content
stringlengths
5
1.05M
import synapse from synapse.rest.client.v1 import login, room from tests import unittest from tests.unittest import HomeserverTestCase ONE_DAY_IN_SECONDS = 86400 class PhoneHomeTestCase(HomeserverTestCase): servlets = [ synapse.rest.admin.register_servlets_for_client_rest_resource, room.register_servlets, login.register_servlets, ] # Override the retention time for the user_ips table because otherwise it # gets pruned too aggressively for our R30 test. @unittest.override_config({"user_ips_max_age": "365d"}) def test_r30_minimum_usage(self): """ Tests the minimum amount of interaction necessary for the R30 metric to consider a user 'retained'. """ # Register a user, log it in, create a room and send a message user_id = self.register_user("u1", "secret!") access_token = self.login("u1", "secret!") room_id = self.helper.create_room_as(room_creator=user_id, tok=access_token) self.helper.send(room_id, "message", tok=access_token) # Check the R30 results do not count that user. r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 0}) # Advance 30 days (+ 1 second, because strict inequality causes issues if we are # bang on 30 days later). self.reactor.advance(30 * ONE_DAY_IN_SECONDS + 1) # (Make sure the user isn't somehow counted by this point.) r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 0}) # Send a message (this counts as activity) self.helper.send(room_id, "message2", tok=access_token) # We have to wait some time for _update_client_ips_batch to get # called and update the user_ips table. self.reactor.advance(2 * 60 * 60) # *Now* the user is counted. r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 1, "unknown": 1}) # Advance 29 days. The user has now not posted for 29 days. self.reactor.advance(29 * ONE_DAY_IN_SECONDS) # The user is still counted. r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 1, "unknown": 1}) # Advance another day. The user has now not posted for 30 days. self.reactor.advance(ONE_DAY_IN_SECONDS) # The user is now no longer counted in R30. r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 0}) def test_r30_minimum_usage_using_default_config(self): """ Tests the minimum amount of interaction necessary for the R30 metric to consider a user 'retained'. N.B. This test does not override the `user_ips_max_age` config setting, which defaults to 28 days. """ # Register a user, log it in, create a room and send a message user_id = self.register_user("u1", "secret!") access_token = self.login("u1", "secret!") room_id = self.helper.create_room_as(room_creator=user_id, tok=access_token) self.helper.send(room_id, "message", tok=access_token) # Check the R30 results do not count that user. r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 0}) # Advance 30 days (+ 1 second, because strict inequality causes issues if we are # bang on 30 days later). self.reactor.advance(30 * ONE_DAY_IN_SECONDS + 1) # (Make sure the user isn't somehow counted by this point.) r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 0}) # Send a message (this counts as activity) self.helper.send(room_id, "message2", tok=access_token) # We have to wait some time for _update_client_ips_batch to get # called and update the user_ips table. self.reactor.advance(2 * 60 * 60) # *Now* the user is counted. r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 1, "unknown": 1}) # Advance 27 days. The user has now not posted for 27 days. self.reactor.advance(27 * ONE_DAY_IN_SECONDS) # The user is still counted. r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 1, "unknown": 1}) # Advance another day. The user has now not posted for 28 days. self.reactor.advance(ONE_DAY_IN_SECONDS) # The user is now no longer counted in R30. # (This is because the user_ips table has been pruned, which by default # only preserves the last 28 days of entries.) r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 0}) def test_r30_user_must_be_retained_for_at_least_a_month(self): """ Tests that a newly-registered user must be retained for a whole month before appearing in the R30 statistic, even if they post every day during that time! """ # Register a user and send a message user_id = self.register_user("u1", "secret!") access_token = self.login("u1", "secret!") room_id = self.helper.create_room_as(room_creator=user_id, tok=access_token) self.helper.send(room_id, "message", tok=access_token) # Check the user does not contribute to R30 yet. r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 0}) for _ in range(30): # This loop posts a message every day for 30 days self.reactor.advance(ONE_DAY_IN_SECONDS) self.helper.send(room_id, "I'm still here", tok=access_token) # Notice that the user *still* does not contribute to R30! r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 0}) self.reactor.advance(ONE_DAY_IN_SECONDS) self.helper.send(room_id, "Still here!", tok=access_token) # *Now* the user appears in R30. r30_results = self.get_success(self.hs.get_datastore().count_r30_users()) self.assertEqual(r30_results, {"all": 1, "unknown": 1})
#A part of NonVisual Desktop Access (NVDA) #Copyright (C) 2015-2016 NV Access Limited #This file is covered by the GNU General Public License. #See the file COPYING for more details. from comtypes import COMError import ctypes import UIAHandler def createUIAMultiPropertyCondition(*dicts): """ A helper function that Creates a complex UI Automation Condition matching on various UI Automation properties with both 'and' and 'or'. Arguments to this function are dicts whos keys are UI Automation property IDs, and whos values are a list of possible values for the property ID. The dicts are joined with 'or', the keys in each dict are joined with 'and', and the values for each key are joined with 'or'. For example, to create a condition that matches on a controlType of button or edit and where isReadOnly is True, or, className is 'ding', you would provide arguments of: {UIA_ControlTypePropertyId:[UIA_ButtonControlTypeId,UIA_EditControlTypeId],UIA_Value_ValueIsReadOnly:[True]},{UIA_ClassNamePropertyId:['ding']} """ outerOrList=[] for dict in dicts: andList=[] for key,values in dict.iteritems(): innerOrList=[] if not isinstance(values,(list,set)): values=[values] for value in values: condition=UIAHandler.handler.clientObject.createPropertyCondition(key,value) innerOrList.append(condition) if len(innerOrList)==0: continue elif len(innerOrList)==1: condition=innerOrList[0] else: condition=UIAHandler.handler.clientObject.createOrConditionFromArray(innerOrList) andList.append(condition) if len(andList)==0: continue elif len(andList)==1: condition=andList[0] else: condition=UIAHandler.handler.clientObject.createAndConditionFromArray(andList) outerOrList.append(condition) if len(outerOrList)==0: raise ValueError("no properties") elif len(outerOrList)==1: condition=outerOrList[0] else: condition=UIAHandler.handler.clientObject.createOrConditionFromArray(outerOrList) return condition def UIATextRangeFromElement(documentTextPattern,element): """Wraps IUIAutomationTextRange::getEnclosingElement, returning None on COMError.""" try: childRange=documentTextPattern.rangeFromChild(element) except COMError: childRange=None return childRange def isUIAElementInWalker(element,walker): """ Checks if the given IUIAutomationElement exists in the given IUIAutomationTreeWalker by calling IUIAutomationTreeWalker::normalizeElement and comparing the fetched element with the given element. """ try: newElement=walker.normalizeElement(element) except COMError: newElement=None return newElement and UIAHandler.handler.clientObject.compareElements(element,newElement) def getDeepestLastChildUIAElementInWalker(element,walker): """ Starting from the given IUIAutomationElement, walks to the deepest last child of the given IUIAutomationTreeWalker. """ descended=False while True: lastChild=walker.getLastChildElement(element) if lastChild: descended=True element=lastChild else: break return element if descended else None class UIAMixedAttributeError(ValueError): """Raised when a function would return a UIAutomation text attribute value that is mixed.""" pass def getUIATextAttributeValueFromRange(range,attrib,ignoreMixedValues=False): """ Wraps IUIAutomationTextRange::getAttributeValue, returning UIAutomation's reservedNotSupportedValue on COMError, and raising UIAMixedAttributeError if a mixed value would be returned and ignoreMixedValues is False. """ try: val=range.GetAttributeValue(attrib) except COMError: return UIAHandler.handler.reservedNotSupportedValue if val==UIAHandler.handler.ReservedMixedAttributeValue: if not ignoreMixedValues: raise UIAMixedAttributeError return val def iterUIARangeByUnit(rangeObj,unit): """ Splits a given UI Automation text range into smaller text ranges the size of the given unit and yields them. @param rangeObj: the UI Automation text range to split. @type rangeObj: L{UIAHandler.IUIAutomationTextRange} @param unit: a UI Automation text unit. @rtype: a generator that yields L{UIAHandler.IUIAutomationTextRange} objects. """ tempRange=rangeObj.clone() tempRange.MoveEndpointByRange(UIAHandler.TextPatternRangeEndpoint_End,rangeObj,UIAHandler.TextPatternRangeEndpoint_Start) endRange=tempRange.Clone() while endRange.Move(unit,1)>0: tempRange.MoveEndpointByRange(UIAHandler.TextPatternRangeEndpoint_End,endRange,UIAHandler.TextPatternRangeEndpoint_Start) pastEnd=tempRange.CompareEndpoints(UIAHandler.TextPatternRangeEndpoint_End,rangeObj,UIAHandler.TextPatternRangeEndpoint_End)>0 if pastEnd: tempRange.MoveEndpointByRange(UIAHandler.TextPatternRangeEndpoint_End,rangeObj,UIAHandler.TextPatternRangeEndpoint_End) yield tempRange.clone() if pastEnd: return tempRange.MoveEndpointByRange(UIAHandler.TextPatternRangeEndpoint_Start,tempRange,UIAHandler.TextPatternRangeEndpoint_End) # Ensure that we always reach the end of the outer range, even if the units seem to stop somewhere inside if tempRange.CompareEndpoints(UIAHandler.TextPatternRangeEndpoint_End,rangeObj,UIAHandler.TextPatternRangeEndpoint_End)<0: tempRange.MoveEndpointByRange(UIAHandler.TextPatternRangeEndpoint_End,rangeObj,UIAHandler.TextPatternRangeEndpoint_End) yield tempRange.clone() def getEnclosingElementWithCacheFromUIATextRange(textRange,cacheRequest): """A thin wrapper around IUIAutomationTextRange3::getEnclosingElementBuildCache if it exists, otherwise IUIAutomationTextRange::getEnclosingElement and then IUIAutomationElement::buildUpdatedCache.""" if not isinstance(textRange,UIAHandler.IUIAutomationTextRange): raise ValueError("%s is not a text range"%textRange) try: textRange=textRange.QueryInterface(UIAHandler.IUIAutomationTextRange3) except (COMError,AttributeError): e=textRange.getEnclosingElement() if e: e=e.buildUpdatedCache(cacheRequest) return e return textRange.getEnclosingElementBuildCache(cacheRequest) class CacheableUIAElementArray(object): def __init__(self,elementArray,cacheRequest=None): self._elementArray=elementArray self._cacheRequest=cacheRequest @property def length(self): return self._elementArray.length if self._elementArray else 0 def getElement(self,index): e=self._elementArray.getElement(index) if e and self._cacheRequest: e=e.buildUpdatedCache(self._cacheRequest) return e def getChildrenWithCacheFromUIATextRange(textRange,cacheRequest): """A thin wrapper around IUIAutomationTextRange3::getChildrenBuildCache if it exists, otherwise IUIAutomationTextRange::getChildren but wraps the result in an object that automatically calls IUIAutomationElement::buildUpdateCache on any element retreaved.""" if not isinstance(textRange,UIAHandler.IUIAutomationTextRange): raise ValueError("%s is not a text range"%textRange) try: textRange=textRange.QueryInterface(UIAHandler.IUIAutomationTextRange3) except (COMError,AttributeError): c=textRange.getChildren() c=CacheableUIAElementArray(c,cacheRequest) return c c=textRange.getChildrenBuildCache(cacheRequest) c=CacheableUIAElementArray(c) return c class UIATextRangeAttributeValueFetcher(object): def __init__(self,textRange): self.textRange=textRange def getValue(self,ID,ignoreMixedValues=False): try: val=self.textRange.getAttributeValue(ID) except COMError: # #7124: some text attributes are not supported in older Operating Systems return UIAHandler.handler.reservedNotSupportedValue if not ignoreMixedValues and val==UIAHandler.handler.ReservedMixedAttributeValue: raise UIAMixedAttributeError return val class BulkUIATextRangeAttributeValueFetcher(UIATextRangeAttributeValueFetcher): def __init__(self,textRange,IDs): IDs=list(IDs) self.IDsToValues={} super(BulkUIATextRangeAttributeValueFetcher,self).__init__(textRange) IDsArray=(ctypes.c_long*len(IDs))(*IDs) values=textRange.GetAttributeValues(IDsArray,len(IDsArray)) self.IDsToValues={IDs[x]:values[x] for x in xrange(len(IDs))} def getValue(self,ID,ignoreMixedValues=False): val=self.IDsToValues[ID] if not ignoreMixedValues and val==UIAHandler.handler.ReservedMixedAttributeValue: raise UIAMixedAttributeError return val
#! /usr/bin/python3 -W all # -*- coding: utf-8 -*- ## # scrape-cfr.py - convert the Code of Federal Regulations into RDF # usage=""" scrape-cfr.py - convert the Code of Federal Regulations into RDF This little script converts the GPO FDsys bulk XML files into RDF for further semantic annoation and processing. Get the data from <http://www.gpo.gov/fdsys/bulkdata/CFR/> or let this program download it for you. Usage: scrape-cfr.py [options] [file [file ..]] Arguments: file GPO FDsys XML file -o file output filename (default: stdout) -d, --debug enable debuging output (twice for verbose) """ import sys import getopt import os import os.path import lxml.etree import re import string # # Globals. # flags = {'debug': False, 'verbose': False} ## # Entry function. Parse paramters, call main function. # def main(): ifn = None ofn = None # parse commandline for flags and arguments try: opts, args = getopt.getopt(sys.argv[1:], 'd') except getopt.GetoptError: fatal('getopt error', usage, end='') # parse flags for opt, arg in opts: if opt in {'-d', '--debug'}: if flags['debug']: flags['verbose'] = True flags['debug'] = True else: fatal('invalid flag', opt, usage) # parse arguments if len(args) > 0: for arg in args: if not ifn: ifn = arg elif not ofn: ofn = arg else: fatal('too many files', usage) else: fatal('need file', usage) # open files try: fin = open(ifn, 'r') if ofn: fout = open(ofn, 'wb') else: fout = sys.stdout except IOError as e: fatal(e) # do it do_it(fin, fout) # cleanup fin.close() fout.close() ## # Do it. # def do_it(fin, fout): parser = lxml.etree.XMLParser(remove_blank_text=True, huge_tree=True) tree = lxml.etree.parse(fin, parser) r = tree.getroot() assert r.tag == 'CFRDOC' state = {'title': None, 'subtitle': None, 'chapter': None, 'subchapter': None, 'part': None} lookup = {'enum': {}, 'title': {}} # get org for el in r.xpath('.//*[self::TITLE or self::SUBTITLE or self::CHAPTER or self::SUBCHAP or self::PART]'): if el.tag in orgtypes.keys(): org = orgtypes[el.tag](el) header, content = org # debug(header, content) subel = org_tup2el_r(lookup, org) # get sections for el in r.xpath('//SECTION'): assert el.tag == 'SECTION' sel, enum, title, status = new_sec(el) if enum in lookup['enum']: debug('section', repr(enum), repr(title)) elif status and 'reserved' in status: warn('reserved enum not in lookup', repr(enum)) else: warn('enum not in lookup', repr(enum), repr(title)) # # Parse organization. # ## # Convert (recursively) org tuple into XML element. Also add # sections (recursively) from org tuple so we can match them later. # def org_tup2el_r(lookup, org): assert type(org) == tuple if len(org) == 2: header, content = org debug(header) if content is not None: for sub in content: org_tup2el_r(lookup, sub) elif len(org) == 1: header, = org debug(header) typ, enum, title, stat = header lookup['enum'][enum] = lookup['title'][title] = None else: fatal('org_tup2el_r: invalid org') ## # # def cfrdoc_iter_title(el): header = None tel = el.find('CFRTITLE/TITLEHD/HD') if tel is None: warn(el, 'has no derp', repr(lxml.etree.tostring(el, encoding=str))) else: header = parse_comb_header(tel) return (header, None) ## # # def cfrdoc_iter_subtitle(el): header = None tel = el.find('HD') if tel is None: tel = el.find('RESERVED') if tel is None: warn(el, 'has no derp', repr(lxml.etree.tostring(el, encoding=str))) else: header = parse_comb_header(tel) return (header, None) ## # # def cfrdoc_iter_chapter(el): header = None tel = el.find('TOC/TOCHD/HD') if tel is None: tel = el.find('HD') if tel is None: tel = el.find('RESERVED') if tel is None: warn(el, 'has no derp', repr(lxml.etree.tostring(el, encoding=str))) else: header = parse_comb_header(tel) return (header, None) ## # # def cfrdoc_iter_subchap(el): header = None tel = el.find('HD') if tel is None: tel = el.find('RESERVED') if tel is None: warn(el, 'has no derp', repr(lxml.etree.tostring(el, encoding=str))) else: header = parse_comb_header(tel) return (header, None) ## # # def cfrdoc_iter_part(el): # find header tel = el.find('HD') if tel is None: tel = el.find('RESERVED') # parse header header = parse_comb_header(tel) sectioncontent = [] sectioncur = {'SECTNO': None, 'SUBJECT': None} sectionstatus = set() for subel in el.xpath('CONTENTS/*'): if subel.tag in parttypes.keys(): keyvals = parttypes[subel.tag](subel) for key, val in keyvals: # is reserved if subel.tag == 'RESERVED': sectionstatus.add('reserved') # add SECTNO to cur if subel.tag == 'SECTNO': sectioncur[key] = val # add to contents if subel.tag == 'SUBJECT' or subel.tag == 'RESERVED': if sectioncur['SECTNO'] != None: # extract typ = 'section' enum = sectioncur['SECTNO'] title = val if sectionstatus == set(): sectionstatus = None item = ((typ, enum, title, sectionstatus),) sectioncontent.append(item) # reset sectioncur['SECTNO'] = sectioncur['SUBJECT'] = None sectionstatus = set() elif val == None: pass else: warn('cfrdoc_iter_part subject: None in cur', repr(sectioncur), repr(lxml.etree.tostring(el, encoding=str))) # handle SUBPART if subel.tag == 'SUBPART': sectioncontent.append(val) # handle SUBJGRP if subel.tag == 'SUBJGRP': for pair in val: sectioncontent.append(pair) else: print('cfrdoc_iter_part skip', subel.tag) if None not in sectioncur.values(): typ = 'section' enum = sectioncur['SECTNO'] title = sectioncur['SUBJECT'] item = ((typ, enum, title, sectionstatus), []) sectioncontent.append(item) warn('cfrdoc_iter_part: added cur') elif list(sectioncur.values()) != [None, None]: warn('cfrdoc_iter_part: None in cur', repr(sectioncur), repr(lxml.etree.tostring(el, encoding=str))) return (header, sectioncontent) ## # # def part_iter_subpart(el): # find header for i,actel in enumerate(el): if actel.tag in {'HD', 'SUBJECT', 'RESERVED'}: break # parse header header = parse_comb_header(actel) if i == len(el)-1: return [(None, (header, []))] sectioncontent = [] sectioncur = {'SECTNO': None, 'SUBJECT': None} sectionstatus = set() for subel in el[i+1:]: if subel.tag in subparttypes.keys(): keyvals = subparttypes[subel.tag](subel) for key, val in keyvals: # is reserved if subel.tag == 'RESERVED': sectionstatus.add('reserved') # add SECTNO to cur if subel.tag == 'SECTNO': sectioncur[key] = val # add to contents if subel.tag == 'SUBJECT' or subel.tag == 'RESERVED': if sectioncur['SECTNO'] != None: # extract typ = 'section' enum = sectioncur['SECTNO'] title = val if sectionstatus == set(): sectionstatus = None item = ((typ, enum, title, sectionstatus),) sectioncontent.append(item) # reset sectioncur['SECTNO'] = sectioncur['SUBJECT'] = None sectionstatus = set() elif val == None: pass else: warn('part_iter_subpart subject: None in cur', repr(sectioncur), repr(lxml.etree.tostring(el, encoding=str))) # handle SUBJGRP if subel.tag == 'SUBJGRP': for pair in val: sectioncontent.append(pair) else: warn('part_iter_subpart skip', subel.tag) if None not in sectioncur.values(): typ = 'section' enum = sectioncur['SECTNO'] title = sectioncur['SUBJECT'] item = ((typ, enum, title, sectionstatus), []) sectioncontent.append(item) warn('part_iter_subpart: added cur') elif list(sectioncur.values()) != [None, None]: warn('part_iter_subpart: None in cur', repr(sectioncur), repr(lxml.etree.tostring(el, encoding=str))) return [(None, (header, sectioncontent))] ## # # def iter_subjgrp(el): t = ' '.join(lxml.etree.tostring(el[0], method='text', encoding=str).split()) sectioncontent = [] sectioncur = {'SECTNO': None, 'SUBJECT': None} sectionstatus = set() for subel in el[1:]: if subel.tag in subparttypes.keys(): keyvals = subparttypes[subel.tag](subel) for key, val in keyvals: # is reserved if subel.tag == 'RESERVED': sectionstatus.add('reserved') # add SECTNO to cur if subel.tag == 'SECTNO': sectioncur[key] = val # add to contents if subel.tag == 'SUBJECT' or subel.tag == 'RESERVED': if sectioncur['SECTNO'] != None: # extract typ = 'section' enum = sectioncur['SECTNO'] title = val if sectionstatus == set(): sectionstatus = None item = ((typ, enum, title, sectionstatus),) sectioncontent.append(item) # reset sectioncur['SECTNO'] = sectioncur['SUBJECT'] = None sectionstatus = set() elif val == None: pass else: warn('part_iter_subpart subject: None in cur', repr(sectioncur), repr(lxml.etree.tostring(el, encoding=str))) return [(None, sectioncontent)] ## # # def part_iter_sectno(el): t = ' '.join(lxml.etree.tostring(el, method='text', encoding=str).split()) if t == '': t = None return [('SECTNO', t)] ## # # def part_iter_subject(el): t = ' '.join(lxml.etree.tostring(el, method='text', encoding=str).split()) if t == '': t = None return [('SUBJECT', t)] ## # # orgtypes = {'TITLE': cfrdoc_iter_title, 'SUBTITLE': cfrdoc_iter_subtitle, 'CHAPTER': cfrdoc_iter_chapter, 'SUBCHAP': cfrdoc_iter_subchap, 'PART': cfrdoc_iter_part} ## # # parttypes = {'SECTNO': part_iter_sectno, 'SUBJECT': part_iter_subject, 'RESERVED': part_iter_subject, 'SUBJGRP': iter_subjgrp, 'SUBPART': part_iter_subpart} subparttypes = {'SECTNO': part_iter_sectno, 'SUBJECT': part_iter_subject, 'RESERVED': part_iter_subject, 'SUBJGRP': iter_subjgrp} ## # Parse a combined header. # def parse_comb_header(el): typ = enum = t = None elt = ' '.join(lxml.etree.tostring(el, method='text', encoding=str).split()) status = set() typs = {'title', 'subtitle', 'chapter', 'subchapter', 'part', 'subpart'} # is reserved if el.tag == 'RESERVED': status.add('reserved') if '[Reserved]' in elt: status.add('reserved') rets = elt.split('[Reserved]', 1) nelt = rets[0].strip() warn('merged new elt: reserved', repr(elt), repr(nelt)) elt = nelt if '[RESERVED]' in elt: status.add('reserved') rets = elt.split('[RESERVED]', 1) nelt = rets[0].strip() warn('merged new elt: reserved', repr(elt), repr(nelt)) elt = nelt # special case: 'S ubpart' if elt[:8] == 'S ubpart': nelt = 'Subpart' + elt[8:] warn('merged new elt: S ubpart', repr(elt), repr(nelt)) elt = nelt # special case: 'Supart' if elt[:6] == 'Supart': nelt = 'Subpart' + elt[6:] warn('merged new elt: Supart', repr(elt), repr(nelt)) elt = nelt # special case: 1st word merges 'Subpart' with enum if elt[0:7] == 'Subpart' and elt[7] not in {'s',' ','โ€”'} or elt[0:8] == 'Subparts' and elt[8] not in {' ','โ€”'}: if elt[0:8] == 'Subparts': nelt = 'Subparts ' + elt[8:] else: nelt = 'Subpart ' + elt[7:] warn('merged new elt: merged enum', repr(elt), repr(nelt)) elt = nelt # normal case: contains 'โ€”' if 'โ€”' in elt: rets = elt.split('โ€”',1) assert len(rets) == 2 rets2 = rets[0].split(None,1) t = rets[1] if len(rets2) == 2: typ = rets2[0].lower() enum = rets2[1] else: typ = rets2[0].lower() enum = None # normal case: plural and contains '-' elif '-' in elt and elt.split(None,1)[0].lower()[-1] == 's': rets = elt.split() typ = rets[0].lower() enums = rets[1].split('-') assert len(enums) == 2 enum = (enums[0], enums[1]) t = ' '.join(rets[2:]) # normal case: contains '-' elif '-' in elt: rets = elt.split('-',1) assert len(rets) == 2 rets2 = rets[0].split(None,1) t = rets[1] if len(rets2) == 2: typ = rets2[0].lower() enum = rets2[1] else: typ = rets2[0].lower() enum = None # special case: is still obviously a header elif elt.split(None,1) != [] and (elt.split(None,1)[0].lower() in typs or elt.split(None,1)[0][:-1].lower() in typs): warn('header without hyphen', repr(elt)) rets = elt.split() typ = rets[0].lower() # special case: 2nd word merges enum with 1st word of description yep = None for i,c in enumerate(rets[1]): if c in string.ascii_lowercase: yep = i-1 break if yep is not None and yep > 0: newrets = rets[2:] newrets.insert(0, rets[1][yep:]) enum = rets[1][:yep] t = ' '.join(newrets) warn('2nd word merges enum with 1st word of description', repr(enum), repr(t)) # normal special case: 'typ enum title...' else: desc = ' '.join(rets[2:]) if desc == '': desc = None enum = rets[1] t = desc warn('normal?', repr(typ), repr(enum), repr(t)) # unknown else: warn('part_iter_subpart: cant parse header', repr(elt), repr(lxml.etree.tostring(el, encoding=str))) t = elt # remove plural type if typ is not None and typ[-1] == 's': typ = typ[:-1] warn('removed plural type', repr(typ)) # confirm typ if typ not in typs: warn('unknown type', repr(typ)) if t == '': t = None if status == set(): status = None return typ, enum, t, status # # Parse sections. # ## # # def new_sec(el): enum = title = status = None sel = lxml.etree.Element('section') iel = lxml.etree.SubElement(sel, 'info') enum, title, status = parse_el_info(el) # add info if enum: if isinstance(enum, str): enumel = lxml.etree.SubElement(iel, 'enum') enumel.text = enum elif isinstance(enum, tuple): enumsel = lxml.etree.SubElement(iel, 'enums') enumel0 = lxml.etree.SubElement(enumsel, 'enum') enumel0.attrib['type'] = 'beg' enumel0.text = enum[0] enumel1 = lxml.etree.SubElement(enumsel, 'enum') enumel1.attrib['type'] = 'end' enumel1.text = enum[1] else: fatal('new_sec unknown enum type:', type(enum)) if title: titel = lxml.etree.SubElement(iel, 'title') titel.text = title if status: sel.attrib['status'] = ','.join(status) # get and add text for subpel in el.xpath('P'): textel = lxml.etree.SubElement(sel, 'text') text = lxml.etree.tostring(subpel, method='text', encoding=str).replace('\n', '').strip() textel.text = text return sel, enum, title, status ## # # def parse_el_info(el): enum = title = None status = set() # get number sn = el.find('SECTNO') if sn is None: warn('new_sec no SECTNO:', repr(lxml.etree.tostring(el, encoding=str))) else: snt = ' '.join(lxml.etree.tostring(sn, method='text', encoding=str).split()) # debug('new_sec snt:', repr(snt)) # numbers sntnew = snt.replace('ยง', '').strip() if 'ยงยง' in snt: if 'โ€”' in snt: sntnewnew = sntnew.split('โ€”') assert len(sntnewnew) == 2 sntnew = (sntnewnew[0], sntnewnew[1]) elif ' through ' in snt: sntnewnew = sntnew.split(' through ') assert len(sntnewnew) == 2 sntnew = (sntnewnew[0], sntnewnew[1]) elif '-' in snt: if snt.count('-') == 1: sntnewnew = sntnew.split('-') assert len(sntnewnew) == 2 sntnew = (sntnewnew[0], sntnewnew[1]) elif snt.count('-') == 2: sntnewnew = '.'.join(sntnew.rsplit('-',1)) sntnewnewnew = sntnewnew.split('-') assert len(sntnewnewnew) == 2 warn('parse_el_info sntnew converted', repr(sntnew), repr(sntnewnewnew)) sntnew = (sntnewnewnew[0], sntnewnewnew[1]) elif snt.count('-') == 3: sntnewnew = sntnew.split('-') assert len(sntnewnew) == 4 left = '-'.join([sntnewnew[0], sntnewnew[1]]) right = '-'.join([sntnewnew[2], sntnewnew[3]]) sntnew = (left, right) if isinstance(sntnew, str) or len(sntnew) != 2: warn('parse_el_info len(sntnew) != 2', repr(sntnew), repr(lxml.etree.tostring(el, encoding=str))) if sntnew is not None and len(sntnew): enum = sntnew else: warn('new_sec empty SECTNO.text:', repr(sntnew), repr(lxml.etree.tostring(el, encoding=str))) enum = None # special case: 'Sec.' in enum # special case: 'Section' in enum # special case: whitespace in enum # get title tel = el.find('SUBJECT') if tel is None: tel = el.find('HD') if tel is None: tel = el.find('RESERVED') if tel is None: warn('parse_el_info no SUBJECT or HD', repr(lxml.etree.tostring(el, encoding=str))) t = '' else: t = ' '.join(lxml.etree.tostring(tel, method='text', encoding=str).split()) status.add('reserved') else: t = ' '.join(lxml.etree.tostring(tel, method='text', encoding=str).split()) else: t = ' '.join(lxml.etree.tostring(tel, method='text', encoding=str).split()) # is reserved; remove '[Reserved]' and '[RESERVED]' from title and normalize if tel.tag == 'RESERVED': status.add('reserved') if '[Reserved]' in t: status.add('reserved') rets = t.split('[Reserved]', 1) nt = rets[0].strip() warn('merged new t: reserved', repr(t), repr(nt)) t = nt if '[RESERVED]' in t: status.add('reserved') rets = t.split('[RESERVED]', 1) nt = rets[0].strip() warn('merged new t: reserved', repr(t), repr(nt)) t = nt # parse title if enum is None: # if the enum was accidentally part of header rets = t.split() try: i = float(rets[0]) # made it enum = rets[0] t = ' '.join(rets[1:]) warn('new_sec_info extracted enum', repr(enum), repr(title)) except Exception: pass # normalize if t == '': t = None if status == set(): status = None return enum, t, status ## # # def debug(*args, prefix='DEBUG:', file=sys.stdout, output=False, **kwargs): if output or flags['verbose']: if prefix is not None: print(prefix, *args, file=file, **kwargs) else: print(*args, file=file, **kwargs) ## # Print error info and exit. # def fatal(*args, prefix='FATAL:', **kwargs): debug(*args, prefix=prefix, file=sys.stderr, output=True, **kwargs) sys.exit(1) ## # Print warning info. # def warn(*args, prefix='WARNING:', output=False, **kwargs): if output or flags['debug']: debug(*args, prefix=prefix, file=sys.stderr, output=True, **kwargs) ## # Print info. # def info(*args, prefix='INFO:', output=False, **kwargs): if output or flags['debug']: debug(*args, prefix=prefix, output=True, **kwargs) # do it if __name__ == "__main__": main()
# -*- coding: utf-8 -*- """ Created on Tue Dec 10 19:38:46 2019 @author: Scarc """ import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('50_Startups.csv') X = dataset.iloc[:, :-1] Y = dataset.iloc[:, 4] from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelEncoder_X = LabelEncoder() X.iloc[: , 3] = labelEncoder_X.fit_transform(X.iloc[:,3]) ohe = OneHotEncoder(categorical_features = [3]) X = ohe.fit_transform(X).toarray() #Avoiding the dummy var trap X = X[:,1:] from sklearn.model_selection import train_test_split as tts X_train,X_test,Y_train,Y_test = tts(X,Y,test_size = 0.2,random_state = 0) #Fitting Multiple Linear regression to the training set from sklearn.linear_model import LinearRegression as lr regressor = lr() regressor.fit(X_train,Y_train) #Predicting the test set results Y_pred = regressor.predict(X_test) #Building the optimal model using Backward Elimination import statsmodels.api as sm X = np.append(arr = np.ones((50,1)).astype(int), values = X, axis = 1) X_opt = X[:,[0,1,2,3,4,5]] regressor_OLS = sm.OLS(endog = Y,exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,1,3,4,5]] regressor_OLS = sm.OLS(endog = Y,exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,3,4,5]] regressor_OLS = sm.OLS(endog = Y,exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,3,5]] regressor_OLS = sm.OLS(endog = Y,exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,3]] regressor_OLS = sm.OLS(endog = Y,exog = X_opt).fit() regressor_OLS.summary()
from django.conf.urls import url from . import views SLUG_RE = r'(?P<slug>[-a-zA-Z0-9_@]+)' urlpatterns = [ url('^$', views.HomeView.as_view(), name='status.index'), url('^team/%s/$' % SLUG_RE, views.TeamView.as_view(), name='status.team'), url('^project/%s/$' % SLUG_RE, views.ProjectView.as_view(), name='status.project'), url('^user/%s/$' % SLUG_RE, views.UserView.as_view(), name='status.user'), url('^status/(?P<pk>\d{1,8})/$', views.StatusView.as_view(), name='status.status'), url('^weekly/$', views.WeeklyView.as_view(), name='status.weekly'), url('^statusize/$', views.statusize, name='status.statusize'), url('^search/$', views.SearchView.as_view(), name='status.search'), # profile and signin url('^accounts/profile/$', views.ProfileView.as_view(), name='users.profile'), url('^accounts/login/$', views.LoginView.as_view(), name='users.loginform'), # feeds url('^statuses.xml$', views.MainFeed(), name='status.index_feed'), url('^user/%s.xml$' % SLUG_RE, views.UserFeed(), name='status.user_feed'), url('^user/%s.json$' % SLUG_RE, views.UserFeedJSON.as_view(), name='status.user_feed'), url('^team/%s.xml$' % SLUG_RE, views.TeamFeed(), name='status.team_feed'), url('^project/%s.xml$' % SLUG_RE, views.ProjectFeed(), name='status.project_feed'), # csp url('^csp-violation-capture$', views.csp_violation_capture), # robots url('^robots\\.txt$', views.robots_txt), ]
from abc import ABC, abstractmethod, abstractproperty, ABCMeta class istrategy(ABC): @abstractmethod def buildmaps(self, start, end): pass
# terrascript/mysql/__init__.py import terrascript class mysql(terrascript.Provider): pass
# # import pytest # # from twisted.web.resource import NoResource # # from txweb.web_views import WebSite # from txweb.http_codes import UnrenderableException # from .helper import MockRequest # # def test_basic_idea(): # # app = WebSite() # # @app.add("/nexus") # class PersistentObject(object): # # def __init__(self): # self._number = 0 # # # @app.expose("/number") # def respond_number(self, request): # return 1234 # # @app.expose("/greeting") # def render_response_says_hello(self, request): # return "Hello" # # # @app.expose("/add_one") # def adds_to_passed_get_argument(self, request): # """ # subviews do not need to start with render_ # """ # input = int(request.args[b'number'][0]) # # return input + 1 # # @app.expose("/counter") # def increments_persistant_value(self, request): # self._number += 1 # return self._number # # # assert len(app.resource._route_map._rules) == 4 # # number_request = MockRequest([], "/nexus/number") # number_resource = app.getResourceFor(number_request) # # assert isinstance(number_resource, NoResource) is False # expected = b"1234" # actual = number_resource.render(number_request) # assert actual == expected # # add_request = MockRequest([], "/nexus/add_one", {b"number":5}) # resource = app.getResourceFor(add_request) # expected = b"6" # actual = resource.render(add_request) # assert actual == expected # # incrementer = MockRequest([], "/nexus/counter") # assert app.getResourceFor(incrementer).render(incrementer) == 1 #This is a bug because NOT_DONE_YET =='s 1 # assert app.getResourceFor(incrementer).render(incrementer) == b"2" # assert app.getResourceFor(incrementer).render(incrementer) == b"3" # # # # # def test_throws_exception_on_inaccessible_view_class(): # # # app = WebSite() # # with pytest.raises(UnrenderableException): # @app.add("/base") # class Foo: # pass # # # # # #
from application import db from datetime import datetime from flask import Blueprint from flask_login import current_user from flask import current_app as app from flask import request, jsonify, make_response from flask_jwt_extended import jwt_required, get_jwt_identity from application.auth.models import User from .models import Memory import logging # Blueprint Configuration memories_bp = Blueprint('memories_bp', __name__) @memories_bp.route('/api/memories', methods=['GET']) @jwt_required def getAllMemories(): response = {} username = get_jwt_identity() user = User.query.filter(User.username == username).first() userMemories = Memory.query.filter(Memory.user_id == user.id).order_by(Memory.id.asc()).all() from .models import memories_schema response["items"] = memories_schema.dump(userMemories) return make_response(jsonify(response), 200) @memories_bp.route('/api/memory', methods=['POST']) @jwt_required def addMemory(): response = {} data = request.get_json() if not data: response["message"] = "No input data provided" return make_response(jsonify(response), 400) try: from .models import memory_schema memory = memory_schema.load(data) if memory.title and memory.description and memory.image: username = get_jwt_identity() user = User.query.filter(User.username == username).first() memory.user_id=user.id memory.uploaded = datetime.now() # Validate friends list existing_friends = [] for friend_name in memory.friends: friend = User.query.filter(User.username == friend_name).first() if user.is_friend(friend): existing_friends.append(friend_name) memory.friends = existing_friends db.session.add(memory) db.session.commit() response["memory"] = memory_schema.dump(memory) return make_response(jsonify(response), 200) else: response["message"] = "Incorrect request parameters" return make_response(jsonify(data), 400) except Exception as ex: response["message"] = "Error occured during request processing" logging.error(ex) return make_response(jsonify(response), 500) @memories_bp.route('/api/memories/<int:memory_id>', methods=['PUT']) @jwt_required def updateMemory(memory_id): response = {} if not request.view_args: response["message"] = "No query parameters received" return make_response(jsonify(response), 200) username = get_jwt_identity() user = User.query.filter(User.username == username).first() from .models import Memory memory = Memory.query.filter(Memory.id == memory_id and Memory.id == user.id).first() if memory == None: response["message"] = "Memory with current ID was not found" return make_response(jsonify(response), 404) data = request.get_json() if not data: response["message"] = "No input data provided" return make_response(jsonify(response), 400) try: from .models import memory_schema loaded_memory = memory_schema.load(data) loaded_memory.id = memory.id loaded_memory.uploaded = datetime.now() db.session.merge(loaded_memory) db.session.commit() response["memory"] = memory_schema.dump(loaded_memory) return make_response(jsonify(response), 200) except Exception as ex: response["message"] = "Error occured during request processing" logging.error(ex) return make_response(jsonify(response), 500) @memories_bp.route('/api/memories/<int:memory_id>', methods=['DELETE']) @jwt_required def deleteMemory(memory_id): response = {} username = get_jwt_identity() user = User.query.filter(User.username == username).first() from .models import Memory memory = Memory.query.filter(Memory.id == memory_id and Memory.id == user.id).first() if memory == None: response["message"] = "Memory with current ID was not found" return make_response(jsonify(response), 404) try: db.session.delete(memory) db.session.commit() from .models import memory_schema response["memory"] = memory_schema.dump(memory) return make_response(jsonify(response), 200) except Exception as ex: response["message"] = "Error occured during request processing" logging.error(ex) return make_response(jsonify(response), 500) @memories_bp.route('/api/memories/drafts', methods=['GET']) @jwt_required def getAllMemoryDrafts(): response = {} try: username = get_jwt_identity() user = User.query.filter(User.username == username).first() from .models import MemoryDraft from .models import memories_drafts_schema userMemoriesDrafts = MemoryDraft.query.filter(MemoryDraft.user_id == user.id).order_by(MemoryDraft.id.asc()).all() response["items"] = memories_drafts_schema.dump(userMemoriesDrafts) return make_response(jsonify(response), 200) except Exception as ex: response["message"] = "Error occured during request processing" logging.error(ex) return make_response(jsonify(response), 500) @memories_bp.route('/api/memories/draft', methods=['POST']) @jwt_required def addMemoryDraft(): response = {} data = request.get_json() if not data: response["message"] = "No input data provided" return make_response(jsonify(response), 400) try: from .models import memory_draft_schema memory_draft = memory_draft_schema.load(data) username = get_jwt_identity() user = User.query.filter(User.username == username).first() memory_draft.user_id=user.id # Validate friends list existing_friends = [] for friend_name in memory_draft.friends: friend = User.query.filter(User.username == friend_name).first() if user.is_friend(friend): existing_friends.append(friend_name) memory_draft.friends = existing_friends db.session.add(memory_draft) db.session.commit() response["memory_draft"] = memory_draft_schema.dump(memory_draft) return make_response(jsonify(response), 200) except Exception as ex: response["message"] = "Error occured during request processing" logging.error(ex) return make_response(jsonify(response), 500) @memories_bp.route('/api/memories/draft/<int:draft_id>', methods=['PUT']) @jwt_required def updateMemoryDraft(draft_id): response = {} if not request.view_args: response["message"] = "No query parameters received" return make_response(jsonify(response), 200) username = get_jwt_identity() user = User.query.filter(User.username == username).first() from .models import MemoryDraft memory_draft = MemoryDraft.query.filter(MemoryDraft.id == draft_id and MemoryDraft.id == user.id).first() if memory_draft == None: response["message"] = "MemoryDraft with current ID was not found" return make_response(jsonify(response), 404) data = request.get_json() if not data: response["message"] = "No input data provided" return make_response(jsonify(response), 400) try: from .models import memory_draft_schema loaded_memory_draft = memory_draft_schema.load(data) loaded_memory_draft.id = memory_draft.id db.session.merge(loaded_memory_draft) db.session.commit() response["memory_draft"] = memory_draft_schema.dump(loaded_memory_draft) return make_response(jsonify(response), 200) except Exception as ex: response["message"] = "Error occured during request processing" logging.error(ex) return make_response(jsonify(response), 500) @memories_bp.route('/api/memories/draft/<int:draft_id>', methods=['DELETE']) @jwt_required def deleteMemoryDraft(draft_id): response = {} username = get_jwt_identity() user = User.query.filter(User.username == username).first() from .models import MemoryDraft memory_draft = MemoryDraft.query.filter(MemoryDraft.id == draft_id and MemoryDraft.id == user.id).first() if memory_draft == None: response["message"] = "MemoryDraft with current ID was not found" return make_response(jsonify(response), 404) try: db.session.delete(memory_draft) db.session.commit() from .models import memory_draft_schema response["memory_draft"] = memory_draft_schema.dump(memory_draft) return make_response(jsonify(response), 200) except Exception as ex: response["message"] = "Error occured during request processing" logging.error(ex) return make_response(jsonify(response), 500)
''' This file contains classes and functions for representing, solving, and simulating agents who must allocate their resources among consumption, saving in a risk-free asset (with a low return), and saving in a risky asset (with higher average return). ''' import numpy as np from scipy.optimize import minimize_scalar from copy import deepcopy from HARK import Solution, NullFunc, AgentType # Basic HARK features from HARK.ConsumptionSaving.ConsIndShockModel import( IndShockConsumerType, # PortfolioConsumerType inherits from it ValueFunc, # For representing 1D value function MargValueFunc, # For representing 1D marginal value function utility, # CRRA utility function utility_inv, # Inverse CRRA utility function utilityP, # CRRA marginal utility function utility_invP, # Derivative of inverse CRRA utility function utilityP_inv, # Inverse CRRA marginal utility function init_idiosyncratic_shocks # Baseline dictionary to build on ) from HARK.ConsumptionSaving.ConsGenIncProcessModel import( ValueFunc2D, # For representing 2D value function MargValueFunc2D # For representing 2D marginal value function ) from HARK.distribution import combineIndepDstns from HARK.distribution import Lognormal, Bernoulli # Random draws for simulating agents from HARK.interpolation import( LinearInterp, # Piecewise linear interpolation CubicInterp, # Piecewise cubic interpolation LinearInterpOnInterp1D, # Interpolator over 1D interpolations BilinearInterp, # 2D interpolator ConstantFunction, # Interpolator-like class that returns constant value IdentityFunction # Interpolator-like class that returns one of its arguments ) # Define a class to represent the single period solution of the portfolio choice problem class PortfolioSolution(Solution): ''' A class for representing the single period solution of the portfolio choice model. Parameters ---------- cFuncAdj : Interp1D Consumption function over normalized market resources when the agent is able to adjust their portfolio shares. ShareFuncAdj : Interp1D Risky share function over normalized market resources when the agent is able to adjust their portfolio shares. vFuncAdj : ValueFunc Value function over normalized market resources when the agent is able to adjust their portfolio shares. vPfuncAdj : MargValueFunc Marginal value function over normalized market resources when the agent is able to adjust their portfolio shares. cFuncFxd : Interp2D Consumption function over normalized market resources and risky portfolio share when the agent is NOT able to adjust their portfolio shares, so they are fixed. ShareFuncFxd : Interp2D Risky share function over normalized market resources and risky portfolio share when the agent is NOT able to adjust their portfolio shares, so they are fixed. This should always be an IdentityFunc, by definition. vFuncFxd : ValueFunc2D Value function over normalized market resources and risky portfolio share when the agent is NOT able to adjust their portfolio shares, so they are fixed. dvdmFuncFxd : MargValueFunc2D Marginal value of mNrm function over normalized market resources and risky portfolio share when the agent is NOT able to adjust their portfolio shares, so they are fixed. dvdsFuncFxd : MargValueFunc2D Marginal value of Share function over normalized market resources and risky portfolio share when the agent is NOT able to adjust their portfolio shares, so they are fixed. mNrmMin ''' distance_criteria = ['vPfuncAdj'] def __init__(self, cFuncAdj=None, ShareFuncAdj=None, vFuncAdj=None, vPfuncAdj=None, cFuncFxd=None, ShareFuncFxd=None, vFuncFxd=None, dvdmFuncFxd=None, dvdsFuncFxd=None ): # Change any missing function inputs to NullFunc if cFuncAdj is None: cFuncAdj = NullFunc() if cFuncFxd is None: cFuncFxd = NullFunc() if ShareFuncAdj is None: ShareFuncAdj = NullFunc() if ShareFuncFxd is None: ShareFuncFxd = NullFunc() if vFuncAdj is None: vFuncAdj = NullFunc() if vFuncFxd is None: vFuncFxd = NullFunc() if vPfuncAdj is None: vPfuncAdj = NullFunc() if dvdmFuncFxd is None: dvdmFuncFxd = NullFunc() if dvdsFuncFxd is None: dvdsFuncFxd = NullFunc() # Set attributes of self self.cFuncAdj = cFuncAdj self.cFuncFxd = cFuncFxd self.ShareFuncAdj = ShareFuncAdj self.ShareFuncFxd = ShareFuncFxd self.vFuncAdj = vFuncAdj self.vFuncFxd = vFuncFxd self.vPfuncAdj = vPfuncAdj self.dvdmFuncFxd = dvdmFuncFxd self.dvdsFuncFxd = dvdsFuncFxd class PortfolioConsumerType(IndShockConsumerType): """ A consumer type with a portfolio choice. This agent type has log-normal return factors. Their problem is defined by a coefficient of relative risk aversion, intertemporal discount factor, risk-free interest factor, and time sequences of permanent income growth rate, survival probability, and permanent and transitory income shock standard deviations (in logs). The agent may also invest in a risky asset, which has a higher average return than the risk-free asset. He *might* have age-varying beliefs about the risky-return; if he does, then "true" values of the risky asset's return distribution must also be specified. """ poststate_vars_ = ['aNrmNow', 'pLvlNow', 'ShareNow', 'AdjustNow'] time_inv_ = deepcopy(IndShockConsumerType.time_inv_) time_inv_ = time_inv_ + ['AdjustPrb', 'DiscreteShareBool'] def __init__(self, cycles=1, verbose=False, quiet=False, **kwds): params = init_portfolio.copy() params.update(kwds) kwds = params # Initialize a basic consumer type IndShockConsumerType.__init__( self, cycles=cycles, verbose=verbose, quiet=quiet, **kwds ) # Set the solver for the portfolio model, and update various constructed attributes self.solveOnePeriod = solveConsPortfolio self.update() def preSolve(self): AgentType.preSolve(self) self.updateSolutionTerminal() def update(self): IndShockConsumerType.update(self) self.updateRiskyDstn() self.updateShockDstn() self.updateShareGrid() self.updateShareLimit() def updateSolutionTerminal(self): ''' Solves the terminal period of the portfolio choice problem. The solution is trivial, as usual: consume all market resources, and put nothing in the risky asset (because you have nothing anyway). Parameters ---------- None Returns ------- None ''' # Consume all market resources: c_T = m_T cFuncAdj_terminal = IdentityFunction() cFuncFxd_terminal = IdentityFunction(i_dim=0, n_dims=2) # Risky share is irrelevant-- no end-of-period assets; set to zero ShareFuncAdj_terminal = ConstantFunction(0.) ShareFuncFxd_terminal = IdentityFunction(i_dim=1, n_dims=2) # Value function is simply utility from consuming market resources vFuncAdj_terminal = ValueFunc(cFuncAdj_terminal, self.CRRA) vFuncFxd_terminal = ValueFunc2D(cFuncFxd_terminal, self.CRRA) # Marginal value of market resources is marg utility at the consumption function vPfuncAdj_terminal = MargValueFunc(cFuncAdj_terminal, self.CRRA) dvdmFuncFxd_terminal = MargValueFunc2D(cFuncFxd_terminal, self.CRRA) dvdsFuncFxd_terminal = ConstantFunction(0.) # No future, no marg value of Share # Construct the terminal period solution self.solution_terminal = PortfolioSolution( cFuncAdj=cFuncAdj_terminal, ShareFuncAdj=ShareFuncAdj_terminal, vFuncAdj=vFuncAdj_terminal, vPfuncAdj=vPfuncAdj_terminal, cFuncFxd=cFuncFxd_terminal, ShareFuncFxd=ShareFuncFxd_terminal, vFuncFxd=vFuncFxd_terminal, dvdmFuncFxd=dvdmFuncFxd_terminal, dvdsFuncFxd=dvdsFuncFxd_terminal ) def updateRiskyDstn(self): ''' Creates the attributes RiskyDstn from the primitive attributes RiskyAvg, RiskyStd, and RiskyCount, approximating the (perceived) distribution of returns in each period of the cycle. Parameters ---------- None Returns ------- None ''' # Determine whether this instance has time-varying risk perceptions if (type(self.RiskyAvg) is list) and (type(self.RiskyStd) is list) and (len(self.RiskyAvg) == len(self.RiskyStd)) and (len(self.RiskyAvg) == self.T_cycle): self.addToTimeVary('RiskyAvg','RiskyStd') elif (type(self.RiskyStd) is list) or (type(self.RiskyAvg) is list): raise AttributeError('If RiskyAvg is time-varying, then RiskyStd must be as well, and they must both have length of T_cycle!') else: self.addToTimeInv('RiskyAvg','RiskyStd') # Generate a discrete approximation to the risky return distribution if the # agent has age-varying beliefs about the risky asset if 'RiskyAvg' in self.time_vary: RiskyDstn = [] for t in range(self.T_cycle): RiskyAvgSqrd = self.RiskyAvg[t] ** 2 RiskyVar = self.RiskyStd[t] ** 2 mu = np.log(self.RiskyAvg[t] / (np.sqrt(1. + RiskyVar / RiskyAvgSqrd))) sigma = np.sqrt(np.log(1. + RiskyVar / RiskyAvgSqrd)) RiskyDstn.append(Lognormal(mu=mu, sigma=sigma).approx(self.RiskyCount)) self.RiskyDstn = RiskyDstn self.addToTimeVary('RiskyDstn') # Generate a discrete approximation to the risky return distribution if the # agent does *not* have age-varying beliefs about the risky asset (base case) else: RiskyAvgSqrd = self.RiskyAvg ** 2 RiskyVar = self.RiskyStd ** 2 mu = np.log(self.RiskyAvg / (np.sqrt(1. + RiskyVar / RiskyAvgSqrd))) sigma = np.sqrt(np.log(1. + RiskyVar / RiskyAvgSqrd)) self.RiskyDstn = Lognormal(mu=mu, sigma=sigma).approx(self.RiskyCount) self.addToTimeInv('RiskyDstn') def updateShockDstn(self): ''' Combine the income shock distribution (over PermShk and TranShk) with the risky return distribution (RiskyDstn) to make a new attribute called ShockDstn. Parameters ---------- None Returns ------- None ''' if 'RiskyDstn' in self.time_vary: self.ShockDstn = [combineIndepDstns(self.IncomeDstn[t], self.RiskyDstn[t]) for t in range(self.T_cycle)] else: self.ShockDstn = [combineIndepDstns(self.IncomeDstn[t], self.RiskyDstn) for t in range(self.T_cycle)] self.addToTimeVary('ShockDstn') # Mark whether the risky returns and income shocks are independent (they are) self.IndepDstnBool = True self.addToTimeInv('IndepDstnBool') def updateShareGrid(self): ''' Creates the attribute ShareGrid as an evenly spaced grid on [0.,1.], using the primitive parameter ShareCount. Parameters ---------- None Returns ------- None ''' self.ShareGrid = np.linspace(0.,1.,self.ShareCount) self.addToTimeInv('ShareGrid') def updateShareLimit(self): ''' Creates the attribute ShareLimit, representing the limiting lower bound of risky portfolio share as mNrm goes to infinity. Parameters ---------- None Returns ------- None ''' if 'RiskyDstn' in self.time_vary: self.ShareLimit = [] for t in range(self.T_cycle): RiskyDstn = self.RiskyDstn[t] temp_f = lambda s : -((1.-self.CRRA)**-1)*np.dot((self.Rfree + s*(RiskyDstn.X-self.Rfree))**(1.-self.CRRA), RiskyDstn.pmf) SharePF = minimize_scalar(temp_f, bounds=(0.0, 1.0), method='bounded').x self.ShareLimit.append(SharePF) self.addToTimeVary('ShareLimit') else: RiskyDstn = self.RiskyDstn temp_f = lambda s : -((1.-self.CRRA)**-1)*np.dot((self.Rfree + s*(RiskyDstn.X-self.Rfree))**(1.-self.CRRA), RiskyDstn.pmf) SharePF = minimize_scalar(temp_f, bounds=(0.0, 1.0), method='bounded').x self.ShareLimit = SharePF self.addToTimeInv('ShareLimit') def getRisky(self): ''' Sets the attribute RiskyNow as a single draw from a lognormal distribution. Uses the attributes RiskyAvgTrue and RiskyStdTrue if RiskyAvg is time-varying, else just uses the single values from RiskyAvg and RiskyStd. Parameters ---------- None Returns ------- None ''' if 'RiskyDstn' in self.time_vary: RiskyAvg = self.RiskyAvgTrue RiskyStd = self.RiskyStdTrue else: RiskyAvg = self.RiskyAvg RiskyStd = self.RiskyStd RiskyAvgSqrd = RiskyAvg**2 RiskyVar = RiskyStd**2 mu = np.log(RiskyAvg / (np.sqrt(1. + RiskyVar / RiskyAvgSqrd))) sigma = np.sqrt(np.log(1. + RiskyVar / RiskyAvgSqrd)) self.RiskyNow = Lognormal(mu, sigma).draw(1, seed=self.RNG.randint(0, 2**31-1)) def getAdjust(self): ''' Sets the attribute AdjustNow as a boolean array of size AgentCount, indicating whether each agent is able to adjust their risky portfolio share this period. Uses the attribute AdjustPrb to draw from a Bernoulli distribution. Parameters ---------- None Returns ------- None ''' self.AdjustNow = Bernoulli(self.AdjustPrb).draw(self.AgentCount, seed=self.RNG.randint(0, 2**31-1)) def getRfree(self): ''' Calculates realized return factor for each agent, using the attributes Rfree, RiskyNow, and ShareNow. This method is a bit of a misnomer, as the return factor is not riskless, but would more accurately be labeled as Rport. However, this method makes the portfolio model compatible with its parent class. Parameters ---------- None Returns ------- Rport : np.array Array of size AgentCount with each simulated agent's realized portfolio return factor. Will be used by getStates() to calculate mNrmNow, where it will be mislabeled as "Rfree". ''' Rport = self.ShareNow*self.RiskyNow + (1.-self.ShareNow)*self.Rfree self.RportNow = Rport return Rport def initializeSim(self): ''' Initialize the state of simulation attributes. Simply calls the same method for IndShockConsumerType, then sets the type of AdjustNow to bool. Parameters ---------- None Returns ------- None ''' IndShockConsumerType.initializeSim(self) self.AdjustNow = self.AdjustNow.astype(bool) def simBirth(self,which_agents): ''' Create new agents to replace ones who have recently died; takes draws of initial aNrm and pLvl, as in ConsIndShockModel, then sets Share and Adjust to zero as initial values. Parameters ---------- which_agents : np.array Boolean array of size AgentCount indicating which agents should be "born". Returns ------- None ''' IndShockConsumerType.simBirth(self,which_agents) self.ShareNow[which_agents] = 0. self.AdjustNow[which_agents] = False def getShocks(self): ''' Draw idiosyncratic income shocks, just as for IndShockConsumerType, then draw a single common value for the risky asset return. Also draws whether each agent is able to update their risky asset share this period. Parameters ---------- None Returns ------- None ''' IndShockConsumerType.getShocks(self) self.getRisky() self.getAdjust() def getControls(self): ''' Calculates consumption cNrmNow and risky portfolio share ShareNow using the policy functions in the attribute solution. These are stored as attributes. Parameters ---------- None Returns ------- None ''' cNrmNow = np.zeros(self.AgentCount) + np.nan ShareNow = np.zeros(self.AgentCount) + np.nan # Loop over each period of the cycle, getting controls separately depending on "age" for t in range(self.T_cycle): these = t == self.t_cycle # Get controls for agents who *can* adjust their portfolio share those = np.logical_and(these, self.AdjustNow) cNrmNow[those] = self.solution[t].cFuncAdj(self.mNrmNow[those]) ShareNow[those] = self.solution[t].ShareFuncAdj(self.mNrmNow[those]) # Get Controls for agents who *can't* adjust their portfolio share those = np.logical_and(these, np.logical_not(self.AdjustNow)) cNrmNow[those] = self.solution[t].cFuncFxd(self.mNrmNow[those], self.ShareNow[those]) ShareNow[those] = self.solution[t].ShareFuncFxd(self.mNrmNow[those], self.ShareNow[those]) # Store controls as attributes of self self.cNrmNow = cNrmNow self.ShareNow = ShareNow # Define a non-object-oriented one period solver def solveConsPortfolio(solution_next,ShockDstn,IncomeDstn,RiskyDstn, LivPrb,DiscFac,CRRA,Rfree,PermGroFac, BoroCnstArt,aXtraGrid,ShareGrid,vFuncBool,AdjustPrb, DiscreteShareBool,ShareLimit,IndepDstnBool): ''' Solve the one period problem for a portfolio-choice consumer. Parameters ---------- solution_next : PortfolioSolution Solution to next period's problem. ShockDstn : [np.array] List with four arrays: discrete probabilities, permanent income shocks, transitory income shocks, and risky returns. This is only used if the input IndepDstnBool is False, indicating that income and return distributions can't be assumed to be independent. IncomeDstn : [np.array] List with three arrays: discrete probabilities, permanent income shocks, and transitory income shocks. This is only used if the input IndepDsntBool is True, indicating that income and return distributions are independent. RiskyDstn : [np.array] List with two arrays: discrete probabilities and risky asset returns. This is only used if the input IndepDstnBool is True, indicating that income and return distributions are independent. LivPrb : float Survival probability; likelihood of being alive at the beginning of the succeeding period. DiscFac : float Intertemporal discount factor for future utility. CRRA : float Coefficient of relative risk aversion. Rfree : float Risk free interest factor on end-of-period assets. PermGroFac : float Expected permanent income growth factor at the end of this period. BoroCnstArt: float or None Borrowing constraint for the minimum allowable assets to end the period with. In this model, it is *required* to be zero. aXtraGrid: np.array Array of "extra" end-of-period asset values-- assets above the absolute minimum acceptable level. ShareGrid : np.array Array of risky portfolio shares on which to define the interpolation of the consumption function when Share is fixed. vFuncBool: boolean An indicator for whether the value function should be computed and included in the reported solution. AdjustPrb : float Probability that the agent will be able to update his portfolio share. DiscreteShareBool : bool Indicator for whether risky portfolio share should be optimized on the continuous [0,1] interval using the FOC (False), or instead only selected from the discrete set of values in ShareGrid (True). If True, then vFuncBool must also be True. ShareLimit : float Limiting lower bound of risky portfolio share as mNrm approaches infinity. IndepDstnBool : bool Indicator for whether the income and risky return distributions are in- dependent of each other, which can speed up the expectations step. Returns ------- solution_now : PortfolioSolution The solution to the single period consumption-saving with portfolio choice problem. Includes two consumption and risky share functions: one for when the agent can adjust his portfolio share (Adj) and when he can't (Fxd). ''' # Make sure the individual is liquidity constrained. Allowing a consumer to # borrow *and* invest in an asset with unbounded (negative) returns is a bad mix. if BoroCnstArt != 0.0: raise ValueError('PortfolioConsumerType must have BoroCnstArt=0.0!') # Make sure that if risky portfolio share is optimized only discretely, then # the value function is also constructed (else this task would be impossible). if (DiscreteShareBool and (not vFuncBool)): raise ValueError('PortfolioConsumerType requires vFuncBool to be True when DiscreteShareBool is True!') # Define temporary functions for utility and its derivative and inverse u = lambda x : utility(x, CRRA) uP = lambda x : utilityP(x, CRRA) uPinv = lambda x : utilityP_inv(x, CRRA) n = lambda x : utility_inv(x, CRRA) nP = lambda x : utility_invP(x, CRRA) # Unpack next period's solution vPfuncAdj_next = solution_next.vPfuncAdj dvdmFuncFxd_next = solution_next.dvdmFuncFxd dvdsFuncFxd_next = solution_next.dvdsFuncFxd vFuncAdj_next = solution_next.vFuncAdj vFuncFxd_next = solution_next.vFuncFxd # Major method fork: (in)dependent risky asset return and income distributions if IndepDstnBool: # If the distributions ARE independent... # Unpack the shock distribution IncPrbs_next = IncomeDstn.pmf PermShks_next = IncomeDstn.X[0] TranShks_next = IncomeDstn.X[1] Rprbs_next = RiskyDstn.pmf Risky_next = RiskyDstn.X zero_bound = (np.min(TranShks_next) == 0.) # Flag for whether the natural borrowing constraint is zero RiskyMax = np.max(Risky_next) # bNrm represents R*a, balances after asset return shocks but before income. # This just uses the highest risky return as a rough shifter for the aXtraGrid. if zero_bound: aNrmGrid = aXtraGrid bNrmGrid = np.insert(RiskyMax*aXtraGrid, 0, np.min(Risky_next)*aXtraGrid[0]) else: aNrmGrid = np.insert(aXtraGrid, 0, 0.0) # Add an asset point at exactly zero bNrmGrid = RiskyMax*np.insert(aXtraGrid, 0, 0.0) # Get grid and shock sizes, for easier indexing aNrm_N = aNrmGrid.size bNrm_N = bNrmGrid.size Share_N = ShareGrid.size Income_N = IncPrbs_next.size Risky_N = Rprbs_next.size # Make tiled arrays to calculate future realizations of mNrm and Share when integrating over IncomeDstn bNrm_tiled = np.tile(np.reshape(bNrmGrid, (bNrm_N,1,1)), (1,Share_N,Income_N)) Share_tiled = np.tile(np.reshape(ShareGrid, (1,Share_N,1)), (bNrm_N,1,Income_N)) IncPrbs_tiled = np.tile(np.reshape(IncPrbs_next, (1,1,Income_N)), (bNrm_N,Share_N,1)) PermShks_tiled = np.tile(np.reshape(PermShks_next, (1,1,Income_N)), (bNrm_N,Share_N,1)) TranShks_tiled = np.tile(np.reshape(TranShks_next, (1,1,Income_N)), (bNrm_N,Share_N,1)) # Calculate future realizations of market resources mNrm_next = bNrm_tiled/(PermShks_tiled*PermGroFac) + TranShks_tiled Share_next = Share_tiled # Evaluate realizations of marginal value of market resources next period dvdmAdj_next = vPfuncAdj_next(mNrm_next) if AdjustPrb < 1.: dvdmFxd_next = dvdmFuncFxd_next(mNrm_next, Share_next) dvdm_next = AdjustPrb*dvdmAdj_next + (1.-AdjustPrb)*dvdmFxd_next # Combine by adjustment probability else: # Don't bother evaluating if there's no chance that portfolio share is fixed dvdm_next = dvdmAdj_next # Evaluate realizations of marginal value of risky share next period dvdsAdj_next = np.zeros_like(mNrm_next) # No marginal value of Share if it's a free choice! if AdjustPrb < 1.: dvdsFxd_next = dvdsFuncFxd_next(mNrm_next, Share_next) dvds_next = AdjustPrb*dvdsAdj_next + (1.-AdjustPrb)*dvdsFxd_next # Combine by adjustment probability else: # Don't bother evaluating if there's no chance that portfolio share is fixed dvds_next = dvdsAdj_next # If the value function has been requested, evaluate realizations of value if vFuncBool: vAdj_next = vFuncAdj_next(mNrm_next) if AdjustPrb < 1.: vFxd_next = vFuncFxd_next(mNrm_next, Share_next) v_next = AdjustPrb*vAdj_next + (1.-AdjustPrb)*vFxd_next else: # Don't bother evaluating if there's no chance that portfolio share is fixed v_next = vAdj_next else: v_next = np.zeros_like(dvdm_next) # Trivial array # Calculate intermediate marginal value of bank balances by taking expectations over income shocks temp_fac_A = uP(PermShks_tiled*PermGroFac) # Will use this in a couple places dvdb_intermed = np.sum(IncPrbs_tiled*temp_fac_A*dvdm_next, axis=2) dvdbNvrs_intermed = uPinv(dvdb_intermed) dvdbNvrsFunc_intermed = BilinearInterp(dvdbNvrs_intermed, bNrmGrid, ShareGrid) dvdbFunc_intermed = MargValueFunc2D(dvdbNvrsFunc_intermed, CRRA) # Calculate intermediate value by taking expectations over income shocks temp_fac_B = (PermShks_tiled*PermGroFac)**(1.-CRRA) # Will use this below if vFuncBool: v_intermed = np.sum(IncPrbs_tiled*temp_fac_B*v_next, axis=2) vNvrs_intermed = n(v_intermed) vNvrsFunc_intermed = BilinearInterp(vNvrs_intermed, bNrmGrid, ShareGrid) vFunc_intermed = ValueFunc2D(vNvrsFunc_intermed, CRRA) # Calculate intermediate marginal value of risky portfolio share by taking expectations dvds_intermed = np.sum(IncPrbs_tiled*temp_fac_B*dvds_next, axis=2) dvdsFunc_intermed = BilinearInterp(dvds_intermed, bNrmGrid, ShareGrid) # Make tiled arrays to calculate future realizations of bNrm and Share when integrating over RiskyDstn aNrm_tiled = np.tile(np.reshape(aNrmGrid, (aNrm_N,1,1)), (1,Share_N,Risky_N)) Share_tiled = np.tile(np.reshape(ShareGrid, (1,Share_N,1)), (aNrm_N,1,Risky_N)) Rprbs_tiled = np.tile(np.reshape(Rprbs_next, (1,1,Risky_N)), (aNrm_N,Share_N,1)) Risky_tiled = np.tile(np.reshape(Risky_next, (1,1,Risky_N)), (aNrm_N,Share_N,1)) # Calculate future realizations of bank balances bNrm Share_next = Share_tiled Rxs = Risky_tiled - Rfree Rport = Rfree + Share_next*Rxs bNrm_next = Rport*aNrm_tiled # Evaluate realizations of value and marginal value after asset returns are realized dvdb_next = dvdbFunc_intermed(bNrm_next, Share_next) dvds_next = dvdsFunc_intermed(bNrm_next, Share_next) if vFuncBool: v_next = vFunc_intermed(bNrm_next, Share_next) else: v_next = np.zeros_like(dvdb_next) # Calculate end-of-period marginal value of assets by taking expectations EndOfPrddvda = DiscFac*LivPrb*np.sum(Rprbs_tiled*Rport*dvdb_next, axis=2) EndOfPrddvdaNvrs = uPinv(EndOfPrddvda) # Calculate end-of-period value by taking expectations if vFuncBool: EndOfPrdv = DiscFac*LivPrb*np.sum(Rprbs_tiled*v_next, axis=2) EndOfPrdvNvrs = n(EndOfPrdv) # Calculate end-of-period marginal value of risky portfolio share by taking expectations EndOfPrddvds = DiscFac*LivPrb*np.sum(Rprbs_tiled*(Rxs*aNrm_tiled*dvdb_next + dvds_next), axis=2) else: # If the distributions are NOT independent... # Unpack the shock distribution ShockPrbs_next = ShockDstn[0] PermShks_next = ShockDstn[1] TranShks_next = ShockDstn[2] Risky_next = ShockDstn[3] zero_bound = (np.min(TranShks_next) == 0.) # Flag for whether the natural borrowing constraint is zero # Make tiled arrays to calculate future realizations of mNrm and Share; dimension order: mNrm, Share, shock if zero_bound: aNrmGrid = aXtraGrid else: aNrmGrid = np.insert(aXtraGrid, 0, 0.0) # Add an asset point at exactly zero aNrm_N = aNrmGrid.size Share_N = ShareGrid.size Shock_N = ShockPrbs_next.size aNrm_tiled = np.tile(np.reshape(aNrmGrid, (aNrm_N,1,1)), (1,Share_N,Shock_N)) Share_tiled = np.tile(np.reshape(ShareGrid, (1,Share_N,1)), (aNrm_N,1,Shock_N)) ShockPrbs_tiled = np.tile(np.reshape(ShockPrbs_next, (1,1,Shock_N)), (aNrm_N,Share_N,1)) PermShks_tiled = np.tile(np.reshape(PermShks_next, (1,1,Shock_N)), (aNrm_N,Share_N,1)) TranShks_tiled = np.tile(np.reshape(TranShks_next, (1,1,Shock_N)), (aNrm_N,Share_N,1)) Risky_tiled = np.tile(np.reshape(Risky_next, (1,1,Shock_N)), (aNrm_N,Share_N,1)) # Calculate future realizations of market resources Rport = (1.-Share_tiled)*Rfree + Share_tiled*Risky_tiled mNrm_next = Rport*aNrm_tiled/(PermShks_tiled*PermGroFac) + TranShks_tiled Share_next = Share_tiled # Evaluate realizations of marginal value of market resources next period dvdmAdj_next = vPfuncAdj_next(mNrm_next) if AdjustPrb < 1.: dvdmFxd_next = dvdmFuncFxd_next(mNrm_next, Share_next) dvdm_next = AdjustPrb*dvdmAdj_next + (1.-AdjustPrb)*dvdmFxd_next # Combine by adjustment probability else: # Don't bother evaluating if there's no chance that portfolio share is fixed dvdm_next = dvdmAdj_next # Evaluate realizations of marginal value of risky share next period dvdsAdj_next = np.zeros_like(mNrm_next) # No marginal value of Share if it's a free choice! if AdjustPrb < 1.: dvdsFxd_next = dvdsFuncFxd_next(mNrm_next, Share_next) dvds_next = AdjustPrb*dvdsAdj_next + (1.-AdjustPrb)*dvdsFxd_next # Combine by adjustment probability else: # Don't bother evaluating if there's no chance that portfolio share is fixed dvds_next = dvdsAdj_next # If the value function has been requested, evaluate realizations of value if vFuncBool: vAdj_next = vFuncAdj_next(mNrm_next) if AdjustPrb < 1.: vFxd_next = vFuncFxd_next(mNrm_next, Share_next) v_next = AdjustPrb*vAdj_next + (1.-AdjustPrb)*vFxd_next else: # Don't bother evaluating if there's no chance that portfolio share is fixed v_next = vAdj_next else: v_next = np.zeros_like(dvdm_next) # Trivial array # Calculate end-of-period marginal value of assets by taking expectations temp_fac_A = uP(PermShks_tiled*PermGroFac) # Will use this in a couple places EndOfPrddvda = DiscFac*LivPrb*np.sum(ShockPrbs_tiled*Rport*temp_fac_A*dvdm_next, axis=2) EndOfPrddvdaNvrs = uPinv(EndOfPrddvda) # Calculate end-of-period value by taking expectations temp_fac_B = (PermShks_tiled*PermGroFac)**(1.-CRRA) # Will use this below if vFuncBool: EndOfPrdv = DiscFac*LivPrb*np.sum(ShockPrbs_tiled*temp_fac_B*v_next, axis=2) EndOfPrdvNvrs = n(EndOfPrdv) # Calculate end-of-period marginal value of risky portfolio share by taking expectations Rxs = Risky_tiled - Rfree EndOfPrddvds = DiscFac*LivPrb*np.sum(ShockPrbs_tiled*(Rxs*aNrm_tiled*temp_fac_A*dvdm_next + temp_fac_B*dvds_next), axis=2) # Major method fork: discrete vs continuous choice of risky portfolio share if DiscreteShareBool: # Optimization of Share on the discrete set ShareGrid opt_idx = np.argmax(EndOfPrdv, axis=1) Share_now = ShareGrid[opt_idx] # Best portfolio share is one with highest value cNrmAdj_now = EndOfPrddvdaNvrs[np.arange(aNrm_N), opt_idx] # Take cNrm at that index as well if not zero_bound: Share_now[0] = 1. # aNrm=0, so there's no way to "optimize" the portfolio cNrmAdj_now[0] = EndOfPrddvdaNvrs[0,-1] # Consumption when aNrm=0 does not depend on Share else: # Optimization of Share on continuous interval [0,1] # For values of aNrm at which the agent wants to put more than 100% into risky asset, constrain them FOC_s = EndOfPrddvds Share_now = np.zeros_like(aNrmGrid) # Initialize to putting everything in safe asset cNrmAdj_now = np.zeros_like(aNrmGrid) constrained = FOC_s[:,-1] > 0. # If agent wants to put more than 100% into risky asset, he is constrained Share_now[constrained] = 1.0 if not zero_bound: Share_now[0] = 1. # aNrm=0, so there's no way to "optimize" the portfolio cNrmAdj_now[0] = EndOfPrddvdaNvrs[0,-1] # Consumption when aNrm=0 does not depend on Share cNrmAdj_now[constrained] = EndOfPrddvdaNvrs[constrained,-1] # Get consumption when share-constrained # For each value of aNrm, find the value of Share such that FOC-Share == 0. # This loop can probably be eliminated, but it's such a small step that it won't speed things up much. crossing = np.logical_and(FOC_s[:,1:] <= 0., FOC_s[:,:-1] >= 0.) for j in range(aNrm_N): if Share_now[j] == 0.: try: idx = np.argwhere(crossing[j,:])[0][0] bot_s = ShareGrid[idx] top_s = ShareGrid[idx+1] bot_f = FOC_s[j,idx] top_f = FOC_s[j,idx+1] bot_c = EndOfPrddvdaNvrs[j,idx] top_c = EndOfPrddvdaNvrs[j,idx+1] alpha = 1. - top_f/(top_f-bot_f) Share_now[j] = (1.-alpha)*bot_s + alpha*top_s cNrmAdj_now[j] = (1.-alpha)*bot_c + alpha*top_c except: print('No optimal controls found for a=' + str(aNrmGrid[j])) # Calculate the endogenous mNrm gridpoints when the agent adjusts his portfolio mNrmAdj_now = aNrmGrid + cNrmAdj_now # Construct the risky share function when the agent can adjust if DiscreteShareBool: mNrmAdj_mid = (mNrmAdj_now[1:] + mNrmAdj_now[:-1])/2 mNrmAdj_plus = mNrmAdj_mid*(1.+1e-12) mNrmAdj_comb = (np.transpose(np.vstack((mNrmAdj_mid,mNrmAdj_plus)))).flatten() mNrmAdj_comb = np.append(np.insert(mNrmAdj_comb,0,0.0), mNrmAdj_now[-1]) Share_comb = (np.transpose(np.vstack((Share_now,Share_now)))).flatten() ShareFuncAdj_now = LinearInterp(mNrmAdj_comb, Share_comb) else: if zero_bound: Share_lower_bound = ShareLimit else: Share_lower_bound = 1.0 Share_now = np.insert(Share_now, 0, Share_lower_bound) ShareFuncAdj_now = LinearInterp( np.insert(mNrmAdj_now,0,0.0), Share_now, intercept_limit=ShareLimit, slope_limit=0.0) # Construct the consumption function when the agent can adjust cNrmAdj_now = np.insert(cNrmAdj_now, 0, 0.0) cFuncAdj_now = LinearInterp(np.insert(mNrmAdj_now,0,0.0), cNrmAdj_now) # Construct the marginal value (of mNrm) function when the agent can adjust vPfuncAdj_now = MargValueFunc(cFuncAdj_now, CRRA) # Construct the consumption function when the agent *can't* adjust the risky share, as well # as the marginal value of Share function cFuncFxd_by_Share = [] dvdsFuncFxd_by_Share = [] for j in range(Share_N): cNrmFxd_temp = EndOfPrddvdaNvrs[:,j] mNrmFxd_temp = aNrmGrid + cNrmFxd_temp cFuncFxd_by_Share.append(LinearInterp(np.insert(mNrmFxd_temp, 0, 0.0), np.insert(cNrmFxd_temp, 0, 0.0))) dvdsFuncFxd_by_Share.append(LinearInterp(np.insert(mNrmFxd_temp, 0, 0.0), np.insert(EndOfPrddvds[:,j], 0, EndOfPrddvds[0,j]))) cFuncFxd_now = LinearInterpOnInterp1D(cFuncFxd_by_Share, ShareGrid) dvdsFuncFxd_now = LinearInterpOnInterp1D(dvdsFuncFxd_by_Share, ShareGrid) # The share function when the agent can't adjust his portfolio is trivial ShareFuncFxd_now = IdentityFunction(i_dim=1, n_dims=2) # Construct the marginal value of mNrm function when the agent can't adjust his share dvdmFuncFxd_now = MargValueFunc2D(cFuncFxd_now, CRRA) # If the value function has been requested, construct it now if vFuncBool: # First, make an end-of-period value function over aNrm and Share EndOfPrdvNvrsFunc = BilinearInterp(EndOfPrdvNvrs, aNrmGrid, ShareGrid) EndOfPrdvFunc = ValueFunc2D(EndOfPrdvNvrsFunc, CRRA) # Construct the value function when the agent can adjust his portfolio mNrm_temp = aXtraGrid # Just use aXtraGrid as our grid of mNrm values cNrm_temp = cFuncAdj_now(mNrm_temp) aNrm_temp = mNrm_temp - cNrm_temp Share_temp = ShareFuncAdj_now(mNrm_temp) v_temp = u(cNrm_temp) + EndOfPrdvFunc(aNrm_temp, Share_temp) vNvrs_temp = n(v_temp) vNvrsP_temp= uP(cNrm_temp)*nP(v_temp) vNvrsFuncAdj = CubicInterp( np.insert(mNrm_temp,0,0.0), # x_list np.insert(vNvrs_temp,0,0.0), # f_list np.insert(vNvrsP_temp,0,vNvrsP_temp[0])) # dfdx_list vFuncAdj_now = ValueFunc(vNvrsFuncAdj, CRRA) # Re-curve the pseudo-inverse value function # Construct the value function when the agent *can't* adjust his portfolio mNrm_temp = np.tile(np.reshape(aXtraGrid, (aXtraGrid.size, 1)), (1, Share_N)) Share_temp = np.tile(np.reshape(ShareGrid, (1, Share_N)), (aXtraGrid.size, 1)) cNrm_temp = cFuncFxd_now(mNrm_temp, Share_temp) aNrm_temp = mNrm_temp - cNrm_temp v_temp = u(cNrm_temp) + EndOfPrdvFunc(aNrm_temp, Share_temp) vNvrs_temp = n(v_temp) vNvrsP_temp= uP(cNrm_temp)*nP(v_temp) vNvrsFuncFxd_by_Share = [] for j in range(Share_N): vNvrsFuncFxd_by_Share.append(CubicInterp( np.insert(mNrm_temp[:,0],0,0.0), # x_list np.insert(vNvrs_temp[:,j],0,0.0), # f_list np.insert(vNvrsP_temp[:,j],0,vNvrsP_temp[j,0]))) #dfdx_list vNvrsFuncFxd = LinearInterpOnInterp1D(vNvrsFuncFxd_by_Share, ShareGrid) vFuncFxd_now = ValueFunc2D(vNvrsFuncFxd, CRRA) else: # If vFuncBool is False, fill in dummy values vFuncAdj_now = None vFuncFxd_now = None # Create and return this period's solution return PortfolioSolution( cFuncAdj = cFuncAdj_now, ShareFuncAdj = ShareFuncAdj_now, vPfuncAdj = vPfuncAdj_now, vFuncAdj = vFuncAdj_now, cFuncFxd = cFuncFxd_now, ShareFuncFxd = ShareFuncFxd_now, dvdmFuncFxd = dvdmFuncFxd_now, dvdsFuncFxd = dvdsFuncFxd_now, vFuncFxd = vFuncFxd_now ) # Make a dictionary to specify a portfolio choice consumer type init_portfolio = init_idiosyncratic_shocks.copy() init_portfolio['RiskyAvg'] = 1.08 # Average return of the risky asset init_portfolio['RiskyStd'] = 0.20 # Standard deviation of (log) risky returns init_portfolio['RiskyCount'] = 5 # Number of integration nodes to use in approximation of risky returns init_portfolio['ShareCount'] = 25 # Number of discrete points in the risky share approximation init_portfolio['AdjustPrb'] = 1.0 # Probability that the agent can adjust their risky portfolio share each period init_portfolio['DiscreteShareBool'] = False # Flag for whether to optimize risky share on a discrete grid only # Adjust some of the existing parameters in the dictionary init_portfolio['aXtraMax'] = 100 # Make the grid of assets go much higher... init_portfolio['aXtraCount'] = 200 # ...and include many more gridpoints... init_portfolio['aXtraNestFac'] = 1 # ...which aren't so clustered at the bottom init_portfolio['BoroCnstArt'] = 0.0 # Artificial borrowing constraint must be turned on init_portfolio['CRRA'] = 5.0 # Results are more interesting with higher risk aversion init_portfolio['DiscFac'] = 0.90 # And also lower patience
import re, os from template_lib.utils.plot_utils import MatPlot def parse_logfile(args, myargs): config = getattr(myargs.config, args.command) matplot = MatPlot() fig, ax = matplot.get_fig_and_ax() if len(config.logfiles) == 1: logfiles = config.logfiles * len(config.re_strs) for logfile, re_str in zip(logfiles, config.re_strs): RE_STR = re.compile(re_str) _, step = matplot.parse_logfile_using_re( logfile=logfile, re_str=re.compile('Step (\d*)')) (idx, val) = matplot.parse_logfile_using_re(logfile=logfile, re_str=RE_STR) ax.plot(step, val, label=re_str) ax.legend() matplot.save_to_png( fig, filepath=os.path.join(args.outdir, config.title + '.png')) pass
import requests from nba_api.stats.endpoints import commonplayerinfo, shotchartdetail, playerdashptshots from nba_api.stats.static import players import json as json from Enums import Output class NBAData: def __init__(self): self.FileMappings = { Output.json: self.__getDataJson, Output.csv: self.__getDataCsv } def getData(self, player: str, fileType: Output ): playerData = players.find_players_by_full_name(player) shotCharts = {} for player in playerData: shotCharts[player['full_name']] = playerdashptshots.PlayerDashPtShots(team_id=0,player_id=player['id']) return self.FileMappings[fileType](shotCharts) def __getDataJson(self, shotCharts) -> str: return {key : value.overall.get_json() for key, value in shotCharts.items()} def __getDataCsv(self, shotCharts) -> str: return {key : value.overall.get_data_frame().to_csv() for key, value in shotCharts.items()}
import uuid from rest_framework import status from lego.apps.flatpages.models import Page from lego.apps.users.models import AbakusGroup from lego.apps.users.tests.utils import create_normal_user, create_user_with_permissions from lego.utils.test_utils import BaseAPITestCase def get_new_unique_page(): return { "title": f"title-{str(uuid.uuid4())}", "slug": f"slug-{str(uuid.uuid4())}", "content": f"content-{str(uuid.uuid4())}", } def create_group(**kwargs): return AbakusGroup.objects.create(name=str(uuid.uuid4()), **kwargs) class PageAPITestCase(BaseAPITestCase): fixtures = ["test_pages.yaml"] def setUp(self): self.pages = Page.objects.all().order_by("created_at") def test_get_pages(self): response = self.client.get("/api/v1/pages/") self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.json()["results"]), 4) first = response.json()["results"][0] self.assertEqual(first["title"], self.pages.first().title) self.assertEqual(first["slug"], self.pages.first().slug) self.assertFalse("content" in first) def test_get_page_with_id(self): slug = "webkom" response = self.client.get("/api/v1/pages/{0}/".format(slug)) expected = self.pages.get(slug=slug) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json()["title"], expected.title) self.assertEqual(response.json()["slug"], expected.slug) self.assertEqual(response.json()["content"], expected.content) def test_non_existing_retrieve(self): response = self.client.get("/api/v1/pages/badslug/") self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def test_unauthenticated(self): slug = "webkom" methods = ["post", "patch", "put", "delete"] for method in methods: call = getattr(self.client, method) response = call("/api/v1/pages/{0}/".format(slug)) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_unauthorized(self): slug = "webkom" methods = ["post", "patch", "put", "delete"] user = create_normal_user() self.client.force_authenticate(user) for method in methods: call = getattr(self.client, method) response = call("/api/v1/pages/{0}/".format(slug)) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_create_page(self): page = {"title": "cat", "content": "hei"} user = create_user_with_permissions("/sudo/admin/pages/") self.client.force_authenticate(user) response = self.client.post("/api/v1/pages/", data=page) self.assertEqual(response.status_code, status.HTTP_201_CREATED) def test_list_with_keyword_permissions(self): user = create_user_with_permissions("/sudo/admin/pages/list/") self.client.force_authenticate(user) response = self.client.get("/api/v1/pages/") self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.json()["results"]), 5) def test_edit_with_object_permissions(self): slug = "webkom" page = self.pages.get(slug=slug) user = create_normal_user() group = create_group() group.add_user(user) group.save() page.can_edit_groups.add(group) self.client.force_authenticate(user) response = self.client.patch( "/api/v1/pages/{0}/".format(slug), get_new_unique_page() ) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_edit_without_object_permissions(self): slug = "webkom" page = self.pages.get(slug=slug) user = create_normal_user() group = create_group() page.can_edit_groups.add(group) wrong_group = create_group() wrong_group.add_user(user) wrong_group.save() self.client.force_authenticate(user) response = self.client.patch( "/api/v1/pages/{0}/".format(slug), get_new_unique_page() ) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN)
from requests import get from bs4 import BeautifulSoup from datetime import datetime as dt from random import shuffle from pyquery import PyQuery from pymongo import MongoClient ###Connect db def connect_db(collection: str, db='Hyplate'): conn = MongoClient(host = '127.0.0.1', port = 27017) return conn[db][collection] ########## def read_rss(url): article_list = [] r = get(url) soup = BeautifulSoup(r.content, features='xml') articles = soup.findAll('item') for a in articles: try: article_obj = {} try: article_obj['title'] = a.find('title').text except: article_obj['title'] = '' try: article_obj['link'] = a.find('link').text except: article_obj['link'] = '' try: date = a.find('pubDate').text[0:17] article_obj['date'] = dt.strptime(date, '%a, %d %b %Y').date() except: article_obj['date'] = date try: p1 = a.find('content:encoded') p1 = p1.text.replace('&lt;', '<').replace('&gt;', '>').replace(']]>', '>').replace('<![CDATA[', '') p = PyQuery(p1) img = p('div img').attr('src') or ('img').attr('src') article_obj['description'] = p('p').text()[0:200]+'...' article_obj['img'] = img except: p1 = a.find('description').text p1 = p1.replace('<![CDATA[', '') article_obj['description'] = p1[0:200]+'...' article_obj['img'] = '/static/assets/img/logos/infographics.png' try: article_obj['category'] =a.find('category').text except: article_obj['category'] = 'Web Scraping' article_list.append(article_obj) except: print('Cannot Pass'+url) pass return article_list
import pytest from tests.fixtures import typical_request from elasticpypi.handler import auth def test_auth_can_decode_basic_auth_header_for_users(): expected = { 'principalId': 'elasticpypi', 'policyDocument': { 'Version': '2012-10-17', 'Statement': [ { 'Action': 'execute-api:Invoke', 'Effect': 'Allow', 'Resource': ['arn:aws:execute-api:us-artic-1:1234567890:*/packages/*/*'] } ] } } policy_document = auth(typical_request(), {}) assert policy_document == expected policy_document = auth(typical_request(user='user2', password='blah'), {}) expected['principalId'] = "user2" assert policy_document == expected def test_get_username_and_password_form_environment(): from elasticpypi import config del config.config['users'] config.config['username'] = 'user3' config.config['password'] = 'blah' expected = { 'principalId': 'user3', 'policyDocument': { 'Version': '2012-10-17', 'Statement': [ { 'Action': 'execute-api:Invoke', 'Effect': 'Allow', 'Resource': ['arn:aws:execute-api:us-artic-1:1234567890:*/packages/*/*'] } ] } } policy_document = auth(typical_request(user='user3', password='blah'), {}) assert policy_document == expected def test_auth_raises_401_when_comparison_fails(): with pytest.raises(Exception): auth(typical_request(password='notCorrect'), {})
from M2Crypto.EVP import Cipher from M2Crypto.EVP import pbkdf2 from M2Crypto.Rand import rand_bytes g_encrypt = 1 g_decrypt = 0 g_salt1 = b"12345678" g_salt2 = bytes("12345678", "utf8") g_iv = b"0000000000000000" def p_example1_hard_coded1(password, data): key = pbkdf2(password, b"12345678", 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example2_hard_coded2(password, data): key = pbkdf2(password, bytes("12345678", "utf8"), 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example3_local_variable1(password, data): salt = b"12345678" key = pbkdf2(password, salt, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example4_local_variable2(password, data): salt = bytes("12345678", "utf8") key = pbkdf2(password, salt, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example5_nested_local_variable1(password, data): salt1 = b"12345678" salt2 = salt1 salt3 = salt2 key = pbkdf2(password, salt3, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example6_nested_local_variable2(password, data): salt1 = bytes("12345678", "utf8") salt2 = salt1 salt3 = salt2 key = pbkdf2(password, salt3, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example_method_call(password, salt, data): key = pbkdf2(password, salt, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example_nested_method_call(password, salt, data): return p_example_method_call(password, salt, data) def p_example7_direct_method_call1(password, data): salt = b"12345678" return p_example_method_call(password, salt, data) def p_example8_direct_method_call2(password, data): salt = bytes("12345678", "utf8") return p_example_method_call(password, salt, data) def p_example9_nested_method_call1(password, data): salt = b"12345678" return p_example_nested_method_call(password, salt, data) def p_example10_nested_method_call2(password, data): salt = bytes("12345678", "utf8") return p_example_nested_method_call(password, salt, data) def p_example11_direct_g_variable_access1(password, data): key = pbkdf2(password, g_salt1, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example12_direct_g_variable_access2(password, data): key = pbkdf2(password, g_salt2, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example13_indirect_g_variable_access1(password, data): salt = g_salt1 key = pbkdf2(password, salt, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example14_indirect_g_variable_access2(password, data): salt = g_salt2 key = pbkdf2(password, salt, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def p_example15_warning_parameter_not_resolvable(password, salt, data): key = pbkdf2(password, salt, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text def n_example1_random_salt(password, data): salt = rand_bytes(8) key = pbkdf2(password, salt, 1000, 32) cipher = Cipher("aes_256_ecb", key, g_iv, g_encrypt) cipher_text = cipher.update(data) + cipher.final() return cipher_text
import google import requests from bs4 import BeautifulSoup import re TAG_RE = re.compile(r'<[^>]+>') WordBank = open("WordBank.txt","w+") def googleSearch(topic): try: from googlesearch import search except ImportError: print("No module named 'google' found") query = topic for j in search(query, tld="co.in", num=10, stop=25, pause=2): print(j) #make html object r=requests.get(j) c=r.content #make soup object soup=BeautifulSoup(c,"html.parser") cleanSoup = soup #clean the soup for script in cleanSoup("script"): script.extract() for style in cleanSoup("style"): style.extract() for tag in cleanSoup(True): tag.unwrap() #almost there cleanSoup = remove_tags(soup.prettify()) cleanSoup = cleanSoup.replace("\n","") finalText = str(cleanSoup.encode("utf8")) #save the soup for later WordBank.write(finalText + "<|endoftext|>") def remove_tags(text): return TAG_RE.sub('', text) topicIn = input("Pick A Topic. ") googleSearch(topicIn) input("enter to exit")
# Generated by Django 2.1.4 on 2018-12-11 15:58 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("api", "0026_merge_20181210_2232"), ("api", "0025_merge_20181210_2243"), ] operations = []
test = { 'name': 'q2b', 'points': 1, 'suites': [ { 'cases': [ { 'code': '>>> diabetes_mean.size\n10', 'hidden': False, 'locked': False}, { 'code': '>>> ' 'np.all(np.isclose(diabetes_mean, ' '[0]*10))\n' 'True', 'hidden': False, 'locked': False}, { 'code': '>>> ' 'np.all(np.isclose(np.zeros(10), ' 'np.mean(normalized_features, ' 'axis=0))) # make sure data is ' 'centered at 0\n' 'True', 'hidden': False, 'locked': False}, { 'code': '>>> -.003 < ' 'np.sum(normalized_features[0]) ' '< 0.003 # make sure scaling ' 'was done correctly\n' 'True', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
import argparse import sys try: parser = argparse.ArgumentParser() parser.add_argument("square", help="display a square of a given number", type=int) args = parser.parse_args() #print the square of user input from cmd line. print args.square**2 #print all the sys argument passed from cmd line including the program name. print sys.argv #print the second argument passed from cmd line; Note it starts from ZERO print sys.argv[1] except: # e = sys.exc_info()[0] # print e # rompt the user to select a HTTP Method of the following options: # GET # POST # PUT # DELETE # HEAD # PATCH OPTIONS
""" Model Calibration Tools Tools for displaying and recalibration model predictions. Usage: import mct # get your model predictions and true class labels preds, labels = ... # display calibration of original model fig, estimate, ci = mct.display_calibration(preds, labels, bandwidth=0.05) plt.show(block=False) # Recalibrate predictions calibrator = mct.create_calibrator(estimate.orig, estimate.calibrated) calibrated = calibrator(preds) # Display recalibrated predictions plt.figure() mct.display_calibration(calibrated, labels, bandwidth=0.05) plt.show() """ import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from sklearn.neighbors import KernelDensity from collections import namedtuple from scipy import interpolate KdeResult = namedtuple('KdeResult', 'orig calibrated ici pos_intensity all_intensity') """Encapsulates the components of a KDE calibration. Args: orig (array-like of float in [0,1]): a grid of original probabilities, usually equally spaced over the domain. calibrated (array-like of float in [0,1]): the calibrated probabilities corresponding to those in `orig` ici (float): the Integrated Calibration Index of `calibrated`, given `all_intensity` pos_intensity (array-like of float): The intensity of elements with positive labels, computed at values in `orig` all_intensity (array-like of float): The intensity of all elements, computed at values in `orig`. """ def histograms(probs, actual, bins=100): """ Calculates two histograms over [0, 1] by partitioning `probs` with `actual` and sorting each partition into `bins` sub-intervals. """ actual = actual.astype(np.bool) edges, step = np.linspace(0., 1., bins, retstep=True, endpoint=False) idx = np.digitize(probs, edges) - 1 top = np.bincount(idx, weights=actual, minlength=bins) bot = np.bincount(idx, weights=(~actual), minlength=bins) return top, bot, edges, step def _compute_intensity(x_values, probs, kernel, bandwidth, **kde_args): kde = KernelDensity(kernel=kernel, bandwidth=bandwidth, **kde_args) kde.fit(probs.reshape(-1, 1)) log_density = kde.score_samples(x_values.reshape(-1, 1)) # We want the area under `intensity` to be the number of samples intensity = np.exp(log_density) * len(probs) return intensity def _compute_single_calibration(x_values, probs, actual, kernel, bandwidth, **kde_args): positives = probs[actual == 1] pos_intensity = _compute_intensity(x_values, positives, kernel, bandwidth) all_intensity = _compute_intensity(x_values, probs, kernel, bandwidth, **kde_args) calibrated = pos_intensity / all_intensity ici = compute_ici(x_values, calibrated, all_intensity) return KdeResult(orig=x_values, calibrated=calibrated, ici=ici, pos_intensity=pos_intensity, all_intensity=all_intensity) def _resample_calibration(num_iterations, x_values, probs, actual, kernel, bandwidth, **kde_args): calibrated = [] ici = [] pos_intensity = [] all_intensity = [] for _ in range(num_iterations): indices = np.random.randint(probs.size, size=probs.size) samp_probs = probs[indices] samp_actual = actual[indices] cal = _compute_single_calibration(x_values, samp_probs, samp_actual, kernel, bandwidth, **kde_args) calibrated.append(cal.calibrated) ici.append(cal.ici) pos_intensity.append(cal.pos_intensity) all_intensity.append(cal.all_intensity) return KdeResult(orig=x_values, calibrated=np.vstack(calibrated), ici=ici, pos_intensity=np.vstack(pos_intensity), all_intensity=np.vstack(all_intensity)) def create_calibrator(orig, calibrated): """Create a function to calibrate new predictions. The calibration function is a linear interpolation of `calibrated` vs `orig`. Points outside the range of `orig` are interpolated as if (0,0) and (1,1) are included points. Args: orig (array-like of float): Original model predictions in [0,1] calibrated ([type]): Calibrated versions in [0,1] of `orig`. Returns: f(x) -> calibrated_x: a function returning calibrated versions `calibrated_x` of inputs `x`, where x is array-like of float in [0,1]. """ if orig[0] > 0: orig = np.insert(orig, 0, 0) calibrated = np.insert(calibrated, 0, 0) if orig[-1] < 1: orig = np.append(orig, 1.0) calibrated = np.append(calibrated, 1.0) return interpolate.interp1d(orig, calibrated, 'linear', bounds_error=True) def compute_kde_calibration(probs, actual, resolution=0.01, kernel='gaussian', n_resamples=None, bandwidth=0.1, alpha=None, **kde_args): """Generate a calibration curve using kernel density estimation. The curve is generated by computing the intensity (= probability density * number of samples) of the positive-labeled instances, and dividing that by the intensity of all instances. Uses bootstrap resampling to estimate the confidence intervals, if requested. Args: probs (array-like of float in [0,1]): model predicted probability for each instance. actual (array-like of int in {0,1}): class label for each instance. resolution (float, optional): Desired curve grid resolution. Defaults to 0.01. kernel (str, optional): Any valid kernel name for sklearn.neighbors.KernelDensity. Defaults to 'gaussian'. n_resamples (int, optional): Number of iterations of bootstrap resampling for computing confidence intervals. If None (default), a value is chosen such that the CIs are reasonably repeatable. Ignored if alpha=None. bandwidth (float, optional): Desired kernel bandwidth. Defaults to 0.1. alpha (float, optional): Desired significance level for the confidence intervals. Defaults to None. **kde_args: Additional args for sklearn.neighbors.KernelDensity. Returns: A tuple containing: a KdeResult of the best estimates a KdeResult of the confidence intervals """ x_min = max((0, np.amin(probs) - resolution)) x_max = min((1, np.amax(probs) + resolution)) x_values = np.arange(x_min, x_max, step=resolution) estimate = _compute_single_calibration(x_values, probs, actual, kernel=kernel, bandwidth=bandwidth, **kde_args) calibration_ci = None ici_ci = None pos_ci = None all_ci = None if alpha is not None: if n_resamples is None: # Choose a number of iterations such that there are about 50 points outside each end of the confidence interval. n_resamples = int(100 / alpha) samples = _resample_calibration(n_resamples, x_values, probs, actual, kernel, bandwidth, **kde_args) calibration_ci = np.quantile(samples.calibrated, (alpha / 2, 1 - alpha / 2), axis=0) ici_ci = np.quantile(samples.ici, (alpha / 2, 1 - alpha / 2)) pos_ci = np.quantile(samples.pos_intensity, (alpha / 2, 1 - alpha / 2), axis=0) all_ci = np.quantile(samples.all_intensity, (alpha / 2, 1 - alpha / 2), axis=0) ci = KdeResult(orig=x_values, calibrated=calibration_ci, ici=ici_ci, pos_intensity=pos_ci, all_intensity=all_ci) return (estimate, ci) def compute_ici(orig, calibrated, all_intensity): ici = (np.sum(all_intensity * np.abs(calibrated - orig)) / np.sum(all_intensity)) return ici def plot_histograms(top, bot, edges, resolution, *, ax=None): """ Plots the two histograms generated by ``histograms``; the histogram of actual negatives is plotted underneath the x axis while the histogram of actual positives is plotted above. """ if ax is None: ax = plt.gca() ax.hlines(y=0, xmin=0, xmax=1, linestyle='dashed', color='black', alpha=0.2) ax.bar(edges, top, width=resolution) ax.bar(edges, -bot, width=resolution) # Set some sensible defaults - these can be overridden after the fact, # since we return the axes object ax.set_xlim((-0.05, 1.05)) ax.set_xlabel('Predicted Probability') height = max(abs(x) for x in ax.get_ylim()) ax.set_ylim((-height, height)) ax.set_ylabel('Count') return ax def plot_calibration_curve(orig, calibrated, calibrated_ci=None, ici=None, ici_ci=None, pos_intensity=None, all_intensity=None, *, label=None, ax=None): """ Plots a calibration curve. """ plot_intensities = pos_intensity is not None and all_intensity is not None if ax is None: ax = plt.gca() ax.set_aspect('equal') limits = (-0.05, 1.05) ax.set_ylim(limits) ax.set_xlim(limits) ici_ci_label = ('' if ici_ci is None else f' (ICI [{ici_ci[0]:0.3f}, {ici_ci[1]:0.3f}])') ici_label = '' if ici is None else f' (ICI {ici:0.3f})' ax.plot((0, 1), (0, 1), 'black', linewidth=0.2) ax.plot(orig, calibrated, label=f'Estimated Calibration{ici_label}') if calibrated_ci is not None: ax.fill_between(orig, calibrated_ci[0], calibrated_ci[1], color='C0', alpha=0.3, edgecolor='C0', label=f'Confidence Interval{ici_ci_label}') if plot_intensities: # We normalize the intensities to a max of 1, so they can plot on the same y axis as the calibration curve. pos_intensity /= all_intensity.max() all_intensity /= all_intensity.max() ax.plot(orig, pos_intensity, color='C1', alpha=0.4, label='Positive Intensity') ax.plot(orig, all_intensity, color='C2', alpha=0.4, label='All Intensity') ax.legend(loc='best') ax.set_xlabel('Predicted Probability') ax.set_ylabel('Actual Probability') if label is not None: ax.set_title(f'{label}') return ax def display_calibration(probs, actual, *, figure=None, bins=100, label=None, show_ici=True, alpha=0.05, n_resamples=None, kernel='gaussian', bandwidth=0.1, plot_intensities=False): """Generates a calibration display. The display contains by default a calibration curve with confidence intervals, an estimate of the Integrated Calibration Index (ICI), and a histogram of the positive and negative values. Args: See `compute_kde_calibration` for `probs`, `actual`, `kernel`, `alpha`, `n_resamples`, `bandwidth`, and `plot_intensities`. Args specific to this function are: figure (Matplotlib figure, optional): Figure to use for plotting. If None (default) a new figure is created. bins (int, optional): Number of bins for value histograms. Defaults to 100. label (string, optional): Legend label for calibration curve. Defaults to None. show_ici (bool, optional): If true (default), the ICI value is stated in the legend. Returns: (figure, KdeResult, KdeResult): A tuple of the figure object, the KDE estimate for the calibration curve, and the KDE estimate for the confidence intervals. """ resolution = 1.0 / bins if figure is None: figure = plt.gcf() ax1, ax2 = figure.subplots( nrows=2, ncols=1, sharex=True, gridspec_kw=dict(height_ratios=(3, 1)), ) estimate, ci = compute_kde_calibration(probs, actual, resolution=resolution, kernel=kernel, bandwidth=bandwidth, alpha=alpha) ax1 = plot_calibration_curve( orig=estimate.orig, calibrated=estimate.calibrated, calibrated_ci=ci.calibrated, ici=estimate.ici if show_ici else None, ici_ci=ci.ici if show_ici else None, pos_intensity=estimate.pos_intensity if plot_intensities else None, all_intensity=estimate.all_intensity if plot_intensities else None, label=label, ax=ax1) ax1.set_xlabel('') ax2 = plot_histograms(*histograms(probs, actual, bins=bins), ax=ax2) ax2.set_box_aspect(1. / 3.) ax1.xaxis.set_ticks_position('none') figure.tight_layout() return figure, estimate, ci
from binary_euler_tour import * class BinaryLayout(BinaryEulerTour): """Class for computing (x,y) coordinates for each node of a binary tree.""" def __init__(self,tree): super().__init__(tree) # must call the parent constructor self._count = 0 # initialize count of processed nodes def _hook_invisit(self,p,d,path): p.element().setX(self._count) # x-coordinate serialized by count p.element().setY(self,d) # y-coordinate is depth self._count +=1 # advaced count for processed nodes
### means I need to add it to my python environment #Indicate operating environment and import core modules import os location_input = input("what computer are you on? a = Ben's laptop, b = gpucluster, c = Ben's desktop, d = other") location_dict = {'a': "C:\\Users\\BMH_work\\", 'b': "/home/heineike/", 'c': "C:\\Users\\Ben\\Documents\\", 'd':'you need to add your location to the location_dict'} figsave_dict = {'a': "C:\\Users\\BMH_work\\Google Drive\\UCSF\\ElSamad_Lab\\PKA\\Manuscript\\" , 'b': "/home/heineike/scratch/", 'c': "C:\\Users\\Ben\\Google Drive\\UCSF\\ElSamad_Lab\\PKA\\Manuscript\\", 'd': 'you need to add your location to the figsave dict'} figsave_dir = figsave_dict[location_input] home_dir = location_dict[location_input] print("home directory is " + home_dir) base_dir = home_dir + os.path.normpath('github/y1000plus_tools') + os.sep print("y1000plus_tools dir is " + base_dir ) y1000plus_dir_options = {'a': base_dir + os.path.normpath('genomes/y1000plus') + os.sep, 'b':home_dir + os.path.normpath("genomes/y1000plus") + os.sep, 'c': home_dir + os.path.normpath('github/yeast_esr_expression_analysis/expression_data/promoter_phylogenies/y1000plus') + os.sep } y1000plus_dir = y1000plus_dir_options[location_input] print("y1000plus data dir is " + y1000plus_dir) import sys if not(base_dir in sys.path): sys.path.append(base_dir) print("Added " + base_dir + " to path" ) yeast_esr_exp_path = home_dir + os.path.normpath('github/yeast_esr_expression_analysis') + os.sep #io_library_path_core = io_library_path + 'core' + os.sep if not(yeast_esr_exp_path in sys.path): sys.path.append(yeast_esr_exp_path) print("Added " + yeast_esr_exp_path + " to path" ) print("Importing y1000plus_tools.py") import y1000plus_tools y1000plus_tools.home_dir = home_dir y1000plus_tools.base_dir = base_dir y1000plus_tools.y1000plus_dir = y1000plus_dir y1000plus_tools.yeast_esr_exp.base_dir = yeast_esr_exp_path y1000plus_tools.yeast_esr_exp.data_processing_dir = yeast_esr_exp_path + os.path.normpath('expression_data') + os.sep # Since y1000plus_tools loads io_library, just use those functions # if not(io_library_path_core in sys.path): # sys.path.append(io_library_path_core) # print("Added " + io_library_path_core + " to path" ) print("importing yeast_esr_exp") print(sys.path) import yeast_esr_exp yeast_esr_exp.base_dir = yeast_esr_exp_path yeast_esr_exp.data_processing_dir = yeast_esr_exp_path + os.path.normpath('expression_data') + os.sep print('sys.path : \n') print(sys.path) import copy import shutil import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as colors import matplotlib.colorbar as colorbar from matplotlib.gridspec import GridSpec import seaborn as sns ## Add to std library import pickle import subprocess from collections import Counter, OrderedDict from itertools import chain import scipy.spatial.distance as spd #import statsmodels.graphics.gofplots as stats_graph import scipy.cluster.hierarchy as sch from statsmodels.distributions.empirical_distribution import ECDF from Bio.Seq import Seq from Bio.Alphabet import generic_dna, IUPAC from Bio import SeqIO from Bio import pairwise2 from Bio import motifs from Bio import AlignIO from Bio import Align import gffutils from ete3 import Tree, SeqMotifFace, TreeStyle, add_face_to_node, RectFace, NodeStyle, TextFace, AttrFace #ete3 is not officially supported on windows, and so must be loaded via pip: # pip install -U https://github.com/etetoolkit/ete/archive/qt5.zip # ref: https://groups.google.com/forum/#!topic/etetoolkit/6NblSBPij4o #20181031: got this error message: twisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed. # In order to view ete3 created trees on the gpucluster, you need to use a virtual X server: ### from pyvirtualdisplay import Display ### display = Display(visible=False, size=(1024, 768), color_depth=24) ### display.start() #for scraping internet data (e.g. ncbi, YGOB) import requests from bs4 import BeautifulSoup #from lxml import etree #parses xml output
""" A baseline model """ from torch import Tensor import torch def buy_and_hold(price_diff: Tensor) -> Tensor: """ Performs the buy and hold strategy using tomorrow's price difference. This basically means that we are aggregating the total results from the price differences from each day and seeing how much they have at any given point in time Args: :param price_diff: The price difference from each day. The first element corresponds to the price difference of the second - first days, then the second element corresponds to the price difference between the third - second days + second - first days, and so forth. """ return [0] + torch.cumsum(price_diff, dim=0).view(-1).tolist()
from typing import List, Optional, Dict, Callable from mypy.types import ( Type, AnyType, UnboundType, TypeVisitor, ErrorType, FormalArgument, Void, NoneTyp, Instance, TypeVarType, CallableType, TupleType, TypedDictType, UnionType, Overloaded, ErasedType, TypeList, PartialType, DeletedType, UninhabitedType, TypeType, is_named_instance ) import mypy.applytype import mypy.constraints # Circular import; done in the function instead. # import mypy.solve from mypy import messages, sametypes from mypy.nodes import ( CONTRAVARIANT, COVARIANT, ARG_POS, ARG_OPT, ARG_NAMED, ARG_NAMED_OPT, ARG_STAR, ARG_STAR2, ) from mypy.maptype import map_instance_to_supertype from mypy import experiments TypeParameterChecker = Callable[[Type, Type, int], bool] def check_type_parameter(lefta: Type, righta: Type, variance: int) -> bool: if variance == COVARIANT: return is_subtype(lefta, righta, check_type_parameter) elif variance == CONTRAVARIANT: return is_subtype(righta, lefta, check_type_parameter) else: return is_equivalent(lefta, righta, check_type_parameter) def is_subtype(left: Type, right: Type, type_parameter_checker: TypeParameterChecker = check_type_parameter, *, ignore_pos_arg_names: bool = False) -> bool: """Is 'left' subtype of 'right'? Also consider Any to be a subtype of any type, and vice versa. This recursively applies to components of composite types (List[int] is subtype of List[Any], for example). type_parameter_checker is used to check the type parameters (for example, A with B in is_subtype(C[A], C[B]). The default checks for subtype relation between the type arguments (e.g., A and B), taking the variance of the type var into account. """ if (isinstance(right, AnyType) or isinstance(right, UnboundType) or isinstance(right, ErasedType)): return True elif isinstance(right, UnionType) and not isinstance(left, UnionType): return any(is_subtype(left, item, type_parameter_checker, ignore_pos_arg_names=ignore_pos_arg_names) for item in right.items) else: return left.accept(SubtypeVisitor(right, type_parameter_checker, ignore_pos_arg_names=ignore_pos_arg_names)) def is_subtype_ignoring_tvars(left: Type, right: Type) -> bool: def ignore_tvars(s: Type, t: Type, v: int) -> bool: return True return is_subtype(left, right, ignore_tvars) def is_equivalent(a: Type, b: Type, type_parameter_checker: TypeParameterChecker = check_type_parameter, *, ignore_pos_arg_names: bool = False ) -> bool: return ( is_subtype(a, b, type_parameter_checker, ignore_pos_arg_names=ignore_pos_arg_names) and is_subtype(b, a, type_parameter_checker, ignore_pos_arg_names=ignore_pos_arg_names)) def satisfies_upper_bound(a: Type, upper_bound: Type) -> bool: """Is 'a' valid value for a type variable with the given 'upper_bound'? Same as is_subtype except that Void is considered to be a subtype of any upper_bound. This is needed in a case like def f(g: Callable[[], T]) -> T: ... def h() -> None: ... f(h) """ return isinstance(a, Void) or is_subtype(a, upper_bound) class SubtypeVisitor(TypeVisitor[bool]): def __init__(self, right: Type, type_parameter_checker: TypeParameterChecker, *, ignore_pos_arg_names: bool = False) -> None: self.right = right self.check_type_parameter = type_parameter_checker self.ignore_pos_arg_names = ignore_pos_arg_names # visit_x(left) means: is left (which is an instance of X) a subtype of # right? def visit_unbound_type(self, left: UnboundType) -> bool: return True def visit_error_type(self, left: ErrorType) -> bool: return False def visit_type_list(self, t: TypeList) -> bool: assert False, 'Not supported' def visit_any(self, left: AnyType) -> bool: return True def visit_void(self, left: Void) -> bool: return isinstance(self.right, Void) def visit_none_type(self, left: NoneTyp) -> bool: if experiments.STRICT_OPTIONAL: return (isinstance(self.right, NoneTyp) or is_named_instance(self.right, 'builtins.object')) else: return not isinstance(self.right, Void) def visit_uninhabited_type(self, left: UninhabitedType) -> bool: return not isinstance(self.right, Void) def visit_erased_type(self, left: ErasedType) -> bool: return True def visit_deleted_type(self, left: DeletedType) -> bool: return True def visit_instance(self, left: Instance) -> bool: if left.type.fallback_to_any: return True right = self.right if isinstance(right, TupleType) and right.fallback.type.is_enum: return is_subtype(left, right.fallback) if isinstance(right, Instance): if left.type._promote and is_subtype( left.type._promote, self.right, self.check_type_parameter, ignore_pos_arg_names=self.ignore_pos_arg_names): return True rname = right.type.fullname() if not left.type.has_base(rname) and rname != 'builtins.object': return False # Map left type to corresponding right instances. t = map_instance_to_supertype(left, right.type) return all(self.check_type_parameter(lefta, righta, tvar.variance) for lefta, righta, tvar in zip(t.args, right.args, right.type.defn.type_vars)) else: return False def visit_type_var(self, left: TypeVarType) -> bool: right = self.right if isinstance(right, TypeVarType) and left.id == right.id: return True return is_subtype(left.upper_bound, self.right) def visit_callable_type(self, left: CallableType) -> bool: right = self.right if isinstance(right, CallableType): return is_callable_subtype( left, right, ignore_pos_arg_names=self.ignore_pos_arg_names) elif isinstance(right, Overloaded): return all(is_subtype(left, item, self.check_type_parameter, ignore_pos_arg_names=self.ignore_pos_arg_names) for item in right.items()) elif isinstance(right, Instance): return is_subtype(left.fallback, right, ignore_pos_arg_names=self.ignore_pos_arg_names) elif isinstance(right, TypeType): # This is unsound, we don't check the __init__ signature. return left.is_type_obj() and is_subtype(left.ret_type, right.item) else: return False def visit_tuple_type(self, left: TupleType) -> bool: right = self.right if isinstance(right, Instance): if is_named_instance(right, 'typing.Sized'): return True elif (is_named_instance(right, 'builtins.tuple') or is_named_instance(right, 'typing.Iterable') or is_named_instance(right, 'typing.Container') or is_named_instance(right, 'typing.Sequence') or is_named_instance(right, 'typing.Reversible')): if right.args: iter_type = right.args[0] else: iter_type = AnyType() return all(is_subtype(li, iter_type) for li in left.items) elif is_subtype(left.fallback, right, self.check_type_parameter): return True return False elif isinstance(right, TupleType): if len(left.items) != len(right.items): return False for l, r in zip(left.items, right.items): if not is_subtype(l, r, self.check_type_parameter): return False if not is_subtype(left.fallback, right.fallback, self.check_type_parameter): return False return True else: return False def visit_typeddict_type(self, left: TypedDictType) -> bool: right = self.right if isinstance(right, Instance): return is_subtype(left.fallback, right, self.check_type_parameter) elif isinstance(right, TypedDictType): if not left.names_are_wider_than(right): return False for (_, l, r) in left.zip(right): if not is_equivalent(l, r, self.check_type_parameter): return False # (NOTE: Fallbacks don't matter.) return True else: return False def visit_overloaded(self, left: Overloaded) -> bool: right = self.right if isinstance(right, Instance): return is_subtype(left.fallback, right) elif isinstance(right, CallableType) or is_named_instance( right, 'builtins.type'): for item in left.items(): if is_subtype(item, right, self.check_type_parameter, ignore_pos_arg_names=self.ignore_pos_arg_names): return True return False elif isinstance(right, Overloaded): # TODO: this may be too restrictive if len(left.items()) != len(right.items()): return False for i in range(len(left.items())): if not is_subtype(left.items()[i], right.items()[i], self.check_type_parameter, ignore_pos_arg_names=self.ignore_pos_arg_names): return False return True elif isinstance(right, UnboundType): return True elif isinstance(right, TypeType): # All the items must have the same type object status, so # it's sufficient to query only (any) one of them. # This is unsound, we don't check the __init__ signature. return left.is_type_obj() and is_subtype(left.items()[0].ret_type, right.item) else: return False def visit_union_type(self, left: UnionType) -> bool: return all(is_subtype(item, self.right, self.check_type_parameter) for item in left.items) def visit_partial_type(self, left: PartialType) -> bool: # This is indeterminate as we don't really know the complete type yet. raise RuntimeError def visit_type_type(self, left: TypeType) -> bool: right = self.right if isinstance(right, TypeType): return is_subtype(left.item, right.item) if isinstance(right, CallableType): # This is unsound, we don't check the __init__ signature. return right.is_type_obj() and is_subtype(left.item, right.ret_type) if (isinstance(right, Instance) and right.type.fullname() in ('builtins.type', 'builtins.object')): # Treat builtins.type the same as Type[Any]; # treat builtins.object the same as Any. return True return False def is_callable_subtype(left: CallableType, right: CallableType, ignore_return: bool = False, ignore_pos_arg_names: bool = False) -> bool: """Is left a subtype of right?""" # If either function is implicitly typed, ignore positional arg names too if left.implicit or right.implicit: ignore_pos_arg_names = True # Non-type cannot be a subtype of type. if right.is_type_obj() and not left.is_type_obj(): return False # A callable L is a subtype of a generic callable R if L is a # subtype of every type obtained from R by substituting types for # the variables of R. We can check this by simply leaving the # generic variables of R as type variables, effectively varying # over all possible values. # It's okay even if these variables share ids with generic # type variables of L, because generating and solving # constraints for the variables of L to make L a subtype of R # (below) treats type variables on the two sides as independent. if left.variables: # Apply generic type variables away in left via type inference. left = unify_generic_callable(left, right, ignore_return=ignore_return) if left is None: return False # Check return types. if not ignore_return and not is_subtype(left.ret_type, right.ret_type): return False if right.is_ellipsis_args: return True right_star_type = None # type: Optional[Type] right_star2_type = None # type: Optional[Type] # Match up corresponding arguments and check them for compatibility. In # every pair (argL, argR) of corresponding arguments from L and R, argL must # be "more general" than argR if L is to be a subtype of R. # Arguments are corresponding if they either share a name, share a position, # or both. If L's corresponding argument is ambiguous, L is not a subtype of # R. # If left has one corresponding argument by name and another by position, # consider them to be one "merged" argument (and not ambiguous) if they're # both optional, they're name-only and position-only respectively, and they # have the same type. This rule allows functions with (*args, **kwargs) to # properly stand in for the full domain of formal arguments that they're # used for in practice. # Every argument in R must have a corresponding argument in L, and every # required argument in L must have a corresponding argument in R. done_with_positional = False for i in range(len(right.arg_types)): right_kind = right.arg_kinds[i] if right_kind in (ARG_STAR, ARG_STAR2, ARG_NAMED, ARG_NAMED_OPT): done_with_positional = True right_required = right_kind in (ARG_POS, ARG_NAMED) right_pos = None if done_with_positional else i right_arg = FormalArgument( right.arg_names[i], right_pos, right.arg_types[i], right_required) if right_kind == ARG_STAR: right_star_type = right_arg.typ # Right has an infinite series of optional positional arguments # here. Get all further positional arguments of left, and make sure # they're more general than their corresponding member in this # series. Also make sure left has its own inifite series of # optional positional arguments. if not left.is_var_arg: return False j = i while j < len(left.arg_kinds) and left.arg_kinds[j] in (ARG_POS, ARG_OPT): left_by_position = left.argument_by_position(j) assert left_by_position is not None # This fetches the synthetic argument that's from the *args right_by_position = right.argument_by_position(j) assert right_by_position is not None if not are_args_compatible(left_by_position, right_by_position, ignore_pos_arg_names): return False j += 1 continue if right_kind == ARG_STAR2: right_star2_type = right_arg.typ # Right has an infinite set of optional named arguments here. Get # all further named arguments of left and make sure they're more # general than their corresponding member in this set. Also make # sure left has its own infinite set of optional named arguments. if not left.is_kw_arg: return False left_names = {name for name in left.arg_names if name is not None} right_names = {name for name in right.arg_names if name is not None} left_only_names = left_names - right_names for name in left_only_names: left_by_name = left.argument_by_name(name) assert left_by_name is not None # This fetches the synthetic argument that's from the **kwargs right_by_name = right.argument_by_name(name) assert right_by_name is not None if not are_args_compatible(left_by_name, right_by_name, ignore_pos_arg_names): return False continue # Left must have some kind of corresponding argument. left_arg = left.corresponding_argument(right_arg) if left_arg is None: return False if not are_args_compatible(left_arg, right_arg, ignore_pos_arg_names): return False done_with_positional = False for i in range(len(left.arg_types)): left_kind = left.arg_kinds[i] if left_kind in (ARG_STAR, ARG_STAR2, ARG_NAMED, ARG_NAMED_OPT): done_with_positional = True left_arg = FormalArgument( left.arg_names[i], None if done_with_positional else i, left.arg_types[i], left_kind in (ARG_POS, ARG_NAMED)) # Check that *args and **kwargs types match in this loop if left_kind == ARG_STAR: if right_star_type is not None and not is_subtype(right_star_type, left_arg.typ): return False continue elif left_kind == ARG_STAR2: if right_star2_type is not None and not is_subtype(right_star2_type, left_arg.typ): return False continue right_by_name = (right.argument_by_name(left_arg.name) if left_arg.name is not None else None) right_by_pos = (right.argument_by_position(left_arg.pos) if left_arg.pos is not None else None) # If the left hand argument corresponds to two right-hand arguments, # neither of them can be required. if (right_by_name is not None and right_by_pos is not None and right_by_name != right_by_pos and (right_by_pos.required or right_by_name.required)): return False # All *required* left-hand arguments must have a corresponding # right-hand argument. Optional args it does not matter. if left_arg.required and right_by_pos is None and right_by_name is None: return False return True def are_args_compatible( left: FormalArgument, right: FormalArgument, ignore_pos_arg_names: bool) -> bool: # If right has a specific name it wants this argument to be, left must # have the same. if right.name is not None and left.name != right.name: # But pay attention to whether we're ignoring positional arg names if not ignore_pos_arg_names or right.pos is None: return False # If right is at a specific position, left must have the same: if right.pos is not None and left.pos != right.pos: return False # Left must have a more general type if not is_subtype(right.typ, left.typ): return False # If right's argument is optional, left's must also be. if not right.required and left.required: return False return True def unify_generic_callable(type: CallableType, target: CallableType, ignore_return: bool) -> CallableType: """Try to unify a generic callable type with another callable type. Return unified CallableType if successful; otherwise, return None. """ import mypy.solve constraints = [] # type: List[mypy.constraints.Constraint] for arg_type, target_arg_type in zip(type.arg_types, target.arg_types): c = mypy.constraints.infer_constraints( arg_type, target_arg_type, mypy.constraints.SUPERTYPE_OF) constraints.extend(c) if not ignore_return: c = mypy.constraints.infer_constraints( type.ret_type, target.ret_type, mypy.constraints.SUBTYPE_OF) constraints.extend(c) type_var_ids = [tvar.id for tvar in type.variables] inferred_vars = mypy.solve.solve_constraints(type_var_ids, constraints) if None in inferred_vars: return None msg = messages.temp_message_builder() applied = mypy.applytype.apply_generic_arguments(type, inferred_vars, msg, context=target) if msg.is_errors(): return None return applied def restrict_subtype_away(t: Type, s: Type) -> Type: """Return a supertype of (t intersect not s) Currently just remove elements of a union type. """ if isinstance(t, UnionType): new_items = [item for item in t.items if (not is_subtype(item, s) or isinstance(item, AnyType))] return UnionType.make_union(new_items) else: return t def is_proper_subtype(t: Type, s: Type) -> bool: """Check if t is a proper subtype of s? For proper subtypes, there's no need to rely on compatibility due to Any types. Any instance type t is also a proper subtype of t. """ # FIX tuple types if isinstance(t, Instance): if isinstance(s, Instance): if not t.type.has_base(s.type.fullname()): return False def check_argument(left: Type, right: Type, variance: int) -> bool: if variance == COVARIANT: return is_proper_subtype(left, right) elif variance == CONTRAVARIANT: return is_proper_subtype(right, left) else: return sametypes.is_same_type(left, right) # Map left type to corresponding right instances. t = map_instance_to_supertype(t, s.type) return all(check_argument(ta, ra, tvar.variance) for ta, ra, tvar in zip(t.args, s.args, s.type.defn.type_vars)) return False else: return sametypes.is_same_type(t, s) def is_more_precise(t: Type, s: Type) -> bool: """Check if t is a more precise type than s. A t is a proper subtype of s, t is also more precise than s. Also, if s is Any, t is more precise than s for any t. Finally, if t is the same type as s, t is more precise than s. """ # TODO Should List[int] be more precise than List[Any]? if isinstance(s, AnyType): return True if isinstance(s, Instance): if isinstance(t, CallableType): # Fall back to subclass check and ignore other properties of the callable. return is_proper_subtype(t.fallback, s) return is_proper_subtype(t, s) return sametypes.is_same_type(t, s)
import os import sys # As this plugin is typically only sym-linked into a gerrit checkout and both os.getcwd and # os.path.abspath follow symbolic links, they would not allow us to find the gerrit root # directory. So we have to resort to the PWD environment variable to find the place we're # symlinked to. # # We append __file__ to avoid having to require to run it from a well-know directory. ABS_FILE_PARTS = os.path.join(os.getenv('PWD'), __file__).split(os.sep) PLUGIN_NAME = ABS_FILE_PARTS[-3] GERRIT_ROOT = os.sep.join(ABS_FILE_PARTS[:-4]) sys.path = [os.sep.join([GERRIT_ROOT, 'tools'])] + sys.path from workspace_status_release import revision def get_plugin_revision(name): os.chdir(os.path.join(GERRIT_ROOT, 'plugins', name)) ret=revision(GERRIT_VERSION) return ret os.chdir(GERRIT_ROOT) GERRIT_VERSION=revision() ITS_BASE_VERSION=get_plugin_revision('its-base') PLUGIN_RAW_VERSION=get_plugin_revision(PLUGIN_NAME) PLUGIN_FULL_VERSION="%s(its-base:%s)" % (PLUGIN_RAW_VERSION, ITS_BASE_VERSION) print("STABLE_BUILD_%s_LABEL %s" % (PLUGIN_NAME.upper(), PLUGIN_FULL_VERSION))
import asyncio import youtube_dl from googleapiclient.discovery import build from settings import YOUTUBE_API_KEY ytdl_format_options = { 'format': 'bestaudio/best', 'outtmpl': '%(extractor)s-%(id)s-%(title)s.%(ext)s', 'restrictfilenames': True, 'noplaylist': True, 'nocheckcertificate': True, 'ignoreerrors': False, 'logtostderr': False, 'quiet': True, 'no_warnings': True, 'default_search': 'auto', 'source_address': '0.0.0.0' } ytdl = youtube_dl.YoutubeDL(params=ytdl_format_options) async def youtube_search(query: str): loop = asyncio.get_event_loop() youtube = await loop.run_in_executor(None, lambda: build('youtube', 'v3', developerKey=YOUTUBE_API_KEY)) search_response = await loop.run_in_executor(None, lambda: youtube.search().list( q=query, part='id,snippet', maxResults=1, type='video' ).execute()) for search_result in search_response.get('items', []): return search_result['id']['videoId'] async def youtube_playlist(query: str): playlist_id = query.split("list=")[1] loop = asyncio.get_event_loop() youtube = await loop.run_in_executor(None, lambda: build('youtube', 'v3', developerKey=YOUTUBE_API_KEY)) response = await loop.run_in_executor(None, lambda: youtube.playlistItems().list( part="snippet", playlistId=playlist_id, maxResults=50 ).execute()) result = [] for item in response["items"]: result.append((item["snippet"]["resourceId"]["videoId"], item['snippet']['title'])) return result class Video: def __init__(self, url: str = None, title: str = None, video_id: str = None): self.url = url self.title = title self.video_id = video_id async def get_music_info(self): if self.url is not None: loop = asyncio.get_event_loop() data = await loop.run_in_executor(None, lambda: ytdl.extract_info(url=self.url, download=False)) return data elif self.title is not None: vid_id = await youtube_search(self.title) if not vid_id: return loop = asyncio.get_event_loop() data = await loop.run_in_executor(None, lambda: ytdl.extract_info( url="https://www.youtube.com/watch?v=" + vid_id, download=False)) return data elif self.video_id is not None: loop = asyncio.get_event_loop() data = await loop.run_in_executor(None, lambda: ytdl.extract_info( url="https://www.youtube.com/watch?v=" + self.video_id, download=False)) return data
import logging import os from dotenv import load_dotenv from telegram import Update, ForceReply, Bot from telegram.ext import ( Updater, CommandHandler, MessageHandler, Filters, CallbackContext, ) from tg_log_handler import TelegramLogsHandler from dialog_flow import detect_intent_texts logger = logging.getLogger(__name__) def start(update: Update, context: CallbackContext): user = update.effective_user update.message.reply_markdown_v2( fr"ะ—ะดั€ะฐะฒัั‚ะฒัƒะนั‚ะต {user.mention_markdown_v2()}\!", reply_markup=ForceReply(selective=True), ) def responds_to_messages(update: Update, context: CallbackContext): dialogflow_query_result = detect_intent_texts( context.bot_data["project_id"], context.bot_data["sesion_id"], update.message.text, ) update.message.reply_text(dialogflow_query_result.fulfillment_text) def main(): load_dotenv() project_id = os.getenv("PROJECT_ID") sesion_id = os.getenv("SESSION_ID") telegram_token = os.getenv("TELEGRAM_TOKEN") chat_id = os.getenv("CHAT_ID") bot_data = { "project_id": project_id, "sesion_id": sesion_id, } bot = Bot(token=telegram_token) logging.basicConfig(format="%(levelname)s %(message)s") logger.setLevel(logging.DEBUG) logger.addHandler(TelegramLogsHandler(bot, chat_id)) logger.info("Telegram ะฑะพั‚ ะทะฐะฟัƒั‰ะตะฝ!") try: updater = Updater(telegram_token) dispatcher = updater.dispatcher dispatcher.add_handler(CommandHandler("start", start)) dispatcher.add_handler( MessageHandler( Filters.text & ~Filters.command, responds_to_messages ) ) dispatcher.bot_data = bot_data updater.start_polling() updater.idle() except Exception as err: logger.exception(f"Telegram ะฑะพั‚ ัƒะฟะฐะป ั ะพัˆะธะฑะบะพะน: {err}") if __name__ == "__main__": main()
class MinStack: def __init__(self): self.data = [] self.datamin = [] def push(self, x): self.data.append(x) if not self.datamin or x <= self.datamin[-1]: self.datamin.append(x) def pop(self): r = self.data.pop() if self.datamin and self.datamin[-1] == r: self.datamin.pop() def top(self): return self.data[-1] def getMin(self): return self.datamin[-1]
################################################# ### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ### ################################################# # file to edit: dev_nb/denoiser.ipynb from sklearn.decomposition import TruncatedSVD def denoise(data): svd = TruncatedSVD(n_components=1, n_iter=7, random_state=0) svd.fit(data) pc = svd.components_ data -= data.dot(pc.T) * pc return data
import cPickle as pickle import logging from twisted.internet import defer, reactor from jasmin.protocols.smpp.configs import SMPPClientConfig, UnknownValue from jasmin.protocols.cli.managers import PersistableManager, Session from jasmin.vendor.smpp.pdu.constants import addr_ton_name_map, addr_ton_value_map from jasmin.vendor.smpp.pdu.constants import addr_npi_name_map, addr_npi_value_map from jasmin.vendor.smpp.pdu.constants import replace_if_present_flap_name_map, replace_if_present_flap_value_map from jasmin.vendor.smpp.pdu.constants import priority_flag_name_map, priority_flag_value_map from jasmin.protocols.cli.protocol import str2num # A config map between console-configuration keys and SMPPClientConfig keys. SMPPClientConfigKeyMap = { 'cid': 'id', 'host': 'host', 'port': 'port', 'username': 'username', 'logrotate': 'log_rotate', 'password': 'password', 'systype': 'systemType', 'logfile': 'log_file', 'loglevel': 'log_level', 'bind_to': 'sessionInitTimerSecs', 'elink_interval': 'enquireLinkTimerSecs', 'res_to': 'responseTimerSecs', 'con_loss_retry': 'reconnectOnConnectionLoss', 'bind_npi': 'addressNpi', 'con_loss_delay': 'reconnectOnConnectionLossDelay', 'con_fail_delay': 'reconnectOnConnectionFailureDelay', 'pdu_red_to': 'pduReadTimerSecs', 'bind': 'bindOperation', 'bind_ton': 'addressTon', 'src_ton': 'source_addr_ton', 'src_npi': 'source_addr_npi', 'dst_ton': 'dest_addr_ton', 'addr_range': 'addressRange', 'src_addr': 'source_addr', 'proto_id': 'protocol_id', 'priority': 'priority_flag', 'validity': 'validity_period', 'ripf': 'replace_if_present_flag', 'def_msg_id': 'sm_default_msg_id', 'coding': 'data_coding', 'requeue_delay': 'requeue_delay', 'submit_throughput': 'submit_sm_throughput', 'dlr_expiry': 'dlr_expiry', 'dlr_msgid': 'dlr_msg_id_bases', 'con_fail_retry': 'reconnectOnConnectionFailure', 'dst_npi': 'dest_addr_npi', 'trx_to': 'inactivityTimerSecs', 'ssl': 'useSSL'} # Keys to be kept in string type, as requested in #64 and #105 SMPPClientConfigStringKeys = [ 'host', 'systemType', 'username', 'password', 'addressRange', 'useSSL'] # When updating a key from RequireRestartKeys, the connector need restart for update to take effect RequireRestartKeys = ['host', 'port', 'username', 'password', 'systemType'] def castOutputToBuiltInType(key, value): 'Will cast value to the correct type depending on the key' if isinstance(value, bool): return 'yes' if value else 'no' if key in ['bind_npi', 'dst_npi', 'src_npi']: return addr_npi_name_map[str(value)] if key in ['bind_ton', 'dst_ton', 'src_ton']: return addr_ton_name_map[str(value)] if key == 'ripf': return replace_if_present_flap_name_map[str(value)] if key == 'priority': return priority_flag_name_map[str(value)] else: return value def castInputToBuiltInType(key, value): 'Will cast value to the correct type depending on the key' try: if key in ['bind_npi', 'dst_npi', 'src_npi']: return addr_npi_value_map[value] elif key in ['bind_ton', 'dst_ton', 'src_ton']: return addr_ton_value_map[value] elif key == 'ripf': return replace_if_present_flap_value_map[value] elif key == 'priority': return priority_flag_value_map[value] elif key in ['con_fail_retry', 'con_loss_retry', 'ssl']: if value == 'yes': return True elif value == 'no': return False else: raise KeyError('Boolean value must be expressed by yes or no.') elif (key == 'loglevel' and value not in [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL]): raise KeyError('loglevel must be numeric value of 10, 20, 30, 40 or 50.') elif isinstance(value, str) == str and value.lower() == 'none': value = None except KeyError: raise UnknownValue('Unknown value for key %s: %s' % (key, value)) return value class JCliSMPPClientConfig(SMPPClientConfig): 'Overload SMPPClientConfig with getters and setters for JCli' PendingRestart = False def set(self, key, value): setattr(self, key, value) if key in RequireRestartKeys: self.PendingRestart = True def getAll(self): r = {} for key, value in SMPPClientConfigKeyMap.iteritems(): if hasattr(self, value): r[key] = castOutputToBuiltInType(key, getattr(self, value)) else: # Related to #192 r[key] = 'Unknown (object is from an old Jasmin release !)' return r def SMPPClientConfigBuild(fCallback): 'Parse args and try to build a JCliSMPPClientConfig instance to pass it to fCallback' def parse_args_and_call_with_instance(self, *args, **kwargs): cmd = args[0] arg = args[1] # Empty line if cmd is None: return self.protocol.sendData() # Initiate JCliSMPPClientConfig with sessBuffer content if cmd == 'ok': if len(self.sessBuffer) == 0: return self.protocol.sendData('You must set at least connector id (cid) before saving !') connector = {} for key, value in self.sessBuffer.iteritems(): connector[key] = value try: SMPPClientConfigInstance = JCliSMPPClientConfig(**connector) # Hand the instance to fCallback return fCallback(self, SMPPClientConfigInstance) except Exception, e: return self.protocol.sendData('Error: %s' % str(e)) else: # Unknown key if cmd not in SMPPClientConfigKeyMap: return self.protocol.sendData('Unknown SMPPClientConfig key: %s' % cmd) try: # Buffer key for later SMPPClientConfig initiating SMPPClientConfigKey = SMPPClientConfigKeyMap[cmd] if isinstance(arg, str) and SMPPClientConfigKey not in SMPPClientConfigStringKeys: self.sessBuffer[SMPPClientConfigKey] = castInputToBuiltInType(cmd, str2num(arg)) else: self.sessBuffer[SMPPClientConfigKey] = castInputToBuiltInType(cmd, arg) except Exception, e: return self.protocol.sendData('Error: %s' % str(e)) return self.protocol.sendData() return parse_args_and_call_with_instance def SMPPClientConfigUpdate(fCallback): '''Get connector configuration and log update requests passing to fCallback The log will be handed to fCallback when 'ok' is received''' def log_update_requests_and_call(self, *args, **kwargs): cmd = args[0] arg = args[1] # Empty line if cmd is None: return self.protocol.sendData() # Pass sessBuffer as updateLog to fCallback if cmd == 'ok': if len(self.sessBuffer) == 0: return self.protocol.sendData('Nothing to save') try: # Initiate a volatile SMPPClientConfig instance to run through it's constructor # validation steps, this will raise an exception whenever an error is detected configArgs = self.sessBuffer configArgs['id'] = self.sessionContext['cid'] SMPPClientConfig(**configArgs) except Exception, e: return self.protocol.sendData('Error: %s' % str(e)) return fCallback(self, self.sessBuffer) else: # Unknown key if cmd not in SMPPClientConfigKeyMap: return self.protocol.sendData('Unknown SMPPClientConfig key: %s' % cmd) if cmd == 'cid': return self.protocol.sendData('Connector id can not be modified !') try: # Buffer key for later (when receiving 'ok') SMPPClientConfigKey = SMPPClientConfigKeyMap[cmd] if isinstance(arg, str) and SMPPClientConfigKey not in SMPPClientConfigStringKeys: self.sessBuffer[SMPPClientConfigKey] = castInputToBuiltInType(cmd, str2num(arg)) else: self.sessBuffer[SMPPClientConfigKey] = castInputToBuiltInType(cmd, arg) except Exception, e: return self.protocol.sendData('Error: %s' % str(e)) return self.protocol.sendData() return log_update_requests_and_call class ConnectorExist(object): 'Check if connector cid exist before passing it to fCallback' def __init__(self, cid_key): self.cid_key = cid_key def __call__(self, fCallback): cid_key = self.cid_key def exist_connector_and_call(self, *args, **kwargs): opts = args[1] cid = getattr(opts, cid_key) if self.pb['smppcm'].getConnector(cid) is not None: return fCallback(self, *args, **kwargs) return self.protocol.sendData('Unknown connector: %s' % cid) return exist_connector_and_call class SmppCCManager(PersistableManager): "SMPP Client Connector manager logics" managerName = 'smppcc' def persist(self, arg, opts): if self.pb['smppcm'].perspective_persist(opts.profile): self.protocol.sendData( '%s configuration persisted (profile:%s)' % (self.managerName, opts.profile), prompt=False) else: self.protocol.sendData( 'Failed to persist %s configuration (profile:%s)' % ( self.managerName, opts.profile), prompt=False) @defer.inlineCallbacks def load(self, arg, opts): r = yield self.pb['smppcm'].perspective_load(opts.profile) if r: self.protocol.sendData( '%s configuration loaded (profile:%s)' % (self.managerName, opts.profile), prompt=False) else: self.protocol.sendData( 'Failed to load %s configuration (profile:%s)' % ( self.managerName, opts.profile), prompt=False) def list(self, arg, opts): connectors = self.pb['smppcm'].perspective_connector_list() counter = 0 if (len(connectors)) > 0: self.protocol.sendData("#%s %s %s %s %s" % ( 'Connector id'.ljust(35), 'Service'.ljust(7), 'Session'.ljust(16), 'Starts'.ljust(6), 'Stops'.ljust(5)), prompt=False) for connector in connectors: counter += 1 self.protocol.sendData("#%s %s %s %s %s" % ( str(connector['id']).ljust(35), str('started' if connector['service_status'] == 1 else 'stopped').ljust(7), str(connector['session_state']).ljust(16), str(connector['start_count']).ljust(6), str(connector['stop_count']).ljust(5), ), prompt=False) self.protocol.sendData(prompt=False) self.protocol.sendData('Total connectors: %s' % counter) @Session @SMPPClientConfigBuild @defer.inlineCallbacks def add_session(self, SMPPClientConfigInstance): st = yield self.pb['smppcm'].perspective_connector_add( pickle.dumps(SMPPClientConfigInstance, pickle.HIGHEST_PROTOCOL)) if st: self.protocol.sendData( 'Successfully added connector [%s]' % SMPPClientConfigInstance.id, prompt=False) self.stopSession() else: self.protocol.sendData('Failed adding connector, check log for details') def add(self, arg, opts): return self.startSession(self.add_session, annoucement='Adding a new connector: (ok: save, ko: exit)', completitions=SMPPClientConfigKeyMap.keys()) @Session @SMPPClientConfigUpdate @defer.inlineCallbacks def update_session(self, updateLog): connector = self.pb['smppcm'].getConnector(self.sessionContext['cid']) connectorDetails = self.pb['smppcm'].getConnectorDetails(self.sessionContext['cid']) for key, value in updateLog.iteritems(): connector['config'].set(key, value) if connector['config'].PendingRestart and connectorDetails['service_status'] == 1: self.protocol.sendData( 'Restarting connector [%s] for updates to take effect ...' % self.sessionContext['cid'], prompt=False) st = yield self.pb['smppcm'].perspective_connector_stop(self.sessionContext['cid']) if not st: self.protocol.sendData('Failed stopping connector, check log for details', prompt=False) else: st = yield self.pb['smppcm'].perspective_connector_start(self.sessionContext['cid']) if not st: self.protocol.sendData( 'Failed starting connector, will retry in 5 seconds', prompt=False) # Wait before start retrial exitDeferred = defer.Deferred() reactor.callLater(5, exitDeferred.callback, None) yield exitDeferred st = yield self.pb['smppcm'].perspective_connector_start(self.sessionContext['cid']) if not st: self.protocol.sendData('Permanently failed starting connector !', prompt=False) self.protocol.sendData( 'Successfully updated connector [%s]' % self.sessionContext['cid'], prompt=False) self.stopSession() @ConnectorExist(cid_key='update') def update(self, arg, opts): return self.startSession( self.update_session, annoucement='Updating connector id [%s]: (ok: save, ko: exit)' % opts.update, completitions=SMPPClientConfigKeyMap.keys(), sessionContext={'cid': opts.update}) @ConnectorExist(cid_key='remove') @defer.inlineCallbacks def remove(self, arg, opts): st = yield self.pb['smppcm'].perspective_connector_remove(opts.remove) if st: self.protocol.sendData('Successfully removed connector id:%s' % opts.remove) else: self.protocol.sendData('Failed removing connector, check log for details') @ConnectorExist(cid_key='show') def show(self, arg, opts): connector = self.pb['smppcm'].getConnector(opts.show) for k, v in connector['config'].getAll().iteritems(): self.protocol.sendData('%s %s' % (k, v), prompt=False) self.protocol.sendData() @ConnectorExist(cid_key='stop') @defer.inlineCallbacks def stop(self, arg, opts): st = yield self.pb['smppcm'].perspective_connector_stop(opts.stop) if st: self.protocol.sendData('Successfully stopped connector id:%s' % opts.stop) else: self.protocol.sendData('Failed stopping connector, check log for details') @ConnectorExist(cid_key='start') @defer.inlineCallbacks def start(self, arg, opts): st = yield self.pb['smppcm'].perspective_connector_start(opts.start) if st: self.protocol.sendData('Successfully started connector id:%s' % opts.start) else: self.protocol.sendData('Failed starting connector, check log for details')
# Copyright 2014 Ahmed El-Hassany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import mock import unittest from pox.lib.addresses import EthAddr from pox.lib.util import TimeoutError import sts.replay_event from sts.replay_event import AddIntent from sts.replay_event import RemoveIntent from sts.replay_event import CheckInvariants from sts.replay_event import ControllerFailure from sts.replay_event import ControllerRecovery from sts.replay_event import LinkFailure from sts.replay_event import LinkRecovery from sts.replay_event import SwitchFailure from sts.replay_event import SwitchRecovery from sts.replay_event import NOPInput from sts.replay_event import InvariantViolation class ConnectToControllersTest(unittest.TestCase): def test_proceed(self): pass class CheckInvariantsTest(unittest.TestCase): def test_proceed(self): # Arrange name = 'mock_invariant' check = mock.Mock(name='InvarCheck') check.return_value = [] sts.replay_event.name_to_invariant_check = {name: check} label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') simulation = mock.Mock(name='Simulation') simulation.fail_to_interactive = False simulation.fail_to_interactive_on_persistent_violations = False simulation.violation_tracker.persistent_violations = [] # Act event = CheckInvariants(invariant_check_name=name, label=label, logical_round=logical_round, event_time=event_time) ret_val = event.proceed(simulation) # Assert self.assertTrue(ret_val) def test_to_json(self): # Arrange name = 'mock_invariant' check = mock.Mock(name='InvarCheck') check.return_value = [] sts.replay_event.name_to_invariant_check = {name: check} label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(invariant_name=name, invariant_check=None, invariant_check_name=name, legacy_invariant_check=False, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint="N/A") expected['class'] = "CheckInvariants" # Act event = CheckInvariants(invariant_check_name=name, label=label, logical_round=logical_round, event_time=event_time) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange name = 'mock_invariant' check = mock.Mock(name='InvarCheck') check.return_value = [] sts.replay_event.name_to_invariant_check = {name: check} label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(invariant_name=name, invariant_check=None, invariant_check_name=name, legacy_invariant_check=False, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint="N/A") json_dict['class'] = "CheckInvariants" expected_event = CheckInvariants(invariant_check_name=name, label=label, logical_round=logical_round, event_time=event_time) # Act event = CheckInvariants.from_json(json_dict) # Assert self.assertEquals(expected_event, event) class SwitchFailureTest(unittest.TestCase): def test_proceed(self): # Arrange dpid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') switch = mock.Mock(name='Switch') simulation.topology.switches_manager.get_switch_dpid.return_value = switch # Act event = SwitchFailure(dpid=dpid, label=label, logical_round=logical_round, event_time=event_time) ret_val = event.proceed(simulation) # Assert self.assertTrue(ret_val) sw_mgm = simulation.topology.switches_manager sw_mgm.crash_switch.assert_called_once_with(switch) def test_to_json(self): # Arrange dpid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(label=label, dpid=dpid, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["SwitchFailure", 1]) expected['class'] = "SwitchFailure" # Act event = SwitchFailure(dpid=dpid, label=label, logical_round=logical_round, event_time=event_time) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange dpid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(label=label, dpid=dpid, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["SwitchFailure", 1]) json_dict['class'] = "SwitchFailure" expected_event = SwitchFailure(dpid=dpid, label=label, logical_round=logical_round, event_time=event_time) # Act event = SwitchFailure.from_json(json_dict) # Assert self.assertEquals(expected_event, event) class SwitchRecoveryTest(unittest.TestCase): def test_proceed(self): # Arrange dpid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') switch = mock.Mock(name='Switch') sw_mgm = simulation.topology.switches_manager sw_mgm.get_switch_dpid.return_value = switch def raise_error(x): raise TimeoutError() # Act event = SwitchRecovery(dpid=dpid, label=label, logical_round=logical_round, event_time=event_time) event2 = SwitchRecovery(dpid=dpid, label='e2', logical_round=logical_round, event_time=event_time) ret_val = event.proceed(simulation) # Test timeouts sw_mgm.recover_switch.side_effect = raise_error timeout_event = event2.proceed(simulation) # Assert self.assertTrue(ret_val) self.assertFalse(timeout_event) sw_mgm.recover_switch.assert_called_with(switch) def test_to_json(self): # Arrange dpid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(label=label, dpid=dpid, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["SwitchRecovery", 1]) expected['class'] = "SwitchRecovery" # Act event = SwitchRecovery(dpid=dpid, label=label, logical_round=logical_round, event_time=event_time) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange dpid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(label=label, dpid=dpid, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["SwitchRecovery", 1]) json_dict['class'] = "SwitchRecovery" expected_event = SwitchRecovery(dpid=dpid, label=label, logical_round=logical_round, event_time=event_time) # Act event = SwitchRecovery.from_json(json_dict) # Assert self.assertEquals(expected_event, event) class LinkFailureTest(unittest.TestCase): def test_proceed(self): # Arrange start_dpid, end_dpid = 1, 2 start_port_no, end_port_no = 10, 20 label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') sw1 = mock.Mock(name='Switch1') sw2 = mock.Mock(name='Switch2') sw1.ports = {start_port_no: mock.Mock(name='s1-1')} sw2.ports = {end_port_no: mock.Mock(name='s2-1')} link = mock.Mock(name='Link') def get_sw(dpid): return sw1 if dpid == start_dpid else sw2 simulation.topology.switches_manager.get_switch_dpid.side_effect = get_sw simulation.topology.patch_panel.query_network_links.return_value = [link] # Act event = LinkFailure(start_dpid=start_dpid, start_port_no=start_port_no, end_dpid=end_dpid, end_port_no=end_port_no, label=label, logical_round=logical_round, event_time=event_time) ret_val = event.proceed(simulation) # Assert self.assertTrue(ret_val) patch_panel = simulation.topology.patch_panel patch_panel.sever_network_link.assert_called_once_with(link) def test_to_json(self): # Arrange start_dpid, end_dpid = 1, 2 start_port_no, end_port_no = 10, 20 label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(label=label, start_dpid=start_dpid, start_port_no=start_port_no, end_dpid=end_dpid, end_port_no=end_port_no, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["LinkFailure", start_dpid, start_port_no, end_dpid, end_port_no]) expected['class'] = "LinkFailure" # Act event = LinkFailure(start_dpid=start_dpid, start_port_no=start_port_no, end_dpid=end_dpid, end_port_no=end_port_no, label=label, logical_round=logical_round, event_time=event_time) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange start_dpid, end_dpid = 1, 2 start_port_no, end_port_no = 10, 20 label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(label=label, start_dpid=start_dpid, start_port_no=start_port_no, end_dpid=end_dpid, end_port_no=end_port_no, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["LinkFailure", start_dpid, start_port_no, end_dpid, end_port_no]) json_dict['class'] = "LinkFailure" expected_event = LinkFailure(start_dpid=start_dpid, start_port_no=start_port_no, end_dpid=end_dpid, end_port_no=end_port_no, label=label, logical_round=logical_round, event_time=event_time) # Act event = LinkFailure.from_json(json_dict) # Assert self.assertEquals(expected_event, event) class LinkRecoveryTest(unittest.TestCase): def test_proceed(self): # Arrange start_dpid, end_dpid = 1, 2 start_port_no, end_port_no = 10, 20 label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') sw1 = mock.Mock(name='Switch1') sw2 = mock.Mock(name='Switch2') sw1.ports = {start_port_no: mock.Mock(name='s1-1')} sw2.ports = {end_port_no: mock.Mock(name='s2-1')} link = mock.Mock(name='Link') def get_sw(dpid): return sw1 if dpid == start_dpid else sw2 simulation.topology.switches_manager.get_switch_dpid.side_effect = get_sw simulation.topology.patch_panel.query_network_links.return_value = [link] # Act event = LinkRecovery(start_dpid=start_dpid, start_port_no=start_port_no, end_dpid=end_dpid, end_port_no=end_port_no, label=label, logical_round=logical_round, event_time=event_time) ret_val = event.proceed(simulation) # Assert self.assertTrue(ret_val) patch_panel = simulation.topology.patch_panel patch_panel.repair_network_link.assert_called_once_with(link) def test_to_json(self): # Arrange start_dpid, end_dpid = 1, 2 start_port_no, end_port_no = 10, 20 label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(label=label, start_dpid=start_dpid, start_port_no=start_port_no, end_dpid=end_dpid, end_port_no=end_port_no, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["LinkRecovery", start_dpid, start_port_no, end_dpid, end_port_no]) expected['class'] = "LinkRecovery" # Act event = LinkRecovery(start_dpid=start_dpid, start_port_no=start_port_no, end_dpid=end_dpid, end_port_no=end_port_no, label=label, logical_round=logical_round, event_time=event_time) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange start_dpid, end_dpid = 1, 2 start_port_no, end_port_no = 10, 20 label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(label=label, start_dpid=start_dpid, start_port_no=start_port_no, end_dpid=end_dpid, end_port_no=end_port_no, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["LinkRecovery", start_dpid, start_port_no, end_dpid, end_port_no]) json_dict['class'] = "LinkRecovery" expected_event = LinkRecovery(start_dpid=start_dpid, start_port_no=start_port_no, end_dpid=end_dpid, end_port_no=end_port_no, label=label, logical_round=logical_round, event_time=event_time) # Act event = LinkRecovery.from_json(json_dict) # Assert self.assertEquals(expected_event, event) class ControllerFailureTest(unittest.TestCase): def test_proceed(self): # Arrange cid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') c1 = mock.Mock(name='Controller') simulation.topology.controllers_manager.get_controller.return_value = c1 # Act event = ControllerFailure(controller_id=cid, label=label, logical_round=logical_round, event_time=event_time) ret_val = event.proceed(simulation) # Assert self.assertTrue(ret_val) c_mgm = simulation.topology.controllers_manager c_mgm.crash_controller.assert_called_once_with(c1) def test_to_json(self): # Arrange cid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(controller_id=cid, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["ControllerFailure", cid]) expected['class'] = "ControllerFailure" # Act event = ControllerFailure(controller_id=cid, label=label, logical_round=logical_round, event_time=event_time) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange cid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(controller_id=cid, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["ControllerFailure", cid]) json_dict['class'] = "ControllerFailure" expected_event = ControllerFailure(controller_id=cid, label=label, logical_round=logical_round, event_time=event_time) # Act event = ControllerFailure.from_json(json_dict) # Assert self.assertEquals(expected_event, event) class ControllerRecoveryTest(unittest.TestCase): def test_proceed(self): # Arrange cid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') c1 = mock.Mock(name='Controller') simulation.topology.controllers_manager.get_controller.return_value = c1 # Act event = ControllerRecovery(controller_id=cid, label=label, logical_round=logical_round, event_time=event_time) ret_val = event.proceed(simulation) # Assert self.assertTrue(ret_val) c_mgm = simulation.topology.controllers_manager c_mgm.recover_controller.assert_called_once_with(c1) def test_to_json(self): # Arrange cid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(controller_id=cid, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["ControllerRecovery", cid]) expected['class'] = "ControllerRecovery" # Act event = ControllerRecovery(controller_id=cid, label=label, logical_round=logical_round, event_time=event_time) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange cid = 1 label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(controller_id=cid, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["ControllerRecovery", cid]) json_dict['class'] = "ControllerRecovery" expected_event = ControllerRecovery(controller_id=cid, label=label, logical_round=logical_round, event_time=event_time) # Act event = ControllerRecovery.from_json(json_dict) # Assert self.assertEquals(expected_event, event) class NOPEventTest(unittest.TestCase): def test_proceed(self): # Arrange label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') # Act event = NOPInput(label=label, logical_round=logical_round, event_time=event_time) ret_val = event.proceed(simulation) # Assert self.assertTrue(ret_val) def test_to_json(self): # Arrange label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["NOPInput"]) expected['class'] = "NOPInput" # Act event = NOPInput(label=label, logical_round=logical_round, event_time=event_time) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, fingerprint=["NOPInput"]) json_dict['class'] = "NOPInput" expected_event = NOPInput(label=label, logical_round=logical_round, event_time=event_time) # Act event = NOPInput.from_json(json_dict) # Assert self.assertEquals(expected_event, event) class InvariantViolationTest(unittest.TestCase): def test_proceed(self): # Arrange violations = ["Mock Violation"] label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') # Act event = InvariantViolation(violations=violations, label=label, logical_round=logical_round, event_time=event_time, persistent=False) ret_val = lambda: event.proceed(simulation) invalid_violation = lambda: InvariantViolation(violations=[]) str_violations = InvariantViolation(violations=violations[0]) # Assert self.assertRaises(ValueError, invalid_violation) self.assertRaises(RuntimeError, ret_val) self.assertFalse(event.persistent) self.assertEquals(event.violations, violations) self.assertEquals(str_violations.violations, violations) def test_to_json(self): # Arrange violations = ["Mock Violation"] label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(violations=violations, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, persistent=False, fingerprint=["InvariantViolation"]) expected['class'] = "InvariantViolation" # Act event = InvariantViolation(violations=violations, label=label, logical_round=logical_round, event_time=event_time, persistent=False) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange violations = ["Mock Violation"] label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(violations=violations, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, persistent=False, fingerprint=["InvariantViolation"]) json_dict['class'] = "NOPInput" expected_event = InvariantViolation(violations=violations, label=label, logical_round=logical_round, event_time=event_time, persistent=False) # Act event = InvariantViolation.from_json(json_dict) # Assert self.assertEquals(expected_event, event) class AddIntentEventTest(unittest.TestCase): def test_proceed(self): # Arrange cid = 1 intent_id = 100 src_dpid, dst_dpid = 201, 202 src_port, dst_port = 301, 302 src_mac = EthAddr('00:00:00:00:00:01') dst_mac = EthAddr('00:00:00:00:00:02') static_path = '' intent_type = 'SHORTEST_PATH' intent_ip, intent_port, intent_url = '127.0.0.1', 8080, 'wm/intents' label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') c1 = mock.Mock(name='Controller') c1.add_intent.return_value = True simulation.topology.controllers_manager.get_controller.return_value = c1 h1 = mock.Mock(name='h1') h1_eth1 = mock.Mock(name='h1-eth1') h1_eth1.hw_addr = src_mac h1.interfaces = [h1_eth1] h2 = mock.Mock(name='h2') h2_eth1 = mock.Mock(name='h2-eth1') h2_eth1.hw_addr = dst_mac h2.interfaces = [h2_eth1] simulation.topology.hosts_manager.hosts = [h1, h2] # Act event = AddIntent(cid=cid, intent_id=intent_id, src_dpid=src_dpid, dst_dpid=dst_dpid, src_port=src_port, dst_port=dst_port, src_mac=src_mac, dst_mac=dst_mac, static_path=static_path, intent_type=intent_type, intent_ip=intent_ip, intent_port=intent_port, intent_url=intent_url, label=label, logical_round=logical_round, event_time=event_time) ret_val = event.proceed(simulation) # Assert self.assertTrue(ret_val) track = simulation.topology.connectivity_tracker track.add_connected_hosts.assert_called_once_with(h1, h1_eth1, h2, h2_eth1, intent_id) def test_to_json(self): # Arrange cid = 1 intent_id = 100 src_dpid, dst_dpid = 201, 202 src_port, dst_port = 301, 302 src_mac = str(EthAddr('00:00:00:00:00:01')) dst_mac = str(EthAddr('00:00:00:00:00:02')) static_path = '' intent_type = 'SHORTEST_PATH' intent_ip, intent_port, intent_url = '127.0.0.1', 8080, 'wm/intents' label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(cid=cid, intent_id=intent_id, src_dpid=src_dpid, dst_dpid=dst_dpid, src_port=src_port, dst_port=dst_port, src_mac=src_mac, dst_mac=dst_mac, static_path=static_path, intent_type=intent_type, intent_ip=intent_ip, intent_port=intent_port, intent_url=intent_url, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, request_type='AddIntent', fingerprint=["AddIntent", cid, intent_id, src_dpid, dst_dpid, src_port, dst_port, src_mac, dst_mac, static_path, intent_type, intent_ip, intent_port, intent_url]) expected['class'] = "AddIntent" # Act event = AddIntent(cid=cid, intent_id=intent_id, src_dpid=src_dpid, dst_dpid=dst_dpid, src_port=src_port, dst_port=dst_port, src_mac=src_mac, dst_mac=dst_mac, static_path=static_path, intent_type=intent_type, intent_ip=intent_ip, intent_port=intent_port, intent_url=intent_url, label=label, logical_round=logical_round, event_time=event_time) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange cid = 1 intent_id = 100 src_dpid, dst_dpid = 201, 202 src_port, dst_port = 301, 302 src_mac = str(EthAddr('00:00:00:00:00:01')) dst_mac = str(EthAddr('00:00:00:00:00:02')) static_path = '' intent_type = 'SHORTEST_PATH' intent_ip, intent_port, intent_url = '127.0.0.1', 8080, 'wm/intents' label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(cid=cid, intent_id=intent_id, src_dpid=src_dpid, dst_dpid=dst_dpid, src_port=src_port, dst_port=dst_port, src_mac=src_mac, dst_mac=dst_mac, static_path=static_path, intent_type=intent_type, intent_ip=intent_ip, intent_port=intent_port, intent_url=intent_url, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, request_type='AddIntent', fingerprint=["AddIntent", cid, intent_id, src_dpid, dst_dpid, src_port, dst_port, src_mac, dst_mac, static_path, intent_type, intent_ip, intent_port, intent_url]) json_dict['class'] = "AddIntent" expected_event = AddIntent(cid=cid, intent_id=intent_id, src_dpid=src_dpid, dst_dpid=dst_dpid, src_port=src_port, dst_port=dst_port, src_mac=src_mac, dst_mac=dst_mac, static_path=static_path, intent_type=intent_type, intent_ip=intent_ip, intent_port=intent_port, intent_url=intent_url, label=label, logical_round=logical_round, event_time=event_time) # Act event = AddIntent.from_json(json_dict) # Assert self.assertEquals(expected_event, event) self.assertEquals(expected_event.src_mac, src_mac) class RemoveIntentEventTest(unittest.TestCase): def test_proceed(self): # Arrange cid = 1 intent_id = 100 intent_ip, intent_port, intent_url = '127.0.0.1', 8080, 'wm/intents' label = 'e1' logical_round = 1 event_time = [1, 1] simulation = mock.Mock(name='Simulation') c1 = mock.Mock(name='Controller') c1.remove_intent.return_value = True simulation.topology.controllers_manager.get_controller.return_value = c1 # Act event = RemoveIntent(cid=cid, intent_id=intent_id, intent_ip=intent_ip, intent_port=intent_port, intent_url=intent_url, label=label, logical_round=logical_round, event_time=event_time) ret_val = event.proceed(simulation) # Assert self.assertTrue(ret_val) track = simulation.topology.connectivity_tracker track.remove_policy.assert_called_once_with(intent_id) def test_to_json(self): # Arrange cid = 1 intent_id = 100 request_type = 'RemoveIntent' intent_ip, intent_port, intent_url = '127.0.0.1', 8080, 'wm/intents' label = 'e1' logical_round = 1 event_time = [1, 1] expected = dict(cid=cid, intent_id=intent_id, intent_ip=intent_ip, intent_port=intent_port, intent_url=intent_url, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, request_type=request_type, fingerprint=['RemoveIntent', cid, intent_id, intent_ip, intent_port, intent_url]) expected['class'] = "RemoveIntent" # Act event = RemoveIntent(cid=cid, intent_id=intent_id, intent_ip=intent_ip, intent_port=intent_port, intent_url=intent_url, label=label, logical_round=logical_round, event_time=event_time) json_dump = event.to_json() # Assert self.assertEquals(expected, json.loads(json_dump)) def test_from_json(self): # Arrange cid = 1 intent_id = 100 request_type = 'RemoveIntent' intent_ip, intent_port, intent_url = '127.0.0.1', 8080, 'wm/intents' label = 'e1' logical_round = 1 event_time = [1, 1] json_dict = dict(cid=cid, intent_id=intent_id, intent_ip=intent_ip, intent_port=intent_port, intent_url=intent_url, label=label, event_time=event_time, logical_round=logical_round, dependent_labels=[], prunable=True, timed_out=False, request_type=request_type, fingerprint=['RemoveIntent', cid, intent_id, intent_ip, intent_port, intent_url]) json_dict['class'] = "RemoveIntent" expected_event = RemoveIntent(cid=cid, intent_id=intent_id, intent_ip=intent_ip, intent_port=intent_port, intent_url=intent_url, label=label, logical_round=logical_round, event_time=event_time) # Act event = RemoveIntent.from_json(json_dict) # Assert self.assertEquals(expected_event, event)
# -*- coding: utf-8 -*- import sys import hmac import hashlib import base64 import time import json import uuid import requests def is_python3(): if sys.version > '3': return True return False _PROTOCOL = "https://" _HOST = "tts.cloud.tencent.com" _PATH = "/stream" _ACTION = "TextToStreamAudio" class SpeechSynthesisListener: ''' reponse: ๆ‰€ๆœ‰ๅ›ž่ฐƒๅ‡ๅŒ…ๅซsession_idๅญ—ๆฎต on_messageไธŽon_messageๅŒ…ๅซdataๅญ—ๆฎต on_failๅŒ…ๅซCodeใ€Messageๅญ—ๆฎตใ€‚ ๅญ—ๆฎตๅ ็ฑปๅž‹ ่ฏดๆ˜Ž session_id String ๆœฌๆฌก่ฏทๆฑ‚id data String ่ฏญ้Ÿณๆ•ฐๆฎ Code String ้”™่ฏฏ็  Message String ้”™่ฏฏไฟกๆฏ ''' def on_message(self, response): pass def on_complete(self, response): pass def on_fail(self, response): pass class SpeechSynthesizer: def __init__(self, appid, credential, voice_type, listener): self.appid = appid self.credential = credential self.voice_type = voice_type self.codec = "pcm" self.sample_rate = 16000 self.volume = 0 self.speed = 0 self.listener = listener def set_voice_type(self, voice_type): self.voice_type = voice_type def set_codec(self, codec): self.codec = codec def set_sample_rate(self, sample_rate): self.sample_rate = sample_rate def set_speed(self, speed): self.speed = speed def set_volume(self, volume): self.volume = volume def synthesis(self, text): session_id = str(uuid.uuid1()) params = self.__gen_params(session_id, text) signature = self.__gen_signature(params) headers = { "Content-Type": "application/json", "Authorization": str(signature) } url = _PROTOCOL + _HOST + _PATH r = requests.post(url, headers=headers, data=json.dumps(params), stream=True) data = None response = dict() response["session_id"] = session_id for chunk in r.iter_content(None): if data is None: try: rsp = json.loads(chunk) response["Code"] = rsp["Response"]["Error"]["Code"] response["Message"] = rsp["Response"]["Error"]["Message"] self.listener.on_fail(response) return except: data = chunk response["data"] = data self.listener.on_message(response) continue data = data + chunk response["data"] = data self.listener.on_message(response) response["data"] = data self.listener.on_complete(response) def __gen_signature(self, params): sort_dict = sorted(params.keys()) sign_str = "POST" + _HOST + _PATH + "?" for key in sort_dict: sign_str = sign_str + key + "=" + str(params[key]) + '&' sign_str = sign_str[:-1] hmacstr = hmac.new(self.credential.secret_key.encode('utf-8'), sign_str.encode('utf-8'), hashlib.sha1).digest() s = base64.b64encode(hmacstr) s = s.decode('utf-8') return s def __sign(self, signstr, secret_key): hmacstr = hmac.new(secret_key.encode('utf-8'), signstr.encode('utf-8'), hashlib.sha1).digest() s = base64.b64encode(hmacstr) s = s.decode('utf-8') return s def __gen_params(self, session_id, text): params = dict() params['Action'] = _ACTION params['AppId'] = int(self.appid) params['SecretId'] = self.credential.secret_id params['ModelType'] = 1 params['VoiceType'] = self.voice_type params['Codec'] = self.codec params['SampleRate'] = self.sample_rate params['Speed'] = self.speed params['Volume'] = self.volume params['SessionId'] = session_id params['Text'] = text timestamp = int(time.time()) params['Timestamp'] = timestamp params['Expired'] = timestamp + 24 * 60 * 60 return params
#!/usr/bin/python3 import sys import random def cmdlinearg(name, default=None): for arg in sys.argv: if arg.startswith(name + "="): return arg.split("=")[1] assert default is not None return default random.seed(int(cmdlinearg('seed', sys.argv[-1]))) n = int(cmdlinearg('n')) k = int(cmdlinearg('k')) ak = int(cmdlinearg('ak')) bk = int(cmdlinearg('bk')) av = int(cmdlinearg('av')) bv = int(cmdlinearg('bv')) lastsmall = int(cmdlinearg('lastsmall', '0')) print(n, k) li = list(range(n)) random.shuffle(li) ar = [None] * n br = [None] * n for i in range(n): ar[i] = li[i] * ak + random.randint(0, av) br[i] = li[i] * bk + random.randint(0, bv) if lastsmall and li[i] < n-1: br[i] += 10 print(*ar) print(*br)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This code is under MIT license. See the License.txt file. This module contains the functions useful to numerically solve the model Boris Sauterey boris.sauterey@ens.fr """ import numpy as np from Metabolisme.Energy import * from Metabolisme.Rates import * from PBE.Balancefun import * #from Environment import * #from Traits import * from scipy.stats import truncnorm def Step_Profile(NC,X0,traits,S,gamma,T=TS,dt = 0.01): """ Computes one timestep of the profile evolution with profile at time t N where S is the substrate concentration vector [H,C,N,G] returns the profile after t+dt without touching to nutrients concentrations traits should be a vector with following order: [rc,Vc,ks,qmax,mg,kd,thresh,slope] for more information on these traits, see module traits """ ## Extraction of substrate concentrations !! Memory efficient? for i in range(0,len(S)): if S[i] < 1e-100: S[i] = 1e-100 H = S[0] C = S[1] N = S[2] G = S[3] ## Traits extraction !! This could be a waste of time and memory as I don't know how memory is managed when it comes to put variables in a list and then out rc = traits[0] Vc = traits[1] Qc = traits[2] ks = traits[3] qmax = traits[4] mg = traits[5] kd = traits[6] mort = traits[7] thresh = traits[8] slope = traits[9] gmax = traits[10] ## Computing energetical values that are constant across x dgcat = DeltaGcat(T,H,C,G) # Energy that a run of metabolic reaction yields qcat = QCat(dgcat,H,C,qmax,ks) # Rate at which catabolic reaction occurs mreq = Mreq(mg,dgcat) # Minimum rate of catabolic reaction for cell maintenance decay = Decay(mreq,qcat,dgcat,kd) # Decay rate of the cells, that only depends on energy available in the environment ## Adjusting the delta t so that the numerical scheme remains stable lim = np.min([H,C]) if qcat > 0: dt = lim/(qcat*NC*1000) else: dt = 0.01 ## Cell dynamics dgana = DeltaGana(T,H,C,N,X0) # Energy requirements for anabolic reaction Lam = -((dgana+dgdiss)/dgcat) # Metabolic coupling Y = Yl(Lam) # Metabolic stochiometry slim = Slim([H,C,N],Y[:-2]) # Limiting substrate QMet_t = QMet(dgcat,qmax,ks,slim) # Metabolic rate qana = QAna(dgcat,dgana,Lam,qcat,QMet_t,mreq,qmax,ks,slim) # Anabolic rate qcat = qcat # Catabolic rates new_cell = Gamma(thresh,slope,gmax,X0) nNC = NC + (new_cell - decay - mort)*NC*dt # First part of time derivative addition if nNC < 0: nNC = 0 nX0 = (X0 + qana*dt) / (1+new_cell*dt) return(nNC,nX0,qana,qcat,decay,mort,dt) # It is critical to note that qanamap, Decaymap and qcatmap are extracted from N at t and that nNc is N at t+dt def Step_Substrates(S,Hinf,Cinf,Ninf,Ginf,QH,QC,QN,QG,NC,qana,qcat,dt,Vc): """ Computes the new S substrates vector after dt if several cell populations are competing, one should put as arguments: Nc = sum(Nci) qanamap = sum(qanamapi) qcatmap = sum(qcatmapi) """ H = S[0] C = S[1] N = S[2] G = S[3] nH = H + (QH*(Hinf-H)+(qcat*Catabolism[0]+qana*Anabolism[0])*NC)*dt nC = C + (QC*(Cinf-C)+(qcat*Catabolism[1]+qana*Anabolism[1])*NC)*dt nN = N + (QN + (qcat*Catabolism[2]+qana*Anabolism[2])*NC)*dt nG = G + (QG*(Ginf-G)+(qcat*Catabolism[3]+qana*Anabolism[3])*NC)*dt nS = np.array([nH,nC,nN,nG]) nS[np.where(nS <= 1e-100)] = 1e-100 return(nS) def Step_DeadBiomass(Xo,Hinf,Cinf,Ninf,Ginf,QH,QC,QN,QG,Nc,decay,mort,Qc,X,dt,Vc): """ Computes the increase in dead biomass between t and t+dt """ return(Xo + (-0.1*Xo + (decay+mort)*Nc*(Qc+X))*dt) #Here the term with Q can be replaced with a specific biomass sedimentation flux def Run_Profile(init,traits,Env,sig = 0.0001,Ntot0 = 10,tmax = 100,T=TS,dt = 0.01,mu=0.005): """ This function runs the profile evolution with high output volume because it computes and save the whole profile evolution across time tmax with initial conditions init and for microbial population with traits traits for a single population? init should be [H0,C0,N0,G0] """ ## Environmental conditions Hinf = Env[0] Cinf = Env[1] Ninf = Env[2] Ginf = Env[3] QH = Env[4] QC = Env[5] QN = Env[6] QG = Env[7] ## Traits thresh = traits[7] slope = traits[8] gmax = traits[9] Vc = traits[1] Qc = traits[2] ## Calculation of constants over timescale of interest (here, the temperature is constant) DeltaG0catT = DeltaG0(T,deltaG0Cat,deltaH0Cat) DeltaG0anaT = DeltaG0(T,deltaG0Ana,deltaH0Ana) ## Initialization HT = [] CT = [] NT = [] GT = [] XoT = [] NCT = [] XT = [] D = [] time = [] t=1 HT.append(init[0]) CT.append(init[1]) NT.append(init[2]) GT.append(init[3]) XoT.append(init[4]) NCT.append(init[5]) XT.append(init[6]) D.append(0) time.append(0) t=1 while time[t-1] < tmax: H = HT[t-1] C = CT[t-1] N = NT[t-1] G = GT[t-1] Xo = XoT[t-1] NC = NCT[t-1] X0 = XT[t-1] nNCT,nXT,qana,qcat,decay,mort,dt = Step_Profile(NC,X0,traits,[H,C,N,G],gamma,T,dt) NCT.append(nNCT) XT.append(nXT) D.append(decay+mort) nS = Step_Substrates([H,C,N,G],Hinf,Cinf,Ninf,Ginf,QH,QC,QN,QG,NCT[t-1],qana,qcat,dt,Vc) HT.append(nS[0]) CT.append(nS[1]) NT.append(nS[2]) GT.append(nS[3]) nXo = Step_DeadBiomass(Xo,Hinf,Cinf,Ninf,Ginf,QH,QC,QN,QG,NCT[t-1],decay,mort,Qc,XT[t-1],dt,Vc) XoT.append(nXo) time.append(time[t-1] + dt) t=t+1 return(NCT,XT,HT,CT,NT,GT,XoT,D,time)
''' Author: Jack Morikka. This program is intended to take bulk collected data from an IMARIS batch run that outputs channels (or spots) and convert it into a format ready for LAM analysis. This bulk data consists of e.g. a Spots_1 directory which contains .csv files such as 'Area.csv' and 'positions.csv' etc. for every sample that was processed in the IMARIS batch. This program essentially separates out these samples creating the same excel files for single samples in their own unique folders with the spot name (e.g. DAPI, GFP, MP etc.) clearly indicated in a fashion readable by LAM. The user selects the bulk 'spot' folder e.g. Spots_1_Statistics, and chooses an empty output folder where the new folders with .csv files will be sent. The user then names this 'spot' e.g. DAPI, GFP or MP. The user then runs the program. For the same bulk data the user then reruns the program and picks another 'spot' folder e.g. Spots_2_Statistics and chooses the SAME output folder which they selected for the first 'spot' folder. ''' from tkinter import * from tkinter import filedialog import logging import istl class Imaris_to_lam: def __init__(self): # Creates the structure for the GUI with the title self.__window = Tk() self.__window.title('Imaris_to_LAM') # Creates label for select spot folder selection prompt self.__s_ij_prompt = Label(self.__window, text='Select spot folder:') \ .grid(row=3, column=1, sticky=E) # Creates the browse button for getting the spot folder path Button(self.__window, text='Browse', command=self.retrieve_csv_folder) \ .grid(row=3, column=2) # Creates the variable label for spot folder path text self.__csv_folder = StringVar() self.__selectij = Label(self.__window, text=self.__csv_folder.get(), bg='white', bd=2, textvariable=self.__csv_folder, relief='sunken') self.__selectij.grid(row=3, column=3, columnspan=3, sticky=W) # Creates label for select output folder prompt self.__r_dir_prompt = Label(self.__window, text='Select output folder:') \ .grid(row=5, column=1, sticky=E) # Creates the browse button for getting the output folder Button(self.__window, text='Browse', command=self.retrieve_ofolder) \ .grid(row=5, column=2) # Creates the variable label for output folder text self.__ofolder = StringVar() self.__selectDir = Label(self.__window, text=self.__ofolder.get(), bg='white', bd=2, textvariable=self.__ofolder, relief='sunken') self.__selectDir.grid(row=5, column=3, columnspan=3, sticky=W) # Creates the spot name entry input field self.__name_prompt = Label(self.__window, text='Enter spot name ' '(e.g. DAPI, GFP, MP etc.:)') \ .grid(row=9, column=1) self.__name_input = Entry(self.__window, width=5) self.__name_input.grid(row=9, column=2, padx=5, ipadx=5) # Creates the run button for running the simulator Button(self.__window, text='Run', command=self.go) \ .grid(row=11, column=1, sticky=E) # Creates button for quitting the stitcher Button(self.__window, text='Quit', command=self.quit_func) \ .grid(row=11, column=2, sticky=W) def retrieve_csv_folder(self): ''' Prompts the user to select the buld 'spot' folder''' selected_directory = filedialog.askdirectory() self.__csv_folder.set(selected_directory) def retrieve_ofolder(self): ''' Prompts the user to select an output folder''' selected_directory = filedialog.askdirectory() self.__ofolder.set(selected_directory) def go(self): ''' If an input folder, output folder and spot name are selected, this function imports the istl csv_create function to use on the bulk .csv files to create new directories for each sample and new .csv files for each sample to be used with LAM''' # Checks that no fields are left blank if self.__ofolder.get() == '' or self.__csv_folder.get() == '' or self.__name_input.get() == '': from tkinter import messagebox # Shows a warning message if a field is blank upon running messagebox.showinfo("Warning", "spot.csv path or output folder not" " selected! Or name not entered!") else: # Sets up a log in the chosen output folder to log any errors. logging.basicConfig( filename='%s/IMARIS_to_LAM.log' % self.__ofolder.get(), format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%d-%m-%Y %H:%M:%S') try: csv_path = str(self.__csv_folder.get()) output_folder_path = str(self.__ofolder.get()) spot = str(self.__name_input.get()) self.__window.destroy() logging.info( "Process started for %s" % spot) # Calls the csv_create function from the istl.py file which # should be in the same directory as this istl_RUN.py istl.csv_create(csv_path, output_folder_path, spot) logging.info( "Process finished for %s" % spot) except Exception as e: logging.exception(str(e)) def quit_func(self): self.__window.destroy() def start(self): self.__window.mainloop() def main(): ui = Imaris_to_lam() ui.start() main()
############################################################################## # Copyright (c) 2017 ZTE Corp and others. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 ############################################################################## from qtip.base.constant import BaseProp from qtip.collector.parser.grep import GrepParser class CollectorProp(BaseProp): TYPE = 'type' PARSERS = 'parsers' PATHS = 'paths' def load_parser(type_name): if type_name == GrepParser.TYPE: return GrepParser else: raise Exception("Invalid parser type: {}".format(type_name))
import time import io from flask import send_file from flask.views import MethodView from flask_login import current_user from sqlalchemy import func, and_ from openpyxl import Workbook from openpyxl.styles import PatternFill, Font, Border, Side from backend.plugins import db from backend.models import Order, OrderSheet from backend.extensions import Blueprint, roles_required bp = Blueprint('reports', 'reports', description='Get report like first rides assignment') @bp.route('/firstrides/<sheet_id_or_latest>') class FirstRides(MethodView): @bp.response(code=200) @bp.alt_response("NOT_FOUND", code=404) @roles_required('view-only', 'planner', 'administrator') def get(self, sheet_id_or_latest): """ Get a workbook containing a first rides report from an order sheet. In case 'sheet_id_or_latest is 'latest', the most recently uploaded order sheet will be used. Required roles: view-only, planner, administrator """ # Request the order sheet for this planning is_view_only = current_user.role == 'view-only' order_sheet = OrderSheet.query.get_sheet_or_404(sheet_id_or_latest, is_view_only) sheet_id = order_sheet.id # Get a list of truck ids and their earliest departure time subq = db.session.query( Order.truck_s_number, func.min(Order.departure_time).label('mintime') ).group_by(Order.truck_s_number).filter(Order.sheet_id == sheet_id) \ .subquery() # Get the first orders for each truck first_orders = db.session.query(Order).join( subq, and_( Order.truck_s_number == subq.c.truck_s_number, Order.departure_time == subq.c.mintime ) ).all() # Create a new sheet file book = Workbook() sheet = book.active now = time.strftime("%d %b %Y %X") now_save = time.strftime("%Y-%m-%d-%H-%M-%S") # Set the column names sheet['A1'] = now sheet['C4'] = 'Sno' sheet['D4'] = 'Driver Name' sheet['E4'] = 'Truck ID' sheet['F4'] = 'Terminal' sheet['G4'] = 'chassis' sheet['H4'] = 'Starting Time' sheet['I4'] = 'Delivery Deadline' sheet['J4'] = 'Customer' sheet['K4'] = 'Container No.' sheet['L4'] = 'City' sheet['M4'] = 'Container Type' sheet['N4'] = 'Shipping company' sheet['O4'] = 'Remarks' # Styling yellow_fill = PatternFill(start_color='FFFF00', fill_type='solid') border = Border(left=Side(border_style='thin', color='000000'), right=Side(border_style='thin', color='000000'), top=Side(border_style='thin', color='000000'), bottom=Side(border_style='thin', color='000000')) # Set the styling to each of the column header cells for cell in sheet.iter_cols(3, 15, 4, 4): cell[0].fill = yellow_fill cell[0].font = Font(bold=True) cell[0].border = border # Set the width of cells that contain long values sheet.column_dimensions['D'].width = 20 sheet.column_dimensions['H'].width = 15 sheet.column_dimensions['I'].width = 15 sheet.column_dimensions['N'].width = 20 sheet.column_dimensions['O'].width = 40 # Create a row for each truck that has assigned an order for count, order in zip(range(5, len(first_orders)+5), first_orders): sheet.cell(row=count, column=3).value = \ order.truck.s_number # s number sheet.cell(row=count, column=4).value = \ order.truck.others.get('Driver', '') # driver sheet.cell(row=count, column=5).value = \ order.truck.truck_id # truck id sheet.cell(row=count, column=6).value = \ order.inl_terminal # terminal sheet.cell(row=count, column=7).value = \ '' # chassis? sheet.cell(row=count, column=8).value = \ order.departure_time # dep time sheet.cell(row=count, column=9).value = \ order.delivery_deadline # deadline sheet.cell(row=count, column=10).value = \ order.others.get('Client', '') # client sheet.cell(row=count, column=11).value = \ order.others.get('Container', '') # container number sheet.cell(row=count, column=12).value = \ order.others.get('City', '') # city sheet.cell(row=count, column=13).value = \ order.others.get('Unit type', '') # container type sheet.cell(row=count, column=14).value = \ order.others.get('Ship. comp.', '') # shipping company sheet.cell(row=count, column=15).value = \ order.truck.others.get('Remarks', '') # remarks # Set the borders of each cell of the row for i in range(3, 16): sheet.cell(row=count, column=i).border = border # Save the file to an io stream filename = 'first-rides-' + now_save + '.xlsx' file = io.BytesIO() book.save(file) file.seek(0) return send_file( file, attachment_filename=filename, as_attachment=True ), 200
class ImagesClient(): pass
from django.shortcuts import render from rest_framework.views import APIView from rest_framework.response import Response#Return response object from API view from rest_framework import status#List of handy HTTP status codes that we can use when returning responses from our API from profiles_api import serializers # Create your views here. class HelloAPIView(APIView): """Test APIView""" serializer_class= serializers.HelloSerializer #Function for a GET HTTP request def get(self, request, format=None):#format parameter is just best practice to include """Returns a list of APIView features""" an_api_view=[ 'Uses HTTP methods as function (get,post,patch,put,delete)', "Is similar to a traditional Django View", "Gives you the most control over your application logic", "Is mapped manually to URLs", ] return Response({'message':'Hello', 'an_api_view':an_api_view})#return in JSON format def post(self, request): """Create a hello message with our name""" serializer=self.serializer_class(data=request.data)#retrieve the serializer that we defined in the serializer_class attribute above. We pass in the request data to the class if serializer.is_valid(): name=serializer.validated_data.get('name') #retrieve the name field defined in our serializer message=f'Hello {name}' return Response({'message':message}) else: return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST ) def put(self, request, pk=None):#Need pk to identify which object to put """Handle updating an object""" return Response({'method':'PUT'}) def patch(self, request,pk=None): """Handle partial update of object""" return Response({'method':"PATCH"}) def delete(self, request, pk=None): """Delete and object""" return Response({'method':'DELETE'}) from rest_framework import viewsets class HelloViewSet(viewsets.ViewSet): """Test api viewset""" serializer_class=serializers.HelloSerializer def list(self, request): """Return hellp message""" a_view_set=[ 'Uses actions (list, create, retrieve, update, partial_update)', "Automatically maps to URLs using Routers", "Provides more functionality with less code", ] return Response({'message':'Hello', 'view_set':a_view_set}) def create(self, request): """Create a new hello message""" serializer = self.serializer_class(data=request.data) if serializer.is_valid(): name=serializer.validated_data.get('name') message=f'Hello {name}' return Response({'message':message}) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def retrieve(self, request, pk=None): """Handle getting an object by its ID""" return Response({'http_method':'GET'}) def update(self, request, pk=None): """Update""" return Response({'http_method':'PUT'}) def partial_update(self, request, pk=None): """partial update""" return Response({'http_method':'PATCH'}) def destroy(self, request, pk=None): """removing""" return Response({'http_method':'DELETE'}) from profiles_api import models,permissions from rest_framework import authentication, filters class UserProfileViewSet(viewsets.ModelViewSet): """Handle creating and updating profiles""" serializer_class=serializers.UserProfileSerializer queryset= models.UserProfile.objects.all() authentication_classes= (authentication.TokenAuthentication,)#Specify the authentication process we use in our API so we can verify who the user is permission_classes=(permissions.UpdateOwnProfile,)#Specify the permission level of the authenticated user filter_backends=(filters.SearchFilter,) search_fields=('name', 'email',) from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.settings import api_settings class UserLoginApiView(ObtainAuthToken): """Handle creating user authentication tokens""" #make it visible in browsable API, the other viewsets have this by default, but not obtainauthtoken renderer_classes= api_settings.DEFAULT_RENDERER_CLASSES from rest_framework import permissions as rest_permissions class UserProfileFeedViewSet(viewsets.ModelViewSet): """Handling creating, reading and updating profile feeds""" authentication_classes = (authentication.TokenAuthentication,) serializer_class= serializers.ProfileFeedSerializer queryset=models.ProfileFeedItem.objects.all() permission_classes = ( permissions.UpdateOwnStatus,#only able to update their own rest_permissions.IsAuthenticated,#Limit viewing to authenticated user only rest_permissions.IsAuthenticatedOrReadOnly#if not logged in, can't edit ) def perform_create(self, serializer):#Override behavior for creating objects through a model viewset """Sets the user profile to the logged-in user""" #because we have added token_authentication, the request contains info on user serializer.save(user_profile=self.request.user)#since the serializer is a modelserializer, it has save function to save content from serializer to database
import torch import numpy as np from scipy.io import loadmat from skimage.io import imread def default_loader(path_): return imread(path_) def mat_loader(path_): return loadmat(path_) def make_onehot(index_map, n): # Only deals with tensors with no batch dim old_size = index_map.size() z = torch.zeros(n, *old_size[-2:]).type_as(index_map) z.scatter_(0, index_map, 1) return z def to_tensor(arr): if arr.ndim < 3: return torch.from_numpy(arr) elif arr.ndim == 3: return torch.from_numpy(np.ascontiguousarray(np.transpose(arr, (2,0,1)))) else: raise NotImplementedError def to_array(tensor): if tensor.ndimension() < 3: return tensor.data.cpu().numpy() elif tensor.ndimension() in (3, 4): return np.ascontiguousarray(np.moveaxis(tensor.data.cpu().numpy(), -3, -1)) else: raise NotImplementedError
from fastapi import APIRouter from api.endpoints.routes import connections, endorse, reports, endorser_admin endorser_router = APIRouter() endorser_router.include_router(connections.router, prefix="/connections", tags=[]) endorser_router.include_router(endorse.router, prefix="/endorse", tags=[]) endorser_router.include_router(reports.router, prefix="/reports", tags=[]) endorser_router.include_router(endorser_admin.router, prefix="/admin", tags=[])
from string import lower, replace from PIL import Image from optparse import OptionParser import glob import os from lxml import etree from pymei.Helpers import generate_mei_id from pymei.Components import Modules as mod, MeiDocument from pymei.Export import meitoxml from pymei.Import import xmltomei from spellcheck import correct """ Generates mei files and outputs to ../mei_corrtxt or ../mei_uncorrtxt if the -u flag is given. Make sure that ????.html and its corresponding ????.png and ????_uncoor.mei (if it exists) are in the pwd. If no flag is given, this script uses Peter Norvig's spelling checker to attempt to improve the quality of the hocr text output. Make sure that spellcheck.py and latin-english.txt are also in this dir. It also removes dashes from lyrics and fixes common spelling errors that are not corrected by the spell-checker. If the flag -u (--uncorrected) is given, this script uses text from the hocr output without any correction. """ parser=OptionParser() parser.add_option("-u", "--uncorrected", action="store_false", dest="corrected", default=True) (options, args)=parser.parse_args() # make output directory if options.corrected: os.system('mkdir ../mei_corrtxt') else: os.system('mkdir ../mei_uncorrtxt') def getlines(hocrfile): """ arg: hocrfile as string (ex. '0001') return: lines as list of dictionaries [{'bbox' : (ulx, uly, lrx, lry), 'text' : 'TEXT'}, ...] """ parser=etree.HTMLParser() tree=etree.parse(hocrfile+'.html', parser) im=Image.open(hocrfile+'.png') l=[] for element in tree.getroot().iter("span"): bbox=[int(x) for x in element.attrib['title'].split()[1:]] corrected=[bbox[0], im.size[1]-bbox[3], bbox[2], im.size[1]-bbox[1]] d={} d['bbox']=tuple(corrected) d['text']=element.text l.append(d) return l def force_correct(word): """ arg: commonly misspelt word that the spell-checker cannot catch return: correct spelling of word """ if word=='unc': return 'nunc' elif word=='gnus': return 'agnus' elif word=='yrie': return 'kyrie' elif word=='redo': return 'credo' elif word=='ominus': return 'dominus' elif word=='remus': return 'oremus' elif word=='ectio': return 'lectio' elif word=='er': return 'per' elif word=='eus': return 'deus' elif word=='hriste': return 'christe' elif word=='ector': return 'rector' elif word=='niquo': return 'iniquo' elif word=='ucis': return 'lucis' elif word=='iliae': return 'filiae' elif word=='isirere': return 'misirere' elif word=='alva': return 'salva' elif word=='ripe': return 'eripe' else: return word def correct_text(line): """ fixes text in lines - removes dashes from lyrics, corrects spelling """ # check if text output should be corrected or not if options.corrected: # fix strange problem where 'lu-' is read as 'hb' line['text']=replace(line['text'], 'hb', 'lu-') # remove dashes from text line['text']=replace(line['text'], '- ', '') line['text']=replace(line['text'], '-', '') # correct common spelling errors that the spell-checker cannot catch words=line['text'].split() words[0]=force_correct(words[0]) # correct spelling if corrected output is not 's' (short words sometimes get corrected to 's' - weird) words=[correct(lower(word)) for word in words if correct(lower(word))!='s'] return ' '.join(words) else: return line['text'] def add_text_lines(hocrfile, surface, section): """ helper method that adds lines in hocr file to 'surface' and 'section' in mei file """ div=mod.div_() div.id=generate_mei_id() lg=mod.lg_() lg.id=generate_mei_id() section.add_child(div) div.add_child(lg) for line in getlines(hocrfile): # for each line: make new zone and l objects, add zone to surface zone=mod.zone_() zone.id=generate_mei_id() zone.ulx=line['bbox'][0] zone.uly=line['bbox'][1] zone.lrx=line['bbox'][2] zone.lry=line['bbox'][3] l=mod.l_() l.id=generate_mei_id() l.facs=zone.id l.value=correct_text(line) lg.add_child(l) surface.add_child(zone) def create_mei(filename): # build new mei file meifile=MeiDocument.MeiDocument() mei=mod.mei_() # header meihead=mod.meihead_() filedesc=mod.filedesc_() titlestmt=mod.titlestmt_() title=mod.title_() pubstmt=mod.pubstmt_() meihead.add_child(filedesc) filedesc.add_children([titlestmt, pubstmt]) titlestmt.add_child(title) # music - facsimile, layout, body music=mod.music_() facsimile=mod.facsimile_() facsimile.id=generate_mei_id() surface=mod.surface_() surface.id=generate_mei_id() graphic=mod.graphic_() graphic.id=generate_mei_id() graphic.attributes={'xlink:href':'%s_original_image.tiff' % (filename,)} facsimile.add_child(surface) surface.add_child(graphic) layout=mod.layout_() layout.id=generate_mei_id() page=mod.page_() page.id=generate_mei_id() page.attributes={'n':filename} layout.add_child(page) body=mod.body_() mdiv=mod.mdiv_() mdiv.attributes={'type':'solesmes'} score=mod.score_() section=mod.section_() pb=mod.pb_() pb.id=generate_mei_id() pb.attributes={'pageref':page.id} body.add_child(mdiv) mdiv.add_child(score) score.add_child(section) section.add_child(pb) music.add_children([facsimile, layout, body]) mei.add_children([meihead, music]) meifile.addelement(mei) return meifile # import hocr and mei files into lists and strip extension where useful hocrfiles=[x.split('.')[0] for x in glob.glob('????.html')] allmeifiles=glob.glob('*.mei') meifiles=[x.split('_')[0] for x in allmeifiles] # for each hocr file: if corresponding mei file exists, open mei and edit - if not, create new mei if options.corrected: for hocrfile in hocrfiles: output_name='%s_corr.mei' % (hocrfile,) if '%s_corr.mei' % (hocrfile,) in allmeifiles else '%s_uncorr.mei' % (hocrfile,) meifile=xmltomei.xmltomei(output_name) if hocrfile in meifiles else create_mei(hocrfile) surface=meifile.search('surface')[0] section=meifile.search('section')[0] add_text_lines(hocrfile, surface, section) meitoxml.meitoxml(meifile, '../mei_corrtxt/%s' % (output_name,)) else: for hocrfile in hocrfiles: meifile=MeiDocument.MeiDocument() mei=mod.mei_() surface=mod.surface_() section=mod.section_() mei.add_children([surface, section]) add_text_lines(hocrfile, surface, section) meifile.addelement(mei) meitoxml.meitoxml(meifile, '../mei_uncorrtxt/%s_mei_fragment.mei' % (hocrfile,))
# Copyright (C) 2001,2002 Python Software Foundation # email package unit tests # The specific tests now live in Lib/email/test from email.test.test_email import TestEncoders, suite from test import support def test_main(): #This one doesn't work on Jython del TestEncoders.test_encode7or8bit s = suite() support.run_unittest(suite()) if __name__ == '__main__': test_main()
def greeting(): try: from blessings import Terminal term = Terminal() print(term.green + term.bold + "Hello World!" + term.normal) except ImportError: print("Hello World!")
import re from typing import Optional import cryptography import cryptography.x509 from cryptography.hazmat.backends.openssl import backend as crypto_x509_backend from . import Rut, constants def get_subject_rut_from_certificate_pfx(pfx_file_bytes: bytes, password: Optional[str]) -> Rut: """ Return the Chilean RUT stored in a digital certificate. Original source URL: https://github.com/fyntex/fd-cl-data/blob/cfd5a716fb9b2cbd8a03fca1bacfd1b844b1337f/fd_cl_data/apps/sii_auth/models/sii_auth_credential.py#L701-L745 # noqa: E501 :param pfx_file_bytes: Digital certificate in PKCS12 format :param password: (Optional) The password to use to decrypt the PKCS12 file """ ( private_key, x509_cert, additional_certs, ) = crypto_x509_backend.load_key_and_certificates_from_pkcs12( data=pfx_file_bytes, password=password.encode() if password is not None else None, ) # https://cryptography.io/en/latest/hazmat/primitives/asymmetric/serialization/#cryptography.hazmat.primitives.serialization.pkcs12.load_key_and_certificates # noqa: E501 subject_alt_name_ext = x509_cert.extensions.get_extension_for_class( cryptography.x509.extensions.SubjectAlternativeName, ) # Search for the RUT in the certificate. try: results = [ x.value for x in subject_alt_name_ext.value._general_names if hasattr(x, 'type_id') and x.type_id == constants.SII_CERT_TITULAR_RUT_OID ] except AttributeError as exc: raise Exception(f'Malformed certificate extension: {subject_alt_name_ext.oid}') from exc if not results: raise Exception('Certificate has no RUT information') elif len(results) > 1: raise Exception(f'len(results) == {len(results)}') subject_rut_raw: bytes = results[0] subject_rut = re.sub(r'[^0-9-]', '', subject_rut_raw.decode('utf-8')) return Rut(subject_rut)
"""Batch the glove embeddings for the generator""" from __future__ import absolute_import from __future__ import division import random import time import re import numpy as np from six.moves import xrange from vocab import PAD_ID, UNK_ID import torch def split_by_whitespace(sentence): words = [] for space_separated_fragment in sentence.strip().split(): words.extend(re.split(" ", space_separated_fragment)) return [w for w in words if w] def intstr_to_intlist(string): """Given a string e.g. '311 9 1334 635 6192 56 639', returns as a list of integers""" return [int(s) for s in string.split()] def sentence_to_token_ids(sentence, word2id): """Turns an already-tokenized sentence string into word indices e.g. "i do n't know" -> [9, 32, 16, 96] Note any token that isn't in the word2id mapping gets mapped to the id for UNK """ tokens = split_by_whitespace(sentence) # list of strings ids = [word2id.get(w, UNK_ID) for w in tokens] return tokens, ids def padded(token_batch, batch_pad=0): """ Inputs: token_batch: List (length batch size) of lists of ints. batch_pad: Int. Length to pad to. If 0, pad to maximum length sequence in token_batch. Returns: List (length batch_size) of padded of lists of ints. All are same length - batch_pad if batch_pad!=0, otherwise the maximum length in token_batch """ maxlen = max(map(lambda x: len(x), token_batch)) if batch_pad == 0 else batch_pad masks = map(lambda x: [1] * len(x) + [0] * (maxlen - len(x)), token_batch) return map(lambda token_list: token_list + [PAD_ID] * (maxlen - len(token_list)), token_batch), masks def get_text_description(caption_dict, batch_keys): g_idx = [np.random.randint(len(caption_dict[batch_keys[0]])) for i in range(len(batch_keys))] g_text_des = [caption_dict[k][i] for k,i in zip(batch_keys, g_idx)] return g_text_des def get_captions_batch(batch_keys, caption_dict, word2id): """ Inputs: caption_dict: filename --> caption (dictionary) batch_keys: filenames in the batch Returns: batch of indices representing each sentence """ tokens_batch = [] raw_batch = get_text_description(caption_dict, batch_keys) for capt in raw_batch: tokens, ids = sentence_to_token_ids(capt, word2id) tokens_batch.append(ids) captions_batch, masks = padded(tokens_batch) return captions_batch, masks
from unittest import TestCase from configuration_py.configuration_load import _normalize_environment_label class TestNormalizeEnvironmentLabel(TestCase): def test_normalize_environment_label_should_return_label_for_available_environment(self): available_environments = ['production', 'development'] label = 'development' expected_value = label actual_value = _normalize_environment_label(label, available_environments) self.assertEqual(expected_value, actual_value) def test_normalize_environment_label_should_return_label_for_short_development_environment(self): available_environments = ['production', 'development'] label = 'dev' expected_value = 'development' actual_value = _normalize_environment_label(label, available_environments) self.assertEqual(expected_value, actual_value) def test_normalize_environment_label_should_return_label_for_short_production_environment(self): available_environments = ['production', 'development'] label = 'prod' expected_value = 'production' actual_value = _normalize_environment_label(label, available_environments) self.assertEqual(expected_value, actual_value) def test_normalize_environment_label_should_raise_exception_if_no_such_environment_in_config(self): available_environments = ['production'] label = 'development' self.assertRaises(EnvironmentError, _normalize_environment_label, label, available_environments)
# Generated by Django 2.2.14 on 2020-07-14 09:03 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('forms', '0003_auto_20180522_0820'), ] operations = [ migrations.AlterField( model_name='field', name='help_text', field=models.CharField(blank=True, max_length=300, verbose_name='Help text'), ), migrations.AlterField( model_name='field', name='label', field=models.CharField(max_length=300, verbose_name='Label'), ), migrations.AlterField( model_name='field', name='slug', field=models.SlugField(blank=True, default='', max_length=300, verbose_name='Slug'), ), migrations.AlterField( model_name='form', name='send_email', field=models.BooleanField(default=False, help_text='If checked, the person entering the form will be sent an email', verbose_name='Send email'), ), migrations.AlterField( model_name='form', name='slug', field=models.SlugField(editable=False, max_length=220, unique=True, verbose_name='Slug'), ), migrations.AlterField( model_name='form', name='title', field=models.CharField(max_length=220, verbose_name='Title'), ), ]
import argparse import code import sys import traceback from voussoirkit import interactive from voussoirkit import pipeable from voussoirkit import vlogging import bringrss def bringrepl_argparse(args): global B try: B = bringrss.bringdb.BringDB.closest_bringdb() except bringrss.exceptions.NoClosestBringDB as exc: pipeable.stderr(exc.error_message) pipeable.stderr('Try `bringrss_cli.py init` to create the database.') return 1 if args.exec_statement: exec(args.exec_statement) B.commit() else: while True: try: code.interact(banner='', local=dict(globals(), **locals())) except SystemExit: pass if len(B.savepoints) == 0: break print('You have uncommited changes, are you sure you want to quit?') if interactive.getpermission(): break @vlogging.main_decorator def main(argv): parser = argparse.ArgumentParser() parser.add_argument('--exec', dest='exec_statement', default=None) parser.set_defaults(func=bringrepl_argparse) args = parser.parse_args(argv) return args.func(args) if __name__ == '__main__': raise SystemExit(main(sys.argv[1:]))
from pydy import * from sympy import * from bicycle_lib_hand import mj_params as mj_p # Reference frames N = NewtonianReferenceFrame('N') (q,), (qd,) = N.declare_coords('q', 1) lmbda=q var('rr rrt rf rft xb zb xh zh mc md me mf mr mb mh w c') var('xrb zrb xhf zhf') var('l1 l2 l3 l4 lr lf ls') var('IC22 IF11 IF22 ICD11 ICD13 ICD22 ICD33 IEF11 IEF13 IEF22 IEF33 IF11') var('IRxx IRyy IBxx IBxz IByy IBzz IHxx IHxz IHyy IHzz IFxx IFyy') # Subs dict and a collection list sin_over_tan = {sin(lmbda)/tan(lmbda): cos(lmbda)} col = [sin(lmbda), cos(lmbda)] output_eqns = [Eq(rr, rr), Eq(rrt, rrt), Eq(rf, rf), Eq(rft, rft)] output_eqns = [] # Total mass of rear and front assemblies mc = mr md = mb me = mh # D Frame in the upright configuration D = N.rotate('D', 2, lmbda) # In the upright zero-steer configuration, the D and E frames are aligned E = D # Take N.O to be the rear contact point # Locate all points using my parameters CO = N.O.locate('CO', -(rr+rrt)*N[3], mass=mc) CDO = CO.locate('CDO', l1*D[1] + l2*D[3], mass=md) FO1 = CO.locate('FO1', lr*D[1] + ls*D[3] + lf*E[1], mass=mf) EFO = FO1.locate('EFO', l3*E[1] + l4*E[3], mass=me) FN1 = FO1.locate('FN1', (rf+rft)*N[3]) # Locate all points using Meijaard parameters RO = N.O.locate('RO', -(rr + rrt)*N[3], mass=mr) # Same point as CO BO = N.O.locate('BO', xb*N[1] + zb*N[3], mass=mb) HO = N.O.locate('HO', xh*N[1] + zh*N[3], mass=mh) FO2 = N.O.locate('FO2', w*N[1] - (rf+rft)*N[3], mass=mf) # Same point as FO FN2 = N.O.locate('FN2', w*N[1]) CDO2 = N.O.locate('CDO2', xrb*N[1] + zrb*N[3]) EFO2 = N.O.locate('EFO2', xhf*N[1] + zhf*N[3]) # Convert geometric frame parameters geom_eqs = [dot(FN1.rel(N.O)-FN2.rel(N.O), D[1]), dot(FN1.rel(N.O)-FN2.rel(N.O), D[3]), rf+rft-lf/sin(lmbda)-c/tan(lmbda)] # From similar triangles soln_geom = solve(geom_eqs, [lr, lf, ls]) for l in (lr, ls, lf): output_eqns.append(Eq(l, collect(soln_geom[l].expand().subs(sin_over_tan), col))) # Mass center's of Meijaards bodies RBO = mass_center(N.O, [RO, BO]) # Relative to rear contact point HFO = mass_center(FN2, [HO, FO2]) # Relative to front contact point cm_eqs = [dot(CDO.rel(N.O) - RBO, D[1]), dot(CDO.rel(N.O) - RBO, D[3]), dot(EFO.rel(FN1) - HFO, D[1]), dot(EFO.rel(FN1) - HFO, D[3])] soln_cm = {l1: -cm_eqs[0] + l1, l2: -cm_eqs[1] + l2, l3: -cm_eqs[2] + l3, l4: -cm_eqs[3] + l4} for l in (l1, l2, l3, l4): output_eqns.append(Eq(l, soln_cm[l])) # Test to ensure that the l1, l2, l3, l4 expressions just solved for result in # the same mass center location as what is published by Sharp xrbs = CDO.rel(N.O).dot(N[1]) zrbs = CDO.rel(N.O).dot(N[3]) xhfs = EFO.rel(N.O).dot(N[1]) zhfs = EFO.rel(N.O).dot(N[3]) # Below results match COM locations of Sharp 2008 #print 'xrb =', xrbs.subs(soln_cm).subs(mj_p).n() #print 'zrb =', zrbs.subs(soln_cm).subs(mj_p).n() #print 'xhf =', xhfs.subs(soln_cm).subs(soln_geom).subs(mj_p).n() #print 'zhf =', zhfs.subs(soln_cm).subs(soln_geom).subs(mj_p).n() # Distances from rear assembly mass center to rear wheel center l1c = RO.rel(CDO).dot(D[1]) l3c = RO.rel(CDO).dot(D[3]) # Distances from rear assembly mass center to rear frame and rider mass center l1d = BO.rel(CDO).dot(D[1]) l3d = BO.rel(CDO).dot(D[3]) # Distance from front assembly mass center to front fork/handle bar l1e = HO.rel(EFO).dot(D[1]) l3e = HO.rel(EFO).dot(D[3]) # Distance from front assembly mass center to front wheel mass center l1f = FO1.rel(EFO).dot(D[1]) l3f = FO1.rel(EFO).dot(D[3]) nt = {Symbol('l1c'): l1c, Symbol('l3c'): l3c, Symbol('l1d'): l1d, Symbol('l3d'): l3d, Symbol('l1e'): l1e, Symbol('l3e'): l3e, Symbol('l1f'): l1f, Symbol('l3f'): l3f} # Using Meijaard's parameters I_C_CO = Inertia(N, [IRxx, IRyy, IRxx, 0, 0, 0]) I_D_DO = Inertia(N, [IBxx, IByy, IBzz, 0, 0, IBxz]) I_E_EO = Inertia(N, [IHxx, IHyy, IHzz, 0, 0, IHxz]) I_F_FO = Inertia(N, [IFxx, IFyy, IFxx, 0, 0, 0]) # In plane Inertia of rear wheel I_C_CO_p = Inertia(D, [IRxx, 0, IRxx, 0, 0, 0]) # In plane Inertia of front wheel I_F_FO_p = Inertia(E, [IFxx, 0, IFxx, 0, 0, 0]) l1c, l3c, l1d, l3d, l1e, l3e, l1f, l3f = symbols('l1c l3c l1d l3d l1e l3e l1f\ l3f') # Position from CDO to CO CO_rel_CDO = Vector(l1c*D[1] + l3c*D[3]) # Position from CDO to DO DO_rel_CDO = Vector(l1d*D[1] + l3d*D[3]) # Position from EFO to EO EO_rel_EFO = Vector(l1e*E[1] + l3e*E[3]) # Position from EFO to FO FO_rel_EFO = Vector(l1f*E[1] + l3f*E[3]) # Inertia of a particle, of mass mc, relative to CDO I_CO_CDO = inertia_of_point_mass(mc, CO_rel_CDO, D) # Parallel axis theorem for rear wheel, except out of plane inertia of wheel I_C_CDO = I_C_CO_p + I_CO_CDO # Inertia of a particle of mass md relative to the rear assembly mass center I_DO_CDO = inertia_of_point_mass(md, DO_rel_CDO, D) # Parallel axis theorem for rider I_D_CDO = I_D_DO.express(D) + I_DO_CDO I_CD_CDO = I_C_CDO + I_D_CDO # Inertia of a particle, of mass me, relative to EFO I_EO_EFO = inertia_of_point_mass(me, EO_rel_EFO, E) # Parallel axis theorem for fork handlebar assembly I_E_EFO = I_E_EO.express(E) + I_EO_EFO # Inertia of a particle of mass md relative to the rear assembly mass center I_FO_EFO = inertia_of_point_mass(mf, FO_rel_EFO, E) # Parallel axis theorem for rider I_F_EFO = I_F_FO_p + I_FO_EFO I_EF_EFO = I_E_EFO + I_F_EFO mcd = mc + md mef = me + mf output_eqns.append(Eq(Symbol('mcd'), mcd)) output_eqns.append(Eq(Symbol('mef'), mef)) output_eqns.append(Eq(Symbol('IC22'), IRyy)) ICD11 = dot(D[1], dot(I_CD_CDO, D[1])) output_eqns.append(Eq(Symbol('ICD11'), ICD11)) ICD22 = dot(D[2], dot(I_CD_CDO, D[2])) ICD13 = dot(D[1], dot(I_CD_CDO, D[3])) output_eqns.append(Eq(Symbol('ICD13'), ICD13)) output_eqns.append(Eq(Symbol('ICD22'), ICD22)) ICD33 = dot(D[3], dot(I_CD_CDO, D[3])) output_eqns.append(Eq(Symbol('ICD33'), ICD33)) ICD13 = dot(D[1], dot(I_CD_CDO, D[3])) output_eqns.append(Eq(Symbol('ICD13'), ICD13)) IEF11 = dot(D[1], dot(I_EF_EFO, D[1])) output_eqns.append(Eq(Symbol('IEF11'), IEF11)) IEF22 = dot(D[2], dot(I_EF_EFO, D[2])) output_eqns.append(Eq(Symbol('IEF22'), IEF22)) IEF33 = dot(D[3], dot(I_EF_EFO, D[3])) output_eqns.append(Eq(Symbol('IEF33'), IEF33)) IEF13 = dot(D[1], dot(I_EF_EFO, D[3])) output_eqns.append(Eq(Symbol('IEF13'), IEF13)) output_eqns.append(Eq(Symbol('IF22'), IFyy)) ops = 0 for e in output_eqns: print e ops += e.rhs.count_ops() print ops params = N.declare_parameters('rr rrt rf rft lr ls lf l1 l2 l3 l4 mcd mef IC22\ ICD11 ICD22 ICD33 ICD13 IEF11 IEF22 IEF33 IEF13 IF22 g') input = [w, c, lmbda, rr, rrt, rf, rft, xb, zb, xh, zh, mr, mb, mh, mf, IRxx, IRyy, IBxx, IByy, IBzz, IBxz, IHxx, IHyy, IHzz, IHxz, IFxx, IFyy] output_string = "from __future__ import division\n" output_string += "from math import sin, cos\n\n" output_string += generate_function("convert_params", output_eqns, input, nested_terms=[nt]) print output_string stop file = open('convert_parameters.py', 'w') file.write(output_string) file.close()
#include "TStyle.h" from ROOT import TPad, TStyle, kWhite, kTRUE, gPad # tdrGrid: Turns the grid lines on (true) or off (false) def tdrGrid(tdrStyle, gridOn): tdrStyle.SetPadGridX(gridOn); tdrStyle.SetPadGridY(gridOn); # fixOverlay: Redraws the axis def fixOverlay(): gPad.RedrawAxis(); def setTDRStyle(): tdrStyle = TStyle("tdrStyle","Style for P-TDR"); # For the canvas: tdrStyle.SetCanvasBorderMode(0); tdrStyle.SetCanvasColor(kWhite); tdrStyle.SetCanvasDefH(600); #Height of canvas tdrStyle.SetCanvasDefW(600); #Width of canvas tdrStyle.SetCanvasDefX(0); #POsition on screen tdrStyle.SetCanvasDefY(0); # For the Pad: tdrStyle.SetPadBorderMode(0); # tdrStyle.SetPadBorderSize(Width_t size = 1); tdrStyle.SetPadColor(kWhite); tdrStyle.SetPadGridX(False); tdrStyle.SetPadGridY(False); tdrStyle.SetGridColor(0); tdrStyle.SetGridStyle(3); tdrStyle.SetGridWidth(1); # For the frame: tdrStyle.SetFrameBorderMode(0); tdrStyle.SetFrameBorderSize(1); tdrStyle.SetFrameFillColor(0); tdrStyle.SetFrameFillStyle(0); tdrStyle.SetFrameLineColor(1); tdrStyle.SetFrameLineStyle(1); tdrStyle.SetFrameLineWidth(1); # For the histo: # tdrStyle.SetHistFillColor(1); # tdrStyle.SetHistFillStyle(0); tdrStyle.SetHistLineColor(1); tdrStyle.SetHistLineStyle(0); tdrStyle.SetHistLineWidth(1); # tdrStyle.SetLegoInnerR(Float_t rad = 0.5); # tdrStyle.SetNumberContours(Int_t number = 20); tdrStyle.SetEndErrorSize(2); # tdrStyle.SetErrorMarker(20); tdrStyle.SetErrorX(0.); tdrStyle.SetMarkerStyle(20); #For the fit/function: tdrStyle.SetOptFit(1); tdrStyle.SetFitFormat("5.4g"); tdrStyle.SetFuncColor(2); tdrStyle.SetFuncStyle(1); tdrStyle.SetFuncWidth(1); #For the date: tdrStyle.SetOptDate(0); # tdrStyle.SetDateX(Float_t x = 0.01); # tdrStyle.SetDateY(Float_t y = 0.01); # For the statistics box: tdrStyle.SetOptFile(0); tdrStyle.SetOptStat(0); # To display the mean and RMS: SetOptStat("mr"); tdrStyle.SetStatColor(kWhite); tdrStyle.SetStatFont(42); tdrStyle.SetStatFontSize(0.025); tdrStyle.SetStatTextColor(1); tdrStyle.SetStatFormat("6.4g"); tdrStyle.SetStatBorderSize(1); tdrStyle.SetStatH(0.1); tdrStyle.SetStatW(0.15); # tdrStyle.SetStatStyle(Style_t style = 1001); # tdrStyle.SetStatX(Float_t x = 0); # tdrStyle.SetStatY(Float_t y = 0); # Margins: tdrStyle.SetPadTopMargin(0.05); tdrStyle.SetPadBottomMargin(0.13); tdrStyle.SetPadLeftMargin(0.16); tdrStyle.SetPadRightMargin(0.02); # For the Global title: tdrStyle.SetOptTitle(0); tdrStyle.SetTitleFont(42); tdrStyle.SetTitleColor(1); tdrStyle.SetTitleTextColor(1); tdrStyle.SetTitleFillColor(10); tdrStyle.SetTitleFontSize(0.05); # tdrStyle.SetTitleH(0); # Set the height of the title box # tdrStyle.SetTitleW(0); # Set the width of the title box # tdrStyle.SetTitleX(0); # Set the position of the title box # tdrStyle.SetTitleY(0.985); # Set the position of the title box # tdrStyle.SetTitleStyle(Style_t style = 1001); # tdrStyle.SetTitleBorderSize(2); # For the axis titles: tdrStyle.SetTitleColor(1, "XYZ"); tdrStyle.SetTitleFont(42, "XYZ"); tdrStyle.SetTitleSize(0.06, "XYZ"); # tdrStyle.SetTitleXSize(Float_t size = 0.02); # Another way to set the size? # tdrStyle.SetTitleYSize(Float_t size = 0.02); tdrStyle.SetTitleXOffset(0.9); tdrStyle.SetTitleYOffset(1.25); # tdrStyle.SetTitleOffset(1.1, "Y"); # Another way to set the Offset # For the axis labels: tdrStyle.SetLabelColor(1, "XYZ"); tdrStyle.SetLabelFont(42, "XYZ"); tdrStyle.SetLabelOffset(0.007, "XYZ"); tdrStyle.SetLabelSize(0.05, "XYZ"); # For the axis: tdrStyle.SetAxisColor(1, "XYZ"); tdrStyle.SetStripDecimals(kTRUE); tdrStyle.SetTickLength(0.03, "XYZ"); tdrStyle.SetNdivisions(510, "XYZ"); tdrStyle.SetPadTickX(1); # To get tick marks on the opposite side of the frame tdrStyle.SetPadTickY(1); # Change for log plots: tdrStyle.SetOptLogx(0); tdrStyle.SetOptLogy(0); tdrStyle.SetOptLogz(0); # Postscript options: tdrStyle.SetPaperSize(20.,20.); # tdrStyle.SetLineScalePS(Float_t scale = 3); # tdrStyle.SetLineStyleString(Int_t i, const char* text); # tdrStyle.SetHeaderPS(const char* header); # tdrStyle.SetTitlePS(const char* pstitle); # tdrStyle.SetBarOffset(Float_t baroff = 0.5); # tdrStyle.SetBarWidth(Float_t barwidth = 0.5); # tdrStyle.SetPaintTextFormat(const char* format = "g"); # tdrStyle.SetPalette(Int_t ncolors = 0, Int_t* colors = 0); # tdrStyle.SetTimeOffset(Double_t toffset); # tdrStyle.SetHistMinimumZero(kTRUE); tdrStyle.cd(); return tdrStyle
import os from ice.logs import logger from ice import model class ConsoleBackedObjectAdapter(object): def __init__(self, emulators): self.emulators = emulators def new(self, backing_store, identifier): fullname = identifier shortname = backing_store.get(identifier, 'nickname', fullname) extensions = backing_store.get(identifier, 'extensions', "") custom_roms_directory = backing_store.get(identifier, 'roms directory', "") prefix = backing_store.get(identifier, 'prefix', "") icon = backing_store.get(identifier, 'icon', "") images_directory = backing_store.get(identifier, 'images directory', "") emulator_identifier = backing_store.get(identifier, 'emulator', "") icon = os.path.expanduser(icon) custom_roms_directory = os.path.expanduser(custom_roms_directory) images_directory = os.path.expanduser(images_directory) emulator = self.emulators.find(emulator_identifier) return model.Console( fullname, shortname, extensions, custom_roms_directory, prefix, icon, images_directory, emulator, ) def verify(self, console): if console.emulator is None: logger.debug("No emulator provided for console `%s`" % console.fullname) return False return True def save_in_store(self, backing_store, identifier, console): backing_store.set(identifier, 'nickname', console.shortname) backing_store.set(identifier, 'extensions', console.extensions) backing_store.set(identifier, 'roms directory', console.custom_roms_directory) backing_store.set(identifier, 'prefix', console.prefix) backing_store.set(identifier, 'icon', console.icon) backing_store.set(identifier, 'images directory', console.images_directory) backing_store.set(identifier, 'emulator', console.emulator.name)
class Adaptor: """ Base adaptor for pubsub event system """ # This key should represent key in configs that it will load form key = None adaptors = {} def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) cls.adaptors[cls.key] = cls def __init__(self, config={}): self.config = config def connect(self): """ Authenticate to system and cache connections """ raise NotImplementedError() def disconnect(self): """ Close active connections and cleanup subscribers """ raise NotImplementedError() def subscribe(self, topic, callback): """ Listen on a topic and pass event data to callback """ raise NotImplementedError() def unsubscribe(self, topic): """ Stop listening for events on a topic """ raise NotImplementedError() def publish(self, topic, data=None): """ Publish an event on the topic """ raise NotImplementedError() """ No need to override this unless necessary """ def subscribe_once(self, topic, callback): """ Subscribe to topic for only one event """ def handle_once(data): """ Wrapper to unsubscribe after event handled """ self.unsubscribe(topic) if callable(callback): # Pass data to real callback callback(data) return self.subscribe(topic, handle_once) def get_message(self): """ Some protocols need to initate a poll for new messages """ pass # Import adaptors from . import redis, mqtt
from typing import Callable, Dict, Tuple import editdistance import numpy as np import tensorflow as tf from text_recognizer.datasets.emnist_lines import EmnistLinesDataset from text_recognizer.datasets.sequence import DatasetSequence from text_recognizer.models.base import Model from text_recognizer.networks import line_cnn_sliding_window def loss_ignoring_blanks(target, output): """This is categorical crossentropy, but with targets that correspond to the padding symbol not counting.""" import tensorflow.keras.backend as K output /= tf.reduce_sum(output, -1, True) _epsilon = tf.convert_to_tensor(K.epsilon(), output.dtype.base_dtype) output = tf.clip_by_value(output, _epsilon, 1. - _epsilon) prod = target * tf.log(output) # TODO ?? loss = - tf.reduce_sum(prod, -1) return loss class LineModel(Model): def __init__(self, dataset_cls: type=EmnistLinesDataset, network_fn: Callable=line_cnn_sliding_window, dataset_args: Dict=None, network_args: Dict=None): """Define the default dataset and network values for this model.""" super().__init__(dataset_cls, network_fn, dataset_args, network_args) def evaluate(self, x, y, verbose=True): sequence = DatasetSequence(x, y) preds_raw = self.network.predict_generator(sequence) trues = np.argmax(y, -1) preds = np.argmax(preds_raw, -1) pred_strings = [''.join(self.data.mapping.get(label, '') for label in pred).strip(' |_') for pred in preds] true_strings = [''.join(self.data.mapping.get(label, '') for label in true).strip(' |_') for true in trues] char_accuracies = [ 1 - editdistance.eval(true_string, pred_string) / len(true_string) for pred_string, true_string in zip(pred_strings, true_strings) ] if verbose: sorted_ind = np.argsort(char_accuracies) print("\nLeast accurate predictions:") for ind in sorted_ind[:5]: print(f'True: {true_strings[ind]}') print(f'Pred: {pred_strings[ind]}') print("\nMost accurate predictions:") for ind in sorted_ind[-5:]: print(f'True: {true_strings[ind]}') print(f'Pred: {pred_strings[ind]}') print("\nRandom predictions:") for ind in np.random.randint(0, len(char_accuracies), 5): print(f'True: {true_strings[ind]}') print(f'Pred: {pred_strings[ind]}') mean_accuracy = np.mean(char_accuracies) return mean_accuracy def predict_on_image(self, image: np.ndarray) -> Tuple[str, float]: if image.dtype == np.uint8: image = (image / 255).astype(np.float32) pred_raw = self.network.predict(np.expand_dims(image, 0), batch_size=1).squeeze() pred = ''.join(self.data.mapping[label] for label in np.argmax(pred_raw, axis=-1).flatten()).strip() conf = np.min(np.max(pred_raw, axis=-1)) # The least confident of the predictions. return pred, conf # def loss(self): # return loss_ignoring_blanks
import pyBigWig import os import sys import numpy as np import glob def anchor (ref, ori): # input 1d np array ref_new=ref.copy() ref_new.sort() ori_new=ori.copy() ori_new[np.argsort(ori)]=ref_new[:] return ori_new chr_all=['chr1','chr2','chr3','chr4','chr5','chr6','chr7','chr8','chr9','chr10','chr11','chr12','chr13','chr14','chr15','chr16','chr17','chr18','chr19','chr20','chr21','chr22','chrX'] num_bp=np.array([248956422,242193529,198295559,190214555,181538259,170805979,159345973,145138636,138394717,133797422,135086622,133275309,114364328,107043718,101991189,90338345,83257441,80373285,58617616,64444167,46709983,50818468,156040895]) num_bp25=[9958257, 9687742, 7931823, 7608583, 7261531, 6832240, 6373839, 5805546, 5535789, 5351897, 5403465, 5331013, 4574574, 4281749, 4079648, 3613534, 3330298, 3214932, 2344705, 2577767, 1868400, 2032739, 6241636] chr_len={} for i in np.arange(len(chr_all)): chr_len[chr_all[i]]=num_bp[i] chr_len25={} for i in np.arange(len(chr_all)): chr_len25[chr_all[i]]=num_bp25[i] # number of cells used to calculate avg assay_all=['M01','M02','M16','M17','M18','M20','M22','M29'] tmp=[4,37,25,19,25,21,33,20] dict_assay_count={} for i in np.arange(len(assay_all)): dict_assay_count[assay_all[i]]=tmp[i] # number of models model_all=['C_D','C_E','C_F','C_G','C_H','C_I', \ 'CH_D','CH_E','CH_F','CH_G','CH_I', \ 'CDEH_G','CDEH_I','DEFGHI_C', \ 'DGH_C','DGH_F','DGH_I', \ 'DGI_C','DGI_E','DGI_F','DGI_H', \ 'F_C','F_D','F_E','F_G','F_H','F_I', \ 'DGHKLMN_F','DGHKLMN_I','DGHK_F','DGHK_I','DGIK_E','DGIK_F','DGIK_H'] tmp=[15,11,15,11,22,12, \ 15,11,14,11,12, \ 9,9,9, \ 11,18,17, \ 11,15,16,17, \ 15,20,16,18,20,17, \ 7,6,11,11,11,10,11] dict_model_count={} for i in np.arange(len(model_all)): dict_model_count[model_all[i]]=tmp[i] path0='../data_challenge/baseline_avg_final/' os.system('mkdir -p npy') print(sys.argv) id_all=sys.argv[1:] for the_id in id_all: print(the_id) the_assay=the_id[3:] the_cell=the_id[:3] bw=pyBigWig.open(path0 + 'gold_anchored_' + the_assay + '.bigwig') w1 = 1.0; w2 = 2.0; w3 = 1.0 # HERE weights for avg, lgbm, nn for the_chr in chr_all: print(the_chr) ## 1. stack # 1.1 avg avg = np.array(bw.values(the_chr, 0, chr_len25[the_chr])) ## 3.1 save npy np.save('./npy/pred25bp_' + the_id + '_' + the_chr, avg) ###################
# # Copyright (C) 2018 Codethink Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: # Tristan Van Berkom <tristan.vanberkom@codethink.co.uk> # Tiago Gomes <tiago.gomes@codethink.co.uk> """ Exceptions - API for Error Handling =================================== This module contains some Enums used in Error Handling which are useful in testing external plugins. """ from enum import Enum, unique @unique class ErrorDomain(Enum): """ErrorDomain Describes what the error is related to. """ PLUGIN = 1 LOAD = 2 IMPL = 3 PLATFORM = 4 SANDBOX = 5 ARTIFACT = 6 PIPELINE = 7 UTIL = 8 SOURCE = 9 ELEMENT = 10 APP = 11 STREAM = 12 VIRTUAL_FS = 13 CAS = 14 PROG_NOT_FOUND = 15 REMOTE = 16 PROFILE = 17 class LoadErrorReason(Enum): """LoadErrorReason Describes the reason why a :class:`.LoadError` was raised. """ MISSING_FILE = 1 """A file was not found.""" INVALID_YAML = 2 """The parsed data was not valid YAML.""" INVALID_DATA = 3 """Data was malformed, a value was not of the expected type, etc""" ILLEGAL_COMPOSITE = 4 """An error occurred during YAML dictionary composition. This can happen by overriding a value with a new differently typed value, or by overwriting some named value when that was not allowed. """ CIRCULAR_DEPENDENCY = 5 """A circular dependency chain was detected""" UNRESOLVED_VARIABLE = 6 """A variable could not be resolved. This can happen if your project has cyclic dependencies in variable declarations, or, when substituting a string which refers to an undefined variable. """ UNSUPPORTED_PROJECT = 7 """The project requires an incompatible BuildStream version""" UNSUPPORTED_PLUGIN = 8 """Project requires a newer version of a plugin than the one which was loaded """ EXPRESSION_FAILED = 9 """A conditional expression failed to resolve""" USER_ASSERTION = 10 """An assertion was intentionally encoded into project YAML""" TRAILING_LIST_DIRECTIVE = 11 """A list composition directive did not apply to any underlying list""" CONFLICTING_JUNCTION = 12 """Conflicting junctions in subprojects""" INVALID_JUNCTION = 13 """Failure to load a project from a specified junction""" SUBPROJECT_INCONSISTENT = 15 """Subproject has no ref""" INVALID_SYMBOL_NAME = 16 """An invalid symbol name was encountered""" MISSING_PROJECT_CONF = 17 """A project.conf file was missing""" LOADING_DIRECTORY = 18 """Try to load a directory not a yaml file""" PROJ_PATH_INVALID = 19 """A project path leads outside of the project directory""" PROJ_PATH_INVALID_KIND = 20 """A project path points to a file of the not right kind (e.g. a socket) """ RECURSIVE_INCLUDE = 21 """A recursive include has been encountered""" CIRCULAR_REFERENCE_VARIABLE = 22 """A circular variable reference was detected""" PROTECTED_VARIABLE_REDEFINED = 23 """An attempt was made to set the value of a protected variable""" INVALID_DEPENDENCY_CONFIG = 24 """An attempt was made to specify dependency configuration on an element which does not support custom dependency configuration""" LINK_FORBIDDEN_DEPENDENCIES = 25 """A link element declared dependencies""" CIRCULAR_REFERENCE = 26 """A circular element reference was detected""" BAD_ELEMENT_SUFFIX = 27 """ This warning will be produced when an element whose name does not end in .bst is referenced either on the command line or by another element """ BAD_CHARACTERS_IN_NAME = 28 """ This warning will be produced when a filename for a target contains invalid characters in its name. """
from django.contrib import admin from django.utils.translation import ugettext as _ from libya_elections.admin_models import LibyaAdminModel from libya_elections.admin_site import admin_site from text_messages.models import MessageText from .models import Person, RegistrationCenter, Registration, SMS, Blacklist, Whitelist,\ Office, Constituency, SubConstituency def national_id(reg): return reg.citizen.national_id class BlacklistAdmin(LibyaAdminModel): list_display = ['phone_number', 'creation_date', 'modification_date'] search_fields = ["phone_number"] readonly_fields = ['creation_date', 'modification_date'] class PersonAdmin(LibyaAdminModel): list_display = ['citizen'] raw_id_fields = ['citizen'] class OfficeAdmin(LibyaAdminModel): list_display = ['id', 'name_english', 'name_arabic', 'region'] search_fields = ['id', 'name_english', 'name_arabic'] class ConstituencyAdmin(LibyaAdminModel): list_display = ['id', 'name_english', 'name_arabic'] search_fields = ['id', 'name_english', 'name_arabic'] class SubConstituencyAdmin(LibyaAdminModel): list_display = ['id', 'name_english', 'name_arabic'] search_fields = ['id', 'name_english', 'name_arabic'] def delete_selected_except_copied_centers(modeladmin, request, queryset): """Custom admin action which checks to make sure user is not trying to delete a copied center. If a copied center is selected, user gets a warning message and no centers are deleted. """ copied_ids = queryset.filter(copied_by__isnull=False).values_list('center_id', flat=True) if copied_ids: msg = _('The following centers are copied by other centers and cannot be deleted: {}. ' 'No centers were deleted.') modeladmin.message_user(request, msg.format(copied_ids)) else: return admin.actions.delete_selected(modeladmin, request, queryset) class RegistrationCenterAdmin(LibyaAdminModel): list_display = ['center_id', 'name', 'reg_open', 'office', 'constituency', 'subconstituency'] list_filter = ['reg_open', 'center_type', 'office', 'constituency', 'subconstituency'] search_fields = ["center_id", "name"] readonly_fields = ['copied_by_these_centers'] date_hierarchy = 'creation_date' def copied_by_these_centers(self, instance): centers = ', '.join([str(center.center_id) for center in instance.copied_by.all()]) return centers or _("No copies") def get_actions(self, request): actions = super(RegistrationCenterAdmin, self).get_actions(request) if 'delete_selected' in actions: # Replace it with our version actions['delete_selected'] = ( delete_selected_except_copied_centers, 'delete_selected', _('Permanently delete selected %(verbose_name_plural)s.') ) return actions def get_readonly_fields(self, request, obj=None): """ Don't allow changes to copy centers. """ # Make sure we make a modifiable copy of the readonly fields to work with readonly_fields = list(super(RegistrationCenterAdmin, self).get_readonly_fields( request, obj)) if obj: if obj.copy_of: # Copy centers are not editable, so mark all fields (except 'deleted') read-only return [field.name for field in obj._meta.local_fields if field.editable and not field.name == 'deleted'] if obj.has_copy: # Copied centers can't be deleted, so mark 'deleted' read-only if 'deleted' not in readonly_fields: readonly_fields.append('deleted') # 'copy_of' can only be set initially, not while editing if 'copy_of' not in readonly_fields: readonly_fields.append('copy_of') return readonly_fields def has_delete_permission(self, request, obj=None): """Overridden to prevent deletion of RegistrationCenters that have copies.""" delete_permission = super(RegistrationCenterAdmin, self).has_delete_permission(request, obj) if obj and isinstance(obj, RegistrationCenter): return not obj.has_copy else: return delete_permission # See # docs.djangoproject.com/en/dev/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_filter # for doc on this class class ArchivedListFilter(admin.SimpleListFilter): title = _('archived') parameter_name = 'arc' def lookups(self, request, model_admin): return ( ('1', _('Yes')), ('0', _('No')), ) def queryset(self, request, queryset): if self.value() == '0': return queryset.filter(archive_time=None) if self.value() == '1': return queryset.exclude(archive_time=None) class RegistrationAdmin(LibyaAdminModel): list_display = ['citizen', national_id, 'registration_center', 'archive_time'] list_display_links = [national_id] list_filter = [ArchivedListFilter] raw_id_fields = ['citizen', 'registration_center', 'sms'] search_fields = ["registration_center__center_id", "registration_center__name"] class SMSAdmin(LibyaAdminModel): list_display = ['creation_date', 'from_number', 'direction', 'to_number', 'citizen', 'carrier', 'msg_type', 'message_code', 'message'] raw_id_fields = ['citizen', 'in_response_to'] search_fields = ['from_number', 'to_number', 'carrier__name', 'msg_type', 'message'] def get_list_display(self, *args, **kwargs): # Initialize the choices on the message_code field # We don't do it in the model def because the values are only # defined in the database, and we don't do it unless/until we need # to admin the SMS model because otherwise Django migrations think # the SMS message codes keep changing everytime someone with # different data in their database runs it. We wait until the # admin calls get_list_display() to be sure someone is in the admin, # since it's only in the admin that it matters at all whether these # choices are defined. if not SMS._meta.get_field('message_code').choices: message_code_choices = [ (msg.number, msg.label) for msg in MessageText.objects.all() ] SMS._meta.get_field('message_code').choices = message_code_choices return super(SMSAdmin, self).get_list_display(*args, **kwargs) class WhiteListAdmin(LibyaAdminModel): list_display = ['phone_number', 'creation_date', 'modification_date'] search_fields = ["phone_number"] readonly_fields = ['creation_date', 'modification_date'] admin_site.register(Blacklist, BlacklistAdmin) admin_site.register(Person, PersonAdmin) admin_site.register(Office, OfficeAdmin) admin_site.register(Constituency, ConstituencyAdmin) admin_site.register(SubConstituency, SubConstituencyAdmin) admin_site.register(RegistrationCenter, RegistrationCenterAdmin) admin_site.register(Registration, RegistrationAdmin) admin_site.register(SMS, SMSAdmin) admin_site.register(Whitelist, WhiteListAdmin)
from PIL import Image, ImageDraw import sys RAD = 5 def translate(value, coordMin, coordMax, mapMin, mapMax): # Figure out how 'wide' each range is coordSpan = coordMax - coordMin mapSpan = mapMax - mapMin # Convert the left range into a 0-1 range (float) valueScaled = float(value - coordMin) / float(coordSpan) # Convert the 0-1 range into a value in the right range. return mapMin + (valueScaled * mapSpan) xy = [float(sys.argv[1]), float(sys.argv[2])] imageFile = "code.jpg" im = Image.open(imageFile) draw = ImageDraw.Draw(im) x = translate(xy[1], 0, 11.31, 0, im.size[0]) y = translate(xy[0], 0, 9.4, 0, im.size[1]) draw.ellipse([x-RAD, y-RAD, x+RAD, y+RAD], fill =128) del draw im.save('location.png') im.show()
import collections class Markov: def __init__(self): self.probabilties = {} self.data = " A Pubg Tournament . A Mumbai Hackathon . An Amazing Mumbai Hacking Tournament . Amazing #MumbaiHackathon2019 . Amazing Night . A Mumbai Breakfast ." self.markov() self.calculate_predictions(self.probabilties) def prob(self, probabilties, key, value): if key not in self.probabilties: self.probabilties[key] = [] self.probabilties[key].append(value) def markov(self): tokens = self.data.strip().split(" ") for i in range(len(tokens)-1): self.prob(self.probabilties, tokens[i], tokens[i+1]) def calculate_predictions(self,probabilties): for key in probabilties: self.probabilties[key] = collections.Counter(probabilties[key]).most_common() self.probabilties[key] = [i[0] for i in probabilties[key]] def markov_here(self,t): print(self.probabilties) #print(probabilties) if t in self.probabilties: top = self.probabilties[t][:3] return top
import sys import re def decompress(data): decompressed = "" d = ''.join(data.split('\n')) while len(d): s = re.match(r'^.*?(\((\d+?)x(\d+?)\))(.*)', d) if s is None: decompressed += d break dec, marker, d = d.partition(s.group(1)) decompressed += dec for i in range(int(s.group(3))): decompressed += d[:int(s.group(2))] d = d[int(s.group(2)):] return decompressed def dec(d): length = 0 while len(d): s = re.match(r'^.*?(\((\d+?)x(\d+?)\))(.*)', d) if s is None: return length + len(d) decomp, marker, d = d.partition(s.group(1)) length += len(decomp) + int(s.group(3)) * dec(d[:int(s.group(2))]) d = d[int(s.group(2)):] return length def full_decompress(data): length = 0 d = ''.join(data.split('\n')) return dec(d) def main(): if (len(sys.argv) < 2): print("Usage python3 %s <input>" % sys.argv[0]) exit(-1) with open(sys.argv[1], 'r') as input: data = input.read() print("Char count:", len(decompress(data))) print("Char count:", full_decompress(data)) if __name__ == '__main__': main()
# coding=utf-8 import unittest,time,os from selenium import webdriver from shadon.log import logger from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from shadon.global_control import Global_control from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.keys import Keys from selenium.webdriver.chrome.options import Options class Publish_goods(unittest.TestCase): '''ๅ–ๅฎถๅ‘ๅธƒๅ•†ๅ“ใ€ไธ‹ๆžถใ€ๅˆ ้™ค''' def setUp(self): chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('--headless') chrome_options.add_argument('--disable-gpu') chrome_options.add_argument('--no-sandbox') self.driver = webdriver.Chrome(executable_path='C:\python36\Scripts\chromedriver.exe', options=chrome_options) # chrome_options.set_headless() # ๆŠŠchrome่ฎพ็ฝฎๆˆๆ— ็•Œ้ขๆจกๅผ๏ผŒไธ่ฎบwindows่ฟ˜ๆ˜ฏlinux้ƒฝๅฏไปฅ๏ผŒ่‡ชๅŠจ้€‚้…ๅฏนๅบ”ๅ‚ๆ•ฐ # self.driver = webdriver.Chrome(options=chrome_options) ## ๅˆ›ๅปบchromeๆ— ็•Œ้ขๅฏน่ฑก self.base_url = "https://www.eelly.com/index.php?app=goods&act=addGoodsIndex" #็บฟไธŠๅœฐๅ€ logger.info("่ฐƒ็”จsetup") self.driver.set_window_size(1920, 1080) # ็ช—ๅฃๅคงๅฐๅ˜ๅŒ– self.judge = False #็”จๆฅๅˆคๆ–ญ่„šๆœฌๆ˜ฏๅฆๆ‰ง่กŒๅˆฐๆ–ญ่จ€๏ผŒๆฒกๆœ‰ๆ‰ง่กŒๅˆ™็›ดๆŽฅๆŠŠๆต‹่ฏ•็ป“ๆžœ็ฝฎไธบFalse,็„ถๅŽ็ณป็ปŸไผš็ป™็›ธๅ…ณไบบๅ‘˜ๅ‘้€้‚ฎไปถ self.Ins = Global_control() #ๅฎžไพ‹ๅŒ–ๅฏผๅ…ฅ็š„็ฑป๏ผŒๆจกๅ—ไธญ็š„ๆ–นๆณ•ๆ‰่ƒฝ่ฐƒ็”จ่ฏฅ็ฑปไธญ็š„ๆ–นๆณ• def login(self): '''็™ปๅฝ•่กฃ่”็ฝ‘ๆˆๅŠŸ''' logger.info('ๅผ€ๅง‹่ฐƒ็”จloginๆ–นๆณ•') self.driver.get(self.base_url) self.driver.maximize_window() WebDriverWait(self.driver,30,1).until(EC.visibility_of_element_located((By.ID,'account_login'))) self.driver.find_element_by_id("account_login").send_keys("molimoq") self.driver.find_element_by_id("password").send_keys("ely@95zz") self.driver.find_element_by_id("submit_login").click() logger.info("็™ปๅฝ•ๆˆๅŠŸYES") def publish_new_goods(self): '''ๅ‘ๅธƒๆ–ฐๅ•†ๅ“''' logger.info('ๅผ€ๅง‹่ฐƒ็”จpublish_new_goodsๆ–นๆณ•') WebDriverWait(self.driver, 30,1).until(EC.visibility_of_element_located((By.CLASS_NAME, 'a-wrap1'))) # mouse = self.driver.find_element_by_xpath("html/body/div[3]/div/div/ul/li[3]/a") # action = ActionChains(self.driver) # action.move_to_element(mouse).perform() # ็งปๅŠจๅˆฐwrite๏ผŒๆ˜พ็คบโ€œMouse movedโ€ # time.sleep(2) # self.driver.find_element_by_class_name("J_newCommodity").click() # ็‚นๅ‡ปๅ‘ๅธƒๆ–ฐๅ•†ๅ“ๆŒ‰้’ฎ # handles = self.driver.window_handles #่Žทๅ–ๅฝ“ๅ‰ๆ‰€ๆœ‰็ช—ๅฃ # self.driver.switch_to.window(handles[1]) #driver่ทณ่ฝฌๅˆฐๆ–ฐๆ‰“ๅผ€็š„็ช—ๅฃ try: #self.driver.find_element_by_xpath("html/body/div[4]/div/div/a[2]").is_displayed() # ๅˆคๆ–ญๆ˜ฏๅฆๅญ˜ๅœจ self.driver.find_element_by_xpath("//a[@class='anew']").click() # ๅญ˜ๅœจ็‚นๅ‡ป้‡ๆ–ฐๅผ€ๅง‹ except: logger.info("้กต้ขไธๅœจ่ฏฅ้กต้ข๏ผŒไธ็”จ็‚นๅ‡ป้‡ๆ–ฐๅผ€ๅง‹") WebDriverWait(self.driver,30,1).until(EC.visibility_of_element_located((By.ID,'J_goods_content'))) logger.info("ๅผ€ๅง‹่พ“ๅ…ฅๅ•†ๅ“ๆ•ฐๆฎ๏ผš") #self.driver.find_element_by_xpath("//input[@id='J_goods_content']").send_keys("10086") #่พ“ๅ…ฅ่ดงๅท self.driver.find_element_by_id("J_goods_content").send_keys("10086") #่พ“ๅ…ฅ่ดงๅท self.driver.find_element_by_id("J_goods_name").send_keys("่‡ชๅŠจๅŒ–ๆต‹่ฏ•") # ่พ“ๅ…ฅๆ ‡้ข˜ self.driver.find_element_by_id("J_stock0").send_keys("999999") # ่พ“ๅ…ฅๅบ“ๅญ˜ๆ•ฐ้‡ self.driver.find_element_by_id("J_inventory_num").click() #ๅ‹พ้€‰ๅ…จ้ƒจ็›ธๅŒ logger.info("ๅผ€ๅง‹ไธŠไผ ๅ›พ็‰‡") WebDriverWait(self.driver, 30, 1).until(EC.visibility_of_element_located((By.ID, 'upimg_0'))) #self.driver.find_element_by_xpath("//*[starts-with(@id,'rt_rt_1c29')]").click() #self.driver.find_element_by_name("file").send_keys(r'D:\function_test\config\dev\publish_goods_test.png') #็ปๅฏน่ทฏๅพ„ case_path = os.path.dirname(__file__) + "/../config/dev" #่Žทๅ–ๅ›พ็‰‡็›ธๅฏน่ทฏๅพ„ case_path = os.path.abspath(case_path + "/publish_goods_test.png") time.sleep(2) self.driver.find_element_by_xpath("//input[@name='file']").is_displayed() logger.info(case_path) #self.driver.find_element_by_xpath("//input[@name='file']").send_keys(case_path) try: self.driver.find_element_by_name("file").send_keys(case_path) except: self.driver.find_element_by_name("file").send_keys(r'/data/web/function_test/config/dev/publish_goods_test.png') logger.info("upload image is ok") time.sleep(3) self.driver.find_element_by_xpath(".//*[@id='J_step6']/div/div[3]/div/div[1]/label[2]/input").click() #ๅŽปๆމๅบ—ๅ†…ๆŽจ่ # WebDriverWait(self.driver,30,2).until(EC.visibility_of_element_located((By.ID,'J_release'))) self.driver.find_element_by_xpath("//div[@id='J_release']").click(); self.driver.find_element_by_id("J_release").click() #็‚นๅ‡ปๅ‘ๅธƒๆŒ‰้’ฎ logger.info('onclick') time.sleep(2) WebDriverWait(self.driver,30,2).until(EC.visibility_of_element_located((By.XPATH,'html/body/div[3]/div[1]/p[1]'))) # self.result = self.driver.find_element_by_xpath("html/body/div[3]/div[1]/p[1]").text self.result = self.driver.find_element_by_xpath("//*[@class='text_succeed']").text logger.info(self.result) self.assertEqual(self.result, "ๅ‘ๅธƒๆˆๅŠŸ") #ๆ–ญ่จ€ๆ˜ฏๅฆๆˆๅŠŸ def sold_out(self): '''ไธ‹ๆžถๅ•†ๅ“''' logger.info('ๅผ€ๅง‹่ฐƒ็”จsold_outๆ–นๆณ•') self.driver.find_element_by_class_name("go_manage").click() #็‚นๅ‡ปๅ•†ๅ“็ฎก็†ๆŒ‰้’ฎ WebDriverWait(self.driver,30,1).until(EC.visibility_of_element_located((By.XPATH,".//*[@id='Js_page_ul']/li[3]/a"))) #็ญ‰ๅพ…้กต้ข self.driver.find_element_by_id("foggy_search").send_keys("10086") #่พ“ๅ…ฅๆœ็ดขๅ•†ๅ“่ดงๅท self.driver.find_element_by_id("foggy_search_button").click() #็‚นๅ‡ปๆœ็ดขๅ•†ๅ“ๆŒ‰้’ฎ WebDriverWait(self.driver,30,1).until(EC.visibility_of_element_located((By.XPATH,".//*[@id='goods_list']/tbody/tr[1]/td[2]/p"))) #็ญ‰ๅพ…ๆœ็ดขๆˆๅŠŸ time.sleep(5) self.driver.find_element_by_id("J_AllSelector").click() #ๅ‹พ้€‰ๅ…จ้€‰ๆŒ‰้’ฎ self.driver.find_element_by_name("if_show").click() #็‚นๅ‡ปไธ‹ๆžถๆŒ‰้’ฎ logger.info("ไธ‹ๆžถๆˆๅŠŸ") def delete_goods(self): '''ๅˆ ้™คๆ–ฐๅขžๅ•†ๅ“''' logger.info('ๅผ€ๅง‹่ฐƒ็”จdelete_goodsๆ–นๆณ•') self.base_url1 = "https://www.eelly.com/index.php?app=seller_member" # ็บฟไธŠๅœฐๅ€ self.driver.get(self.base_url1) # WebDriverWait(self.driver,30,2).until(EC.visibility_of_element_located((By.XPATH,".//*[@id='goods_list']/tbody/tr/td"))) WebDriverWait(self.driver, 30, 1).until(EC.visibility_of_element_located((By.XPATH, ".//*[@id='Js_set_ul']/li[5]/a"))) time.sleep(3) self.driver.find_element_by_xpath(".//*[@id='Js_set_ul']/li[5]/a").click() #็‚นๅ‡ปๅทฒไธ‹ๆžถๅ•†ๅ“ time.sleep(2) WebDriverWait(self.driver,30,1).until(EC.visibility_of_element_located((By.ID,'foggy_search'))) self.driver.find_element_by_id("foggy_search").clear() self.driver.find_element_by_id("foggy_search").send_keys("10086") #่พ“ๅ…ฅ่ดงๅท self.driver.find_element_by_id("foggy_search_button").click() #็‚นๅ‡ปๆœ็ดขๅ•†ๅ“ logger.info("ๆœ็ดขๅ‡บไบ†ไธ‹ๆžถๅ•†ๅ“๏ผŒๅ‡†ๅค‡ๅˆ ้™ค......") time.sleep(3) self.driver.find_element_by_id("J_AllSelector").click() #ๅ‹พ้€‰ๅ…จ้€‰ๆก† self.driver.execute_script("window.confirm = function(msg) { return true; }") # ๅ…ผๅฎนphantomjs self.driver.find_element_by_xpath("html/body/div[4]/div[3]/div/div[3]/div[1]/div[1]/a[3]").click() #็‚นๅ‡ปๅˆ ้™คๆŒ‰้’ฎ #็”ฑไบŽphantomjsไธๆ”ฏๆŒๅผน็ช—๏ผŒๆ‰€ไปฅๆ— ๆณ•ไฝฟ็”จ #alert = self.driver.switch_to_alert() #ๅˆ‡ๆขๅˆฐalertๅผนๅ‡บๆก† #alert.accept() #็‚นๅ‡ป็กฎ่ฎคๆŒ‰้’ฎ logger.info("ๅˆ ้™คๆˆๅŠŸ") time.sleep(2) WebDriverWait(self.driver,30,1).until(EC.visibility_of_element_located((By.XPATH,".//*[@id='Js_set_ul']/li[5]/a"))) try: self.judge = True WebDriverWait(self.driver, 30, 1).until(EC.visibility_of_element_located((By.XPATH, "html/body/div[4]/div[3]/div/div[2]/div/span/i"))) self.result = self.driver.find_element_by_xpath("html/body/div[4]/div[3]/div/div[2]/div/span/i").text self.assertEqual(self.result, '0') #ๆ–ญ่จ€ๆ˜ฏๅฆๆˆๅŠŸ,็œ‹ๅ•†ๅ“ๆ˜ฏๅฆไธบ0ๆฌพ except AssertionError: Global_control.Run_result = False logger.info("ๆ–ญ่จ€ๅผ‚ๅธธ") self.Ins.screen_shot() # ่ฟ›่กŒๅˆคๆ–ญ๏ผŒ็œ‹ๆˆชๅ›พๆ–‡ไปถๅคนๆ˜ฏๅฆๅˆ›ๅปบ๏ผŒๅˆ›ๅปบๅˆ™่ทณ่ฟ‡๏ผŒๅฆๅˆ™ๅˆ›ๅปบๆ–‡ไปถๅคน self.driver.get_screenshot_as_file("u"+(Global_control.Screen_path + "/" + "่กฃ่”็ฝ‘ๅˆ ้™คๅ•†ๅ“ๅคฑ่ดฅ"+ ".png")) raise "ๆต‹่ฏ•ๅ‡บ็Žฐ้”™่ฏฏ๏ผŒ้œ€่ฆๅ‘้€้‚ฎไปถ" def tearDown(self): '''ๅ…ณ้—ญๆต่งˆๅ™จ''' if self.judge != True: logger.info("add goods test is False") Global_control.Run_result = False #ๅขžๅŠ ไธ€ๆญฅๅˆคๆ–ญ๏ผŒ้ฟๅ…ๅ‡บ็Žฐ่„šๆœฌๆœชๆ‰ง่กŒๅˆฐๆ–ญ่จ€๏ผŒ่€Œ็ณป็ปŸๆฒกๆœ‰ๆŠ›ๅ‡บๅผ‚ๅธธ self.Ins.screen_shot() # ่ฟ›่กŒๅˆคๆ–ญ๏ผŒ็œ‹ๆˆชๅ›พๆ–‡ไปถๅคนๆ˜ฏๅฆๅˆ›ๅปบ๏ผŒๅˆ›ๅปบๅˆ™่ทณ่ฟ‡๏ผŒๅฆๅˆ™ๅˆ›ๅปบๆ–‡ไปถๅคน self.driver.get_screenshot_as_file(Global_control.Screen_path + "/" + "่กฃ่”็ฝ‘ๅ‘ๅธƒๆ–ฐๅ•†ๅ“ๅคฑ่ดฅ"+ ".png") self.driver.quit() def test_demo(self): # ๆ•ดไธชๆŽฅๅฃ้œ€่ฆ่ฐƒ็”จ็š„ๆ–นๆณ•๏ผŒ้ƒฝ้€š่ฟ‡่ฏฅๆ–นๆณ•่ฟ›่กŒ่ฐƒ็”จ๏ผŒๆŒ‰้กบๅบ่ฐƒ็”จๆ–นๆณ• '''loginใ€‹็™ปๅฝ•่กฃ่”็ฝ‘ๆˆๅŠŸใ€ publish_new_goodsๅ‘ๅธƒๆ–ฐๅ•†ๅ“ใ€ sold_outไธ‹ๆžถๅ•†ๅ“ใ€ delete_goodsๅˆ ้™คๆ–ฐๅขžๅ•†ๅ“''' Publish_goods.login(self) Publish_goods.publish_new_goods(self) Publish_goods.sold_out(self) Publish_goods.delete_goods(self) if __name__ == "__main__": suite = unittest.TestLoader().loadTestsFromTestCase(Publish_goods.test_demo) unittest.TextTestRunner(verbosity=2).run(suite)
import os import host class View: # ---------------------------------------------------------------------- def __init__(self, game): self.game = game # ---------------------------------------------------------------------- def makeMaps(self): # -------------------------------------------------------- # If the map is marked as text only, make no graphical map # -------------------------------------------------------- if self.game.map.textOnly: return # ---------------------------------------------------------- # Get a list of all the different powers for whom we need to # make maps. In a BLIND game, the powers see separate maps. # ---------------------------------------------------------- if 'BLIND' in self.game.rules and self.game.phase != 'COMPLETED': maps = [(x, '.' + y + `hash(z)`) for x, y, z in [('MASTER', 'M', self.game.password)] + [(x.name, x.abbrev or 'O', (x.password or self.game.password) + x.name) for x in self.game.powers if (not x.type or x.omniscient)]] else: maps = [(None, '')] for viewer, pwd in maps: # ------------------------------------------------- # Make a complete "season-by-season" PostScript map # (putting the file into the maps subdirectory) # ------------------------------------------------- self.makePostScriptMap(viewer, pwd) # -------------------------------------- # Make .gif files from the last pages of # the PostScript map that was just made. # -------------------------------------- self.makeGifMaps(pwd) # ------------- # Make .pdf map # ------------- self.makePdfMaps(pwd) # ---------------------------------------------------------------------- def makePostScriptMap(self, viewer = 0, password = ''): import DPmap fileName = host.gameMapDir + '/' + self.game.name + password for ext in ['.ps', '.pdf', '.gif', '_.gif', '_.pdf']: try: os.unlink(fileName + ext) except: pass map = DPmap.PostScriptMap(host.packageDir + '/' + self.game.map.rootMapDir + '/' + self.game.map.rootMap, self.game.file('results'), host.gameMapDir + '/' + self.game.name + password + '.ps', viewer) os.chmod(fileName + '.ps', 0666) self.game.error += map.error # ---------------------------------------------------------------------- def makeGifMaps(self, password = '', pages = None): import DPimage # ------------------------------------------------------------------ # Make .gif files from the last page(s) of the .ps map for the game. # ------------------------------------------------------------------ DPimage.ImageView(self.game.map, None, host.toolsDir, host.gameMapDir, host.imageResolution).extract( self.game.name + password, pages or [-1, 0]) # ---------------------------------------------------------------------- def makePdfMaps(self, password = ''): import DPghost # --------------------------------------------------------- # Make a .pdf file with the final page(s) from the .ps file # --------------------------------------------------------- psFileName, params = host.gameMapDir + '/' + self.game.name + password + '.ps', [] if self.game.map.papersize: params += [('sPAPERSIZE', self.game.map.papersize)] if host.usePDFMark: # ---------------------------------------------------------- # All maps already have their bbox altered to fit on a page. # ---------------------------------------------------------- params += ['dDPghostPageSizeBBox', 'dDPghostUndoBBox'] # ---------------------------------------- # Add more parameters before this comment. # ---------------------------------------- # ----------------------------------------------------------------- # (We could run psselect -_2-_1 xx.ps 2>/dev/null > tmp.ps and then # run the ps2pdf on the tmp.ps file, but we now pdf the full game.) # ----------------------------------------------------------------- ghost = DPghost.GhostScript(pdfFileMode = 0666, ps2pdfDir = host.toolsDir) if host.usePDFMark: ghost.markForms(psFileName, pdfParams=params) else: ghost.ps2pdf(psFileName, pdfParams=params)
from collections import deque import threading class _EventQueue: def __init__(self) -> None: self.__deque = deque() self.__rlock = threading.RLock() def clear(self): self.__rlock.acquire() self.__deque.clear() self.__rlock.release() def empty(self) -> bool: self.__rlock.acquire() empty = len(self.__deque) == 0 self.__rlock.release() return empty def pushCallback(self, fn): self.__rlock.acquire() self.__deque.append(fn) self.__rlock.release() return self def getCallback(self): self.__rlock.acquire() try: return self.__deque.popleft() except: return None finally: self.__rlock.release() def pushHeadCallback(self, fn): self.__rlock.acquire() self.__deque.appendleft(fn) self.__rlock.release() return self def getTailCallback(self): self.__rlock.acquire() try: return self.__deque.pop() except: return None finally: self.__rlock.release() class EventQueueManager: __eventQueueRLock = threading.RLock() __currentEventQueue = _EventQueue() @staticmethod def getCurrentEventQueue(): EventQueueManager.__eventQueueRLock.acquire() try: return EventQueueManager.__currentEventQueue finally: EventQueueManager.__eventQueueRLock.release()
from setuptools import setup # Based on # https://python-packaging.readthedocs.io/en/latest/minimal.html def readme(): with open('README.md','r') as fr: return fr.read() setup(name='docker_machinator', version='0.1', description='A tool for managing docker machines from multiple' 'workstations', long_description=readme(), entry_points={ 'console_scripts': [ 'dmachinator = docker_machinator.dmachinator:main', ], }, classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.5', 'Topic :: Security', ], keywords='docker machine dmachinator secure on-disk', url='https://github.com/realcr/docker_machinator', author='real', author_email='real@freedomlayer.org', license='MIT', packages=['docker_machinator'], install_requires=[ 'sstash', ], setup_requires=['pytest-runner'], tests_require=['pytest'], include_package_data=True, zip_safe=False)
# vFabric Administration Server API # Copyright (c) 2012 VMware, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import vas.shared.Installations from vas.util.LinkUtils import LinkUtils class Installations(vas.shared.Installations.Installations): """Used to enumerate, create, and delete tc Server installations :ivar `vas.shared.Security.Security` security: The resource's security """ def __init__(self, client, location): super(Installations, self).__init__(client, location, Installation) class Installation(vas.shared.Installations.Installation): """A tc Server installation :ivar `vas.tc_server.Groups.Group` group: The group that contains the installation :ivar `vas.tc_server.InstallationImages.InstallationImage` installation_image: The installation image that was used to create the installation :ivar list instances: The instances that are using the installation :ivar list runtime_versions: The versions of the tc Server runtime that are supported by the installation :ivar `vas.shared.Security.Security` security: The resource's security :ivar `vas.tc_server.Templates.Templates` templates: The installation's templates :ivar str version: The installation's version """ __templates = None @property def instances(self): self.__instances = self.__instances or self._create_resources_from_links('group-instance', Instance) return self.__instances @property def runtime_versions(self): return self.__runtime_versions @property def templates(self): self.__templates = self.__templates or Templates(self._client, self.__templates_location) return self.__templates def __init__(self, client, location): super(Installation, self).__init__(client, location, InstallationImage, Group) self.__runtime_versions = self._details['runtime-versions'] self.__templates_location = LinkUtils.get_link_href(self._details, 'templates') def reload(self): """Reloads the installation's details from the server""" super(Installation, self).reload() self.__instances = None from vas.tc_server.Groups import Group from vas.tc_server.InstallationImages import InstallationImage from vas.tc_server.Instances import Instance from vas.tc_server.Templates import Templates
""" This module implements Langevin Dynamics (LD) -based samplers for NNs. Radford M Neal. โ€œBayesian Learning for Neural Networksโ€. In: PhD thesis, University of Toronto. 1995. """ import numpy as np import tensorflow as tf from models.mcmc_sampler import MCMC_sampler class LDSampler(MCMC_sampler): """ Langevin Dynamics (LD) sampler for NNs. """ def __init__(self, **kwargs): """ Creates a new LDSampler object. """ # set parameters restricted by LD kwargs['seek_step_sizes'] = False super().__init__(**kwargs) self.sampler_type = 'LD' def _construct_transition_step(self): """ Constructs LD general transition step. """ initial_position = self._position # gradients of likelihood and prior dL = self._d_log_likelihood(initial_position) dW = self._d_log_prior(initial_position) # compute gradient and noise steps gradient_step, noise_step = self._compute_ld_step_components(dL, dW) # update position (take the step) if self.fade_in_velocities: noise_step *= self._burn_in_ratio self._updated_position = initial_position - gradient_step + noise_step def _compute_ld_step_components(self, dL, dW): """ Computes gradient and noise components. """ # generate noise noise_stddev = tf.sqrt(2. * self._current_step_size) noise = tf.random_normal(self.position_shape) noise_step = self._transpose_mul(noise, noise_stddev) # calculate gradient step gradient = dL + dW gradient_step = self._transpose_mul(gradient, self._current_step_size) self._debug_update = gradient return gradient_step, noise_step def _adjust_step_size(self, step_size): """ Brings scale to that of HMC samplers. """ step_size = step_size ** 2 / 2 return step_size class SGLDSampler(LDSampler): """ Stochastic Gradient Langevin Dynamics (SGLD) sampler for NNs. http://people.ee.duke.edu/~lcarin/398_icmlpaper.pdf """ def __init__(self, **kwargs): """ Creates a new SGLDSampler object. """ super().__init__(**kwargs) self.sampler_type = 'SGLD' # effectively LD since the likelihood part of the target function is already adjusted for the batch size class pSGLDSampler(LDSampler): """ Preconditioned Stochastic Gradient Langevin Dynamics (pSGLD) sampler for NNs. https://arxiv.org/abs/1512.07666 """ def __init__(self, preconditioned_alpha=0.99, preconditioned_lambda=1e-05, adjust_steps=False, **kwargs): super().__init__(**kwargs) self.sampler_type = 'pSGLD' self.preconditioned_alpha = preconditioned_alpha self.preconditioned_lambda = preconditioned_lambda self.adjust_steps = adjust_steps def __repr__(self): s = super().__repr__() #s += f'Preconditioned alpha: {self.preconditioned_alpha}\n' #s += f'Preconditioned lambda: {self.preconditioned_lambda}\n' return s def _create_feeds(self): """ Adds preconditioned values to the graph. """ super()._create_feeds() self._preconditioned_v_value = np.zeros(shape=self.position_shape, dtype=np.float32) self._preconditioned_v = tf.placeholder(tf.float32, shape=self.position_shape) self._feed_dict[self._preconditioned_v] = lambda: self._preconditioned_v_value # def _adjust_step_size(self, step_size): # """ Adjust step_size for total curvature correction effect. """ # step_size = super()._adjust_step_size(step_size) # # if not self.adjust_steps: # return step_size # # # p_avg_effect = 1. / (self.preconditioned_lambda + self._preconditioned_v_value ** .5) # # p_avg_effect = p_avg_effect.min() ** .5 # # p_avg_effect = 1. / p_avg_effect # # p_avg_effect = max(1., min(p_avg_effect, 100.)) # # step_size *= p_avg_effect # # return step_size # def _update_values(self, update_dict): # """ Updates preconditioned values. """ # self._preconditioned_v_value = update_dict[self._updated_preconditioned_v] def _compute_ld_step_components(self, dL, dW): """ Computes gradient and noise components. """ # update average gradient avg_gradient = dL / self.train_size avg_gradient **= 2 # is_increase = tf.to_float(avg_gradient > self._preconditioned_v) # is_increase = 0.00 * is_increase + (1. - is_increase) # is_increase = 1. # TODO: currently disabled # # preconditioned_v = is_increase * self.preconditioned_alpha * self._preconditioned_v + \ # (1. - is_increase * self.preconditioned_alpha) * avg_gradient preconditioned_v = self.preconditioned_alpha * self._preconditioned_v + \ (1. - self.preconditioned_alpha) * avg_gradient self._fetch_dict['_preconditioned_v_value'] = preconditioned_v # calculate preconditioning matrix g = 1. / (self.preconditioned_lambda + tf.sqrt(preconditioned_v)) # generate step noise noise_stddev = tf.sqrt(2. * self._transpose_mul(g, self._current_step_size)) noise_step = noise_stddev * tf.random_normal(self.position_shape) # calculate gradient step gradient = dL + dW gradient_step = self._transpose_mul(g * gradient, self._current_step_size) return gradient_step, noise_step
import matplotlib.pyplot as plt x = [1, 2, 3, 4] y = [1, 2, 3, 4] plt.plot(x, y, 'o') plt.show()
import argparse def load_args(): # HyperGAN args parser = argparse.ArgumentParser(description='param-wgan') parser.add_argument('-z', '--z', default=128, type=int, help='latent space width') parser.add_argument('-ze', '--ze', default=256, type=int, help='encoder dimension') parser.add_argument('-g', '--gp', default=10, type=int, help='gradient penalty') parser.add_argument('-b', '--batch_size', default=20, type=int) parser.add_argument('-e', '--epochs', default=200000, type=int) parser.add_argument('-s', '--model', default='mednet', type=str) parser.add_argument('-d', '--dataset', default='cifar', type=str) parser.add_argument('--beta', default=1., type=float) parser.add_argument('--resume', default=False, type=bool) parser.add_argument('--use_x', default=False, type=bool, help='sample from real layers') parser.add_argument('--pretrain_e', default=False, type=bool) parser.add_argument('--n_actions', default=6, type=int) parser.add_argument('--use_d', default=False, type=int) # A3C args parser.add_argument('--env', default='PongDeterministic-v4', type=str, help='') parser.add_argument('--env1', default='PongDeterministic-v4', type=str, help='') parser.add_argument('--env2', default='Breakout-v0', type=str, help='') parser.add_argument('--processes', default=1, type=int, help='') parser.add_argument('--render', default=False, type=bool, help='') parser.add_argument('--test', default=False, type=bool, help='') parser.add_argument('--rnn_steps', default=20, type=int, help='') parser.add_argument('--lr', default=1e-4, type=float, help='') parser.add_argument('--seed', default=1, type=int, help='') parser.add_argument('--gamma', default=0.99, type=float, help='') parser.add_argument('--tau', default=1.0, type=float, help='') parser.add_argument('--horizon', default=0.99, type=float, help='') parser.add_argument('--hidden', default=256, type=int, help='') parser.add_argument('--frame_skip', default=-1, type=int, help='') parser.add_argument('--gpu', default=0, type=int, help='') parser.add_argument('--exp', default='0', type=str, help='') parser.add_argument('--scratch', default=False, type=bool, help='') parser.add_argument('--sample', default=False, type=bool, help='') args = parser.parse_args() return args
from .suzuripy import SuzuriClient
# Copyright Contributors to the Packit project. # SPDX-License-Identifier: MIT import logging from typing import Dict, Any, Optional, Tuple import requests from ogr.abstract import CommitStatus, GitProject from ogr.utils import RequestResponse from packit.config import JobType, JobConfigTriggerType from packit.config.job_config import JobConfig from packit.config.package_config import PackageConfig from packit.exceptions import PackitConfigException from packit_service.config import ServiceConfig from packit_service.constants import TESTING_FARM_INSTALLABILITY_TEST_URL from packit_service.models import CoprBuildModel, TFTTestRunModel, TestingFarmResult from packit_service.sentry_integration import send_to_sentry from packit_service.service.events import EventData from packit_service.worker.build import CoprBuildJobHelper from packit_service.worker.result import TaskResults logger = logging.getLogger(__name__) class TestingFarmJobHelper(CoprBuildJobHelper): def __init__( self, service_config: ServiceConfig, package_config: PackageConfig, project: GitProject, metadata: EventData, db_trigger, job_config: JobConfig, ): super().__init__( service_config=service_config, package_config=package_config, project=project, metadata=metadata, db_trigger=db_trigger, job_config=job_config, ) self.session = requests.session() adapter = requests.adapters.HTTPAdapter(max_retries=5) self.insecure = False self.session.mount("https://", adapter) self._tft_api_url: str = "" @property def tft_api_url(self) -> str: if not self._tft_api_url: self._tft_api_url = self.service_config.testing_farm_api_url if not self._tft_api_url.endswith("/"): self._tft_api_url += "/" return self._tft_api_url @property def fmf_url(self): return ( self.job_config.metadata.fmf_url or self.project.get_pr(self.metadata.pr_id).source_project.get_web_url() ) @property def fmf_ref(self): if self.job_config.metadata.fmf_url: return self.job_config.metadata.fmf_ref return self.metadata.commit_sha def _payload(self, build_id: int, chroot: str) -> dict: """ Testing Farm API: https://testing-farm.gitlab.io/api/ Currently we use the same secret to authenticate both, packit service (when sending request to testing farm) and testing farm (when sending notification to packit service's webhook). We might later use a different secret for those use cases. """ distro, arch = self.chroot2distro_arch(chroot) compose = self.distro2compose(distro) fmf = {"url": self.fmf_url} if self.fmf_ref: fmf["ref"] = self.fmf_ref return { "api_key": self.service_config.testing_farm_secret, "test": { "fmf": fmf, }, "environments": [ { "arch": arch, "os": {"compose": compose}, "artifacts": [ { "id": f"{build_id}:{chroot}", "type": "fedora-copr-build", } ], "tmt": { "context": {"distro": distro, "arch": arch, "trigger": "commit"} }, } ], "notification": { "webhook": { "url": f"{self.api_url}/testing-farm/results", "token": self.service_config.testing_farm_secret, }, }, } def _payload_install_test(self, build_id: int, chroot: str) -> dict: """ If the project doesn't use fmf, but still wants to run tests in TF. TF provides 'installation test', we request it in ['test']['fmf']['url']. We don't specify 'artifacts' as in _payload(), but 'variables'. """ copr_build = CoprBuildModel.get_by_build_id(build_id) distro, arch = self.chroot2distro_arch(chroot) compose = self.distro2compose(distro) return { "api_key": self.service_config.testing_farm_secret, "test": { "fmf": { "url": TESTING_FARM_INSTALLABILITY_TEST_URL, "name": "/packit/install-and-verify", }, }, "environments": [ { "arch": arch, "os": {"compose": compose}, "variables": { "REPOSITORY": f"{copr_build.owner}/{copr_build.project_name}", }, } ], "notification": { "webhook": { "url": f"{self.api_url}/testing-farm/results", "token": self.service_config.testing_farm_secret, }, }, } def is_fmf_configured(self) -> bool: if self.job_config.metadata.fmf_url is not None: return True try: self.project.get_file_content( path=".fmf/version", ref=self.metadata.commit_sha ) return True except FileNotFoundError: return False @staticmethod def chroot2distro_arch(chroot: str) -> Tuple[str, str]: """ Get distro and arch from chroot. """ distro, arch = chroot.rsplit("-", 1) # https://github.com/packit/packit-service/issues/939#issuecomment-769896841 # https://github.com/packit/packit-service/pull/1008#issuecomment-789574614 distro = distro.replace("epel", "centos") return distro, arch def distro2compose(self, distro: str) -> str: """Create a compose string from distro, e.g. fedora-33 -> Fedora-33 https://api.dev.testing-farm.io/v0.1/composes""" compose = distro.title().replace("Centos", "CentOS") if compose == "CentOS-Stream": compose = "CentOS-Stream-8" response = self.send_testing_farm_request(endpoint="composes") if response.status_code == 200: # {'composes': [{'name': 'CentOS-Stream-8'}, {'name': 'Fedora-Rawhide'}]} composes = [c["name"] for c in response.json()["composes"]] if compose not in composes: logger.error(f"Can't map {compose} (from {distro}) to {composes}") return compose def report_missing_build_chroot(self, chroot: str): self.report_status_to_test_for_chroot( state=CommitStatus.error, description=f"No build defined for the target '{chroot}'.", chroot=chroot, ) @property def latest_copr_build(self) -> Optional[CoprBuildModel]: copr_builds = CoprBuildModel.get_all_by_owner_and_project( owner=self.job_owner, project_name=self.job_project ) if not copr_builds: return None return list(copr_builds)[0] def run_testing_farm_on_all(self): latest_copr_build = self.latest_copr_build if not latest_copr_build: return TaskResults( success=False, details={ "msg": f"No copr builds for {self.job_owner}/{self.job_project}" }, ) failed = {} for chroot in self.tests_targets: result = self.run_testing_farm( build_id=int(latest_copr_build.build_id), chroot=chroot ) if not result["success"]: failed[chroot] = result.get("details") if not failed: return TaskResults(success=True, details={}) return TaskResults( success=False, details={"msg": f"Failed testing farm targets: '{failed.keys()}'."}.update( failed ), ) def run_testing_farm(self, build_id: int, chroot: str) -> TaskResults: if chroot not in self.tests_targets: # Leaving here just to be sure that we will discover this situation if it occurs. # Currently not possible to trigger this situation. msg = f"Target '{chroot}' not defined for tests but triggered." logger.error(msg) send_to_sentry(PackitConfigException(msg)) return TaskResults( success=False, details={"msg": msg}, ) if chroot not in self.build_targets: self.report_missing_build_chroot(chroot) return TaskResults( success=False, details={ "msg": f"Target '{chroot}' not defined for build. " "Cannot run tests without build." }, ) self.report_status_to_test_for_chroot( state=CommitStatus.pending, description="Build succeeded. Submitting the tests ...", chroot=chroot, ) logger.info("Sending testing farm request...") if self.is_fmf_configured(): payload = self._payload(build_id, chroot) else: payload = self._payload_install_test(build_id, chroot) endpoint = "requests" logger.debug(f"POSTing {payload} to {self.tft_api_url}{endpoint}") req = self.send_testing_farm_request( endpoint=endpoint, method="POST", data=payload, ) logger.debug(f"Request sent: {req}") if not req: msg = "Failed to post request to testing farm API." logger.debug("Failed to post request to testing farm API.") self.report_status_to_test_for_chroot( state=CommitStatus.error, description=msg, chroot=chroot, ) return TaskResults(success=False, details={"msg": msg}) # success set check on pending if req.status_code != 200: # something went wrong if req.json() and "message" in req.json(): msg = req.json()["message"] else: msg = f"Failed to submit tests: {req.reason}" logger.error(msg) self.report_status_to_test_for_chroot( state=CommitStatus.failure, description=msg, chroot=chroot, ) return TaskResults(success=False, details={"msg": msg}) # Response: {"id": "9fa3cbd1-83f2-4326-a118-aad59f5", ...} pipeline_id = req.json()["id"] logger.debug( f"Submitted ({req.status_code}) to testing farm as request {pipeline_id}" ) TFTTestRunModel.create( pipeline_id=pipeline_id, commit_sha=self.metadata.commit_sha, status=TestingFarmResult.new, target=chroot, web_url=None, trigger_model=self.db_trigger, # In _payload() we ask TF to test commit_sha of fork (PR's source). # Store original url. If this proves to work, make it a separate column. data={"base_project_url": self.project.get_web_url()}, ) self.report_status_to_test_for_chroot( state=CommitStatus.pending, description="Tests have been submitted ...", url=f"{self.tft_api_url}requests/{pipeline_id}", chroot=chroot, ) return TaskResults(success=True, details={}) def send_testing_farm_request( self, endpoint: str, method: str = None, params: dict = None, data=None ) -> RequestResponse: method = method or "GET" url = f"{self.tft_api_url}{endpoint}" try: response = self.get_raw_request( method=method, url=url, params=params, data=data ) except requests.exceptions.ConnectionError as er: logger.error(er) raise Exception(f"Cannot connect to url: `{url}`.", er) return response def get_raw_request( self, url, method="GET", params=None, data=None, ) -> RequestResponse: response = self.session.request( method=method, url=url, params=params, json=data, verify=not self.insecure, ) try: json_output = response.json() except ValueError: logger.debug(response.text) json_output = None return RequestResponse( status_code=response.status_code, ok=response.ok, content=response.content, json=json_output, reason=response.reason, ) @classmethod def get_request_details(cls, request_id: str) -> Dict[str, Any]: """Testing Farm sends only request/pipeline id in a notification. We need to get more details ourselves.""" self = cls( service_config=ServiceConfig.get_service_config(), package_config=PackageConfig(), project=None, metadata=None, db_trigger=None, job_config=JobConfig( # dummy values to be able to construct the object type=JobType.tests, trigger=JobConfigTriggerType.pull_request, ), ) response = self.send_testing_farm_request( endpoint=f"requests/{request_id}", method="GET" ) if not response or response.status_code != 200: msg = f"Failed to get request/pipeline {request_id} details from TF. {response.reason}" logger.error(msg) return {} details = response.json() # logger.debug(f"Request/pipeline {request_id} details: {details}") return details
from data_reader import * from similarity_ideas import * if __name__ == '__main__': texts, sims = load_dev_texts_and_similarities() # lsa similarity texts_flatten = [txt for i in range(len(texts)) for txt in texts[i]] """ lsa_sim = lsa_sim(texts_flatten) # sim for all texts, we're only interested in the original sims lsa_sim = np.array([lsa_sim[2*i, 2*i+1] for i in range(len(texts))]) lsa_sim = lsa_sim*5 with open('storage/predictions/lsa_sim.txt', 'w') as f: for i in range(len(lsa_sim)): f.write(str(lsa_sim[i])+'\n') tfidf_sim = tf_idf_similarity(texts_flatten) tfidf_sim = np.array([tfidf_sim[2*i, 2*i+1] for i in range(len(texts))]) tfidf_sim = tfidf_sim*5 with open('storage/predictions/tfidf_sim.txt', 'w') as f: for i in range(len(tfidf_sim)): f.write(str(tfidf_sim[i])+'\n') """ binary_sim = binary_cosine_sim_2(texts_flatten) binary_sim = np.array([binary_sim[2*i, 2*i+1] for i in range(len(texts))]) binary_sim = binary_sim*5 with open('storage/predictions/binary_sim_2.txt', 'w') as f: for i in range(len(binary_sim)): f.write(str(binary_sim[i])+'\n') """ word2vec_similarities = word2vec_sim(texts_flatten, True, 'cosine') word2vec_similarities = np.array([word2vec_similarities[2*i, 2*i+1] for i in range(len(texts))]) word2vec_similarities = word2vec_similarities*5 with open('storage/predictions/tfidf_weighted_word2vec_sim_cosine.txt', 'w') as f: for i in range(len(word2vec_similarities)): f.write(str(word2vec_similarities[i])+'\n') word2vec_similarities = word2vec_sim(texts_flatten, False, 'cosine') word2vec_similarities = np.array([word2vec_similarities[2*i, 2*i+1] for i in range(len(texts))]) word2vec_similarities = word2vec_similarities*5 with open('storage/predictions/avg_wv_word2vec_sim_cosine.txt', 'w') as f: for i in range(len(word2vec_similarities)): f.write(str(word2vec_similarities[i])+'\n') word2vec_similarities = word2vec_sim(texts_flatten, True, 'l2') word2vec_similarities = np.array([word2vec_similarities[2*i, 2*i+1] for i in range(len(texts))]) word2vec_similarities = word2vec_similarities*5 with open('storage/predictions/tfidf_weighted_word2vec_sim_l2.txt', 'w') as f: for i in range(len(word2vec_similarities)): f.write(str(word2vec_similarities[i])+'\n') word2vec_similarities = word2vec_sim(texts_flatten, False, 'l2') word2vec_similarities = np.array([word2vec_similarities[2*i, 2*i+1] for i in range(len(texts))]) word2vec_similarities = word2vec_similarities*5 with open('storage/predictions/avg_wv_word2vec_sim_l2.txt', 'w') as f: for i in range(len(word2vec_similarities)): f.write(str(word2vec_similarities[i])+'\n') fasttext_similarities = fasttext_sim(texts_flatten, True, 'cosine') fasttext_similarities = np.array([fasttext_similarities[2*i, 2*i+1] for i in range(len(texts))]) fasttext_similarities = fasttext_similarities*5 with open('storage/predictions/tfidf_weighted_fasttext_sim_cosine.txt', 'w') as f: for i in range(len(fasttext_similarities)): f.write(str(fasttext_similarities[i])+'\n') fasttext_similarities = fasttext_sim(texts_flatten, False, 'cosine') fasttext_similarities = np.array([fasttext_similarities[2*i, 2*i+1] for i in range(len(texts))]) fasttext_similarities = fasttext_similarities*5 with open('storage/predictions/avg_wv_fasttext_sim_cosine.txt', 'w') as f: for i in range(len(fasttext_similarities)): f.write(str(fasttext_similarities[i])+'\n') fasttext_similarities = fasttext_sim(texts_flatten, True, 'l2') fasttext_similarities = np.array([fasttext_similarities[2*i, 2*i+1] for i in range(len(texts))]) fasttext_similarities = fasttext_similarities*5 with open('storage/predictions/tfidf_weighted_fasttext_sim_l2.txt', 'w') as f: for i in range(len(fasttext_similarities)): f.write(str(fasttext_similarities[i])+'\n') fasttext_similarities = fasttext_sim(texts_flatten, False, 'l2') fasttext_similarities = np.array([fasttext_similarities[2*i, 2*i+1] for i in range(len(texts))]) fasttext_similarities = fasttext_similarities*5 with open('storage/predictions/avg_wv_fasttext_sim_l2.txt', 'w') as f: for i in range(len(fasttext_similarities)): f.write(str(fasttext_similarities[i])+'\n') glove_similarities = glove_sim(texts_flatten, True, 'cosine') glove_similarities = np.array([glove_similarities[2*i, 2*i+1] for i in range(len(texts))]) glove_similarities = glove_similarities*5 with open('storage/predictions/tfidf_weighted_glove_sim_cosine.txt', 'w') as f: for i in range(len(glove_similarities)): f.write(str(glove_similarities[i])+'\n') glove_similarities = glove_sim(texts_flatten, False, 'cosine') glove_similarities = np.array([glove_similarities[2*i, 2*i+1] for i in range(len(texts))]) glove_similarities = glove_similarities*5 with open('storage/predictions/avg_wv_glove_sim_cosine.txt', 'w') as f: for i in range(len(glove_similarities)): f.write(str(glove_similarities[i])+'\n') glove_similarities = glove_sim(texts_flatten, True, 'l2') glove_similarities = np.array([glove_similarities[2*i, 2*i+1] for i in range(len(texts))]) glove_similarities = glove_similarities*5 with open('storage/predictions/tfidf_weighted_glove_sim_l2.txt', 'w') as f: for i in range(len(glove_similarities)): f.write(str(glove_similarities[i])+'\n') glove_similarities = glove_sim(texts_flatten, False, 'l2') glove_similarities = np.array([glove_similarities[2*i, 2*i+1] for i in range(len(texts))]) glove_similarities = glove_similarities*5 with open('storage/predictions/avg_wv_glove_sim_l2.txt', 'w') as f: for i in range(len(glove_similarities)): f.write(str(glove_similarities[i])+'\n') dan_sim = dan_sim(texts_flatten) dan_sim = np.array([dan_sim[2*i, 2*i+1] for i in range(len(texts))]) dan_sim = dan_sim*5 with open('storage/predictions/dan_sim.txt', 'w') as f: for i in range(len(dan_sim)): f.write(str(dan_sim[i])+'\n') """
# UNIDAD 05.D08 - D11 # Funciones. Retornando Valores print('\n\n---[Diapo 08]---------------------') print('Funciones - Retornando Valores') def saludar(): return 'Hola a tod@s!' saludar = saludar() print('el valor de la funciรณn es ', saludar) print('\n\n---[Diapo 09]---------------------') def valor5(): return 5 print('5 mas 5 es ', valor5() + 5) def dias_semana(): return ['Lunes', 'Martes', 'Miรฉrcoles', 'Jueves', 'Viernes', 'Sรกbado', 'Domingo'] print('Hรกbiles: ', dias_semana()[0:5]) print('No Hรกbiles: ', dias_semana()[-2:]) print('\n Parametrizado: ') def dias_semana(habiles): dias = ['Lunes', 'Martes', 'Miรฉrcoles', 'Jueves', 'Viernes', 'Sรกbado', 'Domingo'] if habiles: return dias[0:5] else: return dias[-2:] print('Hรกbiles: ', dias_semana(True)) print('No Hรกbiles: ', dias_semana(False)) print('\n\n---[Diapo 10]---------------------') def dias_semana(): return ['Lunes', 'Martes', 'Miรฉrcoles', 'Jueves', 'Viernes', 'Sรกbado', 'Domingo'] dias = dias_semana() print('Hรกbiles: ', dias[0:5]) print('No Hรกbiles: ', dias[-2:]) print('\n\n---[Diapo 11]---------------------') print('Multiples retonos') def multiples_retornos(): return 'Hola', 29, True, [1,2,3,4] multiple = multiples_retornos() print('Tipo de retorno: ', type(multiple)) print('Valor retornado: ', multiple) print('El primer valor es: ', multiple[0]) primero, segundo, tercero, cuarto = multiples_retornos() print('El primer valor es: ', primero) print('El segundo valor es: ', segundo) print('El tercero valor es: ', tercero) print('El cuarto valor es: ', cuarto)
import simplejson as json import sys, re, string,os # load the cmu dict try: path = os.path.join(os.path.dirname(__file__), 'cmu_dict.json') cmu = json.load(open(path)) except: print "Converted CMU dict not found" sys.exit(0) SubSyl = [ 'cial', 'tia', 'cius', 'cious', 'giu', # belgium! 'ion', 'iou', 'sia$', '.ely$', # absolutely! (but not ely!) ] AddSyl = [ 'ia', 'riet', 'dien', 'iu', 'io', 'ii', '[aeiouym]bl$', # -Vble, plus -mble '[aeiou]{3}', # agreeable '^mc', 'ism$', # -isms '([^aeiouy])\1l$', # middle twiddle battle bottle, etc. '[^l]lien', # alien, salient [1] '^coa[dglx].', # [2] '[^gq]ua[^auieo]', # i think this fixes more than it breaks 'dnt$', # couldn't ] def _guess_sy_count(word): """If we can't lookup the word, then guess its syllables count. This is (heavily) based on Greg Fast's Perl module Lingua::EN::Syllables. But the bugs are mine.""" mungedword = re.sub('e$','',word.lower()) splitword = re.split(r'[^aeiouy]+', mungedword) splitword = [ x for x in splitword if (x != '') ] # hmm syllables = 0 for i in SubSyl: if re.search(i,mungedword): syllables -= 1 for i in AddSyl: if re.search(i,mungedword): syllables += 1 if len(mungedword) == 1: syllables =+ 1 syllables += len(splitword) if syllables == 0: syllables = 1 return syllables def _count_syllables(word): if cmu.has_key(word): return cmu[word] else: return _guess_sy_count(word) def check_string(to_check): haiku_form = [5,12,17] upper = to_check.upper() split = upper.split(' ') for count in haiku_form: syllable_count = 0 haiku_line = 0 for word in split: syllable_count += _count_syllables(word) if syllable_count == haiku_form[haiku_line]: haiku_line += 1 if haiku_line >= len(haiku_form): return True elif syllable_count > haiku_form[haiku_line]: return False def find_haiku(to_check): # remove punctuation exclude = set(string.punctuation) stripped = ''.join(ch for ch in to_check if ch not in exclude) split = stripped.split(' ') haiku_list = [] for i in range(0, len(split) - 2): for j in range(i + 3, len(split) + 1): final = string.join(split[i:j], ' ') if final and check_string(final): haiku_list.append(final) return haiku_list if __name__ == '__main__': print find_haiku('As the wind does blow Across the trees, I see the Buds blooming in May')
import numpy as np import scipy.ndimage import math from utils import * from math import * import os from scipy.ndimage import imread from mayavi import mlab as mayalab import skimage.measure from multiprocessing import Pool import shutil import numpy from symmetry_issue import * from quaternionlib import * np.set_printoptions(precision=4,suppress=True,linewidth=300) h = 240 w = 320 def quaternion_from_matrix(matrix,isprecise=False): M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4] if isprecise: q = numpy.empty((4, )) t = numpy.trace(M) if t > M[3, 3]: q[0] = t q[3] = M[1, 0] - M[0, 1] q[2] = M[0, 2] - M[2, 0] q[1] = M[2, 1] - M[1, 2] else: i, j, k = 0, 1, 2 if M[1, 1] > M[0, 0]: i, j, k = 1, 2, 0 if M[2, 2] > M[i, i]: i, j, k = 2, 0, 1 t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3] q[i] = t q[j] = M[i, j] + M[j, i] q[k] = M[k, i] + M[i, k] q[3] = M[k, j] - M[j, k] q = q[[3, 0, 1, 2]] q *= 0.5 / math.sqrt(t * M[3, 3]) else: m00 = M[0, 0] m01 = M[0, 1] m02 = M[0, 2] m10 = M[1, 0] m11 = M[1, 1] m12 = M[1, 2] m20 = M[2, 0] m21 = M[2, 1] m22 = M[2, 2] # symmetric matrix K K = numpy.array([[m00-m11-m22, 0.0, 0.0, 0.0], [m01+m10, m11-m00-m22, 0.0, 0.0], [m02+m20, m12+m21, m22-m00-m11, 0.0], [m21-m12, m02-m20, m10-m01, m00+m11+m22]]) K /= 3.0 # quaternion is eigenvector of K that corresponds to largest eigenvalue w, V = numpy.linalg.eigh(K) q = V[[3, 0, 1, 2], numpy.argmax(w)] if q[0] < 0.0: numpy.negative(q, q) return q def load_rgb(filepath): tmp = imread(filepath) zoom_scale = 0.5 r = scipy.ndimage.zoom(tmp[:,:,0], zoom_scale, order=1) g = scipy.ndimage.zoom(tmp[:,:,1], zoom_scale, order=1) b = scipy.ndimage.zoom(tmp[:,:,2], zoom_scale, order=1) image = np.dstack((r,g,b)) return image def load_labeling(filepath): label_id = np.load(filepath)['labeling'] return label_id def tran_rot(filepath): rot = np.zeros((3,3)) tran = np.zeros((3,)) lines = [line.strip() for line in open(filepath)] for idx, line in enumerate(lines): tmp = str(line).split('(')[1].split(')')[0].split() tmp = [float(x.split(',')[0]) for x in tmp] if idx < 3: rot[idx,:] = np.array(tmp[0:3]) tran[idx] = tmp[3] return tran,rot fa = open('symmetry_example.txt','a+') def cal_transformation(top_dir): pgm_filepath = [line for line in os.listdir(top_dir) if line.endswith('.pgm') and line.startswith('frame80')] if len(pgm_filepath) < 1: return else: pgm_filepath = pgm_filepath[0] tmp = pgm_filepath.split('.pgm')[0].split('_') azimuth_deg = float(tmp[2].split('azi')[1]) elevation_deg = float(tmp[3].split('ele')[1]) theta_deg = float(tmp[4].split('theta')[1]) rho = float(tmp[1].split('rho')[1]) cx, cy, cz = obj_centened_camera_pos(rho, azimuth_deg, elevation_deg) q1 = camPosToQuaternion(cx , cy , cz) q2 = camRotQuaternion(cx, cy , cz, theta_deg) q = quaternionProduct(q2, q1) R = quaternion_matrix(q)[0:3,0:3] C = np.zeros((3,)) C[0] = cx C[1] = cy C[2] = cz frame2_id = load_labeling(os.path.join(top_dir,'frame80_labeling_model_id.npz')) frame1_id = load_labeling(os.path.join(top_dir,'frame20_labeling_model_id.npz')) frame2_center = load_seg(os.path.join(top_dir,'frame80_labeling.npz')) frame1_center = load_seg(os.path.join(top_dir,'frame20_labeling.npz')) frame2_xyz_name = [line for line in os.listdir(top_dir) if line.startswith('frame80') and line.endswith('.pgm')][0] frame1_xyz_name = [line for line in os.listdir(top_dir) if line.startswith('frame20') and line.endswith('.pgm')][0] frame2_xyz = load_xyz(os.path.join(top_dir,frame2_xyz_name)) frame1_xyz = load_xyz(os.path.join(top_dir,frame1_xyz_name)) frame2_id_list = np.unique(frame2_id) frame1_id_list = np.unique(frame1_id) model_ids = [line.split('frame80_')[1] for line in os.listdir(top_dir) if line.endswith('.txt') and line.startswith('frame80')] model_ids.sort() transformation_rot = np.zeros((h,w,4)) transformation_rot[:,:,0] = 1 transformation_translation = np.zeros((h,w,3)) symmetry_top_dir = '/home/linshaonju/Symmetry' for instance_id in frame2_id_list: frame2_pid = frame2_id == instance_id frame2_pid = frame2_pid.reshape((240,320)) frame1_pid = frame1_id == instance_id frame1_pid = frame1_pid.reshape((240,320)) if instance_id > 0: frame1_tran, frame1_rot = tran_rot(os.path.join(top_dir,'frame20_'+model_ids[int(instance_id)-1])) frame2_tran, frame2_rot = tran_rot(os.path.join(top_dir,'frame80_'+model_ids[int(instance_id)-1])) R12 = frame1_rot.dot(np.linalg.inv(frame2_rot)) rot = R.T.dot(R12.dot(R)) tran = R.T.dot(frame1_tran-C) + R.T.dot(R12.dot(C-frame2_tran)) tran[2] *= -1.0 rot[0,2] *= -1.0 rot[1,2] *= -1.0 rot[2,0] *= -1.0 rot[2,1] *= -1.0 quater = quaternion_from_matrix(rot) instance_center = np.mean(frame2_center[frame2_pid],axis=0) tran1 = quaternion_rotation(quater,instance_center) cate,md5 = model_ids[int(instance_id)-1].split('_')[0:2] if cate in cate_symmetry and md5 not in cate_except[cate]: symmetry_file = os.path.join(symmetry_top_dir,cate,md5+'.generator') if os.path.exists(symmetry_file): symmetry_line = [line for line in open(symmetry_file) if line.startswith('C')] if len(symmetry_line) > 0: print(cate+' '+md5) print(symmetry_line) for sline in symmetry_line: ssline = sline.strip().split() if len(ssline) > 1: Cname,Cn,Rx,Ry,Rz = ssline Cn = float(Cn) Raxis = np.array([float(Rx),float(Ry),float(Rz)]).astype(np.float64) Raxis = frame2_rot.dot(Raxis) Raxis = R.T.dot(Raxis) Raxis_norm = np.linalg.norm(Raxis) Raxis = Raxis / Raxis_norm Raxis[2] *= -1.0 print(Raxis) quater,quater_3 = quaternion_shrink(quater,Raxis,Cn) if Cn >= 20: print("c20 quater changed!") quater = quater_3 else: assert 'Cylinder' in ssline _, Rc2 = angle_axis_from_quaternion(quater) quater,quater_3 = quaternion_shrink(quater,Rc2,2) tran2 = quaternion_rotation(quater,instance_center) tran = tran + tran1 - tran2 if 0: objf20 = frame1_xyz[frame1_pid] objf80 = frame2_xyz[frame2_pid] p20 = objf20 p80 = objf80 if len(p20) > 0: p80_n = quaternion_rotation(quater,p80) p80_n = p80_n + tran mayalab.points3d(p20[:,0],p20[:,1],p20[:,2],color=(0,1,0),mode='sphere') mayalab.points3d(p80_n[:,0],p80_n[:,1],p80_n[:,2],color=(0,0,1),mode='sphere') mayalab.points3d(p80[:,0],p80[:,1],p80[:,2],color=(1,0,0),mode='sphere') mayalab.show() transformation_translation[frame2_pid] = tran transformation_rot[frame2_pid] = quater transformation_file = os.path.join(top_dir,'translation.npz') rotation_file = os.path.join(top_dir,'rotation.npz') print(transformation_file) np.savez(transformation_file,transl=transformation_translation) np.savez(rotation_file,rot=transformation_rot) def load_seg(filepath): try: seg = np.load(filepath)['labeling'] seg[:,:,2] *= -1.0 except: print(filepath) print('sth is wrong!') return np.zeros((h,w,3)) return seg def load_xyz(filename): """Return image data from a PGM file generated by blensor. """ fx = 472.92840576171875 fy = fx with open(filename, 'rb') as f: f.readline() f.readline() width_height = f.readline().strip().split() if len(width_height) > 1: width, height = map(int,width_height) value_max_range = float(f.readline()) image_ = [float(line.strip()) for line in f.readlines()] if len(image_) == height * width: nx,ny = (width,height) x_index = np.linspace(0,width-1,width) y_index = np.linspace(0,height-1,height) xx,yy = np.meshgrid(x_index,y_index) xx -= float(width)/2 yy -= float(height)/2 xx /= fx yy /= fy cam_z = np.reshape(image_,(height, width)) cam_z = cam_z / value_max_range * 1.5 cam_x = xx * cam_z cam_y = yy * cam_z image_z = np.flipud(cam_z) image_y = np.flipud(cam_y) image_x = np.flipud(cam_x) zoom_scale = 0.5 image_x = scipy.ndimage.zoom(image_x, zoom_scale, order=1) image_y = scipy.ndimage.zoom(image_y, zoom_scale, order=1) image_z = scipy.ndimage.zoom(image_z, zoom_scale, order=1) image = np.dstack((image_x,image_y,image_z)) return image return np.zeros((h,w,3)) def load_flow(top_dir): tmp = os.path.join(top_dir,'flow.npz') result = np.load(tmp) result = result['flow'] return result def load_transl(filename): tmp = np.load(filename)['transl'] return tmp def load_rot(filename): tmp = np.load(filename)['rot'] return tmp def cal_flow(top_dir,frame2_input_xyz_file, transformation_file, frame1_id_file, frame2_id_file): frame1_id_file = load_labeling(frame1_id_file) frame2_id_file = load_labeling(frame2_id_file) frame1_id = np.squeeze(frame1_id_file) frame2_id = np.squeeze(frame2_id_file) transl = load_transl(os.path.join(transformation_file,'translation.npz')) quater = load_rot(os.path.join(transformation_file,'rotation.npz')) frame2_id_unique = np.unique(frame2_id) frame1_id_unique = np.unique(frame1_id) flow = np.zeros((h,w,3)) frame2_input_xyz = load_xyz(frame2_input_xyz_file) w1, x1, y1, z1 = quater[:,:,0], quater[:,:,1], quater[:,:,2], quater[:,:,3]#rot_quaternion, axis=-1) x2, y2, z2 = frame2_input_xyz[:,:,0],frame2_input_xyz[:,:,1],frame2_input_xyz[:,:,2] wm = - x1 * x2 - y1 * y2 - z1 * z2 xm = w1 * x2 + y1 * z2 - z1 * y2 ym = w1 * y2 + z1 * x2 - x1 * z2 zm = w1 * z2 + x1 * y2 - y1 * x2 x = -wm * x1 + xm * w1 - ym * z1 + zm * y1 y = -wm * y1 + ym * w1 - zm * x1 + xm * z1 z = -wm * z1 + zm * w1 - xm * y1 + ym * x1 flow = np.stack((x,y,z),axis=-1) flow = flow + transl - frame2_input_xyz flow_file = os.path.join(top_dir,'flow.npz') np.savez(flow_file,flow=flow) if 0: post_p = frame2_input_xyz.reshape((-1,3)) p1 = flow.reshape((-1,3)) + post_p prev_p = [line for line in os.listdir(top_dir) if line.startswith('frame20') and line.endswith('.pgm')][0] prev_p = os.path.join(top_dir,prev_p) prev_p = load_xyz(prev_p) p2 = prev_p.reshape((-1,3)) mayalab.points3d(p1[:,0],p1[:,1],p1[:,2],color=(0,1,0),mode='point') mayalab.points3d(p2[:,0],p2[:,1],p2[:,2],color=(0,0,1),mode='point') mayalab.show() def raw_cal_flow(total): top_dir, frame2_input_xyz_file, frame1_id_file, frame2_id_file = total.split('#') cal_flow(top_dir,frame2_input_xyz_file, top_dir, frame1_id_file, frame2_id_file) def cal_score(top_dir,inputfilename,gtfilename): xyz = load_xyz(inputfilename)[:,:,0:2] seg = load_seg(gtfilename)[:,:,0:2] score = np.zeros((h,w)) score_tmp = score.reshape((-1,1)) xyz_tmp = xyz.reshape((-1,2)) seg_tmp = seg.reshape((-1,2)) idx_c = np.unique(seg_tmp,axis=0) diff = xyz_tmp - seg_tmp diff_norm = np.linalg.norm(diff,axis=1) for idx in idx_c: if idx[0] != 0.0: tmp = np.where(seg_tmp == idx)[0] dist = diff_norm[tmp] top_k = min(len(dist),300) tmp_indx = dist.argsort()[:top_k] index = tmp[tmp_indx] score_tmp[index] = 1.0 score = score_tmp.reshape((h,w)) score_file = os.path.join(top_dir,'frame20_score.npz') np.savez(score_file,score=score) def load_score(score_file): tmp = np.load(score_file)['score'] return tmp def raw_cal_score(total): top_dir,inputfilename, gtfilename = total.split('#') cal_score(top_dir,inputfilename,gtfilename) def cal_boundary(top_dir): dist_image = np.zeros((240,320,1)) filepath = os.path.join(top_dir,'frame80_labeling.npz') if not os.path.exists(filepath): return if not os.path.exists(os.path.join(top_dir,'end_center.npz')): return seg = load_seg(filepath) end_center = np.load(os.path.join(top_dir,'end_center.npz'))['end_center'] feat = np.zeros((240,320,6)) feat[:,:,0:3] = seg feat[:,:,3:6] = end_center d2_image = np.reshape(feat,(-1,6)) idx_c = np.unique(d2_image,axis=0) idx_c = [idx_c[i] for i in xrange(len(idx_c)) if idx_c[i][0] != 0.0 and idx_c[i][1] != 0.0 and idx_c[i][2] != 0.0] d2_list = [i for i in xrange(len(idx_c))] if len(idx_c) == 1: dist_image[seg[:,:,2] == idx_c[0][2]] = 0.02 elif len(idx_c) > 1: for i_c in xrange(len(idx_c)): dist = np.min(np.array([np.linalg.norm(idx_c[i_c] - idx_c[i]) for i in d2_list if i != i_c])) dist_image[seg[:,:,2] == idx_c[i_c][2]] = dist / 10 boundary_file = os.path.join(top_dir,'boundary.npz') np.savez(boundary_file,boundary=dist_image) cateid_cate = {'02876657':1, # bottle '02691156':2, # toy airplane '02747177':3, # trash can '02773838':4, # bag '02808440':5, # bowl '02924116':6, # toy bus '02942699':7, # camera '02946921':8, # can '02954340':9, # cap '02958343':10,# toy car '03001627':11,# toy chair '03046257':12,#clocks '03085013':13,#key boards '03211117':14,#display '03261776':15,#earphone '03624134':16,#knife '03642806':17,#laptop '03790512':18,#toy motorcycle '03797390':19,#mug '03948459':20,#pistol '04074963':21,#remote control '04401088':22,#telephone '04530566':23,#toy boat '04468005':24,#toy train '04099429':25,#toy rocket '04256520':26,#toy sofa '03513137':27,#helmet '04379243':28,#toy table } def load_boundary(boundary_file): tmp = np.load(boundary_file)['boundary'] return tmp def cal_ending_traj(top_dir): frame2_center = load_seg(os.path.join(top_dir,'frame80_labeling.npz')) frame1_center = load_seg(os.path.join(top_dir,'frame20_labeling.npz')) frame2_id = load_labeling(os.path.join(top_dir,'frame80_labeling_model_id.npz')) frame1_id = load_labeling(os.path.join(top_dir,'frame20_labeling_model_id.npz')) end_center = np.zeros((240,320,3)) pgm_filepath = [line for line in os.listdir(top_dir) if line.endswith('.pgm') and line.startswith('frame80')] if len(pgm_filepath) < 1: return else: pgm_filepath = pgm_filepath[0] tmp = pgm_filepath.split('.pgm')[0].split('_') azimuth_deg = float(tmp[2].split('azi')[1]) elevation_deg = float(tmp[3].split('ele')[1]) theta_deg = float(tmp[4].split('theta')[1]) rho = float(tmp[1].split('rho')[1]) cx, cy, cz = obj_centened_camera_pos(rho, azimuth_deg, elevation_deg) q1 = camPosToQuaternion(cx , cy , cz) q2 = camRotQuaternion(cx, cy , cz, theta_deg) q = quaternionProduct(q2, q1) R = quaternion_matrix(q)[0:3,0:3] C = np.zeros((3,)) C[0] = cx C[1] = cy C[2] = cz frame2_xyz_name = [line for line in os.listdir(top_dir) if line.startswith('frame80') and line.endswith('.pgm')][0] frame1_xyz_name = [line for line in os.listdir(top_dir) if line.startswith('frame20') and line.endswith('.pgm')][0] frame2_xyz = load_xyz(os.path.join(top_dir,frame2_xyz_name)) frame1_xyz = load_xyz(os.path.join(top_dir,frame1_xyz_name)) frame2_id_list = np.unique(frame2_id) frame1_id_list = np.unique(frame1_id) model_ids = [line.split('frame80_')[1] for line in os.listdir(top_dir) if line.endswith('.txt') and line.startswith('frame80')] model_ids.sort() for instance_id in frame2_id_list: frame2_pid = frame2_id == instance_id frame2_pid = frame2_pid.reshape((240,320)) frame1_pid = frame1_id == instance_id frame1_pid = frame1_pid.reshape((240,320)) if instance_id > 0: if instance_id not in frame1_id_list: frame1_tran, frame1_rot = tran_rot(os.path.join(top_dir,'frame20_'+model_ids[int(instance_id)-1])) frame2_tran, frame2_rot = tran_rot(os.path.join(top_dir,'frame80_'+model_ids[int(instance_id)-1])) R12 = frame1_rot.dot(np.linalg.inv(frame2_rot)) rot = R.T.dot(R12.dot(R)) tran = R.T.dot(frame1_tran-C) + R.T.dot(R12.dot(C-frame2_tran)) tran[2] *= -1.0 rot[0,2] *= -1.0 rot[1,2] *= -1.0 rot[2,0] *= -1.0 rot[2,1] *= -1.0 tmp_e = np.mean(frame2_center[frame2_pid],axis=0) end_center[frame2_pid] = rot.dot(tmp_e) + tran else: tmp_e = np.mean(frame1_center[frame1_pid],axis=0) end_center[frame2_pid] = tmp_e ending_traj_file = os.path.join(top_dir,'end_center.npz') np.savez(ending_traj_file,end_center=end_center) def load_end_center(end_center_file): tmp = np.load(end_center_file)['end_center'] return tmp if __name__ == '__main__': "Annotate the ground truth dataset. Follow the order Step 1. Calculate translation and rotation Step 2. Calculate the trajectory ending point Step 3. Calculate the distances between trajectories and score" top_dir = '' num = 10000 if 1: filelist = [] for i in xrange(0,num): top_d = os.path.join(top_dir,str(i)) if os.path.exists(top_d): if not os.path.exists(os.path.join(top_d,'frame80_labeling_model_id.npz')) or not os.path.exists(os.path.join(top_d,'frame20_labeling_model_id.npz')) or not os.path.exists(os.path.join(top_d,'frame80_labeling.npz')) or not os.path.exists(os.path.join(top_d,'frame20_labeling.npz')): pass else: filelist.append(top_d) flow_file = os.path.join(top_d,'rotation.npz') print(flow_file) flow = load_rot(flow_file) if 0: filelist = [] for i in xrange(0,num): top_d = os.path.join(top_dir,str(i)) if os.path.exists(top_d): filelist.append(top_d) pool = Pool(100) for i, data in enumerate(pool.imap(cal_transformation,filelist)): print(i) pool.close() if 0: filelist = [] for i in xrange(0,num): top_d = os.path.join(top_dir,str(i)) if os.path.exists(top_d): frame1_id_file = os.path.join(top_d,'frame20_labeling_model_id.npz') frame2_id_file = os.path.join(top_d,'frame80_labeling_model_id.npz') frame2_input_xyz_file = [line for line in os.listdir(top_d) if line.startswith('frame80') and line.endswith('.pgm')] if len(frame2_input_xyz_file) > 0: frame2_input_xyz_file = frame2_input_xyz_file[0] frame2_input_xyz_file = os.path.join(top_d,frame2_input_xyz_file) total = top_d + '#' + frame2_input_xyz_file + '#' +frame1_id_file + '#' + frame2_id_file if os.path.exists(frame1_id_file) and os.path.exists(frame2_id_file): filelist.append(total) pool = Pool(150) for i, data in enumerate(pool.imap(raw_cal_flow,filelist)): print(i) pool.close() print("pred scene flow") if 0: filelist = [] for i in xrange(0,num): top_d = os.path.join(top_dir,str(i)) if os.path.exists(top_d): print(top_d) filelist.append(top_d) pool = Pool(150) for i , data in enumerate(pool.imap(cal_ending_traj,filelist)): print(i) pool.close() print("cal ending traj") if 0: filelist=[] for i in xrange(0,num): top_d = os.path.join(top_dir,str(i)) if os.path.exists(top_d): frame2_input_xyz_file = [line for line in os.listdir(top_d) if line.startswith('frame20') and line.endswith('.pgm')] frame2_gt_file = os.path.join(top_d,'frame20_labeling.npz') if len(frame2_input_xyz_file) > 0: frame2_input_xyz_file = frame2_input_xyz_file[0] frame2_input_xyz_file = os.path.join(top_d,frame2_input_xyz_file) total = top_d + '#' + frame2_input_xyz_file + '#' +frame2_gt_file print(total) filelist.append(total) pool = Pool(100) for i, data in enumerate(pool.imap(raw_cal_score,filelist)): print(i) pool.close() if 0: filelist = [] for i in xrange(0,num): top_d = os.path.join(top_dir,str(i)) if os.path.exists(top_d): filelist.append(top_d) pool = Pool(150) for i, data in enumerate(pool.imap(cal_boundary,filelist)): print(i) print(filelist[i]) pool.close()
import configparser from datetime import datetime, timedelta import twitter def fetch_disruptions_for_sbahn_line(): result = {'s1': False, 's2': False, 's3': False, 's4': False, 's5': False, 's6': False} timeline = _get_vvs_twitter_timeline() # check the text for occurrences of sbahn lines for post in timeline: text = post.text.lower() if 's1' in text: result['s1'] = True if 's2' in text: result['s2'] = True if 's3' in text: result['s3'] = True if 's4' in text: result['s4'] = True if 's5' in text: result['s5'] = True if 's6' in text or 's60' in text: result['s6'] = True return result def fetch_disruption_message(): timeline = _get_vvs_twitter_timeline() message = '' for post in timeline: text_lower = post.text.lower() if 's1' in text_lower or 's2' in text_lower or 's3' in text_lower or 's4' in text_lower \ or 's5' in text_lower or 's6' in text_lower or 's60' in text_lower: if message != '': message += ' --- ' message += post.text return message def _get_vvs_twitter_timeline(): # read twitter api keys from config file config = configparser.ConfigParser() config.read('config.ini') api = twitter.Api(consumer_key=config['twitter']['ConsumerKey'], consumer_secret=config['twitter']['ConsumerSecret'], access_token_key=config['twitter']['AccessTokenKey'], access_token_secret=config['twitter']['AccessTokenConfig']) timeline = api.GetUserTimeline(screen_name='VVS') relevant_posts = [] for status in timeline: tweet_timestamp = datetime.fromtimestamp(status.created_at_in_seconds) limit = datetime.now() - timedelta(hours=2) if tweet_timestamp > limit: relevant_posts.append(status) return relevant_posts def is_disruption(message): return message != ''
from otolite.skdash.controller import Controller, estimators # from sklearn.tree import DecisionTreeRegressor # # func = DecisionTreeRegressor # -*- coding: utf-8 -*- import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) from otolite.skdash.util import extract_name_and_default, SignatureExtractor from py2dash.component_makers import div_list_from_func from py2dash.component_makers import dropdown_from_list extract_signature = SignatureExtractor(attrs=('name', 'default', 'annotation')) undefined = extract_name_and_default(dcc.Input)[0]['default'] from otolite.skdash.controller import run_model div_list_0 = [] # func = LinearRegression # func = DecisionTreeRegressor func = run_model func_div_list = div_list_from_func(func) if func == run_model: func_div_list.extend([ html.Button(id='submit-button', n_clicks=0, children='Submit'), html.Div(id='output-state')]) # app.layout = html.Div(func_div_list, style={'columnCount': 2}) class Ids: def __init__(self, _attrs=()): self._attrs = list(_attrs) def __getattr__(self, _id): if isinstance(_id, self.__class__): _id = _id._id assert isinstance(_id, str), "_id should be a string" if _id not in self._attrs: setattr(self, _id, _id) self._attrs.append(_id) return _id def __dir__(self): # to see attr in autocompletion return super().__dir__() + self._attrs def __iter__(self): yield from self._attrs ids = Ids() # app.layout = html.Div([ # html.Label('Learner Kind'), # dropdown_from_list(Controller.list_learner_kinds(), id=ids.dropdown), # html.Button(id=ids.submit_learner, n_clicks=0, children='Submit Learner'), # html.Label('Result'), # html.Div(id=ids.result) # ]) # # @app.callback( # Output(ids.result, 'children'), # [Input(ids.submit_learner, 'n_clicks')], # [State(ids.dropdown, 'value')], # ) # def update_output_div(n_clicks, input_val): # return str(extract_signature(dict(estimators)[input_val])) div_list_0.extend([ html.Label('Learner Kind'), dropdown_from_list(Controller.list_learner_kinds(), id=ids.dropdown), html.Label('Result'), html.Div(id=ids.result) ]) # showing different input types html_input_types = ['text', 'number', 'password', 'email', 'range', 'search', 'tel', 'url', 'hidden'] for input_type in html_input_types: div_list_0.append(html.Label(input_type)) div_list_0.append(dcc.Input(id=input_type + '_example', name=input_type, type=input_type)) app.layout = html.Div(div_list_0) @app.callback( Output(ids.result, 'children'), [Input(ids.dropdown, 'value')] ) def update_output_div(input_val): return str(extract_signature(dict(estimators)[input_val])) # app.layout = html.Div([html.Label('Dropdown'), # dcc.Dropdown( # options=[ # {'label': 'New York City', 'value': 'NYC'}, # {'label': u'Montrรฉal', 'value': 'MTL'}, # {'label': 'San Francisco', 'value': 'SF'} # ], # value='MTL')]) # print([State(x['name'], 'value') for x in extract_signature(func)]) def ensure_bool(x): if isinstance(x, bool): return x else: if isinstance(x, str): if x.lower().startswith('t'): return True elif x.lower().startswith('f'): return False elif isinstance(x, int): return bool(x) raise ValueError(f"Couldn't convert to a boolean: {x}") # if func == run_model: # sig = extract_signature(func) # states = [State(x['name'], 'value') for x in extract_signature(func)] # # # # wrapper = app.callback(Output('output-state', 'children'), # # [Input('submit-button', 'n_clicks')], # # states) # # wrapped_func = wrapper(func) # @app.callback(Output('output-state', 'children'), # [Input('submit-button', 'n_clicks')], # states) # def run_model(tmp, n_clicks, mall_name, model_name: str, xy_name: str, method: str = 'predict', return_y: bool = False): # return_y = ensure_bool(return_y) # return Controller(mall_name).run_model(model_name, xy_name, method=method, return_y=return_y) # else: # wrapped_func = func # app.layout = html.Div([ # # daq.ToggleSwitch( # id='my-toggle-switch', # value=False, # # ), # html.Div(id='toggle-switch-output'), # # html.Label('Radio Items'), # dcc.RadioItems( # options=[ # {'label': 'New York City', 'value': 'NYC'}, # {'label': u'Montrรฉal', 'value': 'MTL'}, # {'label': 'San Francisco', 'value': 'SF'} # ], # value='MTL' # ), # # html.Label('Checkboxes'), # dcc.Checklist( # options=[ # {'label': 'New York City', 'value': 'NYC'}, # {'label': u'Montrรฉal', 'value': 'MTL'}, # {'label': 'San Francisco', 'value': 'SF'} # ], # values=['MTL', 'SF'] # ), # # html.Label('Text Input'), # dcc.Input(value='MTL', type='text'), # # html.Label('Slider'), # dcc.Slider( # min=0, # max=9, # marks={i: 'Label {}'.format(i) if i == 1 else str(i) for i in range(1, 6)}, # value=5, # ), # ], style={'columnCount': 2}) if __name__ == '__main__': app.run_server(debug=True)
import numpy as np from sklearn.metrics.pairwise import cosine_similarity import argparse from os import path, makedirs from multiprocessing import Pool import os from scipy.spatial import distance from tqdm import tqdm PROBE_FILE = None PROBE = None PROBE_O = None METRIC = None def chisquare(p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() bin_dists = (p - q)**2 / (p + q + np.finfo('float').eps) return np.sum(bin_dists) def match(a, file_list): value = [] image_a_path = a features_a = np.load(image_a_path) if np.ndim(features_a) == 1: features_a = features_a[np.newaxis, :] for file_path in file_list: image_b_path = file_path if image_a_path == image_b_path: continue features_b = np.load(image_b_path) if np.ndim(features_b) == 1: features_b = features_b[np.newaxis, :] if METRIC == 1: score = np.mean(cosine_similarity(features_a, features_b)) elif METRIC == 2: score = distance.euclidean(features_a, features_b) else: score = chisquare(features_a, features_b) value.append(score) result = np.mean(np.asarray(value)) #change here for mean or median return result if __name__ == '__main__': parser = argparse.ArgumentParser(description='Match Extracted Features') parser.add_argument('-probe', '-p', help='Probe image list.', default = "../Shared/AS/stage_1/all.txt") #parser.add_argument('-group', '-gr', help='Group name, e.g. AA') parser.add_argument('-metric', '-m', default=1, help='Metric to us: (1) Cosine Similarity; (2) Euclidean Distance; (3) Chi Square') args = parser.parse_args() METRIC = int(args.metric) PROBE_FILE = args.probe print("Loading files ...") PROBE_O = np.sort(np.loadtxt(PROBE_FILE, dtype=np.str)) print("Finished loading ...") dic = {} remain = [] for line in tqdm(PROBE_O): subject = line.split('/')[-2] if subject not in dic: dic[subject] = [] dic[subject].append(line) for folder in tqdm(dic.values()): result = [] for x in folder: result.append([x, match(x, folder)]) result.sort(key=lambda x: x[1]) gap = [] for i in range(len(result) - 1): gap.append(result[i + 1][1] - result[i][1]) max_position = 0 maximum = 0 for i in range(len(gap)): if gap[i] >= maximum: max_position = i maximum = gap[i] for i in range(max_position+1, len(result)): remain.append(result[i][0]) np.savetxt('../Shared/AS/stage_2/median.txt', remain, delimiter=' ', fmt='%s')
""" Bombay Stock Exchnage """ from pandas import Timestamp from pytz import timezone from datetime import time from .market_calendar import MarketCalendar BSEClosedDay = [ Timestamp('1997-01-23', tz='UTC'), Timestamp('1997-03-07', tz='UTC'), Timestamp('1997-03-24', tz='UTC'), Timestamp('1997-04-08', tz='UTC'), Timestamp('1997-04-14', tz='UTC'), Timestamp('1997-04-16', tz='UTC'), Timestamp('1997-04-18', tz='UTC'), Timestamp('1997-05-01', tz='UTC'), Timestamp('1997-05-08', tz='UTC'), Timestamp('1997-08-15', tz='UTC'), Timestamp('1997-08-18', tz='UTC'), Timestamp('1997-08-25', tz='UTC'), Timestamp('1997-10-02', tz='UTC'), Timestamp('1997-10-28', tz='UTC'), Timestamp('1997-10-29', tz='UTC'), Timestamp('1997-10-31', tz='UTC'), Timestamp('1997-12-25', tz='UTC'), Timestamp('1998-04-09', tz='UTC'), Timestamp('1998-04-14', tz='UTC'), Timestamp('1998-04-28', tz='UTC'), Timestamp('1998-12-25', tz='UTC'), Timestamp('1999-01-01', tz='UTC'), Timestamp('1999-01-20', tz='UTC'), Timestamp('1999-01-26', tz='UTC'), Timestamp('1999-03-02', tz='UTC'), Timestamp('1999-03-18', tz='UTC'), Timestamp('1999-03-25', tz='UTC'), Timestamp('1999-03-29', tz='UTC'), Timestamp('1999-04-02', tz='UTC'), Timestamp('1999-04-14', tz='UTC'), Timestamp('1999-04-27', tz='UTC'), Timestamp('1999-04-30', tz='UTC'), Timestamp('1999-09-13', tz='UTC'), Timestamp('1999-10-19', tz='UTC'), Timestamp('1999-11-08', tz='UTC'), Timestamp('1999-11-10', tz='UTC'), Timestamp('1999-11-23', tz='UTC'), Timestamp('1999-12-31', tz='UTC'), Timestamp('2000-01-26', tz='UTC'), Timestamp('2000-03-17', tz='UTC'), Timestamp('2000-03-20', tz='UTC'), Timestamp('2000-04-14', tz='UTC'), Timestamp('2000-04-21', tz='UTC'), Timestamp('2000-05-01', tz='UTC'), Timestamp('2000-08-15', tz='UTC'), Timestamp('2000-09-01', tz='UTC'), Timestamp('2000-10-02', tz='UTC'), Timestamp('2000-12-25', tz='UTC'), Timestamp('2001-01-01', tz='UTC'), Timestamp('2001-01-26', tz='UTC'), Timestamp('2001-03-06', tz='UTC'), Timestamp('2001-04-05', tz='UTC'), Timestamp('2001-04-13', tz='UTC'), Timestamp('2001-05-01', tz='UTC'), Timestamp('2001-08-15', tz='UTC'), Timestamp('2001-08-22', tz='UTC'), Timestamp('2001-10-02', tz='UTC'), Timestamp('2001-10-26', tz='UTC'), Timestamp('2001-11-16', tz='UTC'), Timestamp('2001-11-30', tz='UTC'), Timestamp('2001-12-17', tz='UTC'), Timestamp('2001-12-25', tz='UTC'), Timestamp('2002-03-25', tz='UTC'), Timestamp('2002-03-29', tz='UTC'), Timestamp('2002-05-01', tz='UTC'), Timestamp('2002-08-15', tz='UTC'), Timestamp('2002-09-10', tz='UTC'), Timestamp('2002-10-02', tz='UTC'), Timestamp('2002-10-15', tz='UTC'), Timestamp('2002-11-06', tz='UTC'), Timestamp('2002-11-19', tz='UTC'), Timestamp('2002-12-25', tz='UTC'), Timestamp('2003-02-13', tz='UTC'), Timestamp('2003-03-14', tz='UTC'), Timestamp('2003-03-18', tz='UTC'), Timestamp('2003-04-14', tz='UTC'), Timestamp('2003-04-18', tz='UTC'), Timestamp('2003-05-01', tz='UTC'), Timestamp('2003-08-15', tz='UTC'), Timestamp('2003-10-02', tz='UTC'), Timestamp('2003-11-26', tz='UTC'), Timestamp('2003-12-25', tz='UTC'), Timestamp('2004-01-01', tz='UTC'), Timestamp('2004-01-26', tz='UTC'), Timestamp('2004-02-02', tz='UTC'), Timestamp('2004-03-02', tz='UTC'), Timestamp('2004-04-09', tz='UTC'), Timestamp('2004-04-14', tz='UTC'), Timestamp('2004-04-26', tz='UTC'), Timestamp('2004-10-13', tz='UTC'), Timestamp('2004-10-22', tz='UTC'), Timestamp('2004-11-15', tz='UTC'), Timestamp('2004-11-26', tz='UTC'), Timestamp('2005-01-21', tz='UTC'), Timestamp('2005-01-26', tz='UTC'), Timestamp('2005-03-25', tz='UTC'), Timestamp('2005-04-14', tz='UTC'), Timestamp('2005-07-28', tz='UTC'), Timestamp('2005-08-15', tz='UTC'), Timestamp('2005-09-07', tz='UTC'), Timestamp('2005-10-12', tz='UTC'), Timestamp('2005-11-03', tz='UTC'), Timestamp('2005-11-04', tz='UTC'), Timestamp('2005-11-15', tz='UTC'), Timestamp('2006-01-11', tz='UTC'), Timestamp('2006-01-26', tz='UTC'), Timestamp('2006-02-09', tz='UTC'), Timestamp('2006-03-15', tz='UTC'), Timestamp('2006-04-06', tz='UTC'), Timestamp('2006-04-11', tz='UTC'), Timestamp('2006-04-14', tz='UTC'), Timestamp('2006-05-01', tz='UTC'), Timestamp('2006-08-15', tz='UTC'), Timestamp('2006-10-02', tz='UTC'), Timestamp('2006-10-24', tz='UTC'), Timestamp('2006-10-25', tz='UTC'), Timestamp('2006-12-25', tz='UTC'), Timestamp('2007-01-01', tz='UTC'), Timestamp('2007-01-26', tz='UTC'), Timestamp('2007-01-30', tz='UTC'), Timestamp('2007-02-16', tz='UTC'), Timestamp('2007-03-27', tz='UTC'), Timestamp('2007-04-06', tz='UTC'), Timestamp('2007-05-01', tz='UTC'), Timestamp('2007-05-02', tz='UTC'), Timestamp('2007-08-15', tz='UTC'), Timestamp('2007-10-02', tz='UTC'), Timestamp('2007-12-21', tz='UTC'), Timestamp('2007-12-25', tz='UTC'), Timestamp('2008-03-06', tz='UTC'), Timestamp('2008-03-20', tz='UTC'), Timestamp('2008-03-21', tz='UTC'), Timestamp('2008-04-14', tz='UTC'), Timestamp('2008-04-18', tz='UTC'), Timestamp('2008-05-01', tz='UTC'), Timestamp('2008-05-19', tz='UTC'), Timestamp('2008-08-15', tz='UTC'), Timestamp('2008-09-03', tz='UTC'), Timestamp('2008-10-02', tz='UTC'), Timestamp('2008-10-09', tz='UTC'), Timestamp('2008-10-30', tz='UTC'), Timestamp('2008-11-13', tz='UTC'), Timestamp('2008-11-27', tz='UTC'), Timestamp('2008-12-09', tz='UTC'), Timestamp('2008-12-25', tz='UTC'), Timestamp('2009-01-08', tz='UTC'), Timestamp('2009-01-26', tz='UTC'), Timestamp('2009-02-23', tz='UTC'), Timestamp('2009-03-10', tz='UTC'), Timestamp('2009-03-11', tz='UTC'), Timestamp('2009-04-03', tz='UTC'), Timestamp('2009-04-07', tz='UTC'), Timestamp('2009-04-10', tz='UTC'), Timestamp('2009-04-14', tz='UTC'), Timestamp('2009-04-30', tz='UTC'), Timestamp('2009-05-01', tz='UTC'), Timestamp('2009-09-21', tz='UTC'), Timestamp('2009-09-28', tz='UTC'), Timestamp('2009-10-02', tz='UTC'), Timestamp('2009-10-13', tz='UTC'), Timestamp('2009-10-19', tz='UTC'), Timestamp('2009-11-02', tz='UTC'), Timestamp('2009-12-25', tz='UTC'), Timestamp('2009-12-28', tz='UTC'), Timestamp('2010-01-01', tz='UTC'), Timestamp('2010-01-26', tz='UTC'), Timestamp('2010-02-12', tz='UTC'), Timestamp('2010-03-01', tz='UTC'), Timestamp('2010-03-24', tz='UTC'), Timestamp('2010-04-02', tz='UTC'), Timestamp('2010-04-14', tz='UTC'), Timestamp('2010-09-10', tz='UTC'), Timestamp('2010-11-17', tz='UTC'), Timestamp('2010-12-17', tz='UTC'), Timestamp('2011-01-26', tz='UTC'), Timestamp('2011-03-02', tz='UTC'), Timestamp('2011-04-12', tz='UTC'), Timestamp('2011-04-14', tz='UTC'), Timestamp('2011-04-22', tz='UTC'), Timestamp('2011-08-15', tz='UTC'), Timestamp('2011-08-31', tz='UTC'), Timestamp('2011-09-01', tz='UTC'), Timestamp('2011-10-06', tz='UTC'), Timestamp('2011-10-27', tz='UTC'), Timestamp('2011-11-07', tz='UTC'), Timestamp('2011-11-10', tz='UTC'), Timestamp('2011-12-06', tz='UTC'), Timestamp('2012-01-26', tz='UTC'), Timestamp('2012-02-20', tz='UTC'), Timestamp('2012-03-08', tz='UTC'), Timestamp('2012-04-05', tz='UTC'), Timestamp('2012-04-06', tz='UTC'), Timestamp('2012-05-01', tz='UTC'), Timestamp('2012-08-15', tz='UTC'), Timestamp('2012-08-20', tz='UTC'), Timestamp('2012-09-19', tz='UTC'), Timestamp('2012-10-02', tz='UTC'), Timestamp('2012-10-24', tz='UTC'), Timestamp('2012-11-14', tz='UTC'), Timestamp('2012-11-28', tz='UTC'), Timestamp('2012-12-25', tz='UTC'), Timestamp('2013-03-27', tz='UTC'), Timestamp('2013-03-29', tz='UTC'), Timestamp('2013-04-19', tz='UTC'), Timestamp('2013-04-24', tz='UTC'), Timestamp('2013-05-01', tz='UTC'), Timestamp('2013-08-09', tz='UTC'), Timestamp('2013-08-15', tz='UTC'), Timestamp('2013-09-09', tz='UTC'), Timestamp('2013-10-02', tz='UTC'), Timestamp('2013-10-16', tz='UTC'), Timestamp('2013-11-04', tz='UTC'), Timestamp('2013-11-15', tz='UTC'), Timestamp('2013-12-25', tz='UTC'), Timestamp('2014-02-27', tz='UTC'), Timestamp('2014-03-17', tz='UTC'), Timestamp('2014-04-08', tz='UTC'), Timestamp('2014-04-14', tz='UTC'), Timestamp('2014-04-18', tz='UTC'), Timestamp('2014-04-24', tz='UTC'), Timestamp('2014-05-01', tz='UTC'), Timestamp('2014-07-29', tz='UTC'), Timestamp('2014-08-15', tz='UTC'), Timestamp('2014-08-29', tz='UTC'), Timestamp('2014-10-02', tz='UTC'), Timestamp('2014-10-03', tz='UTC'), Timestamp('2014-10-06', tz='UTC'), Timestamp('2014-10-15', tz='UTC'), Timestamp('2014-10-24', tz='UTC'), Timestamp('2014-11-04', tz='UTC'), Timestamp('2014-11-06', tz='UTC'), Timestamp('2014-12-25', tz='UTC'), Timestamp('2015-01-26', tz='UTC'), Timestamp('2015-02-17', tz='UTC'), Timestamp('2015-03-06', tz='UTC'), Timestamp('2015-04-02', tz='UTC'), Timestamp('2015-04-03', tz='UTC'), Timestamp('2015-04-14', tz='UTC'), Timestamp('2015-05-01', tz='UTC'), Timestamp('2015-09-17', tz='UTC'), Timestamp('2015-09-25', tz='UTC'), Timestamp('2015-10-02', tz='UTC'), Timestamp('2015-10-22', tz='UTC'), Timestamp('2015-11-12', tz='UTC'), Timestamp('2015-11-25', tz='UTC'), Timestamp('2015-12-25', tz='UTC'), Timestamp('2016-01-26', tz='UTC'), Timestamp('2016-03-07', tz='UTC'), Timestamp('2016-03-24', tz='UTC'), Timestamp('2016-03-25', tz='UTC'), Timestamp('2016-04-14', tz='UTC'), Timestamp('2016-04-15', tz='UTC'), Timestamp('2016-04-19', tz='UTC'), Timestamp('2016-07-06', tz='UTC'), Timestamp('2016-08-15', tz='UTC'), Timestamp('2016-09-05', tz='UTC'), Timestamp('2016-09-13', tz='UTC'), Timestamp('2016-10-11', tz='UTC'), Timestamp('2016-10-12', tz='UTC'), Timestamp('2016-10-31', tz='UTC'), Timestamp('2016-11-14', tz='UTC'), Timestamp('2017-01-26', tz='UTC'), Timestamp('2017-02-24', tz='UTC'), Timestamp('2017-03-13', tz='UTC'), Timestamp('2017-04-04', tz='UTC'), Timestamp('2017-04-14', tz='UTC'), Timestamp('2017-05-01', tz='UTC'), Timestamp('2017-06-26', tz='UTC'), Timestamp('2017-08-15', tz='UTC'), Timestamp('2017-08-25', tz='UTC'), Timestamp('2017-10-02', tz='UTC'), Timestamp('2017-10-20', tz='UTC'), Timestamp('2017-12-25', tz='UTC'), Timestamp('2018-01-26', tz='UTC'), Timestamp('2018-02-13', tz='UTC'), Timestamp('2018-03-02', tz='UTC'), Timestamp('2018-03-29', tz='UTC'), Timestamp('2018-03-30', tz='UTC'), Timestamp('2018-05-01', tz='UTC'), Timestamp('2018-08-15', tz='UTC'), Timestamp('2018-08-22', tz='UTC'), Timestamp('2018-09-13', tz='UTC'), Timestamp('2018-09-20', tz='UTC'), Timestamp('2018-10-02', tz='UTC'), Timestamp('2018-10-18', tz='UTC'), Timestamp('2018-11-08', tz='UTC'), Timestamp('2018-11-23', tz='UTC'), Timestamp('2018-12-25', tz='UTC'), Timestamp('2019-01-26', tz='UTC'), Timestamp('2019-03-02', tz='UTC'), Timestamp('2019-03-04', tz='UTC'), Timestamp('2019-03-21', tz='UTC'), Timestamp('2019-04-17', tz='UTC'), Timestamp('2019-04-19', tz='UTC'), Timestamp('2019-04-29', tz='UTC'), Timestamp('2019-05-01', tz='UTC'), Timestamp('2019-06-05', tz='UTC'), Timestamp('2019-08-12', tz='UTC'), Timestamp('2019-08-15', tz='UTC'), Timestamp('2019-09-02', tz='UTC'), Timestamp('2019-09-10', tz='UTC'), Timestamp('2019-10-02', tz='UTC'), Timestamp('2019-10-08', tz='UTC'), Timestamp('2019-10-21', tz='UTC'), Timestamp('2019-10-28', tz='UTC'), Timestamp('2019-11-12', tz='UTC'), Timestamp('2019-12-25', tz='UTC'), Timestamp('2020-02-21', tz='UTC'), Timestamp('2020-03-10', tz='UTC'), Timestamp('2020-04-02', tz='UTC'), Timestamp('2020-04-06', tz='UTC'), Timestamp('2020-04-10', tz='UTC'), Timestamp('2020-04-14', tz='UTC'), Timestamp('2020-05-01', tz='UTC'), Timestamp('2020-07-31', tz='UTC'), Timestamp('2020-10-02', tz='UTC'), Timestamp('2020-11-16', tz='UTC'), Timestamp('2020-11-30', tz='UTC'), Timestamp('2020-12-25', tz='UTC'), Timestamp('2021-01-26', tz='UTC'), # Republic Day Timestamp('2021-03-11', tz='UTC'), # Maha Shivaratri Timestamp('2021-03-29', tz='UTC'), # Holi Timestamp('2021-04-02', tz='UTC'), # Good Friday Timestamp('2021-04-14', tz='UTC'), # Dr.Baba Saheb Ambedkar Jayanti Timestamp('2021-04-21', tz='UTC'), # Ram Navami Timestamp('2021-05-13', tz='UTC'), # Id-ul-Fitr Timestamp('2021-07-21', tz='UTC'), # Id-al-Adha Timestamp('2021-08-19', tz='UTC'), # Ashura Timestamp('2021-09-10', tz='UTC'), # Ganesh Chaturthi Timestamp('2021-10-15', tz='UTC'), # Vijaya Dashami Timestamp('2021-11-04', tz='UTC'), # Diwali/Laxmi Puja. muhurat trading day Timestamp('2021-11-05', tz='UTC'), # Diwali/Laxmi Puja Timestamp('2021-11-19', tz='UTC'), # Guru Nanak Jayanti Timestamp('2022-01-26', tz='UTC'), # Republic Day Timestamp('2022-03-01', tz='UTC'), # Maha Shivaratri Timestamp('2022-03-18', tz='UTC'), # Holi Timestamp('2022-04-14', tz='UTC'), # Dr.Baba Saheb Ambedkar Jayanti Timestamp('2022-04-15', tz='UTC'), # Good Friday Timestamp('2022-05-03', tz='UTC'), # Id-ul-Fitr Timestamp('2022-08-09', tz='UTC'), # Moharram Timestamp('2022-08-15', tz='UTC'), # Independence Day Timestamp('2022-08-31', tz='UTC'), # Ganesh Chaturthi Timestamp('2022-10-05', tz='UTC'), # Vijaya Dashami Timestamp('2022-10-24', tz='UTC'), # Diwali/Laxmi Puja. muhurat trading day Timestamp('2022-10-26', tz='UTC'), # Diwali-Balipratipada Timestamp('2022-11-08', tz='UTC'), # Guru Nanak Jayanti ] class BSEExchangeCalendar(MarketCalendar): """ Exchange calendar for the Bombay Stock Exchange (BSE, XBOM). Open Time: 9:15 AM, Asia/Calcutta Close Time: 3:30 PM, Asia/Calcutta Due to the complexity around the BSE holidays, we are hardcoding a list of holidays back to 1997, and forward through 2020. There are no known early closes or late opens. """ aliases = ['BSE'] regular_market_times = { "market_open": ((None, time(9, 15)),), "market_close": ((None, time(15, 30)),) } @property def name(self): return "BSE" @property def tz(self): return timezone('Asia/Calcutta') @property def adhoc_holidays(self): return BSEClosedDay
from tkinter import * # create root widget root = Tk() def my_click(): my_label = Label(root, text='I just clicked a button!') my_label.pack() # create button my_button = Button(root, text="Click Me!", command=my_click, fg='blue', bg='red') # pack my_button.pack() # mainloop root.mainloop()
import pytest from django.core.management import call_command from datahub.company.test.factories import CompanyFactory from datahub.core.constants import Country from datahub.core.postcode_constants import CountryPostcodeReplacement from datahub.core.test_utils import has_reversion_comment, has_reversion_version from datahub.dbmaintenance.resolvers.company_address import CompanyAddressResolver pytestmark = pytest.mark.django_db def setup_us_company_with_all_addresses(post_code): """Sets up US Company for tests""" return CompanyFactory( address_town='New York', address_country_id=Country.united_states.value.id, address_postcode=post_code, address_area_id=None, registered_address_town='New York', registered_address_country_id=Country.united_states.value.id, registered_address_postcode=post_code, registered_address_area_id=None, uk_region_id=None, archived=False, duns_number='123456789', ) def setup_us_company_with_address_only(post_code): """Sets up US Company with address only for tests""" return CompanyFactory( address_town='New York', address_country_id=Country.united_states.value.id, address_postcode=post_code, address_area_id=None, registered_address_town='', registered_address_country_id=None, registered_address_postcode='', registered_address_area_id=None, uk_region_id=None, archived=False, duns_number='123456789', ) def setup_us_company_with_registered_address_only(post_code): """Sets up US Company with registered address only for tests""" return CompanyFactory( registered_address_town='New York', registered_address_country_id=Country.united_states.value.id, registered_address_postcode=post_code, registered_address_area_id=None, address_town='', address_country_id=None, address_postcode='', address_area_id=None, uk_region_id=None, archived=False, duns_number='123456789', ) @pytest.mark.parametrize( 'post_code, expected_result', [ ('1 0402', '10402'), ('123456789', '123456789'), ('8520 7402', '07402'), ('CA90025', '90025'), ('NY 10174 โ€“ 4099', '10174 โ€“ 4099'), ('NY 10174 - 4099', '10174 - 4099'), ('MC 5270 3800', '03800'), ('K1C1T1', 'K1C1T1'), ('NY 1004', 'NY 1004'), ('YO22 4PT', 'YO22 4PT'), ('RH175NB', 'RH175NB'), ('WA 6155', 'WA 6155'), ('BT12 6RE', 'BT12 6RE'), ('M2 4JB', 'M2 4JB'), ('CA USA', 'CA USA'), ('n/a', 'n/a'), ('MN5512', 'MN5512'), ('BB12 7DY', 'BB12 7DY'), ('PO6 3EZ', 'PO6 3EZ'), ('Nw1 2Ew', 'Nw1 2Ew'), ('WC1R 5NR', 'WC1R 5NR'), ('BH12 4NU', 'BH12 4NU'), ('CT 6506', 'CT 6506'), ('ME9 0NA', 'ME9 0NA'), ('DY14 0QU', 'DY14 0QU'), ('12345', '12345'), ('12345-1234', '12345-1234'), ('12345 - 1234', '12345 - 1234'), ('0 12345', '01234'), ], ) def test_command_regex_generates_the_expected_postcode_substitution( post_code, expected_result, ): """ Test regex efficiently without connecting to a database :param post_code: POSTCODE format good and bad :param expected_result: regular expression substituted value using the Command pattern """ resolver = CompanyAddressResolver( country_id=None, revision_comment=None, zip_states=None, postcode_replacement=CountryPostcodeReplacement.united_states.value, ) actual_result = resolver.format_postcode(post_code) assert actual_result == expected_result @pytest.mark.parametrize( 'post_code, area_code', [ ('00589', 'NY'), ('01012', 'MA'), ('02823', 'RI'), ], ) def test_us_company_with_unique_zips_generates_valid_address_area( post_code, area_code, ): """ Test postcode is fixed for the purpose of admin area generation with valid zip codes format :param post_code: POSTCODE good :param area_code: Area Code to be generated from Command """ company = setup_us_company_with_all_addresses(post_code) assert company.address_area is None call_command('fix_us_company_address') company.refresh_from_db() assert company.address_area is not None assert company.address_area.area_code == area_code assert company.address_postcode == post_code @pytest.mark.parametrize( 'post_code, area_code', [ ('030121234', 'NH'), ('03912', 'ME'), ('04946', 'ME'), ('05067-1234', 'VT'), ], ) def test_us_company_with_address_data_only_will_generate_address_area( post_code, area_code, ): """ Test postcode fixes and area generation with address area data :param post_code: POSTCODE good :param area_code: Area Code to be generated from Command """ company = setup_us_company_with_address_only(post_code) assert company.address_area is None call_command('fix_us_company_address') company.refresh_from_db() assert company.address_area is not None assert company.address_area.area_code == area_code assert company.address_postcode == post_code @pytest.mark.parametrize( 'post_code, area_code', [ ('05512', 'MA'), ('05612-1234', 'VT'), ('060123456', 'CT'), ('07045', 'NJ'), ], ) def test_us_company_with_unique_zips_generates_the_valid_registered_address_area( post_code, area_code, ): """ Test registered address postcode fixes and area generation a couple of valid Zip Codes using the real DB :param post_code: POSTCODE good :param area_code: Area Code to be generated from Command """ company = setup_us_company_with_all_addresses(post_code) assert company.registered_address_area is None call_command('fix_us_company_address') company.refresh_from_db() assert company.registered_address_area is not None assert company.registered_address_area.area_code == area_code assert company.registered_address_postcode == post_code @pytest.mark.parametrize( 'post_code, area_code', [ ('10057', 'NY'), ('15078', 'PA'), ('19789-4567', 'DE'), ('20067', 'DC'), ], ) def test_us_company_with_registered_address_data_only_will_generate_registered_address_area( post_code, area_code, ): """ Test registered address data only creates data expected :param post_code: POSTCODE good :param area_code: Area Code to be generated from Command """ company = setup_us_company_with_registered_address_only(post_code) assert company.registered_address_area is None call_command('fix_us_company_address') company.refresh_from_db() assert company.registered_address_area is not None assert company.registered_address_area.area_code == area_code assert company.registered_address_postcode == post_code @pytest.mark.parametrize( 'post_code, expected_result', [ ('1 0402', '10402'), ('8520 7402', '07402'), ('CA90025', '90025'), ('NY 10174 โ€“ 4099', '10174 โ€“ 4099'), ('NY 10174 - 4099', '10174 - 4099'), ('NY 123456789', '123456789'), ], ) def test_command_fixes_invalid_postcodes_in_all_post_code_fields( post_code, expected_result, ): """ Test Patterns that need fixing in all postcode fields :param post_code: Invalid Postcode Format :param expected_result: The expected result of the fix """ company = setup_us_company_with_all_addresses(post_code) assert company.address_postcode == post_code assert company.registered_address_postcode == post_code call_command('fix_us_company_address') company.refresh_from_db() assert company.address_postcode == expected_result assert company.registered_address_postcode == expected_result @pytest.mark.parametrize( 'post_code, expected_result', [ ('A1B 4H7', 'A1B 4H7'), ('MA 02 111', 'MA 02 111'), ('PO Box 2900', 'PO Box 2900'), ('5 Westheimer Road', '5 Westheimer Road'), ('CA USA', 'CA USA'), ('n/a', 'n/a'), ('VA 2210', 'VA 2210'), ('tbc', 'tbc'), ], ) def test_command_leaves_invalid_postcodes_in_original_state_with_no_area( post_code, expected_result, ): """ Test edge cases are preserved :param post_code: Invalid Postcode Format :param expected_result: The expected result of the fix """ company = setup_us_company_with_all_addresses(post_code) call_command('fix_us_company_address') company.refresh_from_db() assert company.address_postcode == expected_result assert company.registered_address_postcode == expected_result assert company.address_area is None assert company.registered_address_area is None @pytest.mark.parametrize( 'post_code, expected_result', [ ('1 0402', '10402'), ('8520 7402', '07402'), ('CA90025', '90025'), ], ) def test_audit_log(post_code, expected_result): """ Verify auditable versions of the code are retained :param post_code: Invalid Postcode Format :param expected_result: The expected result of the fix """ company = setup_us_company_with_all_addresses(post_code) call_command('fix_us_company_address') company.refresh_from_db() assert company.address_postcode == expected_result assert company.registered_address_postcode == expected_result assert has_reversion_version(company) assert has_reversion_comment('US Area and postcode Fix.') @pytest.mark.parametrize( 'post_code, expected_result', [ ('1 0402', '10402'), ('123456789', '123456789'), ('8520 7402', '07402'), ('CA90025', '90025'), ], ) def test_audit_does_not_continue_creating_revisions(post_code, expected_result): """ Verify auditable versions of the code are retained :param post_code: Invalid Postcode Format :param expected_result: The expected result of the fix """ company = setup_us_company_with_all_addresses(post_code) call_command('fix_us_company_address') company.refresh_from_db() assert has_reversion_version(company, 1) assert company.address_postcode == expected_result assert company.registered_address_postcode == expected_result call_command('fix_us_company_address') company.refresh_from_db() assert has_reversion_version(company, 1) assert company.address_postcode == expected_result assert company.registered_address_postcode == expected_result
#!/usr/bin/env python """ :Author Patrik Valkovic :Created 02.08.2017 10:04 :Licence MIT Part of grammpy """ from unittest import main, TestCase from grammpy import Rule class Single(Rule): rule = ([0], [1]) class TwoRight(Rule): rule = ([0], [1, 2]) class ThreeLeft(Rule): rule = ([0, 1, 'a'], [2]) class Multiple(Rule): rule = ([0, 1, 2], [3, 4]) class FromRuleComputeRulesTest(TestCase): def test_rules_single(self): r = Single.rules self.assertIsInstance(r, list) self.assertEqual(len(r), 1) self.assertEqual(r[0], Single.rule) self.assertIsInstance(r[0], tuple) self.assertEqual(r[0][0], [0]) self.assertEqual(r[0][1], [1]) self.assertEqual(r[0][0][0], 0) self.assertEqual(r[0][1][0], 1) def test_rules_twoRight(self): r = TwoRight.rules self.assertIsInstance(r, list) self.assertEqual(len(r), 1) self.assertEqual(r[0], TwoRight.rule) self.assertIsInstance(r[0], tuple) self.assertEqual(r[0][0], [0]) self.assertEqual(r[0][1], [1, 2]) self.assertEqual(r[0][0][0], 0) self.assertEqual(r[0][1][0], 1) self.assertEqual(r[0][1][1], 2) def test_rules_threeLeft(self): r = ThreeLeft.rules self.assertIsInstance(r, list) self.assertEqual(len(r), 1) self.assertEqual(r[0], ThreeLeft.rule) self.assertIsInstance(r[0], tuple) self.assertEqual(r[0][0], [0, 1, 'a']) self.assertEqual(r[0][1], [2]) self.assertEqual(r[0][0][0], 0) self.assertEqual(r[0][0][1], 1) self.assertEqual(r[0][0][2], 'a') self.assertEqual(r[0][1][0], 2) def test_rules_multiple(self): r = Multiple.rules self.assertIsInstance(r, list) self.assertEqual(len(r), 1) self.assertEqual(r[0], Multiple.rule) self.assertIsInstance(r[0], tuple) self.assertEqual(r[0][0], [0, 1, 2]) self.assertEqual(r[0][1], [3, 4]) self.assertEqual(r[0][0][0], 0) self.assertEqual(r[0][0][1], 1) self.assertEqual(r[0][0][2], 2) self.assertEqual(r[0][1][0], 3) self.assertEqual(r[0][1][1], 4) if __name__ == '__main__': main()
# pylint: disable=missing-function-docstring, missing-module-docstring/ del a del b, c
""" Contains exceptions used by pylectio. """ class LectioError(Exception): """ A general exception used as a base for other, more specific, exceptions. """ class NotLoggedInError(LectioError): """ An exception raised when the user tries to do an action that requires authentication when not authenticated. """ class SessionClosedError(LectioError): """ An exception raised when the user tries to interact with a closed ``Session``. """ class AuthenticationError(LectioError): """ An exception raised when the authentication failed. """ class ScrapingError(LectioError): """ An exception raised when scraping failed. """
import numpy as np import pandas as pd import sys class Sudoku(): def __init__(self, problem): self.problem = problem self.board = pd.DataFrame(np.reshape([int(char) for char in problem],(9,9))) # self.lastSearch = None # self.prevCells = dict() self.count=0 # def isComplete(self, remainDict): # for value in remainDict.values(): # if sum(value) > 0: # return False # return True def getSquare(self,num): if num in range(3): return range(3) elif num in range(3,6): return range(3,6) else: return range(6,9) def isinSquare(self,num,row,col): if (self.board.loc[self.getSquare(row),self.getSquare(col)] == num).any().any() == True: return True else: return False def isValid(self,num,row,col): if (self.board.loc[:,col]==num).any(): return False elif (self.board.loc[row,:]==num).any(): return False elif self.isinSquare(num,row,col): return False return True def nextPos(self,pos=None): if pos is None: row = col = 0 elif pos[1] == self.board.shape[1]: row = pos[0]+1 col = 0 elif pos == (self.board.shape[0]+1, self.board.shape[1]+1): return None else: row = pos[0] col = pos[1]+1 for r in range(row,self.board.shape[0]): for c in range(col, self.board.shape[1]): if self.board.loc[r,c] == 0: return r,c col = 0 return None # def prevPos(self): # pass # if self.lastSearch is None or self.lastSearch == (0,0): # print("is none") # return None # elif self.lastSearch[1] == 0: # print("is beginning") # row = self.lastSearch[0]-1 # col = self.board.shape[1] # else: # row = self.lastSearch[0] # col = self.lastSearch[1]-1 # print("normal {} {}".format(row,col)) # for r in range(row,-1,-1): # for c in range(col,-1,-1): # if self.board.loc[r,c] == 0: # return (r,c) # col =self.board.shape[1] # return None def findValid(self,pos,startnum=1): if pos==None: return True row = pos[0] col = pos[1] for i in range(startnum,10): self.count+=1 if self.isValid(i, row,col): self.board.loc[row,col] = i # print("change {},{} to: {}".format(row,col,i)) if self.findValid(self.nextPos(pos)): return True self.board.loc[row,col] = 0 return False def run(self): self.findValid(self.nextPos()) # for row in range(9): # prevcol = 0 # for col in range(9): # if self.board.loc[col,row] == 0: # for i in range(1,10): # self.count+=1 # if self.isValid(i, row,col): # self.board.loc[col,row] = i # break # if self.board.loc[col,row] == 0: # prevcol = col # try: # if self.count == self.countmax: # self.printBoard() # sys.exit(0) # remain = self.getRemaining() # if(self.isComplete(remain)): # self.printBoard() # sys.exit(0) # else: # self.updateBoard(self.getRemaining()) # self.count +=1; # self.run() # except KeyboardInterrupt: # print("Program Interrupted!") # def getRemaining(self): # remain = dict() # for row in range(self.board.shape[0]): # for col in range(self.board.shape[1]): # if self.board.loc[col,row] != 0: remain["{}{}".format(row,col)] = [0] # else: # remain["{}{}".format(row,col)] = [x for x in range(1,10) # if x not in (y for y in self.board.loc[:,row]) and # x not in(z for z in self.board.loc[col,:])] # return remain # def updateBoard(self, remain): # pass # for key in remain.keys(): # if len(remain[key]) == 1 and remain[key][0] != 0: # self.board.loc[int(key[1]),int(key[0])] = remain[key][0] def printSudoku(self): print("-"*25) count=0 rowcount=0 for nums in self.board.values: for num in nums: count+=1 if num == 0: num = " " if count < 9 and count%3 ==1: print("| {} ".format(num),end="") elif count==9: print("{} |".format(num)) count=0 rowcount+=1 if rowcount == 3: print("-"*25) rowcount=0 else: print("{} ".format(num),end="") if __name__ == "__main__": with open("../res/problem1.txt",'r') as f: problems = f.read().splitlines() for problem in problems: game = Sudoku(problem) print("START") game.printSudoku() game.run() print("END") game.printSudoku()
from transitions.extensions import GraphMachine class GraphMixin(GraphMachine): def _init_graphviz_engine(self, use_pygraphviz): Graph = super(GraphMixin, self)._init_graphviz_engine(use_pygraphviz) class TweakedGraph(Graph): _TRANSITION_CHECK = self._TRANSITION_CHECK def _transition_label(self, tran): if tran.get('trigger') == self._TRANSITION_CHECK: return '' else: return super(TweakedGraph, self)._transition_label(tran) return TweakedGraph
#!/usr/bin/env python3 import subprocess import sys import time subprocess.call([sys.executable, '-m', 'pip', 'install','--quiet' , 'requests']) import json import requests import os auth_token = sys.argv[6] app_dir = sys.argv[7] templateset_filename_prefix = app_dir + "/config/matcher/template_" json_file_suffix = ".json" headers = {'Content-type': 'application/json', 'Authorization':'Bearer ' + auth_token} def main(): template_scenario = sys.argv[1] gateway = sys.argv[2] customer = sys.argv[3] app = sys.argv[4] template_version_temp_file = sys.argv[5] print(template_scenario + " " + gateway + " " + customer + " " + app) templateset_filename = templateset_filename_prefix + template_scenario + json_file_suffix # defining the api-endpoint save_template_endpoint = "https://" + gateway + "/api/as/saveTemplateSet/" + customer + "/" + app template_version = register_templates_from_file(templateset_filename, save_template_endpoint, customer, app) if template_version == None: print("Cannot write template version to file") else: with open(template_version_temp_file, "w") as f: f.write(template_version) print("Written template version: " + template_version + " to file " + template_version_temp_file) def register_templates_from_file(templateset_filename, api_endpoint, customer, app): try: with open(templateset_filename, encoding='utf-8', errors='ignore') as json_data: template_as_dict = json.load(json_data, strict=False) # Override previous invalid timestamp template_as_dict["timestamp"] = time.time() r = requests.post(url=api_endpoint, json=template_as_dict, headers=headers) print("Registered template json for " + customer + \ " :: " + app) print(api_endpoint) print(r.json()) response_json = r.json() print("Parsed json response") print("Got Response :: " + response_json["Message"]) template_version = response_json["templateSetVersion"] return template_version except json.JSONDecodeError as e: print("Cannot serialize templateSet: " + templateset_filename + " JSON to object ") print(e) except Exception as e: print("Exception occurred for Customer " + customer + " App :: " + app) print(e) if __name__ == "__main__": main()
import os import numpy as np from scipy import sparse import torch import torch.nn as nn from torch.nn import functional as F import torch.utils.data from uncurl.state_estimation import initialize_means_weights from nn_utils import BatchDataset, loss_function, ElementWiseLayer,\ IdentityLayer # A multi-encoder architecture for batch effect correction EPS = 1e-10 def multibatch_loss(w_out, batches, n_batches): """ Args: w_out (tensor): shape is (cells, k) batches (array or tensor): values in [0, n_batches), length=cells n_batches (int): number of batches """ # TODO # sum(w_out[batches==i].mean() - w_out[batches==0].mean() for i in range(0, n_batches)) if n_batches <= 1: return 0 batch_0_mean = w_out[batches==0].mean(0) return sum((torch.abs(w_out[batches==i].mean(0) - batch_0_mean)).sum() for i in range(1, n_batches)) class WEncoderMultibatch(nn.Module): def __init__(self, genes, k, num_batches=1, use_reparam=True, use_batch_norm=True, hidden_units=400, hidden_layers=1, use_shared_softmax=False): """ The W Encoder generates W from the data. The MultiBatch encoder has multiple encoder layers for different batches. """ super(WEncoderMultibatch, self).__init__() self.genes = genes self.k = k self.num_batches = num_batches self.use_batch_norm = use_batch_norm self.use_reparam = use_reparam self.hidden_units = hidden_units self.hidden_layers = hidden_layers self.use_shared_softmax = use_shared_softmax # TODO: set multi-batches self.encoder_layers = nn.ModuleList() for batch in range(self.num_batches): encoder = [] fc1 = nn.Linear(genes, hidden_units) encoder.append(fc1) if use_batch_norm: bn1 = nn.BatchNorm1d(hidden_units) encoder.append(bn1) for i in range(hidden_layers - 1): layer = nn.Linear(hidden_units, hidden_units) encoder.append(layer) if use_batch_norm: encoder.append(nn.BatchNorm1d(hidden_units)) encoder.append(nn.ReLU(True)) if not use_shared_softmax: encoder.append(nn.Linear(hidden_units, k)) seq = nn.Sequential(*encoder) self.encoder_layers.append(seq) if use_shared_softmax: self.fc21 = nn.Linear(hidden_units, k) # TODO: this won't work if use_shared_softmax is False if self.use_reparam: self.fc22 = nn.Linear(hidden_units, genes) def forward(self, x, batches): """ x is a data batch batches is a vector of integers with the same length as x, indicating the batch from which each data point originates. """ outputs = [] inverse_indices = np.zeros(x.shape[0], dtype=int) num_units = 0 for i in range(self.num_batches): batch_index_i = (batches == i) output = x[batch_index_i, :] if len(output) == 0: continue indices = batch_index_i.nonzero().flatten() inverse_indices[indices] = range(num_units, num_units + output.shape[0]) num_units += output.shape[0] output = self.encoder_layers[i](output) outputs.append(output) total_output = torch.cat(outputs) total_output = total_output[inverse_indices] if self.use_shared_softmax: total_output = self.fc21(total_output) if self.use_reparam: return F.softmax(total_output), self.fc22(total_output) else: return F.softmax(total_output), None class WDecoder(nn.Module): def __init__(self, genes, k, use_reparam=True, use_batch_norm=True): """ The W Decoder takes M*W, and returns X. """ super(WDecoder, self).__init__() self.fc_dec1 = nn.Linear(genes, 400) #self.fc_dec2 = nn.Linear(400, 400) self.fc_dec3 = nn.Linear(400, genes) def forward(self, x): output = F.relu(self.fc_dec1(x)) output = F.relu(self.fc_dec3(output)) return output class UncurlNetW(nn.Module): def __init__(self, genes, k, M, use_decoder=True, use_reparam=True, use_m_layer=True, use_batch_norm=True, use_multibatch_encoder=True, use_multibatch_loss=True, use_shared_softmax=True, multibatch_loss_weight=0.5, hidden_units=400, hidden_layers=1, num_batches=1, loss='poisson', **kwargs): """ This is an autoencoder architecture that learns a mapping from the data to W. Args: genes (int): number of genes k (int): latent dim (number of clusters) M (array): genes x k matrix use_decoder (bool): whether or not to use a decoder layer use_reparam (bool): whether or not to use reparameterization trick use_m_layer (bool): whether or not to treat M as a differentiable linear layer use_batch_norm (bool): whether or not to use batch norm in the encoder hidden_units (int): number of hidden units in encoder hidden_layers (int): number of hidden layers in encoder loss (str): 'poisson', 'l1', or 'mse' - specifies loss function. """ super(UncurlNetW, self).__init__() self.genes = genes self.k = k # M is the output of UncurlNetM? self.M = M self.use_decoder = use_decoder self.use_reparam = use_reparam self.use_batch_norm = use_batch_norm self.use_m_layer = use_m_layer self.use_multibatch_encoder = use_multibatch_encoder self.use_multibatch_loss = use_multibatch_loss self.multibatch_loss_weight = multibatch_loss_weight self.loss = loss.lower() self.num_batches = num_batches if use_multibatch_encoder: self.encoder = WEncoderMultibatch(genes, k, num_batches, use_reparam, use_batch_norm, hidden_units=hidden_units, hidden_layers=hidden_layers, use_shared_softmax=use_shared_softmax) else: from deep_uncurl_pytorch import WEncoder self.encoder = WEncoder(genes, k, use_reparam, use_batch_norm, hidden_units=hidden_units, hidden_layers=hidden_layers) if use_m_layer: self.m_layer = nn.Linear(k, genes, bias=False) self.m_layer.weight.data = M#.transpose(0, 1) if self.use_decoder: self.decoder = WDecoder(genes, k, use_reparam, use_batch_norm) else: self.decoder = None # batch correction layers # batch 0 is always the identity layer self.correction_layers = nn.ModuleList() self.correction_layers.append(IdentityLayer()) for b in range(num_batches - 1): correction = ElementWiseLayer(self.genes) #correction = IdentityLayer() self.correction_layers.append(correction) def encode(self, x, batch): # returns two things: mu and logvar if self.use_multibatch_encoder: return self.encoder(x, batch) else: return self.encoder(x) def decode(self, x): return self.decoder(x) def reparameterize(self, mu, logvar): std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) def apply_correction(self, x, batches): """ Applies the batch correction layers... """ # TODO: add a linear correction to w rather than do whatever this is. outputs = [] inverse_indices = np.zeros(x.shape[0], dtype=int) num_units = 0 for i in range(0, self.num_batches): batch_index_i = (batches == i) output = x[batch_index_i, :] if len(output) == 0: continue indices = batch_index_i.nonzero().flatten() inverse_indices[indices] = range(num_units, num_units + output.shape[0]) num_units += output.shape[0] output = self.correction_layers[i](output) outputs.append(output) total_output = torch.cat(outputs) total_output = total_output[inverse_indices] return total_output def forward(self, x, batch=None): if batch is None: batch = torch.zeros(x.shape[0], dtype=torch.int) w, logvar = self.encode(x, batch) # should be a matrix-vector product mu = w if self.use_m_layer: mu = self.m_layer(w) + EPS else: mu = torch.matmul(self.M, w) + EPS # apply batch correction mu = self.apply_correction(mu, batch) if self.use_reparam: z = self.reparameterize(mu, logvar) if self.use_decoder: return self.decode(z), mu, logvar else: return z, mu, logvar else: if self.use_decoder: return self.decode(mu), w else: return mu, w def clamp_m(self): """ makes all the entries of self.m_layer non-negative. """ w = self.m_layer.weight.data w[w<0] = 0 self.m_layer.weight.data = w def train_batch(self, x, optim, batches=None): """ Trains on a data batch, with the given optimizer... """ optim.zero_grad() if self.use_reparam: output, mu, logvar = self.forward(x, batches) output += EPS loss = loss_function(output, x, mu, logvar) loss.backward() else: output, w = self.forward(x, batches) output += EPS if self.loss == 'poisson': loss = F.poisson_nll_loss(output, x, log_input=False, full=True, reduction='sum') elif self.loss == 'l1': loss = F.l1_loss(output, x, reduction='sum') elif self.loss == 'mse': loss = F.mse_loss(output, x, reduction='sum') if self.use_multibatch_loss: loss += self.multibatch_loss_weight*multibatch_loss(w, batches, self.num_batches) loss.backward() optim.step() self.clamp_m() return loss.item() def get_w(self, X, batches=None): """ X is a dense array or tensor of shape gene x cell. """ self.eval() X_tensor = torch.tensor(X.T, dtype=torch.float32) encode_results = self.encode(X_tensor, batches) return encode_results[0].detach() #data_loader = torch.utils.data.DataLoader(X.T, # batch_size=X.shape[1], # shuffle=False) def get_m(self): return self.m_layer.weight.data class UncurlNet(object): def __init__(self, X=None, k=10, batches=None, genes=0, cells=0, initialization='tsvd', init_m=None, **kwargs): """ UncurlNet can be initialized in two ways: - initialize using X, a genes x cells data matrix - initialize using genes, cells, init_m (when X is not available) Args: X: data matrix (can be dense np array or sparse), of shape genes x cells k (int): number of clusters (latent dimensionality) initialization (str): see uncurl.initialize_means_weights """ if X is not None: self.X = X self.genes = X.shape[0] self.cells = X.shape[1] # TODO: change default initialization??? random initialization??? if batches is not None and len(batches) == self.cells: batches = np.array(batches) # only select batch 0? X = X[:, batches==0] M, W = initialize_means_weights(X, k, initialization=initialization) self.M = torch.tensor(M, dtype=torch.float32) else: self.X = None self.genes = genes self.cells = cells self.M = torch.tensor(init_m, dtype=torch.float32) self.k = k # initialize M and W using uncurl's initialization self.w_net = UncurlNetW(self.genes, self.k, self.M, **kwargs) # TODO: set device (cpu or gpu), optimizer, # of threads def get_w(self, data): return self.w_net.get_w(data) def get_m(self): return self.w_net.get_m() def load(self, path): """ loads an UncurlNetW object from file. """ # TODO w_net = torch.load(path) self.w_net = w_net def save(self, path): """ Saves a model to a path... """ # TODO: save only model parameters, or save the whole model? torch.save(self.w_net, path) def preprocess(self): """ Preprocesses the data, converts self.X into a tensor. """ from scipy import sparse if sparse.issparse(self.X): self.X = sparse.coo_matrix(self.X) values = self.X.data indices = np.vstack((self.X.row, self.X.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) self.X = torch.sparse.FloatTensor(i, v, torch.Size(self.X.shape)) else: self.X = torch.tensor(self.X, dtype=torch.float32) def pre_train_encoder(self, X=None, batches=None, n_epochs=20, lr=1e-3, weight_decay=0, disp=True, device='cpu', log_interval=1, batch_size=0): """ pre-trains the encoder for w_net - fixing M. """ # sets the network to train mode self.w_net.train() for param in self.w_net.encoder.parameters(): param.requires_grad = True for param in self.w_net.correction_layers.parameters(): param.requires_grad = True for param in self.w_net.m_layer.parameters(): param.requires_grad = False self._train(X, batches, n_epochs, lr, weight_decay, disp, device, log_interval, batch_size) def train_m(self, X=None, batches=None, n_epochs=20, lr=1e-3, weight_decay=0, disp=True, device='cpu', log_interval=1, batch_size=0): """ trains only the m layer. """ self.w_net.train() for param in self.w_net.encoder.parameters(): param.requires_grad = False for param in self.w_net.correction_layers.parameters(): param.requires_grad = False for param in self.w_net.m_layer.parameters(): param.requires_grad = True self._train(X, batches, n_epochs, lr, weight_decay, disp, device, log_interval, batch_size) def train_model(self, X=None, batches=None, n_epochs=20, lr=1e-3, weight_decay=0, disp=True, device='cpu', log_interval=1, batch_size=0): """ trains the entire model. """ self.w_net.train() for param in self.w_net.encoder.parameters(): param.requires_grad = True for param in self.w_net.correction_layers.parameters(): param.requires_grad = True for param in self.w_net.m_layer.parameters(): param.requires_grad = True self._train(X, batches, n_epochs, lr, weight_decay, disp, device, log_interval, batch_size) def train_1(self, X=None, batches=None, n_encoder_epochs=20, n_model_epochs=50, **params): """ Trains the model, first fitting the encoder and then fitting both M and the encoder. """ self.pre_train_encoder(X, batches, n_epochs=n_encoder_epochs, **params) self.train_model(X, batches, n_epochs=n_model_epochs, **params) def train_alternating(self, X=None, batches=None, n_outer_iters=10, n_inner_epochs=10, **params): """ Trains the model using alternating minimization, first fitting the W encoder and then fitting M. """ for i in range(n_outer_iters): self.pre_train_encoder(X, batches, n_epochs=n_inner_epochs, **params) self.train_model(X, batches, n_epochs=n_inner_epochs, **params) def _train(self, X=None, batches=None, n_epochs=20, lr=1e-3, weight_decay=0, disp=True, device='cpu', log_interval=1, batch_size=0): """ trains the w_net... Args: X (array): genes x cells batches (array or list): list of batch indices for each cell n_epochs: number of epochs to train for lr (float): learning rate weight_decay (float) disp (bool): whether or not to display outputs device (str): cpu or gpu log_interval: how often to print log batch_size: default is max(100, cells/20) """ if X is not None: self.X = X if batch_size == 0: batch_size = 100 #batch_size = max(100, int(self.X.shape[1]/20)) dataset = BatchDataset(X.T, batches) data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) #optimizer = torch.optim.SparseAdam(lr=lr, weight_decay=weight_decay) optimizer = torch.optim.Adam(params=self.w_net.parameters(), lr=lr, weight_decay=weight_decay) for epoch in range(n_epochs): train_loss = 0.0 for batch_idx, data in enumerate(data_loader): data, b = data data = data.to(device) loss = self.w_net.train_batch(data, optimizer, b) if disp and (batch_idx % log_interval == 0): print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(data_loader.dataset), 100. * batch_idx / len(data_loader), loss / len(data))) train_loss += loss if disp: print('====> Epoch: {} Average loss: {:.4f}'.format( epoch, train_loss / len(data_loader.dataset))) def get_mw(self, data): """ Returns a numpy array representing MW. """ # gets MW for data denoising and imputation m = self.get_m() w = self.get_w(data).transpose(1, 0) mw = torch.matmul(m, w) return mw.numpy() if __name__ == '__main__': import uncurl from uncurl.state_estimation import objective from uncurl.preprocessing import cell_normalize, log1p import scipy.io from sklearn.cluster import KMeans from sklearn.metrics.cluster import normalized_mutual_info_score as nmi import pandas as pd table_seqwell = pd.read_table('../uncurl_test_datasets/batch_effects_seurat/IntegratedAnalysis_ExpressionMatrices/pbmc_SeqWell.expressionMatrix.txt.gz') table_10x = pd.read_table('../uncurl_test_datasets/batch_effects_seurat/IntegratedAnalysis_ExpressionMatrices/pbmc_10X.expressionMatrix.txt.gz') genes_seqwell = table_seqwell.index genes_10x = table_10x.index genes_set = set(genes_seqwell).intersection(genes_10x) genes_list = list(genes_set) data_seqwell = table_seqwell.loc[genes_list].values data_10x = table_10x.loc[genes_list].values batch_list = [0]*data_seqwell.shape[1] batch_list += [1]*data_10x.shape[1] data_total = np.hstack([data_seqwell, data_10x]) X_log_norm = log1p(cell_normalize(data_total)).astype(np.float32) net1 = UncurlNet(X_log_norm, 10, batches=batch_list, use_reparam=False, use_decoder=False, use_batch_norm=True, hidden_layers=2, hidden_units=400, num_batches=2, loss='mse') net1.train_1(X_log_norm, batch_list, log_interval=10, batch_size=500) # TODO: test clustering? w = net1.w_net.get_w(X_log_norm, batch_list) # TODO: compare to non-multibatch, run tsne, ...
from django.contrib.auth.models import User from webpos.models import Item, Bill, BillItem def commit_bill(output, reqdata, user): billhd = Bill(customer_name=reqdata['customer_name'], server=User.objects.get(pk=user.id).username) billitms = [] reqquants = reqdata['items'] dbitms = Item.objects.filter(name__in=reqquants.keys()) for dbitm in dbitms: reqitem = reqquants[dbitm.name] quant = reqitem['qty'] notes = reqitem['notes'] db_quant = dbitm.quantity if db_quant is not None: newquant = db_quant - quant if newquant < 0: output['errors'].append((dbitm.name, dbitm.quantity)) else: if output['errors']: continue output['total'] += dbitm.price * quant billitms.append(BillItem(item=dbitm, quantity=quant, category=dbitm.category, item_price=dbitm.price, note=notes)) dbitm.quantity = newquant else: output['total'] += dbitm.price * quant billitms.append(BillItem(item=dbitm, quantity=quant, category=dbitm.category, item_price=dbitm.price, note=notes)) if output['errors']: output['total'] = 0 output['customer_id'] = None output['errors'] = dict(output['errors']) return output, None else: output['errors'] = dict(output['errors']) if output['total'] < 0: output['total'] = 0 billhd.total = output['total'] billhd.customer_id = output['customer_id'] billhd.save() output['date'] = billhd.date output['bill_id'] = billhd.id for billitm, dbitm in zip(billitms, dbitms): billitm.bill = billhd billitm.save() dbitm.save() return output, billhd def undo_bill(billid, user): bill = Bill.objects.get(pk=billid) if not bill.is_committed(): return 'Bill has already been deleted!' for billitem in bill.billitem_set.all(): if billitem.item.quantity is not None: billitem.item.quantity += billitem.quantity billitem.item.save() bill.deleted_by = user.username bill.save() return 'Bill #' + billid + ' deleted!'
# Awakened Spirit (57461) haku = 9130081 sm.removeEscapeButton() sm.setSpeakerID(haku) sm.setBoxChat() sm.sendNext("Kanna, our spiritual power is returning. My fur is buzzing.") sm.sendNext("I think I can maintain my original form now! " "Look out Nobunaga, Haku and Kanna are gonna fox you up!") sm.sendNext("Oh... But I don't have a way to store the spiritual energy. " "We need Mouri Takamoto's help. Could you ask him? Pretty please?") sm.startQuest(parentID)
# FIXME make dynamic PACKAGE_NAME = 'ctshed' FILE_ENCODING = 'utf-8' DEFAULT_IMAGE = 'debian:stable' BIN_DIRECTORY = '~/bin'
from aiohttp import ClientSession from aiohttp.client_exceptions import ClientProxyConnectionError from aiohttp import web from util.config import BaseConfig from nonebot.adapters.onebot.v11 import MessageSegment import nonebot import socket import asyncio import os class Config(BaseConfig): __file__ = "dog" timeout: float = 15 warn: bool = True dog_gif_only: bool = False proxy: str | None = None CONFIG = Config.load() WARN_STR = "๏ผˆ็ฟป่ฏ‘๏ผšAPIๅœจๅ›ฝๅค–๏ผŒ่ฏฅๅ‘ฝไปค็ผ“ๆ…ขๆˆ–ๅ‡บ้”™ๆ˜ฏๆญฃๅธธ็Žฐ่ฑก๏ผ‰" if CONFIG.warn else "" CAT_API = "https://aws.random.cat/meow" cat = nonebot.on_command("ๅ–ต", aliases={"ๅ–ตๅ–ต", "meow"}) cat.__cmd__ = ["ๅ–ต", "ๅ–ตๅ–ต", "meow"] cat.__brief__ = "ๅ–ตๅ–ตๅ–ต๏ผŸๅ–ตๅ–ตใ€‚" cat.__doc__ = "ๅ–ต๏ผŒๅ–ตๅ–ตใ€‚" + WARN_STR @cat.handle() async def handle_cat(): async with ClientSession() as http: url = "่Žทๅ–URLๅ‡บ้”™" try: response = await http.get(CAT_API, proxy=CONFIG.proxy) url = (await response.json())["file"] response = await http.get(url, proxy=CONFIG.proxy) img = await asyncio.wait_for(response.read(), CONFIG.timeout) except ClientProxyConnectionError: await cat.finish("ไปฃ็†่ฟžๆŽฅๅคฑ่ดฅ") except asyncio.TimeoutError: await cat.finish("ไธ‹่ฝฝ่ถ…ๆ—ถ๏ผš" + url) except: await cat.finish("ไธ‹่ฝฝๅ‡บ้”™๏ผš" + url) await cat.finish(MessageSegment.image(img)) CAT_GIF_API = "https://edgecats.net" cat_gif = nonebot.on_command("ๅ–ตๅ‘œ") cat_gif.__cmd__ = "ๅ–ตๅ‘œ" cat_gif.__brief__ = "ๅ–ตๅ‘œ๏ผๅ–ตโ€”โ€”ๅ‘œโ€”โ€”" cat_gif.__doc__ = "ๅ‘ผๅ™œๅ‘ผๅ™œ๏ผŒๅ–ตๅ‘œใ€‚" + WARN_STR @cat_gif.handle() async def handle_cat_gif(): async with ClientSession() as http: try: response = await http.get(CAT_GIF_API, proxy=CONFIG.proxy) data = await asyncio.wait_for(response.read(), CONFIG.timeout) except ClientProxyConnectionError: await cat_gif.finish("ไปฃ็†่ฟžๆŽฅๅคฑ่ดฅ") except asyncio.TimeoutError: await cat_gif.finish("ไธ‹่ฝฝ่ถ…ๆ—ถ") except: await cat_gif.finish("ไธ‹่ฝฝๅ‡บ้”™") await cat_gif.finish(MessageSegment.image(data)) DOG_API = "https://random.dog/woof.json?filter=gif,mp4,webm" dog = nonebot.on_command("ๆฑช", aliases={"ๆฑชๆฑช", "woof"}) dog.__cmd__ = ["ๆฑช", "ๆฑชๆฑช", "woof"] dog.__brief__ = "ๆฑช๏ผŸๆฑชๆฑช๏ผŒๆฑชๆฑชๆฑช๏ผ" dog.__doc__ = "ๆฑชๆฑช๏ผŒๆฑชๆฑชใ€‚" + WARN_STR @dog.handle() async def handle_dog(): async with ClientSession() as http: url = "่Žทๅ–URLๅ‡บ้”™" try: response = await http.get(DOG_API, proxy=CONFIG.proxy) url = (await response.json())["url"] response = await http.get(url, proxy=CONFIG.proxy) img = await asyncio.wait_for(response.read(), CONFIG.timeout) except ClientProxyConnectionError: await dog.finish("ไปฃ็†่ฟžๆŽฅๅคฑ่ดฅ") except asyncio.TimeoutError: await dog.finish("ไธ‹่ฝฝ่ถ…ๆ—ถ๏ผš" + url) except: await dog.finish("ไธ‹่ฝฝๅ‡บ้”™๏ผš" + url) await dog.finish(MessageSegment.image(img)) DOG_GIF_API = "https://random.dog/woof.json?include=gif" if not CONFIG.dog_gif_only: DOG_GIF_API += ",mp4,webm" dog_gif = nonebot.on_command("ๆฑชๅ—ท") dog_gif.__cmd__ = "ๆฑชๅ—ท" dog_gif.__brief__ = "ๆฑช๏ผŒๆฑช๏ผŒๆฑชๅ—ท๏ฝž" dog_gif.__doc__ = "ๆฑชๆฑชโ€ฆโ€ฆๅ‘œๅ—ท๏ผ" + WARN_STR @dog_gif.handle() async def handle_dog_gif(): async with ClientSession() as http: url = "่Žทๅ–URLๅ‡บ้”™" from loguru import logger try: response = await http.get(DOG_GIF_API, proxy=CONFIG.proxy) url = (await response.json())["url"] response = await http.get(url, proxy=CONFIG.proxy) mime = response.content_type logger.info("start download") img = await asyncio.wait_for(response.read(), CONFIG.timeout) logger.info("download finish") except ClientProxyConnectionError: await dog_gif.finish("ไปฃ็†่ฟžๆŽฅๅคฑ่ดฅ") except asyncio.TimeoutError: logger.info("download timeout") await dog_gif.finish("ไธ‹่ฝฝ่ถ…ๆ—ถ๏ผš" + url) except: await dog_gif.finish("ไธ‹่ฝฝๅ‡บ้”™๏ผš" + url) ext = os.path.splitext(url.lower())[1] if ext in (".mp4", ".webm"): await send_video(ext, mime, img) await dog_gif.finish() await dog_gif.finish(MessageSegment.image(img)) # go-cqhttp v1.0.0-rc1 ไฝฟ็”จ file ้“พๆŽฅๅ‘่ง†้ข‘ไผšๅ‡บ้”™๏ผŒๅช่ƒฝ็”จ่ฟ™็งๆ–นๆณ•ๆ›ฟไปฃ async def send_video(ext: str, mime: str, vid: bytes): async def handler(_: web.Request): return web.Response(body=vid, content_type=mime) server = web.Server(handler) runner = web.ServerRunner(server) await runner.setup() with socket.socket() as s: s.bind(("", 0)) port = s.getsockname()[1] site = web.TCPSite(runner, "localhost", port) await site.start() try: await dog_gif.send(MessageSegment.video(f"http://127.0.0.1:{port}/video{ext}")) finally: await site.stop()
import pytest import re import loja @pytest.mark.parametrize('atributo', ['_Produto__nome', '_Produto__preco']) def test_cria_produto(atributo): try: prod = loja.Produto('Jogo online', 99) except Exception: raise AssertionError('Erro no construtor da classe Produto') else: mensagens_atributos = {'_Produto__nome': 'Nรฃo criou o atributo privado nome', '_Produto__preco':'Nรฃo criou o atributo privado preco'} assert hasattr(prod, atributo), mensagens_atributos[atributo] @pytest.mark.parametrize('nome', ['Jogo', 'Microsoft Office']) def test_produto_atributo_nome(nome): try: prod = loja.Produto(nome, 100) assert prod._Produto__nome == nome except Exception: raise AssertionError('Erro ao inicializar o atributo privado nome na classe Produto') @pytest.mark.parametrize('nome', ['Jogo', 'Microsoft Office']) def test_produto_property_nome(nome): try: prod = loja.Produto(nome, 100) assert prod.nome == nome except Exception: raise AssertionError('Erro no valor da property nome na classe Produto') @pytest.mark.parametrize('preco', [100, 100.5]) def test_produto_preco_valido(preco): try: tipo = 'int' if isinstance(preco, int) else 'float' if isinstance(preco, float) else '' prod = loja.Produto('Jogo online', preco) except Exception: raise AssertionError('Erro ao criar Produto com preรงo do tipo {0}'.format(tipo)) def test_cria_produto_nome_vazio(): try: prod = loja.Produto('', 30) except ValueError: pass except Exception: raise AssertionError('Erro diferente de ValueError para Produto criado com nome vazio') else: raise AssertionError('Produto criado com nome vazio') def test_produto_setter_nome_vazio(): try: valor_inicial = 'abcdef' prod = loja.Produto(valor_inicial, 30) prod.nome = '' except ValueError: pass except Exception: raise AssertionError('Erro diferente de ValueError no setter nome da classe Produto quando o nome รฉ vazio') assert hasattr(prod, "_Produto__nome"), "A classe Produto nรฃo possui o atributo privado nome" assert prod._Produto__nome == valor_inicial, 'Nรฃo deve ser permitido alterar o valor do atributo privado nome quando o setter nome recebe uma string vazia' @pytest.mark.parametrize('preco', ["", []]) def test_cria_produto_preco_invalido(preco): try: prod = loja.Produto('Jogo online', preco) except TypeError: pass except Exception: raise AssertionError('Erro diferente de TypeError para Produto criado com preรงo que nรฃo รฉ int nem float') else: raise AssertionError('Produto criado com preรงo invรกlido') @pytest.mark.parametrize('preco', [-1, -3.0]) def test_cria_produto_preco_negativo(preco): try: prod = loja.Produto('Jogo online', preco) except ValueError: pass except Exception: raise AssertionError('Erro diferente de ValueError para Produto criado com preรงo negativo') else: raise AssertionError('Produto criado com preรงo negativo') @pytest.mark.parametrize('preco', ["", []]) def test_produto_setter_preco_invalido(preco): try: valor_inicial = 100 prod = loja.Produto('Jogo online', valor_inicial) prod.preco = preco except TypeError: pass except Exception: raise AssertionError('Erro diferente de TypeError no setter do preรงo quando o novo_preco nรฃo รฉ int nem float') assert hasattr(prod, "_Produto__preco"), "A classe Produto nรฃo possui o atributo privado preco" assert prod._Produto__preco == valor_inicial, "O atributo privado preco nรฃo pode ter o seu valor inicial alterado caso o novo_preco seja invรกlido" @pytest.mark.parametrize('preco', [-1, -3.0]) def test_produto_setter_preco_negativo(preco): try: valor_inicial = 100 prod = loja.Produto('Jogo online', valor_inicial) prod.preco = preco except ValueError: pass except Exception: raise AssertionError('Erro diferente de ValueError no setter do preรงo quando o novo_preco รฉ negativo') assert hasattr(prod, "_Produto__preco"), "A classe Produto nรฃo possui o atributo privado preco" assert prod._Produto__preco == valor_inicial, "O atributo privado preco nรฃo pode ter o seu valor inicial alterado caso o novo_preco seja negativo" @pytest.mark.parametrize('preco', [1, 30]) def test_produto_metodo_calcular_preco_com_frete(preco): try: prod = loja.Produto('Jogo online', preco) except Exception: raise AssertionError('Erro ao instanciar um Produto') assert prod.calcular_preco_com_frete() == preco, "O mรฉtodo calcular_preco_com_frete() deve retornar o preรงo do Produto" @pytest.mark.parametrize('atributo', ['_ProdutoFisico__peso']) def test_cria_produtoFisico(atributo): try: prod = loja.ProdutoFisico('Cadeira', 99, 1000) except Exception: raise AssertionError('Erro no construtor da classe ProdutoFisico') else: mensagens_atributos = {'_ProdutoFisico__peso': 'Nรฃo criou o atributo privado peso'} assert hasattr(prod, atributo), mensagens_atributos[atributo] def test_produtoFisico_heranca(): try: prod = loja.ProdutoFisico('Cadeira', 99, 1000) except Exception: raise AssertionError('Erro no construtor da classe ProdutoFisico') assert isinstance(prod, loja.Produto) and isinstance(prod, loja.ProdutoFisico), 'A classe ProdutoFisico deve herdar da classe Produto' def test_produtoFisico_caracteristicas_herdadas(): try: nome, preco = 'Cadeira', 99 prod = loja.ProdutoFisico(nome, preco, 1000) dict_attrs_classe = vars(loja.ProdutoFisico) dict_attrs_obj = vars(prod) except Exception: raise AssertionError('Erro no construtor da classe ProdutoFisico') assert ('_Produto__nome' in dict_attrs_obj) and ('_Produto__preco' in dict_attrs_obj) and ('_ProdutoFisico__nome' not in dict_attrs_obj) and ('_ProdutoFisico__preco' not in dict_attrs_obj), 'A classe ProdutoFisico nรฃo deve possuir os atributos privados nome e preco' assert ('nome' not in dict_attrs_classe) and ('preco' not in dict_attrs_classe), 'A classe ProdutoFisico deve herdar as properties da classe Produto' assert prod.nome == nome and prod.preco == preco, 'As properties herdadas pela classe ProdutoFisico nรฃo possuem valores vรกlidos' @pytest.mark.parametrize('nome,preco,peso', [('Copo',5,100)]) def test_cria_produtoFisico_inicializado_corretamente(nome, preco, peso): try: prod = loja.ProdutoFisico(nome, preco, peso) except Exception: raise AssertionError('Erro no construtor da classe ProdutoFisico') assert hasattr(prod, "_Produto__nome"), "A classe Produto nรฃo possui o atributo privado nome" assert hasattr(prod, "_Produto__preco"), "A classe Produto nรฃo possui o atributo privado preco" assert hasattr(prod, "_ProdutoFisico__peso"), "A classe ProdutoFisico nรฃo possui o atributo privado peso" assert prod._Produto__nome == nome and prod._Produto__preco == preco and prod._ProdutoFisico__peso == peso, 'A classe ProdutoFisico deve inicializar seus atributos e os atributos da super classe corretamente' @pytest.mark.parametrize('peso', [1000, 3500]) def test_produtoFisico_property_peso(peso): try: prod = loja.ProdutoFisico('Cadeira', 99, peso) assert prod.peso == peso except Exception: raise AssertionError('Erro no valor da property peso na classe ProdutoFisico') @pytest.mark.parametrize('peso', ["", []]) def test_cria_produtoFisico_peso_invalido(peso): try: prod = loja.ProdutoFisico('Cadeira', 99, peso) except TypeError: pass except Exception: raise AssertionError('Erro diferente de TypeError para ProdutoFisico criado com peso que nรฃo รฉ int') else: raise AssertionError('ProdutoFisico criado com peso invรกlido') @pytest.mark.parametrize('peso', [-1000]) def test_cria_produtoFisico_peso_nao_positivo(peso): try: prod = loja.ProdutoFisico('Cadeira', 99, peso) except ValueError: pass except Exception: raise AssertionError('Erro diferente de ValueError para ProdutoFisico criado com peso negativo ou igual a zero') else: raise AssertionError('ProdutoFisico criado com peso negativo ou igual a zero') @pytest.mark.parametrize('peso', ["", []]) def test_produtoFisico_setter_peso_invalido(peso): try: valor_inicial = 100 prod = loja.ProdutoFisico('Cadeira', 99, valor_inicial) prod.preco = peso except TypeError: pass except Exception: raise AssertionError('Erro diferente de TypeError no setter do peso quando o novo_peso nรฃo รฉ int') assert hasattr(prod, "_ProdutoFisico__peso"), "A classe ProdutoFisico nรฃo possui o atributo privado peso" assert prod._ProdutoFisico__peso == valor_inicial, "O atributo privado peso nรฃo pode ter o seu valor inicial alterado caso o novo_peso seja invรกlido" @pytest.mark.parametrize('peso', [0, -100]) def test_produtoFisico_setter_peso_nao_positivo(peso): try: valor_inicial = 100 prod = loja.ProdutoFisico('Cadeira', 99, valor_inicial) prod.preco = peso except ValueError: pass except Exception: raise AssertionError('Erro diferente de ValueError no setter do peso quando o novo_peso รฉ negativo ou igual a zero') assert hasattr(prod, "_ProdutoFisico__peso"), "A classe ProdutoFisico nรฃo possui o atributo privado peso" assert prod._ProdutoFisico__peso == valor_inicial, "O atributo privado peso nรฃo pode ter o seu valor inicial alterado caso o novo_peso seja negativo ou igual a zero" @pytest.mark.parametrize('preco,peso,total', [(100,5000,125), (300,9500,347.5)]) def test_produtoFisico_metodo_calcular_preco_com_frete(preco, peso, total): try: prod = loja.ProdutoFisico('Cadeira', preco, peso) except Exception: raise AssertionError('Erro ao instanciar um ProdutoFisico') assert prod.calcular_preco_com_frete() == total, "O mรฉtodo calcular_preco_com_frete() nรฃo calculou o preรงo com frete do ProdutoFisico corretamente" @pytest.mark.parametrize('peso,peso_kg', [(1000,1.0), (9500,9.5)]) def test_produtoFisico_metodo_peso_em_kg(peso, peso_kg): try: prod = loja.ProdutoFisico('Cadeira', 99, peso) except Exception: raise AssertionError('Erro ao instanciar um ProdutoFisico') assert prod.peso_em_kg() == peso_kg, "O mรฉtodo peso_em_kg() nรฃo calculou o peso em kg do ProdutoFisico corretamente" @pytest.mark.parametrize('atributo', ['_ProdutoEletronico__tensao', '_ProdutoEletronico__tempo_garantia']) def test_cria_produtoEletronico(atributo): try: prod = loja.ProdutoEletronico('Geladeira', 5000, 35000, 127, 12) except Exception: raise AssertionError('Erro no construtor da classe ProdutoEletronico') else: mensagens_atributos = {'_ProdutoEletronico__tensao': 'Nรฃo criou o atributo privado tensao', '_ProdutoEletronico__tempo_garantia': 'Nรฃo criou o atributo privado tempo_garantia'} assert hasattr(prod, atributo), mensagens_atributos[atributo] def test_produtoEletronico_heranca(): try: prod = loja.ProdutoEletronico('Geladeira', 5000, 35000, 127, 12) except Exception: raise AssertionError('Erro no construtor da classe ProdutoEletronico') assert isinstance(prod, loja.ProdutoFisico) and isinstance(prod, loja.ProdutoEletronico), 'A classe ProdutoEletronico deve herdar da classe ProdutoFisico' def test_produtoEletronico_caracteristicas_herdadas(): try: nome, preco, peso = 'Geladeira', 4500, 29000 prod = loja.ProdutoEletronico(nome, preco, peso, 127, 12) dict_attrs_classe = vars(loja.ProdutoEletronico) dict_attrs_obj = vars(prod) except Exception: raise AssertionError('Erro no construtor da classe ProdutoEletronico') assert ('_Produto__nome' in dict_attrs_obj) and ('_Produto__preco' in dict_attrs_obj) and ('_ProdutoFisico__peso' in dict_attrs_obj) and ('_ProdutoEletronico__nome' not in dict_attrs_obj) and ('_ProdutoEletronico__preco' not in dict_attrs_obj) and ('_ProdutoEletronico__peso' not in dict_attrs_obj), 'A classe ProdutoEletronico nรฃo deve possuir os atributos privados nome, preco e peso' assert ('nome' not in dict_attrs_classe) and ('preco' not in dict_attrs_classe) and ('peso' not in dict_attrs_classe), 'A classe ProdutoEletronico deve herdar as properties da classe ProdutoFisico' assert prod.nome == nome and prod.preco == preco and prod.peso == peso, 'As properties herdadas pela classe ProdutoEletronico nรฃo possuem valores vรกlidos' @pytest.mark.parametrize('nome,preco,peso,tensao,tempo_garantia', [('Cafeteira',300,1500,127,6), ('Geladeira',3500,25000,220,12), ('Televisao',4000,8500,0,24)]) def test_cria_produtoEletronico_inicializado_corretamente(nome, preco, peso, tensao, tempo_garantia): try: prod = loja.ProdutoEletronico(nome, preco, peso, tensao, tempo_garantia) except Exception: raise AssertionError('Erro no construtor da classe ProdutoEletronico') assert hasattr(prod, "_Produto__nome"), "A classe Produto nรฃo possui o atributo privado nome" assert hasattr(prod, "_Produto__preco"), "A classe Produto nรฃo possui o atributo privado preco" assert hasattr(prod, "_ProdutoFisico__peso"), "A classe ProdutoFisico nรฃo possui o atributo privado peso" assert hasattr(prod, "_ProdutoEletronico__tensao"), "A classe ProdutoEletronico nรฃo possui o atributo privado tensao" assert hasattr(prod, "_ProdutoEletronico__tempo_garantia"), "A classe ProdutoEletronico nรฃo possui o atributo privado tempo_garantia" assert prod._Produto__nome == nome and prod._Produto__preco == preco and prod._ProdutoFisico__peso == peso and prod._ProdutoEletronico__tensao == tensao and prod._ProdutoEletronico__tempo_garantia == tempo_garantia, 'A classe ProdutoEletronico deve inicializar seus atributos e os atributos da super classe corretamente' @pytest.mark.parametrize('meses', [9, 12]) def test_produtoEletronico_property_tempo_garantia(meses): try: prod = loja.ProdutoEletronico('Geladeira', 5000, 35000, 127, meses) assert prod.tempo_garantia == meses except Exception: raise AssertionError('Erro no valor da property tempo_garantia na classe ProdutoEletronico') @pytest.mark.parametrize('tensao', [0, 127, 220]) def test_produtoEletronico_property_tensao(tensao): try: prod = loja.ProdutoEletronico('Geladeira', 5000, 35000, tensao, 12) assert prod.tensao == tensao except Exception: raise AssertionError('Erro no valor da property tensao na classe ProdutoEletronico') @pytest.mark.parametrize('tensao', ["", []]) def test_cria_produtoEletronico_tensao_tipo_invalido(tensao): try: prod = loja.ProdutoEletronico('Geladeira', 5000, 35000, tensao, 12) except TypeError: pass except Exception: raise AssertionError('Erro diferente de TypeError para ProdutoEletronico criado com tensao que nรฃo รฉ int') else: raise AssertionError('ProdutoEletronico criado com tensao com tipo invรกlido') @pytest.mark.parametrize('tensao', [-1000, 7, 260]) def test_cria_produtoEletronico_tensao_valor_invalido(tensao): try: prod = loja.ProdutoEletronico('Geladeira', 5000, 35000, tensao, 12) except ValueError: pass except Exception: raise AssertionError('Erro diferente de ValueError para ProdutoEletronico criado com tensao com valor diferente de 0, 127 ou 220') else: raise AssertionError('ProdutoEletronico criado com tensao com valor invรกlido') @pytest.mark.parametrize('tensao', ["", []]) def test_produtoEletronico_setter_tensao_tipo_invalido(tensao): try: valor_inicial = 127 prod = loja.ProdutoEletronico('Geladeira', 5000, 35000, valor_inicial, 12) prod.tensao = tensao except TypeError: pass except Exception: raise AssertionError('Erro diferente de TypeError no setter da tensao quando nova_tensao nรฃo รฉ int') assert hasattr(prod, "_ProdutoEletronico__tensao"), "A classe ProdutoEletronico nรฃo possui o atributo privado tensao" assert prod._ProdutoEletronico__tensao == valor_inicial, "O atributo privado tensao nรฃo pode ter o seu valor inicial alterado caso o nova_tensao seja invรกlida" @pytest.mark.parametrize('tensao', [-1000, 7, 260]) def test_produtoEletronico_setter_tensao_valor_invalido(tensao): try: valor_inicial = 127 prod = loja.ProdutoEletronico('Geladeira', 5000, 35000, valor_inicial, 12) prod.tensao = tensao except ValueError: pass except Exception: raise AssertionError('Erro diferente de ValueError no setter da tensao quando a nova_tensao possui valor diferente de 0, 127 ou 220') assert hasattr(prod, "_ProdutoEletronico__tensao"), "A classe ProdutoEletronico nรฃo possui o atributo privado tensao" assert prod._ProdutoEletronico__tensao == valor_inicial, "O atributo privado tensao nรฃo pode ter o seu valor inicial alterado caso a nova_tensao seja diferente de 0, 127 ou 220" @pytest.mark.parametrize('preco,peso,total', [(100,5000,126.25), (300,9000,348.45)]) def test_produtoEletronico_metodo_calcular_preco_com_frete(preco, peso, total): try: prod = loja.ProdutoEletronico('Geladeira', preco, peso, 127, 12) except Exception: raise AssertionError('Erro ao instanciar um ProdutoEletronico') assert prod.calcular_preco_com_frete() == total, "O mรฉtodo calcular_preco_com_frete() nรฃo calculou o preรงo com frete do ProdutoEletronico corretamente" @pytest.mark.parametrize('atributo', ['_Ebook__autor', '_Ebook__numero_paginas']) def test_cria_ebook(atributo): try: prod = loja.Ebook('Aprenda Python', 20, 'Joao Silva', 130) except Exception: raise AssertionError('Erro no construtor da classe Ebook') else: mensagens_atributos = {'_Ebook__autor': 'Nรฃo criou o atributo privado autor', '_Ebook__numero_paginas': 'Nรฃo criou o atributo privado numero_paginas'} assert hasattr(prod, atributo), mensagens_atributos[atributo] def test_ebook_heranca(): try: prod = loja.Ebook('Aprenda Python', 20, 'Joao Silva', 130) except Exception: raise AssertionError('Erro no construtor da classe Ebook') assert isinstance(prod, loja.Produto) and isinstance(prod, loja.Ebook), 'A classe Ebook deve herdar da classe Produto' def test_ebook_caracteristicas_herdadas(): try: nome, preco = 'Aprenda Python', 20 prod = loja.Ebook(nome, preco, 'Joao Silva', 130) dict_attrs_classe = vars(loja.Ebook) dict_attrs_obj = vars(prod) except Exception: raise AssertionError('Erro no construtor da classe Ebook') assert ('_Produto__nome' in dict_attrs_obj) and ('_Produto__preco' in dict_attrs_obj) and ('_Ebook__nome' not in dict_attrs_obj) and ('_Ebook__preco' not in dict_attrs_obj), 'A classe Ebook nรฃo deve possuir os atributos privados nome e preco' assert ('nome' not in dict_attrs_classe) and ('preco' not in dict_attrs_classe), 'A classe Ebook deve herdar as properties da classe Produto' assert prod.nome == nome and prod.preco == preco, 'As properties herdadas pela classe Ebook nรฃo possuem valores vรกlidos' @pytest.mark.parametrize('nome,preco,autor,numero_paginas', [('Aprendendo Python',30,'Joao Santos',150), ('Learning Java',250,'John da Silva',810)]) def test_cria_ebook_inicializado_corretamente(nome, preco, autor, numero_paginas): try: prod = loja.Ebook(nome, preco, autor, numero_paginas) except Exception: raise AssertionError('Erro no construtor da classe Ebook') assert hasattr(prod, "_Produto__nome"), "A classe Produto nรฃo possui o atributo privado nome" assert hasattr(prod, "_Produto__preco"), "A classe Produto nรฃo possui o atributo privado preco" assert hasattr(prod, "_Ebook__autor"), "A classe Ebook nรฃo possui o atributo privado autor" assert hasattr(prod, "_Ebook__numero_paginas"), "A classe Ebook nรฃo possui o atributo privado numero_paginas" assert prod._Produto__nome == nome and prod._Produto__preco == preco and prod._Ebook__autor == autor and prod._Ebook__numero_paginas == numero_paginas, 'A classe Ebook deve inicializar seus atributos e os atributos da super classe corretamente' @pytest.mark.parametrize('nome,autor', [('Aprendendo Python', 'Joao Santos'), ('Learning Java','John da Silva')]) def test_ebook_property_nome_exibicao(nome, autor): try: prod = loja.Ebook(nome, 30, autor, 100) saida_esperada = '%s (%s)' % (nome, autor) temp = prod.nome_exibicao temp = re.sub(r'\s+', ' ', temp) temp = re.sub(r'[(]\s+', '(', temp) temp = re.sub(r'\s+[)]', ')', temp).strip() assert temp.upper() == saida_esperada.upper() except Exception: raise AssertionError('Erro no valor da property nome_exibicao na classe Ebook') @pytest.mark.parametrize('numero_paginas', [100, 564]) def test_ebook_property_numero_paginas(numero_paginas): try: prod = loja.Ebook('Aprenda Python', 30, 'Joao da Silva', numero_paginas) assert prod.numero_paginas == numero_paginas except Exception: raise AssertionError('Erro no valor da property numero_paginas na classe Ebook') @pytest.mark.parametrize('numero_paginas', [0, -1]) def test_cria_ebook_numero_paginas_nao_positivo(numero_paginas): try: prod = loja.Ebook('Aprenda Python', 30, 'Joao da Silva', numero_paginas) except ValueError: pass except Exception: raise AssertionError('Erro diferente de ValueError para Ebook criado com numero_paginas negativo ou igual a zero') else: raise AssertionError('Ebook criado com numero_paginas negativo ou igual a zero') @pytest.mark.parametrize('numero_paginas', [0, -1]) def test_ebook_setter_numero_paginas_nao_positivo(numero_paginas): try: valor_inicial = 100 prod = loja.Ebook('Aprenda Python', 30, 'Joao da Silva', valor_inicial) prod.numero_paginas = numero_paginas except ValueError: pass except Exception: raise AssertionError('Erro diferente de ValueError no setter do numero_paginas quando o valor nรฃo รฉ positivo') assert hasattr(prod, "_Ebook__numero_paginas"), "A classe Ebook nรฃo possui o atributo privado numero_paginas" assert prod._Ebook__numero_paginas == valor_inicial, "O atributo privado numero_paginas nรฃo pode ter o seu valor inicial alterado caso o valor seja negativo ou igual a zero" if __name__ == "__main__": pytest.main()
import mock from django.test import TestCase, RequestFactory from django.http import HttpResponse from shared_schema_tenants.middleware import TenantMiddleware, get_tenant from shared_schema_tenants.helpers.tenants import create_tenant, set_current_tenant from shared_schema_tenants.exceptions import TenantNotFoundError try: from django.urls import reverse except ImportError: from django.core.urlresolvers import reverse class TenantMiddlewareTests(TestCase): @mock.patch('shared_schema_tenants.middleware.TenantMiddleware.process_request') @mock.patch('shared_schema_tenants.middleware.TenantMiddleware.process_response') def test_calls_process_request_and_process_response(self, process_request, process_response): factory = RequestFactory() request = factory.get(reverse('shared_schema_tenants:tenant_list'), HTTP_HOST='test.localhost:8000') response = HttpResponse() TenantMiddleware(lambda r: response).__call__(request) process_request.assert_called_once() process_response.assert_called_once() @mock.patch('shared_schema_tenants.middleware.get_tenant') def test_process_request_adds_tenant_to_request(self, get_tenant): tenant = create_tenant(name='test', slug='test', extra_data={}, domains=['test.localhost:8000']) get_tenant.return_value = tenant factory = RequestFactory() request = factory.get(reverse('shared_schema_tenants:tenant_list'), HTTP_HOST='test.localhost:8000') response = HttpResponse() request = TenantMiddleware(lambda r: response).process_request(request) self.assertEqual(request.tenant.slug, tenant.slug) get_tenant.assert_called_once() def test_call_returns_correct_response(self): tenant = create_tenant(name='test', slug='test', extra_data={}, domains=['test.localhost:8000']) get_tenant.return_value = tenant factory = RequestFactory() request = factory.get(reverse('shared_schema_tenants:tenant_list'), HTTP_HOST='test.localhost:8000') response = HttpResponse() processed_response = TenantMiddleware(lambda r: response).__call__(request) self.assertEqual(response, processed_response) class GetTenantTests(TestCase): def test_with_correct_domain(self): tenant = create_tenant(name='test', slug='test', extra_data={}, domains=['test.localhost:8000']) factory = RequestFactory() request = factory.get(reverse('shared_schema_tenants:tenant_list'), HTTP_HOST='test.localhost:8000') retrieved_tenant = get_tenant(request) self.assertEqual(retrieved_tenant, tenant) def test_with_http_header(self): tenant = create_tenant(name='test', slug='test', extra_data={}, domains=['test.localhost:8000']) factory = RequestFactory() request = factory.get(reverse('shared_schema_tenants:tenant_list'), **{'HTTP_TENANT_SLUG': tenant.slug}) retrieved_tenant = get_tenant(request) self.assertEqual(retrieved_tenant, tenant) def test_with_unexistent_tenant_in_http_header(self): create_tenant(name='test', slug='test', extra_data={}, domains=['test.localhost:8000']) factory = RequestFactory() request = factory.get(reverse('shared_schema_tenants:tenant_list'), **{'HTTP_TENANT_SLUG': 'unexistent'}) with self.assertRaises(TenantNotFoundError): get_tenant(request) def test_with_previously_set_tenant(self): tenant = create_tenant(name='test', slug='test', extra_data={}, domains=['test.localhost:8000']) factory = RequestFactory() request = factory.get(reverse('shared_schema_tenants:tenant_list')) set_current_tenant(tenant.slug) retrieved_tenant = get_tenant(request) self.assertEqual(retrieved_tenant, tenant) def test_with_nothing(self): factory = RequestFactory() request = factory.get(reverse('shared_schema_tenants:tenant_list')) retrieved_tenant = get_tenant(request) self.assertEqual(retrieved_tenant, None)
import requests import re # Start values of nothing... #nothing = 12345 nothing = 16044 / 2 regex = re.compile("and the next nothing is (\d+)") while True: try: rsp = requests.get('http://www.pythonchallenge.com/pc/def/linkedlist.php?nothing=%d' % nothing) if rsp.status_code == 200: match = regex.search(rsp.text) if not match: print('ended with: ', rsp.text) break num = match.group(1) nothing = nothing + (int(num) - nothing) print(rsp.text) except: break
""" Your chance to explore Loops and Turtles! Authors: David Mutchler, Vibha Alangar, Matt Boutell, Dave Fisher, Aaron Wilkin, their colleagues, and Alexander Wolfe. """ ######################################################################## # done: 1. # On Line 5 above, replace PUT_YOUR_NAME_HERE with your own name. ######################################################################## ######################################################################## # done: 2. # You should have RUN the m5e_loopy_turtles module and READ its code. # (Do so now if you have not already done so.) # # Below this comment, add ANY CODE THAT YOU WANT, as long as: # 1. You construct at least 2 rg.SimpleTurtle objects. # 2. Each rg.SimpleTurtle object draws something # (by moving, using its rg.Pen). ANYTHING is fine! # 3. Each rg.SimpleTurtle moves inside a LOOP. # # Be creative! Strive for way-cool pictures! Abstract pictures rule! # # If you make syntax (notational) errors, no worries -- get help # fixing them at either this session OR at the NEXT session. # # Don't forget to COMMIT-and-PUSH when you are done with this module. # ####################################################################### import rosegraphics as rg window = rg.TurtleWindow() window.tracer(2) turtone = rg.SimpleTurtle() turtone.pen = rg.Pen('red', 1) turttwo = rg.SimpleTurtle() turttwo.pen = rg.Pen('blue', 1) turttwo.speed = 20 turtone.speed = 20 for k in range(20): turtone.draw_regular_polygon(5,30) turtone.pen_up() turtone.right(90) turtone.forward(5) turtone.left(90) turtone.pen_down() for k in range(40): turttwo.draw_circle(150) turttwo.pen_up() turttwo.left(90) turttwo.forward(5) turttwo.right(90) turttwo.pen_down() window.close_on_mouse_click()
import os from PyQt5.QtCore import QTimer, QTime, Qt, QSettings from PyQt5.QtGui import QPixmap from PyQt5.QtMultimedia import QSound from PyQt5.QtWidgets import ( QWidget, QProgressBar, QPushButton, QLabel, QVBoxLayout, QHBoxLayout, QDialog, QSizePolicy, QMessageBox, QFormLayout, QAction, QSlider ) from center_window import CenterWindow from config import ( QSS, RING_SOUND_PATH, POMODORO_MARK_PATH, LOGGED_TIME_DIR ) SHORT_BREAK = 'short' LONG_BREAK = 'long' POMODORO = 'pomodoro' class BreakDialog(QDialog): def __init__(self, cur_break): super(BreakDialog, self).__init__() self.setWindowTitle('Break') self.cur_break = cur_break self.another_break = SHORT_BREAK if self.cur_break == LONG_BREAK else LONG_BREAK self.main_box = QVBoxLayout() self.setLayout(self.main_box) self.message_label = QLabel( 'It is time for a {} break.'.format(self.cur_break) ) self.message_label.setAlignment(Qt.AlignCenter) self.btn_box = QHBoxLayout() self.another_break_btn = QPushButton( 'Start {} break'.format(self.another_break) ) self.another_break_btn.clicked.connect(self.another_break_btn_click) self.skip_break_btn = QPushButton('Skip break') self.skip_break_btn.clicked.connect(self.skip_break_btn_click) self.main_box.addWidget(self.message_label) self.btn_box.addWidget(self.another_break_btn) self.btn_box.addWidget(self.skip_break_btn) self.main_box.addLayout(self.btn_box) def exec(self): super(BreakDialog, self).exec() return self.cur_break def another_break_btn_click(self): self.cur_break = self.another_break self.accept() def skip_break_btn_click(self): self.cur_break = POMODORO self.accept() class Settings(QWidget): def __init__(self, pomodoro_window): super().__init__() self.setStyleSheet(QSS) self.setWindowTitle('Settings') self.pomodoro_window = pomodoro_window self.main_box = QFormLayout() self.setLayout(self.main_box) self.setMinimumWidth(500) self.pomodoro_time = self.pomodoro_window.time_dict[POMODORO].minute() self.long_break_time = self.pomodoro_window.time_dict[LONG_BREAK].minute() self.short_break_time = self.pomodoro_window.time_dict[SHORT_BREAK].minute() self.pomodoro_label = QLabel() self.pomodoro_label.setAlignment(Qt.AlignRight) self.long_label = QLabel() self.long_label.setAlignment(Qt.AlignRight) self.short_label = QLabel() self.short_label.setAlignment(Qt.AlignRight) self.pomodoro_slider = QSlider(Qt.Horizontal) self.pomodoro_slider.setRange(1, 45) self.pomodoro_slider.valueChanged.connect(self.pomodoro_change) self.pomodoro_slider.setValue(self.pomodoro_time) self.long_break_slider = QSlider(Qt.Horizontal) self.long_break_slider.valueChanged.connect(self.long_change) self.long_break_slider.setRange(1, 30) self.long_break_slider.setValue(self.long_break_time) self.short_break_slider = QSlider(Qt.Horizontal) self.short_break_slider.valueChanged.connect(self.short_change) self.short_break_slider.setRange(1, 10) self.short_break_slider.setValue(self.short_break_time) self.main_box.addRow(QLabel('Pomodoro duration'), self.pomodoro_label) self.main_box.addRow(self.pomodoro_slider) self.main_box.setSpacing(5) self.main_box.addRow(QLabel('Long break duration'), self.long_label) self.main_box.addRow(self.long_break_slider) self.main_box.addRow(QLabel('Short break duration'), self.short_label) self.main_box.addRow(self.short_break_slider) def pomodoro_change(self, minutes): self.pomodoro_label.setText('{} min'.format(minutes)) self.pomodoro_window.update_time_from_settings(minutes, POMODORO) def long_change(self, minutes): self.long_label.setText('{} min'.format(minutes)) self.pomodoro_window.update_time_from_settings(minutes, LONG_BREAK) def short_change(self, minutes): self.short_label.setText('{} min'.format(minutes)) self.pomodoro_window.update_time_from_settings(minutes, SHORT_BREAK) def closeEvent(self, QCloseEvent): QCloseEvent.ignore() self.hide() class PomodoroWindow(CenterWindow): def __init__(self, controller, issue_key, issue_title, tray_icon): super().__init__() self.center() self.setStyleSheet(QSS) self.controller = controller self.tray_icon = tray_icon if not os.path.exists(LOGGED_TIME_DIR): os.mkdir(LOGGED_TIME_DIR) self.LOG_PATH = os.path.join( LOGGED_TIME_DIR, '{}.txt'.format(issue_key) ) self.setWindowTitle('Pomodoro Timer') self.settings = QSettings('Spherical', 'Jira Quick Reporter') pomodoro_settings = int(self.settings.value(POMODORO, 25)) long_break_settings = int(self.settings.value(LONG_BREAK, 15)) short_break_settings = int(self.settings.value(SHORT_BREAK, 5)) self.time_dict = dict( short=QTime(0, short_break_settings, 0), long=QTime(0, long_break_settings, 0), pomodoro=QTime(0, pomodoro_settings, 0) ) self.issue_key = issue_key self.issue_title = issue_title self.pomodoros_count = 0 self.current_time_name = POMODORO self.is_active_timer = False self.logged_time = QTime(0, 0, 0) self.time = self.time_dict[POMODORO] self.time_in_seconds = QTime(0, 0, 0).secsTo(self.time) self.timer_box = QVBoxLayout() self.main_box = QHBoxLayout() self.setLayout(self.main_box) self.issue_label = QLabel( '{}: {}'.format(self.issue_key, self.issue_title) ) self.issue_label.setAlignment(Qt.AlignCenter) self.issue_label.setObjectName('issue_label') self.issue_label.setWordWrap(True) self.issue_label.setSizePolicy( QSizePolicy.Expanding, QSizePolicy.Fixed ) self.pbar = QProgressBar() self.pbar.setRange(0, self.time_in_seconds) self.pbar.setValue(0) self.pbar.setTextVisible(False) self.timer = QTimer() self.timer.timeout.connect(self.handle_timer) self.time_label = QLabel() self.time_label.setObjectName('time_label') self.time_label.setText(self.time.toString('mm:ss')) self.time_label.setAlignment(Qt.AlignCenter) self.btns_box = QHBoxLayout() self.start_btn = QPushButton('Start') self.start_btn.clicked.connect(self.toggle_timer) self.stop_btn = QPushButton('Stop') self.stop_btn.clicked.connect(self.toggle_timer) self.logwork_btn = QPushButton('Log work') self.logwork_btn.clicked.connect( lambda: self.controller.open_time_log(issue_key) ) self.logwork_btn.setEnabled(False) self.btns_box.addWidget(self.start_btn) self.btns_box.addWidget(self.stop_btn) self.btns_box.addWidget(self.logwork_btn) self.pomodoros_box = QHBoxLayout() self.pomodoros_box.setSpacing(5) self.pomodoros_count_label = QLabel() self.pomodoros_count_label.setObjectName('pomodoros_count') self.timer_box.addWidget(self.issue_label) self.timer_box.addStretch() self.timer_box.addWidget(self.time_label) self.timer_box.addWidget(self.pbar, Qt.AlignCenter) self.timer_box.addLayout(self.btns_box) self.timer_box.addLayout(self.pomodoros_box) self.timer_box.addStretch() self.main_box.addLayout(self.timer_box) self.action_show_time = QAction(self) self.action_show_time.setEnabled(False) self.action_open_timer = QAction('Open timer', self) self.action_open_timer.triggered.connect(self.show) self.action_quit_timer = QAction('Quit timer', self) self.action_quit_timer.triggered.connect(self.quit) self.action_settings = QAction('Settings', self) self.settings_window = Settings(self) self.action_settings.triggered.connect(self.settings_window.show) self.action_reset = QAction('Reset timer', self) self.action_reset.triggered.connect(self.reset_timer) self.action_start_timer = QAction('Start', self) self.action_start_timer.triggered.connect(self.toggle_timer) self.action_stop_timer = QAction('Stop', self) self.action_stop_timer.triggered.connect(self.toggle_timer) self.action_log_work = QAction('Log work', self) self.action_log_work.triggered.connect( lambda: self.controller.open_time_log(issue_key) ) self.action_log_work.setEnabled(False) self.tray_icon.contextMenu().addSeparator() self.tray_icon.contextMenu().addAction(self.action_show_time) self.action_show_time.setText(self.time.toString('mm:ss')) self.tray_icon.contextMenu().addAction(self.action_open_timer) self.tray_icon.contextMenu().addAction(self.action_settings) self.tray_icon.contextMenu().addAction(self.action_quit_timer) self.tray_icon.contextMenu().addSeparator() self.tray_icon.contextMenu().addAction(self.action_start_timer) self.tray_icon.contextMenu().addAction(self.action_stop_timer) self.tray_icon.contextMenu().addAction(self.action_reset) self.tray_icon.contextMenu().addAction(self.action_log_work) def log_work_if_file_exists(self): if os.path.exists(self.LOG_PATH): reply = QMessageBox.question( self, 'Warning', 'You have not logged your work.\n Do you want to log it?', QMessageBox.Yes | QMessageBox.No ) if reply == QMessageBox.Yes: self.controller.open_time_log(self.issue_key) else: os.remove(self.LOG_PATH) def update_time_from_settings(self, minutes, time_name): if self.current_time_name != time_name: self.time_dict[time_name].setHMS(0, minutes, 0) elif not self.is_active_timer: self.time_dict[time_name].setHMS(0, minutes, 0) self.update_timer() elif self.time_dict[time_name].minute() > minutes: spent_time_seconds = self.time.secsTo(self.time_dict[time_name]) if minutes <= spent_time_seconds // 60: self.stop_timer() QSound.play(RING_SOUND_PATH) self.set_timer() else: time_diff = self.time_dict[time_name].minute() - minutes self.change_timer(minutes, -time_diff) elif self.time_dict[time_name].minute() < minutes: time_diff = minutes - self.time_dict[time_name].minute() self.change_timer(minutes, time_diff) def change_timer(self, minutes, time_diff): self.time_dict[self.current_time_name].setHMS(0, minutes, 0) self.time = self.time.addSecs(time_diff * 60) self.time_in_seconds = minutes * 60 self.pbar.setMaximum(self.time_in_seconds) self.time_label.setText(self.time.toString('mm:ss')) self.action_show_time.setText(self.time.toString('mm:ss')) def handle_timer(self): """ Updates timer label and progress bar every second until time is over """ value = self.pbar.value() if value < self.time_in_seconds: value += 1 self.pbar.setValue(value) self.time = self.time.addSecs(-1) self.time_label.setText(self.time.toString('mm:ss')) self.action_show_time.setText(self.time.toString('mm:ss')) if not value % 60: self.log_time() else: self.stop_timer() QSound.play(RING_SOUND_PATH) if self.current_time_name != POMODORO: self.tray_icon.showMessage( 'Pomodoro', 'Your break is over', msecs=2000) self.set_timer() def update_timer(self): self.time_in_seconds = QTime(0, 0, 0).secsTo(self.time) self.pbar.setMaximum(self.time_in_seconds) self.pbar.setValue(0) self.time_label.setText(self.time.toString('mm:ss')) self.action_show_time.setText(self.time.toString('mm:ss')) def set_pomodoro_timer(self): self.is_active_timer = False self.current_time_name = POMODORO self.time = self.time_dict[POMODORO] self.update_timer() def set_pomodoro_count(self): """ Set pomodoro mark and number of past pomodoros """ self.clear_pomodoros() label = QLabel() pixmap = QPixmap(POMODORO_MARK_PATH) label.setPixmap(pixmap) self.pomodoros_box.addWidget(self.pomodoros_count_label) self.pomodoros_count_label.setSizePolicy( QSizePolicy.Fixed, QSizePolicy.Expanding ) self.pomodoros_box.addWidget(label) self.pomodoros_count_label.setText(str(self.pomodoros_count)) def set_pomodoro_img(self): label = QLabel() pixmap = QPixmap(POMODORO_MARK_PATH) label.setPixmap(pixmap) if self.pomodoros_count > 1: self.pomodoros_box.itemAt( self.pomodoros_count - 2 ).widget().setSizePolicy( QSizePolicy.Fixed, QSizePolicy.Expanding ) self.pomodoros_box.addWidget(label) def clear_pomodoros(self): for _ in range(self.pomodoros_box.count()): self.pomodoros_box.itemAt(0).widget().setParent(None) def toggle_timer(self): sender = self.sender().text() if sender in ['Start', 'Resume']: self.start_timer() elif sender == 'Pause': self.pause_timer() else: self.stop_timer() self.set_pomodoro_timer() def log_time(self): self.logged_time = self.logged_time.addSecs(60) with open(self.LOG_PATH, 'w') as log_file: log_file.write(self.logged_time.toString('h:m')) def start_timer(self): self.is_active_timer = True # change style before a break if self.current_time_name != POMODORO: self.issue_label.setObjectName('issue_label_break') self.issue_label.setStyleSheet('issue_label_break') self.pbar.setObjectName('break') self.pbar.setStyleSheet('break') self.stop_btn.hide() self.start_btn.setText('Stop') self.action_start_timer.setEnabled(False) else: self.tray_icon.showMessage( 'Pomodoro', 'Focus on your task', msecs=2000 ) self.start_btn.setText('Pause') self.action_start_timer.setText('Pause') self.logwork_btn.setEnabled(False) self.action_log_work.setEnabled(False) self.timer.start(1000) def stop_timer(self): self.timer.stop() self.is_active_timer = False self.start_btn.setText('Start') self.action_start_timer.setText('Start') self.logwork_btn.setEnabled(True) self.action_log_work.setEnabled(True) if self.current_time_name != POMODORO: self.stop_btn.show() self.action_start_timer.setEnabled(True) # change style after a break self.issue_label.setObjectName('issue_label') self.issue_label.setStyleSheet('issue_label') self.pbar.setObjectName('') self.pbar.setStyleSheet('') def pause_timer(self): self.timer.stop() self.start_btn.setText('Resume') self.action_start_timer.setText('Resume') self.logwork_btn.setEnabled(True) self.action_log_work.setEnabled(True) def reset_timer(self): self.logwork_btn.setEnabled(False) self.action_log_work.setEnabled(False) self.stop_timer() self.pomodoros_count = 0 self.logged_time.setHMS(0, 0, 0) self.clear_pomodoros() self.set_pomodoro_timer() if os.path.exists(self.LOG_PATH): os.remove(self.LOG_PATH) def set_pomodoro_mark(self): if self.pomodoros_count < 5: self.set_pomodoro_img() elif self.pomodoros_count == 5: self.set_pomodoro_count() else: self.pomodoros_count_label.setText( str(self.pomodoros_count) ) def set_timer(self): """ In this method decides which timer will go next """ # if pomodoro time's up if self.current_time_name == POMODORO: self.pomodoros_count += 1 self.set_pomodoro_mark() # if four pomodoros have completed if not self.pomodoros_count % 4: self.current_time_name = LONG_BREAK else: self.current_time_name = SHORT_BREAK dialog = BreakDialog(self.current_time_name) # close dialog after 4 seconds QTimer.singleShot(4000, dialog.close) # get break name (short, long or skip) from dialog self.current_time_name = dialog.exec() if self.current_time_name != POMODORO: self.time = self.time_dict[self.current_time_name] self.update_timer() self.start_timer() return # if break time's up self.set_pomodoro_timer() def quit(self): if os.path.exists(self.LOG_PATH): reply = QMessageBox.question( self, 'Warning', 'You did not log your work. \nAre you sure you want to exit?', QMessageBox.Yes, QMessageBox.No ) if reply == QMessageBox.No: return False self.settings.setValue( POMODORO, self.time_dict[POMODORO].minute() ) self.settings.setValue( LONG_BREAK, self.time_dict[LONG_BREAK].minute() ) self.settings.setValue( SHORT_BREAK, self.time_dict[SHORT_BREAK].minute() ) self.settings.sync() self.setAttribute(Qt.WA_DeleteOnClose, True) self.close() return True def closeEvent(self, event): if self.testAttribute(Qt.WA_DeleteOnClose): self.controller.pomodoro_view = None event.accept() else: event.ignore() self.hide()
# -*- coding:utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (c) 2012 Samsung SDS Co., LTD # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time import uuid import pycassa from datetime import datetime, timedelta from pycassa import (types, create_index_clause, create_index_expression, EQ, GT, GTE, LT, LTE) import struct import json import pickle from collections import OrderedDict from synaps import flags from synaps import log as logging from synaps import utils from synaps import exception LOG = logging.getLogger(__name__) FLAGS = flags.FLAGS def pack_dimensions(dimensions): return json.dumps(OrderedDict(sorted(dimensions.items()))) class Cassandra(object): STATISTICS = ["Sum", "SampleCount", "Average", "Minimum", "Maximum"] def __init__(self, keyspace=None): self.STATISTICS_TTL = FLAGS.get('statistics_ttl') self.ARCHIVE = map(lambda x: int(x) * 60, FLAGS.get('statistics_archives')) if not keyspace: keyspace = FLAGS.get("cassandra_keyspace", "synaps_test") serverlist = FLAGS.get("cassandra_server_list") # max_retries -1 means unlimited retries self.pool = pycassa.ConnectionPool(keyspace, server_list=serverlist, max_retries= -1) self.cf_metric = pycassa.ColumnFamily(self.pool, 'Metric') self.scf_stat_archive = pycassa.ColumnFamily(self.pool, 'StatArchive') self.cf_metric_alarm = pycassa.ColumnFamily(self.pool, 'MetricAlarm') self.cf_alarm_history = pycassa.ColumnFamily(self.pool, 'AlarmHistory') def delete_metric_alarm(self, alarm_key): try: self.cf_metric_alarm.remove(alarm_key) except pycassa.NotFoundException: LOG.info(_("alarm key %s is not deleted" % alarm_key)) def _describe_alarms_by_names(self, project_id, alarm_names): for alarm_name in alarm_names: expr_list = [ pycassa.create_index_expression("project_id", project_id), pycassa.create_index_expression("alarm_name", alarm_name) ] index_clause = pycassa.create_index_clause(expr_list) items = self.cf_metric_alarm.get_indexed_slices(index_clause) for k, v in items: yield k, v def describe_alarms(self, project_id, action_prefix=None, alarm_name_prefix=None, alarm_names=None, max_records=100, next_token=None, state_value=None): """ params: project_id: string action_prefix: TODO: not implemented yet. alarm_name_prefix: string alarm_names: string list max_records: integer next_token: string (uuid type) state_value: string (OK | ALARM | INSUFFICIENT_DATA) """ if alarm_names: return self._describe_alarms_by_names(project_id, alarm_names) next_token = uuid.UUID(next_token) if next_token else '' expr_list = [] prj_expr = create_index_expression("project_id", project_id) expr_list.append(prj_expr) if alarm_name_prefix: expr_s = create_index_expression("alarm_name", alarm_name_prefix, GTE) expr_e = create_index_expression("alarm_name", utils.prefix_end(alarm_name_prefix), LT) expr_list.append(expr_s) expr_list.append(expr_e) if state_value: expr = create_index_expression("state_value", state_value) expr_list.append(expr) LOG.info("expr %s" % expr_list) index_clause = create_index_clause(expr_list=expr_list, start_key=next_token, count=max_records) items = self.cf_metric_alarm.get_indexed_slices(index_clause) return items def describe_alarms_for_metric(self, project_id, namespace, metric_name, dimensions=None, period=None, statistic=None, unit=None): metric_key = self.get_metric_key(project_id, namespace, metric_name, dimensions) if not metric_key: raise exception.InvalidParameterValue("no metric") expr_list = [create_index_expression("metric_key", metric_key)] if period: expr = create_index_expression("period", int(period)) expr_list.append(expr) if statistic: expr = create_index_expression("statistic", statistic) expr_list.append(expr) if unit: expr = create_index_expression("unit", unit) expr_list.append(expr) LOG.info("expr %s" % expr_list) index_clause = pycassa.create_index_clause(expr_list) items = self.cf_metric_alarm.get_indexed_slices(index_clause) return items def describe_alarm_history(self, project_id, alarm_name=None, end_date=None, history_item_type=None, max_records=100, next_token=None, start_date=None): """ params: project_id: string alarm_name: string end_date: datetime history_item_type: string (ConfigurationUpdate | StateUpdate | Action) max_records: integer next_token: string (uuid type) start_date: datetime """ next_token = uuid.UUID(next_token) if next_token else '' expr_list = [ pycassa.create_index_expression("project_id", project_id), ] if alarm_name: expr = create_index_expression("alarm_name", alarm_name) expr_list.append(expr) if end_date: expr = create_index_expression("timestamp", end_date, LTE) expr_list.append(expr) if start_date: expr = create_index_expression("timestamp", start_date, GTE) expr_list.append(expr) if history_item_type: expr = create_index_expression("history_item_type", history_item_type) expr_list.append(expr) index_clause = pycassa.create_index_clause(expr_list=expr_list, start_key=next_token, count=max_records) items = self.cf_alarm_history.get_indexed_slices(index_clause) return items def get_metric_alarm_key(self, project_id, alarm_name): expr_list = [ pycassa.create_index_expression("project_id", project_id), pycassa.create_index_expression("alarm_name", alarm_name) ] index_clause = pycassa.create_index_clause(expr_list) items = self.cf_metric_alarm.get_indexed_slices(index_clause) for k, v in items: return k return None def get_metric_alarm(self, alarm_key): ret = None try: ret = self.cf_metric_alarm.get(alarm_key) except pycassa.NotFoundException: pass return ret def get_metric_key(self, project_id, namespace, metric_name, dimensions): dimensions = pack_dimensions(dimensions) expr_list = [ pycassa.create_index_expression("project_id", project_id), pycassa.create_index_expression("name", metric_name), pycassa.create_index_expression("namespace", namespace), pycassa.create_index_expression("dimensions", dimensions) ] index_clause = pycassa.create_index_clause(expr_list) items = self.cf_metric.get_indexed_slices(index_clause) for k, v in items: return k return None def get_metric_key_or_create(self, project_id, namespace, metric_name, dimensions, unit='None'): # get metric key key = self.get_metric_key(project_id, namespace, metric_name, dimensions) # or create metric if not key: key = uuid.uuid4() json_dim = pack_dimensions(dimensions) columns = {'project_id': project_id, 'namespace': namespace, 'name': metric_name, 'dimensions': json_dim, 'unit': unit} self.cf_metric.insert(key=key, columns=columns) return key def get_metric_statistics(self, project_id, namespace, metric_name, start_time, end_time, period, statistics, dimensions=None): def get_stat(key, super_column, column_start, column_end): stat = {} count = (column_end - column_start).total_seconds() / 60 try: stat = self.scf_stat_archive.get(key, super_column=super_column, column_start=column_start, column_finish=column_end, column_count=count) except pycassa.NotFoundException: LOG.debug("not found %s %s %s %s" % (key, super_column, column_start, column_end)) return stat # get metric key key = self.get_metric_key(project_id, namespace, metric_name, dimensions) # or return {} if not key: return {} statistics = map(utils.to_ascii, statistics) stats = map(lambda x: get_stat(key, x, start_time, end_time), statistics) return stats def get_metric_statistics_for_key(self, key, time_idx): def get_stat(key, super_column, column_start, column_end): stat = {} try: stat = self.scf_stat_archive.get(key, super_column=super_column, column_start=column_start, column_finish=column_end, column_count=1440) except pycassa.NotFoundException: LOG.debug("not found %s %s %s %s" % (key, super_column, column_start, column_end)) return stat if not key: return {} stats = map(lambda x: get_stat(key, x, time_idx, time_idx), self.STATISTICS) return stats def get_metric_unit(self, metric_key): try: metric = self.cf_metric.get(key=metric_key) except pycassa.NotFoundException: return "None" return metric.get('unit', "None") def insert_stat(self, metric_key, stat, ttl=None): ttl = ttl if ttl else self.STATISTICS_TTL self.scf_stat_archive.insert(metric_key, stat, ttl=ttl) def insert_alarm_history(self, key, column): self.cf_alarm_history.insert(key, column, ttl=self.STATISTICS_TTL) def update_alarm_state(self, alarmkey, state, reason, reason_data, timestamp): state_info = {'state_value': state, 'state_reason': reason, 'state_reason_data': reason_data, 'state_updated_timestamp':timestamp} self.cf_metric_alarm.insert(alarmkey, state_info) def list_metrics(self, project_id, namespace=None, metric_name=None, dimensions=None, next_token=""): def to_dict(v): return {'project_id': v['project_id'], 'dimensions': json.loads(v['dimensions']), 'name': v['name'], 'namespace': v['namespace']} def check_dimension(item): if isinstance(dimensions, dict): def to_set(d): return set(d.items()) l_set = to_set(dimensions) r_set = to_set(json.loads(item['dimensions'])) return l_set.issubset(r_set) return True next_token = uuid.UUID(next_token) if next_token else '' expr_list = [pycassa.create_index_expression("project_id", project_id), ] if namespace: expr = pycassa.create_index_expression("namespace", namespace) expr_list.append(expr) if metric_name: expr = pycassa.create_index_expression("name", metric_name) expr_list.append(expr) if dimensions: packed_dimensions = pack_dimensions(dimensions) expr = pycassa.create_index_expression("dimensions", packed_dimensions) expr_list.append(expr) index_clause = pycassa.create_index_clause(expr_list, start_key=next_token, count=501) items = self.cf_metric.get_indexed_slices(index_clause) metrics = ((k, to_dict(v)) for k, v in items) return metrics def load_metric_data(self, metric_key): try: data = self.cf_metric_archive.get(metric_key, column_count=1440) except pycassa.NotFoundException: data = {} return data def load_statistics(self, metric_key, start, finish): def get_stat(statistic): datapoints = self.scf_stat_archive.get(metric_key, super_column=statistic, column_start=start, column_finish=finish) return statistic, datapoints try: stat = dict([get_stat(statistic) for statistic in self.STATISTICS]) except pycassa.NotFoundException: stat = {} return stat def load_alarms(self, metric_key): expr_list = [ pycassa.create_index_expression("metric_key", metric_key), ] index_clause = pycassa.create_index_clause(expr_list) try: items = self.cf_metric_alarm.get_indexed_slices(index_clause) except pycassa.NotFoundException: items = {} return items def put_metric_alarm(self, alarm_key, metricalarm): """ MetricAlarm ์„ DB์— ์ƒ์„ฑ ๋˜๋Š” ์—…๋ฐ์ดํŠธ ํ•จ. """ self.cf_metric_alarm.insert(key=alarm_key, columns=metricalarm) return alarm_key def restructed_stats(self, stat): def get_stat(timestamp): ret = {} for key in stat.keys(): ret[key] = stat[key][timestamp] return ret ret = [] timestamps = reduce(lambda x, y: x if x == y else None, map(lambda x: x.keys(), stat.values())) for timestamp in timestamps: ret.append((timestamp, get_stat(timestamp))) return ret @staticmethod def syncdb(keyspace=None): """ ์นด์‚ฐ๋“œ๋ผ database schema ๋ฅผ ์ฒดํฌ, ํ•„์š”ํ•œ KEYSPACE, CF, SCF ๊ฐ€ ์—†์œผ๋ฉด ์ƒˆ๋กœ ์ƒ์„ฑ. """ if not keyspace: keyspace = FLAGS.get("cassandra_keyspace", "synaps_test") serverlist = FLAGS.get("cassandra_server_list") replication_factor = FLAGS.get("cassandra_replication_factor") manager = pycassa.SystemManager(server=serverlist[0]) strategy_options = {'replication_factor':replication_factor} # keyspace ์ฒดํฌ, keyspace ๊ฐ€ ์—†์œผ๋ฉด ์ƒˆ๋กœ ์ƒ์„ฑ LOG.info(_("cassandra syncdb is started for keyspace(%s)" % keyspace)) if keyspace not in manager.list_keyspaces(): LOG.info(_("cassandra keyspace %s does not exist.") % keyspace) manager.create_keyspace(keyspace, strategy_options=strategy_options) LOG.info(_("cassandra keyspace %s is created.") % keyspace) else: property = manager.get_keyspace_properties(keyspace) # strategy_option ์ฒดํฌ, option ์ด ๋‹ค๋ฅด๋ฉด ์ˆ˜์ • if not (strategy_options == property.get('strategy_options')): manager.alter_keyspace(keyspace, strategy_options=strategy_options) LOG.info(_("cassandra keyspace strategy options is updated - %s" % str(strategy_options))) # CF ์ฒดํฌ column_families = manager.get_keyspace_column_families(keyspace) if 'Metric' not in column_families.keys(): manager.create_column_family( keyspace=keyspace, name='Metric', key_validation_class=pycassa.LEXICAL_UUID_TYPE, column_validation_classes={ 'project_id': pycassa.UTF8_TYPE, 'name': pycassa.UTF8_TYPE, 'namespace': pycassa.UTF8_TYPE, 'unit': pycassa.UTF8_TYPE, 'dimensions': pycassa.UTF8_TYPE } ) manager.create_index(keyspace=keyspace, column_family='Metric', column='project_id', value_type=types.UTF8Type()) manager.create_index(keyspace=keyspace, column_family='Metric', column='name', value_type=types.UTF8Type()) manager.create_index(keyspace=keyspace, column_family='Metric', column='namespace', value_type=types.UTF8Type()) manager.create_index(keyspace=keyspace, column_family='Metric', column='dimensions', value_type=types.UTF8Type()) if 'StatArchive' not in column_families.keys(): manager.create_column_family( keyspace=keyspace, name='StatArchive', super=True, key_validation_class=pycassa.LEXICAL_UUID_TYPE, comparator_type=pycassa.ASCII_TYPE, subcomparator_type=pycassa.DATE_TYPE, default_validation_class=pycassa.DOUBLE_TYPE ) if 'MetricAlarm' not in column_families.keys(): manager.create_column_family( keyspace=keyspace, name='MetricAlarm', key_validation_class=pycassa.LEXICAL_UUID_TYPE, column_validation_classes={ 'metric_key': pycassa.LEXICAL_UUID_TYPE, 'project_id': pycassa.UTF8_TYPE, 'actions_enabled': pycassa.BOOLEAN_TYPE, 'alarm_actions': pycassa.UTF8_TYPE, 'alarm_arn': pycassa.UTF8_TYPE, 'alarm_configuration_updated_timestamp': pycassa.DATE_TYPE, 'alarm_description': pycassa.UTF8_TYPE, 'alarm_name': pycassa.UTF8_TYPE, 'comparison_operator': pycassa.UTF8_TYPE, 'dimensions':pycassa.UTF8_TYPE, 'evaluation_periods':pycassa.INT_TYPE, 'insufficient_data_actions': pycassa.UTF8_TYPE, 'metric_name':pycassa.UTF8_TYPE, 'namespace':pycassa.UTF8_TYPE, 'ok_actions':pycassa.UTF8_TYPE, 'period':pycassa.INT_TYPE, 'state_reason':pycassa.UTF8_TYPE, 'state_reason_data':pycassa.UTF8_TYPE, 'state_updated_timestamp':pycassa.DATE_TYPE, 'state_value':pycassa.UTF8_TYPE, 'statistic':pycassa.UTF8_TYPE, 'threshold':pycassa.DOUBLE_TYPE, 'unit':pycassa.UTF8_TYPE } ) manager.create_index(keyspace=keyspace, column_family='MetricAlarm', column='project_id', value_type=types.UTF8Type()) manager.create_index(keyspace=keyspace, column_family='MetricAlarm', column='metric_key', value_type=types.LexicalUUIDType()) manager.create_index(keyspace=keyspace, column_family='MetricAlarm', column='alarm_name', value_type=types.UTF8Type()) manager.create_index(keyspace=keyspace, column_family='MetricAlarm', column='state_updated_timestamp', value_type=types.DateType()) manager.create_index(keyspace=keyspace, column_family='MetricAlarm', column='alarm_configuration_updated_timestamp', value_type=types.DateType()) manager.create_index(keyspace=keyspace, column_family='MetricAlarm', column='state_value', value_type=types.UTF8Type()) manager.create_index(keyspace=keyspace, column_family='MetricAlarm', column='period', value_type=types.IntegerType()) manager.create_index(keyspace=keyspace, column_family='MetricAlarm', column='statistic', value_type=types.UTF8Type()) if 'AlarmHistory' not in column_families.keys(): manager.create_column_family( keyspace=keyspace, name='AlarmHistory', key_validation_class=pycassa.LEXICAL_UUID_TYPE, column_validation_classes={ 'project_id': pycassa.UTF8_TYPE, 'alarm_key': pycassa.LEXICAL_UUID_TYPE, 'alarm_name': pycassa.UTF8_TYPE, 'history_data': pycassa.UTF8_TYPE, 'history_item_type': pycassa.UTF8_TYPE, 'history_summary': pycassa.UTF8_TYPE, 'timestamp': pycassa.DATE_TYPE, } ) manager.create_index(keyspace=keyspace, column_family='AlarmHistory', column='project_id', value_type=types.UTF8Type()) manager.create_index(keyspace=keyspace, column_family='AlarmHistory', column='alarm_key', value_type=types.LexicalUUIDType()) manager.create_index(keyspace=keyspace, column_family='AlarmHistory', column='alarm_name', value_type=types.UTF8Type()) manager.create_index(keyspace=keyspace, column_family='AlarmHistory', column='history_item_type', value_type=types.UTF8Type()) manager.create_index(keyspace=keyspace, column_family='AlarmHistory', column='timestamp', value_type=types.DateType()) LOG.info(_("cassandra syncdb has finished"))
#!/usr/bin/env python3 import cv2 """ Open an image """ img = cv2.imread("../images/python_logo.png") cv2.imshow("My Image", img) cv2.waitKey(0) # waits for a specific time in ms until you press any button. 0 means wait forever. """ Print info about image dimensions """ print(f"Shape of img: {img.shape}") print(f"Size (no of px) of img: {img.size}") print(f"Dtype of img: {img.dtype}") """ Crop out a region-of-interest within the entire image """ roi = img[300:400, 400:500] cv2.imshow("ROI", roi) cv2.waitKey(0) """ Save ROI """ cv2.imwrite("./images/roi.png", roi)
import mlflow import os, shutil #from mlflow_export_import.common.dump_run import dump_run from mlflow_export_import.run.export_run import RunExporter from mlflow_export_import.run.import_run import RunImporter from mlflow_export_import.experiment.export_experiment import ExperimentExporter from mlflow_export_import.experiment.import_experiment import ExperimentImporter from mlflow_export_import.run.copy_run import RunCopier from mlflow_export_import.experiment.copy_experiment import ExperimentCopier from utils_test import create_experiment, dump_tags from sklearn_utils import create_sklearn_model from compare_utils import * # == Setup client = mlflow.tracking.MlflowClient() #mlflow.sklearn.autolog() output = "out" mlmodel_fix = True # == Common def create_simple_run(): exp = create_experiment() max_depth = 4 model = create_sklearn_model(max_depth) with mlflow.start_run(run_name="my_run") as run: mlflow.log_param("max_depth",max_depth) mlflow.log_metric("rmse",.789) mlflow.set_tag("my_tag","my_val") mlflow.sklearn.log_model(model, "model") with open("info.txt", "w") as f: f.write("Hi artifact") mlflow.log_artifact("info.txt") mlflow.log_artifact("info.txt","dir2") mlflow.log_metric("m1", 0.1) return exp, run def init_output_dir(): if os.path.exists(output): shutil.rmtree(output) os.makedirs(output) os.makedirs(os.path.join(output,"run1")) os.makedirs(os.path.join(output,"run2")) # == Export/import Run tests def init_run_test(exporter, importer, verbose=False): init_output_dir() exp, run = create_simple_run() exporter.export_run(run.info.run_id, output) experiment_name = f"{exp.name}_imported" res = importer.import_run(experiment_name, output) if verbose: print("res:",res) run1 = client.get_run(run.info.run_id) run2 = client.get_run(res[0]) if verbose: dump_runs(run1, run2) return run1, run2 def test_run_basic(): run1, run2 = init_run_test(RunExporter(), RunImporter(mlmodel_fix=mlmodel_fix, import_mlflow_tags=True)) compare_runs(client, output, run1, run2) def test_run_no_import_mlflow_tags(): run1, run2 = init_run_test(RunExporter(), RunImporter(mlmodel_fix=mlmodel_fix, import_mlflow_tags=False)) compare_run_no_import_mlflow_tags(client, output, run1, run2) def test_run_import_metadata_tags(): run1, run2 = init_run_test(RunExporter(export_metadata_tags=True), RunImporter(mlmodel_fix=mlmodel_fix, import_metadata_tags=True, import_mlflow_tags=True), verbose=False) compare_run_import_metadata_tags(client, output, run1, run2) # == Export/import Experiment tests def init_exp_test(exporter, importer, verbose=False): init_output_dir() exp, run = create_simple_run() run1 = client.get_run(run.info.run_id) exporter.export_experiment(exp.name, output) experiment_name = f"{exp.name}_imported" importer.import_experiment(experiment_name, output) exp2 = client.get_experiment_by_name(experiment_name) infos = client.list_run_infos(exp2.experiment_id) run2 = client.get_run(infos[0].run_id) if verbose: dump_runs(run1, run2) return run1, run2 def test_exp_basic(): run1, run2 = init_exp_test(ExperimentExporter(), ExperimentImporter(), True) compare_runs(client, output, run1, run2) def test_exp_no_import_mlflow_tags(): run1, run2 = init_exp_test(ExperimentExporter(), ExperimentImporter(import_mlflow_tags=False)) compare_run_no_import_mlflow_tags(client, output, run1, run2) def test_exp_import_metadata_tags(): run1, run2 = init_exp_test(ExperimentExporter(export_metadata_tags=True), ExperimentImporter(import_metadata_tags=True), verbose=False) compare_run_import_metadata_tags(client, output, run1, run2) # == Copy run tests def init_run_copy_test(copier, verbose=False): init_output_dir() exp, run = create_simple_run() run1 = client.get_run(run.info.run_id) dst_experiment_name = f"{exp.name}_copy_run" copier.copy_run(run1.info.run_id, dst_experiment_name) exp2 = client.get_experiment_by_name(dst_experiment_name) infos = client.list_run_infos(exp2.experiment_id) run2 = client.get_run(infos[0].run_id) if verbose: dump_runs(run1, run2) return run1, run2 def test_copy_run_basic(): run1, run2 = init_run_copy_test(RunCopier(client, client), verbose=False) compare_runs(client, output, run1, run2) def test_copy_run_import_metadata_tags(): run1, run2 = init_run_copy_test(RunCopier(client, client, export_metadata_tags=True)) compare_run_import_metadata_tags(client, output, run1, run2) # == Copy experiment tests def init_exp_copy_test(copier, verbose=False): init_output_dir() exp, run = create_simple_run() run1 = client.get_run(run.info.run_id) dst_experiment_name = f"{exp.name}_copy_exp" copier.copy_experiment(exp.name, dst_experiment_name) exp2 = client.get_experiment_by_name(dst_experiment_name) infos = client.list_run_infos(exp2.experiment_id) run2 = client.get_run(infos[0].run_id) if verbose: dump_runs(run1, run2) return run1, run2 def test_copy_exp_basic(): run1, run2 = init_exp_copy_test(ExperimentCopier(client, client), verbose=False) compare_runs(client, output, run1, run2) def test_copy_exp_import_metadata_tags(): run1, run2 = init_exp_copy_test(ExperimentCopier(client, client, export_metadata_tags=True)) compare_run_import_metadata_tags(client, output, run1, run2)