u'Auto-Ignition': 725.0, u'Molecular Weight': 56.10632, u'LogP': 2.4, u'Complexity': 14.0, u'Vapor Pressure': 2253.0, u'Heavy Atom Count': 4.0, u'Exact Mass': 56.0626, u'Monoisotopic Mass': 56.0626}}} self.test_data = Object() self.test_data.compound = deepcopy(compound) def tearDown(self): """Delete data structure""" print("Clearing out file") del self.test_data def testCrossValidate(self): np.random.seed(seed=_random) train = bt.Process(self.test_data, split_value=_split_value) X = train.train imp = Imputer(missing_values='NaN', strategy='mean', axis=0) imp.fit(X) t = imp.transform(X) train.train = t model = tm.Train(train) model.train_model() print("Test cross_validate") cross = cv.Analysis(model, seed=_random, verbose=True) cross.cross_validate(n_iter=_n_iter) self.assertEqual(0.95, cross.acc) self.assertEqual(0.95, cross.prec) self.assertEqual(1.0, cross.recall) self.assertEqual(0.95, cross.roc) cross.feature_importances() self.assertAlmostEqual(0.0586, cross.feats[0][0], 3) if __name__ == '__main__': unittest.main()
# Generated by Django 3.1.3 on 2021-03-19 11:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Course', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=500)), ('description', models.TextField()), ('cats_id', models.IntegerField(null=True)), ], ), migrations.CreateModel( name='CourseLink', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('link', models.CharField(max_length=500, null=True)), ('usages', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='CourseSchedule', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('start_date', models.DateField(null=True)), ('week_schedule', models.CharField(max_length=500, null=True)), ('course', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='course.course')), ], ), migrations.CreateModel( name='CourseProgress', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('lessons', models.JSONField(null=True)), ('attendance', models.JSONField(null=True)), ('course', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='progress', to='course.course')), ], ), ]
from .platform_factory import get_platform
# -*- coding: utf-8 -*- """Provides the AppConfig class, that is required by Django.""" # Django imports from django.apps import AppConfig from django.conf import settings from django.core.checks import register from django.db.models.signals import post_save from django.utils import six # app imports from auth_enhanced.checks import check_settings_values from auth_enhanced.email import ( callback_admin_information_new_signup, callback_user_signup_email_verification, ) from auth_enhanced.exceptions import AuthEnhancedConversionError from auth_enhanced.settings import ( DAE_CONST_MODE_EMAIL_ACTIVATION, DAE_CONST_VERIFICATION_TOKEN_MAX_AGE, convert_to_seconds, set_app_default_settings, ) class AuthEnhancedConfig(AppConfig): """App specific configuration class Within its 'ready()'-method, app-specific settings are injected (meaning: default values are provided here, if they are not already given in the project's settings-module) and app-specific checks are performed (using Django's check framework).""" name = 'auth_enhanced' verbose_name = 'auth_enhanced' def ready(self): """Executed, when application loading is completed.""" # apply the default settings set_app_default_settings() # convert time-strings to seconds if isinstance(settings.DAE_VERIFICATION_TOKEN_MAX_AGE, six.string_types): try: setattr( settings, 'DAE_VERIFICATION_TOKEN_MAX_AGE', convert_to_seconds(settings.DAE_VERIFICATION_TOKEN_MAX_AGE) ) except AuthEnhancedConversionError: setattr( settings, 'DAE_VERIFICATION_TOKEN_MAX_AGE', DAE_CONST_VERIFICATION_TOKEN_MAX_AGE ) # register app-specific system checks register(check_settings_values) # add a 'post_save'-callback to automatically create a UserEnhancement, # whenever a User-object is created. post_save.connect( self.get_model('UserEnhancement').callback_create_enhancement_object, sender=settings.AUTH_USER_MODEL, dispatch_uid='DAE_create_enhance_user_object' ) # add a 'post_save'-callback to inform admins/superusers about a newly # registered user. # Please note: the callback is only registered, if the corresponding # setting is not False. if settings.DAE_ADMIN_SIGNUP_NOTIFICATION: post_save.connect( callback_admin_information_new_signup, sender=settings.AUTH_USER_MODEL, dispatch_uid='DAE_admin_information_new_signup' ) # add a 'post_save'-callback to send an email to the newly registered # user, if 'DAE_OPERATION_MODE' == 'DAE_CONST_MODE_EMAIL_ACTIVATION'. # This means, an automatic email verification is only available in # that mode. However, users may verify their email addresses by a # manual process. if settings.DAE_OPERATION_MODE == DAE_CONST_MODE_EMAIL_ACTIVATION: post_save.connect( callback_user_signup_email_verification, sender=settings.AUTH_USER_MODEL, dispatch_uid='DAE_user_signup_email_verification' )
# Copyright 2018 Changan Wang # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import time from datetime import datetime import tensorflow as tf import tf_replicate_model_fn from net import danet_deform as danet from dataset import dataset_common from preprocessing import dan_preprocessing from utility import anchor_manipulator from utility import scaffolds from utility import custom_op # hardware related configuration tf.app.flags.DEFINE_integer( 'num_readers', 24, 'The number of parallel readers that read data from the dataset.') tf.app.flags.DEFINE_integer( 'num_preprocessing_threads', 48, 'The number of threads used to create the batches.') tf.app.flags.DEFINE_integer( 'num_cpu_threads', 0, 'The number of cpu cores used to train.') tf.app.flags.DEFINE_float( 'gpu_memory_fraction', 1., 'GPU memory fraction to use.') # scaffold related configuration tf.app.flags.DEFINE_string( 'data_dir', './dataset/tfrecords', 'The directory where the dataset input data is stored.') tf.app.flags.DEFINE_integer( 'num_classes', 2, 'Number of classes to use in the dataset.') tf.app.flags.DEFINE_string( 'model_dir', './dan_logs_deform/', 'The directory where the model will be stored.') tf.app.flags.DEFINE_integer( 'log_every_n_steps', 10, 'The frequency with which logs are printed.') tf.app.flags.DEFINE_integer( 'save_summary_steps', 500, 'The frequency with which summaries are saved, in seconds.') tf.app.flags.DEFINE_integer( 'save_checkpoints_secs', 7200, # not used 'The frequency with which the model is saved, in seconds.') tf.app.flags.DEFINE_integer( 'save_checkpoints_steps', 10000, 'The frequency with which the model is saved, in steps.') # model related configuration tf.app.flags.DEFINE_integer( 'train_image_size', 640, 'The size of the input image for the model to use.') tf.app.flags.DEFINE_integer( 'train_epochs', None, 'The number of epochs to use for training.') tf.app.flags.DEFINE_integer( 'max_number_of_steps', 120000, 'The max number of steps to use for training.') tf.app.flags.DEFINE_integer( 'batch_size', 16, 'Batch size for training and evaluation.') tf.app.flags.DEFINE_string( 'data_format', 'channels_last', # 'channels_first' or 'channels_last' 'A flag to override the data format used in the model. channels_first ' 'provides a performance boost on GPU but is not always compatible ' 'with CPU. If left unspecified, the data format will be chosen ' 'automatically based on whether TensorFlow was built for CPU or GPU.') tf.app.flags.DEFINE_float( 'negative_ratio', 3., 'Negative ratio in the loss function.') tf.app.flags.DEFINE_float( 'match_threshold', 0.35, 'Matching threshold in the loss function.') tf.app.flags.DEFINE_float( 'neg_threshold', 0.35, 'Matching threshold for the negtive examples in the loss function.') # optimizer related configuration tf.app.flags.DEFINE_integer( 'tf_random_seed', 20180817, 'Random seed for TensorFlow initializers.') tf.app.flags.DEFINE_float( 'weight_decay', 0.0005, 'The weight decay on the model weights.') tf.app.flags.DEFINE_float( 'momentum', 0.9, 'The momentum for the MomentumOptimizer and RMSPropOptimizer.') tf.app.flags.DEFINE_float('learning_rate', 1e-3, 'Initial learning rate.') tf.app.flags.DEFINE_float( 'end_learning_rate', 0.000001, 'The minimal end learning rate used by a polynomial decay learning rate.') # for learning rate piecewise_constant decay tf.app.flags.DEFINE_string( 'decay_boundaries', '50, 80000, 100000', 'Learning rate decay boundaries by global_step (comma-separated list).') tf.app.flags.DEFINE_string( 'lr_decay_factors', '0.1, 1, 0.1, 0.01', 'The values of learning_rate decay factor for each segment between boundaries (comma-separated list).') # checkpoint related configuration tf.app.flags.DEFINE_string( 'checkpoint_path', './model', 'The path to a checkpoint from which to fine-tune.') tf.app.flags.DEFINE_string( 'checkpoint_model_scope', 'vgg_16', 'Model scope in the checkpoint. None if the same as the trained model.') tf.app.flags.DEFINE_string( 'model_scope', 'dan', 'Model scope name used to replace the name_scope in checkpoint.') tf.app.flags.DEFINE_string( 'checkpoint_exclude_scopes', 'dan/predict_face, dan/prediction_modules_stage1, dan/prediction_modules_stage2, dan/predict_cascade, dan/additional_layers, dan/l2_norm_layer_3, dan/l2_norm_layer_4, dan/l2_norm_layer_5, dan/lfpn, dan/lfpn_stage1, dan/lfpn_stage2', 'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.') tf.app.flags.DEFINE_boolean( 'ignore_missing_vars', True, 'When restoring a checkpoint would ignore missing variables.') tf.app.flags.DEFINE_boolean( 'multi_gpu', True, 'Whether there is GPU to use for training.') FLAGS = tf.app.flags.FLAGS #CUDA_VISIBLE_DEVICES def validate_batch_size_for_multi_gpu(batch_size): """For multi-gpu, batch-size must be a multiple of the number of available GPUs. Note that this should eventually be handled by replicate_model_fn directly. Multi-GPU support is currently experimental, however, so doing the work here until that feature is in place. """ if FLAGS.multi_gpu: from tensorflow.python.client import device_lib local_device_protos = device_lib.list_local_devices() num_gpus = sum([1 for d in local_device_protos if d.device_type == 'GPU']) if not num_gpus: raise ValueError('Multi-GPU mode was specified, but no GPUs ' 'were found. To use CPU, run --multi_gpu=False.') remainder = batch_size % num_gpus if remainder: err = ('When running with multiple GPUs, batch size ' 'must be a multiple of the number of available GPUs. ' 'Found {} GPUs with a batch size of {}; try --batch_size={} instead.' ).format(num_gpus, batch_size, batch_size - remainder) raise ValueError(err) return num_gpus return 0 def get_init_fn(): return scaffolds.get_init_fn_for_scaffold(FLAGS.model_dir, FLAGS.checkpoint_path, FLAGS.model_scope, FLAGS.checkpoint_model_scope, FLAGS.checkpoint_exclude_scopes, FLAGS.ignore_missing_vars, name_remap={'/conv2d/kernel': '/weights', '/conv2d/bias': '/biases'}) # couldn't find better way to pass params from input_fn to model_fn # some tensors used by model_fn must be created in input_fn to ensure they are in the same graph # but when we put these tensors to labels's dict, the replicate_model_fn will split them into each GPU # the problem is that they shouldn't be splited global_anchor_info = dict() def input_pipeline(dataset_pattern='train-*', is_training=True, batch_size=FLAGS.batch_size): def input_fn(): target_shape = [FLAGS.train_image_size] * 2 anchor_encoder_decoder = anchor_manipulator.AnchorEncoder(positive_threshold = FLAGS.match_threshold, ignore_threshold = FLAGS.neg_threshold, prior_scaling=[0.1, 0.1, 0.2, 0.2]) all_anchor_scales = [(16.,), (32.,), (64.,), (128.,), (256.,), (512.,)] all_extra_scales = [(), (), (), (), (), ()] all_anchor_ratios = [(0.8,), (0.8,), (0.8,), (0.8,), (0.8,), (0.8,)] all_layer_shapes = [(160, 160), (80, 80), (40, 40), (20, 20), (10, 10), (5, 5)] all_layer_strides = [4, 8, 16, 32, 64, 128] offset_list = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5] total_layers = len(all_layer_shapes) anchors_height = list() anchors_width = list() anchors_depth = list() for ind in range(total_layers): _anchors_height, _anchors_width, _anchor_depth = anchor_encoder_decoder.get_anchors_width_height(all_anchor_scales[ind], all_extra_scales[ind], all_anchor_ratios[ind], name='get_anchors_width_height{}'.format(ind)) anchors_height.append(_anchors_height) anchors_width.append(_anchors_width) anchors_depth.append(_anchor_depth) anchors_ymin, anchors_xmin, anchors_ymax, anchors_xmax, inside_mask = anchor_encoder_decoder.get_all_anchors(target_shape, anchors_height, anchors_width, anchors_depth, offset_list, all_layer_shapes, all_layer_strides, [FLAGS.train_image_size * 1.] * total_layers, [False] * total_layers) num_anchors_per_layer = list() for ind, layer_shape in enumerate(all_layer_shapes): _, _num_anchors_per_layer = anchor_encoder_decoder.get_anchors_count(anchors_depth[ind], layer_shape, name='get_anchor_count{}'.format(ind)) num_anchors_per_layer.append(_num_anchors_per_layer) image_preprocessing_fn = lambda image_, bboxes_ : dan_preprocessing.preprocess_image(image_, bboxes_, target_shape, [16, 32, 64, 128, 256, 512], is_training=is_training, data_format=FLAGS.data_format, output_rgb=False) anchor_encoder_fn = lambda gbboxes_: anchor_encoder_decoder.encode_anchors(gbboxes_, anchors_ymin, anchors_xmin, anchors_ymax, anchors_xmax, inside_mask) image, filename, shape, loc_targets, cls_targets, match_scores, matched_gt = dataset_common.slim_get_batch(FLAGS.num_classes, batch_size, ('train' if is_training else 'valid'), os.path.join(FLAGS.data_dir, dataset_pattern), FLAGS.num_readers, FLAGS.num_preprocessing_threads, image_preprocessing_fn, anchor_encoder_fn, num_epochs=FLAGS.train_epochs, is_training=is_training) global global_anchor_info global_anchor_info = {'decode_fn': lambda pred : anchor_encoder_decoder.batch_decode_anchors(pred, anchors_ymin, anchors_xmin, anchors_ymax, anchors_xmax), 'num_anchors_per_layer': num_anchors_per_layer, 'all_num_anchors_depth': anchors_depth } return image, {'filename': filename, 'shape': shape, 'loc_targets': loc_targets, 'cls_targets': cls_targets, 'match_scores': match_scores, 'matched_gt': matched_gt} return input_fn def modified_smooth_l1(bbox_pred, bbox_targets, bbox_inside_weights=1., bbox_outside_weights=1., sigma=1.): """ ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets)) SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2 |x| - 0.5 / sigma^2, otherwise """ with tf.name_scope('smooth_l1', [bbox_pred, bbox_targets]): sigma2 = sigma * sigma inside_mul = tf.multiply(bbox_inside_weights, tf.subtract(bbox_pred, bbox_targets)) smooth_l1_sign = tf.cast(tf.less(tf.abs(inside_mul), 1.0 / sigma2), tf.float32) smooth_l1_option1 = tf.multiply(tf.multiply(inside_mul, inside_mul), 0.5 * sigma2) smooth_l1_option2 = tf.subtract(tf.abs(inside_mul), 0.5 / sigma2) smooth_l1_result = tf.add(tf.multiply(smooth_l1_option1, smooth_l1_sign), tf.multiply(smooth_l1_option2, tf.abs(tf.subtract(smooth_l1_sign, 1.0)))) outside_mul = tf.multiply(bbox_outside_weights, smooth_l1_result) return outside_mul def mining_hard_neg_across_batch(batch_size, cls_pred, location_pred, cls_targets, match_scores, loc_targets, name=None): with tf.variable_scope(name, 'hard_neg_mining'): ############## hard negtive mining across batch cls_targets = tf.reshape(cls_targets, [-1]) match_scores = tf.reshape(match_scores, [-1]) loc_targets = tf.reshape(loc_targets, [-1, 4]) # each positive examples has one label positive_mask = cls_targets > 0 n_positives = tf.count_nonzero(positive_mask) negtive_mask = tf.equal(cls_targets, 0) #negtive_mask = tf.logical_and(tf.equal(cls_targets, 0), match_scores > 0.) n_negtives = tf.count_nonzero(negtive_mask) n_neg_to_select = tf.to_int32(FLAGS.negative_ratio * tf.to_float(n_positives)) n_neg_to_select = tf.minimum(n_neg_to_select, tf.to_int32(n_negtives)) # hard negative mining for classification predictions_for_bg = tf.nn.softmax(cls_pred)[:, 0] prob_for_negtives = tf.where(negtive_mask, 0. - predictions_for_bg, # ignore all the positives 0. - tf.ones_like(predictions_for_bg)) topk_prob_for_bg, _ = tf.nn.top_k(prob_for_negtives, k=n_neg_to_select) selected_neg_mask = prob_for_negtives > topk_prob_for_bg[-1] # include both selected negtive and all positive examples final_mask = tf.stop_gradient(tf.logical_or(tf.logical_and(negtive_mask, selected_neg_mask), positive_mask)) total_examples = tf.count_nonzero(final_mask) flaten_cls_targets = tf.boolean_mask(tf.clip_by_value(cls_targets, 0, FLAGS.num_classes), final_mask) cls_pred = tf.boolean_mask(cls_pred, final_mask) location_pred = tf.boolean_mask(location_pred, tf.stop_gradient(positive_mask)) flaten_loc_targets = tf.boolean_mask(loc_targets, tf.stop_gradient(positive_mask)) return cls_pred, location_pred, flaten_cls_targets, flaten_loc_targets def mining_hard_neg(batch_size, cls_pred, location_pred, cls_targets, match_scores, loc_targets, name=None): with tf.variable_scope(name, 'hard_neg_mining'): flaten_cls_targets = tf.reshape(cls_targets, [-1]) flaten_match_scores = tf.reshape(match_scores, [-1]) flaten_loc_targets = tf.reshape(loc_targets, [-1, 4]) # each positive examples has one label positive_mask = flaten_cls_targets > 0 n_positives = tf.count_nonzero(positive_mask) batch_n_positives = tf.count_nonzero(cls_targets > 0, -1) batch_negtive_mask = tf.equal(cls_targets, 0)#tf.logical_and(tf.equal(cls_targets, 0), match_scores > 0.) batch_n_negtives = tf.count_nonzero(batch_negtive_mask, -1) batch_n_neg_select = tf.to_int32(FLAGS.negative_ratio * tf.to_float(batch_n_positives)) batch_n_neg_select = tf.maximum(tf.minimum(batch_n_neg_select, tf.to_int32(batch_n_negtives)), 1) # hard negative mining for classification predictions_for_bg = tf.nn.softmax(tf.reshape(cls_pred, [batch_size, -1, FLAGS.num_classes]))[:, :, 0] prob_for_negtives = tf.where(batch_negtive_mask, 0. - predictions_for_bg, # ignore all the positives 0. - tf.ones_like(predictions_for_bg)) topk_prob_for_bg, _ = tf.nn.top_k(prob_for_negtives, k=tf.shape(prob_for_negtives)[1]) score_at_k = tf.gather_nd(topk_prob_for_bg, tf.stack([tf.range(batch_size), batch_n_neg_select - 1], axis=-1)) selected_neg_mask = prob_for_negtives >= tf.expand_dims(score_at_k, axis=-1) # include both selected negtive and all positive examples final_mask = tf.stop_gradient(tf.logical_or(tf.reshape(tf.logical_and(batch_negtive_mask, selected_neg_mask), [-1]), positive_mask)) total_examples = tf.count_nonzero(final_mask) cls_pred = tf.boolean_mask(cls_pred, final_mask) location_pred = tf.boolean_mask(location_pred, tf.stop_gradient(positive_mask)) flaten_cls_targets = tf.boolean_mask(tf.clip_by_value(flaten_cls_targets, 0, FLAGS.num_classes), final_mask) flaten_loc_targets = tf.stop_gradient(tf.boolean_mask(flaten_loc_targets, positive_mask)) return cls_pred, location_pred, flaten_cls_targets, flaten_loc_targets # from scipy.misc import imread, imsave, imshow, imresize # import numpy as np # from utility import draw_toolbox # def save_image_with_bbox(image, labels_, scores_, bboxes_): # if not hasattr(save_image_with_bbox, "counter"): # save_image_with_bbox.counter = 0 # it doesn't exist yet, so initialize it # save_image_with_bbox.counter += 1 # img_to_draw = np.copy(image) # img_to_draw = draw_toolbox.bboxes_draw_on_img(img_to_draw, labels_, scores_, bboxes_, thickness=2) # imsave(os.path.join('./sfd_debug/{}.jpg').format(save_image_with_bbox.counter), img_to_draw) # return save_image_with_bbox.counter def reshape_pred(batch_size, cls_pred, location_pred, data_format, name=None): with tf.name_scope(name, 'reshape_pred', [cls_pred, location_pred]): if data_format == 'channels_first': cls_pred = [tf.transpose(pred, [0, 2, 3, 1]) for pred in cls_pred] location_pred = [tf.transpose(pred, [0, 2, 3, 1]) for pred in location_pred] cls_pred = [tf.reshape(pred, [batch_size, -1, FLAGS.num_classes]) for pred in cls_pred] location_pred = [tf.reshape(pred, [batch_size, -1, 4]) for pred in location_pred] cls_pred = tf.concat(cls_pred, axis=1) location_pred = tf.concat(location_pred, axis=1) cls_pred = tf.reshape(cls_pred, [-1, FLAGS.num_classes]) location_pred = tf.reshape(location_pred, [-1, 4]) return cls_pred, location_pred def anchor_routing(decoded_bbox, gt_bboxes, gt_lables, easy_mask, feat_height, feat_width, feat_strides, all_num_anchors_depth, num_anchors_per_layer, threshold_per_layer, ignore_threshold_per_layer): num_anchors_per_layer = tf.stack(num_anchors_per_layer) #print(num_anchors_per_layer) def impl_anchor_routing(_decoded_bbox, _gt_bboxes, _gt_lables, _easy_mask): decoded_bbox_list = tf.split(_decoded_bbox, num_anchors_per_layer, axis=0, name='split_decoded_bbox') gt_bboxes_list = tf.split(_gt_bboxes, num_anchors_per_layer, axis=0, name='split_gt_bboxes') gt_lables_list = tf.split(_gt_lables, num_anchors_per_layer, axis=0, name='split_gt_lables') easy_mask_list = tf.split(_easy_mask, num_anchors_per_layer, axis=0, name='split_easy_mask') mask_out_list = [] decode_out_list = [] for ind in range(len(all_num_anchors_depth)): with tf.name_scope('routing_{}'.format(ind)): with tf.device('/cpu:0'): #decoded_bbox_list[ind] = tf.Print(decoded_bbox_list[ind], [tf.shape(decoded_bbox_list[ind]), tf.shape(gt_bboxes_list[ind]), tf.shape(gt_lables_list[ind]), tf.shape(easy_mask_list[ind]), feat_height[ind], feat_width[ind], all_num_anchors_depth[ind], feat_strides[ind]]) mask_out, decode_out = custom_op.dynamic_anchor_routing(decoded_bbox_list[ind], gt_bboxes_list[ind], gt_lables_list[ind], easy_mask_list[ind], feat_height[ind], feat_width[ind], all_num_anchors_depth[ind], feat_strides[ind], FLAGS.train_image_size, FLAGS.train_image_size, True, threshold_per_layer[ind], ignore_threshold_per_layer[ind]) mask_out_list.append(mask_out) decode_out_list.append(decode_out) mask_out = tf.concat(mask_out_list, axis=0) decode_out = tf.concat(decode_out_list, axis=0) return tf.stop_gradient(mask_out), tf.stop_gradient(decode_out) #return impl_anchor_routing(decoded_bbox[0,:,:], gt_bboxes[0,:,:], gt_lables[0,:], easy_mask[0,:]) return tf.map_fn(lambda _args: impl_anchor_routing(_args[0], _args[1], _args[2], _args[3]), (decoded_bbox, gt_bboxes, gt_lables, easy_mask), dtype=(tf.int32, tf.float32), back_prop=False, name='anchor_routing') def dan_model_fn(features, labels, mode, params): """model_fn for dan to be used with our Estimator.""" shape = labels['shape'] loc_targets = labels['loc_targets'] cls_targets = labels['cls_targets'] match_scores = labels['match_scores'] matched_gt = labels['matched_gt'] global global_anchor_info decode_fn = global_anchor_info['decode_fn'] num_anchors_per_layer = global_anchor_info['num_anchors_per_layer'] all_num_anchors_depth = global_anchor_info['all_num_anchors_depth'] # bboxes_pred = decode_fn(loc_targets[0]) # bboxes_pred = [tf.reshape(preds, [-1, 4]) for preds in bboxes_pred] # bboxes_pred = tf.concat(bboxes_pred, axis=0) # save_image_op = tf.py_func(save_image_with_bbox, # [dan_preprocessing.unwhiten_image(features[0]), # tf.clip_by_value(cls_targets[0], 0, tf.int64.max), # match_scores[0], # bboxes_pred], # tf.int64, stateful=True) # with tf.control_dependencies([save_image_op]): #print(all_num_anchors_depth) with tf.variable_scope(params['model_scope'], default_name=None, values=[features], reuse=tf.AUTO_REUSE): backbone = danet.VGG16Backbone(params['data_format']) feature_layers = backbone.get_featmaps(features, training=(mode == tf.estimator.ModeKeys.TRAIN)) #print(feature_layers) #print(feature_layers), dan/ feature_layers = backbone.build_lfpn(feature_layers, skip_last=3) feature_layers_stage1 = backbone.get_features_stage1(feature_layers, name='prediction_modules_stage1') feature_layers_stage1 = backbone.build_lfpn(feature_layers_stage1, skip_last=3, name='lfpn_stage1') location_pred, cls_pred = backbone.get_predict_module(feature_layers_stage1, [1] * len(feature_layers), [1] + [1] * (len(feature_layers) - 1), all_num_anchors_depth, name='predict_face') cls_pred, location_pred = reshape_pred(tf.shape(features)[0], cls_pred, location_pred, params['data_format'], name='face_pred_reshape') feature_layers_stage2 = backbone.get_features_stage2(feature_layers_stage1, feature_layers, name='prediction_modules_stage2') feature_layers_stage2 = backbone.build_lfpn(feature_layers_stage2, skip_last=3, name='lfpn_stage2') final_location_pred, final_cls_pred = backbone.get_predict_module(feature_layers_stage2, [1] * len(feature_layers), [3] + [1] * (len(feature_layers) - 1), all_num_anchors_depth, name='predict_cascade') final_cls_pred, final_location_pred = reshape_pred(tf.shape(features)[0], final_cls_pred, final_location_pred, params['data_format'], name='cascade_pred_reshape') with tf.name_scope('post_forward'): bboxes_pred = decode_fn(tf.reshape(location_pred, [tf.shape(features)[0], -1, 4])) if params['data_format'] == 'channels_first': feat_height_list = [tf.shape(feat)[2] for feat in feature_layers] feat_width_list = [tf.shape(feat)[3] for feat in feature_layers] else: feat_height_list = [tf.shape(feat)[1] for feat in feature_layers] feat_width_list = [tf.shape(feat)[2] for feat in feature_layers] final_mask, final_loc_targets = anchor_routing(bboxes_pred, matched_gt, tf.to_float(cls_targets > 0), tf.to_int32(tf.reshape(tf.nn.softmax(cls_pred, name='pred_score')[:, -1], [tf.shape(features)[0], -1]) > 0.03), feat_height_list, feat_width_list, [4, 8, 16, 32, 64, 128], all_num_anchors_depth, num_anchors_per_layer, [0.4, 0.5, 0.6, 0.7, 0.8, 0.9], [0.35, 0.4, 0.45, 0.5, 0.55, 0.6]) # bboxes_pred = decode_fn(tf.reshape(location_pred, [tf.shape(features)[0], -1, 4])) # #cls_targets = tf.Print(cls_targets, [tf.shape(bboxes_pred[0]),tf.shape(bboxes_pred[1]),tf.shape(bboxes_pred[2]),tf.shape(bboxes_pred[3])]) # bboxes_pred = tf.reshape(bboxes_pred, [-1, 4]) ############## hard negtive mining for each sample cls_pred, location_pred, flaten_cls_targets, flaten_loc_targets = mining_hard_neg(tf.shape(features)[0], cls_pred, location_pred, cls_targets, match_scores, loc_targets, name='mining_0') final_cls_pred, final_location_pred, \ final_flaten_cls_targets, final_flaten_loc_targets = mining_hard_neg(tf.shape(features)[0], final_cls_pred, final_location_pred, final_mask, tf.ones_like(final_mask, dtype=tf.float32), final_loc_targets * tf.expand_dims(tf.expand_dims(tf.constant([10., 10., 5., 5.], dtype=tf.float32) * 2., axis=0), axis=0), name='mining_1') predictions = {'classes': tf.argmax(cls_pred, axis=-1), 'probabilities': tf.reduce_max(tf.nn.softmax(cls_pred, name='softmax_tensor'), axis=-1)} cls_accuracy = tf.metrics.accuracy(flaten_cls_targets, predictions['classes']) metrics = {'cls_accuracy': cls_accuracy} # Create a tensor named train_accuracy for logging purposes. tf.identity(cls_accuracy[1], name='cls_accuracy') tf.summary.scalar('cls_acc', cls_accuracy[1]) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) # Calculate loss, which includes softmax cross entropy and L2 regularization. #cross_entropy = tf.cond(n_positives > 0, lambda: tf.losses.sparse_softmax_cross_entropy(labels=flaten_cls_targets, logits=cls_pred), lambda: 0.)# * (params['negative_ratio'] + 1.) #flaten_cls_targets=tf.Print(flaten_cls_targets, [flaten_loc_targets],summarize=50000) cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=flaten_cls_targets, logits=cls_pred) * (params['negative_ratio'] + 1.) # Create a tensor named cross_entropy for logging purposes. tf.identity(cross_entropy, name='cross_entropy_loss') tf.summary.scalar('ce_loss', cross_entropy) #loc_loss = tf.cond(n_positives > 0, lambda: modified_smooth_l1(location_pred, tf.stop_gradient(flaten_loc_targets), sigma=1.), lambda: tf.zeros_like(location_pred)) loc_loss = modified_smooth_l1(location_pred, flaten_loc_targets, sigma=1.) #loc_loss = modified_smooth_l1(location_pred, tf.stop_gradient(gtargets)) loc_loss = tf.reduce_mean(tf.reduce_sum(loc_loss, axis=-1), name='location_loss') tf.summary.scalar('loc_loss', loc_loss) tf.losses.add_loss(loc_loss) final_cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=final_flaten_cls_targets, logits=final_cls_pred) * (params['negative_ratio'] + 1.) # Create a tensor named cross_entropy for logging purposes. tf.identity(final_cross_entropy, name='final_cross_entropy_loss') tf.summary.scalar('final_ce_loss', final_cross_entropy) final_loc_loss = modified_smooth_l1(final_location_pred, final_flaten_loc_targets, sigma=1.) final_loc_loss = tf.reduce_mean(tf.reduce_sum(final_loc_loss, axis=-1), name='final_location_loss') tf.summary.scalar('final_loc_loss', final_loc_loss) tf.losses.add_loss(final_loc_loss) l2_loss_vars = [] for trainable_var in tf.trainable_variables(): if '/bn' not in trainable_var.name: if 'l2_norm_layer' not in trainable_var.name: if '/bias' not in trainable_var.name: l2_loss_vars.append(tf.nn.l2_loss(trainable_var)) else: l2_loss_vars.append(tf.nn.l2_loss(trainable_var) * 0.2) # Add weight decay to the loss. We exclude the batch norm variables because # doing so leads to a small improvement in accuracy. total_loss = tf.add(cross_entropy + loc_loss + final_cross_entropy + final_loc_loss, tf.multiply(params['weight_decay'], tf.add_n(l2_loss_vars), name='l2_loss'), name='total_loss') if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() lr_values = [params['learning_rate'] * decay for decay in params['lr_decay_factors']] learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), [int(_) for _ in params['decay_boundaries']], lr_values) truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype), name='learning_rate') # Create a tensor named learning_rate for logging purposes. tf.summary.scalar('lr', truncated_learning_rate) gradient_multipliers = {} for var in tf.trainable_variables(): if '/bias' in var.name: gradient_multipliers[var] = 2. else: gradient_multipliers[var] = 1. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = tf.contrib.layers.optimize_loss(total_loss, global_step, truncated_learning_rate, optimizer=lambda lr: tf_replicate_model_fn.TowerOptimizer(tf.train.MomentumOptimizer(learning_rate=lr, momentum=params['momentum'])), gradient_multipliers=gradient_multipliers, update_ops=update_ops, summaries=['loss']) else: train_op = None return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=total_loss, train_op=train_op, eval_metric_ops=metrics, scaffold=tf.train.Scaffold(init_fn=get_init_fn())) def parse_comma_list(args): return [float(s.strip()) for s in args.split(',')] def main(_): # Using the Winograd non-fused algorithms provides a small performance boost. os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1' gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction) config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, intra_op_parallelism_threads=FLAGS.num_cpu_threads, inter_op_parallelism_threads=FLAGS.num_cpu_threads, gpu_options=gpu_options) num_gpus = validate_batch_size_for_multi_gpu(FLAGS.batch_size) # Set up a RunConfig to only save checkpoints once per training cycle. run_config = tf.estimator.RunConfig().replace( save_checkpoints_secs=None).replace( save_checkpoints_steps=FLAGS.save_checkpoints_steps).replace( save_summary_steps=FLAGS.save_summary_steps).replace( keep_checkpoint_max=5).replace( tf_random_seed=FLAGS.tf_random_seed).replace( log_step_count_steps=FLAGS.log_every_n_steps).replace( session_config=config) replicate_dan_model_fn = tf_replicate_model_fn.replicate_model_fn(dan_model_fn, loss_reduction=tf.losses.Reduction.MEAN) dan_detector = tf.estimator.Estimator( model_fn=replicate_dan_model_fn, model_dir=FLAGS.model_dir, config=run_config, params={ 'num_gpus': num_gpus, 'data_format': FLAGS.data_format, 'batch_size': FLAGS.batch_size, 'model_scope': FLAGS.model_scope, 'num_classes': FLAGS.num_classes, 'negative_ratio': FLAGS.negative_ratio, 'match_threshold': FLAGS.match_threshold, 'neg_threshold': FLAGS.neg_threshold, 'weight_decay': FLAGS.weight_decay, 'momentum': FLAGS.momentum, 'learning_rate': FLAGS.learning_rate, 'end_learning_rate': FLAGS.end_learning_rate, 'decay_boundaries': parse_comma_list(FLAGS.decay_boundaries), 'lr_decay_factors': parse_comma_list(FLAGS.lr_decay_factors), }) tensors_to_log = { 'lr': 'learning_rate', 'ce': 'cross_entropy_loss', 'loc': 'location_loss', 'ce2': 'final_cross_entropy_loss', 'loc2': 'final_location_loss', 'loss': 'total_loss', 'l2': 'l2_loss', 'acc': 'post_forward/cls_accuracy', } logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=FLAGS.log_every_n_steps, formatter=lambda dicts: (', '.join(['%s=%.6f' % (k, v) for k, v in dicts.items()]))) #hook = tf.train.ProfilerHook(save_steps=50, output_dir='.', show_memory=True) tf.logging.info('Starting a training cycle.') dan_detector.train(input_fn=input_pipeline(dataset_pattern='{}-*', is_training=True, batch_size=FLAGS.batch_size), hooks=[logging_hook], max_steps=FLAGS.max_number_of_steps) tf.logging.info('Finished runing at {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))) if __name__ == '__main__': import logging tf.gfile.MakeDirs(FLAGS.model_dir) tf.gfile.Copy(os.path.realpath(__file__), os.path.join(FLAGS.model_dir, 'train.py'), overwrite=True) log = logging.getLogger('tensorflow') fh = logging.FileHandler(FLAGS.model_dir + 'tensorflow.log') formatter = logging.Formatter('%(levelname)s:%(name)s:%(message)s') fh.setFormatter(formatter) fh.setLevel(logging.INFO) log.addHandler(fh) tf.logging.set_verbosity(tf.logging.INFO) tf.logging.info('Starting runing at {}'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))) tf.app.run()
#! /usr/bin/python3 #-*- coding: utf-8 -*- from __future__ import print_function import sys import re import os import shutil from contextlib import closing import requests import urllib.request from urllib.error import HTTPError, URLError import socket import ftplib def url_split(target): return target[0:target.rindex('/')], target[target.rindex('/') + 1:] def ftp_retrieve_active(ftpip, path, username, password, remote, local): status = 1 ftp = ftplib.FTP(host=ftpip, user=username, passwd=password, acct='', timeout=10) # print('--> Downloading active with ftpip=[{:}], path=[{:}], username=[{:}], password=[{:}], remote=[{:}], local=[{:}]'.format(ftpip, path, username, password, remote, local)) ftp.set_pasv(False) if path != '': ftp.cwd(path) try: ## query size so that we fail if the remote does not exist and no local ## file is created assert( ftp.size(remote) ) ftp.retrbinary("RETR " + remote, open(local, 'wb').write) status = 0 except FTP.error_perm: os.remove(local) ftp.close() return status def ftp_retrieve(url, filename=None, **kwargs): """ :return: An integer denoting the download status; anything other than 0 denotes an error kwargs: save_as: 'foobar' Save remote file as 'foobar' (can include path) save_dir: 'foo/bar' Directory to save remote file; if both save_dir and save_as are given, then the local file will be the concatenation of these two, aka os.path.join(save_dir, save_as) username: 'usrnm' Use the given username password: 'psswrd' Use the given password active : (boolean) true or false fail_error: True/False Throw exception if download fails. By default the function will throw if the download fails """ # print('>> called ftp_retrieve with args: url={:}, filename={:}, kwargs={:}'.format(url, filename, kwargs)) if filename is None: url, filename = url_split(url) # print('>> split url and filename to {:} and {:}'.format(url, filename)) saveas = kwargs['save_as'] if 'save_as' in kwargs else filename if 'save_dir' in kwargs: if not os.path.isdir(kwargs['save_dir']): msg = '[ERROR] retrieve::http_retrieve Directory does not exist {:}'.format( kwargs['save_dir']) raise RuntimeError(msg) saveas = os.path.join(kwargs['save_dir'], saveas) # print('>> saveas is now {:}'.format(saveas)) if not 'fail_error' in kwargs: kwargs['fail_error'] = True ## username or password key(s) in kwargs if set(['username', 'password']).intersection(set(kwargs)): username = kwargs['username'] if 'username' in kwargs else '' password = kwargs['password'] if 'password' in kwargs else '' if (not username or username == '') and (not password or password == ''): pass else: ## need to construct a string of type: ## 'ftp://username:password@server/path/to/file' from (url=) ## 'server/path/to/file' # print('>> using credentials .... ') url = re.sub(r'^ftp://', 'ftp://{:}:{:}@'.format(username, password), url) target = '{:}/{:}'.format(url, filename) status = 0 ## Handle active FTP if 'active' in kwargs and kwargs['active'] == True: g=re.match(r'ftp://[^@]*([^/]*)(.*)', url) ftpip = g.group(1).lstrip('@') target = filename path = g.group(2).replace(target, '') status = ftp_retrieve_active(ftpip, path, username, password, target, saveas) else: # print(">> Note that target={:}".format(target)) try: with closing(urllib.request.urlopen(target, timeout=10)) as r: with open(saveas, 'wb') as f: shutil.copyfileobj(r, f) except: status = 1 ## For debugging #try: # with closing(urllib.request.urlopen(target, timeout=10)) as r: # with open(saveas, 'wb') as f: # shutil.copyfileobj(r, f) #except HTTPError as error: # print('Data not retrieved because {:}\nURL: {}', error, target) #except URLError as error: # if isinstance(error.reason, socket.timeout): # print('socket timed out - URL {}', target) # else: # print('some other error happened') # status = 1 if not os.path.isfile(saveas): status += 1 if status > 0 and kwargs['fail_error'] == True: msg = '[ERROR] retrieve::ftp_retrieve Failed to download file {:}'.format( target) raise RuntimeError(msg) return status, target, saveas def http_retrieve(url, filename=None, **kwargs): """ :return: An integer denoting the download status; anything other than 0 denotes an error kwargs: username: Use this username to access the url. password: Use this password to access the url. save_as: 'foobar' Save remote file as 'foobar' (can include path) save_dir: 'foo/bar' Directory to save remote file; if both save_dir and save_as are given, then the local file will be the concatenation of these two, aka os.path.join(save_dir, save_as) fail_error: True/False Throw exception if download fails. By default the function will throw if the download fails """ if filename is None: url, filename = url_split(url) saveas = kwargs['save_as'] if 'save_as' in kwargs else filename if 'save_dir' in kwargs: if not os.path.isdir(kwargs['save_dir']): msg = '[ERROR] retrieve::http_retrieve Directory does not exist {:}'.format( kwargs['save_dir']) raise RuntimeError(msg) saveas = os.path.join(kwargs['save_dir'], saveas) if not 'fail_error' in kwargs: kwargs['fail_error'] = True use_credentials = False if set(['username', 'password']).intersection(set(kwargs)): use_credentials = True username = kwargs['username'] if 'username' in kwargs else '' password = kwargs['password'] if 'password' in kwargs else '' if (not username or username == '') and (not password or password == ''): use_credentials = False target = '{:}/{:}'.format(url, filename) status = 0 if not use_credentials: ## download with no credentials try: ## allow timeout with requests request = requests.get(target, timeout=20, stream=True) if request.status_code == 200: with open(saveas, 'wb') as fh: for chunk in request.iter_content(1024 * 1024): fh.write(chunk) if not os.path.isfile(saveas): status += 1 except: status = 1 else: ## download with credentials (not sure if this works for python 2) try: with requests.get(target, auth=(username, password), timeout=20) as r: r.raise_for_status() if r.status_code == 200: with open(saveas, 'wb') as f: #shutil.copyfileobj(r.raw, f) f.write(r.content) if not os.path.isfile(saveas): status += 1 except: status = 1 if status > 0 and kwargs['fail_error'] == True: msg = '[ERROR] retrieve::http_retrieve Failed to download file {:}'.format( target) raise RuntimeError(msg) return status, target, saveas def web_retrieve(url, **kwargs): # print('>> called web_retrieve with args: url={:}, kwargs={:}'.format(url, kwargs)) filename = None if 'filename' not in kwargs else kwargs['filename'] if url.startswith('http'): return http_retrieve(url, filename, **kwargs) elif url.startswith('ftp'): return ftp_retrieve(url, filename, **kwargs) else: msg = '[ERROR] retrieve::web_retrieve Unknown url protocol {:}'.format( url) raise RuntimeError(msg)
from dbt.adapters.bigquery.connections import BigQueryConnectionManager # noqa from dbt.adapters.bigquery.connections import BigQueryCredentials from dbt.adapters.bigquery.relation import BigQueryRelation # noqa from dbt.adapters.bigquery.relation import BigQueryColumn # noqa from dbt.adapters.bigquery.impl import BigQueryAdapter from dbt.adapters.base import AdapterPlugin from dbt.include import bigquery Plugin = AdapterPlugin( adapter=BigQueryAdapter, credentials=BigQueryCredentials, include_path=bigquery.PACKAGE_PATH)
import typing IntegerType = typing.NewType("IntegerType", int) TextType = typing.NewType("TextType", str) VarcharType = typing.NewType("VarcharType", str)
# Copyright (c) 2017-2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 from collections import defaultdict from io import StringIO from os.path import basename, dirname, splitext from typing import DefaultDict, Set from google.protobuf.compiler.plugin_pb2 import CodeGeneratorRequest, CodeGeneratorResponse from ..syntax.python import all_decl from ._header import HEADER __all__ = ["run_plugin"] def run_plugin(request: "CodeGeneratorRequest") -> "CodeGeneratorResponse": """ Create `__init__.py` files for all directories. """ directories = set() # for all of the requested files, add those files' parent directories, and the parents of all # THOSE directories for proto_dir in {dirname(f) for f in request.file_to_generate}: components = proto_dir.split("/") for i in range(0, len(components) + 1): directories.add("/".join(components[:i])) return CodeGeneratorResponse( file=[package_file(proto_dir, request) for proto_dir in sorted(directories)] ) def package_file(proto_dir: str, request: "CodeGeneratorRequest") -> "CodeGeneratorResponse.File": proto_package = proto_dir.replace("/", ".") import_map = defaultdict(set) # type: DefaultDict[str, Set[str]] for file in request.proto_file: if file.package == proto_package: current_module_base = splitext(basename(file.name))[0] current_module_pb = "." + current_module_base + "_pb2" current_module_grpc = "." + current_module_base + "_pb2_grpc" for e in file.enum_type: import_map[current_module_pb].add(e.name) for m in file.message_type: import_map[current_module_pb].add(m.name) for s in file.service: import_map[current_module_grpc].add(s.name + "Stub") with StringIO() as buf: buf.write(HEADER) buf.write("\n") all_symbols = set() for f, i in import_map.items(): buf.write(f"from {f} import {', '.join(sorted(i))}\n") all_symbols.update(i) buf.write("\n") buf.write(all_decl(sorted(all_symbols))) return CodeGeneratorResponse.File(name=f"{proto_dir}/__init__.py", content=buf.getvalue())
from django.contrib import admin from .models import Contact # Register your models here. @admin.register(Contact) class AdminContact(admin.ModelAdmin): pass
from django.apps import AppConfig class TplansConfig(AppConfig): name = 'tplans'
''' Problem 2: Even Fibonacci numbers Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. Answer: 4613732 ''' def even_fibonacci_numbers(limit = 4000000): """ Returns the sum of the even-valued terms in the Fibonacci sequence, whose values do not exceed four million. """ n1, n2 = 1, 2 even_sum = 0 while (n2 <= limit): if n2%2 == 0: even_sum += n2 temp = n2 + n1 n1 = n2 n2 = temp return even_sum if __name__ == '__main__': print even_fibonacci_numbers(4000000)
from django.shortcuts import render from .models import UserPost, UserProfile # Create your views here. class FollowUserPosts(object): """ PO文列表 """ def __init__(self, user_name=None, page_size=10): self.user_name = user_name self.user_post_list = [] self.total_num = 0 self.page_size = page_size def set_user_post_list(self, page): """ 为PO文列表对象生成内容(分页) :param page: 页码 :return: """ page += 1 follow_list = self._get_follow_list() user_post_query_set = self._get_user_posts(follow_list) self.total_num = user_post_query_set.count() self.user_post_list = [{"nick_name": each_post.user__nickname, "content": each_post.content, "post_date": each_post.creation_date} for each_post in user_post_query_set[page * self.page_size: (page + 1) * self.page_size]] def _get_user_posts(self, user_names): user_post_query_set = UserPost.objects.filter(user__username__in=user_names).order_by("-creation_date") return user_post_query_set def _get_follow_list(self): if not self.user_name: raise ValueError("user id should be initialize before call this method") user_follow_query_set = UserProfile.objects.filter(followed_by__username=self.user_name).all() follow_list = [each_user.username for each_user in user_follow_query_set] return follow_list class UserBaseInfo(object): def __init__(self, user_name, nick_name): self.user_name = user_name self.nick_name = nick_name class UserInfoList(object): """ 用户信息列表基类 """ def __init__(self): self.user_list = [] self.total_num = 0 self.page = 0 self.page_size = 10 self.num = 0 class FollowInfoList(UserInfoList): def followed_by(self, user_name, page_size=None, page=None): """ 获得关注列表的分页结果 :param user_name: :param page_size: (optional) :param page: (optional) :return: """ if not UserProfile.objects.filter(username=user_name).exists(): raise ValueError('This user id is not exist') if page_size: self.page_size = page_size if page: self.page = page user_profile_query_set = UserProfile.objects.filter(followed_by__username=user_name).all() self.num = user_profile_query_set.count() self.user_list = [UserBaseInfo(user.username, user.nickname) for user in user_profile_query_set[self.page * self.page_size :(self.page + 1) * self.page_size]] return self class FollowerInfoList(UserInfoList): def follow_to(self, user_name, page_size=None, page=None): """ 获得跟随者列表的分页结果 :param user_name: :param page_size: (optional) :param page: (optional) :return: """ if not UserProfile.objects.filter(username=user_name).exists(): raise ValueError('This user id is not exist') if page_size: self.page_size = page_size if page: self.page = page user_profile_query_set = UserProfile.objects.filter(follows=user_name).all() self.num = user_profile_query_set.count() self.user_list = [UserBaseInfo(user.username, user.nickname) for user in user_profile_query_set[self.page: self.page + self.page_size]] return self
from ssher.core.ports.outgoing import OS import pexpect class CmdRunner(OS): def spawn_child(*args, **kwargs): kwargs.setdefault("encoding", "utf-8") return pexpect.spawn(*args, **kwargs).interact()
import unittest from caravan.tables import Tables from caravan.parameter_set import ParameterSet from caravan.simulator import Simulator class ParameterSetTest(unittest.TestCase): def setUp(self): self.t = Tables.get() self.t.clear() self.sim = Simulator.create("echo") def test_ps(self): param = {"p1": 1, "p2": 2} ps = self.sim.find_or_create_parameter_set(param) self.assertEqual(ps.id(), 0) self.assertEqual(ps.v(), param) self.assertEqual(ps.runs(), []) self.assertEqual(ps.simulator(), self.sim) self.assertEqual(ParameterSet.all(), [ps]) self.assertEqual(ParameterSet.find(0), ps) self.assertEqual(self.sim.find_parameter_set(param), ps) self.assertEqual(ps.to_dict(), {"id": 0, "sim_id": 0, "params": param, "run_ids": []}) # second PS param2 = {"p1": 2, "p2": 3} ps2 = self.sim.find_or_create_parameter_set(param2) self.assertEqual(ps2.id(), 1) self.assertEqual(ps2.v(), param2) self.assertEqual(ParameterSet.all(), [ps, ps2]) # duplicate PS self.assertEqual(self.sim.find_or_create_parameter_set(param), ps) self.assertEqual(len(ParameterSet.all()), 2) def test_create_runs(self): ps = self.sim.find_or_create_parameter_set({"foo": "bar"}) ps.create_runs_upto(3) self.assertEqual(len(ps.runs()), 3) self.assertEqual([r.id() for r in ps.runs()], [0, 1, 2]) ps.create_runs_upto(3) self.assertEqual(len(ps.runs()), 3) ps.create_runs_upto(5) self.assertEqual(len(ps.runs()), 5) def test_is_finished(self): ps = self.sim.find_or_create_parameter_set({"foo": "bar"}) self.assertEqual(ps.is_finished(), True) ps.create_runs_upto(2) self.assertEqual(ps.is_finished(), False) self.assertEqual(ps.finished_runs(), []) ps.runs()[0]._store_result({"o1": 1}, 0, 1, 1000, 2000) self.assertEqual(ps.is_finished(), False) self.assertEqual([r.id() for r in ps.finished_runs()], [0]) ps.runs()[1]._store_result({"o1": 1}, 0, 2, 1000, 2000) self.assertEqual(ps.is_finished(), True) self.assertEqual([r.id() for r in ps.finished_runs()], [0, 1]) def test_outputs(self): ps = self.sim.find_or_create_parameter_set({"foo": "bar"}) ps.create_runs_upto(2) self.assertEqual(ps.outputs(), []) for (i, r) in enumerate(ps.runs()): r._store_result( {"i": i}, 0, i, 0, 10) self.assertEqual(len(ps.finished_runs()), 2) self.assertEqual(ps.outputs(), [{"i": 0}, {"i": 1}]) def test_find(self): sim2 = Simulator.create("echo") self.assertEqual(sim2.id(), 1) ps1 = self.sim.find_or_create_parameter_set({"foo": "bar"}) self.assertEqual(self.sim.parameter_sets(), [ps1]) ps1.create_runs_upto(2) ps2 = sim2.find_or_create_parameter_set({"foo": "bar"}) self.assertEqual(sim2.parameter_sets(), [ps2]) ps2.create_runs_upto(2) self.assertEqual([r.id() for r in ps1.runs()], [0, 1]) self.assertEqual([r.id() for r in ps2.runs()], [2, 3]) self.assertEqual([r.id() for r in ParameterSet.all()], [0, 1]) self.assertEqual(ParameterSet.find(1), ps2) if __name__ == '__main__': unittest.main()
import os import requests import pymysql import pytest from flask import url_for from solarforecastarbiter.datamodel import QualityFlagFilter as QFF from sfa_dash import create_app BASE_URL = 'http://localhost' resample_threshold = QFF.resample_threshold_percentage @pytest.fixture(scope='session') def auth_token(): token_req = requests.post( 'https://solarforecastarbiter.auth0.com/oauth/token', headers={'content-type': 'application/json'}, data=('{"grant_type": "password", ' '"username": "testing@solarforecastarbiter.org",' '"password": "Thepassword123!", ' '"audience": "https://api.solarforecastarbiter.org", ' '"client_id": "c16EJo48lbTCQEhqSztGGlmxxxmZ4zX7"}')) if token_req.status_code != 200: pytest.skip('Cannot retrieve valid Auth0 token') else: token = token_req.json() return token @pytest.fixture() def expired_token(): stored = {'access_token': 'eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6Ik5UZENSRGRFTlVNMk9FTTJNVGhCTWtRelFUSXpNRFF6TUVRd1JUZ3dNekV3T1VWR1FrRXpSUSJ9.eyJpc3MiOiJodHRwczovL3NvbGFyZm9yZWNhc3RhcmJpdGVyLmF1dGgwLmNvbS8iLCJzdWIiOiJhdXRoMHw1YmUzNDNkZjcwMjU0MDYyMzc4MjBiODUiLCJhdWQiOlsiaHR0cHM6Ly9hcGkuc29sYXJmb3JlY2FzdGFyYml0ZXIub3JnIiwiaHR0cHM6Ly9zb2xhcmZvcmVjYXN0YXJiaXRlci5hdXRoMC5jb20vdXNlcmluZm8iXSwiaWF0IjoxNTU1NDU0NzcwLCJleHAiOjE1NTU0NjU1NzAsImF6cCI6IlByRTM5QWR0R01QSTRnSzJoUnZXWjJhRFJhcmZwZzdBIiwic2NvcGUiOiJvcGVuaWQgcHJvZmlsZSBlbWFpbCBvZmZsaW5lX2FjY2VzcyJ9.lT1XPtLkYCVGUZjcAgWFCU6AJbKWtE077zw_KO4fhIaF0wo6TTpLTkZBmF9Sxmrwb5NfeR5XuJmkX3SPCjpzcZG9wdXIpPWRGhsOAAUdoSkoHKFzALoc46VPjA3A5SZxlGqNeh6RoKFlWRAp5EJN9Z-JcwT06JyJGrbx7ip4tCbAADqWuDY2tzkjKD3EHjHTO9OSJiCRxlNA22OCfMTF6B8-8RLUabZ414bypezw83S9g25mLLWtlGhQvzWGA8F7yhhVXbEsAPPC1QoyjevXzn8PBqL5dSDp6u1gL6T29PsbhZ0diZ1xt5jkm4iX-cryc7tqwq-5D5ZkC3wbhNpLuQ', 'refresh_token': 'QlLHR9wyFS5cokItX-ym7jWlCCuLO1fC3AtZLUeDVX-mI', 'id_token': 'eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6Ik5UZENSRGRFTlVNMk9FTTJNVGhCTWtRelFUSXpNRFF6TUVRd1JUZ3dNekV3T1VWR1FrRXpSUSJ9.eyJuaWNrbmFtZSI6InRlc3RpbmciLCJuYW1lIjoidGVzdGluZ0Bzb2xhcmZvcmVjYXN0YXJiaXRlci5vcmciLCJwaWN0dXJlIjoiaHR0cHM6Ly9zLmdyYXZhdGFyLmNvbS9hdmF0YXIvY2MxMTNkZjY5NmY4ZTlmMjA2Nzc5OTQzMzUxNzRhYjY_cz00ODAmcj1wZyZkPWh0dHBzJTNBJTJGJTJGY2RuLmF1dGgwLmNvbSUyRmF2YXRhcnMlMkZ0ZS5wbmciLCJ1cGRhdGVkX2F0IjoiMjAxOS0wNC0xNlQyMjo0NjoxMC42NTdaIiwiZW1haWwiOiJ0ZXN0aW5nQHNvbGFyZm9yZWNhc3RhcmJpdGVyLm9yZyIsImVtYWlsX3ZlcmlmaWVkIjpmYWxzZSwiaXNzIjoiaHR0cHM6Ly9zb2xhcmZvcmVjYXN0YXJiaXRlci5hdXRoMC5jb20vIiwic3ViIjoiYXV0aDB8NWJlMzQzZGY3MDI1NDA2MjM3ODIwYjg1IiwiYXVkIjoiUHJFMzlBZHRHTVBJNGdLMmhSdldaMmFEUmFyZnBnN0EiLCJpYXQiOjE1NTU0NTQ3NzAsImV4cCI6MTU1NTQ5MDc3MH0.axw45-ms_LVIS_WsUdcCryZeOwpZVAn95zbUm9WO23bpIja7QaR1h6_Emb9nUNJIk44vp-J-zwKIZd4j7bg5_vaVcJER4_rL8vlc6f5lJdZAU20yeisTT4q1YcwlvQhg7avWMUkZaiO3SgK0eJ3371Gm2gJgK2b21bnpzmUHQ0vS906GLGngaVzb3VEE_g4CgR4u6qmBQRwq3Z6DyRBq572Qhn3TXk_0Xvj43Q9TyYjV5ioou5Xe-3T5HHsCoUWqDp0BZ3bP9FlYFws9DffnFzf1yVtpwfk9shmAe8V6Fn9N0OjuS4LJP0Tc-I7adspJlYfB9BeTEci6MKn58OQCrw', 'scope': ['openid', 'profile', 'email', 'offline_access'], 'expires_in': 0, 'token_type': 'Bearer', 'expires_at': 1555465570.9597309} # NOQA return stored @pytest.fixture() def mocked_storage(mocker, auth_token, expired_token): def make_storage(authenticated=False): if authenticated: token = auth_token else: token = expired_token class fake_storage: def __init__(*args, **kwargs): pass def get(self, *args): return token def set(self, *args): pass def delete(self, *args): pass return fake_storage return make_storage @pytest.fixture() def mocked_unauth_storage(mocker, mocked_storage): mocker.patch('sfa_dash.session_storage', new=mocked_storage()) @pytest.fixture() def mocked_auth_storage(mocker, mocked_storage): mocker.patch('sfa_dash.session_storage', new=mocked_storage(True)) @pytest.fixture() def app_unauth(mocked_unauth_storage): os.environ['OAUTHLIB_INSECURE_TRANSPORT'] = '1' return create_app('sfa_dash.config.TestConfig') @pytest.fixture() def app(mocked_auth_storage): os.environ['OAUTHLIB_INSECURE_TRANSPORT'] = '1' return create_app('sfa_dash.config.TestConfig') @pytest.fixture() def client(app): yield app.test_client() no_arg_routes_list = [ '/sites/', '/observations/', '/forecasts/single/', '/forecasts/cdf/', '/reports/', '/aggregates/', '/sites/create', '/reports/deterministic/create', '/reports/event/create', '/aggregates/create', ] @pytest.fixture(params=no_arg_routes_list) def no_arg_route(request): return request.param admin_routes_list = [ '/admin/permissions/create/cdf_forecast_group', '/admin/permissions/create/observation', '/admin/permissions/create/forecast', '/admin/permissions/create/report', '/admin/permissions/create/site', '/admin/roles/create', '/admin/permissions/', '/admin/roles/', '/admin/users/', ] @pytest.fixture(params=admin_routes_list) def admin_route(request): return request.param admin_multiarg_route_list = [ '/admin/permissions/{permission_id}/remove/{object_id}', '/admin/roles/{role_id}/remove/{permission_id}', '/admin/users/{user_id}/remove/{role_id}', ] @pytest.fixture(params=admin_multiarg_route_list) def admin_multiarg_route(request): def fn(object_id, permission_id, user_id, role_id): return request.param.format( object_id=object_id, permission_id=permission_id, user_id=user_id, role_id=role_id) return fn user_id_route_list = [ '/admin/users/{user_id}', '/admin/users/{user_id}/add/', ] @pytest.fixture(params=user_id_route_list) def user_id_route(request): def fn(user_id): return request.param.format(user_id=user_id) return fn role_id_route_list = [ '/admin/roles/{role_id}', '/admin/roles/{role_id}/delete', '/admin/roles/{role_id}/add/', '/admin/roles/{role_id}/grant/', ] @pytest.fixture(params=role_id_route_list) def role_id_route(request): def fn(role_id): return request.param.format(role_id=role_id) return fn permission_id_route_list = [ '/admin/permissions/{permission_id}', '/admin/permissions/{permission_id}/delete', '/admin/permissions/{permission_id}/add', ] @pytest.fixture(params=permission_id_route_list) def permission_id_route(request): def fn(permission_id): return request.param.format(permission_id=permission_id) return fn report_id_route_list = [ '/reports/{report_id}', '/reports/{report_id}/delete', ] @pytest.fixture(params=report_id_route_list) def report_id_route(request): def fn(report_id): return request.param.format(report_id=report_id) return fn site_id_route_list = [ '/sites/{site_id}/', '/sites/{site_id}/delete', '/sites/{site_id}/forecasts/single/create', '/sites/{site_id}/forecasts/cdf/create', '/sites/{site_id}/observations/create', '/sites/{site_id}/observations/create', ] @pytest.fixture(params=site_id_route_list) def site_id_route(request): def fn(site_id): return request.param.format(site_id=site_id) return fn observation_id_route_list = [ '/observations/{observation_id}', '/observations/{observation_id}/delete', ] @pytest.fixture(params=observation_id_route_list) def observation_id_route(request): def fn(observation_id): return request.param.format(observation_id=observation_id) return fn forecast_id_route_list = [ '/forecasts/single/{forecast_id}', '/forecasts/single/{forecast_id}/delete', ] @pytest.fixture(params=forecast_id_route_list) def forecast_id_route(request): def fn(forecast_id): return request.param.format(forecast_id=forecast_id) return fn cdf_forecast_id_route_list = [ '/forecasts/cdf/{forecast_id}', '/forecasts/cdf/{forecast_id}/delete', ] @pytest.fixture(params=cdf_forecast_id_route_list) def cdf_forecast_id_route(request): def fn(forecast_id): return request.param.format(forecast_id=forecast_id) return fn cdf_forecast_single_id_routes_list = [ '/forecasts/cdf/single/{forecast_id}', ] @pytest.fixture(params=cdf_forecast_single_id_routes_list) def cdf_forecast_single_id_route(request): def fn(forecast_id): return request.param.format(forecast_id=forecast_id) return fn aggregate_id_route_list = [ '/aggregates/{aggregate_id}', '/aggregates/{aggregate_id}/delete', '/aggregates/{aggregate_id}/add', '/aggregates/{aggregate_id}/forecasts/single/create', '/aggregates/{aggregate_id}/forecasts/cdf/create', ] @pytest.fixture(params=aggregate_id_route_list) def aggregate_id_route(request): def fn(aggregate_id): return request.param.format(aggregate_id=aggregate_id) return fn clone_route_list = [ '/sites/{site_id}/clone', '/observations/{observation_id}/clone', '/forecasts/single/{forecast_id}/clone', ] @pytest.fixture(params=clone_route_list) def clone_route(request): def fn(uuids): # NOTE: expects a dict of all possible ids to use for formatting return request.param.format(**uuids) return fn @pytest.fixture() def missing_id(): return '7d2c3208-5243-11e9-8647-d663bd873d93' @pytest.fixture() def observation_id(): return '123e4567-e89b-12d3-a456-426655440000' @pytest.fixture() def cdf_forecast_group_id(): return 'ef51e87c-50b9-11e9-8647-d663bd873d93' @pytest.fixture() def cdf_forecast_id(): return '633f9396-50bb-11e9-8647-d663bd873d93' @pytest.fixture() def forecast_id(): return '11c20780-76ae-4b11-bef1-7a75bdc784e3' @pytest.fixture() def site_id(): return '123e4567-e89b-12d3-a456-426655440001' @pytest.fixture() def site_id_plant(): return '123e4567-e89b-12d3-a456-426655440002' @pytest.fixture() def test_orgid(): return 'b76ab62e-4fe1-11e9-9e44-64006a511e6f' @pytest.fixture() def user_id(): return '0c90950a-7cca-11e9-a81f-54bf64606445' @pytest.fixture() def aggregate_id(): return '458ffc27-df0b-11e9-b622-62adb5fd6af0' @pytest.fixture() def report_id(): return '9f290dd4-42b8-11ea-abdf-f4939feddd82' @pytest.fixture def all_metadata_ids( observation_id, forecast_id, cdf_forecast_group_id, cdf_forecast_id, site_id, site_id_plant, aggregate_id, report_id): return { 'observation_id': observation_id, 'forecast_id': forecast_id, 'cdf_forecast_group_id': cdf_forecast_group_id, 'cdf_forecast_id': cdf_forecast_id, 'site_id': site_id, 'site_id_plant': site_id_plant, 'aggregate_id': aggregate_id, 'report_id': report_id, } @pytest.fixture() def test_url(app): def fn(view): with app.test_request_context(): return url_for(view, _external=True) return fn @pytest.fixture(scope='session') def connection(): connection = pymysql.connect( host=os.getenv('MYSQL_HOST', '127.0.0.1'), port=int(os.getenv('MYSQL_PORT', '3306')), user='root', password='testpassword', database='arbiter_data', binary_prefix=True) # with no connection.commit(), no data should stay in db return connection @pytest.fixture() def cursor(connection): connection.rollback() return connection.cursor() @pytest.fixture() def dictcursor(connection): connection.rollback() return connection.cursor(cursor=pymysql.cursors.DictCursor) @pytest.fixture() def role_id(cursor): cursor.execute( 'SELECT BIN_TO_UUID(id, 1) from arbiter_data.roles ' 'WHERE name = "Test user role"') role_id = cursor.fetchone()[0] return role_id @pytest.fixture() def permission_id(cursor, role_id): cursor.execute( 'SELECT BIN_TO_UUID(id, 1) FROM arbiter_data.permissions ' 'WHERE id IN (SELECT permission_id FROM ' 'arbiter_data.role_permission_mapping WHERE role_id ' '= UUID_TO_BIN(%s, 1) ) LIMIT 1', role_id) permission_id = cursor.fetchone()[0] return permission_id @pytest.fixture() def permission_object_type(cursor, permission_id): cursor.execute( 'SELECT object_type FROM arbiter_data.permissions ' 'WHERE id = UUID_TO_BIN(%s, 1)', permission_id) return cursor.fetchone()[0] @pytest.fixture() def valid_permission_object_id( observation_id, forecast_id, cdf_forecast_group_id, aggregate_id, site_id, role_id, user_id, permission_id, report_id, permission_object_type): ot = permission_object_type if ot == 'forecasts': return forecast_id if ot == 'observations': return observation_id if ot == 'cdf_forecasts': return cdf_forecast_group_id if ot == 'agggregates': return aggregate_id if ot == 'sites': return site_id if ot == 'reports': return report_id if ot == 'users': return user_id if ot == 'permissions': return permission_id if ot == 'roles': return role_id @pytest.fixture() def site(): return { 'created_at': '2019-03-01T11:44:38+00:00', 'elevation': 595.0, 'extra_parameters': '{"network_api_abbreviation": "AS","network": "University of Oregon SRML","network_api_id": "94040"}', # noqa 'latitude': 42.19, 'longitude': -122.7, 'modeling_parameters': {'ac_capacity': None, 'ac_loss_factor': None, 'axis_azimuth': None, 'axis_tilt': None, 'backtrack': None, 'dc_capacity': None, 'dc_loss_factor': None, 'ground_coverage_ratio': None, 'max_rotation_angle': None, 'surface_azimuth': None, 'surface_tilt': None, 'temperature_coefficient': None, 'tracking_type': None}, 'modified_at': '2019-03-01T11:44:38+00:00', 'name': 'Weather Station', 'provider': 'Organization 1', 'site_id': '123e4567-e89b-12d3-a456-426655440001', 'timezone': 'Etc/GMT+8'} @pytest.fixture() def site_with_modeling_params(): return { 'created_at': '2019-03-01T11:44:46+00:00', 'elevation': 786.0, 'extra_parameters': '', 'latitude': 43.73403, 'longitude': -96.62328, 'modeling_parameters': { 'ac_capacity': 0.015, 'ac_loss_factor': 0.0, 'axis_azimuth': None, 'axis_tilt': None, 'backtrack': None, 'dc_capacity': 0.015, 'dc_loss_factor': 0.0, 'ground_coverage_ratio': None, 'max_rotation_angle': None, 'surface_azimuth': 180.0, 'surface_tilt': 45.0, 'temperature_coefficient': -0.2, 'tracking_type': 'fixed'}, 'modified_at': '2019-03-01T11:44:46+00:00', 'name': 'Power Plant 1', 'provider': 'Organization 1', 'site_id': '123e4567-e89b-12d3-a456-426655440002', 'timezone': 'Etc/GMT+6'} @pytest.fixture() def observation(): return { '_links': {'site': 'http://localhost:5000/sites/123e4567-e89b-12d3-a456-426655440001'}, # noqa 'created_at': '2019-03-01T12:01:39+00:00', 'extra_parameters': '{"instrument": "Ascension Technology Rotating Shadowband Pyranometer", "network": "UO SRML"}', # noqa 'interval_label': 'beginning', 'interval_length': 5, 'interval_value_type': 'interval_mean', 'modified_at': '2019-03-01T12:01:39+00:00', 'name': 'GHI Instrument 1', 'observation_id': '123e4567-e89b-12d3-a456-426655440000', 'provider': 'Organization 1', 'site_id': '123e4567-e89b-12d3-a456-426655440001', 'uncertainty': 0.1, 'variable': 'ghi'} @pytest.fixture() def forecast(): return { '_links': {'aggregate': None, 'site': 'http://localhost:5000/sites/123e4567-e89b-12d3-a456-426655440001'}, # noqa 'aggregate_id': None, 'created_at': '2019-03-01T11:55:37+00:00', 'extra_parameters': '', 'forecast_id': '11c20780-76ae-4b11-bef1-7a75bdc784e3', 'interval_label': 'beginning', 'interval_length': 5, 'interval_value_type': 'interval_mean', 'issue_time_of_day': '06:00', 'lead_time_to_start': 60, 'modified_at': '2019-03-01T11:55:37+00:00', 'name': 'DA GHI', 'provider': 'Organization 1', 'run_length': 1440, 'site_id': '123e4567-e89b-12d3-a456-426655440001', 'variable': 'ghi'} @pytest.fixture() def cdf_forecast(): return { '_links': {'site': 'http://localhost:5000/sites/123e4567-e89b-12d3-a456-426655440001'}, # noqa 'aggregate_id': None, 'axis': 'y', 'constant_values': [{'_links': {'timerange': 'http://localhost:5000/forecasts/cdf/single/633f9396-50bb-11e9-8647-d663bd873d93/values/timerange', # noqa 'values': 'http://localhost:5000/forecasts/cdf/single/633f9396-50bb-11e9-8647-d663bd873d93/values'}, # noqa 'constant_value': 5.0, 'forecast_id': '633f9396-50bb-11e9-8647-d663bd873d93'}, {'_links': {'timerange': 'http://localhost:5000/forecasts/cdf/single/633f9864-50bb-11e9-8647-d663bd873d93/values/timerange', # noqa 'values': 'http://localhost:5000/forecasts/cdf/single/633f9864-50bb-11e9-8647-d663bd873d93/values'}, # noqa 'constant_value': 20.0, 'forecast_id': '633f9864-50bb-11e9-8647-d663bd873d93'}, {'_links': {'timerange': 'http://localhost:5000/forecasts/cdf/single/633f9b2a-50bb-11e9-8647-d663bd873d93/values/timerange', # noqa 'values': 'http://localhost:5000/forecasts/cdf/single/633f9b2a-50bb-11e9-8647-d663bd873d93/values'}, # noqa 'constant_value': 50.0, 'forecast_id': '633f9b2a-50bb-11e9-8647-d663bd873d93'}, {'_links': {'timerange': 'http://localhost:5000/forecasts/cdf/single/633f9d96-50bb-11e9-8647-d663bd873d93/values/timerange', # noqa 'values': 'http://localhost:5000/forecasts/cdf/single/633f9d96-50bb-11e9-8647-d663bd873d93/values'}, # noqa 'constant_value': 80.0, 'forecast_id': '633f9d96-50bb-11e9-8647-d663bd873d93'}, {'_links': {'timerange': 'http://localhost:5000/forecasts/cdf/single/633fa548-50bb-11e9-8647-d663bd873d93/values/timerange', # noqa 'values': 'http://localhost:5000/forecasts/cdf/single/633fa548-50bb-11e9-8647-d663bd873d93/values'}, # noqa 'constant_value': 95.0, 'forecast_id': '633fa548-50bb-11e9-8647-d663bd873d93'}], 'created_at': '2019-03-02T14:55:37+00:00', 'extra_parameters': '', 'forecast_id': 'ef51e87c-50b9-11e9-8647-d663bd873d93', 'interval_label': 'beginning', 'interval_length': 5, 'interval_value_type': 'interval_mean', 'issue_time_of_day': '06:00', 'lead_time_to_start': 60, 'modified_at': '2019-03-02T14:55:37+00:00', 'name': 'DA GHI', 'provider': 'Organization 1', 'run_length': 1440, 'site_id': '123e4567-e89b-12d3-a456-426655440001', 'variable': 'ghi'} @pytest.fixture() def aggregate(): return { 'aggregate_id': '458ffc27-df0b-11e9-b622-62adb5fd6af0', 'aggregate_type': 'mean', 'created_at': '2019-09-24T12:00:00+00:00', 'description': 'ghi agg', 'extra_parameters': 'extra', 'interval_label': 'ending', 'interval_length': 60, 'interval_value_type': 'interval_mean', 'modified_at': '2019-09-24T12:00:00+00:00', 'name': 'Test Aggregate ghi', 'observations': [ {'_links': {'observation': 'http://localhost:5000/observations/123e4567-e89b-12d3-a456-426655440000/metadata'}, # noqa 'created_at': '2019-09-25T00:00:00+00:00', 'effective_from': '2019-01-01T00:00:00+00:00', 'effective_until': None, 'observation_deleted_at': None, 'observation_id': '123e4567-e89b-12d3-a456-426655440000'}, {'_links': {'observation': 'http://localhost:5000/observations/e0da0dea-9482-4073-84de-f1b12c304d23/metadata'}, # noqa 'created_at': '2019-09-25T00:00:00+00:00', 'effective_from': '2019-01-01T00:00:00+00:00', 'effective_until': None, 'observation_deleted_at': None, 'observation_id': 'e0da0dea-9482-4073-84de-f1b12c304d23'}, {'_links': {'observation': 'http://localhost:5000/observations/b1dfe2cb-9c8e-43cd-afcf-c5a6feaf81e2/metadata'}, # noqa 'created_at': '2019-09-25T00:00:00+00:00', 'effective_from': '2019-01-01T00:00:00+00:00', 'effective_until': None, 'observation_deleted_at': None, 'observation_id': 'b1dfe2cb-9c8e-43cd-afcf-c5a6feaf81e2'}], 'provider': 'Organization 1', 'timezone': 'America/Denver', 'variable': 'ghi'} @pytest.fixture() def report(): return { 'created_at': '2020-01-22T13:48:00+00:00', 'modified_at': '2020-01-22T13:50:00+00:00', 'provider': 'Organization 1', 'raw_report': { 'data_checksum': None, 'generated_at': '2019-07-01T12:00:00+00:00', 'messages': [ {'function': 'fcn', 'level': 'error', 'message': 'FAILED', 'step': 'dunno'}], 'metrics': [], 'plots': None, 'processed_forecasts_observations': [], 'timezone': 'Etc/GMT+8', 'versions': []}, 'report_id': '9f290dd4-42b8-11ea-abdf-f4939feddd82', 'report_parameters': { 'categories': ['total', 'date'], 'end': '2019-06-01T06:59:00+00:00', 'filters': [{'quality_flags': ['USER FLAGGED'], 'discard_before_resample': True, 'resample_threshold_percentage': resample_threshold, }, {'quality_flags': ['STALE VALUES'], 'discard_before_resample': True, 'resample_threshold_percentage': resample_threshold, }], 'metrics': ['mae', 'rmse'], 'name': 'NREL MIDC OASIS GHI Forecast Analysis', 'object_pairs': [ {'forecast': '11c20780-76ae-4b11-bef1-7a75bdc784e3', 'observation': '123e4567-e89b-12d3-a456-426655440000', 'reference_forecast': None, 'uncertainty': None, 'forecast_type': 'forecast', }], 'start': '2019-04-01T07:00:00+00:00', 'costs': [{ 'name': 'example cost', 'type': 'constant', 'parameters': { "cost": 1.1, "aggregation": "sum", "net": False, }, }], }, 'status': 'failed', 'values': [ {'id': 'a2b6ed14-42d0-11ea-aa3c-f4939feddd82', 'object_id': '123e4567-e89b-12d3-a456-426655440000', 'processed_values': 'superencodedvalues'}] }
# --------------------------------------------------------------------- # Alarm Rule # --------------------------------------------------------------------- # Copyright (C) 2007-2021 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import re from collections import defaultdict from typing import Optional, DefaultDict, Set, List, Iterable, Pattern, Tuple from dataclasses import dataclass # Third-party modules from jinja2 import Template # NOC modules from noc.fm.models.alarmrule import AlarmRule as CfgAlarmRule from noc.fm.models.alarmclass import AlarmClass from noc.fm.models.activealarm import ActiveAlarm DEFAULT_GROUP_CLASS = "Group" @dataclass class Match(object): labels: Set[str] exclude_labels: Optional[Set[str]] alarm_class: Optional[AlarmClass] reference_rx: Optional[Pattern] @dataclass class Group(object): reference_template: Template alarm_class: AlarmClass title_template: Template labels: Optional[List[str]] = None min_threshold: int = 0 window: int = 0 @dataclass class GroupItem(object): reference: str alarm_class: AlarmClass title: str labels: Optional[List[str]] = None min_threshold: int = 0 window: int = 0 class AlarmRule(object): _default_alarm_class: Optional[AlarmClass] = None def __init__(self): self.match: List[Match] = [] self.groups: List[Group] = [] @classmethod def try_from(cls, rule_cfg: CfgAlarmRule) -> Optional["AlarmRule"]: """ Generate rule from config """ rule = AlarmRule() # Add matches for match in rule_cfg.match: rule.match.append( Match( labels=set(match.labels), alarm_class=match.alarm_class, exclude_labels=match.exclude_labels if match.exclude_labels else None, reference_rx=re.compile(match.reference_rx) if match.reference_rx else None, ) ) # Add groups for group in rule_cfg.groups: rule.groups.append( Group( reference_template=Template(group.reference_template), alarm_class=group.alarm_class if group.alarm_class else cls.get_default_alarm_class(), title_template=Template(group.title_template), min_threshold=group.min_threshold or 0, window=group.window or 0, labels=group.labels or [], ) ) return rule def is_match(self, alarm: ActiveAlarm) -> bool: """ Check if alarm matches the rule """ if not self.match: return True lset = set(alarm.effective_labels) for match in self.match: # Match against labels if match.exclude_labels and match.exclude_labels.issubset(lset): continue if not match.labels.issubset(lset): continue # Match against alarm class if match.alarm_class and match.alarm_class != alarm.alarm_class: continue # Match against referene re if ( getattr(alarm, "raw_reference", None) and match.reference_rx and not match.reference_rx.search(alarm.raw_reference) ): continue return True return False @classmethod def get_default_alarm_class(cls) -> AlarmClass: if not cls._default_alarm_class: cls._default_alarm_class = AlarmClass.get_by_name(DEFAULT_GROUP_CLASS) assert cls._default_alarm_class return cls._default_alarm_class def iter_groups(self, alarm: ActiveAlarm) -> Iterable[GroupItem]: """ Render group templates """ ctx = {"alarm": alarm} for group in self.groups: yield GroupItem( reference=group.reference_template.render(**ctx), alarm_class=group.alarm_class, title=group.title_template.render(**ctx), labels=group.labels, min_threshold=group.min_threshold, window=group.window, ) class AlarmRuleSet(object): """ Full set of alarm rules """ def __init__(self): self._label_rules: DefaultDict[Tuple[str, ...], List[AlarmRule]] = defaultdict(list) self.label_rules: List[Tuple[Set[str], List[AlarmRule]]] = [] def add(self, rule: CfgAlarmRule): """ Add rule to set """ if not rule.is_active: return new_rule = AlarmRule.try_from(rule) if not new_rule: return if rule.match: for match in rule.match: lset = tuple(sorted(match.labels)) self._label_rules[lset].append(new_rule) else: self._label_rules[tuple()].append(new_rule) def compile(self): """ Finalize rules """ self.label_rules = [(set(k), v) for k, v in self._label_rules.items()] self._label_rules = defaultdict(list) def iter_candidates(self, alarm: ActiveAlarm) -> Iterable[AlarmRule]: """ Iterable candidate rules with matching labels """ lset = set(alarm.effective_labels) seen: Set[AlarmRule] = set() for mset, rules in self.label_rules: if not mset.issubset(lset): continue for rule in rules: if rule in seen: continue yield rule seen.add(rule) def iter_rules(self, alarm: ActiveAlarm) -> Iterable[AlarmRule]: """ Iterate all matched rules """ for rule in self.iter_candidates(alarm): if rule.is_match(alarm): yield rule
#!/bin/env python from sys import argv import os REPEAT = 865 RULES = [(18,19,20,21,22,23,24,25),(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,1)] + \ [tuple(range(i,i+17)+[i-17]) for i in range(43,825,17)] + \ [(825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,808), \ (842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,825),(842,859,860,861,862,863,864,865)] mass = (8,12,12,12,12,12,12,12,12,1,1,1,1,1,1,1,1,8) MASS = [(8,12,12,1,1,1,1,1)] + [mass[:] for i in range(1,51)] + [(8,12,12,1,1,1,1,1)] FORMAT = "%.4f" def read_frame(f): if len(ATOMS) > 0: del ATOMS[:len(ATOMS)] if len(BOXLINES) > 0: del BOXLINES[:len(BOXLINES)] nAtoms = 0 line = f.readline() while line: if line.startswith("Generated"): line = f.readline() nAtoms = int(line.strip()) else: count = 1 while count <= nAtoms: strs = line.strip().split() length = len(strs) if length == 6: ATOMS.append((float(strs[3])*10, float(strs[4])*10, float(strs[5])*10)) if length == 5: ATOMS.append((float(strs[2])*10, float(strs[3])*10, float(strs[4])*10)) count = count + 1 line = f.readline() strs = line.strip().split() BOXLINES.append(float(strs[0])*10) BOXLINES.append(float(strs[1])*10) BOXLINES.append(float(strs[2])*10) return True line = f.readline() return False def convert(out): for i in range(len(ATOMS) / REPEAT): for j in range(len(RULES)): t_x = 0.0 t_y = 0.0 t_z = 0.0 t_mass = 0.0 for k in range(len(RULES[j])): t_x = t_x + ATOMS[RULES[j][k]-1+i*REPEAT][0] * MASS[j][k] t_y = t_y + ATOMS[RULES[j][k]-1+i*REPEAT][1] * MASS[j][k] t_z = t_z + ATOMS[RULES[j][k]-1+i*REPEAT][2] * MASS[j][k] t_mass = t_mass + MASS[j][k] t_x = float(t_x) / t_mass t_y = float(t_y) / t_mass t_z = float(t_z) / t_mass f_x = FORMAT % t_x f_y = FORMAT % t_y f_z = FORMAT % t_z if int(j+1)%52 == 1 or int(j+1)%52 == 0: l=1 else: l=2 out.write(str(len(RULES)*i+j+1) + " " + str(l) + " " + f_x + " " + f_y + " " + f_z + "\n") time = 0 f = open(argv[1], 'r') o = open("PPE-CG.lammpstrj", 'w') ATOMS = [] BOXLINES = [] while read_frame(f): o.write("ITEM: TIMESTEP\n") o.write(str(time) + "\n") o.write("ITEM: NUMBER OF ATOMS\n") o.write(str(len(ATOMS) / REPEAT * len(RULES)) + "\n") o.write("ITEM: BOX BOUNDS pp pp pp\n") o.write("0 " + str(BOXLINES[0]) + "\n") o.write("0 " + str(BOXLINES[1]) + "\n") o.write("0 " + str(BOXLINES[2]) + "\n") o.write("ITEM: ATOMS id type xu yu zu\n") convert(o) time = time + 1000 f.close()
''' Author: Eric P. Nichols Date: Feb 8, 2008. Board class. Board data: 1=white, -1=black, 0=empty first dim is column , 2nd is row: pieces[1][7] is the square in column 2, at the opposite end of the board in row 8. Squares are stored and manipulated as (x,y) tuples. x is the column, y is the row. ''' import numpy as np class Board(): # list of all 6 directions on the board, as (x,y) offsets __directions = [(2,0),(-2,0),(1,1),(1,-1),(-1,1),(-1,-1)] # list of all entries of the matrix, which are actually spots on the board actBoard = [(2,3),(3,2),(3,4),(4,1),(4,3),(4,5),(5,2),(5,4),(6,1),(6,3),(6,5),(7,2),(7,4),(8,1),(8,3),(8,5),(9,2),(9,4),(10,3)] # list of all starting Points on the board startingPoints = [(0,3),(1,2),(1,4),(2,1),(2,5),(3,0),(3,6),(5,0),(5,6),(7,0),(7,6),(9,0),(9,6),(10,1),(10,5),(11,2),(11,4),(12,3)] # dictionary for the translation of the spot names into the entries of the matrix (as tuple) move_dict = {"a1": (9,0), "a2": (7,0), "a3": (5,0), "a4": (3,0), "b1": (10,1), "b2": (8,1), "b3": (6,1), "b4": (4,1), "b5": (2,1), "c1": (11,2), "c2": (9,2), "c5": (3,2), "c6": (1,2), "d1": (12,3), "d2": (10,3), "d6": (2,3), "d7": (0,3), "e1": (11,4), "e2": (9,4), "e5": (3,4), "e6": (1,4), "f1": (10,5), "f2": (8,5), "f3": (6,5), "f4": (4,5), "f5": (2,5), "g1": (9,6), "g2": (7,6), "g3": (5,6), "g4": (3,6)} def __init__(self, n): "Set up initial board configuration." self.n = n # Create the empty board array. self.pieces = [None]*self.n # rows: mini: 13, normal: 17 for i in range(self.n): self.pieces[i] = [0]*(int(self.n//(1.8))) # columns: mini: 13//1.8=7 normal: 17//1.8=9 #Set up reserve in board corner self.pieces[0][0] = 5 self.pieces[0][2] = 5 # Set up the initial 6 pieces. self.pieces[4][1] = 1 self.pieces[4][5] = 1 self.pieces[10][3] = 1 self.pieces[8][1] = -1 self.pieces[8][5] = -1 self.pieces[2][3] = -1 """ #Testfall Sym self.pieces[8][1] = 1 self.pieces[10][3] = 1 self.pieces[4][5] = 1 self.pieces[2][3] = -1 self.pieces[7][4] = -1 self.pieces[8][5] = -1 #Testfall A self.pieces[8][1] = -1 self.pieces[7][2] = -1 self.pieces[4][3] = -1 self.pieces[10][3] = 1 self.pieces[8][3] = 1 self.pieces[4][5] = 1 self.pieces[5][4] = 1 #Testfall B self.pieces[7][2] = 1 self.pieces[6][1] = 1 self.pieces[10][3] = 1 self.pieces[8][3] = -1 self.pieces[4][3] = -1 self.pieces[2][3] = -1 #Testfall C self.pieces[4][1] = 1 self.pieces[5][2] = -1 self.pieces[10][3] = 1 self.pieces[4][3] = -1 self.pieces[2][3] = -1 #Testfall D self.pieces[6][1] = -1 self.pieces[7][2] = -1 self.pieces[9][4] = 1 self.pieces[10][3] = -1 self.pieces[6][3] = -1 self.pieces[4][3] = -1 self.pieces[2][3] = 1 """ # add [][] indexer syntax to the Board def __getitem__(self, index): return self.pieces[index] def __setitem__(self, index, color): self.pieces[index] = color def get_actBoard(self): if self.n == 13: return self.actBoard else: pass # return actBoard + ext def get_startingPoints(self): if self.n == 13: return self.startingPoints else: pass # return actBoard + ext @staticmethod def translate_move(move): """Returns a tuple of the spot names as a tuple of the matrix """ try: move_new = (Board.move_dict[move[0]],Board.move_dict[move[1]]) return move_new except KeyError: 'Invalid Field' def get_legal_moves(self): """Returns all the legal moves """ moves = set() # stores the legal moves. # discover the possible moves for every starting point for start in self.startingPoints: newmoves = self.get_moves_for_dot(start)[1],[2] moves.update(newmoves) return list(moves) def get_legal_moves_binary(self): """Returns all the legal moves """ moves = [] # stores the legal moves. # discover the possible moves for every starting point for start in self.startingPoints: newmoves = self.get_moves_for_dot(start)[2] moves.extend(newmoves) return moves def get_all_moves(self): """Returns all the legal moves """ moves = [] # stores the legal moves. # discover the possible moves for every starting point for start in self.startingPoints: newmoves = self.get_moves_for_dot(start)[1] moves.extend(newmoves) return moves def get_moves_for_dot(self, dot): """Returns all the legal moves that use the given dot as a base. """ # search all possible directions. legal_moves = [] all_moves = [] all_moves_binary = [] for direction in self.__directions: target = tuple(np.add(dot, direction)) if target in self.actBoard: move = (dot, target) all_moves.append(move) if self.check_move(target, direction): legal_moves.append(move) all_moves_binary.extend([1]) else: all_moves_binary.extend([0]) # return the generated move list return legal_moves, all_moves, all_moves_binary def check_move(self, target, direction): """Returns True if there is a free field along the given direction if not returns Flase because the move is not valid """ s = target while s in self.actBoard: if self[s] == 0: return True s = tuple(np.add(s, direction)) return False def execute_move(self, action, curPlayer): """Performs the given move on the board; does not remove pieces! color gives the color of the piece to play (1=white,-1=black) """ all_moves = self.get_all_moves() move = all_moves[action] start=move[0] target=move[1] direction = tuple(np.subtract(target, start)) s=target # Runs up to a gap and places the piece there while s in self.actBoard: if self[s] == 0: break s = tuple(np.add(s, direction)) self[start]=curPlayer # Runs in opposite direction and moves the pieces while s in self.actBoard: s_prev = tuple(np.subtract(s, direction)) s_prev_color = self[s_prev] self[s]= s_prev_color s = tuple(np.subtract(s, direction)) self[s]=0 # Decreases reserve #players[color+1].dec_reserve() def remove_lines(self, curPlayer): """Checks for each field whether a row of four results. If so, removes the entire line """ #prüfen ob mehrere 4er, wenn ja zuerst den der spielenden Farbe, wenn immer noch mehrere zuerst den der mehr schlägt rows = [] add_reserve = [0, None, 0] for spot in self.actBoard: new_row = self.discover_row_of_4(spot) if new_row and new_row not in rows: rows.append(new_row) while len(rows)>1: #mehrere rows rows_of_color = [] #alle rows der aktuellen Farbe (haben vorrang) index_max = None for row in rows: row_color = self[list(row)[0]] if row_color == curPlayer: rows_of_color.append(row) if len(rows_of_color)>1: #mehrere rows der aktiven Farbe #prüfen welche die meisten schlägt c = [None]*len(rows_of_color) for index, row in enumerate(rows_of_color): c[index] = self.get_hit_count(row) index_max = np.argmax(c) add_reserve = np.add(add_reserve, self.remove_line(rows_of_color[index_max]), where=[1,0,1]) elif len(rows_of_color)>0: #nur eine row der aktiven Farbe add_reserve = np.add(add_reserve, self.remove_line(rows_of_color[0]), where=[1,0,1]) else: #mehrer rows der anderen Farbe und keine der aktiven #prüfen welche die meisten schlägt c = [None]*len(rows) for index, row in enumerate(rows): c[index] = self.get_hit_count(row) index_max = np.argmax(c) add_reserve = np.add(add_reserve, self.remove_line(rows[index_max]), where=[1,0,1]) #prüfe ob rows noch aktuell rows = self.check_rows(rows) if len(rows)>0: #nur eine row (egal welche Farbe) add_reserve = np.add(add_reserve, self.remove_line(rows[0]), where=[1,0,1]) return add_reserve def check_rows(self, rows): rows_new = rows.copy() for row in rows: for spot in row: if self[spot] == 0: rows_new.remove(row) break return rows_new def get_hit_count(self, row): count = 0 row = list(row) color_of_row = self[row[0]] direction = tuple(np.subtract(row[0], row[1])) s = row[0] # Runs from the first of the 4 in one direction of the line while s in self.actBoard: if self[s] == 0: break else: color = self[s] if color != color_of_row: count += 1 #self[s] = 0 s = tuple(np.add(s, direction)) # Runs in the opposite direction s = tuple(np.subtract(row[0], direction)) while s in self.actBoard: if self[s] == 0: break else: color = self[s] if color != color_of_row: count += 1 #self[s] = 0 s = tuple(np.subtract(s, direction)) return count def discover_row_of_4(self, spot): """Examines all directions for the given spot to see if a row of four exists If found returns a array of the four, otherwise returns False """ color = self[spot] for direction in self.__directions: row_of_4 = [] #set() #weil unorderd #row_of_4.update([spot]) row_of_4.append(spot) s = tuple(np.add(spot, direction)) while s in self.actBoard: if self[s] == 0 or self[s] != color: break else: #row_of_4.update([s]) row_of_4.append(s) s = tuple(np.add(s, direction)) if len(row_of_4)>2: #GipfMini: 3; Normal: 4 row_of_4.sort() return row_of_4 def remove_line(self, row_of_4): """Removes the 4 pieces and the pieces that form a direct extension of these 4 The pieces with the color of the 4 return to his reserve """ add_reserve = [0, None, 0] row_of_4 = list(row_of_4) color_of_4 = self[row_of_4[0]] direction = tuple(np.subtract(row_of_4[0], row_of_4[1])) s = row_of_4[0] # Runs from the first of the 4 in one direction of the line while s in self.actBoard: if self[s] == 0: break else: color = self[s] if color == color_of_4: add_reserve[color+1]+=1 #players[color+1].inc_reserve() self[s] = 0 s = tuple(np.add(s, direction)) # Runs in the opposite direction s = tuple(np.subtract(row_of_4[0], direction)) while s in self.actBoard: if self[s] == 0: break else: color = self[s] if color == color_of_4: add_reserve[color+1]+=1 #players[color+1].inc_reserve() self[s] = 0 s = tuple(np.subtract(s, direction)) return add_reserve
from distutils.core import setup from os import path from glob import glob def get_modules(): objdir = path.join(path.dirname(__file__),'bbots/*.py') mods=[] for file in glob(objdir): name = path.splitext(path.basename(file))[0] if name == '__init__': continue mods.append("bbots." + name) return mods setup(name="bbots", version="0.1", packages = ['bbots'], py_modules = get_modules(), scripts = ['bin/bbotsd.py'], author = ['Derrick Karimi'], author_email = [ 'derrick.karimi@gmail.com' ], maintainer = ['Derrick Karimi'], maintainer_email = ['derrick.karimi@gmail.com'], description = ['bbots'], url = ['https://github.com/AlwaysTraining/bbots'], download_url = ['https://github.com/AlwaysTraining/bbots'], install_requires=['pexpect <= 2.4'])
import random from datetime import datetime, timedelta import config from classes.command import command from classes.module import Module class Adventure(Module): """ Always be adventurous! """ def __init__(self, handler): self.handler = handler @command(description="Get the list of adventures", usage="adventures") def adventures(self, ctx): """ Get the full list of adventures. Hopefully you will find an adventure you like. """ ctx.print("These are the adventures you can go on.") ctx.print("Success rate depends on difficulty of the adventure and your xp.") ctx.print('Use "adventure <number>" to begin on an adventure!') for i in range(len(config.adventure_names)): ctx.print_empty() ctx.print(f"{i + 1}. {config.adventure_names[i]}", indent=1) ctx.print(config.adventure_descriptions[i], indent=1) if i == 0: difficulty = "Very easy" elif i == 1: difficulty = "Easy" elif i == 2: difficulty = "Medium" elif i == 3: difficulty = "Hard" else: difficulty = "Very hard" ctx.print(f"Difficulty level: {difficulty}", indent=1) ctx.print(f"Duration: {config.adventure_durations[i]}", indent=1) success_rate = ( config.adventure_chances[i] + self.handler.character.level * 5 ) if success_rate > 95: success_rate = 95 ctx.print(f"Success rate: {success_rate}%", indent=1) @command(description="Go on an adventure!", usage="adventure <number>") def adventure(self, ctx, number: int): """ Hooray! It is time to go on an adventure! Best of luck to you. Specify the adventure number which you can find using the "adventures" command/ """ if number <= 0 or number > len(config.adventure_names): return ctx.print( 'Oops! Invalid adventure number. Use "adventures" to see all of them.' ) if self.handler.character.adventure_end: return ctx.print( 'Oops! You are already on an adventure. Check with "status".' ) self.handler.character.adventure(number - 1) ctx.print("Going on an adventure... Good luck!") ctx.print( 'Check the status of the adventure and collect rewards with "status".' ) @command(description="Cancel the adventure.", usage="cancel") def cancel(self, ctx): """ Cancel the adventure. This is irreversible! """ if not self.handler.character.adventure_end: return ctx.print( "You are not on an adventure. Don't try to cancel nothing!" ) self.handler.character.reset_adventure() ctx.print("Adventure has been cancelled. Be sure to start on a new one.") @command(description="Status of the adventure.", usage="status") def status(self, ctx): """ Check the status of the adventure. This command should be used after completion of an adventure to receive rewards too. """ if not self.handler.character.adventure_end: return ctx.print("You are not on an adventure yet!") if self.handler.character.adventure_end <= datetime.now(): rand = random.randint(1, 100) success_rate = config.adventure_chances[self.handler.character.adventure_id] success_rate += self.handler.character.level * 5 if success_rate > 95: success_rate = 95 if rand > success_rate: ctx.print("RIP. You found nothing during the adventure.") else: _type = random.choice(["sword", "shield"]) action = "attack" if _type == "shield": action = "defense" min_level = (self.handler.character.adventure_id + 1) * 5 max_level = min_level + 5 level = random.randint(min_level, max_level) self.handler.character.add_item(_type, level) xp = random.randint(min_level, max_level) * 2 self.handler.character.add_xp(xp) ctx.print(f"Congratulations! You gained {xp} XP.") ctx.print(f"You also got a new {_type} with {action} {level}.") self.handler.character.reset_adventure() else: remaining = self.handler.character.adventure_end - datetime.now() remaining -= timedelta(microseconds=remaining.microseconds) ctx.print(f"The time left till completion of the adventure is {remaining}.") def setup(handler): handler.add_module(Adventure(handler))
from common.celeryapp import get_celery_app from common.measurement import Measure app = get_celery_app() @app.task @Measure.timer(__name__, function_name_as_metric=True) @Measure.counter(__name__, function_name_as_metric=True, count_once=True) def echo(message='This is default queue'): print(message)
name = "S - Big City Scroll" description = "Draws stacked rectangles scaled to audio amplitude, scrolls across screen with history fade" knob1 = "Scroll Direction" knob2 = "Y Position" knob3 = "History Opacity" knob4 = "Color" released = "September 7 2017"
# -*- coding: iso-8859-1 -*- """ MoinMoin - MoinMoin.packages tests @copyright: 2005 MoinMoin:AlexanderSchremmer, 2007 Federico Lorenzi, 2010 MoinMoin:ReimarBauer @license: GNU GPL, see COPYING for details. """ import os import py import tempfile import zipfile from datetime import datetime from MoinMoin import user, wikiutil from MoinMoin.action import AttachFile from MoinMoin.action.PackagePages import PackagePages from MoinMoin.packages import Package, ScriptEngine, MOIN_PACKAGE_FILE, ZipPackage, packLine, unpackLine from MoinMoin._tests import become_trusted, become_superuser, create_page, nuke_page from MoinMoin.Page import Page from MoinMoin.PageEditor import PageEditor class DebugPackage(Package, ScriptEngine): """ Used for debugging, does not need a real .zip file. """ def __init__(self, request, filename, script=None): Package.__init__(self, request) ScriptEngine.__init__(self) self.filename = filename self.script = script or u"""moinmoinpackage|1 print|foo ReplaceUnderlay|testdatei|TestSeite2 IgnoreExceptions|True IgnoreExceptions|False AddRevision|foofile|FooPage AddRevision|foofile|FooPage #foobar """ def extract_file(self, filename): if filename == MOIN_PACKAGE_FILE: return self.script.encode("utf-8") else: return "Hello world, I am the file " + filename.encode("utf-8") def filelist(self): return [MOIN_PACKAGE_FILE, "foo"] def isPackage(self): return True class TestUnsafePackage: """ Tests various things in the packages package. Note that this package does not care to clean up and needs to run in a test wiki because of that. """ def setup_class(self): if not getattr(self.request.cfg, 'is_test_wiki', False): py.test.skip('This test needs to be run using the test wiki.') def teardown_class(self): nuke_page(self.request, "FooPage") def testBasicPackageThings(self): become_superuser(self.request) myPackage = DebugPackage(self.request, 'test') myPackage.installPackage() assert myPackage.msg == u'foo\nFooPage added \n' testseite2 = Page(self.request, 'TestSeite2') assert testseite2.getPageText() == "Hello world, I am the file testdatei" assert testseite2.isUnderlayPage() class TestQuoting: def testQuoting(self): for line in ([':foo', 'is\\', 'ja|', u't|�', u'baAz�'], [], ['', '']): assert line == unpackLine(packLine(line)) class TestRealCreation: def testSearch(self): package = PackagePages(self.request.rootpage.page_name, self.request) assert package.searchpackage(self.request, "title:BadCon") == [u'BadContent'] def testListCreate(self): package = PackagePages(self.request.rootpage.page_name, self.request) temp = tempfile.NamedTemporaryFile(suffix='.zip') package.collectpackage(['FrontPage'], temp) assert zipfile.is_zipfile(temp.name) def testAllCreate(self): package = PackagePages(self.request.rootpage.page_name, self.request) temp = tempfile.NamedTemporaryFile(suffix='.zip') package.collectpackage(self.request.rootpage.getPageList( include_underlay=False, filter=lambda name: not wikiutil.isSystemPage(self.request, name)), temp) if not package: py.test.skip("No user created pages in wiki!") assert zipfile.is_zipfile(temp.name) def testInvalidCreate(self): package = PackagePages(self.request.rootpage.page_name, self.request) temp = tempfile.NamedTemporaryFile(suffix='.zip') package.collectpackage(['___//THIS PAGE SHOULD NOT EXIST\\___'], temp) assert not zipfile.is_zipfile(temp.name) class TestRealPackageInstallation: def create_package(self, script, page=None): # creates the package example zip file userid = user.getUserIdentification(self.request) COMPRESSION_LEVEL = zipfile.ZIP_DEFLATED zip_file = tempfile.mkstemp(suffix='.zip')[1] zf = zipfile.ZipFile(zip_file, "w", COMPRESSION_LEVEL) if page: timestamp = wikiutil.version2timestamp(page.mtime_usecs()) zi = zipfile.ZipInfo(filename="1", date_time=datetime.fromtimestamp(timestamp).timetuple()[:6]) zi.compress_type = COMPRESSION_LEVEL zf.writestr(zi, page.get_raw_body().encode("utf-8")) zf.writestr("1_attachment", "sample attachment") zf.writestr(MOIN_PACKAGE_FILE, script.encode("utf-8")) zf.close() return zip_file def testAttachments_after_page_creation(self): become_trusted(self.request) pagename = u'PackageTestPageCreatedFirst' page = create_page(self.request, pagename, u"This page has not yet an attachments dir") script = u"""MoinMoinPackage|1 AddRevision|1|%(pagename)s AddAttachment|1_attachment|my_test.txt|%(pagename)s Print|Thank you for using PackagePages! """ % {"pagename": pagename} zip_file = self.create_package(script, page) package = ZipPackage(self.request, zip_file) package.installPackage() assert Page(self.request, pagename).exists() assert AttachFile.exists(self.request, pagename, "my_test.txt") nuke_page(self.request, pagename) os.unlink(zip_file) def testAttachments_without_page_creation(self): become_trusted(self.request) pagename = u"PackageAttachmentAttachWithoutPageCreation" script = u"""MoinMoinPackage|1 AddAttachment|1_attachment|my_test.txt|%(pagename)s Print|Thank you for using PackagePages! """ % {"pagename": pagename} zip_file = self.create_package(script) package = ZipPackage(self.request, zip_file) package.installPackage() assert not Page(self.request, pagename).exists() assert AttachFile.exists(self.request, pagename, "my_test.txt") nuke_page(self.request, pagename) os.unlink(zip_file) coverage_modules = ['MoinMoin.packages']
import os # first cd to a place that has lots (at least 200 GB) of space! for year in range(2009, 2016): for month in range(1, 13): for color in 'yellow', 'green': if color == 'green': # green taxis only show up starting from 08/2013 if year <= 2012: continue if year == 2013 and month < 8: continue fileName = '%s_tripdata_%s-%02d.csv' % (color, year, month) if not os.path.exists(fileName): url = 'https://storage.googleapis.com/tlc-trip-data/%s/%s' % (year, fileName) print('\nDOWNLOAD: %s' % url) if os.system('wget --no-check-certificate %s' % url): raise RuntimeError('failed')
# coding=utf-8 ############################################################################### # # This file is part of pyglfw project which is subject to zlib license. # See the LICENSE file for details. # # Copyright (c) 2013 Roman Valov <roman.valov@gmail.com> # ############################################################################### from ctypes import c_int, c_uint, c_char_p, c_void_p from ctypes import c_float, c_double, c_ushort, c_ubyte from ctypes import cast, py_object, CFUNCTYPE, POINTER, Structure c_void = None c_func = CFUNCTYPE # ---- definition helper factory ---- class DeclareFunction(object): def __init__(self, lib, functype): self.lib = lib self.fun = functype self.dir = {} def __call__(self, name, restype=c_void, *argtypes): errcheck = None if isinstance(restype, (list, tuple)): errcheck = restype[1] restype = restype[0] paramflags = list(argtypes) argtypes = list(argtypes) for idx, arg in enumerate(argtypes): if isinstance(arg, (list, tuple)): argtypes[idx] = arg[0] paramflags[idx] = arg[1:] and arg[1:] or (2,) else: argtypes[idx] = arg paramflags[idx] = (1,) signature = name, self.lib func = self.fun(restype, *argtypes)(signature, tuple(paramflags)) if errcheck: func.errcheck = errcheck self.dir[name] = func # ---- ret/arg helper functions ---- class object_p(c_void_p): @classmethod def from_param(cls, obj): return c_void_p(id(obj)) def ret_object(obj, func, args): return cast(obj, py_object).value def ret_list_p(icount): def sz_array_p(obj, func, args): return [obj[i] for i in range(args[icount].value)] return sz_array_p def ret_addr_p(obj, func, args): return obj.contents def allow_void_p_param(func): def cast_from_void_p(cls, obj): if isinstance(obj, c_void_p): return cast(obj, cls) elif not obj: return None else: return func(obj) return cast_from_void_p def get_void_p(obj): return cast(obj, c_void_p) def _POINTER(cls): cls = POINTER(cls) cls.from_param = classmethod(allow_void_p_param(cls.from_param)) cls.get_void_p = get_void_p return cls def _FUNCPTR(cls): cls.from_param = classmethod(allow_void_p_param(cls.from_param)) cls.get_void_p = get_void_p return cls def ret_ramp_p(obj, func, args): _gramp = obj.contents return ( [_gramp.red[i] for i in range(_gramp.size)], [_gramp.green[i] for i in range(_gramp.size)], [_gramp.blue[i] for i in range(_gramp.size)], ) def cast_from_tuple(func): def ramp_from_param(cls, obj): if not (len(obj[0]) == len(obj[1]) == len(obj[2])): raise ValueError("Object must be tuple of 3 same size sequences") size = len(obj[0]) red = (c_ushort * size)(*obj[0]) green = (c_ushort * size)(*obj[1]) blue = (c_ushort * size)(*obj[2]) obj = GLFWgammaramp(size=size, red=red, green=green, blue=blue) return func(obj) return ramp_from_param def _RAMPPTR(cls): cls = POINTER(cls) cls.from_param = classmethod(cast_from_tuple(cls.from_param)) return cls # ---- datatype definitions ---- class GLFWwindow(Structure): pass GLFWwindowP = _POINTER(GLFWwindow) class GLFWmonitor(Structure): pass GLFWmonitorP = _POINTER(GLFWmonitor) class GLFWvidmode(Structure): _fields_ = [ ("width", c_int), ("height", c_int), ("redBits", c_int), ("greenBits", c_int), ("blueBits", c_int), ("refreshRate", c_int), ] GLFWvidmodeP = POINTER(GLFWvidmode) class GLFWgammaramp(Structure): _fields_ = [ ("red", POINTER(c_ushort)), ("green", POINTER(c_ushort)), ("blue", POINTER(c_ushort)), ("size", c_int) ] GLFWgammarampP = _RAMPPTR(GLFWgammaramp) # ---- callback prototypes ---- GLFWerrorfun = _FUNCPTR(c_func(c_void, c_int, c_char_p)) GLFWwindowposfun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_int, c_int)) GLFWwindowsizefun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_int, c_int)) GLFWwindowclosefun = _FUNCPTR(c_func(c_void, GLFWwindowP)) GLFWwindowrefreshfun = _FUNCPTR(c_func(c_void, GLFWwindowP)) GLFWwindowfocusfun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_int)) GLFWwindowiconifyfun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_int)) GLFWframebuffersizefun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_int, c_int)) GLFWmousebuttonfun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_int, c_int, c_int)) GLFWcursorposfun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_double, c_double)) GLFWcursorenterfun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_int)) GLFWscrollfun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_double, c_double)) GLFWkeyfun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_int, c_int, c_int, c_int)) GLFWcharfun = _FUNCPTR(c_func(c_void, GLFWwindowP, c_uint)) GLFWmonitorfun = _FUNCPTR(c_func(c_void, GLFWmonitorP, c_int))
import numpy from numpy.random import normal import matplotlib.pyplot as plt def matlab_hist(v): plt.hist(v, bins=50, normed=False) plt.show() def numpy_hist(v): (n,bins) = numpy.histogram(v, bins=50, normed=False) plt.plot(.5*(bins[1:]+bins[:-1]), n) plt.show() if __name__ == "__main__": mu, sigma = 100, 0.5 v = normal(mu, sigma, 10000) matlab_hist(v) numpy_hist(v)
"""" Copyright © Krypton 2021 - https://github.com/kkrypt0nn Description: This is a template to create your own discord bot in python. Version: 2.8 """ import json import os import platform import random import sys import asyncio import sqlite3 from pytz import timezone import discord from discord.ext import commands, tasks from discord.ext.commands import Bot con = sqlite3.connect('db.db') # open the database cur = con.cursor() # cursor object for the db for row in cur.execute('select * from systemconfig'): selectedtz = timezone(row[0]) fmt = '%Y-%m-%d %H:%M:%S %Z%z' timef = '%H:%M:%S' datef = '%Y-%m-%d' if not os.path.isfile("config.json"): sys.exit("'config.json' not found! Please add it and try again.") else: with open("config.json") as file: config = json.load(file) """ Setup bot intents (events restrictions) For more information about intents, please go to the following websites: https://discordpy.readthedocs.io/en/latest/intents.html https://discordpy.readthedocs.io/en/latest/intents.html#privileged-intents Default Intents: intents.messages = True intents.reactions = True intents.guilds = True intents.emojis = True intents.bans = True intents.guild_typing = False intents.typing = False intents.dm_messages = False intents.dm_reactions = False intents.dm_typing = False intents.guild_messages = True intents.guild_reactions = True intents.integrations = True intents.invites = True intents.voice_states = False intents.webhooks = False Privileged Intents (Needs to be enabled on dev page), please use them only if you need them: intents.presences = True intents.members = True """ intents = discord.Intents.default() intents.members = True bot = Bot(command_prefix=config["bot_prefix"], intents=intents) # The code in this event is executed when the bot is ready @bot.event async def on_ready(): print(f"Logged in as {bot.user.name}") print(f"Discord.py API version: {discord.__version__}") print(f"Python version: {platform.python_version()}") print(f"Running on: {platform.system()} {platform.release()} ({os.name})") print("-------------------") status_task.start() while True: await asyncio.sleep(600) # run every 10 minutes await schedtasks() # Setup the game status task of the bot @tasks.loop(minutes=1.0) async def status_task(): statuses = ["with you!", "with Kyle!", "with Miss Feet!", "with Edin's Bar!", "with OneScreen!", f"{config['bot_prefix']}help", "with humans!"] await bot.change_presence(activity=discord.Game(random.choice(statuses))) async def schedtasks(): print("Running tasks...\nBot will become unresponsive for a few seconds") channel = bot.get_channel(872632514022342656) await channel.send("hello") """ select * from personal_reminders select * from reminder_consent where username = ? for reminder in personal_reminders: if consent > 0: send_reminder(user, consent) - this will need to act on the consent value this will also need to account for the configured timezone allow the mention of the players role? """ # Removes the default help command of discord.py to be able to create our custom help command. bot.remove_command("help") if __name__ == "__main__": for file in os.listdir("./cogs"): if file.endswith(".py"): extension = file[:-3] try: bot.load_extension(f"cogs.{extension}") print(f"Loaded extension '{extension}'") except Exception as e: exception = f"{type(e).__name__}: {e}" print(f"Failed to load extension {extension}\n{exception}") print("Loaded all known extensions!\n") # The code in this event is executed every time someone sends a message, with or without the prefix @bot.event async def on_message(message): # Ignores if a command is being executed by a bot or by the bot itself if message.author == bot.user or message.author.bot: return # Ignores if a command is being executed by a blacklisted user with open("blacklist.json") as file: blacklist = json.load(file) if message.author.id in blacklist["ids"]: return await bot.process_commands(message) # The code in this event is executed every time a command has been *successfully* executed @bot.event async def on_command_completion(ctx): fullCommandName = ctx.command.qualified_name split = fullCommandName.split(" ") executedCommand = str(split[0]) print( f"Executed {executedCommand} command in {ctx.guild.name} (ID: {ctx.message.guild.id}) by {ctx.message.author} (ID: {ctx.message.author.id})") # The code in this event is executed every time a valid commands catches an error @bot.event async def on_command_error(context, error): if isinstance(error, commands.CommandOnCooldown): minutes, seconds = divmod(error.retry_after, 60) hours, minutes = divmod(minutes, 60) hours = hours % 24 embed = discord.Embed( title="Hey, please slow down!", description=f"You can use this command again in {f'{round(hours)} hours' if round(hours) > 0 else ''} {f'{round(minutes)} minutes' if round(minutes) > 0 else ''} {f'{round(seconds)} seconds' if round(seconds) > 0 else ''}.", color=0xE02B2B ) await context.send(embed=embed) elif isinstance(error, commands.MissingPermissions): embed = discord.Embed( title="Error!", description="You are missing the permission `" + ", ".join( error.missing_perms) + "` to execute this command!", color=0xE02B2B ) await context.send(embed=embed) elif isinstance(error, commands.MissingRequiredArgument): embed = discord.Embed( title="Error!", description=str(error).capitalize(), # We need to capitalize because the command arguments have no capital letter in the code. color=0xE02B2B ) await context.send(embed=embed) elif isinstance(error, commands.MissingRole): embed = discord.Embed( title="Error!", description="You are missing the role {} to execute this command!\nAsk the admins for permission!".format( error.missing_role), color=0xE02B2B ) await context.send(embed=embed) elif isinstance(error, commands.NoPrivateMessage): embed = discord.Embed( title="No DMs", description="You cannot DM the bot a command", color=0xE02B2B ) await context.message.author.send(embed=embed) raise error # Run the bot with the token bot.run(config["token"])
#!/usr/bin/python3 print("Content-type: text/html\r\n\r\n") from bs4 import BeautifulSoup import requests page = requests.get('http://scores.sify.com/?ref=deskcric') soup = BeautifulSoup(page.content,'html.parser') match_name=soup.find_all('a',{'class':'scroll'})[0].string print("<h1>Current match running is:"+match_name+"</h1>") match_location=soup.select_one('div.scoresbox-center span').string live_match_link=soup.select_one('div.scoresbox-center h2 a').attrs.get('href') page_curr_match = requests.get(live_match_link) soup_live = BeautifulSoup(page_curr_match.content,'html.parser') teams_info=soup_live.find_all('div',{'class':'team-live'})[0].find('h1').string bat_team_info=soup_live.select_one('div.team-live-venue h2').string bat_team_name='' bat_team_run='' for i in bat_team_info: if i is not ' ': bat_team_name = bat_team_name + i else: break bat_team_run='' for i in range(0,len(bat_team_info)): if bat_team_info[i] is ' ': for j in range(i+1,len(bat_team_info)): bat_team_run = bat_team_run + bat_team_info[j] # run rat and needs that run to win the match try: target_split=soup_live.find_all('div',{'class':'team-live-venue'})[0].find('p').string.split('|') target=target_split[1] except: target='Match yet to start' #finding team 1 team1_finder=soup_live.find_all('div',{'id':'team1'})[0].find_all('ul') team1_squad=[] for i in team1_finder[0].find_all('li'): team1_squad.append(i.find_all('a')[0].string) # finding the team2 members team2_finder=soup_live.find_all('div',{'id':'team2'})[0].find_all('ul') team2_squad=[] for i in team2_finder[0].find_all('li'): team2_squad.append(i.find_all('a')[0].string) over=soup.find_all('h3',{'id':'batteamnameruns1'})[0].text.split('(')[1].split(')')[0] batsman1=soup.find_all('h4',{'id':'batsmanbowlerdetails1'})[0].find_all('p')[0].find('a').string try: batsman2=str(soup.find_all('h4',{'id':'batsmanbowlerdetails1'})[0].find_all('p')[0]).split('|')[1].split('>')[1].split('<')[0] except: batsman2='Wait For Match To Start' print('<!DOCTYPE html>') print('<html>') print('<head>') print('<meta http-equiv="refresh" content="10">') print('<link rel="stylesheet" type="text/css" href="my.css">') print('<title> LIVE SCORE</title>') print('<style>') print('body "background-image:url(/usr/lib/cgi-bin/m.jpg)"') print('</style>') print('</head>') print('<body>') print('<b style="color: #f44167" >SCORE VIEWER</b>') print('<marquee width = "100%"><b><font color="red">SEE MATCH SCORE HERE </font></b></marquee>') print('</body>') print('</html>') print('<form >') print('<div id="tm" style=" width:100%;">') print('<div id="tm1" style="float: left"> Team 1: <label>'+bat_team_name+'</label></div>') print('<div id="tm2" style="margin-right:20px; float: right"> Team 2: <input type = "text" style="align="right" name = "Team 2" /></div>') print('</div>') #print('Team 1: <input type = "text" align="left" name = "Team 1" />') print('<br>') print('<table border = "1" width="250" align="left" >') print('<tr>') print('<th><font color="blue"><b>Players :TEAM 1</b></font></th>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[0]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[1]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[2]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[3]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[4]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[5]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[6]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[7]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[8]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[9]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team1_squad[10]+'</label></td>') print('</tr>') print('</table>') print('<style>') print('table, td, th {border: 1px solid black;}') print('table {border-collapse: collapse; width: 25%;}') print('th {height: px;}') print('</style>') print('<table border="1" align="right" width="250" >') print('<tr>') print('<th><font color="blue"><b>Players : TEAM 2</b></font></th>') print('</tr>') print('<tr>') print('<td><label>'+team2_squad[0]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team2_squad[1]+'</label></td>') print('</tr>') print('<tr>') print('<td><label>'+team2_squad[2]+'</label></td>') print('</tr>') print('<tr>') print(' <td><label>'+team2_squad[3]+'</label></td>') print(' </tr>') print(' <tr>') print(' <td><label>'+team2_squad[4]+'</label></td>') print(' </tr>') print(' <tr>') print(' <td><label>'+team2_squad[5]+'</label></td>') print(' </tr>') print(' <tr>') print(' <td><label>'+team2_squad[6]+'</label></td>') print(' </tr>') print(' <tr>') print(' <td><label>'+team2_squad[7]+'</label></td>') print(' </tr>') print(' <tr>') print(' <td><label>'+team2_squad[8]+'</label></td>') print(' </tr>') print(' <tr>') print(' <td><label>'+team2_squad[9]+'</label></td>') print(' </tr>') print(' <tr>') print(' <td><label>'+team2_squad[10]+'</label></td>') print(' </tr>') print(' </table>') print(' <table align="center" border="1" width="500" height="150">') print(' <tr>') print(' <th>Bating team : <label>'+bat_team_name+'</label> </th> ') print(' </tr>') print(' <tr>') print(' <td>Batsman1 : <label>'+batsman1+'</label></td>') print(' </tr>') print(' <tr>') print(' <td>Batsman 2 : <label>'+batsman2+'</label></td>') print(' </tr>') print('</table>') print('<table align="center" border="1" width="500">') print('<tr>') print(' <th>Bowling team : <input type = "text"name = "name"/> </th> ') print(' </tr>') print(' <tr>') print(' <td>Bowler : <input type = "text"name = "name"/></td>') print(' </tr>') print('</table>') print('<div align="center" style="vertical-align:bottom">') print('<div align="center" style="vertical-align:bottom">') print('<table>') print('<tr>') print(' <td><b style="color:#f44167" > SCORE</b> : <label>'+bat_team_run+'</label></td>') print(' </tr>') print(' <tr>') print(' <td><b style="color:#f44167">OVER</b> : <label>'+over+'</label></td>') print(' </tr>') print('</table>') print('</div>') print('</div>') print('</body>') print('</html> ')
from django.urls import path, include from rest_framework.routers import DefaultRouter from .viewsets import ComediansViewSet, JokesViewSet router = DefaultRouter() router.register("comedians", ComediansViewSet) router.register("jokes", JokesViewSet) urlpatterns = [ path("", include(router.urls)), ]
from setuptools.dist import Distribution class BinaryDistribution(Distribution): def has_ext_modules(foo): return True def wheel_name(**kwargs): # create a fake distribution from arguments dist = BinaryDistribution(attrs=kwargs) # finalize bdist_wheel command bdist_wheel_cmd = dist.get_command_obj('bdist_wheel') bdist_wheel_cmd.ensure_finalized() # assemble wheel file name distname = bdist_wheel_cmd.wheel_dist_name tag = '-'.join(bdist_wheel_cmd.get_tag()) return f'{distname}-{tag}.whl' print(wheel_name(name='pymylib', version='0.0.1'), end='')
Python Program To Check Combo Sum N integers are passed as input to the program. The program must print the count of the combination of the integers (1 or more integers) which add up to a given sum S. Boundary Condition(s): 1 <= N <= 25 -10^5 <= S <= 10^5 Input Format: The first line contains N. The second line contains N integer values separated by a space. The third line contains S. Output Format: The first line contains the combination count where the sum is S. Example Input/Output 1: Input: 4 10 20 50 20 50 Output: 2 Explanation: Here the required sum S=50. The two combinations whose sum is 50 are 10 20 20 50 Example Input/Output 2: Input: 7 3 9 -10 7 -12 -2 -5 0 Output: 5 Explanation: Here the required sum S=0. The combinations whose sum is 0 are 3 9 -12 7 -2 -5 3 7 -10 3 9 7 -12 -2 -5 3 9 -10 -2 from itertools import combinations as c n=int(input()) l=list(map(int,input().split())) d=int(input()) p=0 for i in range(0,n+1): for j in list(c(l,i)): if sum(j)==d and j!=(): p+=1 print(p)
import numpy as np #import matplotlib.pyplot as plt def interpret_many(x_raw, relu, pool, all_wi_ai, best_trigrams = {}, n=5): pool = pool.squeeze() #should be len(x_raw) x num_filters (128) relu = relu.squeeze() if len(x_raw)==1: pool=np.expand_dims(pool, axis=0) relu=np.expand_dims(relu, axis=0) text_lists = [] for text in x_raw: text_list = text.split() text_lists.append(text_list) top_n_neurons = [] for i in range(pool.shape[0]): best_trigrams = interpret(text_lists[i],relu[i], pool[i], best_trigrams) weights = all_wi_ai[i].T #2 x 128 --> 128 x 2 top_n_neurons.append([get_n_best_neurons(weights,5)]) return best_trigrams, top_n_neurons def find_relu_index(relu, pooled_val, i): #each thing in relu should be 128 length #index represents the index (out of max seq len) that resulted in the pooled val for ind, arr in enumerate(relu): if arr[i]==pooled_val: return ind return None def interpret(word_list, relu, pool, best_trigrams={}): relu = relu.squeeze() for i, pooled_val in enumerate(pool): relu_index = find_relu_index(relu, pooled_val, i) trigram = word_list[relu_index:relu_index+3] if i in best_trigrams: best_trigrams[i]+=[(pooled_val,[trigram])] else: best_trigrams[i]=[(pooled_val,[trigram])] return best_trigrams def get_best_n_for_each_neuron(best_trigrams,n): best_n_trigrams=best_trigrams.copy() for neuron in best_trigrams.keys(): best_n_trigrams[neuron]=sorted(best_trigrams[neuron])[:n] return best_n_trigrams def make_weight_histogram(weights): plt.figure(1) plt.subplot(211) plt.title("Weights for Fake News Indicator") plt.hist(weights[:,0], bins = 20, range = [-0.3,0.3]) plt.subplot(212) plt.title("Weights for Real News Indicator") plt.hist(weights[:,1], bins=20, range = [-0.3,0.3]) plt.show() def get_most_relevant_neurons(all_wi_ai=None, ind = None, abs = False): pass if ind is None: fake_news = np.mean(all_wi_ai[:,0,:], axis = 0) real_news = np.mean(all_wi_ai[:,1,:], axis = 1) def make_wi_ai_histogram(all_wi_ai, ind = None): if ind is None: #plot the average fake_news = np.mean(all_wi_ai[:,0,:], axis = 0) real_news = np.mean(all_wi_ai[:,1,:], axis = 1) else: wi_ai = all_wi_ai[ind] #plot x_raw[ind] weights*activation for fake news indicator fake_news=wi_ai[0] #plot x_raw[ind] weights*activation for real news indicator real_news=wi_ai[1] plt.figure(1) plt.subplot(211) plt.title("W_i * a_i for Fake News Indicator") plt.hist(fake_news) plt.subplot(212) plt.title("W_i * a_i for Real News Indicator") plt.hist(real_news) plt.show() def make_list_of_arrays_into_list(l): total_arr = [] for array in l: for num in array: total_arr.append(num) return total_arr def label_peaks(ax, li): for i in range(129): count = li.count(i) if count>5: ax.annotate(i, xy=(i,count)) def make_top_neuron_histogram(all_top_neurons): fake_news_pos = make_list_of_arrays_into_list([top_n[0][0] for top_n in all_top_neurons]) real_news_pos = make_list_of_arrays_into_list([top_n[0][1] for top_n in all_top_neurons]) fake_news_neg = make_list_of_arrays_into_list([top_n[0][2] for top_n in all_top_neurons]) real_news_neg = make_list_of_arrays_into_list([top_n[0][3] for top_n in all_top_neurons]) # from data helpers: plt.figure(1) ax = plt.subplot(221) plt.title("Most positive for Fake News Indicator") plt.xticks(np.arange(0,129,1)) plt.ylabel('count') plt.xlabel('neuron number') plt.hist(fake_news_pos, bins=128) labels = [str(i) if i%10==0 else '' for i in range(129)] ax.set_xticklabels(labels) label_peaks(ax,fake_news_pos) ax2 = plt.subplot(222) plt.title("Most positive for Real News Indicator") plt.ylabel('count') plt.xlabel('neuron number') plt.xticks(np.arange(0,129,1)) plt.hist(real_news_pos, bins = 128) labels = [str(i) if i%10==0 else '' for i in range(129)] ax2.set_xticklabels(labels) label_peaks(ax2,real_news_pos) ax3 = plt.subplot(223) plt.title("Most negative for Fake News Indicator") plt.ylabel('count') plt.xlabel('neuron number') plt.xticks(np.arange(0,129,1)) plt.hist(fake_news_neg, bins = 128) labels = [str(i) if i%10==0 else '' for i in range(129)] ax3.set_xticklabels(labels) label_peaks(ax3,fake_news_neg) ax4 = plt.subplot(224) plt.title("Most negative for Real News Indicator") #plt.hist(real_news_neg, bins = 128) plt.ylabel('count') plt.xlabel('neuron number') plt.xticks(np.arange(0,129,1)) plt.hist(real_news_neg, bins = 128) labels = [str(i) if i%10==0 else '' for i in range(129)] ax4.set_xticklabels(labels) label_peaks(ax4,real_news_pos) plt.savefig('Most_relevant_neurons.png') plt.show() # positive_labels = [[0, 1] for _ in positive_examples] # negative_labels = [[1, 0] for _ in negative_examples] def get_n_best_neurons(weights, n,abs_value = False): #print(weights, weights.shape) #128 x 2 arr_0 = weights[:,0] list_0=arr_0.argsort()[-n:][::-1] list_0 = [(element, round(arr_0[element],2)) for element in list_0] list_0_neg = arr_0.argsort()[:n] list_0_neg = [(element, round(arr_0[element],2)) for element in list_0_neg] arr_1 = weights[:,1] list_1=arr_1.argsort()[-n:][::-1] list_1 = [(element, round(arr_1[element],2)) for element in list_1] list_1_neg = arr_1.argsort()[:n] list_1_neg = [(element, round(arr_1[element],2)) for element in list_1_neg] #return weights for fake news, weights for real news return list_0, list_1, list_0_neg, list_1_neg def get_info(ind, all_wi_ai, all_top_neurons, best_trigrams, cur_dir=''): import pickle print(all_top_neurons[ind], "is all top neurons[ind]") all_triples = [] for li in all_top_neurons[ind][0]: triple_li = [] for tup in li: neuron = tup[0] trigram = ' '.join(best_trigrams[neuron][ind][1][0]) triple_li.append((neuron, trigram, tup[1])) all_triples.append(triple_li) wi_ais = all_wi_ai[ind] #plot x_raw[ind] weights*activation for fake news indicator fake_news=wi_ais[0] #plot x_raw[ind] weights*activation for real news indicator real_news=wi_ais[1] most_fake_indices=fake_news.argsort()[-10:][::-1] least_fake_indices=fake_news.argsort()[:10] most_real_indices = real_news.argsort()[-10:][::-1] least_real_indices = real_news.argsort()[:10] most_fake_trigrams=[] for neuron in most_fake_indices: trigram = ' '.join(best_trigrams[neuron][ind][1][0]) string = trigram+', *neuron: '+str(neuron)+' '+str(fake_news[neuron]) most_fake_trigrams.append(string) print("MOST FAKE: ",most_fake_trigrams) most_real_trigrams=[] for neuron in most_real_indices: trigram = ' '.join(best_trigrams[neuron][ind][1][0]) most_real_trigrams.append(trigram+', *neuron: '+str(neuron)+' '+str(real_news[neuron])) print("MOST REAL: ",most_real_trigrams) least_fake_trigrams=[] for neuron in least_fake_indices: trigram = ' '.join(best_trigrams[neuron][ind][1][0]) least_fake_trigrams.append(trigram+', *neuron: '+str(neuron)+' '+str(fake_news[neuron])) print("LEAST FAKE: ",least_fake_trigrams) least_real_trigrams=[] for neuron in least_real_indices: trigram = ' '.join(best_trigrams[neuron][ind][1][0]) least_real_trigrams.append(trigram+', *neuron: '+str(neuron)+' '+str(real_news[neuron])) print("LEAST REAL: ",least_real_trigrams) def get_info2(ind, all_wi_ai, all_top_neurons, best_trigrams): wi_ais = all_wi_ai[ind] # plot x_raw[ind] weights*activation for fake news indicator fake_news = wi_ais[0] # plot x_raw[ind] weights*activation for real news indicator real_news = wi_ais[1] most_fake_indices = fake_news.argsort()[-10:][::-1] least_fake_indices = fake_news.argsort()[:10] most_real_indices = real_news.argsort()[-10:][::-1] least_real_indices = real_news.argsort()[:10] most_fake_trigrams = [] for neuron in most_fake_indices: trigram = ' '.join(best_trigrams[neuron][ind][1][0]) # string = trigram+', *neuron: '+str(neuron)+' '+str(fake_news[neuron]) most_fake_trigrams.append(trigram) # print(most_fake_trigrams) most_real_trigrams = [] for neuron in most_real_indices: trigram = ' '.join(best_trigrams[neuron][ind][1][0]) # most_real_trigrams.append(trigram+', *neuron: '+str(neuron)+' '+str(real_news[neuron])) most_real_trigrams.append(trigram) # print(most_real_trigrams) least_fake_trigrams = [] for neuron in least_fake_indices: trigram = ' '.join(best_trigrams[neuron][ind][1][0]) # least_fake_trigrams.append(trigram+', *neuron: '+str(neuron)+' '+str(fake_news[neuron])) least_fake_trigrams.append(trigram) # print(least_fake_trigrams) least_real_trigrams = [] for neuron in least_real_indices: trigram = ' '.join(best_trigrams[neuron][ind][1][0]) # least_real_trigrams.append(trigram+', *neuron: '+str(neuron)+' '+str(real_news[neuron])) least_real_trigrams.append(trigram) # print(least_real_trigrams) return most_fake_trigrams, most_real_trigrams, least_fake_trigrams, least_real_trigrams def make_top_5_histogram(): import pickle cur_dir = "" all_top_neurons="all_top_n_neurons.txt" with open(cur_dir+all_top_neurons, 'rb') as f: all_top_neurons = pickle.load(f) make_top_neuron_histogram(all_top_neurons)
def compute_pay(hours, rate): if hours <= 40: pay = rate * 40 else: pay = ((hours - 40) * (1.5 * rate)) + (40 * rate) return pay try: hrs = float(input('Enter Hours:\n')) rate = float(input('Enter Rate:\n')) print(compute_pay(hrs, rate)) except: print("Please enter numeric input") exit()
#! python3 # maillist and mail merge for CBD + Theos customer lists # data is from CSV files downloaded from Theos and CBD web # copy the files into the mailist directory on D:\ # Chad Cropley 2016-06-23 a RAD design solution # # import modules import os import csv import shutil # make sure we're in the right directory os.chdir('d:\\maillist\\') # print(os.getcwd()) # read file1 filename = input('Enter a Theos mail list filename: ') shutil.copyfile(filename, 'MAILLIST-THEOS.csv') # shutil.copyfile('MAILLIST-06.19.16.csv', 'MAILLIST-THEOS.csv') with open('MAILLIST-THEOS.csv') as csvfile: reader = csv.DictReader(csvfile, delimiter=',') with open('output1.csv','w') as output: writer = csv.DictWriter(output, delimiter=',', fieldnames=reader.fieldnames) headers = ('Email, Mailing list, Language') print(headers, file = output) # writer.writeheader('EMail', 'Mailing list', 'Language') for row in reader: if row['Email'] != '': print(row['Email'],',', 'CBD Mailing List',',', 'EN', file = output) # read file2 filename2 = input('Enter a CBD mail list filename: ') shutil.copyfile(filename2, 'users_cbd.csv') # shutil.copyfile('users_general_06162016.csv', 'users_cbd.csv') with open('users_cbd.csv') as csvfile: reader = csv.DictReader(csvfile, delimiter=',') with open('output1.csv','a') as output: writer = csv.DictWriter(output, delimiter=',', fieldnames=reader.fieldnames) for row in reader: if row['E-mail'] != '': print(row['E-mail'],',', 'CBD Mailing List',',', 'EN', file = output) # os.system('pause') # Remove duplicate items from merge inFile = open('output1.csv','r') outFile = open('output2.csv','w') listLines = [] for line in inFile: if line in listLines: continue else: outFile.write(line) listLines.append(line) outFile.close() inFile.close() print ('open output2.csv to export to CBD CS-Cart subscriber list') os.system('pause')
""" Validate a configuration value by converting it to a specific type. These functions are used by :mod:`staticconf.readers` and :mod:`staticconf.schema` to coerce config values to a type. """ import datetime import logging import re import time import six from staticconf.errors import ValidationError def validate_string(value): return None if value is None else six.text_type(value) def validate_bool(value): return None if value is None else bool(value) def validate_numeric(type_func, value): try: return type_func(value) except ValueError: raise ValidationError("Invalid %s: %s" % (type_func.__name__, value)) def validate_int(value): return validate_numeric(int, value) def validate_float(value): return validate_numeric(float, value) date_formats = [ "%Y-%m-%d %H:%M:%S", "%Y-%m-%d %I:%M:%S %p", "%Y-%m-%d", "%y-%m-%d", "%m/%d/%y", "%m/%d/%Y", ] def validate_datetime(value): if isinstance(value, datetime.datetime): return value for format_ in date_formats: try: return datetime.datetime.strptime(value, format_) except ValueError: pass raise ValidationError("Invalid date format: %s" % value) def validate_date(value): if isinstance(value, datetime.date): return value return validate_datetime(value).date() time_formats = [ "%I %p", "%H:%M", "%I:%M %p", "%H:%M:%S", "%I:%M:%S %p" ] def validate_time(value): if isinstance(value, datetime.time): return value for format_ in time_formats: try: return datetime.time(*time.strptime(value, format_)[3:6]) except ValueError: pass raise ValidationError("Invalid time format: %s" % value) def _validate_iterable(iterable_type, value): """Convert the iterable to iterable_type, or raise a Configuration exception. """ if isinstance(value, six.string_types): msg = "Invalid iterable of type(%s): %s" raise ValidationError(msg % (type(value), value)) try: return iterable_type(value) except TypeError: raise ValidationError("Invalid iterable: %s" % (value)) def validate_list(value): return _validate_iterable(list, value) def validate_set(value): return _validate_iterable(set, value) def validate_tuple(value): return _validate_iterable(tuple, value) def validate_regex(value): try: return re.compile(value) except (re.error, TypeError) as e: raise ValidationError("Invalid regex: %s, %s" % (e, value)) def build_list_type_validator(item_validator): """Return a function which validates that the value is a list of items which are validated using item_validator. """ def validate_list_of_type(value): return [item_validator(item) for item in validate_list(value)] return validate_list_of_type def build_map_type_validator(item_validator): """Return a function which validates that the value is a mapping of items. The function should return pairs of items that will be passed to the `dict` constructor. """ def validate_mapping(value): return dict(item_validator(item) for item in validate_list(value)) return validate_mapping def validate_log_level(value): """Validate a log level from a string value. Returns a constant from the :mod:`logging` module. """ try: return getattr(logging, value) except AttributeError: raise ValidationError("Unknown log level: %s" % value) def validate_any(value): return value validators = { '': validate_any, 'bool': validate_bool, 'date': validate_date, 'datetime': validate_datetime, 'float': validate_float, 'int': validate_int, 'list': validate_list, 'set': validate_set, 'string': validate_string, 'time': validate_time, 'tuple': validate_tuple, 'regex': validate_regex, 'log_level': validate_log_level, } def get_validators(): """Return an iterator of (validator_name, validator) pairs.""" return six.iteritems(validators)
from .dataset import MemoryMapDataset
import requests import sys import random import os import os.path as op from mastodon import Mastodon from datetime import datetime # -------------------------------------------------- DIR_SFW = 'sfw/' DIR_NSFW = 'nsfw/' def main(): mastodon = Mastodon( access_token = 'token.dat', api_base_url = 'https://antabaka.me/' ) sfwcount = len([name for name in os.listdir(DIR_SFW) if os.path.isfile(os.path.join(DIR_SFW, name))]) nsfwcount = len([name for name in os.listdir(DIR_NSFW) if os.path.isfile(os.path.join(DIR_NSFW, name))]) random_choice = random.randint(1, sfwcount + nsfwcount) print('\ns:' + str(sfwcount) + ' n:' + str(nsfwcount) + ' r:' + str(random_choice)) is_safe = False if random_choice < nsfwcount else True art = "" if is_safe: files = [f for f in os.listdir(DIR_SFW) if op.isfile(op.join(DIR_SFW, f))] art = DIR_SFW + random.choice(files) else: files = [f for f in os.listdir(DIR_NSFW) if op.isfile(op.join(DIR_NSFW, f))] art = DIR_NSFW + random.choice(files) fformat = op.splitext(art)[1][1:] if (fformat == 'jpg'): fformat = 'jpeg' with open(art, 'rb') as picture: data = picture.read() media = mastodon.media_post(data, f'image/{fformat}') toot = f':gyate_reisen_love:' mastodon.status_post(toot, media_ids=[media], visibility='unlisted', sensitive=not is_safe) print(str(datetime.now()) + ': ' + art) if __name__ == '__main__': sys.exit(main())
# test for+range, mostly to check optimisation of this pair # apply args using * for x in range(*(1, 3)): print(x) for x in range(1, *(6, 2)): print(x) # zero step try: for x in range(1, 2, 0): pass except ValueError: print('ValueError') # apply args using ** try: for x in range(**{'end':1}): print(x) except TypeError: print('TypeError') try: for x in range(0, **{'end':1}): print(x) except TypeError: print('TypeError') try: for x in range(0, 1, **{'step':1}): print(x) except TypeError: print('TypeError') # keyword args try: for x in range(end=1): print(x) except TypeError: print('TypeError') try: for x in range(0, end=1): print(x) except TypeError: print('TypeError') try: for x in range(start=0, end=1): print(x) except TypeError: print('TypeError') try: for x in range(0, 1, step=1): print(x) except TypeError: print('TypeError') # argument is a comprehension try: for x in range(0 for i in []): print(x) except TypeError: print('TypeError') try: for x in range(0, (0 for i in [])): print(x) except TypeError: print('TypeError') try: for x in range(0, 1, (0 for i in [])): print(x) except TypeError: print('TypeError')
# -*- encoding: utf-8 -*- from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.ext.declarative import declarative_base engine = create_engine('sqlite:///test.db', convert_unicode=True) db = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine)) Base = declarative_base() Base.query = db.query_property() def init_db(): # import all modules here that might define models so that # they will be registered properly on the metadata. Otherwise # you will have to import them first before calling init_db() from paste import Paste Base.metadata.create_all(bind=engine)