content
stringlengths
5
1.05M
"""Integrations with external services."""
class Elf: def nall_nin(self): print('Elf says: Calling the Overlord ...') class Dwarf: def estver_narho(self): print('Dwarf says: Calling the Overlord ...') class Human: def ring_mig(self): print('Human says: Calling the Overlord ...') if __name__ == '__main__': minions = [Elf(), Dwarf(), Human()] for minion in minions: if isinstance(minion, Elf): minion.nall_nin() elif isinstance(minion, Dwarf): minion.estver_narho() else: minion.ring_mig()
""" # ============================================================================= # | Project: [MuJoCo Practivces] | Title: Python + mujoco-py | Author: Moses C. Nah | Email: [Moses ] mosesnah@mit.edu | Creation Date: Monday, September 7th, 2020 # ============================================================================= # # ============================================================================= # | (0A) [DESCRIPTION] | | - Python Script for running multiple models with its corresponding controllers. | - This will be useful for educational purpose. | # ============================================================================= # # ============================================================================= # | (0B) [KEYWORDS DEFINITION] | : type the following "keywords" for cases as... | - [BACKUP] [NAME]: Back-up code in case it's needed for the near future | - [TIP]: The reason why the following code was written. | - [TODO]: The part where modification is needed in the near future # ============================================================================= # # ============================================================================= # | (0C) [PYTHON NAMING CONVENTION] | Our project will follow the python naming convention, [REF]: https://stackoverflow.com/a/8423697/13437196 | --------------------------------------------------------------------------------------------------------- | module_name, package_name, ClassName, method_name, ExceptionName, function_name, | GLOBAL_CONSTANT_NAME, global_var_name, instance_var_name, function_parameter_name, local_var_name. # ============================================================================= # # ============================================================================= # | (0D) [DOCOPT PARSE] | From now on, the written comments are specifically for "docopt" function. | [REF] http://docopt.org/ # ============================================================================= # Usage: run.py [options] run.py -h | --help Arguments: Options: -h --help Showing the usage and options --version Show version -s --saveData Saving the neccessary data from MuJoCo simulation as a txt file in the current directory [default: False] -r --recordVideo Record simulation video as a .mp4 file in the current directory [default: False] --runTime=TIME The total time of the simulation [default: 5.0] --startTime=TIME The start time of the movement, or controller [default: 1.0] --modelName=NAME Setting the xml model file name which will be used for the simulation. The starting number of the xml model file indicates the type of simulation, hence the --modelName [default: 1_mass_PD.xml] --camPos=STRING Setting the Camera Position of the simulation. default is None --quiet Print less text [default: False] --verbose Print more text [default: False] Examples, try: python3 run.py --help python3 run.py --version python3 run.py --modelName="mass_PD.xml" --findCamPos """ # ============================================================================= # # (0A) [IMPORT MODULES] # Importing necessary modules + declaring basic configurations for running the whole mujoco simulator. # [Built-in modules] import sys import os import re import argparse import datetime import shutil # [3rd party modules] import numpy as np import cv2 # [3rd party modules] - mujoco-py try: import mujoco_py as mjPy except ImportError as e: raise error.DependencyNotInstalled( "{}. (HINT: you need to install mujoco_py, \ and also perform the setup instructions here: \ https://github.com/openai/mujoco-py/.)".format( e ) ) from docopt import docopt # [3rd party modules] - pyPlot for graphs import matplotlib.pyplot as plt # import nevergrad as ng # [BACKUP] Needed for Optimization # [Local modules] from modules.constants import Constants from modules.controllers import ( PID_Controller ) from modules.utils import ( args_cleanup, my_print, my_mkdir, my_rmdir ) from modules.simulation import Simulation # from modules.output_funcs import (dist_from_tip2target, tip_velocity ) # from modules.input_ctrls import ( ImpedanceController, Excitator, ForwardKinematics, PositionController ) # from modules.utils import ( add_whip_model, my_print, my_mkdir, args_cleanup, # my_rmdir, str2float, camel2snake, snake2camel ) # ============================================================================= # # ============================================================================= # # (0B) [SYSTEM SETTINGS] # [Printing Format] np.set_printoptions( linewidth = Constants.PRINT_LW , suppress = True , precision = Constants.PREC ) # Setting the numpy print options, useful for printing out data with consistent pattern. args = docopt( __doc__, version = Constants.VERSION ) # Parsing the Argument args = args_cleanup( args, '--' ) # Cleaning up the dictionary, discard prefix string '--' for the variables if sys.version_info[ : 3 ] < ( 3, 0, 0 ): # Simple version check of the python version. python3+ is recommended for this file. my_print( NOTIFICATION = " PYTHON3+ is recommended for this script " ) # If video needs to be recorded or data should be saved, then append 'saveDir' element to args dictionary args[ 'saveDir' ] = my_mkdir( ) if args[ 'recordVideo' ] or args[ 'saveData' ] else None assert not ( args[ 'quiet' ] and args[ 'verbose' ] ) # If quiet and verbose are true at the same time, assert! my_print( saveDir = args[ 'saveDir' ] ) # ============================================================================= # # ============================================================================= # def main( ): # ============================================================================= # model_name = args[ 'modelName' ] # Calling Model my_print( modelName = model_name ) mySim = Simulation( model_name = model_name, arg_parse = args ) sim_type = model_name[ 0 ] # The first charater of model name is the index of simulation type. if "1" == sim_type: # 1: Simple Mass Simulation controller_object = PID_Controller( mySim.mjModel, mySim.mjData, Kp = 0, Kd = 0, Ki = 0, ref_type = 0) mySim.attach_controller( controller_object ) mySim.run( ) if args[ 'saveDir' ] is not None: mySim.save_simulation_data( args[ 'saveDir' ] ) shutil.copyfile( Constants.MODEL_DIR + model_name, args[ 'saveDir' ] + model_name ) mySim.reset( ) # ============================================================================= # if __name__ == "__main__": try: main( ) except KeyboardInterrupt: print( "Ctrl-C was inputted. Halting the program. ", end = ' ' ) if args[ 'saveDir' ] is not None: my_rmdir( args[ 'saveDir' ] ) except ( FileNotFoundError, IndexError, ValueError ) as e: print( e, end = ' ' ) if args[ 'saveDir' ] is not None: my_rmdir( args[ 'saveDir' ] )
class Solution: def judgeCircle(self, moves: str) -> bool: x = y = 0 for m in moves: if m == 'R': x += 1 elif m == 'L': x -= 1 elif m == 'U': y -= 1 else: y += 1 return x == 0 and y == 0
str1 = "P@#yn26at^&i5ve" charCount = 0 digitCount = 0 symbolCount = 0 for i in str1: if i.isalpha(): charCount += 1 elif i.isnumeric(): digitCount += 1 else: symbolCount += 1 print("Chars = ", charCount) print("Digits = ", digitCount) print("Symbol = ", symbolCount)
# -*- coding: utf-8 -*- # from collections import namedtuple import numpy as np XY2D = namedtuple('XY2D', ['x', 'y']) XY2D.__doc__ = """ Namedtuple for 2D point coordinate """ def point_rot2D(target=XY2D(1, 1), origin=XY2D(0, 0), radians=0): """ Rotate a 2D point coordinate around an origin 2D point coordinate by an angle in radians Parameters ---------- target : XY2D A 2D point coordinate origin : XY2D Rotation origin location radians : float Rotation angle in radian Returns ------- result : XY2D Result after rotation """ cos_rad = np.cos(radians) sin_rad = np.sin(radians) adjusted = XY2D(x=target.x - origin.x, y=target.y - origin.y) return XY2D(x=origin.x + cos_rad * adjusted.x - sin_rad * adjusted.y, y=origin.y + sin_rad * adjusted.x + cos_rad * adjusted.y) def point_rot2D_y_inv(target=XY2D(1, 1), origin=XY2D(0, 0), radians=0): """ Rotate a 2D point coordinate around an origin 2D point coordinate by an angle in radians And flip y in the end Parameters ---------- target : XY2D A 2D point coordinate origin : XY2D Rotation origin location radians : float Rotation angle in radian Returns ------- result : XY2D Result after rotation and flipping in y """ result = point_rot2D(target=XY2D(x=target.x, y=-target.y), origin=XY2D(x=origin.x, y=-origin.y), radians=radians) return XY2D(x=result.x, y=-result.y)
from time import sleep import platform import os red = '\033[1;31m' yel = '\033[;33m' yelf = '\033[1;33m' fim = '\033[m' blue = '\033[1;34m' green = '\033[1;32m' print('Critica social: Um jogo sem nome') nomej = str(input('Qual o seu nome? : ')) def clear(): if platform.system() == 'Windows': os.system("cls") elif platform.system() == "Linux": os.system("clear") else: os.system("clear") sleep(2) clear() print('{}Bem vindo, {}, esse jogo foi feito por Macacci (mesmo que você não saiba quem seja...{})'.format(yel, nomej, fim)) sleep(2) clear() tutorial = str(input('{}Quando o texto está em amarelo, é história, quando é um {}{}amarelo forte{}{}, é uma escolha, quando está {}{}azul{}{},é uma fala sua,\nquando está {}{}vermelho{}{}, é a fala de algum npc, e quando está {}{}verde{}{}, indica algo...\nEntendeu?\n1) Sim\n2) Não\n>>> '.format(yel, fim, yelf, fim, yel, fim, blue, fim, yel, fim, red, fim, yel, fim, green, fim, yel))) if tutorial != '1' and tutorial != '2': print('Opção inválida, tente novamente') while tutorial != '1': sleep(1) clear() sleep(1) tutorial = str(input('{}=Tutorial=\nQuando o texto está em amarelo, é história, quando é um {}{}amarelo forte{}{}, é uma escolha, quando está {}{}azul{}{},é uma fala sua,\nquando está {}{}vermelho{}{}, é a fala de algum npc, e quando está {}{}verde{}{}, indica algo...\nEntendeu?\n1) Sim\n2) Não\n>>> '.format(yel, fim, yelf, fim, yel, fim, blue, fim, yel, fim, red, fim, yel, fim, green, fim, yel))) while tutorial != '1': sleep(1) clear() sleep(1) tutorial = str(input('{}=Tutorial=\nQuando o texto está em amarelo, é história, quando é um {}{}amarelo forte{}{}, é uma escolha, quando está {}{}azul{}{},é uma fala sua,\nquando está {}{}vermelho{}{}, é a fala de algum npc, e quando está {}{}verde{}{}, indica algo...\nEntendeu?\n1) Sim\n2) Não\n>>> '.format(yel, fim, yelf, fim, yel, fim, blue, fim, yel, fim, red, fim, yel, fim, green, fim, yel))) sleep(2) clear() print('{}Bom, você basicamente nasceu em 1123 num vilarejo chamado koskavinitsky{}'.format(yel, fim)) sexo = str(input('{}Você vai ser menino ou menina?\n1) Menino\n2) Menina\n>>> {}'.format(yelf, fim))) while sexo != '1' and sexo != '2': print('Opção inválida, tente novamente') sleep(2) clear() sexo = str(input('{}Você vai ser menino ou menina?\n1) Menino\n2) Menina\n>>> {}'.format(yelf, fim))) if sexo == '1': sleep(2) clear() print('{}Nasce então, um novo menino, chamado {}, e ele é normal (aparentemente){}'.format(yel, nomej, fim)) elif sexo == '2': print('{}Nasce então, uma nova menina, chamada {}, e ela é normal (aparentemente){}'.format(yel, nomej, fim))
import json import logging import requests import gzip from os.path import abspath, dirname, join from os import remove from pydantic import BaseModel from typing import List LOCAL_PATH_TO_DATA = join( abspath(dirname(__file__)), '../../data' ) FILTERED_FILENAME = 'filtered_list_of_works.json' # Wellcome_DATASET_URL contains the entire list of works # S3_DATASET contains a subset, already filtered by description and # pre-annotated. WELLCOME_DATASET_URL = "https://data.wellcomecollection.org/" \ "catalogue/v2/works.json.gz" S3_DATASET_URL = "https://wellcome-collection-data.s3.eu-west-2" \ ".amazonaws.com/annotated-data/filtered_list_of_works.json" logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class SimilarWork(BaseModel): id: str title: str full_image_uri: str collection_url: str class ArtWork(BaseModel): id: str title: str description: str full_image_uri: str collection_url: str contributors: List similar_works: List[SimilarWork] def convert_iiif_width(uri, width="full"): """ Utility to convert IIIF to image URI with given width or "full" """ uri_end = uri.split("//")[1].split("/") uri_end[4] = ("full" if width == "full" else str(width) + ",") return "https://" + "/".join(uri_end) def get_data(exclude_used=False, exclude_sensitive=False, only_interesting=True): """ Gets data from the cached file, if it fails, downloads from the s3 bucket, and if the s3 bucket fails, downloads from the Wellcome Collection API. Args: exclude_used: whether to exclude works with the key "used" exclude_sensitive: whether to exclude works with the key "sensitivity" Returns: dict of works """ logger.info("Recovering dataset.") try: with open(join(LOCAL_PATH_TO_DATA, FILTERED_FILENAME), 'r') as f: works = json.load(f) logger.info("Hit cache! Loading from local file.") except (FileNotFoundError, json.decoder.JSONDecodeError): logger.info("Cache not loaded, downloading dataset from S3.") try: works = download_data_from_annotated_s3_bucket() except: logger.info("Could not connect to S3 bucket. " "Downloading dataset from Wellcome API URI") works = download_data_from_source() works = { idx: work for idx, work in works.items() if (not work.get('used') or not exclude_used) and (not work.get('sensitivity') or not exclude_sensitive) and (work.get('interesting') or not only_interesting) } if not exclude_used: for id in works.keys(): works[id]["used"] = False logger.info("Finished loading {} filtered art works.".format(len(works))) return works def update_data(work_id, **kwargs): """ Update json file with boolean kwargs from false to true. """ logger.info("Updating data") try: f = open(join(LOCAL_PATH_TO_DATA, FILTERED_FILENAME), 'r') works = json.load(f) f.close() except (FileNotFoundError, json.decoder.JSONDecodeError): logger.info("File not loaded, downloading data first.") works = get_data() finally: logging.info("Work {} updated with {}".format(work_id, kwargs)) for key, value in kwargs.items(): if not works[work_id].get(key): works[work_id][key] = value save_data_locally(works) def download_data_from_annotated_s3_bucket(): """ Gets annotated data, pre-filtered and with annotated sensitivity """ works = requests.get(S3_DATASET_URL).json() save_data_locally(works) return works def save_data_locally(works): """ Saves a json with works locally""" with open(join(LOCAL_PATH_TO_DATA, FILTERED_FILENAME), 'w') as f: json.dump(works, f) def download_data_from_source(): """ Downloads data from Wellcome API """ counter = 0 filtered_list_of_works = [] # Filters artwork that has description with length in [min_len, max_len] min_len = 200 max_len = 2000 logger.info("Downloading data.") dataset_content = requests.get(WELLCOME_DATASET_URL).content logger.info("Saving tmp files.") tmp_file = join(LOCAL_PATH_TO_DATA, 'works.json.gz') with open(tmp_file, 'wb') as f: f.write(dataset_content) logger.info("Unzipping file and reading raw content.") for line in gzip.open(tmp_file, 'rb'): if counter % 100000 == 0: logger.info("Processing work number {}".format(counter)) import pdb pdb.set_trace() counter += 1 json_line = json.loads(line.decode('utf-8')) if json_line.get("thumbnail") and json_line["thumbnail"].get("url") \ and json_line.get("description") \ and json_line.get("contributors") \ and min_len < len(json_line.get("description")) < max_len: filtered_list_of_works += [json_line] filtered_list_of_works = sorted(filtered_list_of_works, key=lambda x: len(x['description']), reverse=True) works = [ { "id": work["id"], "title": work["title"], "description": work["description"], "full_image_uri": convert_iiif_width(work["thumbnail"]["url"]), "collection_url": "https://wellcomecollection.org/works/" + work["id"], "contributors": work["contributors"] } for work in filtered_list_of_works ] logger.info("Removing tmp file.") remove(tmp_file) # Converts to dictionary indexed by id for O(1) acesss works = {work['id']: work for work in works} with open(join(LOCAL_PATH_TO_DATA, FILTERED_FILENAME), 'w') as f: json.dump(works, f) return works if __name__ == "__main__": get_data() #download_data_from_source()
#! /usr/bin/env python3 # coding: utf-8 from __future__ import annotations import datetime as dt import html import random import re import typing as t import aiosql import bbcode from htmlslacker import HTMLSlacker from psycopg2.extensions import connection from gargbot_3000 import config forum_queries = aiosql.from_path("sql/post.sql", "psycopg2") msn_queries = aiosql.from_path("sql/message.sql", "psycopg2") def _sanitize_post(inp, bbcode_uid: str): smls = re.compile( r'<!-- s.*? --><img src=\\?"\{SMILIES_PATH\}/.*?\\?" ' 'alt=\\?"(.*?)\\?" title=\\?".*?" /><!-- s.*? -->' ) inp = re.sub(smls, r"\1", inp) inp = html.unescape(inp) inp = inp.replace(":" + bbcode_uid, "") img_tags = re.compile(r"\[/?img\]") inp = re.sub(img_tags, "", inp) youtube_embeds = re.compile( r'\[html\]<iframe width="\d+" height="\d+" ' 'src="//www.youtube.com/embed/([^"]+)" frameborder=' r'"0" allowfullscreen></iframe>\[/html\]' ) inp = re.sub(youtube_embeds, r"https://www.youtube.com/watch?v=\1", inp) inp = bbcode.render_html( inp, drop_unrecognized=True, escape_html=False, replace_links=False ) inp = inp.replace('rel="nofollow"', "") inp = HTMLSlacker(inp).get_output() return inp def forum( conn: connection, args: t.Optional[list[str]] ) -> tuple[str, str, str, dt.datetime, str, str]: user = args[0] if args else None desc = " " post = None if user: post = forum_queries.post_for_user(conn, slack_nick=user) if not post: desc = ( f"Gargling not found: {user}. Husk å bruke slack nick. " "Her er et tilfeldig quote i stedet." ) if not post: post = forum_queries.random_post(conn) text = _sanitize_post(post["content"], post["bbcode_uid"]) avatarurl = f"{config.forum_url}/download/file.php?avatar={post['avatar']}".strip() url = f"{config.forum_url}/viewtopic.php?p={post['id']}#p{post['id']}" return (text, post["slack_nick"], avatarurl, post["posted_at"], url, desc) def msn( conn: connection, args: t.Optional[list[str]] ) -> tuple[dt.datetime, list, t.Optional[str]]: user = args[0] if args else None desc = None messages = None if user: messages = msn_queries.message_session_for_user_id(conn, slack_nick=user) if messages: first = next(i for i, message in enumerate(messages) if message["is_user"]) else: desc = ( f"Gargling not found: {user}. Husk å bruke slack nick. " "Her er en tilfeldig samtale i stedet." ) if not messages: messages = msn_queries.random_message_session(conn) if len(messages) <= 10: first = 0 else: # no test coverage first = random.randint(0, len(messages) - 10) conversation = messages[first : first + 10] date = conversation[0]["sent_at"].strftime("%d.%m.%y %H:%M") squashed: list[list[str]] = [] for message in conversation: if squashed: prev_from_user, prev_content, prev_color = squashed[-1] if message["from_user"] == prev_from_user: # no test coverage squashed[-1][1] = "\n".join([prev_content, message["content"]]) continue squashed.append([message["from_user"], message["content"], message["color"]]) return date, squashed, desc
import datetime import pandas as pd from secrets import CLIENT_ID, CLIENT_SECRET import requests import json import spotipy from spotipy.oauth2 import SpotifyOAuth def get_spotify_data(): # Request headers sp = spotipy.Spotify(auth_manager=SpotifyOAuth(client_id=CLIENT_ID, client_secret=CLIENT_SECRET, redirect_uri="http://localhost/callback", scope="user-read-recently-played")) # Variables to be used for request today = datetime.datetime.now() yesterday = today - datetime.timedelta(days=1) yesterday_unix_timestamp = int(yesterday.timestamp()) * 1000 # Stores response as json object data = sp.current_user_recently_played(after=yesterday_unix_timestamp) print(data) # Lists to store extracted data song_names = [] artist_names = [] played_at = [] timestamps = [] # Extracting only relevant data from json response for song in data["items"]: song_names.append(song["track"]["name"]) artist_names.append(song["track"]["album"]["artists"][0]["name"]) played_at.append(song["played_at"]) timestamps.append(song["played_at"][0:10]) # Create dictionary from lists to turn into pandas dataframe song_dict = { "song_name": song_names, "artist_name": artist_names, "played_at": played_at, "timestamp": timestamps } # Pandas dataframe creation song_df = pd.DataFrame(song_dict, columns = ["song_name", "artist_name", "played_at", "timestamp"]) return song_df
import numpy as np def waysToArrange(N, K, k): C = np.zeros((N + 1, N + 1)) for i in range(N + 1): for j in range(i + 1): if (j == 0 or j == i): C[i][j] = 1 else: C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) dp = np.zeros((K + 1)) count = 0 dp[0] = 1 for i in range(K): dp[i + 1] = (dp[i] * C[count + k[i] - 1][k[i] - 1]) count += k[i] return dp[K] if __name__ == "__main__": N = 4 k = [2, 2] K = len(k) print(int(waysToArrange(N, K, k)))
from django.db import models class Parent(models.Model): name = models.CharField(max_length=200) age = models.PositiveIntegerField() def __str__(self): return f'Name: {self.name}, Age: {self.age}'
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import socket import traceback from functools import wraps import eventlet eventlet.monkey_patch(thread=True, time=True) from builtins import bytes import click import msgpack import flask from flask import (Flask, render_template, make_response, copy_current_request_context, jsonify, request, Response) from flask_socketio import SocketIO from bowtie._component import COMPONENT_REGISTRY # python 2 compatibility try: FileNotFoundError except NameError: FileNotFoundError = OSError class GetterNotDefined(AttributeError): pass def check_auth(username, password): """This function is called to check if a username / password combination is valid. """ return username == 'username' and password == 'password' def authenticate(): """Sends a 401 response that enables basic auth""" return Response( 'Could not verify your access level for that URL.\n' 'You have to login with proper credentials', 401, {'WWW-Authenticate': 'Basic realm="Login Required"'}) def requires_auth(f): @wraps(f) def decorated(*args, **kwargs): auth = request.authorization if not auth or not check_auth(auth.username, auth.password): return authenticate() return f(*args, **kwargs) return decorated # import the user created module sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) import yelp app = Flask(__name__) app.debug = True socketio = SocketIO(app, binary=True, path='' + 'socket.io') # not sure if this is secure or how much it matters app.secret_key = os.urandom(256) def context(func): def foo(): with app.app_context(): func() return foo class Scheduler(object): def __init__(self, seconds, func): self.seconds = seconds self.func = func self.thread = None def start(self): self.thread = eventlet.spawn(self.run) def run(self): ret = eventlet.spawn(context(self.func)) eventlet.sleep(self.seconds) try: ret.wait() except: traceback.print_exc() self.thread = eventlet.spawn(self.run) def stop(self): if self.thread: self.thread.cancel() @app.route('/') def index(): return render_template('index.html') @app.route('/static/bundle.js') def getbundle(): basedir = os.path.dirname(os.path.realpath(__file__)) bundle_path = basedir + '/static/bundle.js' bundle_path_gz = bundle_path + '.gz' try: if os.path.getmtime(bundle_path) > os.path.getmtime(bundle_path_gz): return open(bundle_path, 'r').read() else: bundle = open(bundle_path_gz, 'rb').read() response = flask.make_response(bundle) response.headers['Content-Encoding'] = 'gzip' response.headers['Vary'] = 'Accept-Encoding' response.headers['Content-Length'] = len(response.data) return response except FileNotFoundError: if os.path.isfile(bundle_path_gz): bundle = open(bundle_path_gz, 'rb').read() response = flask.make_response(bundle) response.headers['Content-Encoding'] = 'gzip' response.headers['Vary'] = 'Accept-Encoding' response.headers['Content-Length'] = len(response.data) return response else: return open(bundle_path, 'r').read() @socketio.on('1#change') def _(*args): def wrapuser(): uniq_events = set() uniq_events.update([('1#change', 1, 'get')]) uniq_events.remove(('1#change', 1, 'get')) event_data = {} for ev in uniq_events: comp = COMPONENT_REGISTRY[ev[1]] if ev[2] is None: ename = ev[0] raise GetterNotDefined('{ctype} has no getter associated with event "on_{ename}"' .format(ctype=type(comp), ename=ename[ename.find('#') + 1:])) getter = getattr(comp, ev[2]) event_data[ev[0]] = getter() # if there is no getter, then there is no data to unpack # if there is a getter, then we need to unpack the data sent event_data['1#change'] = COMPONENT_REGISTRY[1]._get( msgpack.unpackb(bytes(args[0]['data']), encoding='utf8') ) # gather the remaining data from the other events through their getter methods user_args = [] user_args.append(event_data['1#change']) # finally call the user method yelp.viz(*user_args) foo = copy_current_request_context(wrapuser) eventlet.spawn(foo) @socketio.on('3#click') def _(*args): def wrapuser(): uniq_events = set() uniq_events.update([('3#click', 3, 'get')]) uniq_events.remove(('3#click', 3, 'get')) event_data = {} for ev in uniq_events: comp = COMPONENT_REGISTRY[ev[1]] if ev[2] is None: ename = ev[0] raise GetterNotDefined('{ctype} has no getter associated with event "on_{ename}"' .format(ctype=type(comp), ename=ename[ename.find('#') + 1:])) getter = getattr(comp, ev[2]) event_data[ev[0]] = getter() # if there is no getter, then there is no data to unpack # if there is a getter, then we need to unpack the data sent event_data['3#click'] = COMPONENT_REGISTRY[3]._get( msgpack.unpackb(bytes(args[0]['data']), encoding='utf8') ) # gather the remaining data from the other events through their getter methods user_args = [] user_args.append(event_data['3#click']) # finally call the user method yelp.vizplace(*user_args) foo = copy_current_request_context(wrapuser) eventlet.spawn(foo) @click.command() @click.option('--host', '-h', default='0.0.0.0', help='Host IP') @click.option('--port', '-p', default=9991, help='port number') def main(host, port): scheduled = not app.debug or os.environ.get('WERKZEUG_RUN_MAIN') == 'true' if scheduled: scheds = [] for sched in scheds: sched.start() sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) result = sock.connect_ex((host, port)) if result == 0: raise Exception('Port {} is unavailable on host {}, aborting.'.format(port, host)) socketio.run(app, host=host, port=port) if scheduled: for sched in scheds: sched.stop() if __name__ == '__main__': main()
from data_sources import DataSource from config import config import random as rand class JSONonsense: CONFIG = config["JSONONSENSE"] MIN_KEY_PER_OBJECT = int(CONFIG['MIN_KEY_PER_OBJECT']) MAX_KEY_PER_OBJECT = int(CONFIG['MAX_KEY_PER_OBJECT']) MAX_DEPTH = int(CONFIG['MAX_DEPTH']) OBJ_CHANCE = float(CONFIG['OBJ_CHANCE']) def __init__(self, data_source: DataSource = DataSource(), config=None): if config: for key, value in config: if hasattr(JSONonsense, key): setattr(JSONonsense, key, value) if JSONonsense.MAX_DEPTH > 20: JSONonsense.MAX_DEPTH = 20 self.data_source = data_source self.keys = data_source.get_keys() self.vals = data_source.get_vals() self.key_amount = 0 self.val_amount = 0 def _get_key(self): try: key = next(self.keys) if not key: raise StopIteration except StopIteration: self.data_source.refresh_keys() key = next(self.keys) self.key_amount += 1 return key def _get_val(self): try: val = next(self.vals) if not val: raise StopIteration except StopIteration: self.data_source.refresh_vals() val = next(self.vals) self.val_amount += 1 return val def populate(self, depth=0): depth += 1 if depth == JSONonsense.MAX_DEPTH + 1: return obj = {} for _ in range(rand.randint(JSONonsense.MIN_KEY_PER_OBJECT, JSONonsense.MAX_KEY_PER_OBJECT)): key = self._get_key() # Roll the dice, could be a value, could be another object! if rand.random() < JSONonsense.OBJ_CHANCE: obj[key] = self.populate(depth) else: val = self._get_val() obj[key] = val return obj def create(self): return self.populate() if __name__ == "__main__": from pprint import pprint pprint(JSONonsense().create())
# uncompyle6 version 3.2.4 # Python bytecode 2.7 (62211) # Decompiled from: Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:30:26) [MSC v.1500 64 bit (AMD64)] # Embedded file name: lib.coginvasion.cog.SuitFollowBossBehavior from lib.coginvasion.cog.SuitPathBehavior import SuitPathBehavior from lib.coginvasion.cog.SuitHabitualBehavior import SuitHabitualBehavior from lib.coginvasion.cog import SuitAttacks from lib.coginvasion.globals import CIGlobals from SuitFlyToRandomSpotBehavior import SuitFlyToRandomSpotBehavior from SuitAttackBehavior import SuitAttackBehavior import SuitPathDataAI, SuitUtils from direct.fsm import ClassicFSM, State from direct.task.Task import Task from direct.interval.IntervalGlobal import Sequence, Wait, Func from direct.distributed.ClockDelta import globalClockDelta import random class SuitFollowBossBehavior(SuitPathBehavior, SuitHabitualBehavior): LEEWAY_DISTANCE = 4 MAX_BOSS_HELPERS = 5 HEAL_SPEED = 50.0 def __init__(self, suit, boss): SuitPathBehavior.__init__(self, suit, exitOnWalkFinish=False) self.fsm = ClassicFSM.ClassicFSM('SuitFollowBossBehavior', [State.State('off', self.enterOff, self.exitOff), State.State('follow', self.enterFollow, self.exitFollow), State.State('protect', self.enterProtect, self.exitProtect)], 'off', 'off') self.fsm.enterInitialState() self.boss = boss self.bossSpotKey = None self.healInProgress = False self.suitHealTrack = None self.followBossTaskName = self.suit.uniqueName('followBoss') self.pathFinder = SuitPathDataAI.getPathFinder(self.suit.hood) return def isHealing(self): return self.healInProgress def enterOff(self): pass def exitOff(self): pass def enter(self): SuitPathBehavior.enter(self) self.fsm.request('follow') def exit(self): SuitPathBehavior.exit(self) self.fsm.requestFinalState() taskMgr.remove(self.followBossTaskName) def unload(self): SuitPathBehavior.unload(self) del self.boss del self.followBossTaskName del self.bossSpotKey del self.fsm del self.suitHealTrack del self.healInProgress def enterProtect(self): base.taskMgr.add(self.__protectTick, self.suit.uniqueName('protectBossTick')) def __protectTick(self, task): if self.boss.isDead(): self.suit.b_setAnimState('neutral') self.exit() return task.done if self.bossSpotKey != self.boss.getCurrentPath(): self.fsm.request('follow') return task.done if self.isHealing(): return task.cont if self.boss.brain.currentBehavior.__class__ == SuitAttackBehavior: choice = random.randint(0, 1) if choice == 0: return task.cont if choice == 1: self.doHeal() return task.cont def __attemptToHealBoss(self, hp, currBossPos): if self.isBossAvailable(): if (self.boss.getPos(render) - currBossPos).length() <= 1: self.boss.b_setHealth(self.boss.getHealth() + hp) self.boss.d_announceHealth(1, hp) self.suit.d_handleWeaponTouch() def isBossAvailable(self): if not self.boss.isEmpty() and not hasattr(self.boss, 'DELETED') and not self.boss.isDead(): return True return False def __disableBoss(self): if self.isBossAvailable(): if self.boss.getBrain(): self.boss.getBrain().stopThinking() self.boss.b_setAnimState('neutral') def __enableBoss(self): if self.isBossAvailable(): self.boss.getBrain().startThinking() def __toggleHeal(self): if self.healInProgress: self.healInProgress = False else: self.healInProgress = True def doHeal(self): self.__toggleHeal() attack = random.randint(0, 6) attackName = SuitAttacks.SuitAttackLengths.keys()[attack] timestamp = globalClockDelta.getFrameNetworkTime() self.suit.sendUpdate('doAttack', [attack, self.boss.doId, timestamp]) distance = self.suit.getDistance(self.boss) timeUntilHeal = distance / self.HEAL_SPEED timeUntilRelease = 1.0 self.suit.d_setChat(CIGlobals.SuitHealTaunt) hp = int(self.suit.maxHealth / SuitAttacks.SuitAttackDamageFactors[attackName]) if hp == 0: hp = 1 if self.boss.getHealth() + hp > self.boss.getMaxHealth(): hp = self.boss.getMaxHealth() - self.boss.getHealth() if attackName != 'glowerpower': timeUntilRelease = 2.2 self.suitHealTrack = Sequence(Wait(timeUntilRelease + timeUntilHeal), Func(self.__attemptToHealBoss, hp, self.boss.getPos(render)), Func(self.faceOtherDirection), Wait(3.0), Func(self.__toggleHeal)) self.suitHealTrack.start() def faceOtherDirection(self): self.suit.b_setAnimState('neutral') self.suit.setH(self.suit.getH() - 180) self.suit.d_setH(self.suit.getH()) def exitProtect(self): base.taskMgr.remove(self.suit.uniqueName('protectBossTick')) if self.suitHealTrack: self.suitHealTrack.pause() self.suitHealTrack = None return def enterFollow(self): self.__updatePath() taskMgr.add(self.__followBoss, self.followBossTaskName) def exitFollow(self): taskMgr.remove(self.followBossTaskName) def __updatePath(self): if self.boss.isDead(): self.suit.b_setAnimState('neutral') self.exit() return task.done self.clearWalkTrack() if hasattr(self.boss, 'currentPath'): bossSpot = self.boss.getCurrentPath() self.bossSpotKey = bossSpot pos = self.boss.getPosFromCurrentPath() self.createPath(pos=(pos[0], pos[1])) else: self.exit() def __followBoss(self, task): if not hasattr(self, 'suit') or self.boss.isEmpty() or not self.boss.isEmpty() and self.boss.isDead(): return Task.done if self.boss.getCurrentPath() != self.bossSpotKey: self.__updatePath() if self.suit.getDistance(self.boss) <= self.LEEWAY_DISTANCE and self.boss.brain.currentBehavior.__class__ != SuitFlyToRandomSpotBehavior: self.clearWalkTrack(andTurnAround=1) self.suit.b_setAnimState('neutral') self.suit.setH(self.suit.getH() - 180) self.suit.d_setH(self.suit.getH()) self.fsm.request('protect') return Task.done return Task.cont def shouldAbandonFollow(self): suitsByBoss = self.getSuitsByBoss() backupCalledIn = self.getBackupCalledIn() if backupCalledIn == 0: backupCalledIn = 1 return float(len(suitsByBoss)) / float(backupCalledIn) >= 0.4 def getSuitsByBoss(self): suits = [] for obj in base.air.doId2do.values(): className = obj.__class__.__name__ if className == 'DistributedSuitAI': if obj.zoneId == self.suit.zoneId: if not obj.isDead() and not obj == self.boss and not obj == self.suit: if obj.getDistance(self.boss) <= self.LEEWAY_DISTANCE * 3: suits.append(obj) return suits def getBackupCalledIn(self): from lib.coginvasion.cog.SuitCallInBackupBehavior import SuitCallInBackupBehavior behaviorClass = SuitCallInBackupBehavior if hasattr(self.boss, 'DELETED') or not self.boss.getBrain(): return 0 behavior = self.boss.getBrain().getBehavior(behaviorClass) return behavior.getCalledInBackup() def isBossInManager(self): return self.boss in self.suit.getManager().suits.values() def shouldStart(self): if self.boss and not self.boss.isDead() and self.isBossInManager() and self.suit.getDistance(self.boss) > self.LEEWAY_DISTANCE: _helper_suits = 0 for suit in self.suit.getManager().suits.values(): if suit.doId != self.suit.doId: if suit.brain: if suit.brain.currentBehavior.__class__ == SuitFollowBossBehavior: _helper_suits += 1 if _helper_suits < self.MAX_BOSS_HELPERS: return True return False
"""Shared functionality for interacting with Galaxy. """
import sys import logging from rsync_workflow.RsyncContext import RsyncManager, RsyncContext, set_debug if len(sys.argv) != 3: logging.error('missing arguments') logging.error('rsync_clone.py [remote_path] [local_path]') sys.exit(-1) rsync_manager = RsyncManager() rsync_manager.clone(*sys.argv[1:])
#!/usr/bin/env python import sys import time from nsnitro import * import argparse import datetime if __name__ == "__main__": parser = argparse.ArgumentParser(description='Check Netscaler HA status') parser.add_argument('--host', metavar='HOSTNAME', required=True, help='Netscaler hostname') parser.add_argument('--user', metavar='USERNAME', default='nagios', help='Netscaler username') parser.add_argument('--password', metavar='PASSWORD', default='api_user', help='Netscaler password') parser.add_argument('--ssl', action="store_true", help='turn ssl on') parser.add_argument('-w', '--warning', metavar='WARNING', help='seconds since last change') parser.add_argument('--dargs', action='store_true', help='show args') args = parser.parse_args() if args.dargs: print(args) sys.exit(3) nitro = NSNitro(args.host, args.user, args.password, args.ssl) try: nitro.login() node = NSHANode() node.set_id("0") node = NSHANode.get(nitro, node) status = node.get_hastatus() state = node.get_state().lower() if status != "UP": print "CRITICAL: " + node.get_name() + " " + status nitro.logout() sys.exit(2) elif ( status == "UP") & ( state == "primary"): if args.warning: if int(node.get_masterstatetime()) <= int(args.warning): print "WARNING: " + node.get_name() + " " + status + " " + node.get_state() + " since " + str(datetime.timedelta(seconds=node.get_masterstatetime())) nitro.logout() sys.exit(1) print "OK: " + node.get_name() + " " + status + " " + node.get_state() + " since " + str(datetime.timedelta(seconds=node.get_masterstatetime())) nitro.logout() sys.exit(0) elif status == "UP": print "OK: " + node.get_name() + " " + status + " " + node.get_state() nitro.logout() sys.exit(0) nitro.logout() sys.exit(3) except NSNitroError, e: print "Error: %s" % e.message sys.exit(3)
import time from selenium import webdriver from selenium.webdriver.chrome.options import Options as ChromeOptions from selenium.webdriver.firefox.options import Options as FireFoxOptions from selenium.webdriver.support.expected_conditions import NoSuchElementException from .captcha_handler import CaptchaHandler chrome_options = ChromeOptions() chrome_options.binary_location = 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe' firefox_options = FireFoxOptions() firefox_options.add_argument('--headless') firefox_options.add_argument("--disable-gpu") firefox_options.binary_location = 'C:\\Program Files (x86)\\Mozilla Firefox\\firefox.exe' class ThreatDefenceBypass(): """ Custom RedirectMiddleware Using Selenium and chromedriver with a --headless flag Checks if redirected to a CAPTCHA page or a browser identification page and acts accordingly """ def __init__(self): self.threat_defence = 'threat_defence.php' self.driver = webdriver.Chrome(r"chromedriver.exe",chrome_options=chrome_options) #self.driver = webdriver.Firefox('C:\\utils\\geckodriver\\geckodriver.exe',firefox_options=firefox_options) self.tries = 0 self.captcha_handler = CaptchaHandler() self.cookies = None def bypass_threat_defense(self, url): time.sleep(3) # LOGGER.info('Number of tries: #{0}'.format(self.tries)) self.driver.get(url) # While loop to decide whether we are on a browser detection (redirect) page or a captcha page while self.tries <= 5: # Current limit is 5 giving pytesseract % of success print('Waiting for browser detection') time.sleep(3) try: self.cookies = self.find_solve_submit_captcha() break except NoSuchElementException: print() print('No CAPTCHA found in page') try: self.redirect_retry() break except NoSuchElementException: print('No Link in page either. EXITING') break # If the solution was wrong and we are prompt with another try call method again if self.threat_defence in self.driver.current_url: self.tries += 1 # LOGGER.info('CAPTCHA solution was wrong. Trying again') self.bypass_threat_defense(self.driver.current_url) if self.cookies: self.driver.close() return self.cookies exit('Something went wrong') # Press retry link if reached a redirect page without captcha def redirect_retry(self): # LOGGER.info('Looking for `retry` link in page') link = self.driver.find_element_by_partial_link_text('Click') # LOGGER.info('Retrying to get CAPTCHA page') self.tries += 1 self.bypass_threat_defense(link.get_attribute('href')) def find_solve_submit_captcha(self): # LOGGER.info('Looking for CAPTCHA image in page') # Find captcha = self.driver.find_element_by_xpath("//img[contains(@src, 'captcha')]") # LOGGER.info('Found CAPTCHA image: {0}'.format(captcha.get_attribute('src'))) # Solve solved_captcha = self.captcha_handler.get_captcha(src=captcha.get_attribute('src')) # LOGGER.info('CAPTCHA solved: {0}'.format(solved_captcha)) input_field = self.driver.find_element_by_id('solve_string') input_field.send_keys(solved_captcha) # LOGGER.info('Submitting solution') # Submit self.driver.find_element_by_id('button_submit').click() return self.driver.get_cookies()
from django.db import models from django.dispatch import receiver from django.db.models.signals import post_save from authors.apps.authentication.models import User from django.contrib.postgres.fields import ArrayField class UserProfile(models.Model): photo = models.URLField(blank=True) user = models.OneToOneField(User,on_delete= models.CASCADE) bio = models.TextField(blank=True) fun_fact = models.TextField(blank=True) time_when_updated = models.DateTimeField(auto_now=True) favorite_article = ArrayField(models.CharField(max_length=100), default=list) def __str__(self): return self.user.username class Follow(models.Model): follower = models.ForeignKey(User, on_delete=models.CASCADE) followed = models.ForeignKey(UserProfile, on_delete=models.CASCADE) @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: user_profile=UserProfile(user=instance) return user_profile.save()
from .base import * DEBUG = True EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # BASE_URL required for notification emails BASE_URL = 'http://localhost:8000' try: from .local import * except ImportError: pass
"""Responses.""" from io import StringIO from csv import DictWriter from typing import List from flask import Response, jsonify, make_response from pma_api.__version__ import __version__ class ApiResult: """A representation of a generic JSON API result.""" def __init__(self, data, metadata=None, **kwargs): """Store input arguments. Args: data (dict): A dictionary built up for the API to return metadata (dict): A dictionary of keys and values to add to the metadata field of the return object. """ self.data = data self.extra_metadata = metadata self.kwargs = kwargs def to_response(self) -> jsonify: """Make a response from the data.""" metadata = self.metadata(self.extra_metadata) obj = { **self.data, **self.kwargs, 'metadata': metadata } return jsonify(obj) @staticmethod def metadata(extra_metadata=None): """Return metadata.""" from pma_api.models import ApiMetadata obj = { 'version': __version__, 'datasetMetadata': [item.to_json() for item in ApiMetadata.query.all()] } if extra_metadata: obj.update(extra_metadata) return obj class QuerySetApiResult(ApiResult): """A representation of a list of records (Python dictionaries).""" def __init__(self, record_list, return_format, metadata=None, **kwargs): """Store the list of records and the format.""" super().__init__(record_list, metadata, **kwargs) self.record_list = record_list self.return_format = return_format def to_response(self): """Convert the list of records into a response.""" if self.return_format == 'csv' and self.record_list: return self.csv_response(self.record_list) elif self.return_format == 'csv': # and not self.record_list return make_response('', 204) # Default is JSON return self.json_response(self.record_list, self.extra_metadata, **self.kwargs) @staticmethod def csv_response(record_list): """CSV Response.""" string_io = StringIO() header = record_list[0].keys() writer = DictWriter(f=string_io, fieldnames=header) writer.writeheader() writer.writerows((item for item in record_list)) result = string_io.getvalue() response = Response(result, mimetype='text/csv') response.headers['Content-Disposition'] = \ 'attachment; filename=data.csv' return response @staticmethod def _remove_bytes_values(record_list: List[dict]) -> List[dict]: """From a list of dicts, remove any dict value that is bytes. Args: record_list(list(dict)): Records queried from db Returns: list(dict): Records with any non-JSON-serializable bytes values replaced with the string 'bytes' """ try: formatted_list: [dict] = [ { k: 'bytes' if isinstance(v, bytes) else v for k, v in x.items() } for x in record_list ] return formatted_list except AttributeError: # record_list is not a List[dict] return record_list @staticmethod def json_response(record_list, extra_metadata, **kwargs): """Convert a list of records into a JSON response.""" # TODO: instead of remove bytes values, convert bytes value to URL # to download file formatted_list = QuerySetApiResult._remove_bytes_values(record_list) obj = { **kwargs, 'results': formatted_list, 'resultSize': len(record_list), 'metadata': ApiResult.metadata(extra_metadata) } return jsonify(obj) # TODO: (jef/jkp 2017-08-29) Add methods for: # * return warnings, errors # * return version number # * documentation # Needs: Decision on how these should be returned.
#!/usr/bin/env python3.3 import gzip, sys if __name__=='__main__': feature = sys.argv[1] # has to be either 'cds' or 'exon' or 'gene' gene_list = None feature_in_gene_list = set([]) if len(sys.argv) == 3: gene_list = set([]) with open(sys.argv[2]) as gl: for line in gl: toks = line.rstrip().split('\t') gene_list.add( toks[0] ) for ln, line in enumerate(gzip.open('refGene.txt.gz', 'rb')): toks = line.decode().rstrip().split('\t') _, tid, chrom, strand, tx_start, tx_end, cds_start, cds_end, exon_count, exon_starts, exon_ends, _, symbol, _, _, _ = toks chrom = chrom.replace('chr','') if chrom.find('_') >= 0: continue tx_start, tx_end = int(tx_start), int(tx_end) cds_start, cds_end = int(cds_start), int(cds_end) exon_count = int(exon_count) exon_starts = [ int(v) for v in exon_starts.split(',') if v ] exon_ends = [ int(v) for v in exon_ends.split(',') if v ] if gene_list is not None: if symbol not in gene_list: continue else: feature_in_gene_list.add( symbol ) if feature == 'exon': for s, e in zip(exon_starts, exon_ends): print( '{}\t{}\t{}\t{}|{}'.format(chrom, s, e, symbol, tid) ) elif feature == 'cds': # non-coding if cds_start == cds_end: continue for s, e in zip(exon_starts, exon_ends): if s <= cds_start <= e: s = cds_start if s <= cds_end <= e: e = cds_end print('{}\t{}\t{}\t{}|{}'.format(chrom, s, e, symbol, tid)) elif feature == 'gene': print('{}\t{}\t{}\t{}'.format(chrom, min(exon_starts), max(exon_ends), symbol) ) if gene_list is not None: print('Checking for genes NOT INCLUDED in refGene', file=sys.stderr) for g in sorted(list(gene_list)) : if g not in feature_in_gene_list: print('Gene in list that is NOT in refGene: {}'.format( g ), file=sys.stderr )
''' Copyright (C) 2019-2021, Mo Zhou <cdluminate@gmail.com> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import os import torch as th import numpy as np from .. import configs import torch import torch.nn as nn from torch.autograd import Variable from .miner import miner import functools as ft import itertools as it import pytest def fn__pglift(repres: th.Tensor, labels: th.Tensor, *, metric: str): ''' Generalized lifted-structure loss function ''' # Determine the margin for the specific metric if metric in ('C', 'N'): margin = configs.glift.margin_cosine repres = th.nn.functional.normalize(repres, p=2, dim=-1) elif metric in ('E',): margin = configs.glift.margin_euclidean # Sampling anc, pos, neg = miner(repres, labels, method='spc2-lifted', metric=metric) # Calculate Loss losses = [] for (i, idx) in enumerate(anc): repA = repres[idx, :].view(-1) repP = repres[pos[i], :] repN = repres[neg[i], :] # if metric in ('E', 'N'): __pdist = ft.partial(th.nn.functional.pairwise_distance, p=2) else: def __pdist(p, n): return 1 - \ th.nn.functional.cosine_similarity(p, n, dim=-1) pos_term = th.logsumexp(__pdist(repA, repP), dim=-1) neg_term = th.logsumexp(margin - __pdist(repA, repN), dim=-1) losses.append((pos_term + neg_term).relu()) loss = th.mean(th.stack(losses)) + configs.glift.l2_weight * \ th.mean(repres.norm(p=2, dim=-1)) return loss class pglift(th.nn.Module): _datasetspec = 'SPC-2' def __call__(self, *args, **kwargs): return ft.partial(fn__pglift, metric=self._metric)(*args, **kwargs) def determine_metric(self): return self._metric def datasetspec(self): return self._datasetspec class pgliftC(pglift): _metric = 'C' class pgliftE(pglift): _metric = 'E' class pgliftN(pglift): _metric = 'N' @pytest.mark.parametrize('metric', ('C', 'E', 'N')) def test_fn_glift(metric): output, labels = th.rand(10, 32, requires_grad=True), th.randint(3, (10,)) loss = fn__pglift(output, labels, metric=metric) loss.backward() @pytest.mark.parametrize('func', (pgliftC, pgliftE, pgliftN)) def test_glift(func): output, labels = th.rand(10, 32, requires_grad=True), th.randint(3, (10,)) loss = func()(output, labels) loss.backward()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # API module of cve-search. Returns queries in JSON format # # Software is free software released under the "Modified BSD license" # # Copyright (c) 2013-2016 Alexandre Dulaunoy - a@foo.be # Copyright (c) 2014-2017 Pieter-Jan Moreels - pieterjan.moreels@gmail.com # imports import json import logging import os import random import re import signal import sys import time import urllib _runPath = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(_runPath, "..")) from bson import json_util from bson.json_util import DEFAULT_JSON_OPTIONS DEFAULT_JSON_OPTIONS.datetime_representation = 2 from dateutil.parser import parse as parse_datetime from flask import Flask, request, Response, render_template from functools import wraps from logging.handlers import RotatingFileHandler from redis import exceptions as redisExceptions from tornado.httpserver import HTTPServer from tornado.ioloop import IOLoop from tornado.wsgi import WSGIContainer import datetime from datetime import timedelta import lib.CVEs as cves import lib.DatabaseLayer as db import lib.Query as query import lib.Toolkit as tk from lib.Config import Configuration def convertDatetime(dct=None): if isinstance(dct,(list, tuple, set)): for item in dct: convertDatetime(item) elif type(dct) is dict: for key, val in dct.items(): if isinstance(val, datetime.datetime): dct[key] = val.isoformat() if isinstance(val, (dict, list)): convertDatetime(val) return dct class APIError(Exception): def __init__(self, message, status=500): self.message = message self.status = status class API(): app = Flask(__name__, static_folder='static', static_url_path='/static') app.config['MONGO_DBNAME'] = Configuration.getMongoDB() app.config['SECRET_KEY'] = str(random.getrandbits(256)) def __init__(self): routes = [{'r': '/api/', 'm': ['GET'], 'f': self.api_documentation}, {'r': '/api/cpe2.3/<path:cpe>', 'm': ['GET'], 'f': self.api_cpe23}, {'r': '/api/cpe2.2/<path:cpe>', 'm': ['GET'], 'f': self.api_cpe22}, {'r': '/api/cvefor/<path:cpe>', 'm': ['GET'], 'f': self.api_cvesFor}, {'r': '/api/cve/<cveid>', 'm': ['GET'], 'f': self.api_cve}, {'r': '/api/cwe', 'm': ['GET'], 'f': self.api_cwe}, {'r': '/api/cwe/<int:cwe_id>', 'm': ['GET'], 'f': self.api_cwe}, {'r': '/api/capec/<cweid>', 'm': ['GET'], 'f': self.api_capec}, {'r': '/api/last', 'm': ['GET'], 'f': self.api_last}, {'r': '/api/last/', 'm': ['GET'], 'f': self.api_last}, {'r': '/api/last/<int:limit>', 'm': ['GET'], 'f': self.api_last}, {'r': '/api/query', 'm': ['GET'], 'f': self.api_query}, {'r': '/api/browse', 'm': ['GET'], 'f': self.api_browse}, {'r': '/api/browse/', 'm': ['GET'], 'f': self.api_browse}, {'r': '/api/browse/<path:vendor>', 'm': ['GET'], 'f': self.api_browse}, {'r': '/api/search/<vendor>/<path:product>', 'm': ['GET'], 'f': self.api_search}, {'r': '/api/search/<path:search>', 'm': ['GET'], 'f': self.api_text_search}, {'r': '/api/search/days/<days>/<path:search>', 'm': ['GET'], 'f': self.api_text_limitday_search}, {'r': '/api/link/<key>/<value>', 'm': ['GET'], 'f': self.api_link}, {'r': '/api/dbInfo', 'm': ['GET'], 'f': self.api_dbInfo}] for route in routes: self.addRoute(route) def addRoute(self, route): self.app.add_url_rule(route['r'], view_func=route['f'], methods=route['m']) ############# # Decorator # ############# def api(funct): @wraps(funct) def api_wrapper(*args, **kwargs): data = error = None # Get data (and possibly errors) try: data = funct(*args, **kwargs) except APIError as e: error = ({'status': 'error', 'reason': e.message}, e.status) except Exception as e: print(e) error = ({'status': 'error', 'reason': 'Internal server error'}, 500) # Check if data should be returned as html or data try: returnType = 'application/json' if (request.url_rule.rule.lower().startswith("/api/") or request.url_rule.rule.lower().endswith(".json") ): # Support JSONP if request.args.get('callback', False): data="%s(%s)"%(request.args.get('callback'), data) # Check API version for backwards compatibility. We'll call the old API v1.0 elif request.headers.get('Version') in ['1.1']: # Get the requested return type returnType = request.headers.get('Accept', '*/*') # Default to JSON if any(t in returnType for t in ['json', 'application/*', 'text/*', '*/*']): data = error if error else {'status': 'success', 'data': data} elif 'plain' in returnType: pass # No need to do anything, but needs to be accepted else: data = ({'status': 'error', 'reason': 'Unknown Content-type requested'}, 415) returnType = 'application/json' if type(data) is not str: if type(data) is tuple: data = list(data) data[0] = json.dumps(convertDatetime(dct=data[0]), indent=4, sort_keys=True, default=json_util.default) else: data = (json.dumps(convertDatetime(dct=data), indent=4, sort_keys=True, default=json_util.default), 200) return Response(data[0], mimetype=returnType), data[1] except Exception as e: print(e) pass if error and error[1] == 500: raise(APIError(error[0]['reason'])) return data return api_wrapper ############# # FUNCTIONS # ############# def generate_minimal_query(self, f): query = [] # retrieving lists if f['rejectedSelect'] == "hide": exp = "^(?!\*\* REJECT \*\*\s+DO NOT USE THIS CANDIDATE NUMBER.*)" query.append({'summary': re.compile(exp)}) # cvss logic if f['cvssSelect'] == "above": query.append({'cvss': {'$gt': float(f['cvss'])}}) elif f['cvssSelect'] == "equals": query.append({'cvss': float(f['cvss'])}) elif f['cvssSelect'] == "below": query.append({'cvss': {'$lt': float(f['cvss'])}}) # date logic if f['timeSelect'] != "all": if f['startDate']: startDate = parse_datetime(f['startDate'], ignoretz=True, dayfirst=True) if f['endDate']: endDate = parse_datetime(f['endDate'], ignoretz=True, dayfirst=True) if f['timeSelect'] == "from": query.append({f['timeTypeSelect']: {'$gt': startDate}}) elif f['timeSelect'] == "until": query.append({f['timeTypeSelect']: {'$lt': endDate}}) elif f['timeSelect'] == "between": query.append({f['timeTypeSelect']: {'$gt': startDate, '$lt': endDate}}) elif f['timeSelect'] == "outside": query.append({'$or': [{f['timeTypeSelect']: {'$lt': startDate}}, {f['timeTypeSelect']: {'$gt': endDate}}]}) return query def filter_logic(self, filters, skip, limit=None): query = self.generate_minimal_query(filters) limit = limit if limit else self.args['pageLength'] return db.getCVEs(limit=limit, skip=skip, query=query) ########## # ROUTES # ########## # /api def api_documentation(self): return render_template('api.html') # /api/cpe2.3/<cpe> @api def api_cpe23(self, cpe): cpe = tk.toStringFormattedCPE(cpe) return cpe if cpe else "None" # /api/cpe2.2/<cpe> @api def api_cpe22(self, cpe): cpe = tk.toOldCPE(cpe) return cpe if cpe else "None" # /api/cvefor/<cpe> @api def api_cvesFor(self, cpe): cpe = urllib.parse.unquote_plus(cpe) return query.cvesForCPE(cpe) # /api/cve/<cveid> @api def api_cve(self, cveid): cvesp = cves.last(rankinglookup=True, namelookup=True, via4lookup=True, capeclookup=True) cve = cvesp.getcve(cveid=cveid.upper()) if not cve: raise(APIError('cve not found', 404)) return cve # /api/cwe # /api/cwe/<cwe_id> @api def api_cwe(self, cwe_id=None): return db.getCAPECFor(str(cwe_id)) if cwe_id else db.getCWEs() # /api/capec/<cweid> @api def api_capec(self, cweid): return db.getCAPEC(cweid) # /api/last # /api/last/ # /api/last/<limit> @api def api_last(self, limit=None): limit = limit if limit else 30 cvesp = cves.last(rankinglookup=True, namelookup=True, via4lookup=True, capeclookup=True) cve = cvesp.get(limit=limit) return cve # /query @api def api_query(self): f={'rejectedSelect': request.headers.get('rejected'), 'cvss': request.headers.get('cvss_score'), 'cvssSelect': request.headers.get('cvss_modifier'), 'startDate': request.headers.get('time_start'), 'endDate': request.headers.get('time_end'), 'timeSelect': request.headers.get('time_modifier'), 'timeTypeSelect': request.headers.get('time_type'), 'skip': request.headers.get('skip'), 'limit': request.headers.get('limit')} try: skip = int(f['skip']) if f['skip'] else 0 except: raise(APIError('skip must be an int', 400)) try: limit = int(f['limit']) if f['limit'] else 0 except: raise(APIError('limit must be an int', 400)) return self.filter_logic(f, skip, limit) # /api/browse # /api/browse/ # /api/browse/<vendor> @api def api_browse(self, vendor=None): if vendor: vendor = urllib.parse.quote_plus(vendor).lower() try: browseList = query.getBrowseList(vendor) except redisExceptions.ConnectionError: raise(APIError("Server could not connect to the browsing repository", 503)) if isinstance(browseList, dict): return browseList else: return {} # /api/search/<vendor>/<path:product> @api def api_search(self, vendor=None, product=None): if not (vendor and product): return {} search = vendor + ":" + product # Not using query.cvesForCPE, because that one gives too much info #return json.dumps(db.cvesForCPE(search), default=json_util.default) return db.cvesForCPE(search) # /api/search/<path:search> @api def api_text_search(self, search=None): return db.getSearchResults(search) # /api/search/days/<days>/<path:search> @api def api_text_limitday_search(self, days=None, search=None): if not (search or days): return {} cve_d = [] date_n_days_ago = datetime.datetime.now() - timedelta(int(days)) result = db.getSearchResults(search) cve=result['data'] for item in cve: if item['Modified'] > date_n_days_ago: cve_d.append(item) return cve_d # /api/link/<key>/<value> @api def api_link(self, key=None,value=None): key=self.htmlDecode(key) value=self.htmlDecode(value) regex = re.compile(re.escape(value), re.I) data = {'cves': db.via4Linked(key, regex)} cvssList=[float(x['cvss']) for x in data['cves'] if x.get('cvss')] if cvssList: data['stats']={'maxCVSS': max(cvssList), 'minCVSS': min(cvssList),'count':len(data['cves'])} else: data['stats']={'maxCVSS': 0, 'minCVSS': 0, 'count':len(data['cves'])} return data # /api/dbInfo @api def api_dbInfo(self): return db.getDBStats() ######################## # Web Server Functions # ######################## # signal handlers def sig_handler(self, sig, frame): print('Caught signal: %s' % sig) IOLoop.instance().add_callback(self.shutdown) def shutdown(self): MAX_WAIT_SECONDS_BEFORE_SHUTDOWN = 3 print('Stopping http server') self.http_server.stop() print('Will shutdown in %s seconds ...' % MAX_WAIT_SECONDS_BEFORE_SHUTDOWN) io_loop = IOLoop.instance() deadline = time.time() + MAX_WAIT_SECONDS_BEFORE_SHUTDOWN def stop_loop(): now = time.time() if now < deadline and (io_loop._callbacks or io_loop._timeouts): io_loop.add_timeout(now + 1, stop_loop) else: io_loop.stop() print('Shutdown') stop_loop() def start(self): # get properties flaskHost = Configuration.getFlaskHost() flaskPort = Configuration.getFlaskPort() flaskDebug = Configuration.getFlaskDebug() # logging if Configuration.getLogging(): logfile = Configuration.getLogfile() pathToLog = logfile.rsplit('/', 1)[0] if not os.path.exists(pathToLog): os.makedirs(pathToLog) maxLogSize = Configuration.getMaxLogSize() backlog = Configuration.getBacklog() file_handler = RotatingFileHandler(logfile, maxBytes=maxLogSize, backupCount=backlog) file_handler.setLevel(logging.ERROR) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") file_handler.setFormatter(formatter) self.app.logger.addHandler(file_handler) if flaskDebug: # start debug flask server self.app.run(host=flaskHost, port=flaskPort, debug=flaskDebug) else: # start asynchronous server using tornado wrapper for flask # ssl connection print("Server starting...") if Configuration.useSSL(): ssl_options = {"certfile": os.path.join(_runPath, "../", Configuration.getSSLCert()), "keyfile": os.path.join(_runPath, "../", Configuration.getSSLKey())} else: ssl_options = None signal.signal(signal.SIGTERM, self.sig_handler) signal.signal(signal.SIGINT, self.sig_handler) self.http_server = HTTPServer(WSGIContainer(self.app), ssl_options=ssl_options) self.http_server.bind(flaskPort, address=flaskHost) self.http_server.start(0) # Forks multiple sub-processes IOLoop.instance().start() if __name__ == '__main__': server = API() server.start()
#!/usr/bin/env python3 from subprocess import call if __name__ == "__main__": call(["vklabs_pypi", "publish-package", "."])
""" Alex Staley -- Student ID: 919519311 Assignment 2 -- February 2020 ### HERE BEGINS THE Main.py FILE ### This code creates a neural network of perceptron objects, runs the experiments described in assignment 2, and displays the results in the prescribed format. Parameters are set via global constants declared in the Perceptron.py file. This includes the primary variables of each experiment in the assignment: # NUM_HIDDEN_UNITS # Experiment 1 variable--default 100 # PARTIAL # Experiment 2 variable--default 1 # MOMENTUM # Experiment 3 variable--default 0 File paths are defined in this file, lines 22/23. Change as needed. """ from neuralNetwork.Experiment import * # DEFINE FILE PATHS FOR TRAINING AND VALIDATION DATA HERE: trainingFilepath = "./venv/mnist_train.csv" validationFilepath = "./venv/mnist_test.csv" print("\nImporting training file...") trainingSet, trainingVector, trainingValues = parseData(trainingFilepath, PARTIAL) print("Importing validation file...") validationSet, validationVector, validationValues = parseData(validationFilepath, partial=1) print("\nInitializing neural network...\n") network = NeuralNetwork() print("######## RUNNING EXPERIMENT: ########", end="\n\t\t") print(NUM_HIDDEN_UNITS, "hidden units", end="\n\t\t") print(PCT_DATA, "of training data", sep="% ") print("\t\tMomentum =", MOMENTUM, '\n') trainingAccuracy, validationAccuracy, confusionMatrix = runExperiment( network, trainingSet, trainingVector, validationSet, validationVector, validationValues) print("\nExperiment complete! Displaying results") produceGraph(trainingAccuracy, validationAccuracy) produceMatrix(confusionMatrix)
import pandas as pd; import numpy as np import matplotlib.pyplot as plt import os def IMF(m): ''' Calculates the probability of 18<m1<m ''' return -60.307/1.3*(m**-1.3 - 18**-1.3) # Define directory and load data dataDir = 'COMPAS_Output_solar_metallicity' sysParams = pd.read_csv(os.path.join(dataDir, 'BSE_System_Parameters.csv'), skiprows=2) # Remove those binaries that are equilibrated at birth EAB = sysParams.loc[sysParams['Equilibrated_At_Birth'] == 1] sysParams.drop(sysParams.loc[sysParams[" SEED "].isin(EAB[" SEED "])].index, inplace=True) # Find binaries where both stars are BH progenitors largeBinary = sysParams.loc[(sysParams[' Mass@ZAMS(1) ']>18)&(sysParams[' Mass@ZAMS(2) ']>18)] # Calculate the q values q = sysParams[' Mass@ZAMS(2) ']/sysParams[' Mass@ZAMS(1) '] qBig = largeBinary[" Mass@ZAMS(2) "]/largeBinary[" Mass@ZAMS(1) "] # Make function of the q = 18/M1 mass = np.linspace(18, 130, 500) qFunction = 18/mass # Find cumulative counts from Kroupa IMF selection of primary. probMass = IMF(mass) # Plot the q vs m1 plt.plot(sysParams[' Mass@ZAMS(1) '], q, 'x') plt.plot(largeBinary[' Mass@ZAMS(1) '], qBig, '.') plt.plot(mass, qFunction, '-g') plt.plot(mass, probMass, '--k') print('Fraction of systems with small secondary mass: {0:.1%}'.format(1-len(largeBinary)/len(sysParams))) plt.show()
A=["1","2","3"] A.append("4"); def B(C): for figure in C: print("数字是:",C) B(A)
from django.urls import path from chat.views import ChatDetailView, HomePageView app_name = 'chat' urlpatterns = [ path('', HomePageView.as_view(), name='home'), path('<int:user_1>/<int:user_2>/chat/', ChatDetailView.as_view(), name='chatroom_detail'), ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 27 16:04:18 2019 """ ##https://github.com/Bjarten/early-stopping-pytorch/blob/master/pytorchtools.py import os import sys import torch import numpy as np # Useful PyTorch classes class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" # Modified by Rakshit Kothari def __init__(self, patience=7, verbose=False, delta=0, mode='min', fName = 'checkpoint.pt', path2save = '/home/rakshit/Documents/Python_Scripts/RIT-Eyes/RK/checkpoints'): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 fName (str): Name of the checkpoint file. path2save (str): Location of the checkpoint file. """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf if mode == 'min' else -np.Inf self.delta = delta self.path2save = path2save self.fName = fName self.mode = mode def __call__(self, val_loss, model): score = -val_loss if self.mode =='min' else val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model) elif score < (self.best_score + self.delta): self.counter += 1 print('EarlyStopping counter: {} out of {}'.format(self.counter, self.patience)) if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.save_checkpoint(val_loss, model) self.counter = 0 def save_checkpoint(self, val_loss, model_dict): '''Saves model when validation loss decreases.''' if self.verbose and self.mode == 'min': print('Validation metric decreased ({:.6f} --> {:.6f}). Saving model ...'.format(self.val_loss_min, val_loss)) elif self.verbose and self.mode == 'max': print('Validation metric increased ({:.6f} --> {:.6f}). Saving model ...'.format(self.val_loss_min, val_loss)) torch.save(model_dict, os.path.join(self.path2save, self.fName)) self.val_loss_min = val_loss # Useful PyTorch functions def weights_init(ObjVar): # Function to initialize weights for name, val in ObjVar.named_parameters(): if 'weight' in name and len(val.shape) >= 2: torch.nn.init.xavier_normal_(val, gain=1) elif 'bias' in name: torch.nn.init.zeros_(val) elif ('nalu' in name) or ('nac' in name): torch.nn.init.zeros_(val) elif '_' in name: print('{}. Ignoring.'.format(name)) else: print('{}. No init.'.format(name)) return ObjVar def partial_weight_loading(net, net_odict): # Load all weights which have a matching string. # WARNING: This code can break in multiple ways. # Use with caution. If you the data loading does # not look right, retrain from scratch. available_keys = [key for key in net_odict.keys()] for name, param in net.named_parameters(): matchedkey = [key for key in available_keys if name in key] if len(matchedkey) == 1: if net_odict[matchedkey[0]].data.shape == param.data.shape: param.data = net_odict[matchedkey[0]].cpu().data else: print('Shapes did not match. Ignoring weight: {}.'.format(name)) else: print('Could not match: {}. Ignoring this parameter.'.format(name)) print('Values loaded!') return net def move_to_multi(model_dict): ''' Convert dictionary of weights and keys to a multiGPU format. It simply appends a 'module.' in front of keys. ''' multiGPU_dict = {} for key, value in model_dict.items(): multiGPU_dict['module.'+key] = value return multiGPU_dict def move_to_single(model_dict): ''' Convert dictionary of weights and keys to a singleGPU format. It removes the 'module.' in front of keys. ''' singleGPU_dict = {} for key, value in model_dict.items(): singleGPU_dict[key.replace('module.', '')] = value return singleGPU_dict def my_collate(batch): ''' batch: list of information acquired from __getitem__ ''' I = torch.stack([item[0] for item in batch], dim=0) M = torch.stack([item[1] for item in batch], dim=0) M_nS = torch.stack([item[2] for item in batch], dim=0) spatW = torch.stack([item[3] for item in batch], dim=0) distM = torch.stack([item[4] for item in batch], dim=0) subjectID = [item[5] for item in batch] fName = [item[6] for item in batch] pupilPhi = torch.stack([item[7][0] for item in batch], dim=0) irisPhi = torch.stack([item[7][1] for item in batch], dim=0) return I, M, M_nS, spatW, distM, subjectID, fName, (pupilPhi, irisPhi) def load_from_file(paths_file): # Loads model weights from paths_file, a tuple of filepaths # Sequentially moves from first file, attempts to load and if unsuccessful # loads the next file and so on ... for path in paths_file: if path: try: netDict = torch.load(path) print('File loaded from: {}'.format(path)) break except: print('WARNING. Path found but failed to load: {}'.format(path)) else: netDict = {} return netDict
#!/usr/bin/env python # # Copyright 2012 Steven Le (stevenle08@gmail.com) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flings a URI to a Google TV server.""" __author__ = 'stevenle08@gmail.com (Steven Le)' import optparse import os import sys import googletv def get_parser(): """Creates an optparse.OptionParser object used by this script.""" usage = 'Usage: %prog [--host=] [--port=9551] [--cert=cert.pem] <uri>' parser = optparse.OptionParser(usage=usage) parser.add_option( '--cert', default='cert.pem', help='Path to cert file.') parser.add_option( '--host', default='NSZGT1-6131194.local', help='Host of the Google TV server.') parser.add_option( '--port', default=9551, type='int', help='Port number.') return parser def main(): parser = get_parser() options, args = parser.parse_args() if not args: sys.exit(parser.get_usage()) host = options.host port = options.port cert = options.cert if not os.path.isfile(cert): sys.exit('No cert file. Use --cert.') uri = args[0] with googletv.AnymoteProtocol(host, cert, port=port) as gtv: gtv.fling(uri) if __name__ == '__main__': main()
# Under MIT license, see LICENSE.txt from .ai_command import AICommand from .engine_command import EngineCommand from .pose import Pose from .position import Position from .path import Path import Util.geometry as geometry from .singleton import Singleton
""" Finger exercise: Write a program that examines three variables— x , y , and z — and prints the largest odd number among them. If none of them are odd, it should print a message to that effect """ x = int(input("Enter the value for x: ")) y = int(input("Enter the value for y: ")) z = int(input("Enter the value for z: ")) biggest = 0 # The variable that will hold the biggest odd number ### There are a couple of ways to solve this, I'll show the one I think it's easier to understand ############# First we check if all 3 numbers are odd and search for the biggest ############# if x % 2 != 0 and z % 2 != 0 and y % 2 != 0: if x >= y and x >= z: biggest = x elif y >= z and y > x: # Over here we don't have to check if y is equal to x, because we already tested for that biggest = y else: biggest = z ############# Now we check if x and either y or z is odd ############# elif x % 2 != 0: if y % 2 != 0: if x >= y: biggest = x else: biggest = y elif z % 2 != 0: if x >= z: biggest = x else: biggest = z else: biggest = x ############# Now we check if y is odd or z ############# elif y % 2 != 0: # We already know that x is not odd so we only check for z if z % 2 != 0: if y >= z: biggest = y else: biggest = z else: biggest = y ############# Now we check if z is odd ############# elif z % 2 != 0: biggest = z else: print("No odd numbers were entered") if biggest > 0: print(f"Biggest odd number is {biggest}")
from setuptools import setup, find_packages with open("README.rst", "r", encoding="utf-8") as f: readme = f.read() setup( name="discord-interactions.py", version="0.0.7", description="A library around the Discord Interactions API", long_description=readme, long_description_content_type="text/x-rst", url="https://github.com/LiBa001/discord-interactions.py", author="Linus Bartsch", author_email="pypi@libasoft.de", license="MIT", classifiers=[ "Development Status :: 1 - Planning", "Environment :: Web Environment", "Framework :: Flask", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Internet", "Topic :: Software Development :: Libraries", ], python_requires=">=3.8", install_requires=["flask", "pynacl", "requests"], keywords="discord discord-py discord-bot wrapper", packages=find_packages(exclude=["examples", "tests"]), data_files=None, )
# -*- coding: utf-8 -*- from __future__ import unicode_literals class UserJSONPresenter(object): """ Present a user in the JSON format returned by API requests. Note that this presenter as of now returns some information that should not be publicly available, like the users email address. This is fine for now because it is only used in places where the caller has access to this. We would need to refactor this as soon as we use this presenter for a public API. """ def __init__(self, user): self.user = user def asdict(self): return { "authority": self.user.authority, "email": self.user.email, "userid": self.user.userid, "username": self.user.username, "display_name": self.user.display_name, }
import pandas as pd import numpy as np # tfidf from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import Ridge from sklearn import linear_model class ContentBase: @staticmethod def getTfidf(x_train): transformer = TfidfTransformer(smooth_idf=True, norm='l2') tfidf = transformer.fit_transform(x_train.tolist()).toarray() return tfidf @staticmethod def get_items_rated_by_user(rate_matrix, user_id): y = rate_matrix[:, 0] ids = np.where(y == user_id) item_ids = rate_matrix[ids, 1]; scores = rate_matrix[ids, 2] return item_ids, scores @staticmethod def getIndexInArr(index_arr, list_item): return list(map((lambda x: np.where(index_arr == x)[0][0]), list_item)) @staticmethod #Find the model for each user def GetRidgeRegression(self, n_users, rate_train, tfidf, W, b, index_arr): for n in n_users: i = np.where(n_users == n[0])[0][0] ids, scores = self.get_items_rated_by_user(rate_train, n[0]) clf = Ridge(alpha=0.01, fit_intercept=True) tests = self.getIndexInArr(index_arr, ids[0]) Xhat = tfidf[tests, :] if Xhat.size != 0: clf.fit(Xhat, scores[0]) W[:, i] = clf.coef_ b[0, i] = clf.intercept_ else: W[:, i] = 0 b[0, i] = 0 return W, b
import scrapy class StarWarsSpider(scrapy.Spider): name = 'starwars' allowed_domains = ["starwars.com"] start_urls = ['https://www.starwars.com/databank'] def parse(self, response): # TODO - to investigate why this line of css selector code does not work on starwars site!!? # urls = response.css('.blocks-container.ref-1-3 .building-block-config .image-wrapper a::attr(href)').extract() urls = response.css('.building-block-config .image-wrapper a::attr(href)').extract() for url in urls: url = response.urljoin(url) yield scrapy.Request(url=url, callback=self.parse_details) def parse_details(self, response): # TODO - why did the character text returns null?? yield { 'Image': response.css('.ratio-16x9 .building-block .image-wrapper .aspect img::attr(src)').extract_first(), 'Character': response.css('.ratio-16x9 .building-block .content-wrapper .content-info .title span::text').extract_first(), }
from dataclasses import dataclass from typing import List, Optional from urllib.parse import urljoin from pyvultr.utils import BaseDataclass, VultrPagination, get_only_value from .base import BaseVultrV2, command from .enums import ACL @dataclass class UserInfo(BaseDataclass): id: str # The User's id. api_enabled: bool # Permit API access for this User. email: str # The User's email address. acls: List[str] # An array of permission granted. name: str = None # The User's name. password: str = None # The User's password. class UserAPI(BaseVultrV2): """Vultr User API. Reference: https://www.vultr.com/api/#tag/users Vultr supports multiple users in each account, and each user has individual access permissions. Users have unique API keys, which respect the permission for that user. Attributes: api_key: Vultr API key, we get it from env variable `$VULTR_API_KEY` if not provided. """ def __init__(self, api_key: Optional[str] = None): super().__init__(api_key) @property def base_url(self): """Get base url for all API in this section.""" return urljoin(super().base_url, "users") @command def list(self, per_page: int = None, cursor: str = None, capacity: int = None) -> VultrPagination[UserInfo]: """Get a list of all Users in your account. Args: per_page: Number of items requested per page. Default is 100 and Max is 500. cursor: Cursor for paging. capacity: The capacity of the VultrPagination[UserInfo], see `VultrPagination` for details. Returns: VultrPagination[UserInfo]: A list-like object of `UserInfo` object. """ return VultrPagination[UserInfo]( fetcher=self._get, cursor=cursor, page_size=per_page, return_type=UserInfo, capacity=capacity, ) @command def create( self, name: str, email: str, password: str, api_enabled: bool = None, acl_group: List[ACL] = None, ) -> UserInfo: """Create a new User. The `email`, `name`, and `password` attributes are required. Args: name: The User's name. email: The User's email address. password: The User's password. api_enabled: API access is permitted for this User. acl_group: An array of permission granted. Returns: UserInfo: User info. """ _json = { "name": name, "email": email, "password": password, "api_enabled": api_enabled, "acls": acl_group and [i.value for i in acl_group], } resp = self._post(json=_json) return UserInfo.from_dict(get_only_value(resp)) @command def get(self, user_id: str) -> UserInfo: """Get information about a User. Args: user_id: The User id. Returns: UserInfo: User info. """ resp = self._get(f"/{user_id}") return UserInfo.from_dict(get_only_value(resp)) @command def update( self, user_id: str, name: str = None, email: str = None, password: str = None, api_enabled: bool = None, acl_group: List[ACL] = None, ): """Update information for a User. All attributes are optional. If not set, the attributes will retain their original values. Args: user_id: The User id. name: The User's name. email: The User's email address. password: The User's password. api_enabled: API access is permitted for this User. acl_group: An array of permission granted. Returns: STATUS CODE: 204 /NO CONTENT/ """ _json = { "name": name, "email": email, "password": password, "api_enabled": api_enabled, "acls": acl_group and [i.value for i in acl_group], } return self._patch(f"/{user_id}", json=_json) @command def delete(self, user_id: str): """Delete a User. Args: user_id: The User id. Returns: STATUS CODE: 204 /NO CONTENT/ """ return self._delete(f"/{user_id}")
import socket, sys, os, base64, json from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes from cryptography.fernet import Fernet from PyTerminalColor.TerminalColor import TerminalColor class Client: def __init__(self, ip:str='127.0.0.1', port:int=4444, save_path:str='') -> None: self.SEPARATOR = "<D|M>" self.BUFFER_SIZE = 4096 self.SAVE_PATH = save_path self.LINE_SIZE = 60 self.ip = ip self.port = port self.passwd_hash = None self.colorize = TerminalColor(fgcolor='YELLOW', bgcolor='BLACK', style='BOLD') def __gen_key_from_pass(self, passwd:str)->bytes: ''' Generates key from password. ''' salt = b'SecretSalt' kdf = PBKDF2HMAC( algorithm=hashes.SHA256(), length=32, salt=salt, iterations=100000, backend=default_backend() ) key = base64.urlsafe_b64encode(kdf.derive(passwd.encode('utf-8'))) return key def encrypt_data(self, user:str, data:str)->bytes: ''' encrypts data which is passed with the help of key as another parameter and returns encrypted data in form of bytes ''' KEY = self.__gen_key_from_pass(user) data = data.encode('utf-8') encrypter = Fernet(KEY) enc_data = encrypter.encrypt(data) return enc_data def decrypt_data(self, data:str)->bytes: ''' decrypts data which is passed with the help of key as another parameter and returns decrypted data in form of bytes ''' KEY = self.passwd_hash if type(data) == str: data = data.encode('utf-8') decrypter = Fernet(KEY) dec_data = decrypter.decrypt(data) return dec_data def send(self, data:str): ''' sends data serially ''' if type(data) == bytes: data = str(data, encoding='utf-8') json_data = json.dumps(data) bytes_json_data = bytes(json_data, encoding='utf-8') self.connection.send(bytes_json_data) def receive(self): ''' receives data serially ''' bytes_json_data = b'' while True: try: bytes_json_data += self.connection.recv(self.BUFFER_SIZE) data = json.loads(bytes_json_data) return data except json.JSONDecodeError: continue def save_file(self, file_name:str, data:bytes): ''' receive and save file over the connection ''' # packet = transfer_send (sep) filename (sep) data # create file save path file_name = os.path.join(self.SAVE_PATH, file_name) # Start receiving file packets self.colorize.cprint(f'[*] Receiving File {file_name}:') with open(file_name, "wb") as f: decrypted_file_data = self.decrypt_data(data) # decode base64 data data = base64.b64decode(decrypted_file_data) f.write(data) # inform server that the transfer has been completed self.colorize.cprint('[*] Transfer Complete', use_default=False, fgcolor='GREEN', style='BOLD') self.send('transfer_completed') def start(self): ''' start client ''' print() print('-'*self.LINE_SIZE) self.colorize.cprint(f'[*] Trying to connect to {self.ip}:{self.port}', use_default=False, fgcolor='YELLOW', bgcolor='RED', style='BOLD') print('-'*self.LINE_SIZE) # create socket for connection and connect to server self.connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # try to connect to the server connected = False while not connected: try: self.connection.connect((self.ip, self.port)) connected = True except ConnectionRefusedError: self.colorize.cprint('\r[*] Peer seems to be offline.', end='', use_default=False, fgcolor='YELLOW', bgcolor='RED', style='BOLD') print() self.colorize.cprint('[*] Connection Established', use_default=False, fgcolor='GREEN', style='ITALIC') print('-'*self.LINE_SIZE) try: while True: message = self.receive() # split string to get data message_list = message.split(self.SEPARATOR) # authenticate user if message == 'exit': self.colorize.cprint('[!] Connection closed by remote host.', use_default=False, fgcolor='YELLOW', bgcolor='RED', style='BOLD') print() self.connection.close() sys.exit() elif 'auth_user' == message: username = input('[+] Enter your username: ') self.send(username) passwd = input('[+] Enter your password: ') self.send(passwd) print('-'*self.LINE_SIZE) auth_result = self.receive() if 'exit' == auth_result: self.colorize.cprint('[!] Invalid Details. Exiting.', use_default=False, fgcolor='YELLOW', bgcolor='RED', style='BOLD') break else: self.colorize.cprint('[*] Authenticated', use_default=False, fgcolor='GREEN', style='BOLD') self.passwd_hash = self.__gen_key_from_pass(passwd) print('-'*self.LINE_SIZE) # receive file from server peer elif 'transfer_send' == message_list[0] : self.colorize.cprint('[*] Encrypted File Incoming') self.save_file(file_name=message_list[1], data=message_list[2].encode('utf-8')) break except KeyboardInterrupt: self.colorize.cprint('\r\n[!] ctrl+c detected! Exiting Progam') sys.exit() finally: self.connection.close() print('-'*self.LINE_SIZE) if __name__ == '__main__': SAVE_PATH = r'C:\Users\there\Desktop' IP = '127.0.0.1' PORT = 4444 client = Client(IP, PORT, SAVE_PATH) client.start()
#------------------------------------------------------------------------------- # Copyright (C) 2017 Carlos Guzman (cguZZman) carlosguzmang@protonmail.com # # This file is part of Cloud Drive Common Module for Kodi # # Cloud Drive Common Module for Kodi is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Cloud Drive Common Module for Kodi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import datetime import sqlite3 import time from clouddrive.common.ui.logger import Logger from clouddrive.common.ui.utils import KodiUtils class Cache(object): _addonid = None _name = None _expiration = None _monitor = None _abort = False def __init__(self, addonid, name, expiration): self._addonid = addonid self._name = name self._expiration = expiration self._monitor = KodiUtils.get_system_monitor() def __del__(self): self._abort = True del self._monitor def _get_connection(self): profile_path = KodiUtils.get_addon_info("profile", self._addonid) if not KodiUtils.file_exists(profile_path): KodiUtils.mkdirs(profile_path) db = KodiUtils.translate_path("%s/cache_%s.db" % (profile_path, self._name,)) con = sqlite3.connect(db, timeout=30, isolation_level=None) rs = con.execute("select name from sqlite_master where type='table' AND name='cache'") if not rs.fetchone(): try: con.execute("create table cache(key text unique, value text, expiration integer)") except Exception as ex: Logger.debug(ex) return con def _get_datetime(self, ts): return int(time.mktime(ts.timetuple())) def get(self, key): row = self._read(key) if row and row[1] > self._get_datetime(datetime.datetime.now()): return eval(row[0]) return def set(self, key, value): expiration = self._get_datetime(datetime.datetime.now() + self._expiration) self._insert(key, value, expiration) def setmany(self, key_value_list): expiration = self._get_datetime(datetime.datetime.now() + self._expiration) for kv in key_value_list: kv[1] = repr(kv[1]) kv.append(expiration) self._execute_sql("insert or replace into cache(key, value, expiration) values(?,?,?)", key_value_list) def remove(self, key): self._execute_sql("delete from cache where key = ?", (key,)) def clear(self): self._execute_sql("delete from cache") Logger.debug("Cache '%s' cleared" % self._name) def _read(self, key): return self._execute_sql("select value, expiration from cache where key = ?", (key,)) def _insert(self, key, value, expiration): self._execute_sql("insert or replace into cache(key, value, expiration) values(?,?,?)", (key, repr(value), expiration,)) def _execute_sql(self, query, data=None): result = None con = self._get_connection() with con: retries = 0 error = None while retries < 15 and not self._abort: try: con.execute("delete from cache where expiration < ?", (self._get_datetime(datetime.datetime.now()),)) if isinstance(data, list): result = con.executemany(query, data).fetchone() elif data: result = con.execute(query, data).fetchone() else: result = con.execute(query).fetchone() break except sqlite3.OperationalError as error: if "_database is locked" in error: retries += 1 Logger.debug("Cache query retrying #d [%s]: %s" % (retries, query, str(data),)) self._monitor.waitForAbort(0.3) else: break except Exception as error: break if error: Logger.debug("Error executing cache query [%s]: %s" % (query, str(error),)) con.close() return result
# Creates new option in main menu bar # EDITED: 2020-08-25 # ============================================ import pymel.core as pm import toolbox def create_my_menu(standalone=False): '''Creates a CSA menu with my scripts''' reload(toolbox) # find main maya window main_maya_window = pm.language.melGlobals['gMainWindow'] # check of menu exists if pm.menu('CSA', exists=True): pm.deleteUI('CSA') # create a new menu and parent to main maya window custom_menu = pm.menu('CSA', parent=main_maya_window) # Build a menu item and parent under the 'customMenu' pm.menuItem(label='Open Toolbox', parent=custom_menu, command=lambda *args: toolbox.create_my_toolbox()) toolbox.create_my_toolbox()
#!/usr/bin/env python3 import yaml, argparse import logging as log from pathlib import Path from cliva_fl.experiment import Experiment # ARGUMENT PARSING parser = argparse.ArgumentParser(description='Argument parser for log processing and plot creation') parser.add_argument('-r', '--repeat', type=int, default=1, required=False, help='Number of times to repeat the experiement.') parser.add_argument('-c', '--conf', type=Path, default=Path('experiment.yml'), required=False, help='Path to the experiment config file.') args = parser.parse_args() # LOGGING log.basicConfig( format='%(asctime)s [%(levelname)s] %(message)s', datefmt='%m/%d/%Y %H:%M', level=log.DEBUG) with open(args.conf, 'r') as f: config = yaml.load(f, Loader=yaml.Loader) dataset_cnf = config['dataset'] model_cnf = config['model'] optimizer_cnf = config['optimizer'] loss_fn_cnf = config['loss_fn'] training_cnf = config['training'] validation_cnf = config['validation'] log.debug(f'Dataset Config: {dataset_cnf}') log.debug(f'Model Config: {model_cnf}') log.debug(f'Optimizer Config: {optimizer_cnf}') log.debug(f'Loss Function Config: {loss_fn_cnf}') log.debug(f'Training Config: {training_cnf}') log.debug(f'Validation Config: {validation_cnf}') if __name__ == "__main__": exp = Experiment.from_config(args.conf) for i in range(args.repeat): log.info(f'Starting experiment {i+1} of {args.repeat}') exp.run(training_cnf['n_epochs'], max_buffer_len=training_cnf['max_buffer_len'], shuffle_batches=training_cnf['shuffle_batches'], log_dir=training_cnf['log_dir'], use_gpu=training_cnf['use_gpu']) # exp.run(**training_cnf) exp.stats() exp.reset()
import io import os from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) # Avoids IDE errors, but actual version is read from version.py __version__ = None exec(open('api/version.py').read()) # Get the long description from the README file with io.open(os.path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() install_requires = [ 'numpy >= 1.12.1' ] extras_requires = { 'tests': [ 'coverage >= 4.3.4', 'codecov >= 2.0.15', 'pytest >= 3.0.3', 'pytest-cov >= 2.4.0', 'flake8 >= 3.0.0', 'flake8_docstrings >= 1.0.2'], } setup( name="TextParser", version=__version__, author="Zhaohui Li, Yangzhou, Yuanzheng Wang, Yingyan Li, Yixing Fa et al.", author_email="lizhaohui@software.ict.ac.cn", description=("This project is implemented for the connection between the \ App layer and the base TextParser layer."), license="Apache 2.0", keywords="natural language understanding api", url="https://github.com/faneshion/TextParser", packages=find_packages(), long_description=long_description, classifiers=[ "Development Status :: 3 - Alpha", 'Environment :: Console', 'Operating System :: POSIX :: Linux', 'Topic :: Scientific/Engineering :: Artificial Intelligence', "License :: OSI Approved :: Apache Software License", 'Programming Language :: Python :: 3.6' ], install_requires=install_requires, extras_require=extras_requires )
# -*- coding: utf-8 -*- """ Created on Sun Mar 17 23:2 7:28 2019 @author: Winham 网络测试 """ import os import numpy as np from keras.models import load_model from keras.utils import to_categorical from data_preprocess import * import mit_utils as utils import time import matplotlib.pyplot as plt import tensorflow_addons as tfa target_class = ['W', 'N1', 'N2', 'N3', 'REM'] target_sig_length = 3072 tic = time.time() trainX, trainY, TestX, TestY = dataload('channel0.npz') toc = time.time() markov_matrix = [[66927., 3996., 179., 6., 86.], [2252., 17891., 4269., 9., 753.], [1271., 2262., 80861., 3546., 1043.], [179., 113., 3247., 15892., 23.], [565., 912., 427., 1., 32279.]] markov_matrix = np.array(markov_matrix) # markov_matrix_copy = markov_matrix.copy() # for i in range(5): # markov_matrix_copy[i] /= markov_matrix_copy[i].sum() # print(markov_matrix_copy) markov_matrix = np.log2(markov_matrix) ** 3 for i in range(5): max = np.max(markov_matrix[i]) markov_matrix[i] /= max # print(markov_matrix) # assert False print('Time for data processing--- '+str(toc-tic)+' seconds---') model_name = 'myNet.h5' model = load_model(model_name) # model.summary() pred_vt = model.predict(TestX, batch_size=256, verbose=1) pred_v = np.argmax(pred_vt, axis=1) true_v = np.argmax(TestY, axis=1) def weight_decay(order): weights = [] for i in range(order): weights.append(4 ** (-i)) return weights order = 6 weight = weight_decay(order) for i in range(1,len(pred_vt)-order): factor = 1 if pred_v[i-1] != pred_v[i]: for j in range(1,order+1): if pred_v[i+j] == pred_v[i-1]: factor += weight[j-1]*2.1 elif pred_v[i+j] == pred_v[i]: factor -= 0.55 * weight[j-1] if factor < 0.1: factor = 0.1 vector = markov_matrix[pred_v[i - 1]].copy() vector[pred_v[i-1]] *= factor re_pred = pred_vt[i] * vector # print(re_pred) pred_v[i] = np.argmax(re_pred) # f1 = 3.1 # f2 = 0.45 # for i in range(1,len(pred_vt)-1): # if pred_v[i-1] != pred_v[i]: # if pred_v[i-1] == pred_v[i+1]: # factor = f1 # elif pred_v[i] == pred_v[i+1]: # factor = f2 # else: # factor = 1 # # print(pred_vt[i]) # vector = markov_matrix[pred_v[i - 1]].copy() # vector[pred_v[i-1]] *= factor # re_pred = pred_vt[i] * vector # # print(re_pred) # pred_v[i] = np.argmax(re_pred) utils.plot_confusion_matrix(true_v, pred_v, np.array(target_class)) utils.print_results(true_v, pred_v, target_class) plt.savefig('cm.png') # pred_v = pred_v[:10000] # pred_v.resize((100,100)) # plt.subplot(121) # plt.matshow(pred_v, cmap = plt.cm.Blues) # plt.savefig('cm_pred.png') # # true_v = true_v[:10000] # true_v.resize((100,100)) # plt.subplot(122) # plt.matshow(true_v, cmap = plt.cm.Blues) # plt.savefig('cm_true.png')
class AddInId(object, IDisposable): """ Identifies an AddIn registered with Revit AddInId(val: Guid) """ def Dispose(self): """ Dispose(self: AddInId) """ pass def GetAddInName(self): """ GetAddInName(self: AddInId) -> str name of addin associated with this AddInId Attempts to obtain the name from loaded Third Party AddIns Returns: name of addin """ pass def GetAddInNameFromDocument(self, aDoc): """ GetAddInNameFromDocument(self: AddInId,aDoc: Document) -> str name of application associated with this ApplicationId First attempts to obtain the name from AddInIds stored in the document. If unsuccessful, attempts to obtain the name from loaded Third Party AddIns. aDoc: target document Returns: name of application """ pass def GetGUID(self): """ GetGUID(self: AddInId) -> Guid value of the AddInId as a GUID Returns: GUID value of the AddInId """ pass def ReleaseUnmanagedResources(self, *args): """ ReleaseUnmanagedResources(self: AddInId,disposing: bool) """ pass def __enter__(self, *args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self, *args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self, val): """ __new__(cls: type,val: Guid) """ pass def __repr__(self, *args): """ __repr__(self: object) -> str """ pass IsValidObject = property( lambda self: object(), lambda self, v: None, lambda self: None ) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: AddInId) -> bool """
import numpy as np import sidpy from tqdm import trange, tqdm from sklearn.feature_extraction import image from sklearn.utils.extmath import randomized_svd def clean_svd(im, pixel_size=1, source_size=5): """De-noising of image by using first component of single value decomposition""" if not isinstance(im, sidpy.Dataset): raise TypeError('We need a sidpy.Dataset') if im.data_type.name != 'IMAGE': raise TypeError('We need sidpy.Dataset of sidpy.Datatype: IMAGE') patch_size = int(source_size/pixel_size) if patch_size < 3: patch_size = 3 patches = image.extract_patches_2d(im, (patch_size, patch_size)) patches = patches.reshape(patches.shape[0], patches.shape[1]*patches.shape[2]) num_components = 32 u, s, v = randomized_svd(patches, num_components) u_im_size = int(np.sqrt(u.shape[0])) reduced_image = u[:, 0].reshape(u_im_size, u_im_size) reduced_image = reduced_image/reduced_image.sum()*im.sum() out_dataset = im.like_data(reduced_image) out_dataset.title = 'Major SVD component' out_dataset.data_type = 'image' return out_dataset # Deconvolution def make_gauss(size_x, size_y, width=1.0, x0=0.0, y0=0.0, intensity=1.0): """Make a Gaussian shaped probe """ size_x = size_x/2 size_y = size_y/2 x, y = np.mgrid[-size_x:size_x, -size_y:size_y] g = np.exp(-((x-x0)**2 + (y-y0)**2) / 2.0 / width**2) probe = g / g.sum() * intensity return probe def decon_lr(o_image, resolution=0.1, verbose=False): """ # This task generates a restored image from an input image and point spread function (PSF) using # the algorithm developed independently by Lucy (1974, Astron. J. 79, 745) and Richardson # (1972, J. Opt. Soc. Am. 62, 55) and adapted for HST imagery by Snyder # (1990, in Restoration of HST Images and Spectra, ST ScI Workshop Proceedings; see also # Snyder, Hammoud, & White, JOSA, v. 10, no. 5, May 1993, in press). # Additional options developed by Rick White (STScI) are also included. # # The Lucy-Richardson method can be derived from the maximum likelihood expression for data # with a Poisson noise distribution. Thus, it naturally applies to optical imaging data such as HST. # The method forces the restored image to be positive, in accord with photon-counting statistics. # # The Lucy-Richardson algorithm generates a restored image through an iterative method. The essence # of the iteration is as follows: the (n+1)th estimate of the restored image is given by the nth estimate # of the restored image multiplied by a correction image. That is, # # original data # image = image --------------- * reflect(PSF) # n+1 n image * PSF # n # where the *'s represent convolution operators and reflect(PSF) is the reflection of the PSF, i.e. # reflect((PSF)(x,y)) = PSF(-x,-y). When the convolutions are carried out using fast Fourier transforms # (FFTs), one can use the fact that FFT(reflect(PSF)) = conj(FFT(PSF)), where conj is the complex conjugate # operator. Parameters ---------- o_image: sidpy_Dataset with DataType='image' the image to be dconvoluted resolution: width of resolution function Returns ------- out_dataset: sidpy.Dataset the deconvoluted dataset """ if len(o_image) < 1: return o_image scale_x = sidpy.base.num_utils.get_slope(o_image.dim_0) gauss_diameter = resolution/scale_x probe = make_gauss(o_image.shape[0], o_image.shape[1], gauss_diameter) probe_c = np.ones(probe.shape, dtype=np.complex64) probe_c.real = probe error = np.ones(o_image.shape, dtype=np.complex64) est = np.ones(o_image.shape, dtype=np.complex64) source = np.ones(o_image.shape, dtype=np.complex64) source.real = o_image response_ft = np.fft.fft2(probe_c) dx = o_image.x[1]-o_image.x[0] dk = 1.0 / float(o_image.x[-1]) # last value of x axis is field of view screen_width = 1 / dx aperture = np.ones(o_image.shape, dtype=np.complex64) # Mask for the aperture before the Fourier transform n = o_image.shape[0] size_x = o_image.shape[0] size_y = o_image.shape[1] theta_x = np.array(-size_x / 2. + np.arange(size_x)) theta_y = np.array(-size_y / 2. + np.arange(size_y)) t_xv, t_yv = np.meshgrid(theta_x, theta_y) tp1 = t_xv ** 2 + t_yv ** 2 >= o_image.shape[0]*4/5 ** 2 aperture[tp1.T] = 0. # print(app_ratio, screen_width, dk) progress = tqdm(total=500) # de = 100 dest = 100 i = 0 while abs(dest) > 0.0001: # or abs(de) > .025: i += 1 error_old = np.sum(error.real) est_old = est.copy() error = source / np.real(np.fft.fftshift(np.fft.ifft2(np.fft.fft2(est) * response_ft))) est = est * np.real(np.fft.fftshift(np.fft.ifft2(np.fft.fft2(error) * np.conjugate(response_ft)))) error_new = np.real(np.sum(np.power(error, 2))) - error_old dest = np.sum(np.power((est - est_old).real, 2)) / np.sum(est) * 100 if error_old != 0: de = error_new / error_old * 1.0 else: de = error_new if verbose: print( ' LR Deconvolution - Iteration: {0:d} Error: {1:.2f} = change: {2:.5f}%, {3:.5f}%'.format(i, error_new, de, abs(dest))) if i > 500: dest = 0.0 print('terminate') progress.update(1) progress.write(f"converged in {i} iterations") #progress.close() print('\n Lucy-Richardson deconvolution converged in ' + str(i) + ' iterations') est2 = np.real(np.fft.ifft2(np.fft.fft2(est) * np.fft.fftshift(aperture))) out_dataset = o_image.like_data(np.real(est)) out_dataset.title = 'Lucy Richardson deconvolution' out_dataset.data_type = 'image' return out_dataset
#!/usr/bin/env python # -*- coding: utf-8 -*- try: from urllib.request import urlopen, Request except ImportError: from urllib2 import urlopen, Request import time import plugins import urllib2 import json class Plugin(plugins.BasePlugin): __name__ = 'powerdns' def run(self, config): ''' Experimental plugin for PowerDNS authoritative server. Might also work with PowerDNS recursor, but it may need extra delta_keys / absolute_keys. Add to /etc/nixstats.ini: [powerdns] enabled=yes statistics_url=http://localhost:8081/api/v1/servers/localhost/statistics api_key=changeme ;ca_file= ;ca_path= ;timeout=10 ''' # Create request to configured URL request = urllib2.Request(config.get(__name__, 'statistics_url'), headers={'X-API-Key': '%s' % config.get(__name__, 'api_key')}) # defaults timeout = 10 results = dict() raw_response = None # next / previous cached metrics (for calculating deltas) next_cache = dict() prev_cache = self.get_agent_cache() # use timeout from config if specified if config.has_option(__name__, 'timeout'): timeout = int(config.get(__name__, 'timeout')) # create response based on configuration if config.has_option(__name__, 'ca_file'): raw_response = urllib2.urlopen(request, timeout=timeout, cafile=config.get(__name__, 'ca_file')) elif config.has_option(__name__, 'ca_path'): raw_response = urllib2.urlopen(request, timeout=timeout, capath=config.get(__name__, 'ca_path')) else: raw_response = urllib2.urlopen(request, timeout=timeout) # set next_cache timestamp next_cache['ts'] = time.time() # parse raw response as JSON try: stats = json.loads(raw_response.read()) except Exception: return False # keys for which we should calculate the delta delta_keys = ( 'corrupt-packets', 'deferred-cache-inserts', 'deferred-cache-lookup', 'deferred-packetcache-inserts', 'deferred-packetcache-lookup', 'dnsupdate-answers', 'dnsupdate-changes', 'dnsupdate-queries', 'dnsupdate-refused', 'incoming-notifications', 'overload-drops', 'packetcache-hit', 'packetcache-miss', 'query-cache-hit', 'query-cache-miss', 'rd-queries', 'recursing-answers', 'recursing-questions', 'recursion-unanswered', 'servfail-packets', 'signatures', 'sys-msec', 'tcp-answers', 'tcp-answers-bytes', 'tcp-queries', 'tcp4-answers', 'tcp4-answers-bytes', 'tcp4-queries', 'tcp6-answers', 'tcp6-answers-bytes', 'tcp6-queries', 'timedout-packets', 'udp-answers', 'udp-answers-bytes', 'udp-do-queries', 'udp-in-errors', 'udp-noport-errors', 'udp-queries', 'udp-recvbuf-errors', 'udp-sndbuf-errors', 'udp4-answers', 'udp4-answers-bytes', 'udp4-queries', 'udp6-answers', 'udp6-answers-bytes', 'udp6-queries', 'user-msec' ) # keys for which we should store the absolute value: absolute_keys = ( 'key-cache-size', 'latency', 'fd-usage', 'meta-cache-size', 'open-tcp-connections', 'packetcache-size', 'qsize-q', 'query-cache-size', 'real-memory-usage', 'security-status', 'signature-cache-size', 'uptime' ) data = dict() for stat in stats: if 'name' in stat and 'value' in stat and 'type' in stat: if stat['type'] == 'StatisticItem': if stat['name'] in delta_keys: results[stat['name']] = self.absolute_to_per_second(stat['name'], float(stat['value']), prev_cache) data[stat['name']] = float(stat['value']) elif stat['name'] in absolute_keys: results[stat['name']] = float(stat['value']) data['ts'] = time.time() self.set_agent_cache(data) return results if __name__ == '__main__': Plugin().execute()
import subprocess import typing def run_process(args: typing.List[str], env=None) -> bytes: run = subprocess.run( args, stdout=subprocess.PIPE, env=env, ) if run.returncode: raise Exception(f"Exited with code {run.returncode}") return run.stdout
class GeometryBase(CommonObject,IDisposable,ISerializable): """ Provides a common base for most geometric classes. This class is abstract. """ def ComponentIndex(self): """ ComponentIndex(self: GeometryBase) -> ComponentIndex If this piece of geometry is a component in something larger,like a BrepEdge in a Brep,then this function returns the component index. Returns: This object's component index. If this object is not a sub-piece of a larger geometric entity,then the returned index has m_type=ComponentIndex.InvalidType and m_index=-1. """ pass def ConstructConstObject(self,*args): """ ConstructConstObject(self: CommonObject,parentObject: object,subobject_index: int) Assigns a parent object and a subobject index to this. parentObject: The parent object. subobject_index: The subobject index. """ pass def Dispose(self): """ Dispose(self: CommonObject,disposing: bool) For derived class implementers. This method is called with argument true when class user calls Dispose(),while with argument false when the Garbage Collector invokes the finalizer,or Finalize() method.You must reclaim all used unmanaged resources in both cases, and can use this chance to call Dispose on disposable fields if the argument is true.Also,you must call the base virtual method within your overriding method. disposing: true if the call comes from the Dispose() method; false if it comes from the Garbage Collector finalizer. """ pass def Duplicate(self): """ Duplicate(self: GeometryBase) -> GeometryBase Constructs a deep (full) copy of this object. Returns: An object of the same type as this,with the same properties and behavior. """ pass def DuplicateShallow(self): """ DuplicateShallow(self: GeometryBase) -> GeometryBase Constructs a light copy of this object. By "light",it is meant that the same underlying data is used until something is done to attempt to change it. For example, you could have a shallow copy of a very heavy mesh object and the same underlying data will be used when doing things like inspecting the number of faces on the mesh. If you modify the location of one of the mesh vertices,the shallow copy will create a full duplicate of the underlying mesh data and the shallow copy will become a deep copy. Returns: An object of the same type as this object. This behavior is overridden by implementing classes. """ pass def GetBoundingBox(self,*__args): """ GetBoundingBox(self: GeometryBase,plane: Plane) -> BoundingBox Aligned Boundingbox solver. Gets the plane aligned boundingbox. plane: Orientation plane for BoundingBox. Returns: A BoundingBox in plane coordinates. GetBoundingBox(self: GeometryBase,plane: Plane) -> (BoundingBox,Box) Aligned Boundingbox solver. Gets the plane aligned boundingbox. plane: Orientation plane for BoundingBox. Returns: A BoundingBox in plane coordinates. GetBoundingBox(self: GeometryBase,accurate: bool) -> BoundingBox Boundingbox solver. Gets the world axis aligned boundingbox for the geometry. accurate: If true,a physically accurate boundingbox will be computed. If not,a boundingbox estimate will be computed. For some geometry types there is no difference between the estimate and the accurate boundingbox. Estimated boundingboxes can be computed much (much) faster than accurate (or "tight") bounding boxes. Estimated bounding boxes are always similar to or larger than accurate bounding boxes. Returns: The boundingbox of the geometry in world coordinates or BoundingBox.Empty if not bounding box could be found. GetBoundingBox(self: GeometryBase,xform: Transform) -> BoundingBox Aligned Boundingbox solver. Gets the world axis aligned boundingbox for the transformed geometry. xform: Transformation to apply to object prior to the BoundingBox computation. The geometry itself is not modified. Returns: The accurate boundingbox of the transformed geometry in world coordinates or BoundingBox.Empty if not bounding box could be found. """ pass def GetUserString(self,key): """ GetUserString(self: GeometryBase,key: str) -> str Gets user string from this geometry. key: id used to retrieve the string. Returns: string associated with the key if successful. null if no key was found. """ pass def GetUserStrings(self): """ GetUserStrings(self: GeometryBase) -> NameValueCollection Gets a copy of all (user key string,user value string) pairs attached to this geometry. Returns: A new collection. """ pass def MakeDeformable(self): """ MakeDeformable(self: GeometryBase) -> bool If possible,converts the object into a form that can be accurately modified with "squishy" transformations like projections,shears,an non-uniform scaling. Returns: false if object cannot be converted to a deformable object. true if object was already deformable or was converted into a deformable object. """ pass def MemoryEstimate(self): """ MemoryEstimate(self: GeometryBase) -> UInt32 Computes an estimate of the number of bytes that this object is using in memory. Returns: An estimated memory footprint. """ pass def NonConstOperation(self,*args): """ NonConstOperation(self: CommonObject) For derived classes implementers. Defines the necessary implementation to free the instance from being const. """ pass def OnSwitchToNonConst(self,*args): """ OnSwitchToNonConst(self: GeometryBase) Is called when a non-const operation occurs. """ pass def Rotate(self,angleRadians,rotationAxis,rotationCenter): """ Rotate(self: GeometryBase,angleRadians: float,rotationAxis: Vector3d,rotationCenter: Point3d) -> bool Rotates the object about the specified axis. A positive rotation angle results in a counter-clockwise rotation about the axis (right hand rule). angleRadians: Angle of rotation in radians. rotationAxis: Direction of the axis of rotation. rotationCenter: Point on the axis of rotation. Returns: true if geometry successfully rotated. """ pass def Scale(self,scaleFactor): """ Scale(self: GeometryBase,scaleFactor: float) -> bool Scales the object by the specified factor. The scale is centered at the origin. scaleFactor: The uniform scaling factor. Returns: true if geometry successfully scaled. """ pass def SetUserString(self,key,value): """ SetUserString(self: GeometryBase,key: str,value: str) -> bool Attach a user string (key,value combination) to this geometry. key: id used to retrieve this string. value: string associated with key. Returns: true on success. """ pass def Transform(self,xform): """ Transform(self: GeometryBase,xform: Transform) -> bool Transforms the geometry. If the input Transform has a SimilarityType of OrientationReversing,you may want to consider flipping the transformed geometry after calling this function when it makes sense. For example, you may want to call Flip() on a Brep after transforming it. xform: Transformation to apply to geometry. Returns: true if geometry successfully transformed. """ pass def Translate(self,*__args): """ Translate(self: GeometryBase,x: float,y: float,z: float) -> bool Translates the object along the specified vector. x: The X component. y: The Y component. z: The Z component. Returns: true if geometry successfully translated. Translate(self: GeometryBase,translationVector: Vector3d) -> bool Translates the object along the specified vector. translationVector: A moving vector. Returns: true if geometry successfully translated. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object Provides the implementation of __enter__ for objects which implement IDisposable. """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) Provides the implementation of __exit__ for objects which implement IDisposable. """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*args): #cannot find CLR constructor """ __new__(cls: type,info: SerializationInfo,context: StreamingContext) """ pass def __reduce_ex__(self,*args): pass HasBrepForm=property(lambda self: object(),lambda self,v: None,lambda self: None) """Returns true if the Brep.TryConvertBrep function will be successful for this object Get: HasBrepForm(self: GeometryBase) -> bool """ IsDeformable=property(lambda self: object(),lambda self,v: None,lambda self: None) """true if object can be accurately modified with "squishy" transformations like projections,shears,and non-uniform scaling. Get: IsDeformable(self: GeometryBase) -> bool """ IsDocumentControlled=property(lambda self: object(),lambda self,v: None,lambda self: None) """If true this object may not be modified. Any properties or functions that attempt to modify this object when it is set to "IsReadOnly" will throw a NotSupportedException. Get: IsDocumentControlled(self: GeometryBase) -> bool """ ObjectType=property(lambda self: object(),lambda self,v: None,lambda self: None) """Useful for switch statements that need to differentiate between basic object types like points,curves,surfaces,and so on. Get: ObjectType(self: GeometryBase) -> ObjectType """ UserStringCount=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the amount of user strings. Get: UserStringCount(self: GeometryBase) -> int """
import torch import torchvision import net import numpy as np from PIL import Image import glob if __name__ == '__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # device = torch.device('cpu') test_list = glob.glob("test_images/*") dehaze_net = net.dehaze_net().to(device) if torch.cuda.is_available(): dehaze_net.load_state_dict(torch.load('snapshots/dehazer.pth')) else: dehaze_net.load_state_dict(torch.load('snapshots/dehazer.pth', map_location=lambda storage, loc: storage)) for image in test_list: data_hazy = Image.open(image) data_hazy = (np.asarray(data_hazy)/255.0) data_hazy = torch.from_numpy(data_hazy).float() data_hazy = data_hazy.permute(2,0,1) data_hazy = data_hazy.to(device).unsqueeze(0) clean_image = dehaze_net(data_hazy) torchvision.utils.save_image(torch.cat((data_hazy, clean_image),0), "results\\" + image.split("\\")[-1]) print(image, "done!")
# -*- coding: utf-8 -*- """ Created on Thu Jan 31 08:13:13 2019 @author: BigBoss """ import serial, time, threading def medir(x): try: while True: y = x.readline().decode('utf-8') #print(y.decode("ascii",end="")) print(y) except: pass x = serial.Serial("COM8",9600) time.sleep(2) thread = threading.Thread(target = medir, args=(x,)) thread.start() while True: r = input("r.- Rojo:\na.- Amarillo:\nv.- Verde:\n Elige una opcion: ") r = r.encode("utf-8") print(r) if r == b"x": break x.write(r) x.close()
import numpy as np import logging logger = logging.getLogger(__name__) def translate_array(arr,shifts): """ 'translate' performs integer translation on a 2D numpy array. Params: arr - a 2D nparray shifts - (xshift, yshift) Returns new array of same shape and datatype as arr Comments: Positive values shift up and left Areas outside of the original array are filled with np.NAN Correction - they would be if we could store NAN values, otherwise they are coerced to 0 """ #check array is only 2D if not len(arr.shape)==2: logger.debug('Only 2D arrays are supported') raise RuntimeError if not len(shifts)==2: logger.debug('Only 2D arrays can be translated') raise RuntimeError if not shifts[0]==int(shifts[0]) and shifts[1]==int(shifts[1]): logger.debug('Only integer translation is supported') raise RuntimeError new_data = np.zeros(arr.shape, arr.dtype) new_data[:]=np.NAN s=arr.shape new_data[max(0,0-shifts[0]):min(s[0],s[0]-shifts[0]), max(0,0-shifts[1]):min(s[1],s[1]-shifts[1])] \ = arr[max(0,shifts[0]):min(s[0],s[0]+shifts[0]), max(0,shifts[1]):min(s[1],s[1]+shifts[1])] # Seems we cant store NAN values in an integer array if np.any(new_data<0): logger.warn('Coercing array values to 0') new_data[new_data<0] = 0 return new_data if __name__=="__main__": orig = np.zeros((5,5),np.uint8) orig[2,2] = 1 new = translate_array(orig, (2,0)) print(new[0,2] == 1)
#!/usr/bin/python #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Name: Haohang Xu # Date: 10/1/2015 # # Some experimentation with multithreaded programming #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ########################################### ### IMPORTS ### ########################################### import random import threading ########################################### ### GLOBALS ### ########################################### ########################################### ### CLASSES ### ########################################### #============================================================================== # Define thread class class Print_thread (threading.Thread): def __init__(self, to_print): threading.Thread.__init__(self) self.to_print = to_print def run(self): while True: print self.to_print ########################################### ### FUNCTION DEFS ### ########################################### #============================================================================== # Define function to start three threads that print 1, 2, and 3 def start_threads (): thread1 = Print_thread(1) thread2 = Print_thread(2) thread3 = Print_thread(3) thread1.start() thread2.start() thread3.start() ########################################### ### MAIN FUNCTION ### ########################################### start_threads()
"""iKala Dataset Loader .. admonition:: Dataset Info :class: dropdown The iKala dataset is comprised of 252 30-second excerpts sampled from 206 iKala songs (plus 100 hidden excerpts reserved for MIREX). The music accompaniment and the singing voice are recorded at the left and right channels respectively and can be found under the Wavfile directory. In addition, the human-labeled pitch contours and timestamped lyrics can be found under PitchLabel and Lyrics respectively. For more details, please visit: http://mac.citi.sinica.edu.tw/ikala/ """ import csv import os import librosa import logging import numpy as np from typing import BinaryIO, Optional, TextIO, Tuple from mirdata import download_utils from mirdata import jams_utils from mirdata import core from mirdata import annotations from mirdata import io BIBTEX = """@inproceedings{chan2015vocal, title={Vocal activity informed singing voice separation with the iKala dataset}, author={Chan, Tak-Shing and Yeh, Tzu-Chun and Fan, Zhe-Cheng and Chen, Hung-Wei and Su, Li and Yang, Yi-Hsuan and Jang, Roger}, booktitle={2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={718--722}, year={2015}, organization={IEEE} }""" TIME_STEP = 0.032 # seconds REMOTES = { "metadata": download_utils.RemoteFileMetadata( filename="id_mapping.txt", url="http://mac.citi.sinica.edu.tw/ikala/id_mapping.txt", checksum="81097b587804ce93e56c7a331ba06abc", ) } DOWNLOAD_INFO = """ Unfortunately the iKala dataset is not available for download. If you have the iKala dataset, place the contents into a folder called iKala with the following structure: > iKala/ > Lyrics/ > PitchLabel/ > Wavfile/ and copy the iKala folder to {} """ LICENSE_INFO = """ When it was distributed, Ikala used to have a custom license. Visit http://mac.citi.sinica.edu.tw/ikala/ for more details. """ class Track(core.Track): """ikala Track class Args: track_id (str): track id of the track Attributes: audio_path (str): path to the track's audio file f0_path (str): path to the track's f0 annotation file lyrics_path (str): path to the track's lyric annotation file section (str): section. Either 'verse' or 'chorus' singer_id (str): singer id song_id (str): song id of the track track_id (str): track id Cached Properties: f0 (F0Data): human-annotated singing voice pitch lyrics (LyricsData): human-annotated lyrics """ def __init__( self, track_id, data_home, dataset_name, index, metadata, ): super().__init__( track_id, data_home, dataset_name, index, metadata, ) self.f0_path = os.path.join(self._data_home, self._track_paths["pitch"][0]) self.lyrics_path = os.path.join(self._data_home, self._track_paths["lyrics"][0]) self.audio_path = os.path.join(self._data_home, self._track_paths["audio"][0]) self.song_id = track_id.split("_")[0] self.section = track_id.split("_")[1] @property def singer_id(self): return self._track_metadata.get(self.song_id) @core.cached_property def f0(self) -> Optional[annotations.F0Data]: return load_f0(self.f0_path) @core.cached_property def lyrics(self) -> Optional[annotations.LyricData]: return load_lyrics(self.lyrics_path) @property def vocal_audio(self) -> Optional[Tuple[np.ndarray, float]]: """solo vocal audio (mono) Returns: * np.ndarray - audio signal * float - sample rate """ return load_vocal_audio(self.audio_path) @property def instrumental_audio(self) -> Optional[Tuple[np.ndarray, float]]: """instrumental audio (mono) Returns: * np.ndarray - audio signal * float - sample rate """ return load_instrumental_audio(self.audio_path) @property def mix_audio(self) -> Optional[Tuple[np.ndarray, float]]: """mixture audio (mono) Returns: * np.ndarray - audio signal * float - sample rate """ return load_mix_audio(self.audio_path) def to_jams(self): """Get the track's data in jams format Returns: jams.JAMS: the track's data in jams format """ return jams_utils.jams_converter( audio_path=self.audio_path, f0_data=[(self.f0, None)], lyrics_data=[(self.lyrics, None)], metadata={ "section": self.section, "singer_id": self.singer_id, "track_id": self.track_id, "song_id": self.song_id, }, ) @io.coerce_to_bytes_io def load_vocal_audio(fhandle: BinaryIO) -> Tuple[np.ndarray, float]: """Load ikala vocal audio Args: fhandle (str or file-like): File-like object or path to audio file Returns: * np.ndarray - audio signal * float - sample rate """ audio, sr = librosa.load(fhandle, sr=None, mono=False) vocal_channel = audio[1, :] return vocal_channel, sr @io.coerce_to_bytes_io def load_instrumental_audio(fhandle: BinaryIO) -> Tuple[np.ndarray, float]: """Load ikala instrumental audio Args: fhandle (str or file-like): File-like object or path to audio file Returns: * np.ndarray - audio signal * float - sample rate """ audio, sr = librosa.load(fhandle, sr=None, mono=False) instrumental_channel = audio[0, :] return instrumental_channel, sr @io.coerce_to_bytes_io def load_mix_audio(fhandle: BinaryIO) -> Tuple[np.ndarray, float]: """Load an ikala mix. Args: fhandle (str or file-like): File-like object or path to audio file Returns: * np.ndarray - audio signal * float - sample rate """ mixed_audio, sr = librosa.load(fhandle, sr=None, mono=True) # multipy by 2 because librosa averages the left and right channel. return 2.0 * mixed_audio, sr @io.coerce_to_string_io def load_f0(fhandle: TextIO) -> annotations.F0Data: """Load an ikala f0 annotation Args: fhandle (str or file-like): File-like object or path to f0 annotation file Raises: IOError: If f0_path does not exist Returns: F0Data: the f0 annotation data """ lines = fhandle.readlines() f0_midi = np.array([float(line) for line in lines]) f0_hz = librosa.midi_to_hz(f0_midi) * (f0_midi > 0) confidence = (f0_hz > 0).astype(float) times = (np.arange(len(f0_midi)) * TIME_STEP) + (TIME_STEP / 2.0) f0_data = annotations.F0Data(times, f0_hz, confidence) return f0_data @io.coerce_to_string_io def load_lyrics(fhandle: TextIO) -> annotations.LyricData: """Load an ikala lyrics annotation Args: fhandle (str or file-like): File-like object or path to lyric annotation file Raises: IOError: if lyrics_path does not exist Returns: LyricData: lyric annotation data """ # input: start time (ms), end time (ms), lyric, [pronunciation] reader = csv.reader(fhandle, delimiter=" ") start_times = [] end_times = [] lyrics = [] pronunciations = [] for line in reader: start_times.append(float(line[0]) / 1000.0) end_times.append(float(line[1]) / 1000.0) lyrics.append(line[2]) if len(line) > 2: pronunciation = " ".join(line[3:]) pronunciations.append(pronunciation) else: pronunciations.append("") lyrics_data = annotations.LyricData( np.array([start_times, end_times]).T, lyrics, pronunciations, ) return lyrics_data @core.docstring_inherit(core.Dataset) class Dataset(core.Dataset): """ The ikala dataset """ def __init__(self, data_home=None): super().__init__( data_home, name="ikala", track_class=Track, bibtex=BIBTEX, remotes=REMOTES, download_info=DOWNLOAD_INFO, license_info=LICENSE_INFO, ) @core.cached_property def _metadata(self): id_map_path = os.path.join(self.data_home, "id_mapping.txt") if not os.path.exists(id_map_path): raise FileNotFoundError("Metadata not found. Did you run .download()?") with open(id_map_path, "r") as fhandle: reader = csv.reader(fhandle, delimiter="\t") singer_map = {} for line in reader: if line[0] == "singer": continue singer_map[line[1]] = line[0] return singer_map @core.copy_docs(load_vocal_audio) def load_vocal_audio(self, *args, **kwargs): return load_vocal_audio(*args, **kwargs) @core.copy_docs(load_instrumental_audio) def load_instrumental_audio(self, *args, **kwargs): return load_instrumental_audio(*args, **kwargs) @core.copy_docs(load_mix_audio) def load_mix_audio(self, *args, **kwargs): return load_mix_audio(*args, **kwargs) @core.copy_docs(load_f0) def load_f0(self, *args, **kwargs): return load_f0(*args, **kwargs) @core.copy_docs(load_lyrics) def load_lyrics(self, *args, **kwargs): return load_lyrics(*args, **kwargs)
import autograd.numpy as anp import numpy as np from autograd.scipy.stats import norm from viabel.approximations import MFGaussian, MFStudentT from viabel.objectives import AlphaDivergence, DISInclusiveKL, ExclusiveKL from viabel.optimization import RMSProp def _test_objective(objective_cls, num_mc_samples, **kwargs): np.random.seed(851) # mean = np.random.randn(1,dimension) # stdev = np.exp(np.random.randn(1,dimension)) mean = np.array([1., -1.])[np.newaxis, :] stdev = np.array([2., 5.])[np.newaxis, :] def log_p(x): return anp.sum(norm.logpdf(x, loc=mean, scale=stdev), axis=1) approx = MFStudentT(2, 100) objective = objective_cls(approx, log_p, num_mc_samples, **kwargs) # large number of MC samples and smaller epsilon and learning rate to ensure accuracy init_param = np.array([0, 0, 1, 1], dtype=np.float32) opt = RMSProp(0.1) opt_results = opt.optimize(1000, objective, init_param) # iterate averaging introduces some bias, so use last iterate est_mean, est_cov = approx.mean_and_cov(opt_results['opt_param']) est_stdev = np.sqrt(np.diag(est_cov)) print(est_stdev, stdev) np.testing.assert_almost_equal(mean.squeeze(), est_mean, decimal=1) np.testing.assert_almost_equal(stdev.squeeze(), est_stdev, decimal=1) def test_ExclusiveKL(): _test_objective(ExclusiveKL, 100) def test_ExclusiveKL_path_deriv(): _test_objective(ExclusiveKL, 100, use_path_deriv=True) def test_DISInclusiveKL(): dim = 2 _test_objective(DISInclusiveKL, 100, temper_prior=MFGaussian(dim), temper_prior_params=np.concatenate([[0] * dim, [1] * dim]), ess_target=50) def test_AlphaDivergence(): _test_objective(AlphaDivergence, 100, alpha=2)
from privyfilter.privyfilter import Privyfilter as pf faces, imger = pf.faceScrub("../TestPics/10.jpg") print(faces) img = pf.RemoveMetaData("../TestPics/10.jpg") print(img) #Synthetic face replacement ( Simple Deepfake) #get random sythetic face fakeface = pf.getFakeFace() fakeface.save_image("fakeface.jpg") faces, imger = pf.faceScrub("fakeface.jpg") print(faces) #Swap faces faceswap = pf.swapFaces("fakeface.jpg", "../TestPics/9.jpg") print(fakeface) quit()
import sys class Physical_person(): def __init__(self, by, dr, dt, ad): self.birth_year = by self.disability_rate = dr self.disability_type = dt self.address = ad def __repr__(self): return "birth_year: " + str(self.birth_year) + "\n" +\ "disability_rate: " + str(self.disability_rate) + "\n" +\ "disability_type: " + str(self.disability_type) + "\n" +\ "address: " + str(self.address) + "\n" class Tax_payer(Physical_person): def __init__(self, by, dr, dt, ad, ir): Physical_person.__init__(self, by, dr, dt, ad) self.is_resident = ir self.children = [] self.income_pension = [] self.income_employment = [] self.income_other = [] def __repr__(self): return Physical_person.__repr__(self) +\ "is_resident: " + str(self.is_resident) + "\n" +\ "nb_child: " + str(len(self.children)) + "\n" +\ "income_pension: " + str(self.income_pension) + "\n" +\ "income_employment: " + str(self.income_employment) + "\n" +\ "income_other: " + str(self.income_other) + "\n" class Child(Physical_person): def __init__(self, by, dr, dt, ad): Physical_person.__init__(self, by, dr, dt, ad) def __repr__(self): return Physical_person.__repr__(self) def return_interval(param, name): #print(name + ": " + str(param)) if 0 <= param < 0.33: return "True;False;False" elif 0.33 <= param <= 0.67: return "False;True;False" elif 0.67 < param <= 1: return "False;False;True" else: print("ERROR: invalid " + name) exit() def return_interval_array(param, name): #print(name + ": " + str(param)) L = False M = False H = False for p in param: if 0 <= p < 0.33: L = True elif 0.33 <= p <= 0.67: M = True elif 0.67 < p <= 1: H = True else: print("ERROR: invalid " + name) exit() return str(L) + ";" + str(M) + ";" + str(H) def analyse_nb_tax_payer(): return return_interval((nb_tax_payer-1)/100, "nb_tax_payer") def analyse_birth_year(): tmp = [] for t in tax_payer_array: tmp.append((t.birth_year-1920)/100) return return_interval_array(tmp, "birth_year") def analyse_disability_rate(): tmp = [] for t in tax_payer_array: tmp.append(t.disability_rate) return return_interval_array(tmp, "disability_rate") def analyse_disability_type(): type_none = False type_vision = False type_a = False for t in tax_payer_array: if t.disability_type == "None": type_none = True elif t.disability_type == "Vision": type_vision = True else: type_a = True return str(type_none) + ";" + str(type_vision) + ";" + str(type_a) def analyse_is_resident(): tr = False fa = False for t in tax_payer_array: if t.is_resident == "True": tr = True else: fa = True return str(tr) + ";" + str(fa) def analyse_tax_payer_nb_address(): tmp = [] for t in tax_payer_array: tmp.append((len(t.address)-1)/2) return return_interval_array(tmp, "tax_payer_nb_address") def analyse_tax_payer_address(): lu = False fr = False be = False de = False ot = False for t in tax_payer_array: for a in t.address: if a == "LU": lu = True elif a == "FR": fr = True elif a == "BE": be = True elif a == "DE": de = True else: ot = True return str(lu) + ";" + str(fr) + ";" + str(be) + ";" + str(de) + ";" + str(ot) def analyse_nb_child(): zer = False one = False two = False thr = False for t in tax_payer_array: nb_child = len(t.children) if nb_child == 0: zer = True elif nb_child == 1: one = True elif nb_child == 2: two = True else: thr = True return str(zer) + ";" + str(one) + ";" + str(two) + ";" + str(thr) def analyse_child_birth_year(): tmp = [] for t in tax_payer_array: for c in t.children: tmp.append((c.birth_year-1920)/100) return return_interval_array(tmp, "child_birth_year") def analyse_child_disability_rate(): tmp = [] for t in tax_payer_array: for c in t.children: tmp.append(t.disability_rate) return return_interval_array(tmp, "child_disability_rate") def analyse_child_disability_type(): type_none = False type_vision = False type_a = False for t in tax_payer_array: for c in t.children: if c.disability_type == "None": type_none = True elif c.disability_type == "Vision": type_vision = True else: type_a = True return str(type_none) + ";" + str(type_vision) + ";" + str(type_a) def analyse_child_nb_address(): tmp = [] for t in tax_payer_array: for c in t.children: tmp.append((len(t.address)-0.5)/3) return return_interval_array(tmp, "child_nb_address") def analyse_child_address(): lu = False fr = False be = False de = False ot = False for t in tax_payer_array: for c in t.children: for a in t.address: if a == "LU": lu = True elif a == "FR": fr = True elif a == "BE": be = True elif a == "DE": de = True else: ot = True return str(lu) + ";" + str(fr) + ";" + str(be) + ";" + str(de) + ";" + str(ot) def analyse_nb_pension(): zer = False one = False two = False thr = False for t in tax_payer_array: nb_pension = len(t.income_pension) if nb_pension == 0: zer = True elif nb_pension == 1: one = True elif nb_pension == 2: two = True else: thr = True return str(zer) + ";" + str(one) + ";" + str(two) + ";" + str(thr) def analyse_nb_employment(): zer = False one = False two = False thr = False for t in tax_payer_array: nb_employment = len(t.income_employment) if nb_employment == 0: zer = True elif nb_employment == 1: one = True elif nb_employment == 2: two = True else: thr = True return str(zer) + ";" + str(one) + ";" + str(two) + ";" + str(thr) def analyse_nb_other(): zer = False one = False two = False thr = False for t in tax_payer_array: nb_other = len(t.income_other) if nb_other == 0: zer = True elif nb_other == 1: one = True elif nb_other == 2: two = True else: thr = True return str(zer) + ";" + str(one) + ";" + str(two) + ";" + str(thr) def analyse_pension_is_local(): tr = False fa = False for t in tax_payer_array: for i in t.income_pension: if i == "True": tr = True else: fa = True return str(tr) + ";" + str(fa) def analyse_employment_is_local(): tr = False fa = False for t in tax_payer_array: for i in t.income_employment: if i == "True": tr = True else: fa = True return str(tr) + ";" + str(fa) def analyse_other_is_local(): tr = False fa = False for t in tax_payer_array: for i in t.income_other: if i == "True": tr = True else: fa = True return str(tr) + ";" + str(fa) def analyse_nb_income(): tmp = [] for t in tax_payer_array: tmp.append((len(t.income_pension) + len(t.income_employment) + len(t.income_other) - 1)/2) return return_interval_array(tmp, "nb_income") def analyse_lu_address(): no_lu = False lu = False all_lu = False for t in tax_payer_array: counter = 0 for a in t.address: if a == "LU": counter += 1 if counter == len(t.address): all_lu = True elif counter == 0: no_lu = True else: lu = True return str(no_lu) + ";" + str(lu) + ";" + str(all_lu) def analyse_c4(): pension_lu = False employment_lu = False other_lu = False for t in tax_payer_array: tmp = False for a in t.address: if a == "LU": tmp = True if tmp: for i in t.income_pension: if i == "True": pension_lu = True for i in t.income_employment: if i == "True": employment_lu = True for i in t.income_other: if i == "True": other_lu = True return str(pension_lu) + ";" + str(employment_lu) + ";" + str(other_lu) tax_payer_array = [] with open(sys.argv[1] + "tax.csv", "r") as f: nb_tax_payer = int(f.readline()[:-1]) for i in range(nb_tax_payer): tmp = f.readline()[:-1].split(";") address = f.readline()[:-1].split(";") t = Tax_payer(int(tmp[0]), float(tmp[1]), tmp[2], address, tmp[3]) nb_child = int(f.readline()[:-1]) for j in range(nb_child): tmp = f.readline()[:-1].split(";") address = f.readline()[:-1].split(";") c = Child(int(tmp[0]), float(tmp[1]), tmp[2], address) t.children.append(c) nb_income_pension = int(f.readline()[:-1]) if nb_income_pension > 0: t.income_pension = f.readline()[:-1].split(";") nb_income_employment = int(f.readline()[:-1]) if nb_income_employment > 0: t.income_employment = f.readline()[:-1].split(";") nb_income_other = int(f.readline()[:-1]) if nb_income_other > 0: t.income_other = f.readline()[:-1].split(";") tax_payer_array.append(t) with open(sys.argv[2] + "analysis.csv", "a") as f: f.write(analyse_nb_tax_payer() + ";" + analyse_birth_year() + ";" + analyse_disability_rate() + ";" + analyse_disability_type() + ";" + analyse_is_resident() + ";" + analyse_tax_payer_nb_address() + ";" + analyse_tax_payer_address() + ";" + analyse_nb_child() + ";" + analyse_child_birth_year() + ";" + analyse_child_disability_rate() + ";" + analyse_child_disability_type() + ";" + analyse_child_nb_address() + ";" + analyse_child_address() + ";" + analyse_nb_pension() + ";" + analyse_nb_employment() + ";" + analyse_nb_other() + ";" + analyse_pension_is_local() + ";" + analyse_employment_is_local() + ";" + analyse_other_is_local() + ";" + analyse_nb_income() + ";" + analyse_lu_address() + ";" + analyse_c4() + "\n")
import sys import os import json import string # Natural Language Toolkit Packages from nltk import CFG, ChartParser, Tree from nltk.tokenize import word_tokenize from nltk.parse.generate import generate def parse_blazon(blazon): blazon = blazon.lower() to_discard = set(string.punctuation) to_discard.remove("&") blazon = ''.join(c for c in blazon if c not in to_discard) # Convert raw data to tokens to be parsed tokens = word_tokenize(blazon) # Replace instances of '1st', '2nd', etc with their non abbreviated forms for (index, item) in enumerate(tokens): if (item in abbr_to_full): tokens[index] = abbr_to_full[item] elif (item == "&"): tokens[index] = "and" # Sanitise tokens tokens = disambiguate_colours(tokens) tokens = reorder(tokens) # Construct grammar and parser with open('app/parser_cfg.txt') as f: raw_cfg = f.read() parser_grammar = CFG.fromstring(raw_cfg) parser = ChartParser(parser_grammar) # Parse data into tree output_data = None for tree in parser.parse(tokens): output_data = tree if (output_data is None): print("Error: Parse failed, please check input is of correct format.") else: # Convert Tree to dict to prepare it for JSON serialisation output_data = tree_to_dict(output_data) # If a tincture is in the top level of the dictionary, change its name to "field" if ("tincture" in output_data.keys()): output_data["field"] = output_data["tincture"] output_data.pop("tincture") # Convert dict to JSON return (output_data) def generate_blazons(grammarfile, n, depth = None): bs = [] with open(grammarfile) as g: raw_cfg = g.read() parser_grammar = CFG.fromstring(raw_cfg) for blazon in generate(parser_grammar, n = n, depth = depth): bwords = blazon field = bwords[0] z = ((isColour(field) and not any(map(isColour, bwords[1:]))) or (isMetal(field) and not any(map(isMetal, bwords[1:])))) and (field not in bwords[1:]) if z: bs.append(' '.join(blazon)) return bs def main(): # Check arguments if (len(sys.argv) == 1): print("Too few arguments\nUsage: $ python generate.py <INPUT_FILE> [OUTPUT_FILE]") sys.exit(0) elif (len(sys.argv) > 3): print("Too many arguments\nUsage: $ python generate.py <INPUT_FILE> [OUTPUT_FILE]") sys.exit(0) # Initialise paths WORKING_DIR = sys.path[0] INPUT_FILE = os.path.join(WORKING_DIR, sys.argv[1]) if (len(sys.argv) == 3): OUTPUT_FILE = os.path.join(WORKING_DIR, sys.argv[2]) else: # Extract base filename of input file OUTPUT_NAME = os.path.basename(INPUT_FILE) # Strip off file extension and add own (.esc for escutcheon) OUTPUT_NAME = "trees/" + os.path.splitext(OUTPUT_NAME)[0] + ".esc" OUTPUT_FILE = os.path.join(WORKING_DIR, OUTPUT_NAME) # Read in input data with open(INPUT_FILE) as f: raw_data = f.read().lower() to_discard = set(string.punctuation) to_discard.remove("&") raw_data = ''.join(c for c in raw_data if c not in to_discard) # Convert raw data to tokens to be parsed tokens = word_tokenize(raw_data) # Replace instances of '1st', '2nd', etc with their non abbreviated forms for (index, item) in enumerate(tokens): if (item in abbr_to_full): tokens[index] = abbr_to_full[item] elif (item == "&"): tokens[index] = "and" # Sanitise tokens tokens = disambiguate_colours(tokens) tokens = reorder(tokens) # Construct grammar and parser with open('parser_cfg.txt') as f: raw_cfg = f.read() parser_grammar = CFG.fromstring(raw_cfg) parser = ChartParser(parser_grammar) # Parse data into tree output_data = None for tree in parser.parse(tokens): output_data = tree if (output_data is None): print("Error: Parse failed, please check input is of correct format.") else: # Convert Tree to dict to prepare it for JSON serialisation output_data = tree_to_dict(output_data) # If a tincture is in the top level of the dictionary, change its name to "field" if ("tincture" in output_data.keys()): output_data["field"] = output_data["tincture"] output_data.pop("tincture") # Convert dict to JSON with open(OUTPUT_FILE, 'w+') as f: json.dump(output_data, f, indent=2) def disambiguate_colours(tokens): i = 0 # The index for navigating the array palette = [] expecting_colour = False while (i < len(tokens)): t = tokens[i] if (t in colours): # Any colours we see will potentially be referenced later and must be saved in # the order they appear palette.append(t) elif (t == "of"): # "of the" is the phrase to expect before a colour replacement word, so if we see "of" # we can begin to anticipate a colour reference word expecting_colour = True elif (t == "the") and expecting_colour: # If "of" is followed by "the", then there's more reason to expect a colour reference expecting_colour = True elif (t in position_to_num and expecting_colour): # Convert "first", "second", etc to its corresponding colour in the palette colour = position_to_num[t] tokens[i] = palette[colour - 1] # Remove "of the" phrase from the token array tokens.pop(i - 1) tokens.pop(i - 2) else: # If none of the conditions are met, there's no reason to expect a colour expecting_colour = False i = i + 1 # Iterate the index return tokens def reorder(tokens): sections = [[]] current_sections = [0] duplicate_section = False # For cases where we have 'First & Fourth' etc for t in tokens: if (t == "quarterly"): sections.extend([[], [], [], []]) # Set aside four expected sectionections for s in current_sections: sections[s].append(t) elif (t in position_to_num): sections[position_to_num[t]].append(t) if (duplicate_section): current_sections.append(position_to_num[t]) duplicate_section = False else: current_sections = [position_to_num[t]] elif (t == "and"): duplicate_section = True else: for s in current_sections: sections[s].append(t) tokens = [token for section in sections for token in section] return tokens def tree_to_dict(tree): new_dict = { "charges": [], } if (tree.label() in ["QFirst", "QSecond", "QThird", "QFourth"]): if (len(tree) == 3): return tree_to_dict(tree[2]) else: return tree_to_dict(tree[1]) for t in tree: if (isinstance(t, Tree)): if (t.label() in alias_table): # For Charge Phrases if (t.label() == "Charges"): if (len(t) == 1): new_dict['charges'].extend(tree_to_dict(t)['charges'] ) else: # print(tree_to_dict(t)) new_dict['charges'].extend(tree_to_dict(t)['charges']) # print(tree_to_dict(t[1])) elif (t.label() == "ChP"): # Get number of copies of charges on field charge_no = tree_to_dict(t[0]) # Convert string to numeral charge_no = word_to_num[charge_no] # Get the rest of the details of the field charge_details = Tree('Field', t[1:]) charge_details = tree_to_dict(charge_details) # Populate array with correct number of copies of the details charge_array = [] for i in range(0, charge_no): charge_array.append(charge_details) new_dict.update({alias_table[t.label()]: charge_array}) # For Quarterly Phrases elif (t.label() == "QuartP"): # Add field label to indicate quarterly type new_dict.update({"field": "quarterly"}) new_dict.update({"quarters": list(map(tinc_to_field, [tree_to_dict(t[1]), tree_to_dict(t[2]), tree_to_dict(t[3]), tree_to_dict(t[4])]))}) elif (t.label() == "Orient"): if (t[0] == "sinister"): new_dict.update({"sinister": True}) else: new_dict.update({"sinister": False}) else: new_dict.update({alias_table[t.label()]: tree_to_dict(t)}) else: return tree_to_dict(t) else: return t return new_dict def tinc_to_field(output_data): if ("tincture" in output_data.keys()) and ("charges" in output_data.keys()): output_data["field"] = output_data["tincture"] output_data.pop("tincture") return output_data colours = [ "gules", "vert", "azure", "sable", "or", "argent", "jaune", "purpure" ] alias_table = { "Tinc": "tincture", "Charge": "charge", "Charges" : "charges", "ChP": "charges", "QuartP": "quarters", "Orient": "sinister" } word_to_num = { "a": 1, "an": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11, "twelve": 12 } position_to_num = { "first": 1, "second": 2, "third": 3, "fourth": 4, "fifth": 5, "sixth": 6, "seventh": 7, "eighth": 8, "ninth": 9, "tenth": 10 } abbr_to_full = { "1st": "first", "2nd": "second", "3rd": "third", "4th": "fourth", "5th": "fifth", "6th": "sixth", "7th": "seventh", "8th": "eighth" } isMetal = lambda field : field in ['or', 'argent'] isColour = lambda field : field in ['vert', 'gules', 'sable', 'azure','purpure'] if __name__ == "__main__": main()
from setuptools import setup from setuptools import find_packages setup( name='Formula1_data_scraper', version='0.0.6', description='Package that allows you to collect and store into an AWS postgreSQL RDS, the qualifying and practice data from any formula 1 race weekend from 2006 onwards', url='https://github.com/ishtyaq123/Webscraper_Formula_1_Practice_And_Qualifying_Data.git', author='Ishtyaq Nabi', license='MIT', packages=['Scraper','AWS_rds_uploader'], install_requires=['SQLAlchemy', 'psycopg2-binary', 'selenium', 'pandas'], )
# Copyright 2017 NYU-FOXTROT. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Models for Inventory in inventory All of the models are stored in this module Models ------ Inventory - Inventory used in inventory management and operation Attributes: ----------- id (int) - uuid used to identify one inventory record name (string) - the name of the product quantity(int) - amount of Product Inventories status (string) - the status of the inventory : new, openBox and used """ """ Inventory Model that uses Redis You must initlaize this class before use by calling inititlize(). This class looks for an environment variable called VCAP_SERVICES to get it's database credentials from. If it cannot find one, it tries to connect to Redis on the localhost. If that fails it looks for a server name 'redis' to connect to. """ import threading # import enum import os import json import logging import pickle from cerberus import Validator from redis import Redis from redis.exceptions import ConnectionError class DataValidationError(Exception): """ Used for an data validation errors when deserializing """ pass class DatabaseConnectionError(ConnectionError): pass ###################################################################### # Inventory Model for database # This class must be initialized with use_db(redis) before using # where redis is a value connection to a Redis database ###################################################################### class Inventory(object): """ Inventory interface to database """ logger = logging.getLogger(__name__) redis = None schema = { 'id': {'type': 'integer'}, 'name': {'type': 'string', 'required': True}, 'quantity': {'type': 'integer', 'required': True}, 'status': {'type': 'string', 'required': True} } __validator = Validator(schema) lock = threading.Lock() data = [] index = 0 def __init__(self, inventoryid=0, name='', quantity=0, status=''): """ Initialize a Inventory """ self.id = inventoryid self.name = name self.quantity = quantity self.status = status def save(self): """ Saves an Inventory in the database """ if self.name is None: # name is the only required field raise DataValidationError('name attribute is not set') if self.id == 0: self.id = Inventory.__next_index() Inventory.redis.set(self.id, pickle.dumps(self.serialize())) # """ # Saves inventory (in - memory data), replace the old inventory record if it already exists # """ # if self.id == 0: # self.id = self.__next_index() # Inventory.data.append(self) # else: # for i in range(len(Inventory.data)): # if Inventory.data[i].id == self.id: # Inventory.data[i] = self # break def delete(self): """ Deletes an Inventory from the database """ Inventory.redis.delete(self.id) # """ Delete inventory record with specified id, name, quantiy and status""" # Inventory.data.remove(self) def serialize(self): """ Serializes an Inventory into a dictionary """ return { "id": self.id, "name": self.name, "quantity": self.quantity, "status": self.status } # """ Serializes Inventory into a dictionary """ # return {"id": self.id, "name": self.name, "quantity": self.quantity, "status": self.status} def deserialize(self, data): """ Deserializes an Inventory, marshalling the data """ if isinstance(data, dict) and Inventory.__validator.validate(data): self.name = data['name'] self.quantity = data['quantity'] self.status = data['status'] else: raise DataValidationError('Invalid Inventory data: ' + str(Inventory.__validator.errors)) return self # """ # Deserializes a Inventory from a dictionary # # Args: # data (dict): A dictionary containing the Inventory data # """ # if not isinstance(data, dict): # raise DataValidationError('Invalid Inventory: body of request contained bad or no data') # if data.has_key('id'): # self.id = data['id'] # try: # self.name = data['name'] # self.quantity = data['quantity'] # self.status = data['status'] # except KeyError as err: # raise DataValidationError('Invalid Inventory: missing ' + err.args[0]) # return ###################################################################### # S T A T I C D A T A B S E M E T H O D S ###################################################################### @staticmethod def __next_index(): """ Increments the index and returns it """ return Inventory.redis.incr('index') # """ Generates the next index in a continual sequence """ # with Inventory.lock: # Inventory.index += 1 # return Inventory.index @staticmethod def use_db(redis): Inventory.__redis = redis @staticmethod def all(): """ Query that returns all Inventories """ results = [] for key in Inventory.redis.keys(): if key != 'index': # filer out our id index data = pickle.loads(Inventory.redis.get(key)) inventory = Inventory(data['id']).deserialize(data) results.append(inventory) return results # """ Returns all of the Inventories in the database """ # return [inventory for inventory in Inventory.data] @staticmethod def remove_all(): """ Removes all Inventories from the database """ Inventory.redis.flushall() # """ Removes all of the Inventories from the database """ # del Inventory.data[:] # Inventory.index = 0 # return Inventory.data ###################################################################### # F I N D E R M E T H O D S ###################################################################### @staticmethod def find(inventory_id): """ Query that finds Inventories by their id """ if Inventory.redis.exists(inventory_id): data = pickle.loads(Inventory.redis.get(inventory_id)) inventory = Inventory(data['id']).deserialize(data) return inventory return None # """ Finds a Inventory by it's ID """ # if not Inventory.data: # return None # Inventories = [inventory for inventory in Inventory.data if # inventory.id == ProductInventory_id] # if Inventories: # return Inventories[0] # return None @staticmethod def __find_by(attribute, value): """ Generic Query that finds a key with a specific value """ # return [inventory for inventory in Inventory.__data if inventory.category == category] Inventory.logger.info('Processing %s query for %s', attribute, value) if isinstance(value, str): search_criteria = value.lower() # make case insensitive else: search_criteria = value results = [] for key in Inventory.redis.keys(): if key != 'index': # filer out our id index data = pickle.loads(Inventory.redis.get(key)) # perform case insensitive search on strings if isinstance(data[attribute], str): test_value = data[attribute].lower() else: test_value = data[attribute] if test_value == search_criteria: results.append(Inventory(data['id']).deserialize(data)) return results @staticmethod def find_by_status(status): """ Query that finds Inventories by their status """ return Inventory.__find_by('status', status) # """ Returns all of the Inventories in a status # # Args: # status (string): the status of the Inventories you want to match # """ # return [inventory for inventory in Inventory.data if inventory.status == status] @staticmethod def find_by_quantity(quantity): """ Query that finds Inventories by their quantity """ return Inventory.__find_by('quantity', quantity) # """ Returns all of the Inventories in a status # # Args: # quantity (int): the quantity of the Inventories you want to match # """ # return [inventory for inventory in Inventory.data if inventory.quantity == quantity] @staticmethod def find_by_name(name): """ Query that finds Inventories by their name """ return Inventory.__find_by('name', name) # """ Returns all Inventories with the given name # # Args: # name (string): the name of the Inventories you want to match # """ # return [inventory for inventory in Inventory.data if inventory.name == name] ###################################################################### # R E D I S D A T A B A S E C O N N E C T I O N M E T H O D S ###################################################################### @staticmethod def connect_to_redis(hostname, port, password): """ Connects to Redis and tests the connection """ Inventory.logger.info("Testing Connection to: %s:%s", hostname, port) Inventory.redis = Redis(host=hostname, port=port, password=password) try: Inventory.redis.ping() Inventory.logger.info("Connection established") except ConnectionError: Inventory.logger.info("Connection Error from: %s:%s", hostname, port) Inventory.redis = None return Inventory.redis @staticmethod def init_db(redis=None): """ Initialized Redis database connection This method will work in the following conditions: 1) In Bluemix with Redis bound through VCAP_SERVICES 2) With Redis running on the local server as with Travis CI 3) With Redis --link in a Docker container called 'redis' 4) Passing in your own Redis connection object Exception: ---------- redis.ConnectionError - if ping() test fails """ if redis: Inventory.logger.info("Using client connection...") Inventory.redis = redis try: Inventory.redis.ping() Inventory.logger.info("Connection established") except ConnectionError: Inventory.logger.error("Client Connection Error!") Inventory.redis = None raise ConnectionError('Could not connect to the Redis Service') return # Get the credentials from the Bluemix environment if 'VCAP_SERVICES' in os.environ: Inventory.logger.info("Using VCAP_SERVICES...") vcap_services = os.environ['VCAP_SERVICES'] services = json.loads(vcap_services) creds = services['rediscloud'][0]['credentials'] Inventory.logger.info("Conecting to Redis on host %s port %s", creds['hostname'], creds['port']) Inventory.connect_to_redis(creds['hostname'], creds['port'], creds['password']) else: Inventory.logger.info("VCAP_SERVICES not found, checking localhost for Redis") Inventory.connect_to_redis('127.0.0.1', 6379, None) if not Inventory.redis: Inventory.logger.info("No Redis on localhost, looking for redis host") Inventory.connect_to_redis('redis', 6379, None) if not Inventory.redis: # if you end up here, redis instance is down. Inventory.logger.fatal('*** FATAL ERROR: Could not connect to the Redis Service') raise ConnectionError('Could not connect to the Redis Service')
# --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.2' # jupytext_version: 0.8.6 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] # # Lesson 6: pets revisited # %% # %reload_ext autoreload # %autoreload 2 # %matplotlib inline from fastai import * from fastai.vision import * # from my_python_tricks import * # %% gpu_device = 0 defaults.device = torch.device(f'cuda:{gpu_device}') torch.cuda.set_device(gpu_device) # %% bs = 64 NW = 8 # %% path = untar_data(URLs.PETS)/'images' # %% [markdown] # ## Data augmentation # %% tfms = get_transforms(max_rotate=20, max_zoom=1.3, max_lighting=0.4, max_warp=0.4, p_affine=1., p_lighting=1.) # %% doc(get_transforms) # %% src = ImageItemList.from_folder(path).random_split_by_pct(0.2, seed=2) # %% def get_data(size, bs, padding_mode='reflection'): return (src.label_from_re(r'([^/]+)_\d+.jpg$') .transform(tfms, size=size, padding_mode=padding_mode) .databunch(bs=bs,num_workers=NW).normalize(imagenet_stats)) # Number of Workers = NW # %% data = get_data(224, bs, 'zeros') # %% [markdown] # plot_multi needs updating fastai # %% def _plot(i,j,ax): x,y = data.train_ds[3] x.show(ax, y=y) plot_multi(_plot, 3, 3, figsize=(8,8)) # %% data = get_data(224,bs) # %% plot_multi(_plot, 3, 3, figsize=(8,8)) # %% [markdown] # ## Train a model # %% gc.collect() learn = create_cnn(data, models.resnet34, metrics=error_rate, bn_final=True) # %% learn.fit_one_cycle(3, slice(1e-2), pct_start=0.8) # %% doc(learn.fit_one_cycle) # %% learn.unfreeze() learn.fit_one_cycle(2, max_lr=slice(1e-6,1e-3), pct_start=0.8) # pct_start : Percentage of total number of iterations when learning rate rises during one cycle. # which means: lr both increase and decrease during same epoch. In your example, say, you have 100 iterations per epoch, then for half an epoch (0.8 * 100 * 2 epochs) = 160) lr will rise, then slowly decrease. # %% data = get_data(352,bs) learn.data = data # %% learn.fit_one_cycle(2, max_lr=slice(1e-6,1e-4)) # %% learn.save('352') # %% from my_python_tricks import * notify_me() # %% [markdown] # ## Convolution kernel # %% data = get_data(352,16) # %% learn = create_cnn(data, models.resnet34, metrics=error_rate, bn_final=True).load('352') # %% idx=0 x,y = data.valid_ds[idx] x.show() data.valid_ds.y[idx] # %% k = tensor([ [0. ,-5/3,1], [-5/3,-5/3,1], [1. ,1 ,1], ]).expand(1,3,3,3)/6 # %% from fastai.callbacks.hooks import * # %% k # %% k.shape # %% t = data.valid_ds[0][0].data; t.shape # %% t[None].shape # %% edge = F.conv2d(t[None], k) # %% show_image(edge[0], figsize=(5,5)); # %% data.c # %% learn.model # %% learn.summary() # %% [markdown] # ## Heatmap # %% m = learn.model.eval(); # %% xb,_ = data.one_item(x) xb_im = Image(data.denorm(xb)[0]) xb = xb.cuda() # %% from fastai.callbacks.hooks import * # %% def hooked_backward(cat=y): with hook_output(m[0]) as hook_a: with hook_output(m[0], grad=True) as hook_g: preds = m(xb) preds[0,int(cat)].backward() return hook_a,hook_g # %% hook_a,hook_g = hooked_backward() # %% acts = hook_a.stored[0].cpu() acts.shape # %% avg_acts = acts.mean(0) avg_acts.shape # %% def show_heatmap(hm): _,ax = plt.subplots() xb_im.show(ax) ax.imshow(hm, alpha=0.6, extent=(0,352,352,0), interpolation='bilinear', cmap='magma'); # %% show_heatmap(avg_acts) # %% [markdown] # ## Grad-CAM # %% [markdown] # Paper: [Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization](https://arxiv.org/abs/1610.02391) # %% grad = hook_g.stored[0][0].cpu() grad_chan = grad.mean(1).mean(1) grad.shape,grad_chan.shape # %% mult = (acts*grad_chan[...,None,None]).mean(0) # %% show_heatmap(mult) # %% fn = path/'../other/bulldog_maine.jpg' # %% x = open_image(fn); x # %% xb,_ = data.one_item(x) xb_im = Image(data.denorm(xb)[0]) xb = xb.cuda() # %% hook_a,hook_g = hooked_backward() # %% acts = hook_a.stored[0].cpu() grad = hook_g.stored[0][0].cpu() grad_chan = grad.mean(1).mean(1) mult = (acts*grad_chan[...,None,None]).mean(0) # %% show_heatmap(mult) # %% data.classes[0] # %% hook_a,hook_g = hooked_backward(0) # %% acts = hook_a.stored[0].cpu() grad = hook_g.stored[0][0].cpu() grad_chan = grad.mean(1).mean(1) mult = (acts*grad_chan[...,None,None]).mean(0) # %% show_heatmap(mult) # %% [markdown] # ## fin # %%
# Copyright 2018 Max Shinn <maxwell.shinn@yale.edu> # 2018 Norman Lam <norman.lam@yale.edu> # # This file is part of PyDDM, and is available under the MIT license. # Please see LICENSE.txt in the root directory for more information. __all__ = ["Overlay", "OverlayNone", "OverlayChain", "OverlayUniformMixture", "OverlayPoissonMixture", "OverlayExponentialMixture", "OverlayNonDecision", "OverlayNonDecisionGamma", "OverlayNonDecisionUniform", "OverlaySimplePause", "OverlayBlurredPause"] import numpy as np from scipy.special import gamma as sp_gamma # https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gamma.html import scipy.stats from paranoid import accepts, returns, requires, ensures, Self, paranoidclass, paranoidconfig, Range, Positive, Number, List, Positive0, NDArray, Unchecked from .paranoid_types import Conditions from .base import Dependence from ..solution import Solution # TODO in unit test, ensure all overlays with reasonable parameters # applied to a Solution add up to 1 # TODO unit tests for apply_trajectory class Overlay(Dependence): """Subclasses can modify distributions after they have been generated. This abstract class provides the methods which define how a distribution should be modified after solving the model, for example for a mixture model. To subclass it, implement apply. Also, since it inherits from Dependence, subclasses must also assign a `name` and `required_parameters` (see documentation for Dependence.) """ depname = "Overlay" def apply(self, solution): """Apply the overlay to a Solution object. This function must be redefined in subclasses. This function takes a Solution object as its argument and returns a Solution object which was modified in some way. Often times, this will be by modifying `solution.corr` and `solution.err`. See the documentation for Solution for more information about this object. Note that while this does not take `conditions` as an argument, conditions may still be accessed via `solution.conditions`. Conceptually, this function performs some transformation on the simulated response time (first passage time) distributions. It is especially useful for non-decision times and mixture models, potentially in a parameter-dependent or condition-dependent manner. """ raise NotImplementedError("Overlay model %s invalid: must define the apply(self, solution) function" % self.__class__.__name__) def apply_trajectory(self, trajectory, model, rk4, seed, conditions={}): """Apply the overlay to a simulated decision variable trajectory. This function is optional and may be redefined in subclasses. It is expected to implement the same mechanism as the method "apply", but to do so on simulated trajectories (i.e. from Model.simulate_trial) instead of on a Solution object. This function takes the t domain, the trajectory itself, and task conditions. It returns the modified trajectory. """ raise NotImplementedError("Overlay model %s not compatible with trajectory simulations" % self.__class__.__name__) @paranoidclass class OverlayNone(Overlay): """No overlay. An identity function for Solutions. Example usage: | overlay = OverlayNone() """ name = "No overlay" required_parameters = [] @staticmethod def _test(v): pass @staticmethod def _generate(): yield OverlayNone() @accepts(Self, Solution) @returns(Solution) def apply(self, solution): return solution @accepts(Self, NDArray(d=1, t=Number)) @returns(NDArray(d=1, t=Number)) def apply_trajectory(self, trajectory, **kwargs): return trajectory # NOTE: This class is likely to break if any changes are made to the # Dependence constructor. In theory, no changes should be made to the # Dependence constructor, but just in case... @paranoidclass class OverlayChain(Overlay): """Join together multiple overlays. Unlike other model components, Overlays are not mutually exclusive. It is possible to transform the output solution many times. Thus, this allows joining together multiple Overlay objects into a single object. It accepts one parameter: `overlays`. This should be a list of Overlay objects, in the order which they should be applied to the Solution object. One key technical caveat is that the overlays which are chained together may not have the same parameter names. Parameter names must be given different names in order to be a part of the same overlay. This allows those parameters to be accessed by their name inside of an OverlayChain object. Example usage: | overlay = OverlayChain(overlays=[OverlayNone(), OverlayNone(), OverlayNone()]) # Still equivalent to OverlayNone | overlay = OverlayChain(overlays=[OverlayPoissonMixture(pmixturecoef=.01, rate=1), | OverlayUniformMixture(umixturecoef=.01)]) # Apply a Poission mixture and then a Uniform mixture """ name = "Chain overlay" required_parameters = ["overlays"] @staticmethod def _test(v): assert v.overlays in List(Overlay), "overlays must be a list of Overlay objects" @staticmethod def _generate(): yield OverlayChain(overlays=[OverlayNone()]) yield OverlayChain(overlays=[OverlayUniformMixture(umixturecoef=.3), OverlayPoissonMixture(pmixturecoef=.2, rate=.7)]) yield OverlayChain(overlays=[OverlayNonDecision(nondectime=.1), OverlayPoissonMixture(pmixturecoef=.1, rate=1), OverlayUniformMixture(umixturecoef=.1)]) def __init__(self, **kwargs): Overlay.__init__(self, **kwargs) object.__setattr__(self, "required_parameters", []) object.__setattr__(self, "required_conditions", []) for o in self.overlays: self.required_parameters.extend(o.required_parameters) self.required_conditions.extend(o.required_conditions) assert len(self.required_parameters) == len(set(self.required_parameters)), "Two overlays in chain cannot have the same parameter names" object.__setattr__(self, "required_conditions", list(set(self.required_conditions))) # Avoid duplicates def __setattr__(self, name, value): if "required_parameters" in self.__dict__: if name in self.required_parameters: for o in self.overlays: if name in o.required_parameters: return setattr(o, name, value) return Overlay.__setattr__(self, name, value) def __getattr__(self, name): if name in self.required_parameters: for o in self.overlays: if name in o.required_parameters: return getattr(o, name) else: return Overlay.__getattribute__(self, name) def __repr__(self): overlayreprs = list(map(repr, self.overlays)) return "OverlayChain(overlays=[" + ", ".join(overlayreprs) + "])" @accepts(Self, Solution) @returns(Solution) def apply(self, solution): assert isinstance(solution, Solution) newsol = solution for o in self.overlays: newsol = o.apply(newsol) return newsol @accepts(Self, NDArray(d=1, t=Number)) @returns(NDArray(d=1, t=Number)) @paranoidconfig(unit_test=False) def apply_trajectory(self, trajectory, **kwargs): for o in self.overlays: trajectory = o.apply_trajectory(trajectory=trajectory, **kwargs) return trajectory @paranoidclass class OverlayUniformMixture(Overlay): """A uniform mixture distribution. The output distribution should be umixturecoef*100 percent uniform distribution and (1-umixturecoef)*100 percent of the distribution to which this overlay is applied. A mixture with the uniform distribution can be used to confer robustness when fitting using likelihood. Example usage: | overlay = OverlayUniformMixture(umixturecoef=.01) """ name = "Uniform distribution mixture model" required_parameters = ["umixturecoef"] @staticmethod def _test(v): assert v.umixturecoef in Range(0, 1), "Invalid mixture coef" @staticmethod def _generate(): yield OverlayUniformMixture(umixturecoef=0) yield OverlayUniformMixture(umixturecoef=1) yield OverlayUniformMixture(umixturecoef=.02) yield OverlayUniformMixture(umixturecoef=.5) @accepts(Self, Solution) @returns(Solution) def apply(self, solution): assert self.umixturecoef >= 0 and self.umixturecoef <= 1 corr = solution.corr err = solution.err m = solution.model cond = solution.conditions undec = solution.undec evolution = solution.evolution # To make this work with undecided probability, we need to # normalize by the sum of the decided density. That way, this # function will never touch the undecided pieces. norm = np.sum(corr)+np.sum(err) corr = corr*(1-self.umixturecoef) + .5*self.umixturecoef/len(m.t_domain())*norm err = err*(1-self.umixturecoef) + .5*self.umixturecoef/len(m.t_domain())*norm return Solution(corr, err, m, cond, undec, evolution) @paranoidclass class OverlayExponentialMixture(Overlay): """An exponential mixture distribution. The output distribution should be pmixturecoef*100 percent exponential distribution and (1-umixturecoef)*100 percent of the distribution to which this overlay is applied. A mixture with the exponential distribution can be used to confer robustness when fitting using likelihood. Note that this is called OverlayPoissonMixture and not OverlayExponentialMixture because the exponential distribution is formed from a Poisson process, i.e. modeling a uniform lapse rate. Example usage: | overlay = OverlayPoissonMixture(pmixturecoef=.02, rate=1) """ name = "Poisson distribution mixture model (lapse rate)" required_parameters = ["pmixturecoef", "rate"] @staticmethod def _test(v): assert v.pmixturecoef in Range(0, 1), "Invalid mixture coef" assert v.rate in Positive(), "Invalid rate" @staticmethod def _generate(): yield OverlayPoissonMixture(pmixturecoef=0, rate=1) yield OverlayPoissonMixture(pmixturecoef=.5, rate=.1) yield OverlayPoissonMixture(pmixturecoef=.02, rate=10) yield OverlayPoissonMixture(pmixturecoef=1, rate=1) @accepts(Self, Solution) @returns(Solution) def apply(self, solution): assert self.pmixturecoef >= 0 and self.pmixturecoef <= 1 assert isinstance(solution, Solution) corr = solution.corr err = solution.err m = solution.model cond = solution.conditions undec = solution.undec evolution = solution.evolution # To make this work with undecided probability, we need to # normalize by the sum of the decided density. That way, this # function will never touch the undecided pieces. norm = np.sum(corr)+np.sum(err) lapses = lambda t : 2*self.rate*np.exp(-1*self.rate*t) X = m.dt * np.arange(0, len(corr)) Y = lapses(X) Y /= np.sum(Y) corr = corr*(1-self.pmixturecoef) + .5*self.pmixturecoef*Y*norm # Assume numpy ndarrays, not lists err = err*(1-self.pmixturecoef) + .5*self.pmixturecoef*Y*norm #print(corr) #print(err) return Solution(corr, err, m, cond, undec, evolution) # Backward compatibility class OverlayPoissonMixture(OverlayExponentialMixture): pass @paranoidclass class OverlayNonDecision(Overlay): """Add a non-decision time This shifts the reaction time distribution by `nondectime` seconds in order to create a non-decision time. Example usage: | overlay = OverlayNonDecision(nondectime=.2) """ name = "Add a non-decision by shifting the histogram" required_parameters = ["nondectime"] @staticmethod def _test(v): assert v.nondectime in Number(), "Invalid non-decision time" @staticmethod def _generate(): yield OverlayNonDecision(nondectime=0) yield OverlayNonDecision(nondectime=.5) yield OverlayNonDecision(nondectime=-.5) @accepts(Self, Solution) @returns(Solution) @ensures("set(return.corr.tolist()) - set(solution.corr.tolist()).union({0.0}) == set()") @ensures("set(return.err.tolist()) - set(solution.err.tolist()).union({0.0}) == set()") @ensures("solution.prob_undecided() <= return.prob_undecided()") def apply(self, solution): corr = solution.corr err = solution.err m = solution.model cond = solution.conditions undec = solution.undec evolution = solution.evolution shifts = int(self.nondectime/m.dt) # truncate newcorr = np.zeros(corr.shape, dtype=corr.dtype) newerr = np.zeros(err.shape, dtype=err.dtype) if shifts > 0: newcorr[shifts:] = corr[:-shifts] newerr[shifts:] = err[:-shifts] elif shifts < 0: newcorr[:shifts] = corr[-shifts:] newerr[:shifts] = err[-shifts:] else: newcorr = corr newerr = err return Solution(newcorr, newerr, m, cond, undec, evolution) @accepts(Self, NDArray(d=1, t=Number), Unchecked) @returns(NDArray(d=1, t=Number)) def apply_trajectory(self, trajectory, model, **kwargs): shift = int(self.nondectime/model.dt) if shift > 0: trajectory = np.append([trajectory[0]]*shift, trajectory) elif shift < 0: if len(trajectory) > abs(shift): trajectory = trajectory[abs(shift):] else: trajectory = np.asarray([trajectory[-1]]) return trajectory @paranoidclass class OverlayNonDecisionUniform(Overlay): """Add a uniformly-distributed non-decision time. The center of the distribution of non-decision times is at `nondectime`, and it extends `halfwidth` on each side. Example usage: | overlay = OverlayNonDecisionUniform(nondectime=.2, halfwidth=.02) """ name = "Uniformly-distributed non-decision time" required_parameters = ["nondectime", "halfwidth"] @staticmethod def _test(v): assert v.nondectime in Number(), "Invalid non-decision time" assert v.halfwidth in Positive0(), "Invalid halfwidth parameter" @staticmethod def _generate(): yield OverlayNonDecisionUniform(nondectime=.3, halfwidth=.01) yield OverlayNonDecisionUniform(nondectime=0, halfwidth=.1) @accepts(Self, Solution) @returns(Solution) @ensures("np.sum(return.corr) <= np.sum(solution.corr)") @ensures("np.sum(return.err) <= np.sum(solution.err)") def apply(self, solution): # Make sure params are within range assert self.halfwidth >= 0, "Invalid st parameter" # Extract components of the solution object for convenience corr = solution.corr err = solution.err m = solution.model cond = solution.conditions undec = solution.undec evolution = solution.evolution # Describe the width and shift of the uniform distribution in # terms of list indices shift = int(self.nondectime/m.dt) # Discretized non-decision time width = int(self.halfwidth/m.dt) # Discretized uniform distribution half-width offsets = list(range(shift-width, shift+width+1)) # Create new correct and error distributions and iteratively # add shifts of each distribution to them. Use this over the # np.convolution because it handles negative non-decision # times. newcorr = np.zeros(corr.shape, dtype=corr.dtype) newerr = np.zeros(err.shape, dtype=err.dtype) for offset in offsets: if offset > 0: newcorr[offset:] += corr[:-offset]/len(offsets) newerr[offset:] += err[:-offset]/len(offsets) elif offset < 0: newcorr[:offset] += corr[-offset:]/len(offsets) newerr[:offset] += err[-offset:]/len(offsets) else: newcorr += corr/len(offsets) newerr += err/len(offsets) return Solution(newcorr, newerr, m, cond, undec, evolution) @accepts(Self, NDArray(d=1, t=Number), Unchecked) @returns(NDArray(d=1, t=Number)) def apply_trajectory(self, trajectory, model, **kwargs): ndtime = np.random.rand()*2*self.halfwidth + (self.nondectime-self.halfwidth) shift = int(ndtime/model.dt) if shift > 0: np.append([trajectory[0]]*shift, trajectory) elif shift < 0: if len(trajectory) > abs(shift): trajectory = trajectory[abs(shift):] else: trajectory = np.asarray([trajectory[-1]]) return trajectory @paranoidclass class OverlayNonDecisionGamma(Overlay): """Add a gamma-distributed non-decision time This shifts the reaction time distribution by an amount of time specified by the gamma distribution with shape parameter `shape` (sometimes called "k") and scale parameter `scale` (sometimes called "theta"). The distribution is then further shifted by `nondectime` seconds. Example usage: | overlay = OverlayNonDecisionGamma(nondectime=.2, shape=1.5, scale=.05) """ name = "Add a gamma-distributed non-decision time" required_parameters = ["nondectime", "shape", "scale"] @staticmethod def _test(v): assert v.nondectime in Number(), "Invalid non-decision time" assert v.shape in Positive0(), "Invalid shape parameter" assert v.shape >= 1, "Shape parameter must be >= 1" assert v.scale in Positive(), "Invalid scale parameter" @staticmethod def _generate(): yield OverlayNonDecisionGamma(nondectime=.3, shape=2, scale=.01) yield OverlayNonDecisionGamma(nondectime=0, shape=1.1, scale=.1) @accepts(Self, Solution) @returns(Solution) @ensures("np.sum(return.corr) <= np.sum(solution.corr)") @ensures("np.sum(return.err) <= np.sum(solution.err)") @ensures("np.all(return.corr[0:int(self.nondectime//return.model.dt)] == 0)") def apply(self, solution): # Make sure params are within range assert self.shape >= 1, "Invalid shape parameter" assert self.scale > 0, "Invalid scale parameter" # Extract components of the solution object for convenience corr = solution.corr err = solution.err dt = solution.model.dt # Create the weights for different timepoints times = np.asarray(list(range(-len(corr), len(corr))))*dt # https://numpy.org/doc/stable/reference/generated/numpy.asarray.html weights = scipy.stats.gamma(a=self.shape, scale=self.scale, loc=self.nondectime).pdf(times) # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html if np.sum(weights) > 0: weights /= np.sum(weights) # Ensure it integrates to 1 # Divide by 1+1e-14 to avoid numerical errors after the convolution, which are on the order of 10^-16 newcorr = np.convolve(corr, weights, mode="full")[len(corr):(2*len(corr))]/(1+1e-14) # https://numpy.org/doc/stable/reference/generated/numpy.convolve.html newerr = np.convolve(err, weights, mode="full")[len(corr):(2*len(corr))]/(1+1e-14) return Solution(newcorr, newerr, solution.model, solution.conditions, solution.undec, solution.evolution) @accepts(Self, NDArray(d=1, t=Number), Unchecked) @returns(NDArray(d=1, t=Number)) def apply_trajectory(self, trajectory, model, **kwargs): ndtime = scipy.stats.gamma(a=self.shape, scale=self.scale, loc=self.nondectime).rvs() shift = int(ndtime/model.dt) if shift > 0: np.append([trajectory[0]]*shift, trajectory) elif shift < 0: if len(trajectory) > abs(shift): trajectory = trajectory[abs(shift):] else: trajectory = np.asarray([trajectory[-1]]) return trajectory @paranoidclass class OverlaySimplePause(Overlay): name = "Brief pause in integration by shifting part of the histogram" required_parameters = ['pausestart', 'pausestop'] @staticmethod def _test(v): assert v.pausestart in Positive0(), "Invalid start time" assert v.pausestop in Positive0(), "Invalid non-decision time" assert v.pausestart <= v.pausestop, "Pause start time must be before stop time" @staticmethod def _generate(): yield OverlaySimplePause(pausestart=0, pausestop=0) yield OverlaySimplePause(pausestart=.1, pausestop=.2) @accepts(Self, Solution) @returns(Solution) @ensures("set(return.corr.tolist()) - set(solution.corr.tolist()).union({0.0}) == set()") @ensures("set(return.err.tolist()) - set(solution.err.tolist()).union({0.0}) == set()") @ensures("solution.prob_undecided() <= return.prob_undecided()") @ensures('self.pausestart == self.pausestop --> solution == return') def apply(self, solution): corr = solution.corr err = solution.err m = solution.model cond = solution.conditions undec = solution.undec evolution = solution.evolution start = int(self.pausestart/m.dt) # truncate stop = int((self.pausestop)/m.dt) # truncate if stop <= start: return solution newcorr = np.zeros(corr.shape, dtype=corr.dtype) newerr = np.zeros(err.shape, dtype=err.dtype) newcorr[0:start] = corr[0:start] newerr[0:start] = err[0:start] newcorr[stop:] = corr[start:-(stop-start)] newerr[stop:] = err[start:-(stop-start)] return Solution(newcorr, newerr, m, cond, undec, evolution) @paranoidclass class OverlayBlurredPause(Overlay): name = "Brief pause in integration, pause length by gamma distribution" required_parameters = ['pausestart', 'pausestop', 'pauseblurwidth'] @staticmethod def _test(v): assert v.pausestart in Positive0(), "Invalid start time" assert v.pausestop in Positive0(), "Invalid stop time" assert v.pauseblurwidth in Positive(), "Invalid width" assert v.pausestart <= v.pausestop, "Pause start time must be before stop time" assert v.pausestart + v.pauseblurwidth/2 <= v.pausestop, "Blur must be shorter than pause" @staticmethod def _generate(): yield OverlayBlurredPause(pausestart=0, pausestop=.1, pauseblurwidth=.1) yield OverlayBlurredPause(pausestart=.1, pausestop=.2, pauseblurwidth=.01) @accepts(Self, Solution) @returns(Solution) @ensures("solution.prob_undecided() <= return.prob_undecided()") @ensures('self.pausestart == self.pausestop --> solution == return') def apply(self, solution): corr = solution.corr err = solution.err m = solution.model cond = solution.conditions undec = solution.undec evolution = solution.evolution # Make gamma distribution gamma_mean = self.pausestop - self.pausestart gamma_var = pow(self.pauseblurwidth, 2) shape = gamma_mean**2/gamma_var scale = gamma_var/gamma_mean gamma_pdf = lambda t : 1/(sp_gamma(shape)*(scale**shape)) * t**(shape-1) * np.exp(-t/scale) gamma_vals = np.asarray([gamma_pdf(t) for t in m.t_domain() - self.pausestart if t >= 0]) sumgamma = np.sum(gamma_vals) gamma_start = next(i for i,t in enumerate(m.t_domain() - self.pausestart) if t >= 0) # Generate first part of pdf (before the pause) newcorr = np.zeros(m.t_domain().shape, dtype=corr.dtype) newerr = np.zeros(m.t_domain().shape, dtype=err.dtype) # Generate pdf after the pause for i,t in enumerate(m.t_domain()): #print(np.sum(newcorr)+np.sum(newerr)) if 0 <= t < self.pausestart: newcorr[i] = corr[i] newerr[i] = err[i] elif self.pausestart <= t: newcorr[i:] += corr[gamma_start:len(corr)-(i-gamma_start)]*gamma_vals[int(i-gamma_start)]/sumgamma newerr[i:] += err[gamma_start:len(corr)-(i-gamma_start)]*gamma_vals[int(i-gamma_start)]/sumgamma else: raise ValueError("Invalid domain") return Solution(newcorr, newerr, m, cond, undec, evolution)
import torch import torch_stonne a=torch.randn(6,5) b=torch.randn(5,5) r=torch_stonne.simulated_matmul("", a, b, "../../simulation_files/maeri_128mses_128_bw.cfg", "tile", 0) print(r) print(torch.matmul(a,b))
import FWCore.ParameterSet.Config as cms import RecoJets.JetProducers.CaloTowerSchemeB_cfi towerMakerWithHO = RecoJets.JetProducers.CaloTowerSchemeB_cfi.towerMaker.clone( UseHO = True )
# ============================================================== # Author: Rodolfo Ferro # Twitter: @FerroRodolfo # # ABOUT COPYING OR USING PARTIAL INFORMATION: # This script has been originally created by Rodolfo Ferro. # Any explicit usage of this script or its contents is granted # according to the license provided and its conditions. # ============================================================== # -*- coding: utf-8 -*- from tensorflow.keras.preprocessing.image import ImageDataGenerator import skimage.transform as transf import skimage.io as io import numpy as np import os sky = [128, 128, 128] building = [128, 0, 0] pole = [192, 192, 128] road = [128, 64, 128] pavement = [ 60, 40, 222] tree = [128, 128, 0] sign_symbol = [192, 128, 128] fence = [ 64, 64, 128] car = [ 64, 0, 128] pedestrian = [ 64, 64, 0] bicyclist = [ 0, 128, 192] unlabelled = [ 0, 0, 0] COLOR_DICT = np.array([ sky, building, pole, road, pavement, tree, sign_symbol, fence, car, pedestrian, bicyclist, unlabelled ]) def adjust_data(img, mask, flag_multi_class, num_class): if flag_multi_class: img = img / 255. mask = mask[:, :, :, 0] if len(mask.shape) == 4 else mask[:, :, 0] new_mask = np.zeros(mask.shape + (num_class,)) for i in range(num_class): new_mask[mask == i, i] = 1 new_mask = np.reshape( new_mask, ( new_mask.shape[0], new_mask.shape[1] * new_mask.shape[2], new_mask.shape[3] ) ) if flag_multi_class else np.reshape( new_mask, (new_mask.shape[0] * new_mask.shape[1], new_mask.shape[2]) ) mask = new_mask elif np.max(img) > 1: img = img / 255. mask = mask /255. mask[mask > 0.5] = 1 mask[mask <= 0.5] = 0 return img, mask def train_generator(batch_size, train_path, image_folder, mask_folder, aug_dict, image_color_mode='grayscale', mask_color_mode='grayscale', image_save_prefix='image', mask_save_prefix='mask', flag_multi_class=False, num_class=2, save_to_dir=None, target_size=(256, 256), seed=1): image_datagen = ImageDataGenerator(**aug_dict) mask_datagen = ImageDataGenerator(**aug_dict) image_generator = image_datagen.flow_from_directory( train_path, classes=[image_folder], class_mode=None, color_mode=image_color_mode, target_size=target_size, batch_size=batch_size, save_to_dir=save_to_dir, save_prefix=image_save_prefix, seed=seed ) mask_generator = mask_datagen.flow_from_directory( train_path, classes=[mask_folder], class_mode=None, color_mode=mask_color_mode, target_size=target_size, batch_size=batch_size, save_to_dir=save_to_dir, save_prefix=mask_save_prefix, seed=seed ) train_generator = zip(image_generator, mask_generator) for img, mask in train_generator: img, mask = adjust_data(img, mask, flag_multi_class, num_class) yield img, mask def test_generator(test_path, num_image=30, target_size=(256, 256), flag_multi_class=False, as_gray=True): for i in range(num_image): img_path = os.path.join(test_path, f'{i}.png') img = io.imread(img_path, as_gray=as_gray) img = img / 255. img = transf.resize(img, target_size) img = np.reshape(img, img.shape + (1,)) \ if not flag_multi_class else img img = np.reshape(img, (1,) + img.shape) yield img def visualize_label(num_class, color_dict, img): img = img[:, :, 0] if len(img.shape) == 3 else img img_out = np.zeros(img.shape + (3,)).astype(np.uint8) for i in range(num_class): img_out[img == i, :] = color_dict[i] return img_out / 255. def save_results(save_path, npyfile, flag_multi_class=False, num_class=2): if not os.path.exists(save_path): os.mkdir(save_path) for i, img in enumerate(npyfile): # img = visualize_label(num_class, COLOR_DICT, item) \ # if flag_multi_class else item[:, :, 0] img *= 255. img = img.astype(np.uint8) img_path = os.path.join(save_path, f'{i}.png') io.imsave(img_path, img)
import paramiko import sys import datetime import threading import logging """ Edit this line and add your command """ #cmd2run = "for f in $(ioscli lsdev -type adapter | grep fcs | grep 8Gb | awk {'print $1'}); do wwpn=$(ioscli lsdev -dev $f -vpd | grep Network | sed s'/\.//g;s/Network Address//g;s/ //g');echo $f,$wwpn; done" cmd2run = "echo \"lslpp -l | grep -i bes\" | oem_setup_env" sys.tracebacklimit = 0 if len(sys.argv) < 1: logging.error("Not enough arguments") sys.exit(1) ssh = paramiko.SSHClient() ssh.load_system_host_keys() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy) current_date = datetime.date.today() results = [] def run_dsh(ip): try: if "vsa" in ip: ssh.connect(hostname=ip, port=22, username='padmin', timeout=5) ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command(cmd2run) output = ssh_stdout.readlines() for line in output: if len(line) > 0: results.append([ip, line]) elif "hmc" in ip: ssh.connect(hostname=ip, port=22, username='hscroot', password="start1234", timeout=5) ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command(cmd2run) output = ssh_stdout.readlines() for line in output: if len(line) > 0: results.append([ip, line]) else: ssh.connect(hostname=ip, port=22, username='ibmadmin', timeout=5) ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command(cmd2run) output = ssh_stdout.readlines() for line in output: if len(line) > 0: results.append([ip, line]) except: print("[+] Unable to get info from " + str(ip)) + str(Exception) finally: pass threads = [] for x in sys.argv[1:]: if x: t = threading.Thread(target=run_dsh, args=(x,)) threads.append(t) for i in threads: i.start() i.join() print("\n------------------------------------------------------\n") for line in results: if line: print(str(line[0]).rstrip('\n') + ": " + str(line[1]).rstrip('\n')) print("\n------------------------------------------------------\n")
from nltk.corpus import wordnet from nltk.tag import pos_tag from pattern.en import pluralize with open('nouns.txt', 'w') as ofile: words = set(lemma.name().replace('_', ' ') for synset in wordnet.all_synsets(wordnet.NOUN) for lemma in synset.lemmas()) for word, tag in pos_tag(sorted(words)): if tag == 'NNP' and word.istitle(): ofile.write(word) else: plural = pluralize(word) if plural.endswith('ss'): ofile.write(word) else: ofile.write(plural) ofile.write('\n')
aliases['zc'] = 'rm ~/.z'
""" Signal processing utilities Author: Nicolas EKICIER Release: V1.52 03/2021 """ import numpy as np def smooth_compute(input, dim, njob=-1, cst=100, ord=3): """ Compute whittaker smoothing in jobs :param input: array of vi signal :param dim: dimension of vector signal (0 = row / 1 = column) :param njob: number of jobs (refer to Joblib doc, default = -1) :param cst: penalization (Whittaker parameter) :param ord: derivation order (Whittaker parameter) :return: """ from joblib import Parallel, delayed from tqdm import tqdm def lambdf(x): return whittf(fillnan_and_resample(x), beta=cst, order=ord) if dim == 0: tw = Parallel(n_jobs=njob)(delayed(lambdf)(input[i, :]) for i in tqdm(range(0, input.shape[0]), desc='Whittaker Smoothing')) elif dim == 1: tw = Parallel(n_jobs=njob)(delayed(lambdf)(input[:, i]) for i in tqdm(range(0, input.shape[1]), desc='Whittaker Smoothing')) return np.array(tw) def whittf(y, weight=None, beta=100, order=3): """ Weighted Whittaker smoothing :param y: vector data (signal) :param weight: weights of each sample (one by default) :param beta: penalization parameter (> 0) :param order: derivation order :return: smooth signal """ m = len(y) speye = np.eye(m) p = np.diff(speye, n=order) if weight is None: diag = speye else: diag = np.diag(weight) pp = np.transpose(p) yf = np.linalg.solve(diag + beta*np.dot(p, pp), np.dot(diag, y)) return yf def fillnan_and_resample(y, x=None, method='linear'): """ Interpolation of vector data with nan values Extrema are extrapolated :param y: vector data :param x: vector of x positions to resampling (Default = None) :param method: interpolation method - 'linear' default - 'nearest' - 'zero', 'slinear', 'quadratic', 'cubic' = spline interpolation of zeroth, first, second or third order :return: interpolated signal """ from scipy.interpolate import interp1d y = np.ravel(y) if x is None: x = np.arange(0, len(y)) igood = np.where(np.isfinite(y)) func = interp1d(np.ravel(igood), np.ravel(y[igood]), # fndvi.iloc[np.ravel(igood), fndvi.columns.get_loc(f)] fill_value='extrapolate', kind=method) return func(x) def regress(x, y, deg=1): """ Compute regression (linear or polynomial) from 2 datasets :param x: x values (vector) :param y: y values (vector) :param deg: degree of regression (default = 1 = linear) :return: sorted values from x [x, y, predict] (out) regression coefficients (coeffs) polynomial class (clpoly) metrics (r2, mae, rmse) """ # Regression coeffs = np.polyfit(x, y, deg) predict = np.polyval(coeffs, x) clpoly = np.poly1d(coeffs) # Metrics diff = y - predict mae = np.mean(abs(diff)) rmse = np.sqrt(np.mean(diff**2)) r2 = 1-(sum(diff**2)/sum((y-np.mean(y))**2)) # Sort ind = np.argsort(x) out = np.vstack((x[ind], y[ind], predict[ind])).transpose() return out, coeffs, clpoly, (r2, mae, rmse) def outliers(input): """ Extract index and values of outliers in input Works with NaN values :param input: vector data (signal) :return: index, (whisker inf, sup) """ Quart = np.nanpercentile(input, [25, 75]) # 1er et 3ème quartile IQuart = Quart[1] - Quart[0] # interquartile wsup = Quart[1] + 1.5 * IQuart # whisker sup winf = Quart[0] - 1.5 * IQuart # whisker inf idx = np.flatnonzero((input < winf) | (input > wsup)) return idx, (winf, wsup) def phen_met(y, plot=False): """ Extract phenological metrics from one crop season From "TIMESAT — a program for analyzing time-series of satellite sensor data", Jönsson al., 2004 :param y: ndvi profil :param plot: plot result (default = False) :return: pandas Dataframe with metrics """ import pandas as pd import matplotlib.pyplot as plt from scipy.signal import find_peaks # Thresholds pct_sg = 0.2 pct_eg = 0.8 pct_sd = 0.8 pct_ed = 0.2 # Maximum tmp = find_peaks(y) iMaxVal = np.argmax(y[tmp[0]]) iMaxVal = tmp[0][iMaxVal] MaxVal = y[iMaxVal] # Min before max iLeftMinVal = np.argmin(y[0:iMaxVal]) LeftMinVal = y[iLeftMinVal] # Min after max iRightMinVal = np.argmin(y[iMaxVal:]) + iMaxVal RightMinVal = y[iRightMinVal] # Base BaseVal = np.mean((LeftMinVal, RightMinVal)) # Amplitude SeasonAmp = MaxVal - BaseVal # Start of growth sgb = LeftMinVal + pct_sg * SeasonAmp iStartGrowth = np.flatnonzero(y[iLeftMinVal:iMaxVal] >= sgb) iStartGrowth = iStartGrowth[0] + iLeftMinVal StartGrowth = y[iStartGrowth] # End of growth egb = LeftMinVal + pct_eg * (MaxVal - LeftMinVal) iEndGrowth = np.flatnonzero(y[iStartGrowth:iMaxVal] >= egb) iEndGrowth = iEndGrowth[0] + iStartGrowth EndGrowth = y[iEndGrowth] # Start of decrease sdb = RightMinVal + pct_sd * (MaxVal - RightMinVal) iStartDecrease = np.flatnonzero(y[iMaxVal:iRightMinVal] >= sdb) iStartDecrease = iStartDecrease[-1] + iMaxVal StartDecrease = y[iStartDecrease] # End of decrease edb = RightMinVal + pct_ed * SeasonAmp if edb > StartDecrease: iEndDecrease = np.nan EndDecrease = np.nan else: iEndDecrease = np.flatnonzero(y[iStartDecrease:iRightMinVal] >= edb) iEndDecrease = iEndDecrease[-1] + iStartDecrease EndDecrease = y[iEndDecrease] # Length of season SeasonL = iEndDecrease - iStartGrowth # Output out = pd.DataFrame({'istartgrowth': iStartGrowth, 'startgrowth': StartGrowth, 'iendgrowth': iEndGrowth, 'endgrowth': EndGrowth, 'imax': iMaxVal, 'max': MaxVal, 'istartdecrease': iStartDecrease, 'startdecrease': StartDecrease, 'ienddecrease': iEndDecrease, 'enddecrease': EndDecrease, 'slength': SeasonL}, index=[0]) if plot == True: plt.figure() plt.plot(y, 'k-', label='ndvi') plt.scatter(out['istartgrowth'], out['startgrowth'], label='StartOfGrowth') plt.scatter(out['iendgrowth'], out['endgrowth'], label='EndOfGrowth') plt.scatter(out['imax'], out['max'], label='Maximum') plt.scatter(out['istartdecrease'], out['startdecrease'], label='StartOfDecrease') plt.scatter(out['ienddecrease'], out['enddecrease'], label='EndOfDecrease') plt.title('Phenological Metrics') plt.ylabel('Vegetation Index') plt.legend() plt.grid() return out
from __init__ import QMainWindow from .view import View from .model import Model class Controller: def __init__(self, parent_window: QMainWindow, round: int): super().__init__() self.parent_window = parent_window self.round = round self.view = View(self.parent_window, self.round) self.module = Model()
# -*- coding:utf-8 -*- import csv # 先按照年份来分类 year_dict = {} with open('./entry.csv', 'r') as entry: reader = csv.reader(entry) for row in reader: if reader.line_num == 1 or reader.line_num == 2: continue if reader.line_num == 3: print(row) # if reader.line_num < 100: year = row[1] if year not in year_dict: year_dict[year] = [row] else: year_dict.get(year).append(row) result_list = [] # 按照城市来分类 print(len(year_dict.keys())) for year in sorted(year_dict.keys()): this_year_list = year_dict.get(year) this_year_city_key_dict = {} for item in this_year_list: city = item[0] label = int(item[-1]) if city not in this_year_city_key_dict: default_this_year_city = {'name': city, 'year': year, 'A': 0, 'A1': 0, 'A2': 0, 'A3': 0, 'A4': 0,'B': 0,'B1': 0, 'B2': 0,'B3': 0, 'B4': 0, 'C': 0, 'C1': 0, 'C2': 0, 'C3': 0, 'C4': 0} if label <= 5: A1 = float(item[2]) A2 = float(item[3]) A3 = float(item[4]) A4 = float(item[5]) default_this_year_city['A']+= 1 default_this_year_city['A1'] += A1 default_this_year_city['A2'] += A2 default_this_year_city['A3'] += A3 default_this_year_city['A4'] += A4 elif label >= 6 and label <= 50: B1 = float(item[2]) B2 = float(item[3]) B3 = float(item[4]) B4 = float(item[5]) default_this_year_city['B']+= 1 default_this_year_city['B1'] += B1 default_this_year_city['B2'] += B2 default_this_year_city['B3'] += B3 default_this_year_city['B4'] += B4 else: C1 = float(item[2]) C2 = float(item[3]) C3 = float(item[4]) C4 = float(item[5]) default_this_year_city['C']+= 1 default_this_year_city['C1'] += C1 default_this_year_city['C2'] += C2 default_this_year_city['C3'] += C3 default_this_year_city['C4'] += C4 this_year_city_key_dict[city] = default_this_year_city else: if label <= 5: A1 = float(item[2]) A2 = float(item[3]) A3 = float(item[4]) A4 = float(item[5]) this_year_city_key_dict[city]['A']+= 1 this_year_city_key_dict[city]['A1'] += A1 this_year_city_key_dict[city]['A2'] += A2 this_year_city_key_dict[city]['A3'] += A3 this_year_city_key_dict[city]['A4'] += A4 elif label >= 6 and label <= 50: B1 = float(item[2]) B2 = float(item[3]) B3 = float(item[4]) B4 = float(item[5]) this_year_city_key_dict[city]['B']+= 1 this_year_city_key_dict[city]['B1'] += B1 this_year_city_key_dict[city]['B2'] += B2 this_year_city_key_dict[city]['B3'] += B3 this_year_city_key_dict[city]['B4'] += B4 else: C1 = float(item[2]) C2 = float(item[3]) C3 = float(item[4]) C4 = float(item[5]) this_year_city_key_dict[city]['C'] += 1 this_year_city_key_dict[city]['C1'] += C1 this_year_city_key_dict[city]['C2'] += C2 this_year_city_key_dict[city]['C3'] += C3 this_year_city_key_dict[city]['C4'] += C4 for city in this_year_city_key_dict.items(): result_list.append(city[1]) with open('./result.csv', 'w') as result: fieldnames = ['name', 'year', 'A', 'A1', 'A2', 'A3', 'A4', 'B', 'B1', 'B2', 'B3', 'B4', 'C', 'C1', 'C2', 'C3', 'C4'] writer = csv.DictWriter(result, fieldnames=fieldnames) writer.writeheader() for city in result_list: writer.writerow(city)
import os import json import fhirclient.models.diagnosticreport as dr import fhirclient.models.codeableconcept as concept import fhirclient.models.meta as meta import fhirclient.models.resource as resource import fhirclient.models.observation as observation import fhirclient.models.fhirreference as reference import fhirclient.models.fhirdate as date import fhirclient.models.range as valRange import fhirclient.models.medicationstatement as medication import numpy as np from collections import OrderedDict from uuid import uuid4 from .common import _Utilities class _Fhir_Helper: def __init__(self, patientID): self.report = dr.DiagnosticReport() self.phased_rec_map = {} self.result_ids = [] self.fhir_report = {} self.obs_contained = [] self.patientID = patientID def _get_region_studied_component(self, reportable_query_regions, nocall_regions): observation_rs_components = [] for _, row in reportable_query_regions.df.iterrows(): obv_comp = observation.ObservationComponent() obv_comp.code = concept.CodeableConcept({"coding": [{ "system": "http://loinc.org","code": "51959-5","display": "Ranges-examined component"}]}) obv_comp.valueRange = valRange.Range({"low": {"value": np.float(row['Start']) + 1},"high": {"value": np.float(row['End']) + 1}}) observation_rs_components.append(obv_comp) for _, row in nocall_regions.df.iterrows(): obv_comp = observation.ObservationComponent() obv_comp.code = concept.CodeableConcept({"coding": [{ "system": "http://loinc.org","code": "TBD-UncallableRegions","display": "Uncallable region"}]}) obv_comp.valueRange = valRange.Range({"low": {"value": np.float(row['Start']) + 1},"high": {"value": np.float(row['End']) + 1}}) observation_rs_components.append(obv_comp) return observation_rs_components def _addPhaseRecords(self, record): if(record.samples[0].phased == False): return sample_data = record.samples[0].data if(sample_data.GT != None and len(sample_data.GT.split('|')) >= 2 and sample_data.PS != None): self.phased_rec_map.setdefault(sample_data.PS, []).append(record) def initalizeReport(self): patient_reference = reference.FHIRReference({"reference":"Patient/"+self.patientID}) self.report.id = "dr-"+uuid4().hex[:13] self.report.meta = meta.Meta({"profile":["http://hl7.org/fhir/uv/genomics-reporting/StructureDefinition/genomics-report"]}) self.report.status = "final" self.report.code = concept.CodeableConcept({"coding":[{"system":"http://loinc.org","code":"81247-9","display":"Master HL7 genetic variant reporting panel"}]}) self.report.subject = patient_reference self.report.issued = date.FHIRDate(_Utilities.getFhirDate()) self.report.contained = [] def add_regionstudied_obv(self, ref_seq, reportable_query_regions, nocall_regions): if reportable_query_regions.empty and nocall_regions.empty: return patient_reference = reference.FHIRReference({"reference":"Patient/"+self.patientID}) contained_uid = "rs-"+ uuid4().hex[:13] self.result_ids.append(contained_uid) # Region Studied Obeservation observation_rs = observation.Observation() contained_rs = observation_rs contained_rs.id = contained_uid observation_rs.resource_type = "Observation" contained_rs.meta = meta.Meta({"profile":["http://hl7.org/fhir/uv/genomics-reporting/StructureDefinition/region-studied"]}) observation_rs.code = concept.CodeableConcept({"coding":[{"system":"http://loinc.org","code":"53041-0","display":"DNA region of interest panel"}]}) observation_rs.status = "final" observation_rs.category = [concept.CodeableConcept({"coding":[{"system": "http://terminology.hl7.org/CodeSystem/observation-category","code": "laboratory"}]})] observation_rs.subject = patient_reference observation_rs_component2 = observation.ObservationComponent() observation_rs_component2.code = concept.CodeableConcept({"coding": [{"system": "http://loinc.org","code": "92822-6","display": "Genomic coord system"}]}) observation_rs_component2.valueCodeableConcept = concept.CodeableConcept({"coding":[{"system":"http://loinc.org","code":"LA30102-0","display": "1-based character counting"}]}) observation_rs_component3 = observation.ObservationComponent() observation_rs_component3.code = concept.CodeableConcept({"coding": [{"system": "http://loinc.org","code": "48013-7","display": "Genomic reference sequence ID"}]}) observation_rs_component3.valueCodeableConcept = concept.CodeableConcept({"coding":[{"system":"http://www.ncbi.nlm.nih.gov/nuccore","code":ref_seq}]}) observation_rs_components = self._get_region_studied_component(reportable_query_regions, nocall_regions) observation_rs.component = [observation_rs_component2,observation_rs_component3] + observation_rs_components # Observation structure : described-variants self.report.contained.append(contained_rs) def add_variant_obv(self, record, ref_seq): # collect all the record with similar position values, # to utilized later in phased sequence relationship self._addPhaseRecords(record) patient_reference = reference.FHIRReference({"reference":"Patient/"+self.patientID}) alleles = _Utilities.getAllelicState(record) dvuid = "dv-"+ uuid4().hex[:13] self.fhir_report.update({ str(record.POS) : dvuid}) self.result_ids.append(dvuid) observation_dv = observation.Observation() observation_dv.resource_type = "Observation" observation_dv.id = dvuid observation_dv.meta = meta.Meta({"profile":["http://hl7.org/fhir/uv/genomics-reporting/StructureDefinition/variant"]}) observation_dv.status = "final" observation_dv.category = [concept.CodeableConcept({"coding":[{"system": "http://terminology.hl7.org/CodeSystem/observation-category","code": "laboratory"}]})] observation_dv.code = concept.CodeableConcept({"coding":[{"system":"http://loinc.org","code":"69548-6","display":"Genetic variant assessment"}]}) observation_dv.subject = patient_reference observation_dv.valueCodeableConcept = concept.CodeableConcept({"coding":[{"system":"http://loinc.org","code":"LA9633-4","display":"present"}]}) observation_dv.component = [] observation_dv_component1 = observation.ObservationComponent() observation_dv_component1.code = concept.CodeableConcept({"coding": [{"system": "http://loinc.org","code": "62374-4","display": "Human reference sequence assembly version"}]}) observation_dv_component1.valueCodeableConcept = concept.CodeableConcept({"coding": [{"system": "http://loinc.org","code": "LA14029-5","display": "GRCh37"}]}) observation_dv.component.append(observation_dv_component1) observation_dv_component2 = observation.ObservationComponent() observation_dv_component2.code = concept.CodeableConcept({"coding": [{"system": "http://loinc.org","code": "48013-7","display": "Genomic reference sequence ID"}]}) observation_dv_component2.valueCodeableConcept = concept.CodeableConcept({"coding": [{"system": "http://www.ncbi.nlm.nih.gov/nuccore","code": ref_seq}]}) observation_dv.component.append(observation_dv_component2) if alleles['CODE'] != "" or alleles['ALLELE'] != "": observation_dv_component3 = observation.ObservationComponent() observation_dv_component3.code = concept.CodeableConcept({"coding": [{"system": "http://loinc.org","code": "53034-5","display": "Allelic state"}]}) observation_dv_component3.valueCodeableConcept = concept.CodeableConcept({"coding": [{"system": "http://loinc.org","code": alleles['CODE'],"display": alleles['ALLELE']}]}) observation_dv.component.append(observation_dv_component3) observation_dv_component4 = observation.ObservationComponent() observation_dv_component4.code = concept.CodeableConcept({"coding": [{"system": "http://loinc.org","code": "69547-8","display": "Genomic Ref allele [ID]"}]}) observation_dv_component4.valueString = record.REF observation_dv.component.append(observation_dv_component4) observation_dv_component5 = observation.ObservationComponent() observation_dv_component5.code = concept.CodeableConcept({"coding": [{"system": "http://loinc.org","code": "69551-0","display": "Genomic Alt allele [ID]"}]}) observation_dv_component5.valueString = record.ALT[0].sequence observation_dv.component.append(observation_dv_component5) observation_dv_component6 = observation.ObservationComponent() observation_dv_component6.code = concept.CodeableConcept({"coding": [{"system": "http://loinc.org","code": "92822-6","display": "Genomic coord system"}]}) observation_dv_component6.valueCodeableConcept = concept.CodeableConcept({"coding":[{"system":"http://loinc.org","code":"LA30102-0","display":"1-based character counting"}]}) observation_dv.component.append(observation_dv_component6) observation_dv_component7 = observation.ObservationComponent() observation_dv_component7.code = concept.CodeableConcept({"coding": [{"system": "http://hl7.org/fhir/uv/genomics-reporting/CodeSystem/tbd-codes","code": "exact-start-end","display": "Variant exact start and end"}]}) observation_dv_component7.valueRange = valRange.Range({"low": {"value": int(record.POS)}}) observation_dv.component.append(observation_dv_component7) self.report.contained.append(observation_dv) def add_phased_relationship_obv(self): patient_reference = reference.FHIRReference({"reference":"Patient/"+self.patientID}) self.sequenceRels = _Utilities.getSequenceRelation(self.phased_rec_map) for index in self.sequenceRels.index: siduid = "sid-" + uuid4().hex[:13] self.result_ids.append(siduid) observation_sid = observation.Observation() observation_sid.resource_type = "Observation" observation_sid.id = siduid observation_sid.meta = meta.Meta({"profile":["http://hl7.org/fhir/uv/genomics-reporting/StructureDefinition/sequence-phase-relationship"]}) observation_sid.status = "final" observation_sid.category = [concept.CodeableConcept({"coding":[{"system": "http://terminology.hl7.org/CodeSystem/observation-category","code": "laboratory"}]})] observation_sid.code = concept.CodeableConcept({"coding":[{"system":"http://loinc.org","code":"82120-7","display":"Allelic phase"}]}) observation_sid.subject = patient_reference observation_sid.valueCodeableConcept = concept.CodeableConcept({"coding":[{"system":"http://hl7.org/fhir/uv/genomics-reporting/CodeSystem/seq-phase-relationship","code":self.sequenceRels.at[index,'Relation'],"display":self.sequenceRels.at[index,'Relation']}]}) self.report.contained.append(observation_sid) def add_report_result(self): reportResult = [] for uid in self.result_ids: reportResult.append(reference.FHIRReference({"reference": f"#{uid}"})) self.report.result = reportResult def generate_final_json(self): response = self.report.as_json() od = OrderedDict() od["resourceType"] = response['resourceType'] od["id"] = response['id'] od["meta"] = response['meta'] if 'contained' in response: od["contained"] = response['contained'] else: od["contained"] = [] od["status"] = response['status'] od["code"] = response['code'] od["subject"] = response['subject'] od["issued"] = response['issued'] if 'result' in response: od["result"] = response['result'] else: od["result"] = [] odCodeCoding = OrderedDict() odCodeCoding["system"] = od["code"]["coding"][0]["system"] odCodeCoding["code"] = od["code"]["coding"][0]["code"] odCodeCoding["display"] = od["code"]["coding"][0]["display"] od["code"]["coding"][0] = odCodeCoding sidIndex = 0 for index,fhirReport in enumerate(od['contained']): if (fhirReport['id'].startswith('sid-')): sidIndex = index break for index,(_, fhirReport) in enumerate(zip(self.sequenceRels.index, od['contained'][sidIndex:])): dvRef1 = self.fhir_report.get(str(self.sequenceRels.at[index,'POS1'])) dvRef2 = self.fhir_report.get(str(self.sequenceRels.at[index,'POS2'])) if (fhirReport['id'].startswith('sid-')): derivedFromDV1 = {} derivedFromDV2 = {} derivedFromDV1['reference'] = f"#{dvRef1}" derivedFromDV2['reference'] = f"#{dvRef2}" derivedFrom = [derivedFromDV1,derivedFromDV2] fhirReport['derivedFrom']= derivedFrom for k,i in enumerate(od['contained']): if (i['category'][0]['coding'][0]): odCategoryCoding = OrderedDict() odCategoryCoding["system"] = i['category'][0]['coding'][0]["system"] odCategoryCoding["code"] = i['category'][0]['coding'][0]["code"] od['contained'][k]['category'][0]['coding'][0] = odCategoryCoding if (i['code']['coding'][0]): odCodeCoding = OrderedDict() odCodeCoding["system"] = i['code']['coding'][0]["system"] odCodeCoding["code"] = i['code']['coding'][0]["code"] odCodeCoding["display"] = i['code']['coding'][0]["display"] od['contained'][k]['code']['coding'][0] = odCodeCoding if 'valueCodeableConcept' in i.keys(): odValueCodeableConceptCoding = OrderedDict() odValueCodeableConceptCoding["system"] = i['valueCodeableConcept']['coding'][0]["system"] odValueCodeableConceptCoding["code"] = i['valueCodeableConcept']['coding'][0]["code"] odValueCodeableConceptCoding["display"] = i['valueCodeableConcept']['coding'][0]["display"] od['contained'][k]['valueCodeableConcept']['coding'][0] = odValueCodeableConceptCoding if ((i['id'].startswith('dv-')) or (i['id'].startswith('rs-'))): for l,j in enumerate(i['component']): odComponentCodeCoding = OrderedDict() if j['code']['coding'][0]["system"]: odComponentCodeCoding["system"] = j['code']['coding'][0]["system"] if j['code']['coding'][0]["code"]: odComponentCodeCoding["code"] = j['code']['coding'][0]["code"] if j['code']['coding'][0]["display"]: odComponentCodeCoding["display"] = j['code']['coding'][0]["display"] if od['contained'][k]['component'][l]['code']['coding'][0]: od['contained'][k]['component'][l]['code']['coding'][0] = odComponentCodeCoding odComponentvalueCodeableConcept = OrderedDict() if 'valueCodeableConcept' in j.keys(): odComponentvalueCodeableConcept["system"] = j['valueCodeableConcept']['coding'][0]["system"] if 'code' in j['valueCodeableConcept']['coding'][0].keys(): odComponentvalueCodeableConcept["code"] = j['valueCodeableConcept']['coding'][0]["code"] if 'display' in j['valueCodeableConcept']['coding'][0].keys(): odComponentvalueCodeableConcept["display"] = j['valueCodeableConcept']['coding'][0]["display"] od['contained'][k]['component'][l]['valueCodeableConcept']['coding'][0] = odComponentvalueCodeableConcept if (i['id'].startswith('rs-')): odRS = OrderedDict() odRS["resourceType"] = i['resourceType'] odRS["id"] = i['id'] odRS["meta"] = i['meta'] odRS["status"] = i['status'] odRS["category"] = i['category'] odRS["code"] = i['code'] odRS["subject"] = i['subject'] odRS["component"] = i['component'] od['contained'][k] = odRS if (i['id'].startswith('dv-')): odDV = OrderedDict() odDV["resourceType"] = i['resourceType'] odDV["id"] = i['id'] odDV["meta"] = i['meta'] odDV["status"] = i['status'] odDV["category"] = i['category'] odDV["code"] = i['code'] odDV["subject"] = i['subject'] odDV["valueCodeableConcept"] = i['valueCodeableConcept'] odDV["component"] = i['component'] od['contained'][k] = odDV if (i['id'].startswith('sid-')): odSID = OrderedDict() odSID["resourceType"] = i['resourceType'] odSID["id"] = i['id'] odSID["meta"] = i['meta'] odSID["status"] = i['status'] odSID["category"] = i['category'] odSID["code"] = i['code'] odSID["subject"] = i['subject'] odSID["valueCodeableConcept"] = i['valueCodeableConcept'] odSID["derivedFrom"] = i['derivedFrom'] od['contained'][k] = odSID self.fhir_json = od def export_fhir_json(self, output_filename): with open(output_filename, 'w') as fp: json.dump(self.fhir_json, fp,indent=4)
from bs4 import UnicodeDammit import unicodedata import time import re def ensure_unicode(value): return UnicodeDammit(value).unicode_markup def normalize_unicode(value): return unicodedata.normalize("NFKD", ensure_unicode(value))\ .encode('ascii', 'ignore') def ensure_alphanum(value): return re.sub(r'\W', '', value) # returns a cleaned, normalized, and shortened version of a name def clean_author(name): short_name = ''.join(name.split()).lower() return normalize_unicode(short_name) def clean_authors(names): return ''.join([clean_author(name['family']) for name in names if 'family' in name]) # returns a cleaned, normalized, version of a title def clean_title(start_title): return ensure_alphanum(normalize_unicode(start_title).lower()) # merges two dicts; unioned items from dict2 overwrite dict1 def merge_dicts(dict1, dict2): return dict(dict1.items() + dict2.items()) # adds or updates an article from raw DB to production DB def add_or_update(article, raw, production, merges): # if article is already in production db # get computed fields indices = {} # this should never happen--why does it? if 'citation' not in article: return None if 'title' in article['citation'] and 'author' in article['citation']: cleaned_title = clean_title(article['citation']['title']) cleaned_author = ''.join([ clean_author(name['family']) for name in article['citation']['author'] if 'family' in name ]) indices['cleaned_author_title'] = '_'.join([cleaned_author, cleaned_title]) if 'PMID' in article['citation']: indices['PMID'] = article['citation']['PMID'] if 'DOI' in article['citation']: indices['DOI'] = article['citation']['DOI'] article['indices'] = indices production_article = None #for key, value in indices.items(): for field in ['DOI', 'PMID', 'cleaned_author_title']: if field in indices: value = indices[field] production_article = production.find_one({ 'indices.{}'.format(field) : value }) if production_article: break # ensure citation has not been imported try: if article["meta-data"]["flags"]["imported"] and production_article: return production_article["_id"] except KeyError: pass if production_article: # track merges merges.insert({ "production_article_id": production_article["_id"], "raw_article_id": article.get("_id", None), "citation_dicts": { "production": production_article["citation"], "raw": article["citation"] } }) # merge article with one in production db production.update( {"_id": production_article["_id"]}, {"$set": { 'citation': merge_dicts( article["citation"], production_article["citation"] ), 'indices': merge_dicts( indices, production_article.get('indices', {}) ) } } ) # iterate through article.references id_list = [] for reference in article.get("references", []): id_list.append(add_or_update({'citation': reference}, raw, production, merges)) # append pointer for reference to article already in production DB production.update( {"_id": production_article["_id"]}, {"$addToSet": {"references": {"$each": id_list}} } ) _id = production_article["_id"] # else - article doesn't already exist in production DB else: # create a new article to represent the article #print "creating a new article" production_article = {} # copy citation and meta-data to the article production_article["citation"] = article["citation"] production_article['indices'] = indices production_article['references'] = [] production_article['meta-data'] = article.get('meta-data', {}) # iterate through article.references id_list = [] for reference in article.get("references", []): reference_id = add_or_update({'citation': reference}, raw, production, merges) if reference_id: id_list.append(reference_id) # append pointer for reference to article already in production DB production_article["references"] = id_list _id = production.insert(production_article) # update imported tag in raw DB if '_id' in article: raw.update( {"_id": article["_id"]}, {"$set": { "meta-data.flags.imported": True} } ) return _id
#!/usr/bin/env python # -*- coding: utf-8 -*- from math import ceil, floor, log2 from os import urandom import pytest import winternitz.signatures __author__ = "Harald Heckmann" __copyright__ = "Harald Heckmann" __license__ = "mit" wots = None wots2 = None wots_strange_w = None wots_strange_w2 = None wotsp = None wotsp2 = None wotsp_strange_w = None wotsp_strange_w2 = None wots_def_key_count = 0 keysize = 0 # self is of no use since pytest creates new instances for each test function @pytest.mark.incremental class TestWOTS(object): def test_init(self): # Init for __function__ and getter tests global wots, wots2, wots_strange_w, wots_strange_w2, wotsp, wotsp2,\ wotsp_strange_w, wotsp_strange_w2, wots_def_key_count, keysize wots_strange_w = winternitz.signatures.WOTS(w=13) wots_strange_w2 = winternitz.signatures.WOTS(w=((1 << 13) + 1917)) wots = winternitz.signatures.WOTS(w=4) wots2 = winternitz.signatures.WOTS(w=16) wotsp = winternitz.signatures.WOTSPLUS(w=4) wotsp2 = winternitz.signatures.WOTSPLUS(w=16) wotsp_strange_w = winternitz.signatures.WOTSPLUS(w=13) wotsp_strange_w2 = winternitz.signatures.WOTSPLUS(w=((1 << 13) + 1917)) kswots = winternitz.signatures.WOTS() msgkeys = int(ceil(kswots.digestsize / log2(kswots.w))) cskeys = int(floor(log2(msgkeys * (kswots.w - 1)) / log2(kswots.w)) + 1) wots_def_key_count = msgkeys + cskeys keysize = int(ceil(kswots.digestsize / 8)) # Invalid w parameter with pytest.raises(ValueError): _ = winternitz.signatures.WOTS(w=1) # noqa with pytest.raises(ValueError): _ = winternitz.signatures.WOTS(w=(1 << 513)) # noqa # Invalid private key size with pytest.raises(ValueError): _ = winternitz.signatures.WOTS(privkey=[b"Hi"]) # noqa # Invalid public key size with pytest.raises(ValueError): _ = winternitz.signatures.WOTS(pubkey=[b"Hi"]) # noqa # Invalid size of one element of public key with pytest.raises(ValueError): _ = winternitz.signatures.WOTS(pubkey=[urandom(1) for _ in # noqa range(wots_def_key_count)]) def test_underscore_functions_and_getter(self): global wots, wots2, wotsp, wotsp2, wots_def_key_count, keysize # Object representation _ = str(wots2) _ = str(wotsp2) # noqa: F841 # Test string representation if public key is set _ = str(winternitz.signatures.WOTS(pubkey=[urandom(keysize) for _ in range(wots_def_key_count)])) # __repr__(self) returns a string which contains the code to be # executed to create an equal object. eval(...) does execute this code. wots_copy = eval(repr(wots)) wotsp_copy = eval(repr(wotsp)) # Equality checks assert wots == wots_copy assert wotsp == wotsp_copy assert not (wots == wots2) assert not (wotsp == wotsp2) # Not equality checks assert wots != wots2 assert wotsp != wotsp2 assert not (wots != wots_copy) assert not (wotsp != wotsp_copy) # Number to base returns [0] _ = wots._numberToBase(0, 16) # noqa # Number conversion to another base does return more numbers than # private keys with pytest.raises(IndexError): wots._getSignatureBaseMessage(urandom(keysize + 1)) def test_sign_and_verify_wots(self): global wots, wots_strange_w, wots_strange_w2 WOTS = winternitz.signatures.WOTS message = "Hello World!".encode("utf-8") # Sign and verify with the same object sig = wots.sign(message) # noqa: F841 assert(wots.verify(message, sig["signature"])) # Test getPubkeyFromSignature pubkey = wots.getPubkeyFromSignature(message, sig["signature"]) assert(wots.pubkey == pubkey) # Sign with one object, derive the public key from checksum sig = wots_strange_w.sign(message) # Copy the object, the public key is derived from the private key wots_strange_w_copy = eval(repr(wots_strange_w)) assert(wots_strange_w_copy.verify(message, sig["signature"])) # Create an object and specify only the public key. Verify the sig wots_strange_w_pub = WOTS(w=wots_strange_w.w, pubkey=wots_strange_w.pubkey) assert(wots_strange_w_pub.verify(message, sig["signature"])) # It should not be possible to sign having only a private key with pytest.raises(ValueError): _ = wots_strange_w_pub.sign(message) # noqa # Verification should fail with an invalid public key assert(not wots2.verify(message, sig["signature"])) wots_same_w = WOTS(w=4) assert(not wots_same_w.verify(message, sig["signature"])) # Sign and verify with the same object using a big and strange w value sig = wots_strange_w2.sign(message) # noqa: F841 assert(wots_strange_w2.verify(message, sig["signature"])) def test_sign_and_verify_wots_plus(self): global wotsp, wotsp2, wotsp_strange_w, wotsp_strange_w2 WOTSP = winternitz.signatures.WOTSPLUS message = "Hello World!".encode("utf-8") # Sign and verify with the same object sig = wotsp.sign(message) # noqa: F841 assert(wotsp.verify(message, sig["signature"])) # Test getPubkeyFromSignature pubkey = wotsp.getPubkeyFromSignature(message, sig["signature"]) assert(wotsp.pubkey == pubkey) # Sign with one object, derive the public key from checksum sig = wotsp_strange_w.sign(message) # Copy the object, the public key is derived from the private key wotsp_strange_w_copy = eval(repr(wotsp_strange_w)) assert(wotsp_strange_w_copy.verify(message, sig["signature"])) # Create an object and specify only the public key. Verify the sig wotsp_strange_w_pub = WOTSP(w=wotsp_strange_w.w, pubkey=wotsp_strange_w .pubkey) # Should fail because we need the seed assert(not wotsp_strange_w_pub.verify(message, sig["signature"])) wotsp_strange_w_pub = WOTSP(w=wotsp_strange_w.w, seed=wotsp_strange_w.seed, pubkey=wotsp_strange_w.pubkey) assert(wotsp_strange_w_pub.verify(message, sig["signature"])) # It should not be possible to sign having only a private key with pytest.raises(ValueError): _ = wotsp_strange_w_pub.sign(message) # noqa # Verification should fail with an invalid public key assert(not wotsp2.verify(message, sig["signature"])) wotsp_same_w = WOTSP(w=4, seed=wotsp_strange_w.seed) assert(not wotsp_same_w.verify(message, sig["signature"]))
from bs4 import BeautifulSoup import requests MAX_PAGE = 250 # defining base_url to create a list of all page urls BASE_URL = "https://www.truecar.com/used-cars-for-sale/listings/" # defining host_name for creating urls for each car ad HOST_NAME = "https://www.truecar.com" pages = list() urls = list() failed_pages = list() def url_scraper(): with open("pages.txt", "w") as f: for i in range(1,MAX_PAGE+1): page = BASE_URL + "?page=" + str(i) f.write(page+"\n") pages.append(page) for page in pages: try: response = requests.get(page) response.raise_for_status() except: failed_pages.append(page) continue src = response.text soup = BeautifulSoup(src, "html.parser") ads = soup.find_all("a", attrs={ "data-test" : "vehicleCardLink" }) url_list = [HOST_NAME+link["href"] for link in ads] with open("urls.txt", "a+") as f: for url in url_list: urls.append(url) f.write(url+"\n") # By Sina Kazemi # Github : https://github.com/sina96n/
from sklearn import preprocessing import pandas as pd from collections import defaultdict class DfOneHotEncoder(): def __init__(self): self.le = defaultdict() self.ohe = defaultdict() self.dropped_columns = {} def fit(self, df, columns=None, **kwargs): self.le = df[columns].apply(lambda x: preprocessing.LabelEncoder().fit(x)).to_dict() for column in columns: self.ohe[column] = preprocessing.\ OneHotEncoder(sparse=False).\ fit(self.le[column].transform(df[column]).reshape(len(df[column]), 1)) def transform(self, df, columns=None, drop_first=False, **kwargs): for column in columns: label_encode = self.le[column].transform(df[column]).reshape(len(df[column]), 1) one_hot_encode = self.ohe[column].transform(label_encode) df = df.drop(column, axis=1) new_col_name = [str(column) + "_" + str(cat_name) for cat_name in list(self.le[column].classes_)] if drop_first: start_index = 1 self.dropped_columns[column] = new_col_name[0] else: start_index = 0 df = pd.concat([df, pd.DataFrame(one_hot_encode[:,start_index:], columns=new_col_name[start_index:])], axis=1) return df def fit_transform(self, df, columns=None, **kwargs): self.fit(df, columns, **kwargs) return self.transform(df, columns, **kwargs) def inverse_transform(self, df, columns): for column in columns: names_of_encoded_columns = [i for i in list(df) if i.startswith(column + "_")] df[column] = df[names_of_encoded_columns].\ apply(lambda x: x[x != 0].keys()[0][len(column)+1:] if ~(x == 0).all() else self.dropped_columns[column][len(column)+1:], axis=1) df = df.drop(names_of_encoded_columns,axis=1) return df
# -*- coding: utf-8 -*- """ Created on Sat Sep 4 11:42:49 2021 @author: Easin """ in1 = input() in1 = int(in1) if in1 %2 != 0: x = in1 -9 y = 9 else: x = in1 -4 y = 4 print(x,y)
import random from tests import utils as tests_utils from .test_event_base import SalesManagoEventsTestsBase class SalesManagoEventDataFeatureTest(SalesManagoEventsTestsBase): def test_requestDict_for_minimal(self): AGAINST = { 'email': self.CLIENT_MAIL, 'owner': self.OWNER_MAIL, 'contactId': self.CONTACT_ID, 'contactEvent': { 'date': self.EVENT_DATE, 'contactExtEventType': self.mcd['contactExtEventType'] } } TEST_DICT = self.eventClass.requestDict() self.assertEqual(AGAINST, TEST_DICT) for ext_field in self.EXT_EVENT_FIELDS: self.assertNotIn(ext_field, TEST_DICT) self.assertNotIn(ext_field, TEST_DICT['contactEvent']) def test_requestDict_for_full(self): AGAINST = { 'email': self.CLIENT_MAIL, 'owner': self.OWNER_MAIL, 'contactId': self.CONTACT_ID, 'forceOptIn': self.fcd['forceOptIn'], 'contactEvent': { 'date': self.EVENT_DATE, 'contactExtEventType': self.fcd['contactExtEventType'], 'products': self.fcd['products'], 'location': self.fcd['location'], 'value': self.fcd['value'], 'detail1': self.fcd['detail1'], 'detail2': self.fcd['detail2'], 'description': self.fcd['description'], 'externalId': self.fcd['externalId'], 'shopDomain': self.fcd['shopDomain'] } } TEST_DICT = self.eventClassFull.requestDict() self.assertEqual(AGAINST, TEST_DICT)
#!/usr/bin/python3.8 import os import json import aiohttp import asyncio import logging import pprint from asyncio import wait_for from aiohttp import web from aiohttp import client from hpfeeds.asyncio import ClientSession HPFSERVER = os.environ.get("HPFSERVER", "127.0.0.1") HPFPORT = int(os.environ.get("HPFPORT", 20000)) HPFIDENT = os.environ.get("HPFIDENT", "testing") HPFSECRET = os.environ.get("HPFSECRET", "secretkey") HIVEID = os.environ.get("HIVEID", "UnknownHive") logging.basicConfig(level=logging.ERROR) logger = logging.getLogger(__name__) # Credit for the base of this goes to a stackoverflow question i need to find. baseUrl = 'http://0.0.0.0:8080' async def hpfeeds_publish(event_message): async with ClientSession(HPFSERVER, HPFPORT, HPFIDENT, HPFSECRET) as client: client.publish('wordpress.sessions', json.dumps(event_message).encode('utf-8')) return True async def handler(request): # Write the log entry before we sort the response as thats more important # Get HTTP as version string http_version = "HTTP/{0}.{1}".format(request.version.major, request.version.minor) # convert Cookies to a standard dict, We will loose Duplicates http_cookies = {} for k, v in request.cookies.items(): http_cookies[k] = v # convert Headers to a standard dict, We will loose Duplicates http_headers = {} for k, v in request.headers.items(): http_headers[k] = v # convert POST to a standard dict, We will loose Duplicates http_post = {} if request.method == 'POST': data = await request.post() for key, value in data.items(): http_post[key] = value event_message = { "hive_id": HIVEID, "source_ip": request.remote, "http_remote": request.remote, "http_host": request.host, "http_version": http_version, "http_method": request.method, "http_scheme": request.scheme, "http_query": request.path_qs, "http_post": http_post, "http_headers": http_headers, "http_path": request.path } # Send the Broker message # Set timeout to 3 seconds in a try: except so we dont kill the http response try: await wait_for(hpfeeds_publish(event_message), timeout=3) except asyncio.TimeoutError: print("Unable to connect to hpfeeds broker.") pass proxyPath = request.path_qs reqH = request.headers.copy() if reqH['connection'] == 'Upgrade' and reqH['upgrade'] == 'websocket' and request.method == 'GET': ws_server = web.WebSocketResponse() await ws_server.prepare(request) logger.info('##### WS_SERVER %s' % pprint.pformat(ws_server)) client_session = aiohttp.ClientSession(cookies=request.cookies) async with client_session.ws_connect(baseUrl+request.path_qs) as ws_client: logger.info('##### WS_CLIENT %s' % pprint.pformat(ws_client)) async def wsforward(ws_from,ws_to): async for msg in ws_from: logger.info('>>> msg: %s',pprint.pformat(msg)) mt = msg.type md = msg.data if mt == aiohttp.WSMsgType.TEXT: await ws_to.send_str(md) elif mt == aiohttp.WSMsgType.BINARY: await ws_to.send_bytes(md) elif mt == aiohttp.WSMsgType.PING: await ws_to.ping() elif mt == aiohttp.WSMsgType.PONG: await ws_to.pong() elif ws_to.closed: await ws_to.close(code=ws_to.close_code,message=msg.extra) else: raise ValueError('unexpecte message type: %s',pprint.pformat(msg)) finished,unfinished = await asyncio.wait([wsforward(ws_server,ws_client),wsforward(ws_client,ws_server)],return_when=asyncio.FIRST_COMPLETED) return ws_server else: # We can put something in here so we can set any user / password combination to work. # Essentially edit the POST form and replace the values with whatever we default to admin:admin async with client.request( request.method,baseUrl+proxyPath, headers = reqH, allow_redirects=False, data = await request.read() ) as res: headers = res.headers.copy() # Get teh body from the upstream body = await res.read() # If there is a compression header or chunked transfer we need to remove it. # The response body we forward is already decompressed and re assembled if 'Content-Encoding' in headers: del headers['Content-Encoding'] if 'Transfer-Encoding' in headers: if headers['Transfer-Encoding'] == "chunked": del headers['Transfer-Encoding'] # We need to fix the content length if a reponse was compressed. try: if len(body) != headers['Content-Length']: headers['Content-Length'] = str(len(body)) except: pass # Now return the response return web.Response( headers = headers, status = res.status, body = body ) return ws_server app = web.Application( client_max_size=10000000 ) app.router.add_route('*','/{proxyPath:.*}', handler) web.run_app(app,port=80)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 30 13:45:39 2020 the version of loompy should be the consistent with velocyto; otherwise error returned @author: jingkui.wang """ import loompy import glob files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117008_R9533/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117008_R9533/LOOMS/S117008_R9533_merged.loom") files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117007_R9533/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117007_R9533/LOOMS/S117007_R9533_merged.loom") files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117009_R9533/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S117009_R9533/LOOMS/S117009_R9533_merged.loom") # folder S124890_R9968 files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124890_R9968/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124890_R9968/LOOMS/S124890_R9968_merged.loom") # folder S124889_R9968 files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124889_R9968/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124889_R9968/LOOMS/S124889_R9968_merged.loom") # folder S124891_R9968 files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124891_R9968/LOOMS/*.loom") loompy.combine(files, "/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/S124891_R9968/LOOMS/S124891_R9968_merged.loom") # here combine merged loom files from all folders files = glob.glob("/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/*/LOOMS/*merged.loom") loompy.combine(files, '/Volumes/groups/cochella/git_aleks_jingkui/scRNAseq_MS_lineage/data/raw_ngs_data/all_merged.loom') loompy.combine(files, '/Users/jiwang/workspace/imp/scRNAseq_MS_lineage_dev/data/velocyto_all_merged.loom') ds = loompy.connect('/Users/jiwang/workspace/imp/scRNAseq_MS_lineage_dev/data/velocyto_all_merged.loom') ds.shape
import random class room: def room(n,e,s,w,items): stuff = "Really cool stuff",items doors = [["north",n],["east",e],["south",s],["west",w]] return [doors,stuff] class levels: def rooms(x,y, room1 = "room1", room2 = "room2", room3 = "room3", room4 = "room4", room5 = "room5", room6 = "room6", room7 = "room7", room8 = "room8", room9 = "room9", room10 = "room10", room11 = "room11", room12 = "room12", room13 = "room13", room14 = "room14", room15 = "room15", room16 = "room16", room17 = "room17", room18 = "room18", room19 = "room19", room20 = "room20", room21 = "room21", room22 = "room22", room23 = "room23", room24 = "room24", room25 = "room25"): rooms = [[room1,room2,room3,room4,room5], [room6,room7,room8,room9,room10], [room11,room12,room13,room14,room15], [room16,room17,room18,room19,room20], [room21,room22,room23,room24,room25]] return rooms[x][y] print (levels.rooms(4,4)) room1 = room.room(0,1,1,1,"Better Sword") print (room1[1]) print (levels.rooms(0,0))
# -*- coding: utf-8 -*- """ CTableModel类定义文件 """ from PyQt5.QtGui import QStandardItemModel from PyQt5.QtCore import Qt, QVariant from enum import IntEnum, Enum class CTableModel(QStandardItemModel): # 各属性项枚举 class EAttrIndex(IntEnum): EAttr_Id = 0 # id EAttr_Descrition = 1 # 描述 EAttr_Checked = 2 # 是否已验证 EAttr_LastOneFlag = 3 # 是否最后一个 Eattr_AnimateSpeed = 4 # 动画速度 Eattr_Max = 5 # 速度枚举值 class EAnimateSpeed(Enum): EAnimateSpeed_Slow = 0 # 慢速 EAnimateSpeed_Normal = 1 # 中速 EAnimateSpeed_Fast = 2 # 快速 EAnimateSpeed_Max = 3 def __init__(self, rows, columns, parent=None): super(CTableModel, self).__init__(rows, columns, parent) def flags(self, index): # 只有第1列允许被编辑 itemFlags = Qt.ItemFlags(0) if 1 != index.column(): itemFlags &= ( ~Qt.ItemIsEditable) # Qt.ItemIsEditable表示可编辑,~Qt.ItemIsEditable表示取反,即不可编辑。 return itemFlags else: return QStandardItemModel.flags(self, index) def data(self, index, role): if Qt.EditRole == role: return QStandardItemModel.data(self, index, role) elif Qt.DisplayRole != role: return QStandardItemModel.data(self, index, role) var = self.data(index, Qt.EditRole) var = QVariant(var) if 0 == index.column(): return var if CTableModel.EAttrIndex.EAttr_Checked == CTableModel.EAttrIndex(index.row()): var = (var.value() and 'no' or 'yes') # 0:yes, 1:no elif CTableModel.EAttrIndex.EAttr_LastOneFlag == CTableModel.EAttrIndex(index.row()): var = (var.value() and True or False) # 0:False, other:True elif CTableModel.EAttrIndex.Eattr_AnimateSpeed == CTableModel.EAttrIndex(index.row()): eSpeed = CTableModel.EAnimateSpeed(var.value()) if eSpeed == CTableModel.EAnimateSpeed.EAnimateSpeed_Slow: var = '慢速' elif eSpeed == CTableModel.EAnimateSpeed.EAnimateSpeed_Normal: var = '中速' elif eSpeed == CTableModel.EAnimateSpeed.EAnimateSpeed_Fast: var = '快速' else: var = '' return var def setData(self, index, value, role): if Qt.EditRole == role: return QStandardItemModel.setData(self, index, value, role) else: return False
import json import datetime from lib.utils.utils import DATE_STRING, DATETIME_STRING from const.query_execution import QueryExecutionErrorType should_escape_list = (",", '"', "\n", "\r") def spread_dict(x, y): z = x.copy() z.update(y) return z def merge_str(str1: str, str2: str, separator: str = "\n") -> str: """Join two strings together if by the separator. If either is empty then separator will not be used Arguments: str1 {str} -- Joined on left str2 {str} -- Joined on right Keyword Arguments: separator {str} -- Middle string if both input are non-empty (default: {'\n'}) Returns: str -- The joined str """ if len(str1) and len(str2): return str1 + separator + str2 return str1 or str2 def serialize_cell(cell) -> str: try: cell_type = type(cell) if cell_type == str: return cell elif cell_type == datetime.datetime: return DATETIME_STRING(cell) elif cell_type == datetime.date: return DATE_STRING(cell) else: return json.dumps(cell, ensure_ascii=False) except (UnicodeDecodeError, TypeError): # obj is byte string try: return str(cell) except Exception: return "[Unserializable]" def row_to_csv(row): output = [] for cell in row: str_col = serialize_cell(cell) if any(c in str_col for c in should_escape_list): str_col = '"%s"' % str_col.replace('"', '""') output.append(str_col) return ",".join(output) + "\n" def parse_exception(e): error_type = QueryExecutionErrorType.INTERNAL.value error_str = str(e) error_extracted = None return error_type, error_str, error_extracted def get_parsed_syntax_error( message: str, line_num: int = None, char_num: int = None, ): error_type = QueryExecutionErrorType.SYNTAX.value error_str = json.dumps({"line": line_num, "char": char_num, "message": message,}) return error_type, error_str, None def format_error_message(code: int, message: str): return f"Error #{code}: {message}"
from django.urls import resolve, reverse import pytest from build_migration.users.views import UserViewSet class TestUserURLs: """Test URL patterns for users app.""" @pytest.mark.parametrize("url,view_class", [("/users/", UserViewSet)]) def test_users_views_resolve(self, url, view_class): assert resolve(url).func.cls == view_class @pytest.mark.parametrize( "url_name,url_kwargs,url", [ ("users:user-list", {}, "/users/"), ("users:user-detail", {"pk": 1}, "/users/1/"), ], ) def test_users_views_reverse(self, url_name, url_kwargs, url): assert reverse(url_name, kwargs=url_kwargs) == url
import numpy as numpy a = numpy.arange(16).reshape(4,4) print ('First array') print(a) print('\n') print('Horizontal splitting') b = numpy.hsplit(a,2) print(b) print('\n')
''' # nflfantasy/fantasymath.py # scraper/parser for fantasymath.com fantasy resources ''' import logging import time from sportscraper.scraper import RequestScraper class Scraper(RequestScraper): ''' ''' def __init__(self, **kwargs): ''' Scrape fantasymath API Args: ''' RequestScraper.__init__(self, **kwargs) self.headers.update({'origin': 'https://fantasymath.com', 'authority': 'api.fantasymath.com', 'referer': 'https://fantasymath.com/'}) def distribution(self, player_codes): ''' Gets projection distribution for specified players Args: player_codes(list): of str Returns: dict ''' # api uses multiple parameters with same key (wdis) # get_json method sorts params for caching consistency # need to use tuple of lists so not overwrite wdis param player_codes = list(player_codes) url = 'https://api.fantasymath.com/v2/players-wdis/' wdis = tuple(['wdis', player_code] for player_code in player_codes) params = (['dst', 'mfl'], ['qb', 'pass4'], ['scoring', 'ppr']) resp = self.session.get(url, params=wdis + params) self.urls.append(resp.url) resp.raise_for_status() if self.delay: time.sleep(self.delay) return resp.json() def players(self): ''' Gets projection distribution for specified players Args: player_codes(list): of str Returns: dict ''' url = 'https://api.fantasymath.com/players' return self.get_json(url) class Parser(): ''' ''' def __init__(self): ''' ''' logging.getLogger(__name__).addHandler(logging.NullHandler()) def _fix_val(self, v): ''' Fixes various values Args: v: Returns: ''' try: return round(v, 3) except: return v def distribution(self, content): ''' Parses player distribution JSON Args: content (dict): parsed JSON Returns: list: of player dict ''' wanted = ['fp_id', 'name', 'p25', 'p5', 'p50', 'p75', 'p95', 'pos', 'prob', 'proj', 'scoring', 'std'] return [{k: self._fix_val(v) for k,v in p.items() if k in wanted} for p in content['players']] def players(self, content): ''' Parses players JSON Args: content (dict): parsed JSON Returns: dict ''' fm_players = {} for p in content: vals = p['label'].split() d = {'id': p['value'], 'pos': vals[0], 'name': ' '.join(vals[1:])} fm_players[d['id']] = d return fm_players class Agent(): ''' ''' def __init__(self, cache_name='fantasymath-agent'): logging.getLogger(__name__).addHandler(logging.NullHandler()) self._s = Scraper(cache_name=cache_name, delay=1.5) self._p = Parser() def weekly_projections(self): ''' Gets weekly projections Args: None Returns: dict ''' dists = {} content = self._s.players() players = self._p.players(content) for i in range(0, len(players), 3): try: ids = [players[i]['id'], players[i+1]['id'], players[i+2]['id']] except IndexError: try: ids = [players[i]['id'], players[i+1]['id']] except: ids = [players[i]['id']] idstr = ', '.join(ids) logging.info('getting %s', idstr) if idstr in dists: logging.info('skipping %s', idstr) continue try: content = self._s.distribution(ids) dists[idstr] = self._p.distributions(content) except: logging.exception('could not get %s', idstr) return dists if __name__ == '__main__': pass
#! python # -*- coding: utf-8 -*- # This is a utility module for integrating SMS providers into VizAlerts. import os import re import phonenumbers import twilio # import local modules import config import log import vizalert # store the SMS client we get back from Twilio for use across all modules smsclient = None # regular expression used to split recipient number strings into separate phone numbers SMS_RECIP_SPLIT_REGEX = u'[;,]*' # appended to the bottom of all SMS messages, unless overidden # expecting smsfooter.format(subscriber_email) smsfooter = u'\r\rThis VizAlert SMS sent on behalf of {}' class SMS: """Represents an SMS to be sent""" def __init__(self, sms_from, sms_to, msgbody=None): self.sms_from = sms_from self.sms_to = sms_to self.msgbody = msgbody # REVISIT--why is it okay for this to be blank? def get_sms_client(): """Generic function get an SMS client object. This only works with Twilio at this time.""" # check to see if there's a provider set if config.configs['smsaction.provider'] == None or len(config.configs['smsaction.provider']) == 0: errormessage = u'SMS Actions are enabled but smsaction.provider value is not set, exiting' log.logger.error(errormessage) raise ValueError(errormessage) # load code for Twilio elif config.configs['smsaction.provider'].lower() == 'twilio': # these need to be in the global name space to send SMS messages global twilio import twilio # Monkey patch to allow Twilio to find the cacert.pem file even when compiled into an exe # See: https://stackoverflow.com/questions/17158529/fixing-ssl-certificate-error-in-exe-compiled-with-py2exe-or-pyinstaller # and https://github.com/twilio/twilio-python/issues/167 ca_cert_path = os.path.join('twilio', 'conf', 'cacert.pem') from twilio.http import get_cert_file get_cert_file = lambda: ca_cert_path twilio.http.get_cert_file = get_cert_file global twiliorest import twilio.rest as twiliorest global smsclient smsclient = twiliorest.Client( config.configs['smsaction.account_id'], config.configs['smsaction.auth_token']) return smsclient # unknown SMS provider error else: errormessage = u'SMS Actions are enabled but found unknown smsaction.provider {}, exiting'.format( config.configs['smsaction.provider']) log.logger.error(errormessage) raise ValueError(errormessage) def send_sms(sms_instance): """REVISIT: This and the other SMS methods should probably be members of the SMS class function to send an sms using Twilio's REST API, see https://www.twilio.com/docs/python/install for details. Presumes that numbers have gone through a first level of checks for validity Returns nothing on success, error string back on failure""" # shouldn't happen but setting content to '' if it's None if not sms_instance.msgbody: sms_instance.msgbody = '' log.logger.info(u'Sending SMS: {},{},{}'.format(sms_instance.sms_from, sms_instance.sms_to, sms_instance.msgbody)) # now to send the message try: if sms_instance.sms_from.startswith('+'): # kinda kloogy, but if we think it's an E.164 number, assume it is... message = smsclient.messages.create(body=sms_instance.msgbody, to=sms_instance.sms_to, from_=sms_instance.sms_from) else: # if not, assume it must be a message service SID message = smsclient.messages.create(body=sms_instance.msgbody, to=sms_instance.sms_to, messaging_service_sid=sms_instance.sms_from) # this may never happen since the Twilio REST API throws exceptions, it's a failsafe check if message.status == 'failed': raise ValueError(u'Failed to deliver SMS message to {} with body {},' u' no additional information is available'.format( sms_instance.sms_to, sms_instance.msgbody)) # check for Twilio REST API exceptions except twilio.base.exceptions.TwilioRestException as e: errormessage = u'Could not send SMS message to {} with body {}.\nHTTP status {} returned for request: ' \ u'{} {}\nWith error {}: {} '.format( sms_instance.sms_to, sms_instance.msgbody, e.status, e.method, e.uri, e.code, e.msg) log.logger.error(errormessage) return errormessage # check for ValueError from try except ValueError as e: log.logger.error(e) return e except Exception as e: errormessage = u'Could not send SMS message to {} with body {}, error {}, type {}'.format( sms_instance.sms_to, sms_instance.msgbody, e, e.__class__.__name__) log.logger.error(errormessage) return e return None def sms_append_body(body, vizcompleterefs, row, alert): """Generic function for filling SMS body text with the body & footers from the csv plus inserting content references""" body.append(row[alert.action_field_dict[vizalert.SMS_MESSAGE_FIELDKEY].field_name]) # add the footer if needed if alert.action_field_dict[vizalert.SMS_FOOTER_FIELDKEY].field_name: body.append(row[alert.action_field_dict[vizalert.SMS_FOOTER_FIELDKEY].field_name].replace( vizalert.DEFAULT_FOOTER, smsfooter.format(alert.subscriber_email))) else: # no footer specified, add the default footer body.append(smsfooter.format(alert.subscriber_email)) # find all distinct content references in the email body list # so we can replace each with an inline image or hyperlink text foundcontent = re.findall(u'VIZ_LINK\(.*?\)', ' '.join(body)) foundcontentset = set(foundcontent) vizrefs = list(foundcontentset) if len(vizrefs) > 0: for vizref in vizrefs: # we're replacing #VIZ_LINK text if vizcompleterefs[vizref]['formatstring'] == 'LINK': # always use raw link, ignore presence or absence of RAWLINK argument replacestring = alert.get_view_url(vizcompleterefs[vizref]['view_url_suffix']) replaceresult = vizalert.replace_in_list(body, vizref, replacestring) if replaceresult['foundstring']: body = replaceresult['outlist'] return body def validate_smsnumbers(vizdata, sms_to_fieldname, allowed_recipient_numbers, iso2countrycode): """Loops through the viz data for an Advanced Alert and returns a list of dicts containing any errors found in recipients""" errorlist = [] rownum = 2 # account for field header in CSV try: for row in vizdata: result = smsnumbers_are_invalid(row[sms_to_fieldname], False, # empty string not acceptable as a To number iso2countrycode, allowed_recipient_numbers) if result: errorlist.append( {'Row': rownum, 'Field': sms_to_fieldname, 'Value': result['number'], 'Error': result['errormessage']}) rownum += 1 except Exception as e: errormessage = u'Encountered error validating SMS numbers. Error: {}'.format(e.message) log.logger.error(errormessage) errorlist.append(errormessage) return errorlist return errorlist def smsnumbers_are_invalid(sms_numbers, emptystringok, iso2countrycode, regex_eval=None): """Validates all SMS numbers found in a given string, optionally that conform to the regex_eval""" log.logger.debug(u'Validating SMS field value: {}'.format(sms_numbers)) sms_number_list = re.split(SMS_RECIP_SPLIT_REGEX, sms_numbers.strip()) for sms_number in sms_number_list: log.logger.debug(u'Validating presumed sms number: {}'.format(sms_number)) try: # skip if we're okay with empty, and it is if sms_number == '': if not emptystringok: errormessage = u'SMS number is empty' else: continue else: errormessage = smsnumber_is_invalid(sms_number, iso2countrycode, regex_eval) if errormessage: log.logger.debug(u'SMS number is invalid: {}, Error: {}'.format(sms_number, errormessage)) if len(sms_number) > 64: sms_number = sms_number[:64] + '...' # truncate a too-long address for error formattting purposes return {'number': sms_number, 'errormessage': errormessage} except Exception as e: errormessage = u'Encountered error validating an SMS number. Error: {}'.format(e.message) log.logger.error(errormessage) return {'number': sms_number, 'errormessage': errormessage} return None def smsnumber_is_invalid(smsnumber, iso2countrycode, regex_eval=None): """Checks for a syntactically invalid phone number, returns None for success or an error message""" try: e164_number = smsnumber_to_e164(smsnumber, iso2countrycode) # looks valid, but it must be permitted by regex pattern if so specified if regex_eval: log.logger.debug("testing smsnumber {} against regex {}".format(e164_number, regex_eval)) if not re.match(regex_eval, e164_number): errormessage = u'SMS number must match regex pattern set by the administrator: {}'.format(regex_eval) log.logger.error(errormessage) return errormessage except Exception as e: return e.message # looks like it was fine! return None def get_e164numbers(sms_numbers, iso2countrycode): """Converts a delimited string or list of SMS numbers to E.164 format Returns a UNIQUE list of E.164 numbers NOTE: This method ASSUMES that they have all been validated already """ sms_number_list = [] e164_numbers = [] if isinstance(sms_numbers, str) or isinstance(sms_numbers, unicode): sms_number_list.extend(re.split(SMS_RECIP_SPLIT_REGEX, sms_numbers.strip())) elif isinstance(sms_numbers, list): sms_number_list.extend(sms_numbers) else: # that's not what we expected errormessage = u'Input is neither a string nor a list: {}'.format(sms_numbers) log.logger.error(errormessage) raise UserWarning(errormessage) # convert and add each number to our return list for sms_number in sms_number_list: log.logger.debug(u'Converting {} to E.164 format'.format(sms_number)) try: e164_number = smsnumber_to_e164(sms_number, iso2countrycode) if e164_number not in e164_numbers: e164_numbers.append(e164_number) except Exception as e: raise UserWarning(e.message) return e164_numbers def smsnumber_to_e164(smsnumber, iso2countrycode): """Tries to convert a string into an E.164 formatted phone number Raises exception if it can't, returns the E.164 number as a string, if it can """ try: log.logger.debug(u'Converting {} to E.164 format, country code {}'.format(smsnumber, iso2countrycode)) try: if smsnumber.startswith('+'): smsnumber_obj = phonenumbers.parse(smsnumber) else: # country code not specified in number, so pass it in smsnumber_obj = phonenumbers.parse(smsnumber, iso2countrycode) except phonenumbers.NumberParseException as e: errormessage = u'SMS Unable to parse number {}. Error: {}'.format(smsnumber, e.message) log.logger.error(errormessage) raise UserWarning(errormessage) try: if not phonenumbers.is_possible_number(smsnumber_obj): errormessage = u'SMS Number is not possibly valid: {}.'.format(smsnumber) log.logger.error(errormessage) raise UserWarning(errormessage) except phonenumbers.NumberParseException as e: errormessage = u'SMS Unable to parse number {}. Error: {}'.format(smsnumber, e.message) log.logger.error(errormessage) raise UserWarning(errormessage) if not phonenumbers.is_valid_number(smsnumber_obj): errormessage = u'SMS Number is not valid: {}.'.format(smsnumber) log.logger.error(errormessage) raise UserWarning(errormessage) e164_number = phonenumbers.format_number(smsnumber_obj, phonenumbers.PhoneNumberFormat.E164) if not e164_number: errormessage = u'SMS number {} could not be converted to E.164 for an unknown reason.'.format(smsnumber) log.logger.error(errormessage) raise UserWarning(errormessage) # all good, return it! return e164_number except Exception as e: log.logger.error(e.message) return None
# SPDX-License-Identifier: Apache-2.0 # Licensed to the Ed-Fi Alliance under one or more agreements. # The Ed-Fi Alliance licenses this file to you under the Apache License, Version 2.0. # See the LICENSE and NOTICES files in the project root for more information. import factory from edfi_performance.api.client.school import SchoolClient from .. import APIFactory from ..descriptors.utils import build_descriptor from ..utils import RandomSuffixAttribute, formatted_date class SectionFactory(APIFactory): educationalEnvironmentDescriptor = build_descriptor("EducationalEnvironment", "Classroom") sectionIdentifier = RandomSuffixAttribute("ELA012017RM555") availableCredits = 1 sequenceOfCourse = 1 classPeriods = factory.List([ factory.Dict( dict( classPeriodReference=factory.Dict(dict( classPeriodName=None # Must be entered by client )), ), ), ]) courseOfferingReference = factory.Dict( dict( localCourseCode="ELA-01", # Will need to override this with reference value schoolId=SchoolClient.shared_elementary_school_id(), schoolYear=2014, sessionName="2016-2017 Fall Semester", # Will need to override this with reference value ) ) locationReference = factory.Dict( dict( schoolId=SchoolClient.shared_elementary_school_id(), classroomIdentificationCode="501", # Will need to override this with reference value ) ) class SectionAttendanceTakenEventFactory(APIFactory): calendarDateReference = factory.Dict( dict( calendarCode="107SS111111", schoolId=SchoolClient.shared_elementary_school_id(), schoolYear=2014, date=formatted_date(9, 16, 2014), ) ) sectionReference = factory.Dict( dict( sectionIdentifier=None, # Must be created localCourseCode="ELA-01", schoolId=SchoolClient.shared_elementary_school_id(), schoolYear=2014, sessionName="2016-2017 Fall Semester", ) ) eventDate = formatted_date(9, 9)
""" Design your implementation of the linked list. You can choose to use the singly linked list or the doubly linked list. A node in a singly linked list should have two attributes: val and next. val is the value of the current node, and next is a pointer/reference to the next node. If you want to use the doubly linked list, you will need one more attribute prev to indicate the previous node in the linked list. Assume all nodes in the linked list are 0-indexed. Implement these functions in your linked list class: - get(index) : Get the value of the index-th node in the linked list. If the index is invalid, return -1. - addAtHead(val) : Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list. - addAtTail(val) : Append a node of value val to the last element of the linked list. - addAtIndex(index, val) : Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted. - deleteAtIndex(index) : Delete the index-th node in the linked list, if the index is valid. Example: Input: ["MyLinkedList","addAtHead","addAtTail","addAtIndex","get","deleteAtIndex","get"] [[],[1],[3],[1,2],[1],[1],[1]] Output: [null,null,null,null,2,null,3] Explanation: MyLinkedList linkedList = new MyLinkedList(); // Initialize empty LinkedList linkedList.addAtHead(1); linkedList.addAtTail(3); linkedList.addAtIndex(1, 2); // linked list becomes 1->2->3 linkedList.get(1); // returns 2 linkedList.deleteAtIndex(1); // now the linked list is 1->3 linkedList.get(1); // returns 3 Constraints: - 0 <= index,val <= 1000 - Please do not use the built-in LinkedList library. - At most 2000 calls will be made to get, addAtHead, addAtTail, addAtIndex and deleteAtIndex. """ #Difficulty: Medium #57 / 57 test cases passed. #Runtime: 300 ms #Memory Usage: 14.3 MB #Runtime: 300 ms, faster than 49.54% of Python3 online submissions for Design Linked List. #Memory Usage: 14.3 MB, less than 63.36% of Python3 online submissions for Design Linked List. class Node: def __init__(self, val): """ Initialize of the Node. """ self.val = val self.next = None class MyLinkedList: def __init__(self): """ Initialize your data structure here. """ self.head = Node(None) def get(self, index: int) -> int: """ Get the value of the index-th node in the linked list. If the index is invalid, return -1. """ node = self.head for i in range(index): node = node.next return node.val if node else -1 def addAtHead(self, val: int) -> None: """ Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list. """ if self.head.val is not None: old_head = self.head self.head = Node(val) self.head.next = old_head else: self.head.val = val def addAtTail(self, val: int) -> None: """ Append a node of value val to the last element of the linked list. """ node = self.head while node.next: node = node.next node.next = Node(val) def addAtIndex(self, index: int, val: int) -> None: """ Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted. """ if index == 0: return self.addAtHead(val) prev = None for i in range(index): if prev: prev = prev.next next_node = next_node.next else: prev = self.head next_node = self.head.next node = Node(val) prev.next = node node.next = next_node def deleteAtIndex(self, index: int) -> None: """ Delete the index-th node in the linked list, if the index is valid. """ if index == 0: self.head = self.head.next return prev = None for i in range(index): if prev and next_node: if not next_node.next: return prev = prev.next next_node = next_node.next else: prev = self.head next_node = self.head.next if next_node: prev.next = next_node.next # Your MyLinkedList object will be instantiated and called as such: # obj = MyLinkedList() # param_1 = obj.get(index) # obj.addAtHead(val) # obj.addAtTail(val) # obj.addAtIndex(index,val) # obj.deleteAtIndex(index)
from keras.engine.saving import model_from_json from matplotlib import image import numpy as np from app import SKIN_CLASSES f = open('E:\\STUDY\PYTHON\\New folder (2)\\akiec2.jpg', 'r') print("naerm "+ f.name) path = 'static/data/' + f.name f.save(path) j_file = open('modelnew.json', 'r') loaded_json_model = j_file.read() j_file.close() model = model_from_json(loaded_json_model) model.load_weights('modelnew.h5') img1 = image.load_img(f, target_size=(224, 224)) img1 = np.array(img1) img1 = img1.reshape((1, 224, 224, 3)) img1 = img1 / 255 prediction = model.predict(img1) pred = np.argmax(prediction) disease = SKIN_CLASSES[pred] accuracy = prediction[0][pred]
from abc import ABC, abstractmethod from typing import Dict, List, Optional from omegaconf import DictConfig from pydantic.dataclasses import dataclass from pytorch_lightning.callbacks import Callback from seg_lapa.config_parse.callbacks_available import ( CheckpointConf, EarlyStopConf, LearningRateMonitorConf, LogMediaConf, ) from seg_lapa.config_parse.conf_utils import validate_config_group_generic # The Callbacks config cannot be directly initialized because it contains sub-entries for each callback, each # of which describes a separate class. # For each of the callbacks, we define a dataclass and use them to init the list of callbacks @dataclass(frozen=True) class CallbacksConf(ABC): name: str @abstractmethod def get_callbacks_list(self, *args) -> List: return [] @dataclass(frozen=True) class DisabledCallbacksConf(CallbacksConf): def get_callbacks_list(self) -> List: return [] @dataclass(frozen=True) class StandardCallbacksConf(CallbacksConf): """Get a dictionary of all the callbacks.""" early_stopping: Optional[Dict] = None checkpoints: Optional[Dict] = None log_media: Optional[Dict] = None lr_monitor: Optional[Dict] = None def get_callbacks_list(self, exp_dir: str, cfg: DictConfig) -> List[Callback]: """Get all available callbacks and the Callback Objects in list If a callback's entry is not present in the config file, it'll not be output in the list """ callbacks_list = [] if self.early_stopping is not None: early_stop = EarlyStopConf(**self.early_stopping).get_callback() callbacks_list.append(early_stop) if self.checkpoints is not None: checkpoint = CheckpointConf(**self.checkpoints).get_callback(exp_dir) callbacks_list.append(checkpoint) if self.log_media is not None: log_media = LogMediaConf(**self.log_media).get_callback(exp_dir, cfg) callbacks_list.append(log_media) if self.lr_monitor is not None: lr_monitor = LearningRateMonitorConf(**self.lr_monitor).get_callback() callbacks_list.append(lr_monitor) return callbacks_list valid_names = { "disabled": DisabledCallbacksConf, "standard": StandardCallbacksConf, } def validate_config_group(cfg_subgroup: DictConfig) -> CallbacksConf: validated_dataclass = validate_config_group_generic( cfg_subgroup, dataclass_dict=valid_names, config_category="callback" ) return validated_dataclass
import pandas as pd import multiprocessing import argparse from functools import partial import logging import os, sys, glob, datetime, time, gzip import collections from collections import defaultdict from math import log from scTE.miniglbase import genelist, glload, location from scTE.annotation import annoGtf import subprocess import numpy as np import scipy import anndata as ad def read_opts(parser): args = parser.parse_args() if args.format == "BAM" : args.parser = "BAM" elif args.format == "SAM" : args.parser = "SAM" else : logging.error("The input file must be SAM/BAM format: %s !\n" % (args.format)) sys.exit(1) args.error = logging.critical args.warn = logging.warning args.debug = logging.debug args.info = logging.info args.argtxt ="\n".join(("Parameter list:", \ "Sample = %s" % (args.out), \ # "Genome = %s" % (args.genome), \ "Reference annotation index = %s" %(args.annoglb[0]), \ "Minimum number of genes required = %s" % (args.genenumber), \ "Minimum number of counts required = %s"% (args.countnumber),\ "Number of threads = %s " % (args.thread),\ )) return args # def getanno(filename, genefile, tefile, genome, mode): # form ={'force_tsv': True, 'loc': 'location(chr=column[0], left=column[1], right=column[2])', 'annot': 3} # # if genefile == 'default' and tefile == 'default': # if genome == 'mm10': # chr_list = ['chr'+ str(i) for i in range(1,20) ] + [ 'chrX','chrY', 'chrM' ] # if mode == 'exclusive': # if not os.path.exists('mm10.exclusive.glb'): # logging.error("Did not find the annotation index mm10.exclusive.glb, you can download it from scTE github (www....) or either give the annotation with -te and -gene option \n" ) # sys.exit(1) # all_annot = 'mm10.exclusive.glb' # allelement = set(glload(all_annot)['annot']) # # elif mode == 'inclusive': # if not os.path.exists('mm10.inclusive.glb'): # logging.error("Did not find the annotation index mm10.inclusive.glb, you can download it from scTE github (www....) or either give the annotation with -te and -gene option \n" ) # sys.exit(1) # all_annot = 'mm10.inclusive.glb' # allelement = set(glload(all_annot)['annot']) # # elif genome == 'hg38': # chr_list = ['chr'+ str(i) for i in range(1,23) ] + [ 'chrX','chrY', 'chrM' ] # if mode == 'exclusive': # if not os.path.exists('hg38.exclusive.glb'): # logging.error("Did not find the annotation index hg38.exclusive.glb, you can download it from scTE github (www....) or either give the annotation with -te and -gene option \n" ) # sys.exit(1) # all_annot = 'hg38.exclusive.glb' # allelement = set(glload(all_annot)['annot']) # # elif mode == 'inclusive': # if not os.path.exists('hg38.inclusive.glb'): # logging.error("Did not find the annotation index hg38.inclusive.glb, you can download it from scTE github (www....) or either give the annotation with -te and -gene option \n") # sys.exit(1) # all_annot = 'hg38.inclusive.glb' # allelement = set(glload(all_annot)['annot']) # else: # if genome in ['hg38']: # chr_list = ['chr'+ str(i) for i in range(1,23) ] + [ 'chrX','chrY', 'chrM' ] # # elif genome in ['mm10']: # chr_list = ['chr'+ str(i) for i in range(1,20) ] + [ 'chrX','chrY', 'chrM' ] # # if not os.path.isfile(tefile) : # logging.error("No such file: %s !\n" %(tefile)) # sys.exit(1) # # if not os.path.isfile(genefile) : # logging.error("No such file: %s !\n" % (genefile)) # sys.exit(1) # # all_annot = annoGtf(filename, genefile=genefile, tefile=tefile, mode=mode) # allelement = set(glload(all_annot)['annot']) # # return(allelement,chr_list,all_annot) def Readanno(filename, annoglb): #genome glannot = glload(annoglb) allelement = set(glannot['annot']) # if genome in ['mm10']: # chr_list = ['chr'+ str(i) for i in range(1,20) ] + [ 'chrX','chrY', 'chrM' ] # elif genome in ['hg38']: # chr_list = ['chr'+ str(i) for i in range(1,23) ] + [ 'chrX','chrY', 'chrM' ] chr_list = list(set([ k['chr'] for k in glannot['loc']])) #this is useful for costume chromsome return(allelement, chr_list, annoglb, glannot) def checkCBUMI(filename,out,CB,UMI): if CB == 'CR': subprocess.run('samtools view %s | head -100| grep "CR:Z:" | wc -l > %s_scTEtmp/o1/testCR.txt'%(filename,out),shell=True) time.sleep(2) #subprocess need take some time o=open('%s_scTEtmp/o1/testCR.txt'%(out),'rU') for l in o: l=l.strip() if int(l) < 100: logging.error("The input file %s has no cell barcodes information, plese make sure the aligner have add the cell barcode key, or set CB to False"%filename) sys.exit(1) elif CB == 'CB': subprocess.run('samtools view %s | head -100| grep "CB:Z:" | wc -l > %s_scTEtmp/o1/testCR.txt'%(filename,out),shell=True) time.sleep(2) #subprocess need take some time o=open('%s_scTEtmp/o1/testCR.txt'%(out),'rU') for l in o: l=l.strip() if int(l) < 100: logging.error("The input file %s has no cell barcodes information, plese make sure the aligner have add the cell barcode key, or set CB to False"%filename) sys.exit(1) if UMI == 'UR': subprocess.run('samtools view %s | head -100| grep "UR:Z:" | wc -l > %s_scTEtmp/o1/testUMI.txt'%(filename,out),shell=True) time.sleep(2) o=open('%s_scTEtmp/o1/testUMI.txt'%(out),'rU') for l in o: l=l.strip() if int(l) < 100: logging.error("The input file %s has no UR:Z information, plese make sure the aligner have add the UMI key, or set UMI to False" % filename) sys.exit(1) elif UMI == 'UB': subprocess.run('samtools view %s | head -100| grep "UB:Z:" | wc -l > %s_scTEtmp/o1/testUMI.txt'%(filename,out),shell=True) time.sleep(2) o=open('%s_scTEtmp/o1/testUMI.txt'%(out),'rU') for l in o: l=l.strip() if int(l) < 100: logging.error("The input file %s has no UB:Z information, plese make sure the aligner have add the UMI key, or set UMI to False" % filename) sys.exit(1) def Bam2bed(filename, CB, UMI, out, num_threads): if not os.path.exists('%s_scTEtmp/o1'%out): os.system('mkdir -p %s_scTEtmp/o1'%out) sample=filename.split('/')[-1].replace('.bam','') if sys.platform == 'darwin': # Mac OSX has BSD sed switch = '-E' else: switch = '-r' if UMI == 'False': if CB == 'False': # Put the sample name in the barcode slot os.system('samtools view -@ %s %s | awk \'{OFS="\t"}{print $3,$4,$4+100,"%s"}\' | sed %s \'s/^chr//g\'| gzip -c > %s_scTEtmp/o1/%s.bed.gz' % (num_threads, filename, out, switch, out, out)) elif CB == 'CR': os.system('samtools view -@ %s %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CR:Z:/)n=i}{print $3,$4,$4+100,$n}\' | sed %s \'s/CR:Z://g\' | sed %s \'s/^chr//g\' | gzip -c > %s_scTEtmp/o1/%s.bed.gz' % (num_threads, filename, switch, switch, out, out)) elif CB == 'CB': os.system('samtools view -@ %s %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CB:Z:/)n=i}{print $3,$4,$4+100,$n}\' | sed %s \'s/CB:Z://g\' | sed %s \'s/^chr//g\' | gzip -c > %s_scTEtmp/o1/%s.bed.gz' % (num_threads, filename, switch, switch, out, out)) elif UMI == 'UR': if CB == 'CR': os.system('samtools view -@ %s %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CR:Z:/)n=i}{for(i=12;i<=NF;i++)if($i~/UR:Z:/)m=i}{print $3,$4,$4+100,$n,$m}\' | sed %s \'s/CR:Z://g\' | sed %s \'s/UR:Z://g\'| sed %s \'s/^chr//g\' | awk \'!x[$4$5]++\' | gzip -c > %s_scTEtmp/o1/%s.bed.gz' % (num_threads, filename, switch, switch, switch, out,out)) elif CB == 'CB': os.system('samtools view -@ %s %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CB:Z:/)n=i}{for(i=12;i<=NF;i++)if($i~/UR:Z:/)m=i}{print $3,$4,$4+100,$n,$m}\' | sed %s \'s/CB:Z://g\' | sed %s \'s/UR:Z://g\'| sed %s \'s/^chr//g\' | awk \'!x[$4$5]++\' | gzip -c > %s_scTEtmp/o1/%s.bed.gz' % (num_threads, filename, switch, switch, switch, out,out)) elif UMI == 'UB': if CB == 'CR': os.system('samtools view -@ %s %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CR:Z:/)n=i}{for(i=12;i<=NF;i++)if($i~/UB:Z:/)m=i}{print $3,$4,$4+100,$n,$m}\' | sed %s \'s/CR:Z://g\' | sed %s \'s/UB:Z://g\'| sed %s \'s/^chr//g\' | awk \'!x[$4$5]++\' | gzip -c > %s_scTEtmp/o1/%s.bed.gz' % (num_threads, filename, switch, switch, switch, out,out)) elif CB == 'CB': os.system('samtools view -@ %s %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CB:Z:/)n=i}{for(i=12;i<=NF;i++)if($i~/UB:Z:/)m=i}{print $3,$4,$4+100,$n,$m}\' | sed %s \'s/CB:Z://g\' | sed %s \'s/UB:Z://g\'| sed %s \'s/^chr//g\' | awk \'!x[$4$5]++\' | gzip -c > %s_scTEtmp/o1/%s.bed.gz' % (num_threads, filename, switch, switch, switch, out,out)) def Para_bam2bed(filename, CB, UMI, out): if not os.path.exists('%s_scTEtmp/o0'%out): os.system('mkdir -p %s_scTEtmp/o0'%out) sample=filename.split('/')[-1].replace('.bam','') if sys.platform == 'darwin': # Mac OSX has BSD sed switch = '-E' else: switch = '-r' print(UMI,CB) if UMI == 'False': if CB == 'False': os.system('samtools view %s | awk \'{OFS="\t"}{print $3,$4,$4+100,"%s"}\' | sed %s \'s/^chr//g\' | gzip > %s_scTEtmp/o0/%s.bed.gz'%(filename, sample, switch, out, sample)) elif CB == 'CR': os.system('samtools view %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CR:Z:/)n=i}{print $3,$4,$4+100,$n,$m}\' | sed %s \'s/CR:Z://g\' | sed %s \'s/^chr//g\' | gzip > %s_scTEtmp/o0/%s.bed.gz'%(filename, switch, switch, out,sample)) elif CB == 'CB': os.system('samtools view %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CB:Z:/)n=i}{print $3,$4,$4+100,$n,$m}\' | sed %s \'s/CB:Z://g\' | sed %s \'s/^chr//g\' | gzip > %s_scTEtmp/o0/%s.bed.gz'%(filename, switch, switch, out,sample)) elif UMI == 'UR': if CB == 'CR': os.system('samtools view %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CR:Z:/)n=i}{for(i=12;i<=NF;i++)if($i~/UR:Z:/)m=i}{print $3,$4,$4+100,$n,$m}\' | sed %s \'s/CR:Z://g\' | sed %s \'s/UR:Z://g\' | sed %s \'s/^chr//g\' | awk \'!x[$4$5]++\' | gzip > %s_scTEtmp/o0/%s.bed.gz'%(filename, switch, switch, switch, out,sample)) elif CB == 'CB': os.system('samtools view %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CB:Z:/)n=i}{for(i=12;i<=NF;i++)if($i~/UR:Z:/)m=i}{print $3,$4,$4+100,$n,$m}\' | sed %s \'s/CB:Z://g\' | sed %s \'s/UR:Z://g\' | sed %s \'s/^chr//g\' | awk \'!x[$4$5]++\' | gzip > %s_scTEtmp/o0/%s.bed.gz'%(filename, switch, switch, switch, out,sample)) elif UMI == 'UB': if CB == 'CR': os.system('samtools view %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CR:Z:/)n=i}{for(i=12;i<=NF;i++)if($i~/UB:Z:/)m=i}{print $3,$4,$4+100,$n,$m}\' | sed %s \'s/CR:Z://g\' | sed %s \'s/UB:Z://g\' | sed %s \'s/^chr//g\' | awk \'!x[$4$5]++\' | gzip > %s_scTEtmp/o0/%s.bed.gz'%(filename, switch, switch, switch, out,sample)) elif CB == 'CB': os.system('samtools view %s | awk \'{OFS="\t"}{for(i=12;i<=NF;i++)if($i~/CB:Z:/)n=i}{for(i=12;i<=NF;i++)if($i~/UB:Z:/)m=i}{print $3,$4,$4+100,$n,$m}\' | sed %s \'s/CB:Z://g\' | sed %s \'s/UB:Z://g\' | sed %s \'s/^chr//g\' | awk \'!x[$4$5]++\' | gzip > %s_scTEtmp/o0/%s.bed.gz'%(filename, switch, switch, switch, out,sample)) def splitAllChrs(chromosome_list, filename, genenumber, countnumber, UMI=True): ''' **Purpose** Split the data into separate beds, and count up all the times each barcode appears This variant uses more memory, but does it all at the same time and gets the filtered whitelist for free **Arguments** chromosome_list List of chromosome names filename (Required) filename stub to use for tmp files genenumber (Required) Minimum number of genes expressed required for a cell to pass filtering countnumber (Required) Minimum number of counts required for a cell to pass filtering. UMI (optional, default=True) use the UMI **Returns** The barcode whitelist ''' if not os.path.exists('%s_scTEtmp/o2' % filename): os.system('mkdir -p %s_scTEtmp/o2'%filename) chromosome_list = set([c.replace('chr', '') for c in chromosome_list]) file_handle_in = gzip.open('%s_scTEtmp/o1/%s.bed.gz' % (filename,filename), 'rt') file_handles_out = {chr: gzip.open('%s_scTEtmp/o2/%s.chr%s.bed.gz' % (filename,filename,chr), 'wt') for chr in chromosome_list} CRs = defaultdict(int) if UMI: uniques = {chrom: set([]) for chrom in chromosome_list} # Make a BED for each chromosome for line in file_handle_in: t = line.strip().split('\t') chrom = t[0].replace('chr', '') # strip chr if chrom not in chromosome_list: # remove the unusual chromosomes # Force chrMT -> chrM if chrom == 'MT': chrom = 'M' else: continue if UMI: if line in uniques[chrom]: continue uniques[chrom].add(line) CRs[t[3]] += 1 else: CRs[t[3]] += 1 file_handles_out[chrom].write(line) [file_handles_out[k].close() for k in file_handles_out] file_handle_in.close() # Because this does it all in one go, you can just filter the whitelist here now, and don't need the .count. file; sortcb = sorted(CRs.items(), key=lambda item:item[1], reverse=True) # Sorts by the count; if not countnumber: mincounts = 2 * genenumber else: mincounts = countnumber whitelist = [] for n, k in enumerate(sortcb): if k[1] < mincounts: break whitelist.append(k[0]) return set(whitelist) def filterCRs(filename, genenumber, countnumber): CRs = defaultdict(int) for f in glob.glob('%s_scTEtmp/o2/%s*.count.gz'%(filename,filename)): o = gzip.open(f,'rt') for l in o: t = l.strip().split('\t') CRs[t[0]] += int(t[1]) o.close() sortcb=sorted(CRs.items(),key=lambda item:item[1],reverse=True) if not countnumber: mincounts = 2* genenumber else: mincounts = countnumber whitelist=[] for n,k in enumerate(sortcb): if k[1] < mincounts: break whitelist.append(k[0]) #print(len(whitelist)) return set(whitelist) def splitChr(chr, filename, CB, UMI): if not os.path.exists('%s_scTEtmp/o2'%filename): os.system('mkdir -p %s_scTEtmp/o2'%filename) chr=chr.replace('chr','') if CB == 'CR' or CB == 'CB': CB = True else: CB = False if UMI == 'UR' or UMI == 'UB': UMI = True else: UMI= False if not CB: # C1-style data is a cell per BAM, so no barcode; if not UMI: if chr == '1': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^1\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) elif chr == '2': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^2\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) elif chr == '3': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^3\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) else: os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) else: if chr == '1': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^1\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) elif chr == '2': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^2\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) elif chr == '3': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^3\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) else: os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) else: if not UMI: # did not remove the potential PCR duplicates for scRNA-seq if chr == '1': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^1\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) elif chr == '2': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^2\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) elif chr == '3': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^3\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) else: os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) else: if chr == '1': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^1\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) elif chr == '2': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^2\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) elif chr == '3': os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep -v ^3\'[0-9]\' | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) else: os.system('gunzip -c -f %s_scTEtmp/o1/%s.bed.gz | grep ^%s | gzip -c > %s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr,filename,filename,chr)) CRs = defaultdict(int) o = gzip.open('%s_scTEtmp/o2/%s.chr%s.bed.gz'%(filename,filename,chr),'rt') for l in o: t = l.strip().split('\t') CRs[t[3]] += 1 o.close() o = gzip.open('%s_scTEtmp/o2/%s.chr%s.count.gz'%(filename,filename,chr),'wt') for k in CRs: o.write('%s\t%s\n'%(k,CRs[k])) o.close() def align(chr, filename, all_annot, glannot, whitelist): #CB ''' **Purpose** For each read, align it to the index and assign a TE, gene. This is the speed critical part. ''' s1 = time.time() chr = 'chr' + chr if not os.path.exists('%s_scTEtmp/o3'%filename): os.system('mkdir -p %s_scTEtmp/o3'%filename) if not glannot: # Load separately for the multicore pipeline, share the index for the single core pipeline glannot = glload(all_annot) # Only keep the glbase parts we need. buckets = glannot.buckets[chr.replace('chr', '')] all_annot = glannot.linearData oh = gzip.open('%s_scTEtmp/o2/%s.%s.bed.gz' % (filename, filename, chr), 'rt') res = {} for line in oh: t = line.strip().split('\t') barcode = t[3] if barcode not in whitelist: continue if barcode not in res: res[barcode] = defaultdict(int) #chrom = t[0].replace('chr', '') # Don't need as each align is already split for each chrom; left = int(t[1]) rite = int(t[2]) #loc = location(chr=chrom, left=left, right=rite) left_buck = ((left-1)//10000) * 10000 right_buck = ((rite)//10000) * 10000 buckets_reqd = range(left_buck, right_buck+10000, 10000) if buckets_reqd: loc_ids = set() loc_ids_update = loc_ids.update # get the ids reqd. [loc_ids_update(buckets[buck]) for buck in buckets_reqd if buck in buckets] result = [all_annot[index]['annot'] for index in loc_ids if (rite >= all_annot[index]['loc'].loc['left'] and left <= all_annot[index]['loc'].loc["right"])] if result: for gene in result: res[barcode][gene] += 1 oh.close() oh = gzip.open('%s_scTEtmp/o3/%s.%s.bed.gz' % (filename,filename,chr), 'wt') for bc in sorted(res): for gene in sorted(res[bc]): oh.write('%s\t%s\t%s\n' % (bc, gene, res[bc][gene])) oh.close() def Countexpression(filename, allelement, genenumber, cellnumber, hdf5): gene_seen = allelement whitelist={} o = gzip.open('%s_scTEtmp/o4/%s.bed.gz'%(filename, filename), 'rt') for n,l in enumerate(o): t = l.strip().split('\t') if t[0] not in whitelist: whitelist[t[0]] = 0 whitelist[t[0]] += 1 o.close() CRlist = [] sortcb = sorted(whitelist.items(), key=lambda item:item[1], reverse=True) for n,k in enumerate(sortcb): if k[1] < genenumber: break if n >= cellnumber: break CRlist.append(k[0]) CRlist = set(CRlist) res = {} genes_oh = gzip.open('%s_scTEtmp/o4/%s.bed.gz' % (filename,filename), 'rt') for n, l in enumerate(genes_oh): t = l.strip().split('\t') if t[0] not in CRlist: continue if t[0] not in res: res[t[0]] = {} if t[1] not in res[t[0]]: res[t[0]][t[1]] = 0 res[t[0]][t[1]] += int(t[2]) genes_oh.close() s=time.time() # Save out the final file gene_seen = list(gene_seen) # Do the sort once; gene_seen.sort() #==== save results ===== if not hdf5: # save as csv res_oh = open('%s.csv'%filename, 'w') res_oh.write('barcodes,') res_oh.write('%s\n' % (','.join([str(i) for i in gene_seen]))) for k in sorted(res): l = ["0"] * len(gene_seen) # Avoid all the appends for idx, gene in enumerate(gene_seen): if gene in res[k]: l[idx] = str(res[k][gene]) res_oh.write('%s,%s\n' % (k, ','.join(l))) res_oh.close() else: # save as hdf5 data = [] CBs = [] for k in sorted(res): l = ["0"] * len(gene_seen) # Avoid all the appends for idx, gene in enumerate(gene_seen): if gene in res[k]: l[idx] = str(res[k][gene]) data.append(l) CBs.append(k) obs = pd.DataFrame(index = CBs) var = pd.DataFrame(index = gene_seen) adata = ad.AnnData(np.asarray(data),var = var,obs = obs) adata.X = scipy.sparse.csr_matrix(adata.X) adata.write('%s.h5ad'%filename) #======================== return len(res), genenumber, filename def timediff(timestart, timestop): t = (timestop-timestart) time_day = t.days s_time = t.seconds ms_time = t.microseconds / 1000000 usedtime = int(s_time + ms_time) time_hour = int(usedtime / 60 / 60 ) time_minute = int((usedtime - time_hour * 3600 ) / 60 ) time_second = int(usedtime - time_hour * 3600 - time_minute * 60 ) retstr = "%dd %dh %dm %ds" %(time_day, time_hour, time_minute, time_second,) return retstr
from typing import Any from boa3.builtin import interop, public, type @public def call_flags_all() -> interop.contract.CallFlags: return interop.contract.CallFlags.ALL @public def main(scripthash: type.UInt160, method: str, args: list) -> Any: return interop.contract.call_contract(scripthash, method, args)
#!/usr/bin/env python3 # encoding: utf-8 """ booleanTest.py Created by Jakub Konka on 2010-11-21. Copyright (c) 2010 Uni of Strathclyde. All rights reserved. """ import sys import os def boolean_test(anything): '''Tests whether the statement is True or False Keyword arguments: anything -- the statement to be evaluated Returns: Boolean ''' if anything: print("The statement is True.\n") else: print("The statement is False.\n") if __name__ == '__main__': boolean_test([1])
from datadog_checks.base import AgentCheck from datadog_checks.base.errors import CheckException from datadog_checks.utils.subprocess_output import get_subprocess_output import json EXPECTED_RESPONSE_CODE = "NO_ERROR" class LighthouseCheck(AgentCheck): def check(self, instance): lighthouse_url = instance.get('url') lighthouse_name = instance.get('name') if not lighthouse_url or not lighthouse_name: self.log.error("missing instance url or name") raise CheckException("missing lighthouse instance url or name, please fix yaml") cmd = ["lighthouse", lighthouse_url, "--output", "json", "--quiet", "--chrome-flags='--headless'"] json_string, error_message, exit_code = LighthouseCheck._get_lighthouse_report(cmd, self.log, False) # check for error since we have raise_on_empty_output set to False if exit_code > 0: self.log.error("lighthouse subprocess error {0} exit code {1} for url: {2}" .format(error_message, exit_code, lighthouse_url) ) raise CheckException(json_string, error_message, exit_code) try: data = json.loads(json_string) except Exception as e: self.log.warn("lighthouse response JSON different than expected for url: {0}".format(lighthouse_url)) raise CheckException(error_message, exit_code, e) if data["runtimeError"]["code"] == EXPECTED_RESPONSE_CODE: score_accessibility = round(data["categories"]["accessibility"]["score"] * 100) score_best_practices = round(data["categories"]["best-practices"]["score"] * 100) score_performance = round(data["categories"]["performance"]["score"] * 100) score_pwa = round(data["categories"]["pwa"]["score"] * 100) score_seo = round(data["categories"]["seo"]["score"] * 100) else: err_code = data["runtimeError"]["code"] err_msg = data["runtimeError"]["message"] self.log.warn("not collecting lighthouse metrics for url {0} runtimeError code {1} message {2}" .format(lighthouse_url, err_code, err_msg) ) return # add tags tags = instance.get('tags', []) if type(tags) != list: self.log.warn('The tags list in the lighthouse check is not configured properly') tags = [] tags.append("url:{0}".format(lighthouse_url)) tags.append("name:{0}".format(lighthouse_name)) self.gauge("lighthouse.accessibility", score_accessibility, tags=tags) self.gauge("lighthouse.best_practices", score_best_practices, tags=tags) self.gauge("lighthouse.performance", score_performance, tags=tags) self.gauge("lighthouse.pwa", score_pwa, tags=tags) self.gauge("lighthouse.seo", score_seo, tags=tags) @staticmethod def _get_lighthouse_report(command, logger, raise_on_empty=False): json, err_msg, exit_code = get_subprocess_output(command, logger, raise_on_empty_output=raise_on_empty) return json, err_msg, exit_code
# 面试题 08.01. 三步问题 # 三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。 # 示例1: # 输入:n = 3 # 输出:4 # 说明: 有四种走法 # 示例2: # 输入:n = 5 # 输出:13 # 提示: # n范围在[1, 1000000]之间 class Solution: data = [1, 1, 2, 4] def waysToStep(self, n: int) -> int: mod_num = 1000000007 rev = 0 t0 = 0 t1 = 1 t2 = 2 t3 = 4 if n == 0: return 0 if n == 1: return t1 if n == 2: return t2 if n == 3: return t3 ld = len(self.data) if n < ld: return self.data[n] i = ld while i <= n: self.data.append( (self.data[i-1] + self.data[i-2] + self.data[i-3]) % mod_num) i += 1 return self.data[n] % mod_num
import FWCore.ParameterSet.Config as cms from DQMOffline.PFTau.candidateBenchmark_cfi import * from DQMOffline.PFTau.pfCandidateBenchmark_cfi import * from DQMOffline.PFTau.metBenchmark_cfi import * DQMOfflineParticleFlowSequence = cms.Sequence ( candidateBenchmark + pfCandidateBenchmark + metBenchmark + matchMetBenchmark )
import logging from sqlalchemy import Column, INT, TEXT, BOOLEAN, REAL from sqlalchemy import ForeignKey from sqlalchemy.orm import relationship from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy_utc import UtcDateTime from pajbot import utils from pajbot.managers.db import Base from pajbot.managers.songrequest_queue_manager import SongRequestQueueManager from pajbot.streamhelper import StreamHelper log = logging.getLogger("pajbot") class SongrequestQueue(Base): __tablename__ = "songrequest_queue" id = Column(INT, primary_key=True) video_id = Column(TEXT, ForeignKey("songrequest_song_info.video_id", ondelete="CASCADE"), nullable=False) date_added = Column(UtcDateTime(), nullable=False) skip_after = Column(INT, nullable=True) # skipped after requested_by_id = Column(INT, ForeignKey("user.id"), nullable=True) date_resumed = Column(UtcDateTime(), nullable=True) played_for = Column(REAL, default=0, nullable=False) song_info = relationship("SongRequestSongInfo", foreign_keys=[video_id], lazy="joined") requested_by = relationship("User", foreign_keys=[requested_by_id], lazy="joined") def __init__(self, **options): super().__init__(**options) if self.skip_after and self.skip_after < 0: # Make sure skip_after cannot be a negative number self.skip_after = None def jsonify(self): return { "id": self.id, "video_id": self.video_id, "date_added": self.date_added, "skip_after": self.skip_after, "playing": self.playing, "current_song_time": self.current_song_time, "requested_by": self.requested_by.username_raw if self.requested_by_id else None, } def webjsonify(self): return { "song_info": self.song_info.jsonify(), "requested_by": self.requested_by.username_raw if self.requested_by_id else "Backup Playlist", "current_song_time": self.current_song_time, "database_id": self.id, "skip_after": self.skip_after, "formatted_duration": self.formatted_duration, } def purge(self, db_session): SongRequestQueueManager.remove_song_id(self.id) db_session.delete(self) @property def formatted_duration(self): m, s = divmod(self.duration, 60) m = int(m) s = int(s) return f"{m:02d}:{s:02d}" def queue_and_playing_in(self, db_session): all_song_ids_before_current = SongRequestQueueManager.songs_before(self.id, "song-queue") if SongRequestQueueManager.song_playing_id: all_song_ids_before_current.append(SongRequestQueueManager.song_playing_id) queued_unordered_songs = SongrequestQueue.from_list_id(db_session, all_song_ids_before_current) time = 0 for song in queued_unordered_songs: time += song.time_left if song.playing else song.duration if song.playing: log.info(f"Song has {song.time_left}") return len(queued_unordered_songs), time @hybrid_property def playing(self): return str(self.id) == str(SongRequestQueueManager.song_playing_id) @hybrid_property def time_left(self): time_left = self.duration - self.current_song_time return time_left if time_left > 0 else 0 @hybrid_property def current_song_time(self): return ( self.played_for + ((utils.now() - self.date_resumed).total_seconds() if self.date_resumed else 0) if bool(self.playing) else 0 ) @hybrid_property def duration(self): return self.skip_after if self.skip_after else self.song_info.duration def move_song(self, to_id): if not self.requested_by: return SongRequestQueueManager.move_song(self.id, to_id) def to_histroy(self, db_session, skipped_by_id=None): stream_id = StreamHelper.get_current_stream_id() history = SongrequestHistory.create( db_session, stream_id or None, self.video_id, self.requested_by.id if self.requested_by else None, skipped_by_id, self.skip_after, ) self.purge(db_session) return history @hybrid_property def link(self): return f"youtu.be/{self.video_id}" @staticmethod def from_list_id(db_session, _ids): return db_session.query(SongrequestQueue).populate_existing().filter(SongrequestQueue.id.in_(_ids)).all() @staticmethod def from_id(db_session, _id): return db_session.query(SongrequestQueue).populate_existing().filter_by(id=_id).one_or_none() @staticmethod def pop_next_song(db_session, use_backup=True): song = None while song is None: next_id = SongRequestQueueManager.get_next_song(use_backup) SongRequestQueueManager.remove_song_id(next_id) if not next_id: return None song = db_session.query(SongrequestQueue).populate_existing().filter_by(id=next_id).one_or_none() return song @staticmethod def create(db_session, video_id, skip_after, requested_by_id, queue=None, backup=False): songrequestqueue = SongrequestQueue( video_id=video_id, date_added=utils.now(), skip_after=skip_after, requested_by_id=requested_by_id ) db_session.add(songrequestqueue) db_session.commit() SongRequestQueueManager.inset_song(songrequestqueue.id, "backup-song-queue" if backup else "song-queue", queue) return songrequestqueue @staticmethod def get_current_song(db_session): return ( db_session.query(SongrequestQueue) .populate_existing() .filter_by(id=SongRequestQueueManager.song_playing_id) .one_or_none() if SongRequestQueueManager.song_playing_id else None ) @staticmethod def get_next_song(db_session): song = None while song is None: next_id = SongRequestQueueManager.get_next_song() if not next_id: return None song = db_session.query(SongrequestQueue).populate_existing().filter_by(id=next_id).one_or_none() if not song: SongRequestQueueManager.remove_song_id(next_id) return song @staticmethod def all_by_video_id(db_session, _video_id): return db_session.query(SongrequestQueue).populate_existing().filter_by(video_id=_video_id).all() @staticmethod def pruge_videos(db_session, _video_id): all_songs = SongrequestQueue.all_by_video_id(db_session, _video_id) for song in all_songs: song.purge(db_session) @staticmethod def clear_backup_songs(db_session): SongRequestQueueManager.delete_backup_songs() return db_session.query(SongrequestQueue).filter_by(requested_by=None).delete(synchronize_session="evaluate") @staticmethod def load_backup_songs(db_session, songs, youtube): for song in songs: song_info = SongRequestSongInfo.create_or_get(db_session, song, youtube) if song_info: SongrequestQueue.create(db_session, song, None, None, backup=True) @staticmethod def get_playlist(db_session, limit=None, as_json=True): while True: queued_song_ids = SongRequestQueueManager.get_next_songs(limit=limit, queue="song-queue") if not queued_song_ids: return [] queued_unordered_songs = SongrequestQueue.from_list_id(db_session, queued_song_ids) if len(queued_song_ids) == len(queued_unordered_songs): break song_ids = [song.id for song in queued_unordered_songs] for song_id in queued_song_ids: if song_id not in song_ids: SongRequestQueueManager.remove_song_id(song_id) queued_songs = SongrequestQueue.sort(queued_song_ids, queued_unordered_songs) if not as_json: return queued_songs songs = [] for song in queued_songs: songs.append(song.webjsonify()) return songs @staticmethod def get_backup_playlist(db_session, limit=None, as_json=True): while True: queued_song_ids = SongRequestQueueManager.get_next_songs(limit=limit, queue="backup-song-queue") if not queued_song_ids: return [] queued_unordered_songs = SongrequestQueue.from_list_id(db_session, queued_song_ids) if len(queued_song_ids) == len(queued_unordered_songs): break song_ids = [song.id for song in queued_unordered_songs] for song_id in queued_song_ids: if song_id not in song_ids: SongRequestQueueManager.remove_song_id(song_id) queued_songs = SongrequestQueue.sort(queued_song_ids, queued_unordered_songs) if not as_json: return queued_songs songs = [] for song in queued_songs: songs.append(song.webjsonify()) return songs @staticmethod def sort(order, unordered): queued_songs = [] for song in unordered: queued_songs.insert(order.index(song.id), song) return queued_songs class SongrequestHistory(Base): __tablename__ = "songrequest_history" id = Column(INT, primary_key=True) stream_id = Column(INT, nullable=True) video_id = Column(TEXT, ForeignKey("songrequest_song_info.video_id"), nullable=False) date_finished = Column(UtcDateTime(), nullable=False) requested_by_id = Column(INT, ForeignKey("user.id"), nullable=True) skipped_by_id = Column(INT, ForeignKey("user.id"), nullable=True) skip_after = Column(INT, nullable=True) song_info = relationship("SongRequestSongInfo", foreign_keys=[video_id], lazy="joined") requested_by = relationship("User", foreign_keys=[requested_by_id], lazy="joined") skipped_by = relationship("User", foreign_keys=[skipped_by_id], lazy="joined") def jsonify(self): return { "id": self.id, "stream_id": self.stream_id, "video_id": self.video_id, "date_finished": str(self.date_finished), "requested_by": self.requested_by.username_raw if self.requested_by_id else None, "skipped_by": self.skipped_by.username_raw if self.skipped_by_id else None, "skip_after": self.skip_after, } def webjsonify(self): return { "song_info": self.song_info.jsonify(), "requested_by": self.requested_by.username_raw if self.requested_by_id else "Backup Playlist", "skipped_by": self.skipped_by.username_raw if self.skipped_by_id else None, "database_id": self.id, "date_finished": str(self.date_finished), "skip_after": self.skip_after, "formatted_duration": self.formatted_duration, } @property def formatted_duration(self): m, s = divmod(self.duration, 60) m = int(m) s = int(s) return f"{m:02d}:{s:02d}" @hybrid_property def link(self): return f"youtu.be/{self.video_id}" @hybrid_property def duration(self): return self.skip_after if self.skip_after else self.song_info.duration def requeue(self, db_session, requested_by): return SongrequestQueue.create(db_session, self.video_id, self.skip_after, requested_by) @staticmethod def create(db_session, stream_id, video_id, requested_by_id, skipped_by_id, skip_after): songrequesthistory = SongrequestHistory( stream_id=stream_id, video_id=video_id, date_finished=utils.now(), requested_by_id=requested_by_id, skipped_by_id=skipped_by_id, skip_after=skip_after, ) db_session.add(songrequesthistory) return songrequesthistory @staticmethod def get_previous(db_session, position): songs = ( db_session.query(SongrequestHistory) .populate_existing() .order_by(SongrequestHistory.id.desc()) .limit(position + 1) .all() ) if len(songs) == position + 1: return songs[position] @staticmethod def insert_previous(db_session, requested_by_id, position=0): previous = SongrequestHistory.get_previous(db_session, position) if not previous: return False return SongrequestQueue.create(db_session, previous.video_id, previous.skip_after, requested_by_id, 0) @staticmethod def get_list(db_session, size): return ( db_session.query(SongrequestHistory) .populate_existing() .order_by(SongrequestHistory.id.desc()) .limit(size) .all() ) @staticmethod def from_id(db_session, _id): return db_session.query(SongrequestHistory).populate_existing().filter_by(id=_id).one_or_none() @staticmethod def get_history(db_session, limit): played_songs = ( db_session.query(SongrequestHistory) .populate_existing() .filter(SongrequestHistory.song_info.has(banned=False)) .order_by(SongrequestHistory.id.desc()) .limit(limit) .all() ) songs = [] for song in played_songs: songs.append(song.webjsonify()) return songs class SongRequestSongInfo(Base): __tablename__ = "songrequest_song_info" video_id = Column(TEXT, primary_key=True, autoincrement=False) title = Column(TEXT, nullable=False) duration = Column(INT, nullable=False) default_thumbnail = Column(TEXT, nullable=False) banned = Column(BOOLEAN, default=False) favourite = Column(BOOLEAN, default=False) def jsonify(self): return { "video_id": self.video_id, "title": self.title, "duration": self.duration, "default_thumbnail": self.default_thumbnail, "banned": self.banned, "favourite": self.favourite, "formatted_duration": self.formatted_duration, } @property def formatted_duration(self): m, s = divmod(self.duration, 60) m = int(m) s = int(s) return f"{m:02d}:{s:02d}" @staticmethod def create(db_session, video_id, title, duration, default_thumbnail): songinfo = SongRequestSongInfo( video_id=video_id, title=title, duration=duration, default_thumbnail=default_thumbnail ) db_session.add(songinfo) return songinfo @staticmethod def create_or_get(db_session, video_id, youtube): song_info = db_session.query(SongRequestSongInfo).populate_existing().filter_by(video_id=video_id).one_or_none() if song_info: return song_info import isodate if youtube is None: log.warning("youtube was not initialized") return False try: video_response = youtube.videos().list(id=str(video_id), part="snippet,contentDetails").execute() except: return False if not video_response.get("items", []): log.warning(f"Got no valid responses for {video_id}") return False video = video_response["items"][0] title = video["snippet"]["title"] duration = int(isodate.parse_duration(video["contentDetails"]["duration"]).total_seconds()) default_thumbnail = video["snippet"]["thumbnails"]["default"]["url"] return SongRequestSongInfo.create(db_session, video_id, title, duration, default_thumbnail) @staticmethod def get(db_session, video_id): return db_session.query(SongRequestSongInfo).populate_existing().filter_by(video_id=video_id).one_or_none() @staticmethod def get_banned(db_session): return ( db_session.query(SongRequestSongInfo) .populate_existing() .filter_by(banned=True) .order_by(SongRequestSongInfo.video_id) .all() ) @staticmethod def get_favourite(db_session): return ( db_session.query(SongRequestSongInfo) .populate_existing() .filter_by(favourite=True) .order_by(SongRequestSongInfo.video_id) .all() )
from dataclasses import dataclass from typing import Union from postmanparser.description import Description @dataclass class KeyVal: key: str value: str disabled: bool = False description: Union[Description, None, str] = None @classmethod def parse(cls, data: dict): description = data.get("description") if isinstance(description, dict): description = Description.parse(description) return cls( data.get("key", ""), data.get("value", ""), disabled=data.get("disabled", False), description=description, )