content
stringlengths
5
1.05M
import random # This lib is used to choose a random word from the list of word # The user can feed his name name = input("What's your Name? ") print("Good Luck ! ", name) words = ['education','rainbow', 'computer', 'science', 'programming', 'python', 'mathematics', 'player', 'condition', 'reverse', 'water', 'board', 'hacktoberfest'] # Our function will choose a random from the give list word = random.choice(words) print("Guess the characters") guesses = '' # You can reduce/increase the number of turns turns = 10 while turns > 0: # This holds the number of times a user fails failed = 0 # The letter you feed is taken as input one at a time for char in word: # Comparing that character with our set if char in guesses: print(char) else: print("_") # For every failure 1 will be added in failed count failed += 1 if failed == 0: # The User will win the game if failure is 0 print("You Win") # This prints the correct word print("The word is: ", word) break # If user has input the wrong alphabet then the user is given a next chance guess = input("guess a character:") # Every input character will be stored in guesses guesses += guess # Check input with the character in word if guess not in word: turns -= 1 # if the character doesn’t match the word then “Wrong” will be given as output print("Wrong") # this will print the number of turns left print("You have", + turns, 'more guesses') if turns == 0: print("You Loose")
import discord import asyncio from stem_server_roles import HOUSING_ROLE_IDS, MAJOR_ROLE_IDS, CLASS_ROLE_IDS, GRAD_YEAR_ROLE_IDS, SPECIAL_ROLE_IDS, PRONOUN_ROLE_IDS from discord.utils import get from bot_helper import del_convo, get_mhom, contains_role def merge_dict(dicts): # merges dictionaries together z = dicts[0].copy() for i in range(1, len(dicts)): z.update(dicts[i]) return z def capitalize_all_words(in_str, separator): words = in_str.split(separator) output = '' for word in words: output += word.capitalize() + separator return output[:-1] async def list_roles(ctx, client): getlist = discord.Embed(color=discord.Color.blue()) getlist.set_author( name='Roles | Use $get [role] in #role-assignment to add a role', icon_url='https://cdn.discordapp.com/attachments/501594682820788224/558396074868342785/UMass_Stem_discord_logo.png') housing_role_list = '' for role in HOUSING_ROLE_IDS.values(): housing_role_list += capitalize_all_words(role[0], ' ') + '\n' getlist.add_field(name = 'Housing Roles', value=housing_role_list, inline=False) major_role_list = '' for role in MAJOR_ROLE_IDS.values(): major_role_list += capitalize_all_words(role[0], ' ') + '\n' getlist.add_field(name = 'Major Roles', value=major_role_list, inline=False) grad_role_list = '' for role in GRAD_YEAR_ROLE_IDS.values(): grad_role_list += capitalize_all_words(role[0], ' ') + '\n' getlist.add_field(name = 'Graduation Year Roles', value=grad_role_list, inline=False) pronoun_role_list = '' for role in PRONOUN_ROLE_IDS.values(): pronoun_role_list += capitalize_all_words(role[0], '/') + '\n' getlist.add_field(name = 'Pronoun Roles', value=pronoun_role_list, inline=False) class_role_list = '' for role in CLASS_ROLE_IDS.values(): name = role[0].upper() if class_role_list == '': class_role_list += '__Computer Science__\n' if name.startswith('CS') or name.startswith('CICS'): class_role_list += name + ', ' continue if name.endswith('127'): class_role_list = class_role_list[:len(class_role_list)-2] # trim last ', ' class_role_list += '\n__Mathematics__\n' if name.startswith('MATH') or name.startswith('STATS'): class_role_list += name + ', ' continue if name.endswith('499'): class_role_list = class_role_list[:len(class_role_list)-2] # trim last ', ' class_role_list += '\n__Other__\n' class_role_list += name + ', ' class_role_list = class_role_list[:len(class_role_list)-2] # trim last ', ' getlist.add_field(name = 'Class Specific Roles', value=class_role_list, inline=False) getlist.set_footer(text='If you want a role added to the server @Caleb or suggest it in #suggestions') await ctx.message.author.send(embed=getlist) async def list_my_roles(ctx, client, member): housing_roles, major_roles, graduation_year, pronoun, class_specific, special = '', '', '', '', '', '' class_specific_roles, special_roles = [], [] for role in sorted(member.roles, key=lambda x: x.name): if role.id in PRONOUN_ROLE_IDS: pronoun = capitalize_all_words(role.name, '/') + '\n' if role.id in CLASS_ROLE_IDS: class_specific += role.name.upper() + '\n' name = capitalize_all_words(role.name, ' ') if role.id in HOUSING_ROLE_IDS: housing_roles += name + '\n' if role.id in MAJOR_ROLE_IDS: major_roles += name + '\n' if role.id in GRAD_YEAR_ROLE_IDS: graduation_year = name + '\n' if role.id in SPECIAL_ROLE_IDS: special += name + '\n' if special: mylist = discord.Embed(color=0xb5a2c8, description= '**' + special + '**') else: mylist = discord.Embed(color=0xb5a2c8) mylist.set_author(name = '' + member.name + '\'s roles', icon_url = member.avatar_url) if not housing_roles: mylist.add_field( name = 'Housing Roles', value='Missing housing role, set your residential area role in #role-assignment', inline=False) else: mylist.add_field(name = 'Housing Roles', value=housing_roles, inline=False) if not major_roles: mylist.add_field( name = 'Major Roles', value='Missing major role, set at least one major/minor role in #role-assignment', inline=False) else: mylist.add_field(name = 'Major Roles', value=major_roles, inline=False) if class_specific: mylist.add_field(name = 'Class Roles', value=class_specific, inline=False) if graduation_year: mylist.add_field(name = 'Graduation Year', value=graduation_year, inline=False) if pronoun: mylist.add_field(name = 'Pronoun', value=pronoun, inline=False) message = await ctx.channel.send(embed=mylist) await del_convo(ctx.message, message, 30) async def stats(ctx): contents = ctx.message.content[6:].strip().lower() if len(contents) == 0: message = await ctx.send(embed=discord.Embed( description="You must specify a valid role, for example: $stats Computer Science\n" \ "This message will auto-delete in 15 seconds", color=discord.Color.red())) await del_convo(ctx.message, message, 15) return possible_roles = merge_dict([HOUSING_ROLE_IDS, MAJOR_ROLE_IDS, CLASS_ROLE_IDS, GRAD_YEAR_ROLE_IDS, PRONOUN_ROLE_IDS, SPECIAL_ROLE_IDS, PRONOUN_ROLE_IDS]) found = False for role_id, role_names in possible_roles.items(): for alias in role_names: if contents == alias: # valid role found = True role = get(ctx.guild.roles, id=role_id) break if not found: message = await ctx.send(embed=discord.Embed( description="Invalid role specified. You must specify a valid role, for example: $stats Computer Science\n" \ "This message will auto-delete in 15 seconds", color=discord.Color.red())) await del_convo(ctx.message, message, 15) return message = await ctx.send(embed=discord.Embed( title=role.name + " Role Statistics", description = "Count: " + str(len(role.members)) + "\n" \ "Percentage of Members: {:.3f}%".format((len(role.members)/ctx.message.guild.member_count)*100), color=discord.Color.greyple())) await del_convo(ctx.message, message, 30) async def block_multiple_restricted_roles(member, channel, ctx, id_dict, role_name, str_role_type): for roles in id_dict.values(): if role_name in roles: message = await channel.send(embed=discord.Embed( description="I'm sorry, " + member.name + ", you already have a " + str_role_type +" role!\n" \ "Use the $remove [role] command to remove it in order to add a different one!\n" \ "This message will auto-delete in 15 seconds", color=discord.Color.gold())) await del_convo(ctx.message, message, 15) return True return False async def contains_role(roles, name): """ Checks if the role list contains a role with the name 'name' Parameters: - roles: list of role objects - name: name of role Returns: - role: role object that has the name 'name' """ for r in roles: if r.name.lower() == name: return r async def stem_add_role(ctx, member, client): channel = ctx.channel available_roles = merge_dict([HOUSING_ROLE_IDS, MAJOR_ROLE_IDS, CLASS_ROLE_IDS, GRAD_YEAR_ROLE_IDS, PRONOUN_ROLE_IDS]) role_lower = ctx.message.content[5:].lower().strip().replace('[', '').replace(']', '') is_grad_role, is_pronoun_role = False, False #check if user already has a graduation role or a pronoun role for role in member.roles: for grad_years in GRAD_YEAR_ROLE_IDS.values(): if role.name.lower() in grad_years: is_grad_role = True for pronouns in PRONOUN_ROLE_IDS.values(): if role.name.lower() in pronouns: is_pronoun_role = True role_to_add = None # role requested by the user to be added for role_names in available_roles.values(): if role_lower in role_names: # check if member already has the requested role member_role = await contains_role(member.roles, role_names[0]) if member_role is not None: message = await channel.send(embed=discord.Embed( description="I'm sorry, " + member.name + ", you already have this role!\n" \ "Use the `$remove " + member_role.name + "` command to remove it!\n" \ "This message will auto-delete in 15 seconds", color=discord.Color.gold())) await del_convo(ctx.message, message, 15) return # if the member doesnt already have the requested role get the role from the guild roles role_to_add = await contains_role(ctx.message.guild.roles, role_names[0]) # make sure member isn't trying to add a second grad year role, they should only be allowed to have one if is_grad_role and await block_multiple_restricted_roles(member, channel, ctx, GRAD_YEAR_ROLE_IDS, role_to_add.name.lower(), 'graduation year'): return # make sure member isn't trying to add a second pronoun role if is_pronoun_role and await block_multiple_restricted_roles(member, channel, ctx, PRONOUN_ROLE_IDS, role_to_add.name.lower(), 'pronoun'): return await member.add_roles(role_to_add) await check_major_housing_role(member, client, role_to_add, True) message = await channel.send(embed=discord.Embed( description="Added " + role_to_add.name + " to " + member.name + "\n" \ "Use the `$remove " + role_to_add.name + "` command to remove it!\n" \ "This message will auto-delete in 15 seconds", color=discord.Color.green())) await del_convo(ctx.message, message, 15) return message = await channel.send(embed=discord.Embed( description="I'm sorry, " + member.name + ", there is no role with that name!\n" \ "Use the `$getlist` command to see the available roles\n" \ "This message will auto-delete in 15 seconds", color=discord.Color.red())) await del_convo(ctx.message, message, 15) # recheck after 15 seconds to confirm if the user should still have the mhom role or if they should have it await check_major_housing_role(member, client, role_to_add, True) async def check_major_housing_role(member, client, role, is_add): member_has_hr = False member_has_m = False curr_roles = member.roles if is_add: curr_roles.append(role) else: if role in curr_roles: curr_roles.remove(role) for role in member.roles: if role.id in HOUSING_ROLE_IDS: member_has_hr = True if role.id in MAJOR_ROLE_IDS: member_has_m = True mhom = await get_mhom(member.guild.roles) if mhom in member.roles: # check if the member has the missing housing or major role if member_has_hr and member_has_m: await member.remove_roles(mhom) #removes missing housing or major role else: # if not then add it to them if they need it if not member_has_hr or not member_has_m: await member.add_roles(mhom) #adds missing housing or major role if they dont have the roles async def stem_remove_role(ctx, member, client): channel = ctx.channel removable_roles = merge_dict([HOUSING_ROLE_IDS, MAJOR_ROLE_IDS, CLASS_ROLE_IDS, GRAD_YEAR_ROLE_IDS, PRONOUN_ROLE_IDS]) role_lower = ctx.message.content[8:].lower().strip().replace('[', '').replace(']', '') # requested role rid = -1 # requested role id # get the requested role's role id for role_id, r_aliases in removable_roles.items(): if role_lower in r_aliases: rid = role_id break # role doesn't exist or it's a role that shouldn't be removed if rid == -1: message = await channel.send(embed=discord.Embed( description="I'm sorry, " + member.name + ", that is not a valid removable role.\n" \ "This message will auto-delete in 15 seconds", color=discord.Color.red())) await del_convo(ctx.message, message, 15) return # check to see if the user has the requested role for role in member.roles: if role.id == rid: await member.remove_roles(role) await check_major_housing_role(member, client, role, False) message = await channel.send(embed=discord.Embed( description="Removed " + role.name + " from " + member.name + "\n" \ "Use the `$get " + role.name + "` command to add it back!\n" \ "This message will auto-delete in 15 seconds", color=discord.Color.green())) await del_convo(ctx.message, message, 15) return message = await channel.send(embed=discord.Embed( description="I'm sorry, " + member.name + ", you don't have a role with that name\n" \ "This message will auto-delete in 15 seconds", color=discord.Color.red())) await del_convo(ctx.message, message, 15) # recheck after 15 seconds to confirm if the user should still have the mhom role or if they should have it await check_major_housing_role(member, client, role_to_add, True)
#!/usr/bin/env python3 """ This module provides classes used to define a periodic structure. """ # adapted from original version in pymatgen version from pymatgen import math import collections import itertools from abc import ABCMeta, abstractmethod, abstractproperty import warnings import numpy as np from fractions import gcd from .lattice import Lattice from .util.periodic_table import Element, Specie, get_el_sp from .sites import PeriodicSite from .composition import Composition from .coord_utils import get_angle, all_distances from .util.units import Mass, Length from .coord_utils import supercell_latticepoints from .util.tool import non_1to1 class SiteCollection(collections.Sequence): """ Basic SiteCollection. Essentially a sequence of Sites or PeriodicSites. This serves as a base class for Molecule (a collection of Site, i.e., no periodicity) and Structure (a collection of PeriodicSites, i.e., periodicity). Not meant to be instantiated directly. """ __metaclass__ = ABCMeta #Tolerance in Angstrom for determining if sites are too close. DISTANCE_TOLERANCE = 0.01 @abstractproperty def sites(self): """ Returns a tuple of sites. """ return @abstractmethod def get_distance(self, i, j): """ Returns distance between sites at index i and j. Args: i (int): Index of first site j (int): Index of second site Returns: (float) Distance between sites at index i and index j. """ return @property def distance_matrix(self): """ Returns the distance matrix between all sites in the structure. For periodic structures, this is overwritten to return the nearest image distance. """ return all_distances(self.cart_coords, self.cart_coords) @property def species(self): """ Only works for ordered structures. Disordered structures will raise an AttributeError. Returns: ([Specie]) List of species at each site of the structure. """ return [site.specie for site in self] @property def elements(self): return [site.specie.__str__() for site in self] @property def species_and_occu(self): """ List of species and occupancies at each site of the structure. """ return [site.species_and_occu for site in self] @property def ntypesp(self): """Number of types of atoms.""" return len(self.types_of_specie) @property def types_of_specie(self): """ List of types of specie. Only works for ordered structures. Disordered structures will raise an AttributeError. """ # Cannot use set since we want a deterministic algorithm. types = [] for site in self: if site.specie not in types: types.append(site.specie) return types @property def types_of_elements(self): return [i.symbol for i in self.types_of_specie] def group_by_types(self): """Iterate over species grouped by type""" for t in self.types_of_specie: for site in self: if site.specie == t: yield site def indices_from_symbol(self, symbol): """ Returns a tuple with the sequential indices of the sites that contain an element with the given chemical symbol. """ indices = [] for i, specie in enumerate(self.species): if specie.symbol == symbol: indices.append(i) return tuple(indices) @property def symbol_set(self): """ Tuple with the set of chemical symbols. Note that len(symbol_set) == len(types_of_specie) """ return tuple([specie.symbol for specie in self.types_of_specie]) @property def atomic_masses(self): """List of atomic masses.""" return [site.specie.atomic_mass for site in self] @property def atomic_numbers(self): """List of atomic numbers.""" return [site.specie.number for site in self] @property def site_properties(self): """ Returns the site properties as a dict of sequences. E.g., {"magmom": (5,-5), "charge": (-4,4)}. """ props = collections.defaultdict(list) for site in self: for k, v in site.properties.items(): props[k].append(v) return props def __contains__(self, site): return site in self.sites def __iter__(self): return self.sites.__iter__() def __getitem__(self, ind): return self.sites[ind] def __len__(self): return len(self.sites) def __hash__(self): #for now, just use the composition hash code. return self.composition.__hash__() @property def num_sites(self): """ Number of sites. """ return len(self) @property def cart_coords(self): """ Returns a list of the cartesian coordinates of sites in the structure. """ return np.array([site.coords for site in self]) @property def formula(self): """ (str) Returns the formula. """ return self.composition.formula @property def composition(self): """ (Composition) Returns the composition """ elmap = collections.defaultdict(float) for site in self: for species, occu in site.species_and_occu.items(): elmap[species] += occu return Composition(elmap) @property def charge(self): """ Returns the net charge of the structure based on oxidation states. If Elements are found, a charge of 0 is assumed. """ charge = 0 for site in self: for specie, amt in site.species_and_occu.items(): charge += getattr(specie, "oxi_state", 0) * amt return charge @property def is_ordered(self): """ Checks if structure is ordered, meaning no partial occupancies in any of the sites. """ return all((site.is_ordered for site in self)) def get_angle(self, i, j, k): """ Returns angle specified by three sites. Args: i (int): Index of first site. j (int): Index of second site. k (int): Index of third site. Returns: (float) Angle in degrees. """ v1 = self[i].coords - self[j].coords v2 = self[k].coords - self[j].coords return get_angle(v1, v2, units="degrees") def get_dihedral(self, i, j, k, l): """ Returns dihedral angle specified by four sites. Args: i (int): Index of first site j (int): Index of second site k (int): Index of third site l (int): Index of fourth site Returns: (float) Dihedral angle in degrees. """ v1 = self[k].coords - self[l].coords v2 = self[j].coords - self[k].coords v3 = self[i].coords - self[j].coords v23 = np.cross(v2, v3) v12 = np.cross(v1, v2) return math.degrees(math.atan2(np.linalg.norm(v2) * np.dot(v1, v23), np.dot(v12, v23))) def is_valid(self, tol=DISTANCE_TOLERANCE): """ True if SiteCollection does not contain atoms that are too close together. Note that the distance definition is based on type of SiteCollection. Cartesian distances are used for non-periodic Molecules, while PBC is taken into account for periodic structures. Args: tol (float): Distance tolerance. Default is 0.01A. Returns: (bool) True if SiteCollection does not contain atoms that are too close together. """ if len(self.sites) == 1: return True all_dists = self.distance_matrix[np.triu_indices(len(self), 1)] return bool(np.min(all_dists) > tol) class IStructure(SiteCollection): """ Basic immutable Structure object with periodicity. Essentially a sequence of PeriodicSites having a common lattice. IStructure is made to be (somewhat) immutable so that they can function as keys in a dict. To make modifications, use the standard Structure object instead. Structure extends Sequence and Hashable, which means that in many cases, it can be used like any Python sequence. Iterating through a structure is equivalent to going through the sites in sequence. """ def __init__(self, lattice, species, coords, validate_proximity=False, to_unit_cell=False, coords_are_cartesian=False, site_properties=None,site_properties_T=None, intensive_properties={}, extensive_properties={}): """ Create a periodic structure. Args: lattice (Lattice/3x3 array): The lattice, either as a :class:`pymatgen.core.lattice.Lattice` or simply as any 2D array. Each row should correspond to a lattice vector. E.g., [[10,0,0], [20,10,0], [0,0,30]] specifies a lattice with lattice vectors [10,0,0], [20,10,0] and [0,0,30]. species ([Specie]): Sequence of species on each site. Can take in flexible input, including: i. A sequence of element / specie specified either as string symbols, e.g. ["Li", "Fe2+", "P", ...] or atomic numbers, e.g., (3, 56, ...) or actual Element or Specie objects. ii. List of dict of elements/species and occupancies, e.g., [{"Fe" : 0.5, "Mn":0.5}, ...]. This allows the setup of disordered structures. fractional_coords (Nx3 array): list of fractional coordinates of each species. validate_proximity (bool): Whether to check if there are sites that are less than 0.01 Ang apart. Defaults to False. coords_are_cartesian (bool): Set to True if you are providing coordinates in cartesian coordinates. Defaults to False. site_properties (dict): Properties associated with the sites as a dict of sequences, e.g., {"magmom":[5,5,5,5]}. The sequences have to be the same length as the atomic species and fractional_coords. Defaults to None for no properties. site_properties_T (list): alternative way to specify site_properties essentially site_properties transposed """ if len(species) != len(coords): raise StructureError("The list of atomic species must be of the" "same length as the list of fractional" " coordinates.") if isinstance(lattice, Lattice): self._lattice = lattice else: self._lattice = Lattice(lattice) sites = [] for i in range(len(species)): prop = None if site_properties: prop = {k: v[i] for k, v in site_properties.items()} elif site_properties_T: prop = site_properties_T[i] sites.append( PeriodicSite(species[i], coords[i], self._lattice, to_unit_cell, coords_are_cartesian=coords_are_cartesian, properties=prop)) self._sites = tuple(sites) if validate_proximity and not self.is_valid(): raise StructureError(("Structure contains sites that are ", "less than 0.01 Angstrom apart!")) self.intensive_properties=intensive_properties self.extensive_properties=extensive_properties @classmethod def from_sites(cls, sites, validate_proximity=False, to_unit_cell=False): """ Convenience constructor to make a Structure from a list of sites. Args: sites: Sequence of PeriodicSites. Sites must have the same lattice. validate_proximity (bool): Whether to check if there are sites that are less than 0.01 Ang apart. Defaults to False. to_unit_cell (bool): Whether to translate sites into the unit cell. Returns: (Structure) Note that missing properties are set as None. """ prop_keys = [] props = {} lattice = None for i, site in enumerate(sites): if not lattice: lattice = site.lattice elif site.lattice != lattice: raise ValueError("Sites must belong to the same lattice") for k, v in site.properties.items(): if k not in prop_keys: prop_keys.append(k) props[k] = [None] * len(sites) props[k][i] = v for k, v in props.items(): if any((vv is None for vv in v)): warnings.warn("Not all sites have property %s. Missing values " "are set to None." % k) return cls(lattice, [site.species_and_occu for site in sites], [site.frac_coords for site in sites], site_properties=props, validate_proximity=validate_proximity, to_unit_cell=to_unit_cell) @property def distance_matrix(self): """ Returns the distance matrix between all sites in the structure. For periodic structures, this should return the nearest image distance. """ return self.lattice.get_all_distances(self.frac_coords, self.frac_coords) @property def distance_matrix_noself(self): return self.lattice.get_all_distances(self.frac_coords, self.frac_coords, nogamma=True) @property def sites(self): """ Returns an iterator for the sites in the Structure. """ return self._sites @property def lattice(self): """ Lattice of the structure. """ return self._lattice @property def reciprocal_lattice(self): """ Reciprocal lattice of the structure. """ return self._lattice.reciprocal_lattice def lattice_vectors(self, space="r"): """ Returns the vectors of the unit cell in Angstrom. Args: space: "r" for real space vectors, "g" for reciprocal space basis vectors. """ if space.lower() == "r": return self.lattice.matrix if space.lower() == "g": return self.lattice.reciprocal_lattice.matrix raise ValueError("Wrong value for space: %s " % space) @property def density(self): """ Returns the density in units of g/cc """ m = Mass(self.composition.weight, "amu") return m.to("g") / (self.volume * Length(1, "ang").to("cm") ** 3) def __eq__(self, other): if other is None: return False if len(self) != len(other): return False if self._lattice != other._lattice: return False for site in self: if site not in other: return False return True def __ne__(self, other): return not self.__eq__(other) def __hash__(self): # For now, just use the composition hash code. return self.composition.__hash__() @property def frac_coords(self): """ Fractional coordinates as a Nx3 numpy array. """ return np.array([site.frac_coords for site in self._sites]) @property def volume(self): """ Returns the volume of the structure. """ return self._lattice.volume def get_distance(self, i, j, jimage=None): """ Get distance between site i and j assuming periodic boundary conditions. If the index jimage of two sites atom j is not specified it selects the jimage nearest to the i atom and returns the distance and jimage indices in terms of lattice vector translations if the index jimage of atom j is specified it returns the distance between the i atom and the specified jimage atom. Args: i (int): Index of first site j (int): Index of second site jimage: Number of lattice translations in each lattice direction. Default is None for nearest image. Returns: distance """ return self[i].distance(self[j], jimage) def distance_and_image(self, i, j, jimage=None): return self[i].distance_and_image(self[j], jimage) def get_sites_in_sphere(self, pt, r, include_index=False): """ Find all sites within a sphere from the point. This includes sites in other periodic images. Algorithm: 1. place sphere of radius r in crystal and determine minimum supercell (parallelpiped) which would contain a sphere of radius r. for this we need the projection of a_1 on a unit vector perpendicular to a_2 & a_3 (i.e. the unit vector in the direction b_1) to determine how many a_1"s it will take to contain the sphere. Nxmax = r * length_of_b_1 / (2 Pi) 2. keep points falling within r. Args: pt (3x1 array): cartesian coordinates of center of sphere. r (float): Radius of sphere. include_index (bool): Whether the non-supercell site index is included in the returned data Returns: [(site, dist) ...] since most of the time, subsequent processing requires the distance. """ site_fcoords = np.mod(self.frac_coords, 1) neighbors = [] for fcoord, dist, i in self._lattice.get_points_in_sphere( site_fcoords, pt, r): nnsite = PeriodicSite(self[i].species_and_occu, fcoord, self._lattice, properties=self[i].properties) neighbors.append((nnsite, dist) if not include_index else (nnsite, dist, i)) return neighbors def get_neighbors(self, site, r, include_index=False): """ Get all neighbors to a site within a sphere of radius r. Excludes the site itself. Args: site: site, which is the center of the sphere. r: radius of sphere. include_index: boolean that determines whether the non-supercell site index is included in the returned data Returns: [(site, dist) ...] since most of the time, subsequent processing requires the distance. """ nn = self.get_sites_in_sphere(site.coords, r, include_index=include_index) return [d for d in nn if site != d[0]] def get_all_neighbors(self, r, include_index=False): """ Get neighbors for each atom in the unit cell, out to a distance r Returns a list of list of neighbors for each site in structure. Use this method if you are planning on looping over all sites in the crystal. If you only want neighbors for a particular site, use the method get_neighbors as it may not have to build such a large supercell However if you are looping over all sites in the crystal, this method is more efficient since it only performs one pass over a large enough supercell to contain all possible atoms out to a distance r. The return type is a [(site, dist) ...] since most of the time, subsequent processing requires the distance. Args: r (float): Radius of sphere. include_index (bool): Whether to include the non-supercell site in the returned data Returns: A list of a list of nearest neighbors for each site, i.e., [[(site, dist, index) ...], ..] Index only supplied if include_index = True. The index is the index of the site in the original (non-supercell) structure. This is needed for ewaldmatrix by keeping track of which sites contribute to the ewald sum. """ # Use same algorithm as get_sites_in_sphere to determine supercell but # loop over all atoms in crystal recp_len = self.lattice.reciprocal_lattice.abc sr = r + 0.15 nmax = [sr * l / (2 * math.pi) for l in recp_len] site_nminmax = [] floor = math.floor inds = (0, 1, 2) for site in self: pcoords = site.frac_coords inmax = [int(floor(pcoords[i] + nmax[i])) for i in inds] inmin = [int(floor(pcoords[i] - nmax[i])) for i in inds] site_nminmax.append(zip(inmin, inmax)) nmin = [min([i[j][0] for i in site_nminmax]) for j in inds] nmax = [max([i[j][1] for i in site_nminmax]) for j in inds] all_ranges = [range(nmin[i], nmax[i] + 1) for i in inds] neighbors = [list() for i in range(len(self._sites))] all_fcoords = np.mod(self.frac_coords, 1) site_coords = np.array(self.cart_coords) latt = self._lattice frac_2_cart = latt.get_cartesian_coords n = len(self) indices = np.array(range(n)) for image in itertools.product(*all_ranges): for (j, fcoord) in enumerate(all_fcoords): fcoords = fcoord + image coords = frac_2_cart(fcoords) submat = np.tile(coords, (n, 1)) dists = np.power(site_coords - submat, 2) dists = np.sqrt(dists.sum(axis=1)) withindists = (dists <= r) * (dists > 1e-8) sp = self[j].species_and_occu props = self[j].properties for i in indices[withindists]: nnsite = PeriodicSite(sp, fcoords, latt, properties=props) item = (nnsite, dists[i], j) if include_index else ( nnsite, dists[i]) neighbors[i].append(item) return neighbors def get_neighbors_in_shell(self, origin, r, dr): """ Returns all sites in a shell centered on origin (coords) between radii r-dr and r+dr. Args: origin (3x1 array): Cartesian coordinates of center of sphere. r (float): Inner radius of shell. dr (float): Width of shell. Returns: [(site, dist) ...] since most of the time, subsequent processing requires the distance. """ outer = self.get_sites_in_sphere(origin, r + dr) inner = r - dr return [(site, dist) for (site, dist) in outer if dist > inner] def get_sorted_structure(self): """ Get a sorted copy of the structure. Sites are sorted by the electronegativity of the species. """ # sites = sorted(self) # WARNING: Sorting by electronegativity was NOT implemented????? sites= self.sites return self.__class__.from_sites(sites) def get_reduced_structure(self, reduction_algo="niggli"): """ Get a reduced structure. Args: reduction_algo (str): The lattice reduction algorithm to use. Currently supported options are "niggli" or "LLL". """ if reduction_algo == "niggli": reduced_latt = self._lattice.get_niggli_reduced_lattice() elif reduction_algo == "LLL": reduced_latt = self._lattice.get_lll_reduced_lattice() else: raise ValueError("Invalid reduction algo : {}" .format(reduction_algo)) return self.__class__(reduced_latt, self.species_and_occu, self.cart_coords, coords_are_cartesian=True, to_unit_cell=True) def copy(self, site_properties=None, sanitize=False): """ Convenience method to get a copy of the structure, with options to add site properties. Args: site_properties (dict): Properties to add or override. The properties are specified in the same way as the constructor, i.e., as a dict of the form {property: [values]}. The properties should be in the order of the *original* structure if you are performing sanitization. sanitize (bool): If True, this method will return a sanitized structure. Sanitization performs a few things: (i) The sites are sorted by electronegativity, (ii) a LLL lattice reduction is carried out to obtain a relatively orthogonalized cell, (iii) all fractional coords for sites are mapped into the unit cell. Returns: A copy of the Structure, with optionally new site_properties and optionally sanitized. """ props = self.site_properties if site_properties: props.update(site_properties) if not sanitize: return self.__class__(self._lattice, self.species_and_occu, self.frac_coords, site_properties=props) else: reduced_latt = self._lattice.get_lll_reduced_lattice() new_sites = [] for i, site in enumerate(self): frac_coords = reduced_latt.get_fractional_coords(site.coords) site_props = {} for p in props: site_props[p] = props[p][i] new_sites.append(PeriodicSite(site.species_and_occu, frac_coords, reduced_latt, to_unit_cell=True, properties=site_props)) new_sites = sorted(new_sites) return self.__class__.from_sites(new_sites) def interpolate(self, end_structure, nimages=10, interpolate_lattices=False, pbc=True): """ Interpolate between this structure and end_structure. Useful for construction of NEB inputs. Args: end_structure (Structure): structure to interpolate between this structure and end. nimages (int): No. of interpolation images. Defaults to 10 images. interpolate_lattices (bool): Whether to interpolate the lattices. Interpolates the lengths and angles (rather than the matrix) so orientation may be affected. pbc (bool): Whether to use periodic boundary conditions to find the shortest path between endpoints. Returns: List of interpolated structures. The starting and ending structures included as the first and last structures respectively. A total of (nimages + 1) structures are returned. """ #Check length of structures if len(self) != len(end_structure): raise ValueError("Structures have different lengths!") if interpolate_lattices: #interpolate lattices lstart = np.array(self.lattice.lengths_and_angles) lend = np.array(end_structure.lattice.lengths_and_angles) lvec = lend - lstart #Check that both structures have the same lattice elif not self.lattice == end_structure.lattice: raise ValueError("Structures with different lattices!") #Check that both structures have the same species for i in range(0, len(self)): if self[i].species_and_occu != end_structure[i].species_and_occu: raise ValueError("Different species!\nStructure 1:\n" + str(self) + "\nStructure 2\n" + str(end_structure)) start_coords = np.array(self.frac_coords) end_coords = np.array(end_structure.frac_coords) vec = end_coords - start_coords if pbc: vec -= np.round(vec) sp = self.species_and_occu structs = [] for x in range(nimages+1): if interpolate_lattices: l_a = lstart + x / nimages * lvec l = Lattice.from_lengths_and_angles(*l_a) else: l = self.lattice fcoords = start_coords + x / nimages * vec structs.append(self.__class__(l, sp, fcoords, site_properties=self.site_properties)) return structs def get_primitive_structure(self, tolerance=0.25): """ This finds a smaller unit cell than the input. Sometimes it doesn"t find the smallest possible one, so this method is recursively called until it is unable to find a smaller cell. The method works by finding possible smaller translations and then using that translational symmetry instead of one of the lattice basis vectors if more than one vector is found (usually the case for large cells) the one with the smallest norm is used. Things are done in fractional coordinates because its easier to translate back to the unit cell. NOTE: if the tolerance is greater than 1/2 the minimum inter-site distance, the algorithm may find 2 non-equivalent sites that are within tolerance of each other. The algorithm will reject this lattice. Args: tolerance (float): Tolerance for each coordinate of a particular site. For example, [0.5, 0, 0.5] in cartesian coordinates will be considered to be on the same coordinates as [0, 0, 0] for a tolerance of 0.5. Defaults to 0.5. Returns: The most primitive structure found. The returned structure is guaranteed to have len(new structure) <= len(structure). """ original_volume = self.volume #get the possible symmetry vectors sites = sorted(self._sites, key=lambda site: site.species_string) grouped_sites = [list(a[1]) for a in itertools.groupby(sites, key=lambda s: s.species_string)] num_fu = reduce(gcd, map(len, grouped_sites)) min_vol = original_volume * 0.5 / num_fu min_site_list = min(grouped_sites, key=lambda group: len(group)) min_site_list = [site.to_unit_cell for site in min_site_list] org = min_site_list[0].coords possible_vectors = [min_site_list[i].coords - org for i in range(1, len(min_site_list))] #Let's try to use the shortest vector possible first. Allows for faster #convergence to primitive cell. possible_vectors = sorted(possible_vectors, key=lambda x: np.linalg.norm(x)) # Pre-create a few varibles for faster lookup. all_coords = [site.coords for site in sites] all_sp = [site.species_and_occu for site in sites] new_structure = None #all lattice points need to be projected to 0 under new basis l_points = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]) l_points = self._lattice.get_cartesian_coords(l_points) for v, repl_pos in itertools.product(possible_vectors, range(3)): #Try combinations of new lattice vectors with existing lattice #vectors. latt = self._lattice.matrix latt[repl_pos] = v #Exclude coplanar lattices from consideration. if abs(np.dot(np.cross(latt[0], latt[1]), latt[2])) < min_vol: continue latt = Lattice(latt) #Convert to fractional tol tol = tolerance / np.array(latt.abc) #check validity of new basis new_l_points = latt.get_fractional_coords(l_points) f_l_dist = np.abs(new_l_points - np.round(new_l_points)) if np.any(f_l_dist > tol[None, None, :]): continue all_frac = latt.get_fractional_coords(np.array(all_coords)) #calculate grouping of equivalent sites, represented by #adjacency matrix fdist = all_frac[None, :, :] - all_frac[:, None, :] fdist = np.abs(fdist - np.round(fdist)) groups = np.all(fdist < tol[None, None, :], axis=2) #check that all group sizes are the same sizes = np.unique(np.sum(groups, axis=0)) if len(sizes) > 1: continue #check that reduction in number of sites was by the same #amount as the volume reduction if round(self._lattice.volume / latt.volume) != sizes[0]: continue new_sp = [] new_frac = [] #this flag is set to ensure that all sites in a group are #the same species, it is set to false if a group is found #where this is not the case correct = True added = np.zeros(len(groups), dtype='bool') for i, g in enumerate(groups): if added[i]: continue indices = np.where(g)[0] i0 = indices[0] sp = all_sp[i0] added[indices] = 1 if not all([all_sp[i] == sp for i in indices]): correct = False break new_sp.append(all_sp[i0]) new_frac.append(all_frac[i0]) if correct: new_structure = self.__class__( latt, new_sp, new_frac, to_unit_cell=True) break if new_structure and len(new_structure) != len(self): # If a more primitive structure has been found, try to find an # even more primitive structure again. return new_structure.get_primitive_structure(tolerance=tolerance) else: return self def __repr__(self): outs = ["Structure Summary", repr(self.lattice)] for s in self: outs.append(repr(s)) return "\n".join(outs) def __str__(self): outs = ["Structure Summary ({s})".format(s=str(self.composition)), "Reduced Formula: {}" .format(self.composition.reduced_formula)] to_s = lambda x: "%0.6f" % x outs.append("abc : " + " ".join([to_s(i).rjust(10) for i in self.lattice.abc])) outs.append("angles: " + " ".join([to_s(i).rjust(10) for i in self.lattice.angles])) outs.append("Sites ({i})".format(i=len(self))) for i, site in enumerate(self): outs.append(" ".join([str(i + 1), site.species_string, " ".join([to_s(j).rjust(12) for j in site.frac_coords])])) return "\n".join(outs) @property def to_dict(self): """ Json-serializable dict representation of Structure """ latt_dict = self._lattice.to_dict del latt_dict["@module"] del latt_dict["@class"] d = {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "lattice": latt_dict, "sites": []} for site in self: site_dict = site.to_dict del site_dict["lattice"] del site_dict["@module"] del site_dict["@class"] d["sites"].append(site_dict) return d @classmethod def from_dict(cls, d): """ Reconstitute a Structure object from a dict representation of Structure created using to_dict. Args: d (dict): Dict representation of structure. Returns: Structure object """ lattice = Lattice.from_dict(d["lattice"]) sites = [PeriodicSite.from_dict(sd, lattice) for sd in d["sites"]] return cls.from_sites(sites) def dot(self, coords_a, coords_b, space="r", frac_coords=False): """ Compute the scalar product of vector(s) either in real space or reciprocal space. Args: coords (3x1 array): Array-like object with the coordinates. space (str): "r" for real space, "g" for reciprocal space. frac_coords (bool): Whether the vector corresponds to fractional or cartesian coordinates. Returns: one-dimensional `numpy` array. """ lattice = {"r": self.lattice, "g": self.reciprocal_lattice}[space.lower()] return lattice.dot(coords_a, coords_b, frac_coords=frac_coords) def norm(self, coords, space="r", frac_coords=True): """ Compute the norm of vector(s) either in real space or reciprocal space. Args: coords (3x1 array): Array-like object with the coordinates. space (str): "r" for real space, "g" for reciprocal space. frac_coords (bool): Whether the vector corresponds to fractional or cartesian coordinates. Returns: one-dimensional `numpy` array. """ return np.sqrt(self.dot(coords, coords, space=space, frac_coords=frac_coords)) class Structure(IStructure, collections.MutableSequence): """ Mutable version of structure. Much easier to use for editing, but cannot be used as a key in a dict. """ __hash__ = None def __init__(self, lattice, species, coords, validate_proximity=False, to_unit_cell=False, coords_are_cartesian=False, site_properties=None,site_properties_T=None, intensive_properties={}, extensive_properties={}): """ Create a periodic structure. Args: scale: scaling factor, real number R: lattice vectors in rows. Note R*scale == lattice!!! lattice: The lattice, either as a pymatgen.core.lattice.Lattice or simply as any 2D array. Each row should correspond to a lattice vector. E.g., [[10,0,0], [20,10,0], [0,0,30]] specifies a lattice with lattice vectors [10,0,0], [20,10,0] and [0,0,30]. species: List of species on each site. Can take in flexible input, including: i. A sequence of element / specie specified either as string symbols, e.g. ["Li", "Fe2+", "P", ...] or atomic numbers, e.g., (3, 56, ...) or actual Element or Specie objects. ii. List of dict of elements/species and occupancies, e.g., [{"Fe" : 0.5, "Mn":0.5}, ...]. This allows the setup of disordered structures. fractional_coords: list of fractional coordinates of each species. validate_proximity (bool): Whether to check if there are sites that are less than 0.01 Ang apart. Defaults to False. coords_are_cartesian (bool): Set to True if you are providing coordinates in cartesian coordinates. Defaults to False. site_properties (dict): Properties associated with the sites as a dict of sequences, e.g., {"magmom":[5,5,5,5]}. The sequences have to be the same length as the atomic species and fractional_coords. Defaults to None for no properties. """ IStructure.__init__( self, lattice, species, coords, validate_proximity=validate_proximity, to_unit_cell=to_unit_cell, coords_are_cartesian=coords_are_cartesian, site_properties=site_properties,site_properties_T=site_properties_T, intensive_properties=intensive_properties,extensive_properties=extensive_properties) self._sites = list(self._sites) def set_extra(self, scale, R): self.lattice.set_R(scale, R) def __setitem__(self, i, site): """ Modify a site in the structure. Args: i (int): Index site (PeriodicSite/Specie/Sequence): Three options exist. You can provide a PeriodicSite directly (lattice will be checked). Or more conveniently, you can provide a specie-like object or a tuple of up to length 3. Examples: s[0] = "Fe" s[0] = Element("Fe") both replaces the species only. s[0] = "Fe", [0.5, 0.5, 0.5] Replaces site and *fractional* coordinates. Any properties are inherited from current site. s[0] = "Fe", [0.5, 0.5, 0.5], {"spin": 2} Replaces site and *fractional* coordinates and properties. """ if isinstance(site, PeriodicSite): if site.lattice != self._lattice: raise ValueError("PeriodicSite added must have same lattice " "as Structure!") self._sites[i] = site else: if isinstance(site, str) or (not isinstance(site, collections.Sequence)): sp = site frac_coords = self._sites[i].frac_coords properties = self._sites[i].properties else: sp = site[0] frac_coords = site[1] if len(site) > 1 else self._sites[i]\ .frac_coords properties = site[2] if len(site) > 2 else self._sites[i]\ .properties self._sites[i] = PeriodicSite(sp, frac_coords, self._lattice, properties=properties) def __delitem__(self, i): """ Deletes a site from the Structure. """ self._sites.__delitem__(i) def append(self, species, coords, coords_are_cartesian=False, validate_proximity=False, properties=None): """ Append a site to the structure. Args: species: Species of inserted site coords (3x1 array): Coordinates of inserted site coords_are_cartesian (bool): Whether coordinates are cartesian. Defaults to False. validate_proximity (bool): Whether to check if inserted site is too close to an existing site. Defaults to False. Returns: New structure with inserted site. """ return self.insert(len(self), species, coords, coords_are_cartesian=coords_are_cartesian, validate_proximity=validate_proximity, properties=properties) def insert(self, i, species, coords, coords_are_cartesian=False, validate_proximity=False, properties=None): """ Insert a site to the structure. Args: i (int): Index to insert site species (species-like): Species of inserted site coords (3x1 array): Coordinates of inserted site coords_are_cartesian (bool): Whether coordinates are cartesian. Defaults to False. validate_proximity (bool): Whether to check if inserted site is too close to an existing site. Defaults to False. Returns: New structure with inserted site. """ if not coords_are_cartesian: new_site = PeriodicSite(species, coords, self._lattice, properties=properties) else: frac_coords = self._lattice.get_fractional_coords(coords) new_site = PeriodicSite(species, frac_coords, self._lattice, properties=properties) if validate_proximity: for site in self: if site.distance(new_site) < self.DISTANCE_TOLERANCE: raise ValueError("New site is too close to an existing " "site!") self._sites.insert(i, new_site) def add_site_property(self, property_name, values): """ Adds a property to all sites. Args: property_name (str): The name of the property to add. values: A sequence of values. Must be same length as number of sites. """ if values is None: return if len(values) != len(self._sites): raise ValueError("Values must be same length as sites.") for i in range(len(self._sites)): site = self._sites[i] props = site.properties if not props: props = {} props[property_name] = values[i] self._sites[i] = PeriodicSite(site.species_and_occu, site.frac_coords, self._lattice, properties=props) def replace_species(self, species_mapping): """ Swap species in a structure. Args: species_mapping (dict): Dict of species to swap. Species can be elements too. e.g., {Element("Li"): Element("Na")} performs a Li for Na substitution. The second species can be a sp_and_occu dict. For example, a site with 0.5 Si that is passed the mapping {Element('Si): {Element('Ge'):0.75, Element('C'):0.25} } will have .375 Ge and .125 C. """ latt = self._lattice species_mapping = {get_el_sp(k): v for k, v in species_mapping.items()} def mod_site(site): new_atom_occu = collections.defaultdict(int) for sp, amt in site.species_and_occu.items(): if sp in species_mapping: if isinstance(species_mapping[sp], collections.Mapping): for new_sp, new_amt in species_mapping[sp].items(): new_atom_occu[get_el_sp(new_sp)] \ += amt * new_amt else: new_atom_occu[get_el_sp( species_mapping[sp])] += amt else: new_atom_occu[sp] += amt return PeriodicSite(new_atom_occu, site.frac_coords, latt, properties=site.properties) self._sites = map(mod_site, self._sites) def replace(self, i, species, coords=None, coords_are_cartesian=False, properties=None): """ Replace a single site. Takes either a species or a dict of species and occupations. Args: i (int): Index of the site in the _sites list. species (species-like): Species of replacement site coords (3x1 array): Coordinates of replacement site. If None, the current coordinates are assumed. coords_are_cartesian (bool): Whether coordinates are cartesian. Defaults to False. validate_proximity (bool): Whether to check if inserted site is too close to an existing site. Defaults to False. """ if coords is None: frac_coords = self[i].frac_coords elif coords_are_cartesian: frac_coords = self._lattice.get_fractional_coords(coords) else: frac_coords = coords new_site = PeriodicSite(species, frac_coords, self._lattice, properties=properties) self._sites[i] = new_site def remove_species(self, species): """ Remove all occurrences of several species from a structure. Args: species: Sequence of species to remove, e.g., ["Li", "Na"]. """ new_sites = [] species = map(get_el_sp, species) for site in self._sites: new_sp_occu = {sp: amt for sp, amt in site.species_and_occu.items() if sp not in species} if len(new_sp_occu) > 0: new_sites.append(PeriodicSite( new_sp_occu, site.frac_coords, self._lattice, properties=site.properties)) self._sites = new_sites def remove_sites(self, indices): """ Delete sites with at indices. Args: indices: Sequence of indices of sites to delete. """ self._sites = [self._sites[i] for i in range(len(self._sites)) if i not in indices] def apply_operation(self, symmop): """ Apply a symmetry operation to the structure and return the new structure. The lattice is operated by the rotation matrix only. Coords are operated in full and then transformed to the new lattice. Args: symmop (SymmOp): Symmetry operation to apply. """ self._lattice = Lattice([symmop.apply_rotation_only(row) for row in self._lattice.matrix]) def operate_site(site): new_cart = symmop.operate(site.coords) new_frac = self._lattice.get_fractional_coords(new_cart) return PeriodicSite(site.species_and_occu, new_frac, self._lattice, properties=site.properties) self._sites = map(operate_site, self._sites) def modify_lattice(self, new_lattice): """ Modify the lattice of the structure. Mainly used for changing the basis. Args: new_lattice (Lattice): New lattice """ self._lattice = new_lattice new_sites = [] for site in self._sites: new_sites.append(PeriodicSite(site.species_and_occu, site.frac_coords, self._lattice, properties=site.properties)) self._sites = new_sites def apply_strain(self, strain): """ Apply a strain to the lattice. Args: strain (float or list): Amount of strain to apply. Can be a float, or a sequence of 3 numbers. E.g., 0.01 means all lattice vectors are increased by 1%. This is equivalent to calling modify_lattice with a lattice with lattice parameters that are 1% larger. """ s = (1 + np.array(strain)) * np.eye(3) self.modify_lattice(Lattice(np.dot(self._lattice.matrix.T, s).T)) def translate_sites(self, indices, vector, frac_coords=True, to_unit_cell=True): """ Translate specific sites by some vector, keeping the sites within the unit cell. Args: indices: Integer or List of site indices on which to perform the translation. vector: Translation vector for sites. frac_coords (bool): Whether the vector corresponds to fractional or cartesian coordinates. to_unit_cell (bool): Whether new sites are transformed to unit cell """ if not isinstance(indices, collections.Iterable): indices = [indices] for i in indices: site = self._sites[i] if frac_coords: fcoords = site.frac_coords + vector else: fcoords = self._lattice.get_fractional_coords(site.coords + vector) new_site = PeriodicSite(site.species_and_occu, fcoords, self._lattice, to_unit_cell=to_unit_cell, coords_are_cartesian=False, properties=site.properties) self._sites[i] = new_site def perturb(self, distance, to_unit_cell=True): """ Performs a random perturbation of the sites in a structure to break symmetries. Args: distance (float): Distance in angstroms by which to perturb each site. """ def get_rand_vec(): #deals with zero vectors. vector = np.random.randn(3) vnorm = np.linalg.norm(vector) return vector / vnorm * distance if vnorm != 0 else get_rand_vec() for i in range(len(self._sites)): self.translate_sites([i], get_rand_vec(), frac_coords=False,to_unit_cell=to_unit_cell) def displace_by(self, dr, to_unit_cell=True): for i in range(len(self._sites)): self.translate_sites([i], dr[i], frac_coords=False,to_unit_cell=to_unit_cell) def from_displacement(self, dr, to_unit_cell=True): s1= Structure(self._lattice, self.species_and_occu, self.frac_coords) s1.displace_by(dr, to_unit_cell=to_unit_cell) return s1 def add_oxidation_state_by_element(self, oxidation_states): """ Add oxidation states to a structure. Args: oxidation_states (dict): Dict of oxidation states. E.g., {"Li":1, "Fe":2, "P":5, "O":-2} """ try: for i, site in enumerate(self._sites): new_sp = {} for el, occu in site.species_and_occu.items(): sym = el.symbol new_sp[Specie(sym, oxidation_states[sym])] = occu new_site = PeriodicSite(new_sp, site.frac_coords, self._lattice, coords_are_cartesian=False, properties=site.properties) self._sites[i] = new_site except KeyError: raise ValueError("Oxidation state of all elements must be " "specified in the dictionary.") def add_oxidation_state_by_site(self, oxidation_states): """ Add oxidation states to a structure by site. Args: oxidation_states (list): List of oxidation states. E.g., [1, 1, 1, 1, 2, 2, 2, 2, 5, 5, 5, 5, -2, -2, -2, -2] """ try: for i, site in enumerate(self._sites): new_sp = {} for el, occu in site.species_and_occu.items(): sym = el.symbol new_sp[Specie(sym, oxidation_states[i])] = occu new_site = PeriodicSite(new_sp, site.frac_coords, self._lattice, coords_are_cartesian=False, properties=site.properties) self._sites[i] = new_site except IndexError: raise ValueError("Oxidation state of all sites must be " "specified in the dictionary.") def remove_oxidation_states(self): """ Removes oxidation states from a structure. """ for i, site in enumerate(self._sites): new_sp = collections.defaultdict(float) for el, occu in site.species_and_occu.items(): sym = el.symbol new_sp[Element(sym)] += occu new_site = PeriodicSite(new_sp, site.frac_coords, self._lattice, coords_are_cartesian=False, properties=site.properties) self._sites[i] = new_site def generate_supercell(self, scaling_matrix, scref=None): """ Create a supercell. Args: scaling_matrix: A scaling matrix for transforming the lattice vectors. Has to be all integers. Several options are possible: a. A full 3x3 scaling matrix defining the linear combination the old lattice vectors. E.g., [[2,1,0],[0,3,0],[0,0, 1]] generates a new structure with lattice vectors a' = 2a + b, b' = 3b, c' = c where a, b, and c are the lattice vectors of the original structure. b. An sequence of three scaling factors. E.g., [2, 1, 1] specifies that the supercell should have dimensions 2a x b x c. c. A number, which simply scales all lattice vectors by the same factor. """ scmat = np.array(scaling_matrix, np.int16) if scmat.shape != (3, 3): scmat= np.array(scmat* np.eye(3), np.int16) n_cell=int(round(np.linalg.det(scmat))) old_lattice = self._lattice new_lattice = Lattice(np.dot(scmat, old_lattice.matrix)) tvects = supercell_latticepoints(scmat) inv=np.linalg.inv(scmat) if scref is None: sc_ref= supercell_latticepoints(scmat) else: sc_ref= scref return Structure(Lattice(np.dot(scmat, self._lattice.matrix)), [s.species_and_occu for s in self for _ in range(n_cell)], (self.frac_coords[:,None,:]+sc_ref[None,:,:]).reshape((-1,3)).dot(inv), coords_are_cartesian=False, to_unit_cell=True, site_properties_T=[s.properties for s in self for _ in range(n_cell)], intensive_properties=self.intensive_properties,extensive_properties= {k:v*self.n_cell for k,v in self.extensive_properties.items()}) def optimize_supercell(nsc1, maxIter=2000): """ search for optimal supercell shape (as cubic like as possible) Args: nsc1: positive means number of supercells targeted negative means a certain number of atoms desired maxIter: number of iterations """ nsc=nsc1 if nsc<0: nsc=int(round(nsc/self.num_sites)) volsc = nsc*self.volume invprim = np.linalg.inv(self.lattice) ntry=0 bestsc=np.identity(3, dtype=int) bestlen=999999.0 for i in range(maxIter): scmat=1 def scale_lattice(self, volume): """ Performs a scaling of the lattice vectors so that length proportions and angles are preserved. Args: volume (float): New volume of the unit cell in A^3. """ self.modify_lattice(self._lattice.scale(volume)) def ijkl2frac(self, ijkl): """ same but ijkl in one array """ return np.array(ijkl[:3]) + self._sites[int(ijkl[3])].frac_coords def ijkl2cart(self, ijkl): """ :return: cartesian coordinates """ return np.dot(self.ijkl2frac(ijkl), self.lattice._matrix) def frac2ijkl(self, coords, frac_coords=True, tolerance= 1E-3): """ Identify which atom corresponds to the specified coordinates Args: coords (3x1 array): Array-like object with the coordinates. frac_coords (bool): Whether the vector corresponds to fractional or cartesian coordinates. Returns: integer index for the identified site """ assert frac_coords == True return Structure.frac2ijkl_fromapos(coords, self.frac_coords, tolerance) @staticmethod def frac2ijkl_fromapos(c_f, apos, tolerance): for l in range(len(apos)): rvec= c_f - apos[l] rvec_frac = rvec - np.round(rvec) if np.linalg.norm(rvec_frac) < tolerance: return np.append(np.round(rvec), [l]).astype(int) print('debug from apos', c_f) raise ValueError("could not find [%f, %f, %f] in cell" % (c_f[0], c_f[1], c_f[2])) @staticmethod def ijkl_in_supercell(scmat, ijkl): """ :param scmat: supercell scaling matrix :param refpts: list of lattice points within the supercell :return: new ijkl in the supercell. Asuming ijkl.inv(scmat) give new ijk, and refpts should be within the supercell spanned by scmat """ inv = np.linalg.inv(scmat) nsc = abs(int(round(np.linalg.det(scmat)))) return _ijkl_in_supercell(nsc, inv, supercell_latticepoints(scmat).dot(inv), ijkl) @staticmethod def _ijkl_in_supercell(nsc, invscmat, refpts, ijkl): newfrac= np.dot(ijkl[:3], invscmat) newijkl = Structure.frac2ijkl_fromapos(newfrac, refpts, 1E-3) newijkl[3] += ijkl[3]*nsc return newijkl def nbtable(self, r): """ r: cutoff distance return a table: neighbor list of each atom """ if not hasattr(self, '_nbtable'): self._nbtable = {} if r in self._nbtable: return self._nbtable[r] recp_len = np.array(self.lattice.reciprocal_lattice.abc) sr = r + 0.15 nmax = sr * recp_len / (2 * math.pi) floor = math.floor n = self.num_sites fcoords = self.frac_coords indices = np.array(range(n)) nbtable_per_atom = [] pmin = np.amin(fcoords, axis=0) pmax = np.amax(fcoords, axis=0) arange = np.arange(int(floor(pmin[0] - nmax[0])), int(floor(pmax[0] + nmax[0])) + 1) brange = np.arange(int(floor(pmin[1] - nmax[1])), int(floor(pmax[1] + nmax[1])) + 1) crange = np.arange(int(floor(pmin[2] - nmax[2])), int(floor(pmax[2] + nmax[2])) + 1) # print("debug arange=", arange.shape) arange = arange[:, None] * np.array([1, 0, 0])[None, :] brange = brange[:, None] * np.array([0, 1, 0])[None, :] crange = crange[:, None] * np.array([0, 0, 1])[None, :] # print("debug arange=", arange.shape, arange) images = arange[:, None, None] + brange[None, :, None] + crange[None, None, :] images = images.reshape((-1,3)) shifted_coords = fcoords[:, None, :] + images[None, :, :] shifted_coords= shifted_coords.reshape((-1,3)) coords = self.lattice.get_cartesian_coords(shifted_coords) ijkls = np.array([[img[0], img[1], img[2], l] for l in range(n) for img in images]) for i in range(n): pct = self.cart_coords[i] dists = np.array([np.sqrt(np.sum((p-pct) ** 2)) for p in coords]) within_r = np.where(dists <= r) nbtable_per_atom.append(ijkls[within_r]) self._nbtable[r] = nbtable_per_atom return nbtable_per_atom def find_nb_cluster(self, ijkls, cut): """ cut: cutoff distance Find atoms within cutoff of EVERY ijkl """ # print(ijkls) nbtable = self.nbtable(cut) nsite = ijkls.shape[0] # print("nsite", nsite) if nsite <=0: raise ValueError("At least 1 atom in cluster needed") # print("ijkls", ijkls) atoms = [] for _atom in nbtable[ijkls[0][3]]: atom = _atom.copy() atom[:3] += ijkls[0][:3] # print("testing", atom) within = True for j in range(1, nsite): atom_wrt_j = atom.copy() atom_wrt_j[:3] -= ijkls[j,:3] within = False for x in nbtable[ijkls[j][3]]: if (atom_wrt_j == x).all(): within = True break if not within: # print("atom_wrt_j", atom_wrt_j, "not in", ijkls[j,:]) break if within: atoms.append(atom) return atoms def get_scmat(self, sc_R): """ Given primitive cell (self) and supercell lattice vectors :param sc_R: lattice vectors of supercell :return: integer scaling matrix """ return np.dot(sc_R.lattice.matrix if isinstance(sc_R, Structure) else sc_R, self.lattice.inv_matrix).round().astype(int) def map_to_prim(self, prim): """ Given supercell (self) and primitive cell, get supercell without displacement :param prim: primitive :return: supercell without displacement """ scmat = prim.get_scmat(self.lattice.matrix) sc=prim.generate_supercell(scmat) return self.map_to_reference(sc) def map_to_reference(self, sc): """ Given supercell (self) and ideal supercell, get supercell without displacement Assume that :param sc: supercell :return: supercell without displacement """ assert self.num_sites == sc.num_sites dist_mat = self.lattice.get_all_distances(self.frac_coords, sc.frac_coords) jmin = np.argmin(dist_mat, axis=1) bad_i, bad_j = non_1to1(jmin) if len(bad_i) > 0: print("** WARNING** found %d conflicting mappings" % (len(bad_i))) print(self.frac_coords[bad_i], "==>", sc.frac_coords[bad_j]) # try to resolve conflict from itertools import permutations min_dist = 1E99 solve_j = bad_j for try_j in permutations(bad_j): dist = np.sum([dist_mat[bad_i[i], try_j[i]] for i in range(len(bad_i))]) if dist < min_dist: min_dist = dist solve_j = [try_j] jmin[bad_i] = solve_j print(bad_j, solve_j) print("resolved", self.frac_coords[bad_i], "==>", sc.frac_coords[solve_j]) for i in range(self.num_sites): # print("%d %.4f" % (i, np.linalg.norm(self.frac_coords[i] - sc.frac_coords[jmin[i]]))) self[i].set_coords(np.round(self.frac_coords[i] - sc.frac_coords[jmin[i]]) + sc.frac_coords[jmin[i]], cart=False) # self[i].set_coords(sc.frac_coords[jmin[i]], cart=False) # print("%d %.4f" % (i, np.linalg.norm(self.frac_coords[i] - sc.frac_coords[jmin[i]]))) return self def set_coords(self, c, cart=True): # print('debug set_coords', c.shape) for i in range(self.num_sites): self[i].set_coords(c[i], cart=cart) def get_order_wrt(self, p1, inverse=False, tol=1E-4): from _c_util import get_structure_ordering if p1 is None: return list(range(self.num_sites)) if isinstance(p1, Structure): assert (np.abs(self.lattice._matrix-p1.lattice._matrix)<1E-6).all(), "ERROR difference lattice" pos= p1.frac_coords if isinstance(p1, Structure) else p1 if inverse: ordering= get_structure_ordering(pos, self.frac_coords, 1, tol).tolist() else: ordering= get_structure_ordering(self.frac_coords, pos, 1, tol).tolist() # if isinstance(p1, Structure): # inSC = p1 # else: # inSC = Structure(self.lattice, ['']*self.num_sites, p1) # ordering= [inSC.frac2ijkl(pf)[3] for pf in self.frac_coords] assert sorted(ordering) == list(range(self.num_sites)) return ordering def to_spglib(self): """ To the 'cell' format (tuple) required by spglib """ unique_species = [] zs = [] magmoms = [] for species, g in itertools.groupby(self, key=lambda s: s.species_and_occu): if species in unique_species: ind = unique_species.index(species) zs.extend([ind + 1] * len(tuple(g))) else: unique_species.append(species) zs.extend([len(unique_species)] * len(tuple(g))) for site in self: if hasattr(site, 'magmom'): magmoms.append(site.magmom) elif site.is_ordered and hasattr(site.specie, 'spin'): magmoms.append(site.specie.spin) else: magmoms.append(0) return self.lattice._matrix, self.frac_coords, zs, magmoms def from_spglib(self, latt, fcoord, id): spe= self.types_of_specie return Structure(latt, [spe[i-1] for i in id], fcoord) def standardize_cell(self, to_primitive=False, no_idealize=False, symprec=1e-5): """ call standardize_cell of spglib """ import spglib cell=self.to_spglib() return self.from_spglib(*spglib.standardize_cell(cell, to_primitive, no_idealize, symprec)) def match(self, p2, tol_match=0.15, tol_distinct=1.0): """ self: ideal (supercell) structure p2: structure with distortion, defect and/or disorder """ from f_util import f_util return f_util.match_structure(self.lattice.matrix.T, self.frac_coords.T, self.atomic_numbers, p2.frac_coords.T, p2.atomic_numbers, tol_match, tol_distinct) class SupercellStructure(Structure): """ This class represents a Supercell related to SymmetrizedStructure by sc_mat matrix Args: prim: primitive cell sc_mat: defining supercell lattice vectors as R_sc = sc_mat . R_prim .. attribute: equivalent_indices indices of structure grouped by equivalency """ def __init__(self, prim, sc_mat, strc, tol=1E-4, match_prim=True): self.sc_mat = np.array(sc_mat, dtype=int) n_cell = abs(np.linalg.det(self.sc_mat)) assert abs(n_cell - np.round(n_cell).astype(int))< 1E-10, "ncell= %f "%(n_cell) self.n_cell = np.round(n_cell).astype(int) self.prim = prim self.inv_sc_mat = np.linalg.inv(sc_mat) if True or match_prim: strc.map_to_prim(prim) strc.perturb(0, to_unit_cell=True) # move to_unit_cell ijkl= np.array([prim.frac2ijkl(c) for c in strc.frac_coords.dot(sc_mat)]) self.ijk_ref= np.array([i[:3] for i in ijkl if i[3]==0]) self._ijkl = ijkl self._ijkl_list = ijkl.tolist() species=[prim[i[3]].species_and_occu for i in ijkl] site_properties_T=[prim[i[3]].properties for i in ijkl] else: species=[s.species_and_occu for s in strc] site_properties_T=[s.properties for s in strc] self.sc_ref=self.ijk_ref Structure.__init__(self, Lattice(np.dot(self.sc_mat, prim.lattice._matrix)), species, strc.frac_coords, site_properties_T=site_properties_T, intensive_properties=prim.intensive_properties,extensive_properties= {k:v*self.n_cell for k,v in prim.extensive_properties.items()}) @classmethod def from_scmat(cls, prim, scmat, scref= None): return cls(prim, scmat, prim.generate_supercell(scmat, scref)) n_cell = abs(np.linalg.det(scmat)) assert abs(n_cell - np.round(n_cell).astype(int))< 1E-10, "ncell= %f "%(n_cell) n_cell=int(n_cell) newlattice = Lattice(np.dot(scmat, prim.lattice.matrix)) if scref is None: sc_ref= supercell_latticepoints(scmat) else: sc_ref= scref assert n_cell == len(sc_ref) new_sites = [] for site in prim: for t in sc_ref: fcoords = site.frac_coords + t coords = prim.lattice.get_cartesian_coords(fcoords) new_site = PeriodicSite( site.species_and_occu, coords, newlattice, coords_are_cartesian=True, properties=site.properties, to_unit_cell=True) new_sites.append(new_site) strc=Structure.__init__(newlattice, [s.species_and_occu for s in prim for j in range(n_cell)], newfrac, site_properties_T=[s.properties for s in prim for j in range(n_cell)], intensive_properties=prim.intensive_properties,extensive_properties= {k:v*n_cell for k,v in prim.extensive_properties.items()}) return cls(prim, scmat, strc) @classmethod def from_structure(cls, prim, strc): return cls(prim, prim.get_scmat(strc), strc) @classmethod def from_file(cls, prim, f): from .interface_vasp import Poscar strc= Poscar.from_file(f).structure return cls(prim, prim.get_scmat(strc), strc) def compatible_kpoints(self): """ return K-points compatible with this supercell """ return np.dot(supercell_latticepoints(self.sc_mat.T), self.inv_sc_mat.T) def to_unperturbed(self): """ Map positions to unperturbed (prim) positions by the best match, i.e. the --task 2 of polaron_main """ self.map_to_prim(self.prim) class StructureError(Exception): """ Exception class for Structure. Raised when the structure has problems, e.g., atoms that are too close. """ pass
"""Neural network operations.""" from __future__ import absolute_import as _abs from ...expr import TupleWrapper from . import _make def conv2d(data, weight, strides=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, channels=None, kernel_size=None, data_layout="NCHW", weight_layout="OIHW", out_layout="", out_dtype=""): r"""2D convolution. This operator takes the weight as the convolution kernel and convolves it with data to produce an output. In the default case, where the data_layout is `NCHW` and weight_layout is `OIHW`, conv2d takes in a data Tensor with shape `(batch_size, in_channels, height, width)`, and a weight Tensor with shape `(channels, in_channels, kernel_size[0], kernel_size[1])` to produce an output Tensor with the following rule: .. math:: \mbox{out}[b, c, y, x] = \sum_{dy, dx, k} \mbox{data}[b, k, \mbox{strides}[0] * y + dy, \mbox{strides}[1] * x + dx] * \mbox{weight}[c, k, dy, dx] Padding and dilation are applied to data and weight respectively before the computation. This operator accepts data layout specification. Semantically, the operator will convert the layout to the canonical layout (`NCHW` for data and `OIHW` for weight), perform the computation, then convert to the out_layout. Parameters ---------- data : relay.Expr The input data to the operator. weight : relay.Expr The weight expressions. strides : tuple of int, optional The strides of convoltution. padding : tuple of int, optional The padding of convolution on both sides of inputs before convolution. dilation : tuple of int, optional Specifies the dilation rate to be used for dilated convolution. groups : int, optional Number of groups for grouped convolution. channels : int, optional Number of output channels of this convolution. kernel_size : tuple of int, optional The spatial of the convolution kernel. data_layout : str, optional Layout of the input. weight_layout : str, optional Layout of the weight. out_layout : str, optional Layout of the output, by default, out_layout is the same as data_layout out_dtype : str, optional Specifies the output data type for mixed precision conv2d. Returns ------- result : relay.Expr The computed result. """ return _make.conv2d(data, weight, strides, padding, dilation, groups, channels, kernel_size, data_layout, weight_layout, out_layout, out_dtype) def conv2d_transpose(data, weight, strides=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, channels=None, kernel_size=None, data_layout="NCHW", weight_layout="OIHW", output_padding=(0, 0), out_dtype=""): """Two dimensional trnasposed convolution operator. Parameters ---------- data : relay.Expr The input data to the operator. weight : relay.Expr The weight expressions. strides : Tuple[int], optional The strides of convoltution. padding : Tuple[int], optional The padding of convolution on both sides of inputs. dilation : Tuple[int], optional Specifies the dilation rate to be used for dilated convolution. groups : int, optional Number of groups for grouped convolution. data_layout : str, optional Layout of the input. weight_layout : str, optional Layout of the weight. output_padding : Tuple[int], optional Additional zero-padding to be added to one side of the output. out_dtype : str, optional Specifies the output data type for mixed precision conv2d. Returns ------- result : relay.Expr The computed result. """ return _make.conv2d_transpose(data, weight, strides, padding, dilation, groups, channels, kernel_size, data_layout, weight_layout, output_padding, out_dtype) def softmax(data, axis=1): r"""Computes softmax. .. math:: \text{softmax}(x)_i = \frac{exp(x_i)}{\sum_j exp(x_j)} .. note:: This operator can be optimized away for inference. Parameters ---------- data: relay.Expr The input data to the operator. axis: int, optional The axis to sum over when computing softmax Returns ------- result : relay.Expr The computed result. """ return _make.softmax(data, axis) def log_softmax(data, axis): r"""Computes log softmax. .. math:: \text{log_softmax}(x)_i = \log \frac{exp(x_i)}{\sum_j exp(x_j)} .. note:: This operator can be optimized away for inference. Parameters ---------- data: relay.Expr The input data to the operator. axis: int The axis to sum over when computing softmax Returns ------- result : relay.Expr The computed result. """ return _make.log_softmax(data, axis) def max_pool2d(data, pool_size=(1, 1), strides=(1, 1), padding=(0, 0), layout="NCHW", ceil_mode=False): r"""2D maximum pooling operator. This operator takes data as input and does 2D max value calculation with in pool_size sized window by striding defined by stride In the default case, where the data_layout is `NCHW` a data Tensor with shape `(batch_size, in_channels, height, width)`, to produce an output Tensor with the following rule: with data of shape (b, c, h, w) and pool_size (kh, kw) .. math:: \mbox{out}(b, c, y, x) = \max_{m=0, \ldots, kh-1} \max_{n=0, \ldots, kw-1} \mbox{data}(b, c, \mbox{stride}[0] * y + m, \mbox{stride}[1] * x + n) Padding is applied to data before the computation. ceil_mode is used to take ceil or floor while computing out shape. This operator accepts data layout specification. Parameters ---------- data : relay.Expr The input data to the operator. strides : tuple of int, optional The strides of pooling. padding : tuple of int, optional The padding for pooling. layout : str, optional Layout of the input. ceil_mode : bool, optional To enable or disable ceil while pooling. Returns ------- result : relay.Expr The computed result. """ return _make.max_pool2d(data, pool_size, strides, padding, layout, ceil_mode) def avg_pool2d(data, pool_size=(1, 1), strides=(1, 1), padding=(0, 0), layout="NCHW", ceil_mode=False, count_include_pad=False): r"""2D average pooling operator. This operator takes data as input and does 2D average value calculation with in pool_size sized window by striding defined by stride In the default case, where the data_layout is `NCHW` a data Tensor with shape `(batch_size, in_channels, height, width)`, to produce an output Tensor with the following rule: with data of shape (b, c, h, w), pool_size (kh, kw) .. math:: \mbox{out}(b, c, y, x) = \frac{1}{kh * kw} \sum_{m=0}^{kh-1} \sum_{n=0}^{kw-1} \mbox{data}(b, c, \mbox{stride}[0] * y + m, \mbox{stride}[1] * x + n) Padding is applied to data before the computation. ceil_mode is used to take ceil or floor while computing out shape. count_include_pad indicates including or excluding padded input values in computation. This operator accepts data layout specification. Parameters ---------- data : relay.Expr The input data to the operator. strides : tuple of int, optional The strides of pooling. padding : tuple of int, optional The padding for pooling. layout : str, optional Layout of the input. ceil_mode : bool, optional To enable or disable ceil while pooling. count_include_pad : bool, optional To include padding to compute the average. Returns ------- result : relay.Expr The computed result. """ return _make.avg_pool2d(data, pool_size, strides, padding, layout, ceil_mode, count_include_pad) def global_max_pool2d(data, layout="NCHW"): r"""2D global maximum pooling operator. This operator takes data as input and does 2D max value calculation across each window represented by WxH. In the default case, where the data_layout is `NCHW` a data Tensor with shape `(batch_size, in_channels, height, width)`, to produce an output Tensor with the following rule: with data of shape (b, c, h, w) .. math:: \mbox{out}(b, c, 1, 1) = \max_{m=0, \ldots, h} \max_{n=0, \ldots, w} \mbox{data}(b, c, m, n) Parameters ---------- data : relay.Expr The input data to the operator. layout : str, optional Layout of the input. Returns ------- result : relay.Expr The computed result. """ return _make.global_max_pool2d(data, layout) def global_avg_pool2d(data, layout="NCHW"): r"""2D global average pooling operator. This operator takes data as input and does 2D average value calculation across each window represented by WxH. In the default case, where the data_layout is `NCHW` a data Tensor with shape `(batch_size, in_channels, height, width)`, to produce an output Tensor with the following rule: with data of shape (b, c, h, w) .. math:: \mbox{out}(b, c, 1, 1) = \frac{1}{h * w} \sum_{m=0}^{h-1} \sum_{n=0}^{w-1} \mbox{data}(b, c, m, n) Parameters ---------- data : relay.Expr The input data to the operator. layout : str, optional Layout of the input. Returns ------- result : relay.Expr The computed result. """ return _make.global_avg_pool2d(data, layout) def upsampling(data, scale=1, layout="NCHW", method="NEAREST_NEIGHBOR"): """Upsampling. This operator takes data as input and does 2D scaling to the given scale factor. In the default case, where the data_layout is `NCHW` with data of shape (n, c, h, w) out will have a shape (n, c, h*scale, w*scale) method indicates the algorithm to be used while calculating ghe out value and method can be one of ("BILINEAR", "NEAREST_NEIGHBOR") Parameters ---------- data : relay.Expr The input data to the operator. scale : relay.Expr The scale factor for upsampling. layout : str, optional Layout of the input. method : str, optional Scale method to used [NEAREST_NEIGHBOR, BILINEAR]. Returns ------- result : relay.Expr The computed result. """ return _make.upsampling(data, scale, layout, method) def batch_flatten(data): """BatchFlatten. This operator flattens all the dimensions except for the batch dimension. which results a 2D output. For data with shape ``(d1, d2, ..., dk)`` batch_flatten(data) returns reshaped output of shape ``(d1, d2*...*dk)``. Parameters ---------- data : relay.Expr The input data to the operator. Returns ------- result: relay.Expr The Flattened result. """ return _make.batch_flatten(data) def dense(data, weight, units=None): """Dense operator. Applies a linear transformation .. math:: `Y = X * W` Parameters ---------- data : relay.Expr The input data to the operator. weight : relay.Expr The weight expressions. units : int, optional Number of hidden units of the dense transformation. Returns ------- result : relay.Expr The computed result. """ return _make.dense(data, weight, units) def relu(data): """Rectified linear unit. .. math:: out = max(x, 0) Parameters ---------- data : relay.Expr The input data Returns ------- result : relay.Expr The computed result. """ return _make.relu(data) def leaky_relu(data, alpha): """This operator takes data as input and does Leaky version of a Rectified Linear Unit. .. math:: `y = x > 0 ? x : alpha * x` Parameters ---------- data : relay.Expr The input data to the operator. alpha : float Slope coefficient for the negative half axis. Returns ------- result : relay.Expr The computed result. """ return _make.leaky_relu(data, alpha) def pad(data, pad_width, pad_value=0.0): r"""Padding This operator takes in a tensor and pads each axis by the specified widths using the specified value. Parameters ---------- data: relay.Expr The input data to the operator pad_width: tuple of <tuple of <int>>, required Number of values padded to the edges of each axis, in the format of ((before_1, after_1), ..., (before_N, after_N)) pad_value: float, optional, default=0.0 The value used for padding Returns ------- result : relay.Expr The computed result. """ return _make.pad(data, pad_width, pad_value) def lrn(data, size=5, axis=1, bias=2, alpha=.00001, beta=0.75): """This operator takes data as input and does local response normalization. Normalize the input in a local region across or within feature maps. Each input value is divided by (data / (bias + (alpha * sum_data ^2 /size))^beta) where n is the size of each local region, and the sum is taken over the region centered at that value (zero padding is added where necessary). .. math:: (data / (bias + (alpha * sum_data ^2 /size))^beta) Parameters ---------- data : relay.Expr The input data to the operator. size : int, optional The size of the local region to be considered for normalization. axis : int, optional Input data layout channel axis. Default value is 1 for NCHW format bias : float, optional The offset parameter to avoid dividing by 0. alpha : float, optional The scaling parameter. beta : float, optional The exponent parameter. Returns ------- result : relay.Expr The computed result. """ return _make.lrn(data, size, axis, alpha, beta, bias) def l2_normalize(data, eps, axis=None): """Perform L2 normalization on the input data .. math:: y(i, j) = x(i, j) / sqrt(max(sum(x^2), eps)) Parameters ---------- data : relay.Expr The input data to the operator. eps : float epsilon value axis : list of int, optional axis over the normalization applied Returns ------- result : relay.Expr The computed result. """ return _make.l2_normalize(data, eps, axis) def dropout(data, rate=0.5): """Applies the dropout operation to the input array. During training, each element of the input is set to zero with probability ``p``. The whole array is rescaled by ``1/(1-p)`` to keep the expected sum of the input unchanged. Parameters ---------- data : relay.Expr The input data to the operator. rate : float, optional (default=0.5) The probability for an element to be reset to 0. Returns ------- result : relay.Tuple([relay.Expr, relay.Expr]) The first member of the tuple is the result of dropping elements from ``data`` and rescaling. The second member is a "mask" tensor, which is of the same shape and data type as ``data`` and, for each element in ``data``, is 1.0 if the element was not dropped and 0.0 if it was. """ result = _make.dropout(data, rate) return TupleWrapper(result, 2) def batch_norm(data, gamma, beta, moving_mean, moving_var, axis=1, epsilon=1e-5, center=True, scale=True): r""" Batch normalization layer (Ioffe and Szegedy, 2014). Normalizes the input at each batch, i.e. applies a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1. .. math:: data\_mean[i] = mean(data[:,i,:,...]) \\ data\_var[i] = var(data[:,i,:,...]) Then compute the normalized output, which has the same shape as input, as following: .. math:: out[:,i,:,...] = \frac{data[:,i,:,...] - data\_mean[i]}{\sqrt{data\_var[i]+\epsilon}} * gamma[i] + beta[i] Both *mean* and *var* returns a scalar by treating the input as a vector. Assume the input has size *k* on axis 1, then both ``gamma`` and ``beta`` have shape *(k,)*. Besides the inputs and the outputs, this operator accepts two auxiliary states, ``moving_mean`` and ``moving_var``, which are *k*-length vectors. They are global statistics for the whole dataset, which are updated by:: moving_mean = moving_mean * momentum + data_mean * (1 - momentum) moving_var = moving_var * momentum + data_var * (1 - momentum) The parameter ``axis`` specifies which axis of the input shape denotes the 'channel' (separately normalized groups). The default is 1. Specifying -1 sets the channel axis to be the last item in the input shape. .. note:: This operator can be optimized away for inference. Parameters ---------- data : relay.Expr Input to which batch_norm will be applied. gamma : relay.Expr The gamma scale factor. beta : relay.Expr The beta offset factor. moving_mean : relay.Expr Running mean of input, moving_var : relay.Expr Running variance of input. axis : int, optional, default=1 Specify along which shape axis the channel is specified. epsilon : double, optional, default=1e-5 Small float added to variance to avoid diving by zero. center : boolean, optional, default=True If True, add offset of beta to normalized tensor, If False, beta is ignored. scale : boolean, optional, default=True If true, multiply by gamma. If False, gamma is not used. When the next layer is piecewise linear (also e.g. nn.relu), this can be disabled since the scalingwill be done by the next layer. Returns ------- result : relay.Tuple([relay.Expr, relay.Expr, relay.Expr]) Tuple of normed data (same shape as input), new running mean (k-length vector), and new running variance (k-length vector) """ result = _make.batch_norm(data, gamma, beta, moving_mean, moving_var, axis, epsilon, center, scale) return TupleWrapper(result, 3)
from django.conf.urls import patterns, url urlpatterns = patterns('testproject.myapp.views', url(r'^', 'home') )
import logging import os from datetime import datetime from OTLMOW.ModelGenerator.StringHelper import wrap_in_quotes from OTLMOW.PostenMapping.PostenCollector import PostenCollector from OTLMOW.PostenMapping.StandaardPost import StandaardPost class PostenCreator: def __init__(self, postenCollector: PostenCollector): self.postenCollector = postenCollector logging.info("Created an instance of PostenCreator") self.datablock_lijst_import = [] self.datablock_lijst = [] def create_all_mappings(self): logging.info('started creating model at ' + datetime.now().strftime("%d/%m/%Y %H:%M:%S")) self.postenCollector.collect() self.combine_mappings_and_posten() self.create_standaardposten() logging.info('finished creating model at ' + datetime.now().strftime("%d/%m/%Y %H:%M:%S")) def create_standaardposten(self): for post in self.postenCollector.standaardposten: try: dataToWrite = self.create_datablock_from_post(post) if dataToWrite is None: logging.info(f"Could not create a class for {post.nummer}") pass if len(dataToWrite) == 0: logging.info(f"Could not create a class for {post.nummer}") pass self.writeToFile(post, dataToWrite) logging.info(f"Created a class for {post.nummer}") self.add_to_lijst(post) except BaseException as e: logging.error(str(e)) logging.error(f"Could not create a class for {post.nummer}") self.create_lijst() def combine_mappings_and_posten(self): for post in self.postenCollector.standaardposten: mappings = self.postenCollector.find_mappings_by_postnummer(post.nummer) post.mappings = mappings def create_datablock_from_post(self, post: StandaardPost) -> [str]: datablock = ['# coding=utf-8', "from OTLMOW.PostenMapping.StandaardPost import StandaardPost", "from OTLMOW.PostenMapping.StandaardPostMapping import StandaardPostMapping", "", "", '# Generated with PostenCreator. To modify: extend, do not edit', f"class Post{post.nummer.replace('.', '')}(StandaardPost):", " def __init__(self):", " super().__init__(", f" nummer='{post.nummer}',", f" beschrijving={wrap_in_quotes(post.beschrijving)},", f" meetstaateenheid='{post.meetstaateenheid}',", " mappings=[StandaardPostMapping("] for mapping in post.mappings: datablock.append(f" typeURI={wrap_in_quotes(mapping.typeURI)},") datablock.append(f" attribuutURI={wrap_in_quotes(mapping.attribuutURI)},") datablock.append(f" dotnotatie={wrap_in_quotes(mapping.dotnotatie)},") datablock.append(f" defaultWaarde={wrap_in_quotes(mapping.defaultWaarde)},") datablock.append(f" range={wrap_in_quotes(mapping.range)},") datablock.append(f" usagenote={wrap_in_quotes(mapping.usagenote)},") datablock.append(f" isMeetstaatAttr={mapping.isMeetstaatAttr},") datablock.append(f" isAltijdInTeVullen={mapping.isAltijdInTeVullen},") datablock.append(f" isBasisMapping={mapping.isBasisMapping},") datablock.append(f" mappingStatus={wrap_in_quotes(mapping.mappingStatus)},") datablock.append(f" mappingOpmerking={wrap_in_quotes(mapping.mappingOpmerking)},") datablock.append(f" standaardpostnummer='{mapping.standaardpostnummer}')") datablock.append(f' , StandaardPostMapping(') datablock.pop(-1) datablock[-1] = datablock[-1] + '])' return datablock @staticmethod def writeToFile(post: StandaardPost, dataToWrite: [str]): base_dir = os.path.dirname(os.path.realpath(__file__)) path = f"{base_dir}/../PostenMapping/Model/Post{post.nummer.replace('.', '')}.py" with open(path, "w", encoding='utf-8') as file: for line in dataToWrite: file.write(line + "\n") def add_to_lijst(self, post: StandaardPost): self.datablock_lijst_import.append( f"from OTLMOW.PostenMapping.Model.Post{post.nummer.replace('.', '')} import Post{post.nummer.replace('.', '')}") self.datablock_lijst.append(f" '{post.nummer}': Post{post.nummer.replace('.', '')}(),") def create_lijst(self): datablock = [] datablock.extend(self.datablock_lijst_import) datablock.append("") datablock.append("") datablock.append("class PostenLijst:") datablock.append(" def __init__(self):") datablock.append(" self.lijst = {") datablock.extend(self.datablock_lijst) datablock[-1] = datablock[-1][:-1] datablock.append(" }") base_dir = os.path.dirname(os.path.realpath(__file__)) path = f"{base_dir}/../PostenMapping/PostenLijst.py" with open(path, "w", encoding='utf-8') as file: for line in datablock: file.write(line + "\n")
import numpy as np import matplotlib.pyplot as plt W = np.loadtxt('sol.csv', skiprows=1, delimiter=',') # Density of solid phase plt.figure(1) plt.plot(W[:,0], W[:,1], linestyle='-', linewidth =0.3, color='black', marker = 'o', mew=1.0, ms=1.0) plt.xlabel(r"$x$") plt.ylabel(r"$\rho_s$") plt.savefig("RHO_s.pdf") # Density of gas phase plt.figure(2) plt.plot(W[:,0], W[:,4], linestyle='-', linewidth =0.3, color='black', marker = 'o', mew=1.0, ms=1.0) plt.xlabel(r"$x$") plt.ylabel(r"$\rho_g$") plt.savefig("RHO_g.pdf") """ plt.figure(1) plt.plot(W[:,0], W[:,3], linestyle='-', linewidth =0.3, marker = 'o', mew=1.0, ms=1.0, label='solid-phase') plt.plot(W[:,0], W[:,6], linestyle='-', linewidth =0.3, marker = 'o', mew=1.0, ms=1.0, label='gas-phase') plt.xlabel(r"$x$") plt.ylabel(r"$p$") plt.legend() plt.savefig("P.pdf") plt.figure(2) plt.plot(W[:,0], W[:,2], linestyle='-', linewidth =0.3, marker = 'o', mew=1.0, ms=1.0, label='solid-phase') plt.plot(W[:,0], W[:,5], linestyle='-', linewidth =0.3, marker = 'o', mew=1.0, ms=1.0, label='gas-phase') plt.xlabel(r"$x$") plt.ylabel(r"$u$") plt.legend() plt.savefig("U.pdf") """
from google.cloud import automl from core_engine import logger logging = logger(__name__) def evaluate_model( project_id: str, region: str, model_id: str, evlauation_filter: str = "" ): """[Evalaute Model Summary] Args: project_id (str): [Unique Identifier for your Project] region (str): [Region] model_id (str): [Unique Identifier for your Model] evlauation_filter (str, optional): [description]. Defaults to "". Raises: error: [Error] Returns: [type]: [description] """ try: logging.info(f"Evaluate Model: {project_id}") logging.info(f"{model_id=}") client = automl.AutoMlClient() model_full_id = client.model_path(project_id, region, model_id) return client.list_model_evaluations( parent=model_full_id, filter=evlauation_filter ) except Exception as error: logging.error(f"{error=}") raise error
# https://leetcode.com/problems/flip-game/submissions/ class Solution: def generatePossibleNextMoves(self, s): """ :type s: str :rtype: List[str] """ out = [] for i in range(0, len(s) - 1): if s[i:i+2] == '++': out.append(s[:i] + '--' + s[i+2:]) return out
# -*- encoding: utf-8 -*- """ @Author : zYx.Tom @Contact : 526614962@qq.com @site : https://zhuyuanxiang.github.io --------------------------- @Software : PyCharm @Project : deep-learning-with-python-notebooks @File : ch0503_pretained_convnet.py @Version : v0.1 @Time : 2019-11-21 10:47 @License : (C)Copyright 2018-2019, zYx.Tom @Reference : 《Python 深度学习,Francois Chollet》, Sec0503,P115 @Desc : 深度学习用于计算机视觉,使用预训练的卷积神经网络 """ import os import sys import matplotlib.pyplot as plt import numpy as np # pip install numpy<1.17,小于1.17就不会报错 import winsound from keras import activations from keras import layers from keras import losses from keras import metrics from keras import models from keras import optimizers from keras.applications import VGG16 from keras.preprocessing.image import ImageDataGenerator # 屏蔽警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 设置数据显示的精确度为小数点后3位 np.set_printoptions(precision = 3, suppress = True, threshold = np.inf, linewidth = 200) # to make this notebook's output stable across runs seed = 42 np.random.seed(seed) # Python ≥3.5 is required assert sys.version_info >= (3, 5) # numpy 1.16.4 is required assert np.__version__ in ["1.16.5", "1.16.4"] # VGG16()的三个参数 # weights:模型初始化的权重检查点 # include_top:指定模型最后是否包含密集连接分类器(ImageNet的密集连接分类器对应于1000个类别),本例中使用自己的密集连接分类器(对应两个类别:cat和dog) # input_shape:输入到网络中的图像张量的形状。如果不传入参数,网络可以处理任意形状的输入。 conv_base = VGG16(weights = 'imagenet', include_top = False, input_shape = (150, 150, 3)) vgg16_out_dims_product = 4 * 4 * 512 # 注:(4,4,512)是VGG16网络输出的最后一层的维度,具体参考 summary() 函数 # conv_base.summary() base_dir = "C:/Users/Administrator/PycharmProjects/Data/small_datasets" train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'validation') test_dir = os.path.join(base_dir, 'test') epochs = 30 batch_size = 20 data_gen = ImageDataGenerator(rescale = 1. / 255) def extract_feature(directory, sample_count): features = np.zeros(shape = (sample_count, 4, 4, 512)) labels = np.zeros(shape = (sample_count,)) generator = data_gen.flow_from_directory( directory, target_size = (150, 150), batch_size = batch_size, class_mode = 'binary' ) print("\t 数据总量 = {},数据处理中...".format(sample_count)) step = (sample_count // batch_size) // 10 for i, (inputs_batch, labels_batch) in enumerate(generator): if i % step == 0: print("\t 正在处理第{}个数据".format(i * batch_size + 1)) features_batch = conv_base.predict(inputs_batch) features[i * batch_size:(i + 1) * batch_size] = features_batch labels[i * batch_size:(i + 1) * batch_size] = labels_batch # 生成器在循环中不断生成数据,所以必须在读取完所有图像后终止循环 if (i + 1) * batch_size >= sample_count: break return features, labels print("处理验证数据集的图片") validation_features, validation_labels = extract_feature(validation_dir, 1000) validation_features = np.reshape(validation_features, (1000, vgg16_out_dims_product)) print("处理训练数据集的图片") train_features, train_labels = extract_feature(train_dir, 2000) train_features = np.reshape(train_features, (2000, vgg16_out_dims_product)) # print("处理临时验证数据集的图片,利用临时数据集加快训练速度,发现代码中的问题") # validation_features, validation_labels = extract_feature(os.path.join(base_dir, 'tmp_val'), 200) # validation_features = np.reshape(validation_features, (200, vgg16_out_dims_product)) # print("处理临时训练数据集的图片,利用临时数据集加快训练速度,发现代码中的问题") # train_features, train_labels = extract_feature(os.path.join(base_dir, 'tmp_train'), 200) # train_features = np.reshape(train_features, (200, vgg16_out_dims_product)) # print("处理测试数据集的图片") # test_features, test_labels = extract_feature(test_dir, 1000) # test_features = np.reshape(test_features, (1000, vgg16_out_dims_product)) print("构造模型") model = models.Sequential() model.add(layers.Dense(256, activation = activations.relu, input_dim = vgg16_out_dims_product)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1, activation = activations.sigmoid)) model.compile(optimizer = optimizers.rmsprop(lr = 2e-5), loss = losses.binary_crossentropy, metrics = [metrics.binary_accuracy]) print("训练模型") # 密集网络层使用多处理并发计算不会死锁,可能卷积网络层使用并发操作可能会发生死锁 history = model.fit(train_features, train_labels, epochs = epochs, batch_size = batch_size, validation_data = [validation_features, validation_labels], verbose = 2, use_multiprocessing = True) binary_accuracy = history.history['binary_accuracy'] val_binary_accuracy = history.history['val_binary_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(1, epochs + 1) plt.plot(epochs_range, binary_accuracy, 'bo', label = "训练集的精确度") plt.plot(epochs_range, val_binary_accuracy, 'r-', label = "验证集的精确度") plt.title("图5-15:简单特征提取的训练精度和验证精度") plt.legend() plt.figure() plt.plot(epochs_range, loss, 'bo', label = "训练集的损失") plt.plot(epochs_range, val_loss, 'r-', label = "验证集的损失") plt.title("图5-16:简单特征提取的训练损失和验证损失") plt.legend() # 运行结束的提醒 winsound.Beep(600, 500) if len(plt.get_fignums()) != 0: plt.show() pass
# RUN: %PYTHON %s | FileCheck %s from mlir.ir import * from mlir.dialects import quant def run(f): print("\nTEST:", f.__name__) f() return f # CHECK-LABEL: TEST: test_type_hierarchy @run def test_type_hierarchy(): with Context(): i8 = IntegerType.get_signless(8) any = Type.parse("!quant.any<i8<-8:7>:f32>") uniform = Type.parse("!quant.uniform<i8<-8:7>:f32, 0.99872:127>") per_axis = Type.parse("!quant.uniform<i8:f32:1, {2.0e+2,0.99872:120}>") calibrated = Type.parse("!quant.calibrated<f32<-0.998:1.2321>>") assert not quant.QuantizedType.isinstance(i8) assert quant.QuantizedType.isinstance(any) assert quant.QuantizedType.isinstance(uniform) assert quant.QuantizedType.isinstance(per_axis) assert quant.QuantizedType.isinstance(calibrated) assert quant.AnyQuantizedType.isinstance(any) assert quant.UniformQuantizedType.isinstance(uniform) assert quant.UniformQuantizedPerAxisType.isinstance(per_axis) assert quant.CalibratedQuantizedType.isinstance(calibrated) assert not quant.AnyQuantizedType.isinstance(uniform) assert not quant.UniformQuantizedType.isinstance(per_axis) # CHECK-LABEL: TEST: test_any_quantized_type @run def test_any_quantized_type(): with Context(): i8 = IntegerType.get_signless(8) f32 = F32Type.get() any = quant.AnyQuantizedType.get(quant.QuantizedType.FLAG_SIGNED, i8, f32, -8, 7) # CHECK: flags: 1 print(f"flags: {any.flags}") # CHECK: signed: True print(f"signed: {any.is_signed}") # CHECK: storage type: i8 print(f"storage type: {any.storage_type}") # CHECK: expressed type: f32 print(f"expressed type: {any.expressed_type}") # CHECK: storage min: -8 print(f"storage min: {any.storage_type_min}") # CHECK: storage max: 7 print(f"storage max: {any.storage_type_max}") # CHECK: storage width: 8 print(f"storage width: {any.storage_type_integral_width}") # CHECK: quantized element type: !quant.any<i8<-8:7>:f32> print(f"quantized element type: {any.quantized_element_type}") # CHECK: !quant.any<i8<-8:7>:f32> print(any) assert any == Type.parse("!quant.any<i8<-8:7>:f32>") # CHECK-LABEL: TEST: test_uniform_type @run def test_uniform_type(): with Context(): i8 = IntegerType.get_signless(8) f32 = F32Type.get() uniform = quant.UniformQuantizedType.get( quant.UniformQuantizedType.FLAG_SIGNED, i8, f32, 0.99872, 127, -8, 7) # CHECK: scale: 0.99872 print(f"scale: {uniform.scale}") # CHECK: zero point: 127 print(f"zero point: {uniform.zero_point}") # CHECK: fixed point: False print(f"fixed point: {uniform.is_fixed_point}") # CHECK: !quant.uniform<i8<-8:7>:f32, 9.987200e-01:127> print(uniform) assert uniform == Type.parse("!quant.uniform<i8<-8:7>:f32, 0.99872:127>") # CHECK-LABEL: TEST: test_uniform_per_axis_type @run def test_uniform_per_axis_type(): with Context(): i8 = IntegerType.get_signless(8) f32 = F32Type.get() per_axis = quant.UniformQuantizedPerAxisType.get( quant.QuantizedType.FLAG_SIGNED, i8, f32, [200, 0.99872], [0, 120], quantized_dimension=1, storage_type_min=quant.QuantizedType.default_minimum_for_integer( is_signed=True, integral_width=8), storage_type_max=quant.QuantizedType.default_maximum_for_integer( is_signed=True, integral_width=8)) # CHECK: scales: None print(f"scales: {per_axis.scales}") # CHECK: zero_points: None print(f"zero_points: {per_axis.zero_points}") # CHECK: quantized dim: 1 print(f"quantized dim: {per_axis.quantized_dimension}") # CHECK: fixed point: False print(f"fixed point: {per_axis.is_fixed_point}") # CHECK: !quant.uniform<i8:f32:1, {2.000000e+02,9.987200e-01:120}> print(per_axis) assert per_axis == Type.parse( "!quant.uniform<i8:f32:1, {2.0e+2,0.99872:120}>") # CHECK-LABEL: TEST: test_calibrated_type @run def test_calibrated_type(): with Context(): f32 = F32Type.get() calibrated = quant.CalibratedQuantizedType.get(f32, -0.998, 1.2321) # CHECK: min: -0.998 print(f"min: {calibrated.min}") # CHECK: max: 1.2321 print(f"max: {calibrated.max}") # CHECK: !quant.calibrated<f32<-0.998:1.232100e+00>> print(calibrated) assert calibrated == Type.parse("!quant.calibrated<f32<-0.998:1.2321>>")
from django.contrib import admin from .models import Post, Comment, Like, Follow # Register your models here. admin.site.register(Post) admin.site.register(Comment) admin.site.register(Like) admin.site.register(Follow)
# -*- coding: utf-8 -*- import json import os import shutil import subprocess import sys import time # environ PYTHON27 = os.environ['PYTHON27'] ROOT = os.path.realpath(os.path.dirname(__file__)) # useful paths LOGS_PATH = os.getenv('BROAPT_LOGS_PATH', '/var/log/bro/') APK_LOG = os.getenv('APK_LOG', '/var/log/bro/tmp/') os.makedirs(APK_LOG, exist_ok=True) # return codes EXIT_SUCCESS = 0 EXIT_FAILURE = 1 def main(): mime = os.environ['BROAPT_MIME'] path = os.environ['BROAPT_PATH'] name = os.path.split(path)[1] dirname = os.path.splitext(name)[0] tempdir = os.path.join(APK_LOG, dirname) # move target to a temporary directory shutil.copyfile(path, os.path.join(tempdir, name)) # prepare arguments args = [PYTHON27, 'androPyTool.py', '-s', tempdir] args.extend(sys.argv[1:]) # prepare environment cwd = os.path.join(ROOT, 'AndroPyTool') env = os.environ # run command subprocess.check_call(args, cwd=cwd, env=env) # check output if os.path.exists(os.path.join(tempdir, 'MW', name)): rate = True elif os.path.exists(os.path.join(tempdir, 'BW', name)): rate = False else: return EXIT_FAILURE result = {'time': time.time(), 'path': path, 'mime': mime, 'rate': rate} with open(os.path.join(LOGS_PATH, 'rate.log'), 'at', 1) as file: print(json.dumps(result), file=file) return EXIT_SUCCESS if __name__ == '__main__': sys.exit(main())
import argparse, os, math from theia.channels import invert_with_alpha from theia.image import load_from_path from PIL import Image def main(args): os.makedirs(args.output, exist_ok=True) images = load_from_path(args.input) for (name, img) in images: # Invert the image if args.invert: img = invert_with_alpha(img) # Pad the image to the given dimensions if args.padded: pad = args.padded canvas = Image.new("RGBA", (pad, pad), color=(255, 255, 255, 0)) corner = ( math.floor((pad - img.size[0]) / 2), math.floor((pad - img.size[1]) / 2), ) canvas.paste(img, corner, img) img = canvas # Save to new location # If input = output, this will overwrite img.save(os.path.join(args.output, f"{name}.png")) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("input") parser.add_argument("output") parser.add_argument("--invert", action="store_true") parser.add_argument("--padded", type=int) args = parser.parse_args() main(args)
import argparse import numpy def chunk(thing, size): x = 0 out = [] for val in thing: out.append(val) x += 1 if x % size == 0: yield out out = [] x = 0 if out: yield out if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input') parser.add_argument('--rows', type=int, default=0, help='Reshape before printing') parser.add_argument('--cols', type=int, default=0, help='Reshape before printing') args = parser.parse_args() data = numpy.load(args.input)#, dtype=numpy.float32) if args.rows or args.cols: data = data.reshape(args.rows, args.cols) print(' '.join(str(x) for x in data.shape)) for line in chunk(data.flatten(), 32): for v in line: print(v, end=" ") print()
from functools import lru_cache import menpo.io as mio import menpo3d.io as m3io import numpy as np # load the maps between LSFM/Basel etc @lru_cache() def map_tddfa_to_basel(): maps = mio.import_pickle( '/vol/atlas/databases/itwmm/mapping_mein3d_to_tddfa.pkl.gz') return maps['map_tddfa_to_basel'] def fw_to_fw_cropped(): return mio.import_pickle('/vol/atlas/databases/itwmm/3ddfa_to_trimmed_no_neck_mask.pkl.gz') @lru_cache() def template_fw(): return mio.import_pickle('/vol/atlas/databases/itwmm/mein3d_fw_correspond_mean.pkl.gz') def template_fw_cropped(): return template_fw().from_mask(fw_to_fw_cropped()) # Remappings between BFM [] - Face warehouse [fw] - Face warehouse cropped [fwc] def map_basel_shape_model_to_fw(shape_model): shape_model = shape_model.copy() c = shape_model._components.reshape([shape_model._components.shape[0], -1, 3]) shape_model._components = c[:, map_tddfa_to_basel()].reshape([shape_model._components.shape[0], -1]) shape_model._mean = shape_model._mean.reshape([-1, 3])[map_tddfa_to_basel()].ravel() shape_model.template_instance = template_fw().from_vector(shape_model._mean) return shape_model def map_basel_shape_model_to_fwc(shape_model): shape_model = shape_model.copy() c = shape_model._components.reshape([shape_model._components.shape[0], -1, 3]) shape_model._components = c[:, map_tddfa_to_basel()][:, fw_to_fw_cropped()].reshape([shape_model._components.shape[0], -1]) shape_model._mean = shape_model._mean.reshape([-1, 3])[map_tddfa_to_basel()][fw_to_fw_cropped()].ravel() shape_model.template_instance = template_fw_cropped().from_vector(shape_model._mean) return shape_model def map_basel_texture_model_to_fw(texture_model): texture_model = texture_model.copy() c = texture_model._components.reshape([texture_model._components.shape[0], -1, 3]) texture_model._components = c[:, map_tddfa_to_basel()].reshape([texture_model._components.shape[0], -1]) texture_model._mean = texture_model._mean.reshape([-1, 3])[map_tddfa_to_basel()].ravel() return texture_model def map_basel_texture_model_to_fwc(texture_model): texture_model = texture_model.copy() c = texture_model._components.reshape([texture_model._components.shape[0], -1, 3]) texture_model._components = c[:, map_tddfa_to_basel()][:, fw_to_fw_cropped()].reshape([texture_model._components.shape[0], -1]) texture_model._mean = texture_model._mean.reshape([-1, 3])[map_tddfa_to_basel()][fw_to_fw_cropped()].ravel() return texture_model # Remap basel landmarks to fw landmarks by expressing as fw indices def fw_index_for_lms(): basel_model, landmarks = load_basel_shape() basel_mean = basel_model.mean() basel_index = np.argmin(basel_mean.distance_to(landmarks), axis=0) m = np.ones(basel_mean.n_points) * -1 m[basel_index] = np.arange(68) poses = np.where((m[map_tddfa_to_basel()] >= 0))[0] new_ids = m[map_tddfa_to_basel()][poses] return poses[np.argsort(new_ids)] def load_basel_shape(): shape_model = mio.import_pickle('/vol/atlas/databases/lsfm/shape_PCAModel.pkl', encoding='latin1') landmarks = m3io.import_landmark_file('./template.ljson').lms return shape_model, landmarks def load_basel_texture(): return mio.import_pickle('./texture_PCAModel.pkl', encoding='latin1') def load_basel_shape_fw(): shape_model, landmarks = load_basel_shape() return map_basel_shape_model_to_fw(shape_model), landmarks def load_basel_shape_fwc(): shape_model, landmarks = load_basel_shape() return map_basel_shape_model_to_fwc(shape_model), landmarks def load_basel_texture_fw(): return map_basel_texture_model_to_fw(load_basel_texture()) def load_basel_texture_fwc(): return map_basel_texture_model_to_fwc(load_basel_texture()) def load_lsfm_shape_fwc(): tr = mio.import_pickle('/vol/atlas/databases/lsfm/corrective_translation.pkl') shape_model = mio.import_pickle('/vol/atlas/databases/lsfm/lsfm_shape_model_fw_cropped.pkl') landmarks = tr.apply(m3io.import_landmark_file('template.ljson').lms) return shape_model, landmarks def load_lsfm_texture_fwc(): return mio.import_pickle('/vol/atlas/databases/lsfm/colour_pca_model_fw_cropped.pkl') def load_lsfm_combined_fw(): shape_model = mio.import_pickle('/vol/atlas/databases/lsfm/combined_model.pkl') landmarks = m3io.import_landmark_file('template.ljson').lms.from_vector(shape_model.mean().points[fw_index_for_lms()]) return shape_model, landmarks def load_basel_combined_fw(): shape_model = mio.import_pickle('/vol/atlas/databases/lsfm/basel_combined_model_fw.pkl') landmarks = m3io.import_landmark_file('template.ljson').lms.from_vector(shape_model.mean().points[fw_index_for_lms()]) return shape_model, landmarks def load_itwmm_texture_rgb_fwc(): return mio.import_pickle('/vol/atlas/databases/itwmm/itwmm_texture/per_vertex_fw_cropped/rgb/rgb_per_vertex_fw_cropped_texture_model.pkl') def load_itwmm_texture_fast_dsift_fwc(): return mio.import_pickle('/vol/atlas/databases/itwmm/itwmm_texture/per_vertex_fw_cropped/fast_dsift/pca_model.pkl') def load_itwmm_texture_fast_dsift_fw(): return mio.import_pickle('/vol/atlas/databases/itwmm/itwmm_texture/per_vertex_fw/fast_dsift.pkl') def load_itwmm_texture_rgb_fw(): return mio.import_pickle('/vol/atlas/databases/itwmm/itwmm_texture/per_vertex_fw/rgb.pkl') def load_itwmm_texture_no_mask_fast_dsift_fw(): return mio.import_pickle('/vol/atlas/databases/itwmm/itwmm_texture/per_vertex_fw_no_mask/fast_dsift.pkl') def load_itwmm_texture_no_mask_rgb_fw(): return mio.import_pickle('/vol/atlas/databases/itwmm/itwmm_texture/per_vertex_fw_no_mask/rgb.pkl') def load_fw_mean_id_expression_fw(): shape_model = mio.import_pickle('/vol/atlas/databases/lsfm/expression_model_id_mean.pkl') landmarks = m3io.import_landmark_file('template.ljson').lms.from_vector(shape_model.mean().points[fw_index_for_lms()]) return shape_model, landmarks def load_fw_expression_fwc(): expression_model = mio.import_pickle('./identity_texture_emotion.pkl')['expression'] expression_model._components /= 100000 expression_model._mean /= 100000 tr = mio.import_pickle('/vol/atlas/databases/lsfm/corrective_translation.pkl') expression_model._components = tr.apply(expression_model._components.reshape(29, -1, 3)).reshape(29, -1) expression_model._mean = tr.apply(expression_model._mean.reshape(-1, 3)).reshape(-1) expression_model.n_active_components = 5 return expression_model
import pandas as pd submission = pd.read_csv( "/data/zhaoxinying/code/rsna-miccai-2021/user_data/preds/submission.csv", index_col="BraTS21ID") ids = [1, 13] print(ids) y_pred = [0.8, 0.6] preddf = pd.DataFrame({"BraTS21ID": ids, "MGMT_value": y_pred}) preddf = preddf.set_index("BraTS21ID") submission["MGMT_value"] = 0 submission["MGMT_value"] += preddf["MGMT_value"] # print(submission["MGMT_value"]) print(submission["MGMT_value"]) submission["MGMT_value"].to_csv("/data/zhaoxinying/code/rsna-miccai-2021/user_data/preds/efficientnet3d_b0_lr0.0003_aug256_2/submission_test.csv")
""" Conjuntos - Referência a teoría dos conjuntos em Matématica #Forma 1 s = set({1, 2, 3, 4, 5, 5, 6, 7, 2, 3}) print(s) print(type(s)) #Forma 2 s = set({1, 2, 3, 4, 5, 5}) print(s) print(type(s)) s1 = {1, 'b', True, 34.22, 44} print(s1) print(type(s1)) #Usos interessantes com sets #Adicionar Elementos em conjuntos s = {1, 2, 3} print(s) s.add(4) print(s) #Remover Elementos em conjuntos s = {1, 2, 3} #Forma 1 print(s) s.remove(1) print(s) #Forma 2 print(s) s.discard(3) print(s) #Copiando um Conjunto para outro s = {1, 2, 4, 5} print(s) #Forma 1 Deep Copy novo = s.copy() print(novo) novo.add(3) print(novo) #Forma 2 Shalow Copy novo = s print(novo) novo.add(3) print(novo) print(s) s.clear() print(s) # Unir Conjuntos a = {1, 2, 3, 4} b = {3, 5, 6, 7, 8} #Forma1 - Union print(a) print(b) c = a.union(b) print(c) c.add(11) #Forma 2 Pipe | d = a | b | c print(d) #Elementos que estão em ambos conjuntos #Forma 1 - Intersecion e = {1, 2, 3, 4} f = {3, 5, 6, 7, 8} g = e.intersection(f) print(g) #Forma 2 - Usando & h = e & f print(h) #Conjuntos de elementos distintos i = {1, 2, 3, 4} j = {3, 5, 6, 7, 8} k = i.difference(j) l = j.difference(i) print(k) print(l) """ #Soma, Max, Min e Len m = {3, 5, 6, 7, 8} print(sum(m)) print(max(m)) print(min(m)) print(len(m))
from adv_prodcon import Producer, Consumer import time class MyProducer(Producer): def __init__(self, *args, **kwargs): tag = kwargs.pop("tag") Producer.__init__(self, *args, **kwargs) self.work_kwargs = {"tag": tag} @staticmethod def work(on_start_result, state, message_pipe, *args, **kwargs): return f'Message from {kwargs["tag"]}' class MyConsumer(Consumer): @staticmethod def work(items, on_start_result, state, message_pipe, *args): for item in items: print(item) if __name__ == "__main__": producer1 = MyProducer(tag="Mary", work_timeout=1) producer2 = MyProducer(tag="James", work_timeout=1) consumer = MyConsumer() producer1.set_subscribers([consumer.get_work_queue()]) producer2.set_subscribers([consumer.get_work_queue()]) producer1.start_new() producer2.start_new() consumer.start_new() time.sleep(5)
# Copyright (c) 2020 DDN. All rights reserved. # Use of this source code is governed by a MIT-style # license that can be found in the LICENSE file. import settings import glob import json import os from django.db import connection from django.core.management.commands.runserver import Command as BaseCommand class Command(BaseCommand): """ Prints out selected settings in env variable format """ help = """Prints out selected settings in env variable format""" def handle(self, *args, **kwargs): cursor = connection.cursor() cursor.execute("SELECT * from api_key()") (API_USER, API_KEY) = cursor.fetchone() cursor.close() DB = settings.DATABASES.get("default") config = { "WARP_DRIVE_PORT": settings.WARP_DRIVE_PORT, "MAILBOX_PORT": settings.MAILBOX_PORT, "REPORT_PORT": settings.REPORT_PORT, "DEVICE_AGGREGATOR_PORT": settings.DEVICE_AGGREGATOR_PORT, "HTTP_FRONTEND_PORT": settings.HTTP_FRONTEND_PORT, "HTTPS_FRONTEND_PORT": settings.HTTPS_FRONTEND_PORT, "HTTP_AGENT_PROXY_PASS": settings.HTTP_AGENT_PROXY_PASS, "HTTP_AGENT2_PORT": settings.HTTP_AGENT2_PORT, "HTTP_AGENT2_PROXY_PASS": settings.HTTP_AGENT2_PROXY_PASS, "HTTP_API_PROXY_PASS": settings.HTTP_API_PROXY_PASS, "IML_API_PORT": settings.IML_API_PORT, "IML_API_PROXY_PASS": settings.IML_API_PROXY_PASS, "WARP_DRIVE_PROXY_PASS": settings.WARP_DRIVE_PROXY_PASS, "MAILBOX_PROXY_PASS": settings.MAILBOX_PROXY_PASS, "REPORT_PROXY_PASS": settings.REPORT_PROXY_PASS, "SSL_PATH": settings.SSL_PATH, "DEVICE_AGGREGATOR_PROXY_PASS": settings.DEVICE_AGGREGATOR_PROXY_PASS, "UPDATE_HANDLER_PROXY_PASS": settings.UPDATE_HANDLER_PROXY_PASS, "GRAFANA_PORT": settings.GRAFANA_PORT, "GRAFANA_PROXY_PASS": settings.GRAFANA_PROXY_PASS, "INFLUXDB_SERVER_FQDN": settings.INFLUXDB_SERVER_FQDN, "INFLUXDB_PROXY_PASS": settings.INFLUXDB_PROXY_PASS, "TIMER_PORT": settings.TIMER_PORT, "TIMER_SERVER_FQDN": settings.TIMER_SERVER_FQDN, "TIMER_PROXY_PASS": settings.TIMER_PROXY_PASS, "ALLOW_ANONYMOUS_READ": json.dumps(settings.ALLOW_ANONYMOUS_READ), "BUILD": settings.BUILD, "IS_RELEASE": json.dumps(settings.IS_RELEASE), "LOG_PATH": settings.LOG_PATH, "SERVER_HTTP_URL": settings.SERVER_HTTP_URL, "SITE_ROOT": settings.SITE_ROOT, "VERSION": settings.VERSION, "API_USER": API_USER, "API_KEY": API_KEY, "REPORT_PATH": settings.REPORT_PATH, "PROXY_HOST": settings.PROXY_HOST, "INFLUXDB_IML_DB": settings.INFLUXDB_IML_DB, "INFLUXDB_STRATAGEM_SCAN_DB": settings.INFLUXDB_STRATAGEM_SCAN_DB, "INFLUXDB_IML_STATS_DB": settings.INFLUXDB_IML_STATS_DB, "INFLUXDB_IML_STATS_LONG_DURATION": settings.INFLUXDB_IML_STATS_LONG_DURATION, "INFLUXDB_PORT": settings.INFLUXDB_PORT, "DB_HOST": DB.get("HOST"), "DB_NAME": DB.get("NAME"), "DB_USER": DB.get("USER"), "DB_PASSWORD": DB.get("PASSWORD"), "REPO_PATH": settings.REPO_PATH, "AMQP_BROKER_USER": settings.AMQP_BROKER_USER, "AMQP_BROKER_PASSWORD": settings.AMQP_BROKER_PASSWORD, "AMQP_BROKER_VHOST": settings.AMQP_BROKER_VHOST, "AMQP_BROKER_HOST": settings.AMQP_BROKER_HOST, "AMQP_BROKER_PORT": settings.AMQP_BROKER_PORT, "AMQP_BROKER_URL": settings.BROKER_URL, "BRANDING": settings.BRANDING, "USE_STRATAGEM": settings.USE_STRATAGEM, "DBLOG_HW": settings.DBLOG_HW, "DBLOG_LW": settings.DBLOG_LW, } if settings.EXA_VERSION: config["EXA_VERSION"] = settings.EXA_VERSION xs = map(lambda x: "{0}={1}".format(x[0], x[1]), config.items()) print("\n".join(xs))
import os import multiprocessing import numpy as np class ActiveLearningExperiment: def __init__(self, query_method, instance, gpu_index, dataset_name, model, train_func, num_init, num_add_per_iter, num_iter, x_train, y_train, x_test, y_test): """ constructor :param query_method: Query method, child of Query class :param instance: Instance of ALexp for this configuration (we may need to run multiple) :param gpu_index: index of gpu to run the experiment on :param dataset_name: for logging purposes :param model: function to build a keras model (input_shape, num_classes) :param train_func: Training function (see example) :param num_init: number of initial labels :param num_add_per_iter: number of labels to add in each iteration :param num_iter: number of iterations """ os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_index) # https://stackoverflow.com/questions/26239695/parallel-execution-of-class-methods # If we would like to execute this class in parallel, we need to use # a process queue so that methods can pass data back up self.manager = multiprocessing.Manager() self.query_func = query_method self.query_name = self.query_func.__name__ # build model self.model = model(x_train[0].shape, len(y_train[0])) self.train_func = train_func self.num_add_per_iter = num_add_per_iter self.num_iter = num_iter self.labeled_idx = np.random.choice(x_train.shape[0], num_init, replace=False) self.x_train = x_train self.y_train = y_train self.x_test = x_test self.y_test = y_test self.test_acc_hist = self.manager.list() self.labeled_idx_hist = self.manager.list() self.log_dir = 'logs/{0}_{1}_{2}_{3}_{4}.txt'.format(self.query_name, instance, num_init, num_add_per_iter, dataset_name) def _al_iter(self): """ One step of active learning. 1. train model 2. log test acc and history of labeled indices 3. add new labels to labeled set """ # 1. Train using the given keras Model object test_acc, trained_model = self.train_func(self.model, self.x_train[self.labeled_idx], self.y_train[self.labeled_idx], self.x_test, self.y_test) # 2. Log self.test_acc_hist.append(test_acc) self.labeled_idx_hist.append(self.labeled_idx) with open(self.log_dir, 'w') as f: f.write(str(self.test_acc_hist).strip('[]')) f.write('\n') for _iter in range(len(self.labeled_idx_hist)): f.write(str(self.labeled_idx_hist[_iter]).strip('[]')) # 3. Query using the new model we just learned query_obj = self.query_func(trained_model, self.x_train.shape[0], self.y_train.shape[0], 1) self.labeled_idx = query_obj.query(self.x_train, self.y_train, self.labeled_idx, self.num_add_per_iter) def begin_al_loop(self, ): for _iter in range(self.num_iter): self._al_iter()
import itertools import os import pytest import shapely.geometry from sentinelhub import ( CRS, BBox, BBoxSplitter, CustomGridSplitter, DataCollection, OsmSplitter, TileSplitter, UtmGridSplitter, UtmZoneSplitter, read_data, ) from sentinelhub.testing_utils import get_input_folder geojson = read_data(os.path.join(get_input_folder(__file__), "cies_islands.json")) AREA = shapely.geometry.shape(geojson) BBOX_GRID = [ BBox((x / 10, y / 100, (x + 1) / 10, (y + 1) / 100), CRS.WGS84) for x, y in itertools.product(range(-90, -87), range(4200, 4250)) ] @pytest.mark.parametrize( "constructor, args, kwargs, bbox_len", [ [BBoxSplitter, ([AREA], CRS.WGS84, 5), dict(reduce_bbox_sizes=True), 19], [OsmSplitter, ([AREA], CRS.WGS84, 15), dict(reduce_bbox_sizes=True), 24], [ CustomGridSplitter, ([AREA], CRS.WGS84, BBOX_GRID), dict(bbox_split_shape=(3, 4), reduce_bbox_sizes=False), 41, ], [UtmGridSplitter, ([AREA], CRS.WGS84), dict(bbox_size=(1200, 1200)), 16], [UtmZoneSplitter, ([AREA], CRS.WGS84), dict(bbox_size=(1000, 1000)), 19], [UtmZoneSplitter, ([AREA], CRS.WGS84), dict(bbox_size=(1000, 1000), offset=(500, 500)), 21], pytest.param( TileSplitter, ([AREA], CRS.WGS84, ("2017-10-01", "2018-03-01")), dict(tile_split_shape=40, data_collection=DataCollection.SENTINEL2_L1C, reduce_bbox_sizes=True), 13, marks=pytest.mark.sh_integration, ), pytest.param( TileSplitter, ([AREA], CRS.WGS84, ("2020-10-01", "2020-10-05")), dict(tile_split_shape=10, data_collection=DataCollection.LANDSAT_OT_L2, reduce_bbox_sizes=True), 3, marks=pytest.mark.sh_integration, ), ], ) def test_return_type(constructor, args, kwargs, bbox_len): splitter = constructor(*args, **kwargs) return_lists = [ (splitter.get_bbox_list(buffer=0.2), BBox), (splitter.get_info_list(), dict), (splitter.get_geometry_list(), (shapely.geometry.Polygon, shapely.geometry.MultiPolygon)), ] for return_list, item_type in return_lists: assert isinstance(return_list, list) assert len(return_list) == bbox_len for return_item in return_list: assert isinstance(return_item, item_type)
import mne import numpy as np ''' https://realpython.com/pypi-publish-python-package/#publishing-to-pypi https://towardsdatascience.com/how-to-publish-a-python-package-to-pypi-7be9dd5d6dcd ''' class sim_data: def __init__ (self): b = 1 def gen_epochs (self, nchannels=None, labels=None, sfreq=None, ntimes=None, n_epcohs=None): # Generate data if (nchannels is None) & (labels is None): labels_ch = ['FP1', 'FP2', 'F3', 'F4', 'F7', 'F8', 'C3', 'C4', 'T3', 'T4', 'O1', 'O2'] N_channels = len ( labels_ch ) elif (labels is None) & (nchannels is not None): if not isinstance ( nchannels, int ): raise ('Please provide type int') N_channels = nchannels nrange_ch = range ( 0, nchannels ) labels_ch = [f'EEG_{idx}' for idx in nrange_ch] elif (nchannels is None) & (labels is not None): if not isinstance ( labels, list ): raise ('Please provide type list: ["EEG_1","EEG_2"]') labels_ch = labels N_channels = len ( labels ) N_epochs = 5 if n_epcohs is None else n_epcohs N_times = 1000 if ntimes is None else ntimes # Set sampling freq Sfreqs = 250 if sfreq is None else sfreq # A reasonable random choice np.random.seed ( 42 ) data = np.random.rand ( N_epochs, N_channels, N_times ) # 10Hz sinus waves with random phase differences in each channel and epoch # Generate 10Hz sinus waves to show difference between connectivity # over time and over trials. Here we expect con over time = 1 for i in range ( N_epochs ): for c in range ( N_channels ): wave_freq = 10 epoch_len = N_times / Sfreqs # Introduce random phase for each channel phase = np.random.rand ( 1 ) * 10 # Generate sinus wave x = np.linspace ( -wave_freq * epoch_len * np.pi + phase, wave_freq * epoch_len * np.pi + phase, N_times ) data [i, c] = np.squeeze ( np.sin ( x ) ) info = mne.create_info ( ch_names=labels_ch, ch_types=['eeg'] * len ( labels_ch ), sfreq=Sfreqs ) epochs = mne.EpochsArray ( data, info ) return epochs # sg = simeeg () # ep = sg.gen_epochs ( labels=['A','B','C'] )
import torch.nn.functional as F import torch.nn as nn import torch import torch.optim as optim import numpy as np import math from torch.nn import init class NoisyLinear(nn.Module): """Factorised Gaussian NoisyNet""" def __init__(self, in_features, out_features, sigma0=0.5): super().__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.Tensor(out_features, in_features)) self.bias = nn.Parameter(torch.Tensor(out_features)) self.noisy_weight = nn.Parameter(torch.Tensor(out_features, in_features)) self.noisy_bias = nn.Parameter(torch.Tensor(out_features)) self.noise_std = sigma0 / math.sqrt(self.in_features) self.reset_parameters() self.register_noise() def register_noise(self): in_noise = torch.FloatTensor(self.in_features) out_noise = torch.FloatTensor(self.out_features) noise = torch.FloatTensor(self.out_features, self.in_features) self.register_buffer('in_noise', in_noise) self.register_buffer('out_noise', out_noise) self.register_buffer('noise', noise) def sample_noise(self): self.in_noise.normal_(0, self.noise_std) self.out_noise.normal_(0, self.noise_std) self.noise = torch.mm(self.out_noise.view(-1, 1), self.in_noise.view(1, -1)) def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) self.noisy_weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) self.noisy_bias.data.uniform_(-stdv, stdv) def forward(self, x): """ Note: noise will be updated if x is not volatile """ normal_y = nn.functional.linear(x, self.weight, self.bias) if self.training: # update the noise once per update self.sample_noise() noisy_weight = self.noisy_weight * self.noise noisy_bias = self.noisy_bias * self.out_noise noisy_y = nn.functional.linear(x, noisy_weight, noisy_bias) return noisy_y + normal_y def __repr__(self): return self.__class__.__name__ + '(' \ + 'in_features=' + str(self.in_features) \ + ', out_features=' + str(self.out_features) + ')' class Flatten(nn.Module): def forward(self, input): return input.view(input.size(0), -1) class CnnActorCriticNetwork3(nn.Module): def __init__(self, input_size, output_size, use_noisy_net=False): super(CnnActorCriticNetwork3, self).__init__() if use_noisy_net: print('Use NoisyNet') linear = NoisyLinear else: linear = nn.Linear self.feature = nn.Sequential( nn.Conv2d(4, 32, kernel_size=8, stride=4), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(), Flatten(), linear(7 * 7 * 64, 256), nn.ReLU(), linear(256, 448), nn.ReLU() ) self.actor = nn.Sequential( linear(448, 448), nn.ReLU(), linear(448, output_size) ) self.extra_layer = nn.Sequential( linear(448, 448), nn.ReLU() ) self.critic_ext = linear(448, 1) self.critic_int = linear(448, 1) # Initialize weights for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): init.orthogonal_(m.weight, np.sqrt(2)) m.bias.data.zero_() init.orthogonal_(self.critic_ext.weight, 0.01) self.critic_ext.bias.data.zero_() init.orthogonal_(self.critic_int.weight, 0.01) self.critic_int.bias.data.zero_() for i in range(len(self.actor)): if type(self.actor[i]) == nn.Linear: init.orthogonal_(self.actor[i].weight, 0.01) self.actor[i].bias.data.zero_() for i in range(len(self.extra_layer)): if type(self.extra_layer[i]) == nn.Linear: init.orthogonal_(self.extra_layer[i].weight, 0.1) self.extra_layer[i].bias.data.zero_() def forward(self, state): x = self.feature(state) action_scores = self.actor(x) action_probs = F.softmax(action_scores, dim=1) value_ext = self.critic_ext(self.extra_layer(x) + x) value_int = self.critic_int(self.extra_layer(x) + x) return action_probs, value_ext, value_int class RNDModel3(nn.Module): def __init__(self, input_size, output_size): super(RNDModel3, self).__init__() self.input_size = input_size self.output_size = output_size feature_output = 7 * 7 * 64 self.predictor = nn.Sequential( nn.Conv2d(1, 32, kernel_size=8, stride=4), nn.LeakyReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.LeakyReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.LeakyReLU(), Flatten(), nn.Linear(feature_output, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 512) ) self.target = nn.Sequential( nn.Conv2d(1, 32, kernel_size=8, stride=4), nn.LeakyReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.LeakyReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.LeakyReLU(), Flatten(), nn.Linear(feature_output, 512) ) self.initial = nn.Sequential( nn.Conv2d(1, 32, kernel_size=8, stride=4), nn.LeakyReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.LeakyReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.LeakyReLU(), Flatten(), nn.Linear(feature_output, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 512) ) # Initialize weights for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): init.orthogonal_(m.weight, np.sqrt(2)) m.bias.data.zero_() torch.save(self.predictor.state_dict(), 'initial') self.initial.load_state_dict(torch.load('initial')) # Set target parameters as untrainable for param in self.target.parameters(): param.requires_grad = False for param in self.initial.parameters(): param.requires_grad = False def forward(self, next_obs): target_feature = self.target(next_obs) predict_feature = self.predictor(next_obs) initial_feature = self.initial(next_obs) return predict_feature, target_feature, initial_feature
from datetime import datetime, timedelta import requests from airflow import DAG from airflow.operators.python import PythonOperator from app.utils.terminal import print_to_console from app.models.dto.user_dto import UserDTO from app.models.dto.address_dto import AddressDTO from app.models.dto.company_dto import CompanyDTO from app.models.user import Users from app.models.address import Address from app.models.company import Company def fetch_users(): name: str = "fetch_users: executing" print_to_console(name) endpoint: str = "https://jsonplaceholder.typicode.com/users" response = requests.get(url=endpoint) data: list = response.json() _users: list = [] _address: list = [] _companies: list = [] for user in data: try: userObject: dict = { "name": user.get("name"), "username": user.get("username"), "email": user.get("email"), "phone": user.get("phone"), } new_user: UserDTO = Users.create(user=userObject) _users.append(new_user) address: dict = user.get("address") addressObject: dict = { "user_id": new_user.id, "street": address.get("street"), "suite": address.get("suite"), "city": address.get("city"), "zipcode": address.get("zipcode"), } new_address: AddressDTO = Address.create(address=addressObject) _address.append(new_address) company: dict = user.get("company") companyObject: dict = { "user_id": new_user.id, "name": company.get("name"), "catchPhrase": company.get("catchPhrase"), "bs": company.get("bs"), } new_company: CompanyDTO = Company.create(company=companyObject) _companies.append(new_company) except Exception: pass print_to_console("Done Fetching") print_to_console( f"No Users: {len(_users): 10} \nNo Addresses: {len(_address): 10} \nNo Companies: {len(_companies)}" ) default_args = { "owner": "airflow", "depends_on_past": False, "email": ["fedjioraymond@gmail.com"], "email_on_failure": ["fedjioraymond@gmail.com"], "email_on_retry": ["fedjioraymond@gmail.com"], } with DAG( "json_placeholder_server", default_args=default_args, description="A simple tutorial DAG", schedule_interval=None, start_date=datetime(2021, 12, 2), catchup=False, tags=["test"], ) as dag: fetch_users = PythonOperator( task_id="fetch_user_from_server", python_callable=fetch_users )
import hashlib import inspect import numpy as np from .generic import isinstance_str def hash_path(nodes): h = hashlib.md5() for node in nodes: to_str = [] if isinstance_str(node, 'InputNode'): to_str.append(node.output) else: if isinstance_str(node.layer, 'Lambda'): to_str.append(inspect.getsource(node.layer.transform_fn)) elif isinstance_str(node.layer, 'StatefulLayer'): to_str.append(inspect.getsource(node.layer.partial_fit)) to_str.append(inspect.getsource(node.layer.fit)) to_str.append(inspect.getsource(node.layer.transform)) to_str += list(node.kwargs.values()) for metadata in node.layer.metadata.values(): to_str.append(metadata) elif isinstance_str(node.layer, 'StatelessLayer'): to_str.append(inspect.getsource(node.layer.transform)) to_str += list(node.layer.kwargs.values()) for s in to_str: if isinstance_str(s, 'ndarray'): h.update(str(bytes(s)).encode()) else: h.update(str(s).encode()) return h.hexdigest()
import tensorflow as tf import numpy import logging logger = logging.getLogger() from mlqm import DEFAULT_TENSOR_TYPE from mlqm.hamiltonians import Hamiltonian class NuclearPotential(Hamiltonian): """Nuclear Physics Potential """ def __init__(self, **kwargs): ''' Arguments: mass {float} -- Nuclear mass, aka number of electrons ''' Hamiltonian.__init__(self, **kwargs) # Check the parameters have everything needed: for parameter in ["mass"]: if parameter not in self.parameters: raise KeyError(f"Parameter {parameter} not suppliled as keyword arg to HarmonicOscillator") if 'vkr' in self.parameters: if self.parameters['vkr'] not in [2, 4, 6]: raise KeyError(f"Parameter vkr set to {self.parameters['vkr']} but must be 2, 4 or 6") self.vkr = tf.constant(self.parameters['vkr'], dtype = DEFAULT_TENSOR_TYPE) else: logger.info("Setting vkr to 4 in the nuclear potential by default.") self.vkr = tf.constant(4, dtype = DEFAULT_TENSOR_TYPE) if self.vkr == 2.0: self.v0r = tf.constant(-133.3431, dtype=DEFAULT_TENSOR_TYPE) self.v0s = tf.constant(-9.0212, dtype = DEFAULT_TENSOR_TYPE) self.ar3b = tf.constant(8.2757658256, dtype = DEFAULT_TENSOR_TYPE) logger.info(f"Using vkr = {self.vkr}") elif self.vkr == 4.0: self.v0r = tf.constant(-487.6128, dtype=DEFAULT_TENSOR_TYPE) self.v0s = tf.constant(-17.5515, dtype = DEFAULT_TENSOR_TYPE) self.ar3b = tf.constant(26.0345712467, dtype = DEFAULT_TENSOR_TYPE) logger.info(f"Using vkr = {self.vkr}") elif self.vkr == 6.0: self.v0r = tf.constant(-1064.5010, dtype=DEFAULT_TENSOR_TYPE) self.v0s = tf.constant(-26.0830, dtype = DEFAULT_TENSOR_TYPE) self.ar3b = tf.constant(51.5038930567, dtype = DEFAULT_TENSOR_TYPE) logger.info(f"Using vkr = {self.vkr}") self.HBAR = tf.constant(197.327, dtype = DEFAULT_TENSOR_TYPE) @tf.function(experimental_compile=False) def pionless_2b(self, *, r_ij): x = self.vkr * r_ij vr = tf.exp(-x**2/4.0) return self.v0r*vr, self.v0s*vr @tf.function(experimental_compile=False) def pionless_3b(self, *, r_ij, nwalkers): # pot_3b = tf.zeros(shape=(nwalkers), dtype=DEFAULT_TENSOR_TYPE) x = self.vkr * r_ij vr = tf.exp(-x**2/4.0) pot_3b = vr * self.ar3b return pot_3b @tf.function(experimental_compile=False) def potential_energy(self, *, inputs): """Return potential energy Calculate and return the PE. Arguments: inputs {tf.Tensor} -- Tensor of shape [N, dimension], must have graph enabled Returns: tf.Tensor - potential energy of shape [1] """ # Potential calculation # Prepare buffers for the output: # (Walker shape is (self.nwalkers, self.nparticles, self.n) ) nwalkers = inputs.shape[0] nparticles = inputs.shape[1] if nparticles == 2: alpha = 1.0 elif nparticles > 2: alpha = -1.0 # print("Alpha: ", alpha) # gr3b = tf.Variable(tf.zeros(shape=[nwalkers,nparticles], dtype=DEFAULT_TENSOR_TYPE)) gr3b = [tf.zeros(shape=[nwalkers], dtype=DEFAULT_TENSOR_TYPE) for p in range(nparticles)] V_ijk = tf.zeros(shape=[nwalkers], dtype=DEFAULT_TENSOR_TYPE) # three body potential terms v_ij = tf.zeros(shape=[nwalkers], dtype=DEFAULT_TENSOR_TYPE) # 2 body potential terms: for i in range (nparticles-1): for j in range (i+1,nparticles): # x_ij = inputs[:,i,:]-inputs[:,j,:] r_ij = tf.sqrt(tf.reduce_sum(x_ij**2,axis=1)) vrr, vrs = self.pionless_2b(r_ij=r_ij) # v_ij += self.pionless_2b(r_ij=r_ij, nwalkers=nwalkers) v_ij += vrr + alpha * vrs if (nparticles > 2 ): t_ij = self.pionless_3b(r_ij=r_ij, nwalkers=nwalkers) gr3b[i] += t_ij gr3b[j] += t_ij # gr3b[i] = gr3b[:,i].assign(gr3b[:,i] + t_ij) # gr3b = gr3b[:,j].assign(gr3b[:,j] + t_ij) V_ijk -= t_ij**2 # stack up gr3b: gr3b = tf.stack(gr3b, axis=1) V_ijk += 0.5 * tf.reduce_sum(gr3b**2, axis = 1) pe = v_ij + V_ijk return pe # @tf.function() @tf.function(experimental_compile=False) def compute_energies(self, inputs, logw_of_x, dlogw_dx, d2logw_dx2): '''Compute PE, KE_JF, and KE_direct Harmonic Oscillator Energy Calculations Arguments: inputs {[type]} -- walker coordinates (shape is [nwalkers, nparticles, dimension]) logw_of_x {[type]} -- computed wave function at each walker dlogw_dx {[type]} -- first derivative of wavefunction at each walker d2logw_dx2 {[type]} -- second derivative of wavefunction at each walker Raises: NotImplementedError -- [description] Returns: pe -- potential energy ke_jf -- JF Kinetic energy ke_direct -- 2nd deriv computation of potential energy ''' # Potential energy depends only on the wavefunction pe = self.potential_energy(inputs=inputs) # KE by parts needs only one derivative ke_jf = self.kinetic_energy_jf(dlogw_dx=dlogw_dx, M=self.parameters["mass"]) # True, directly, uses the second derivative ke_direct = self.kinetic_energy(KE_JF = ke_jf, d2logw_dx2 = d2logw_dx2, M=self.parameters["mass"]) return pe, ke_jf, ke_direct
""" datalite.constraints module introduces constraint types that can be used to hint field variables, that can be used to signal datalite decorator constraints in the database. """ from typing import TypeVar, Union, Tuple T = TypeVar('T') class ConstraintFailedError(Exception): """ This exception is raised when a Constraint fails. """ pass """ Dataclass fields hinted with this type signals datalite that the bound column of this field in the table is NOT NULL and UNIQUE. """ Unique = Union[Tuple[T], T]
import argparse from collections import Counter, defaultdict import json import random import re import time import numpy as np from pystalk import BeanstalkClient from bucket_extraction import getBucketsFromText import bucket_generation.utils as generation_utils def generateNGrams(candidates): ngrams = defaultdict(lambda: Counter()) lengthDistribution = Counter() delimiterDistribution = Counter() for bucket in candidates: splitBucket = re.split(r'([\.|\-|_])', bucket.lower().strip()) delimiterDistribution.update( [ d for d in splitBucket if d in [".", "-", "_"] ] ) tokens = [t for t in splitBucket if t not in [".", "-", "_"]] for i in range(len(list(tokens))): ngrams[ tuple(tokens[max(0, i-1): i]) ][tokens[i]] += 1 lengthDistribution[len(tokens)] += 1 return ngrams, lengthDistribution, delimiterDistribution def sampleFromCounter(counter): total = sum(counter.values()) return np.random.choice([k for k,v in counter.items()], p=[v/total for k,v in counter.items()]) def streamNGramCandidates( startingCandidates=None, beanstalkPort=None, numTrials=float("inf"), name="ngrams", experiment=False, public=False, ): candidates = startingCandidates or generation_utils.getExistingBuckets(public=public) previouslySeen = startingCandidates | generation_utils.readBucketsFromFile(f"./data/generation/{name}.txt") beanstalkClient = generation_utils.getBeanstalkClient(port=beanstalkPort) while numTrials > 0: # Update our prior distribution for every 10,000 candidates. print("Initializing bigram distribution.") with generation_utils.Profiler(generation_utils.ProfilerType.TRAIN, name): if experiment: # add all existing buckets that have been guessed by ngrams and are in seed set. candidates |= generation_utils.getExistingAlreadyGuessedBuckets(name, public=public) nGrams, lengthDistribution, delimiterDistribution = generateNGrams(candidates) for _ in range(int(1e4)): with generation_utils.Profiler(generation_utils.ProfilerType.GENERATE, name) as p: bucket = [] bucketLength = sampleFromCounter(lengthDistribution) for _ in range(bucketLength): if len(bucket) > 0: bucket += [sampleFromCounter(delimiterDistribution)] ngramsKey = tuple(bucket[-2:-1]) if ngramsKey in nGrams: bucket += sampleFromCounter(nGrams[ngramsKey]) bucket = "".join(bucket) p.bucket(bucket) if len(bucket) < 64 and bucket not in previouslySeen: previouslySeen.add(bucket) beanstalkClient.put_job("generation/{},{}".format(name, bucket)) print("Generated: " + bucket) numTrials -= 1 if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run the ngrams generator.') generation_utils.addArguments(parser) args = parser.parse_args() candidates = generation_utils.getStartBucketNames(args) streamNGramCandidates(name=args.name, startingCandidates=candidates, public=args.public, numTrials=int(args.num_trials) or float("inf"))
# # All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or # its licensors. # # For complete copyright and license terms please see the LICENSE at the root of this # distribution (the "License"). All use of this software is governed by the License, # or, if provided, by the license below or the license accompanying this file. Do not # remove or modify any license notices. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # Original file Copyright Crytek GMBH or its affiliates, used under license. # from waflib.Configure import conf import lumberyard PLATFORM = 'linux_x64' # Required load_<PLATFORM>_common_settings(ctx) @conf def load_linux_x64_common_settings(ctx): env = ctx.env platform_settings = ctx.get_platform_settings(PLATFORM) default_bin_search_paths = ['/usr/bin'] cc_compiler = platform_settings.attributes.get('cc_compiler', 'clang') cxx_compiler = platform_settings.attributes.get('cxx_compiler', 'clang++') compiler_bin_search_paths = platform_settings.attributes.get('compiler_search_paths', default_bin_search_paths) error_message_fmt = "Unable to detect '%s' in search paths: %s. Make sure it is installed on this system" ctx.find_program('ar', path_list=default_bin_search_paths, var='AR', errmsg=error_message_fmt % ('ar', ','.join(default_bin_search_paths)), silent_output=False) ctx.find_program(cc_compiler, path_list=compiler_bin_search_paths, var='CC', errmsg=error_message_fmt % (cc_compiler, ','.join(compiler_bin_search_paths)), silent_output=False) ctx.find_program(cxx_compiler, path_list=compiler_bin_search_paths, var='CXX', errmsg=error_message_fmt % (cxx_compiler, ','.join(compiler_bin_search_paths)), silent_output=False) env['LINK'] = env['LINK_CC'] = env['LINK_CXX'] = env['CXX'] # Pattern to transform outputs env['cprogram_PATTERN'] = '%s' env['cxxprogram_PATTERN'] = '%s' env['cshlib_PATTERN'] = 'lib%s.so' env['cxxshlib_PATTERN'] = 'lib%s.so' env['cstlib_PATTERN'] = 'lib%s.a' env['cxxstlib_PATTERN'] = 'lib%s.a' # ASAN and ASLR # once we can use clang 4, add , '-fsanitize-address-use-after-scope' # disabled until the linker requirements are worked out on linux env['LINKFLAGS_ASLR'] = [] #['-fsanitize=memory'] env['ASAN_cflags'] = [] # ['-fsanitize=address'] env['ASAN_cxxflags'] = [] # ['-fsanitize=address'] ctx.load_cryengine_common_settings() ctx.load_clang_common_settings() # Required load_<PLATFORM>_configuration_settings(ctx, platform_configuration) @conf def load_linux_x64_configuration_settings(ctx, platform_configuration): # No special configuration-specific setup needed pass # Optional is_<PLATFORM>_available(ctx) @conf def is_linux_x64_available(ctx): return True @lumberyard.multi_conf def generate_ib_profile_tool_elements(ctx): linux_tool_elements = [ '<Tool Filename="x86_64-linux-gnu-gcc" AllowRemote="true" AllowIntercept="false" DeriveCaptionFrom="lastparam" AllowRestartOnLocal="false"/>', '<Tool Filename="x86_64-linux-gnu-g++" AllowRemote="true" AllowIntercept="false" DeriveCaptionFrom="lastparam" AllowRestartOnLocal="false"/>' ] return linux_tool_elements
entero=5 #Numero entero lon=5L #Numero LONG real=0.567 #Numero Real real=0.56e-3 #Numero Real x 10 a la -3 print real a = 26 b = 11.3 c = 5 d = 3.5 #SUMA print a + b #RESTA print c - a #MULTIP print d * c #EXPONENTE print c ** 3 #DIVISION print c / a #DIVISION ENTERA print c / a #MODULO print 7%3
# Generated by Django 3.2.3 on 2021-08-12 17:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0008_customer_profile_picture'), ] operations = [ migrations.AlterField( model_name='customer', name='profile_picture', field=models.ImageField(blank=True, default='profile_null.jpg', null=True, upload_to=''), ), ]
""" Functional Test for curve class """ import bond_math as bmath import pandas as pd # Get expectations in_curve = pd.read_csv('test_curve_in.csv') exp_curve_H6 = pd.read_csv('test_curve_H6.csv') exp_H6 = pd.Series(exp_curve_H6['spot'].tolist(), index=exp_curve_H6['term'].tolist()) exp_fwd= pd.read_csv('test_fwd_exp.csv') # Calc Horizon Spot test_curve = bmath.curve(term_vector=in_curve['term'].tolist(), spot_vector=in_curve['spot'].tolist()) test_curve.add_discount_factors(compound_periods=2) calc_H6 = test_curve.calc_horizon_curve(horizon_month=6) df = pd.DataFrame([exp_H6,calc_H6]) df = df.T df.columns=['exp','calc'] df.head() # Calc Forward Rates df2 = pd.DataFrame() for term in exp_fwd.columns: if term == 'Horizon': continue df2[f'exp_{term}'] = exp_fwd[term] calc_fwd = test_curve.calc_forward_rates(forward_term=float(term), numb_of_horizons=24) df2[f'calc_{term}'] = calc_fwd df2.head()
import sys, logging, os, random, math, open_color, arcade #check to make sure we are running the right version of Python version = (3,7) assert sys.version_info >= version, "This script requires at least Python {0}.{1}".format(version[0],version[1]) #turn on logging, in case we have to leave ourselves debugging messages logging.basicConfig(format='[%(filename)s:%(lineno)d] %(message)s', level=logging.DEBUG) logger = logging.getLogger(__name__) SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 MARGIN = 30 SCREEN_TITLE = "Space Defender" STARTING_LOCATION = (400,100) #Bullet and Enemies Variables BULLET_DAMAGE = 10 SmallEnemies = 3 SmallEnemyHP = 30 MediumEnemies = 3 MediumEnemyHP = 60 LargeEnemies = 3 LargeEnemyHP = 100 #Score Variables HIT_SCORE = 10 KillScoreS = 50 KillScoreM = 100 KillScoreL = 150 class Bullet(arcade.Sprite): def __init__(self, position, velocity, damage): super().__init__("assets/laserBlue1.png", 0.5) (self.center_x, self.center_y) = position (self.dx, self.dy) = velocity self.damage = damage def update(self): self.center_x += self.dx self.center_y += self.dy class Player(arcade.Sprite): def __init__(self): super().__init__("assets/PlayerBlue.png", 0.5) (self.center_x, self.center_y) = STARTING_LOCATION #Small Enemy class EnemyS(arcade.Sprite): def __init__(self, position): super().__init__("assets/MeteorSmall1.png", 0.5) self.hp = SmallEnemyHP (self.center_x, self.center_y) = position #Medium Enemy class EnemyM(arcade.Sprite): def __init__(self, position): super().__init__("assets/MeteorMedium1.png", 0.5) self.hp = MediumEnemyHP (self.center_x, self.center_y) = position #Large Enemy class EnemyL(arcade.Sprite): def __init__(self, position): super().__init__("assets/MeteorLarge1.png", 0.5) self.hp = LargeEnemyHP (self.center_x, self.center_y) = position class Window(arcade.Window): def __init__(self, width, height, title): super().__init__(width, height, title) file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) self.set_mouse_visible(True) self.background= arcade.load_texture("assets/blue.png") #arcade.set_background_color(open_color.black) self.bullet_list = arcade.SpriteList() self.enemy_list_small = arcade.SpriteList() self.enemy_list_medium = arcade.SpriteList() self.enemy_list_large = arcade.SpriteList() self.player = Player() self.score = 0 #Enemy setup def setup(self): for i in range(SmallEnemies): xs = 175 ys = 300 * (i+1) - 20 enemyS = EnemyS((xs,ys)) self.enemy_list_small.append(enemyS) for i in range(MediumEnemies): xm = 375 ym = 300 * (i+1) - 20 enemyM = EnemyM((xm,ym)) self.enemy_list_medium.append(enemyM) for i in range(LargeEnemies): xl = 625 yl = 300 * (i+1) - 20 enemyL = EnemyL((xl,yl)) self.enemy_list_large.append(enemyL) def update(self, delta_time): self.bullet_list.update() #Small Kill and Score self.enemy_list_small.update() for e in self.enemy_list_small: hit = arcade.check_for_collision_with_list(e, self.bullet_list) for h in hit: e.hp = e.hp - h.damage self.score += HIT_SCORE h.kill() if e.hp <=0: e.kill() self.score += KillScoreS #Medium Kill and Score self.enemy_list_medium.update() for e in self.enemy_list_medium: hit = arcade.check_for_collision_with_list(e, self.bullet_list) for h in hit: e.hp = e.hp - h.damage self.score += HIT_SCORE h.kill() if e.hp <=0: e.kill() self.score += KillScoreM #Large Kill and Score self.enemy_list_large.update() for e in self.enemy_list_large: hit = arcade.check_for_collision_with_list(e, self.bullet_list) for h in hit: e.hp = e.hp - h.damage self.score += HIT_SCORE h.kill() if e.hp <=0: e.kill() self.score += KillScoreL def on_draw(self): arcade.start_render() arcade.draw_texture_rectangle(SCREEN_WIDTH // 2, SCREEN_HEIGHT // 2, SCREEN_WIDTH, SCREEN_HEIGHT, self.background) arcade.draw_text(str(self.score), 20, SCREEN_HEIGHT - 40, open_color.white, 16) self.player.draw() self.bullet_list.draw() self.enemy_list_large.draw() self.enemy_list_medium.draw() self.enemy_list_small.draw() def on_mouse_motion(self, x, y, dx, dy): self.player.center_x = x def on_mouse_press(self, x, y, button, modifiers): if button == arcade.MOUSE_BUTTON_LEFT: x = self.player.center_x y = self.player.center_y + 15 bullet = Bullet((x,y),(0,10),BULLET_DAMAGE) self.bullet_list.append(bullet) def on_mouse_release(self, x, y, button, modifiers): """ Called when a user releases a mouse button. """ pass def on_key_press(self, key, modifiers): if key == arcade.key.LEFT: print("Left") elif key == arcade.key.RIGHT: print("Right") elif key == arcade.key.UP: print("Up") elif key == arcade.key.DOWN: print("Down") def on_key_release(self, key, modifiers): """ Called whenever a user releases a key. """ pass def main(): window = Window(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) window.setup() arcade.run() if __name__ == "__main__": main()
import sys import argparse import colorama from rve import cmd def _create_sub_parsers(parser): cmds = [cmd.init, cmd.remove, cmd.run, cmd.status] cmds_names = [x.name for x in cmds] cmds_list = '[' + '|'.join(cmds_names) + ']' desc = 'call `rosh command -h` for help in each command listed below:\n' for c in cmds: desc += f'\n {c.name}\t\t{c.desc}' subparser = parser.add_subparsers( title='rosh command', metavar=cmds_list, description=desc, dest='cmd') for c in cmds: cmd_parser = subparser.add_parser(c.name,description=c.desc) cmd_parser = c.prepare_arguments(cmd_parser) cmd_parser.set_defaults(run=c.run) def main(): colorama.init(autoreset=True) parser = argparse.ArgumentParser(description='rosh command', formatter_class=argparse.RawDescriptionHelpFormatter) _create_sub_parsers(parser) args = parser.parse_args() if args.cmd is None: parser.print_help() sys.exit() sys.exit(args.run(args))
from ..typing import Number from .base import MarkdownSection __all__ = ["MarkdownCodeBlock"] class MarkdownCodeBlock(MarkdownSection): def append(self, line: str) -> None: self.lines.append(line) def reformatted(self, width: Number = 88) -> str: return "\n".join([line.rstrip() for line in self.lines])
from .robot import Robot from ..shared import ROBOT, DIRT, BABY, CORRAL, OBSTACLE, get_adjacents, count_dirt from .utils import closest_target, count_free_babies from ..logging import LoggerFactory as Logger log = None class Reagent(Robot): ''' Reagent agent. Simple reflex agent ''' def __init__(self, pos): global log log = Logger('Kindergarden').getChild('Reagent') super().__init__(pos) def action(self, house): x, y = self.pos if self.will_clean: self.garbage_collected += 1 self.will_clean = False house[x][y].update(ROBOT) house[x][y].dirty = False log.debug(f'Dirt cleaned in ({x}, {y})', 'action') elif DIRT in house[x][y].value and not self.carrying_baby: self.will_clean = True log.debug(f'I\'ll clean dirt on ({x}, {y}) in the next turn', 'action') elif not self.carrying_baby and BABY in house[x][y].value and not house[x][y].isFixed: self.carrying_baby = True house[x][y].update(f'{ROBOT}-{BABY}') log.debug(f'Loaded baby on ({x}, {y})') elif self.carrying_baby and CORRAL in house[x][y].value and not f'{CORRAL}-{BABY}' in house[x][y].value: self.carrying_baby = False house[x][y].update(f'{BABY}-{ROBOT}') log.debug(f'Dropped baby in corral at ({x}, {y})', 'action') else: adj = get_adjacents(house, self.pos) if len(adj) == 0: log.debug('No valid adyacents cells to robot', 'action') log.debug(f'I can\'t move!!! Waiting for an environment change', 'action') return if self.carrying_baby: self.try_move(house, CORRAL, [OBSTACLE, BABY]) elif count_free_babies(house) > 0: self.try_move(house, BABY) elif count_dirt(house) > 0: self.try_move(house, DIRT) else: log.debug('There is no dirt to clean or babies to carry!!! Waiting for an environment change', 'action') def move(self, house, pos, steps=1): if steps == 0 or pos == []: return cur_cell = house[self.pos[0]][self.pos[1]] x, y = pos.pop(0) if self.carrying_baby: value = f'{ROBOT}-{BABY}' else: value = ROBOT house[x][y].update(value, old=cur_cell) self.pos = (x, y) log.debug(f'Moved to ({x}, {y})', 'move') self.move(house, pos, steps - 1) def try_move(self, house, target, check=[OBSTACLE]): p = closest_target(house, self.pos, target, check) #log.debug(f'p: {p}', 'try_move') if p == []: log.debug(f'No path to closest target: {target}', 'try_move') log.debug(f'I can\'t move!!! Analyzing options... Meanwhile waiting for an environment change', 'try_move') return False if target == CORRAL: self.move(house, p, steps=2) else: self.move(house, p) return True def __str__(self): return 'Reagent'
import unittest import torch import torch.nn as nn from tinynn.prune.oneshot_pruner import OneShotChannelPruner from interval import Interval import torch.nn.functional as F def removed_idx_group_check(removed_idx, total_idx_len, removed_idx_len, group, offset=0): for i in range(group): remove_group_len = removed_idx_len // group for j in range(i * remove_group_len, i * remove_group_len + remove_group_len): idx_group_len = total_idx_len // group assert removed_idx[j] in Interval(offset + i * idx_group_len, offset + i * idx_group_len + idx_group_len, upper_closed=False) class ModifierTester(unittest.TestCase): def test_cat_graph(self): class TestModel(nn.Module): def __init__(self): super().__init__() self.conv0 = nn.Conv2d(3, 8, (3, 3)) self.conv1 = nn.Conv2d(3, 8, (3, 3)) self.conv2 = nn.Conv2d(16, 32, (3, 3)) self.linear = nn.Linear(800, 100) def forward(self, x): x0 = self.conv0(x) x1 = self.conv1(x) cat0 = torch.cat([x0, x1], dim=1) conv2 = self.conv2(cat0) view0 = conv2.view((1, -1)) linear0 = self.linear(view0) return linear0 model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.75, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9, 9)) assert model.conv1.out_channels == 2 assert model.conv0.out_channels == 2 assert model.conv2.in_channels == 4 assert model.conv2.out_channels == 8 assert model.linear.in_features == 200 assert model.linear.out_features == 100 def test_tail_linear_graph(self): class TestModel(nn.Module): def __init__(self): super().__init__() self.conv0 = nn.Conv2d(3, 16, (3, 3), padding=(1, 1)) self.linear = nn.Linear(16 * 9 * 9, 100) def forward(self, x): conv0 = self.conv0(x) view0 = conv0.view((1, -1)) linear0 = self.linear(view0) return linear0 model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.75, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9, 9)) assert model.conv0.out_channels == 4 assert model.linear.in_features == 324 assert model.linear.out_features == 100 def test_cat_add_graph(self): class TestModel(nn.Module): def __init__(self): super().__init__() self.conv0 = nn.Conv2d(3, 8, (3, 3), padding=(1, 1)) self.conv1 = nn.Conv2d(3, 8, (3, 3), padding=(1, 1)) self.conv2 = nn.Conv2d(3, 16, (3, 3), padding=(1, 1)) self.conv3 = nn.Conv2d(16, 32, (3, 3), padding=(1, 1)) def forward(self, x): x0 = self.conv0(x) x1 = self.conv1(x) x2 = self.conv2(x) cat0 = torch.cat([x0, x1], dim=1) add0 = torch.add(cat0, x2) return self.conv3(add0) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.75, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9, 9)) assert model.conv0.out_channels == 2 assert model.conv1.out_channels == 2 assert model.conv2.out_channels == 4 assert model.conv3.in_channels == 4 assert model.conv3.out_channels == 8 def test_flatten_graph(self): class TestFlattenModel(nn.Module): def __init__(self): super(TestFlattenModel, self).__init__() self.conv0 = nn.Conv2d(3, 16, (3, 3)) self.conv1 = nn.Conv2d(16, 32, (3, 3)) self.dropout = nn.Dropout() self.linear1 = nn.Linear(800, 100) self.linear2 = nn.Linear(100, 10) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(conv0) flatten0 = torch.flatten(conv1, 1) dropout0 = self.dropout(flatten0) linear1 = self.linear1(dropout0) linear2 = self.linear2(linear1) return linear2 model = TestFlattenModel() model(torch.ones(1, 3, 9, 9)) pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.75, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9, 9)) assert model.conv0.out_channels == 4 assert model.conv1.out_channels == 8 assert model.linear1.in_features == 200 assert model.linear1.out_features == 25 assert model.linear2.in_features == 25 assert model.linear2.out_features == 10 def test_loop_cat_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 16, (3, 3)) self.conv2 = nn.Conv2d(64, 128, (3, 3)) self.relu1 = torch.nn.modules.activation.ReLU(inplace=True) self.relu2 = torch.nn.modules.activation.ReLU(inplace=True) self.relu3 = torch.nn.modules.activation.ReLU(inplace=True) self.relu4 = torch.nn.modules.activation.ReLU(inplace=True) def forward(self, x): conv1 = self.conv1(x) relu1 = self.relu1(conv1) relu2 = self.relu2(conv1) relu3 = self.relu3(conv1) relu4 = self.relu4(conv1) z = torch.cat([relu1, relu2, relu3, relu4], dim=1) return self.conv2(z) model = TestModel() pruner = OneShotChannelPruner(model, torch.randn((1, 3, 9, 9)), {"sparsity": 0.25, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9, 9)) assert model.conv1.out_channels == 12 assert model.conv2.in_channels == 48 assert model.conv2.out_channels == 96 def test_group_cat_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 16, (3, 3)) self.conv2 = nn.Conv2d(3, 32, (3, 3)) self.conv3 = nn.Conv2d(48, 64, (3, 3), groups=4) def forward(self, x): conv1 = self.conv1(x) conv2 = self.conv2(x) cat0 = torch.cat([conv1, conv2], dim=1) return self.conv3(cat0) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.25, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9, 9)) assert model.conv1.out_channels == 12 assert model.conv2.out_channels == 24 assert model.conv3.in_channels == 36 assert model.conv3.out_channels == 48 def test_nonaligned_cat_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 8, (3, 3)) self.conv2 = nn.Conv2d(3, 4, (3, 3)) self.conv3 = nn.Conv2d(3, 4, (3, 3)) self.conv4 = nn.Conv2d(16, 64, (3, 3)) def forward(self, x): conv1 = self.conv1(x) conv2 = self.conv2(x) conv3 = self.conv3(x) cat0 = torch.cat([conv1, conv2, conv3], dim=1) return self.conv4(cat0) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.25, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9, 9)) assert model.conv1.out_channels == 6 assert model.conv2.out_channels == 3 assert model.conv3.out_channels == 3 assert model.conv4.in_channels == 12 assert model.conv4.out_channels == 48 def test_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 16, (3, 3)) self.conv1 = nn.Conv2d(16, 32, (3, 3), groups=8) self.conv2 = nn.Conv2d(32, 32, (3, 3)) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(conv0) return self.conv2(conv1) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 32, 16, 8) removed_idx_group_check(model.conv2.masker.in_remove_idx, 32, 16, 8) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) assert model.conv0.out_channels == 8 assert model.conv1.in_channels == 8 assert model.conv1.out_channels == 16 assert model.conv2.out_channels == 16 def test_multi_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 16, (3, 3)) self.conv1 = nn.Conv2d(16, 32, (3, 3), groups=4) self.conv2 = nn.Conv2d(16, 32, (3, 3), groups=8) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(conv0) conv2 = self.conv2(conv0) return conv1, conv2 model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 32, 16, 4) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 32, 16, 8) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) assert model.conv0.out_channels == 8 assert model.conv1.in_channels == 8 assert model.conv1.out_channels == 16 assert model.conv2.out_channels == 16 def test_add_cat_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 16, (3, 3)) self.conv1 = nn.Conv2d(16, 32, (3, 3), groups=2) self.conv2 = nn.Conv2d(16, 32, (3, 3), groups=4) self.conv3 = nn.Conv2d(3, 16, (3, 3)) self.conv4 = nn.Conv2d(16, 32, (3, 3), groups=8) self.conv5 = nn.Conv2d(64, 64, (3, 3)) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(conv0) conv2 = self.conv2(conv0) add1 = conv1.__add__(conv2) conv3 = self.conv3(x) conv4 = self.conv4(conv3) cat0 = torch.cat([add1, conv4], dim=1) return self.conv5(cat0) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv2.masker.in_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 32, 16, 4) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 32, 16, 4) removed_idx_group_check(model.conv4.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv4.masker.ot_remove_idx, 32, 16, 8) removed_idx_group_check(model.conv5.masker.in_remove_idx[:16], 32, 16, 4) removed_idx_group_check(model.conv5.masker.in_remove_idx[16:], 32, 16, 8, offset=32) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) def test_multi_cat_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 8, (3, 3)) self.conv1 = nn.Conv2d(8, 16, (3, 3)) self.conv2 = nn.Conv2d(8, 16, (3, 3), groups=4) self.conv3 = nn.Conv2d(8, 16, (3, 3)) self.conv4 = nn.Conv2d(32, 64, (3, 3)) self.conv5 = nn.Conv2d(32, 64, (3, 3)) def forward(self, x): conv0 = self.conv0(x) relu0 = F.relu(conv0) x1 = self.conv1(relu0) x2 = self.conv2(relu0) x3 = self.conv3(relu0) z1 = torch.cat([x1, x2], dim=1) z2 = torch.cat([x2, x3], dim=1) z1 = self.conv4(z1) z2 = self.conv5(z2) return z1, z2 model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 8, 4, 4) removed_idx_group_check(model.conv1.masker.in_remove_idx, 8, 4, 4) removed_idx_group_check(model.conv2.masker.in_remove_idx, 8, 4, 4) removed_idx_group_check(model.conv3.masker.in_remove_idx, 8, 4, 4) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv4.masker.in_remove_idx[8:], 16, 8, 4, offset=16) removed_idx_group_check(model.conv5.masker.in_remove_idx[:8], 16, 8, 4) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) def test_split_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 32, (3, 3)) self.conv2 = nn.Conv2d(3, 16, (3, 3)) self.conv3 = nn.Conv2d(3, 16, (3, 3)) self.conv4 = nn.Conv2d(16, 32, (3, 3), groups=2) self.conv5 = nn.Conv2d(16, 32, (3, 3), groups=4) def forward(self, x): conv1 = self.conv1(x) conv2 = self.conv2(x) conv3 = self.conv3(x) size = conv1.shape[1] // 2 sp1, sp2 = torch.split(conv1, size, 1) add0 = conv2 + sp1 add1 = sp2 + conv3 return self.conv4(add0), self.conv5(add1) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv1.masker.ot_remove_idx[:8], 16, 8, 2) removed_idx_group_check(model.conv1.masker.ot_remove_idx[8:], 16, 8, 4, offset=16) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 2) removed_idx_group_check(model.conv3.masker.ot_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv4.masker.in_remove_idx, 16, 8, 2) removed_idx_group_check(model.conv4.masker.ot_remove_idx, 32, 16, 2) removed_idx_group_check(model.conv5.masker.in_remove_idx, 16, 8, 4) removed_idx_group_check(model.conv5.masker.ot_remove_idx, 32, 16, 4) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) def test_group_mul_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(16, 16, (1, 1), groups=8) self.conv1 = nn.Conv2d(16, 16, (1, 1)) self.conv2 = nn.Conv2d(16, 16, (1, 1), groups=4) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(x) add0 = conv0 * conv1 conv2 = self.conv2(add0) return conv2 model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(16, 16, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 4) pruner.apply_mask() model(torch.ones(16, 16, 9, 9)) def test_group_add_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(16, 16, (1, 1), groups=8) self.conv1 = nn.Conv2d(16, 16, (1, 1)) self.conv2 = nn.Conv2d(16, 16, (1, 1), groups=4) def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(x) add0 = conv0 + conv1 conv2 = self.conv2(add0) return conv2 model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(16, 16, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 4) pruner.apply_mask() model(torch.ones(16, 16, 9, 9)) def test_center_add_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 32, (1, 1)) self.conv1 = nn.Conv2d(16, 16, (1, 1), groups=8) self.conv2 = nn.Conv2d(16, 16, (1, 1), groups=2) def forward(self, x): conv0 = self.conv0(x) sp0, sp1 = torch.split(conv0, conv0.shape[1] // 2, 1) conv1 = self.conv1(sp0) add0 = conv1 + sp1 conv2 = self.conv2(add0) return conv2 model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 32, 16, 8) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 2) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) def test_center_sub_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 32, (1, 1)) self.conv1 = nn.Conv2d(16, 16, (1, 1), groups=8) self.conv2 = nn.Conv2d(16, 16, (1, 1), groups=2) def forward(self, x): conv0 = self.conv0(x) sp0, sp1 = torch.split(conv0, conv0.shape[1] // 2, 1) conv1 = self.conv1(sp0) add0 = conv1 - sp1 conv2 = self.conv2(add0) return conv2 model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 32, 16, 8) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 2) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) def test_center_div_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 32, (1, 1)) self.conv1 = nn.Conv2d(16, 16, (1, 1), groups=8) self.conv2 = nn.Conv2d(16, 16, (1, 1), groups=2) def forward(self, x): conv0 = self.conv0(x) sp0, sp1 = torch.split(conv0, conv0.shape[1] // 2, 1) conv1 = self.conv1(sp0) add0 = conv1 / sp1 conv2 = self.conv2(add0) return conv2 model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 32, 16, 8) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 2) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) def test_center_mul_group_graph(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv0 = nn.Conv2d(3, 32, (1, 1)) self.conv1 = nn.Conv2d(16, 16, (1, 1), groups=8) self.conv2 = nn.Conv2d(16, 16, (1, 1), groups=2) def forward(self, x): conv0 = self.conv0(x) sp0, sp1 = torch.split(conv0, conv0.shape[1] // 2, 1) conv1 = self.conv1(sp0) add0 = conv1 * sp1 conv2 = self.conv2(add0) return conv2 model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv0.masker.ot_remove_idx, 32, 16, 8) removed_idx_group_check(model.conv1.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.in_remove_idx, 16, 8, 8) removed_idx_group_check(model.conv2.masker.ot_remove_idx, 16, 8, 2) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) def test_res_2_net_block(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 64, (1, 1)) self.conv2 = nn.Conv2d(16, 16, (1, 1), groups=8) self.conv3 = nn.Conv2d(16, 16, (1, 1), groups=2) self.conv4 = nn.Conv2d(16, 16, (1, 1)) self.conv5 = nn.Conv2d(64, 64, (1, 1)) def forward(self, x): conv1 = self.conv1(x) size0 = conv1.shape[1] // 4 split0 = torch.split(conv1, size0, 1) conv2 = self.conv2(split0[0]) add0 = conv2 + split0[1] conv3 = self.conv3(add0) add3 = conv3 + split0[2] conv4 = self.conv4(add3) cat0 = torch.cat([conv2, conv3, conv4, split0[3]], 1) return self.conv5(cat0) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.register_mask() removed_idx_group_check(model.conv1.masker.ot_remove_idx[:16], 32, 16, 8) removed_idx_group_check(model.conv1.masker.ot_remove_idx[16:24], 16, 8, 2, offset=32) pruner.apply_mask() model(torch.ones(1, 3, 9, 9)) def test_conv1d_block(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv1d(3, 16, (3,)) self.conv2 = nn.Conv1d(16, 32, (3,)) def forward(self, x): conv1 = self.conv1(x) return self.conv2(conv1) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9), {"sparsity": 0.25, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9)) assert model.conv1.out_channels == 12 assert model.conv2.out_channels == 24 def test_loop_conv_block(self): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.conv1 = nn.Conv2d(3, 16, (3, 3)) self.conv2 = nn.Conv2d(16, 32, (3, 3)) self.conv3 = nn.Conv2d(16, 32, (3, 3)) self.conv4 = nn.Conv2d(16, 32, (3, 3)) self.conv5 = nn.Conv2d(32, 32, (3, 3)) def forward(self, x): conv1 = self.conv1(x) conv2 = F.relu(self.conv2(conv1)) conv3 = F.relu(self.conv3(conv1)) conv4 = F.relu(self.conv4(conv1)) return self.conv5(conv2 + conv3 + conv4) model = TestModel() pruner = OneShotChannelPruner(model, torch.ones(1, 3, 9, 9), {"sparsity": 0.5, "metrics": "l2_norm"}) pruner.prune() model(torch.ones(1, 3, 9, 9)) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python import rospy from nav_msgs.msg import Odometry from geometry_msgs.msg import Pose def process_odom(msg): publisher.publish(msg.pose.pose) rospy.init_node('converter') publisher = rospy.Publisher('/tractor_position', Pose, queue_size=10) subscriber = rospy.Subscriber('/gps/rtkfix', Odometry, process_odom) rospy.spin()
from __future__ import annotations from identify import cli def test_identify_cli(capsys): ret = cli.main(('setup.py',)) out, _ = capsys.readouterr() assert ret == 0 assert out == '["file", "non-executable", "python", "text"]\n' def test_identify_cli_filename_only(capsys): ret = cli.main(('setup.py', '--filename-only')) out, _ = capsys.readouterr() assert ret == 0 assert out == '["python", "text"]\n' def test_identify_cli_filename_only_unidentified(capsys): ret = cli.main(('x.unknown', '--filename-only')) out, _ = capsys.readouterr() assert ret == 1 assert out == '' def test_file_not_found(capsys): ret = cli.main(('x.unknown',)) out, _ = capsys.readouterr() assert ret == 1 assert out == 'x.unknown does not exist.\n'
# 6.4 glossary = { 'oop': 'object of power', 'loop': 'don\'t like infinite', 'condition': 'every choice is a renunciation', 'tuple': 'change all or nothing', 'immutable': 'like elders, don\'t change anymore', 'dictionaries': 'contain the knowledge', 'indent': 'the way to be clean', } for key, value in glossary.items(): print(f'{key.title()}\'s definiton: {value}') print('\n') # 6.5 waters = { 'nile': 'egypt', 'meuse': 'liège', 'sambre': 'charleroi', } for water, country in waters.items(): print(f'The {water.title()} runs trough {country.title()}') print('\n') for water in sorted(waters.keys()): print(water.title()) print('\n') for country in sorted(waters.values()): print(country.title()) print('\n') # 6.6 favorite_languages = { 'jen': 'python', 'sarah': 'c', 'edward': 'ruby', 'phil': 'python', } poll_names = ['bob', 'james', 'thomas', 'jen', 'edward', 'neil'] for name in poll_names: if name not in favorite_languages: print(f'Hey {name.title()}, we wich you to take our poll, are you okay ?') else: print(f'Thanks {name.title()} for taking the poll !')
from django.db.models import Q from django.utils import timezone from rest_framework import generics from functools import reduce from .models import Meeting from .serializers import MeetingWriteSerializer, MeetingReadSerializer, \ MeetingSerializer class MeetingListView(generics.ListCreateAPIView): serializer_class = MeetingSerializer # read_serializer_class = MeetingReadSerializer # write_serializer_class = MeetingWriteSerializer queryset = Meeting.objects.all() # def get_serializer_class(self): # if self.request.method == 'GET': # return self.read_serializer_class # else: # return self.write_serializer_class def get_queryset(self): user = self.request.user day = self.request.query_params.get('day', None) location_id = self.request.query_params.get('location_id', None) query = self.request.query_params.get('query', None) participant_set = user.participant_set.all() queryset = Meeting.objects.filter(Q(participant__in=participant_set) | Q(location__manager=user), Q(start__gte=timezone.now()) ).distinct() if day: queryset = queryset.filter(start__date=day) if location_id: queryset = queryset.filter(location__id=location_id) if query: query = query.split(' ') queryset = queryset.filter( reduce(lambda x, y: x | y, [Q(event_name__icontains=word) | Q(meeting_agenda__icontains=word) for word in query])) return queryset
from django.shortcuts import render from dwebsocket.decorators import accept_websocket,require_websocket from collections import defaultdict from django.http import HttpResponse # 保存所有接入的用户地址 allconn = defaultdict(list) @accept_websocket def echo(request, userid): allresult = {} # 获取用户信息 userinfo = request.user allresult['userinfo'] = userinfo # 声明全局变量 global allconn if not request.is_websocket():#判断是不是websocket连接 try:#如果是普通的http方法 message = request.GET['message'] return HttpResponse(message) except: return False else: # 将链接(请求?)存入全局字典中 allconn[str(userid)] = request.websocket # 遍历请求地址中的消息 for message in request.websocket: # 将信息发至自己的聊天框 request.websocket.send(message) # 将信息发至其他所有用户的聊天框 for i in allconn: if i != str(userid): allconn[i].send(message)
# https://www.codewars.com/kata/56af1a20509ce5b9b000001e def travel(r, zipcode): r_splitted = r.split(',') house_address = [] house_numbers = [] for address in r_splitted: if address.count(zipcode) != 0: address_splitted = address.split() if zipcode != ' '.join(address_splitted[-2 :]): address_splitted.clear() break house_numbers.append(address_splitted[0]) house_address.append(' '.join(address_splitted[1:-2])) address_splitted.clear() if len(house_address) != 0 or len(house_numbers) != 0: result = zipcode +':'+ ','.join(house_address) + '/' + ','.join(house_numbers) else: result = zipcode + ':/' return result
#!/usr/bin/python3 import hashlib import threading import time import config #findFlag = 0 #result = 0 myPassword = '12DC4DB5B4636DD86F46C138B2EE0386CC1C5C5FBCF5ED302B3144869D9E500B' myPassword = myPassword.lower() #12DC4DB5B4636DD86F46C138B2EE0386CC1C5C5FBCF5ED302B3144869D9E500B #72D96D46543F3B7A9765B96007683315D328C94579B98FDAB4F70F9E47013319 - 19000000 FOR TESTING class myThread (threading.Thread): def __init__(self, threadID, name, startNumber, endNumber): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.startNumber = startNumber self.endNumber = endNumber def run(self): print ("Starting " + self.name) # Get lock to synchronize threads threadLock.acquire() rangeSha256(self.startNumber, self.endNumber, self.name) # Free lock to release next thread threadLock.release() def rangeSha256 (startNumber,endNumber,threadName): for i in range(startNumber-1,endNumber): a = hashlib.sha256(bytes(str(i), encoding='utf-8')).hexdigest() if i % 1000000 == 0: print (" %s %s: %s" % (threadName, time.ctime(time.time()),i)) if a == myPassword or config.findFlag == 1: if config.findFlag == 1: print ("Stoping %s" % (threadName)) break config.result = i print ("Stoping %s" % (threadName)) config.findFlag = 1 break threadLock = threading.Lock() threads = [] for i in range(1,43): startNumber = round(float(10000000) + float(i - 1) * (float(89999999) / float(42))) endNumber = round(float(10000000) + float(i) * (float(89999999) / float(42))) # Create new threads name = "Thread-"+ str(i) threads.append(myThread(i, name, startNumber, endNumber)) # Start new Threads threads[i-1].start() # Wait for all threads to complete for t in threads: t.join() print ("Exiting Main Thread") print (config.result)
from NeuralNet import NeuralNet import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization from keras.layers import Conv2D, MaxPooling2D from keras import backend class NeuralNetGamma(NeuralNet): def beginTraining(self): self.setTrainingParameters(100000, 5000, 16, 10) def defineModel(self, inputShape : tuple, outputSize : int): model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', padding = 'same', input_shape=inputShape)) model.add(Conv2D(32, (3, 3), activation='relu', padding = 'same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3), activation='relu', padding = 'same')) model.add(Conv2D(64, (3, 3), activation='relu', padding = 'same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(128, (3, 3), activation='relu', padding = 'same')) model.add(Conv2D(128, (3, 3), activation='relu', padding = 'same')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(1028, activation='relu')) model.add(Dense(1028, activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dense(outputSize, activation='linear')) return model
from CRF import *
# IMPORT LIBRARIES import numpy as np import matplotlib.pyplot as plt import pandas as pd # IMPORTING DATASET def rfg(dataset, NOFtrees): dataset = dataset # pd.read_csv("2_Classification/Social_Network_Ads.csv") X = dataset.iloc[:, 0:-1].values y = dataset.iloc[:, -1].values dataset.plot() # Splitting Data into Training & Testing from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) # Fitting Random Forest class to the Training set from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=NOFtrees, criterion='entropy', random_state=0) classifier.fit(X_train, y_train) # Predicting the Test set results y_pred = classifier.predict(X_test) print('Y_PRED\n',y_pred,'\n') # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) print(cm) # # Visualising the Training set results # from matplotlib.colors import ListedColormap # X_set, y_set = X_train, y_train # X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01), # np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01)) # plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), # alpha=0.75, cmap=ListedColormap(('red', 'green'))) # plt.xlim(X1.min(), X1.max()) # plt.ylim(X2.min(), X2.max()) # for i, j in enumerate(np.unique(y_set)): # plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], # c=ListedColormap(('red', 'green'))(i), label=j) # plt.title('Random forest classification (Train set)') # plt.xlabel('fetal state class') # plt.ylabel('fetal cardiotocograms') # plt.legend() # plt.show() # # # Visualising the Test set results # from matplotlib.colors import ListedColormap # X_set, y_set = X_test, y_test # X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop=X_set[:, 0].max() + 1, step=0.01), # np.arange(start=X_set[:, 1].min() - 1, stop=X_set[:, 1].max() + 1, step=0.01)) # plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), # alpha=0.75, cmap=ListedColormap(('red', 'green'))) # plt.xlim(X1.min(), X1.max()) # plt.ylim(X2.min(), X2.max()) # for i, j in enumerate(np.unique(y_set)): # plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], # c=ListedColormap(('red', 'green'))(i), label=j) # plt.title('Random forest classification (Test set)') # plt.xlabel('fetal state class') # plt.ylabel('fetal cardiotocograms') # plt.legend() # plt.show()
# -*- coding: utf-8 -*- """ gtorch_utils/segmentation/loss_functions/test/test_fp_rate """ import torch import unittest from gtorch_utils.segmentation.loss_functions.fp_rate import FPR_Loss from gtorch_utils.segmentation.metrics.fp_rate import fpr class Test_FPR_Loss(unittest.TestCase): def setUp(self): self.pred = torch.Tensor([ [[1., 0., 0., 1., 0., 0., 0.], [1., 0., 0., 1., 1., 1., 0.]], [[0., 1., 1., 1., 0., 1., 0.], [0., 0., 0., 0., 1., 1., 0.]] ]) self.gt = torch.Tensor([ [[1., 1., 1., 0., 0., 0., 1.], [1., 1., 1., 0., 0., 0., 1.]], [[1., 1., 1., 0., 0., 0., 1.], [1., 1., 1., 0., 0., 0., 1.]] ]) def test_per_channel_False(self): self.assertTrue(torch.equal( 1-fpr(self.pred, self.gt), FPR_Loss()(self.pred, self.gt) )) def test_per_channel_True(self): self.assertTrue(torch.equal( 1-fpr(self.pred, self.gt, True), FPR_Loss(True)(self.pred, self.gt) )) if __name__ == '__main__': unittest.main()
# 분해합 # 브루트포스의 정석 # 각각 1부터 쭉 해주는 것에 for문을 쓰는데 인색하지 말자. # 정말 앞에서부터 하나하나 쓰는 것을 중심으로 가야한다. # [boj-백준] Brute force 2231 분해 합 - python n = int(input()) for i in range(1, n+1): a = list(map(int, str(i))) sum_sep = sum(a) sum_all = i + sum_sep if sum_all == n: print(i) break if i == n: print(0)
import socket from struct import * str=input("Enter the Direction : ") num=int(str) s = socket.socket() host = "192.168.43.223" port = 8001 s.connect((host,port)) print("connection established") #s.send(val.encode()) val = pack('!i', num) s.send(val)
''' A + B Problem Description Given a series of integer pairs and , output the sum of and . Input Format Each line contains two integers, and . One input file may contain several pairs where . Output Format Output a single integer per line - The sum of and . SAMPLE INPUT 1 2 2 5 10 14 SAMPLE OUTPUT 3 7 24 ''' from sys import stdin sums = [] for i in stdin: data = list(map(int, i.split())) sums.append(sum(data)) print(*sums,sep="\n")
__all__ = ["check_surr", "gradient", "folder_name_func", "index_list_func", "model_input_func", "model_sig_func", "plot_pred_func", "plot_sig_func", "pred_comp_func", "read", "rename_func", "sig_data_func", "tanh_func", "upper_shelf_func"]
from .theplatform import ThePlatformIE from ..utils import ( ExtractorError, GeoRestrictedError, int_or_none, update_url_query, urlencode_postdata, ) class AENetworksBaseIE(ThePlatformIE): _BASE_URL_REGEX = r'''(?x)https?:// (?:(?:www|play|watch)\.)? (?P<domain> (?:history(?:vault)?|aetv|mylifetime|lifetimemovieclub)\.com| fyi\.tv )/''' _THEPLATFORM_KEY = '43jXaGRQud' _THEPLATFORM_SECRET = 'S10BPXHMlb' _DOMAIN_MAP = { 'history.com': ('HISTORY', 'history'), 'aetv.com': ('AETV', 'aetv'), 'mylifetime.com': ('LIFETIME', 'lifetime'), 'lifetimemovieclub.com': ('LIFETIMEMOVIECLUB', 'lmc'), 'fyi.tv': ('FYI', 'fyi'), 'historyvault.com': (None, 'historyvault'), 'biography.com': (None, 'biography'), } def _extract_aen_smil(self, smil_url, video_id, auth=None): query = {'mbr': 'true'} if auth: query['auth'] = auth TP_SMIL_QUERY = [{ 'assetTypes': 'high_video_ak', 'switch': 'hls_high_ak' }, { 'assetTypes': 'high_video_s3' }, { 'assetTypes': 'high_video_s3', 'switch': 'hls_high_fastly', }] formats = [] subtitles = {} last_e = None for q in TP_SMIL_QUERY: q.update(query) m_url = update_url_query(smil_url, q) m_url = self._sign_url(m_url, self._THEPLATFORM_KEY, self._THEPLATFORM_SECRET) try: tp_formats, tp_subtitles = self._extract_theplatform_smil( m_url, video_id, 'Downloading %s SMIL data' % (q.get('switch') or q['assetTypes'])) except ExtractorError as e: if isinstance(e, GeoRestrictedError): raise last_e = e continue formats.extend(tp_formats) subtitles = self._merge_subtitles(subtitles, tp_subtitles) if last_e and not formats: raise last_e self._sort_formats(formats) return { 'id': video_id, 'formats': formats, 'subtitles': subtitles, } def _extract_aetn_info(self, domain, filter_key, filter_value, url): requestor_id, brand = self._DOMAIN_MAP[domain] result = self._download_json( 'https://feeds.video.aetnd.com/api/v2/%s/videos' % brand, filter_value, query={'filter[%s]' % filter_key: filter_value})['results'][0] title = result['title'] video_id = result['id'] media_url = result['publicUrl'] theplatform_metadata = self._download_theplatform_metadata(self._search_regex( r'https?://link\.theplatform\.com/s/([^?]+)', media_url, 'theplatform_path'), video_id) info = self._parse_theplatform_metadata(theplatform_metadata) auth = None if theplatform_metadata.get('AETN$isBehindWall'): resource = self._get_mvpd_resource( requestor_id, theplatform_metadata['title'], theplatform_metadata.get('AETN$PPL_pplProgramId') or theplatform_metadata.get('AETN$PPL_pplProgramId_OLD'), theplatform_metadata['ratings'][0]['rating']) auth = self._extract_mvpd_auth( url, video_id, requestor_id, resource) info.update(self._extract_aen_smil(media_url, video_id, auth)) info.update({ 'title': title, 'series': result.get('seriesName'), 'season_number': int_or_none(result.get('tvSeasonNumber')), 'episode_number': int_or_none(result.get('tvSeasonEpisodeNumber')), }) return info class AENetworksIE(AENetworksBaseIE): IE_NAME = 'aenetworks' IE_DESC = 'A+E Networks: A&E, Lifetime, History.com, FYI Network and History Vault' _VALID_URL = AENetworksBaseIE._BASE_URL_REGEX + r'''(?P<id> shows/[^/]+/season-\d+/episode-\d+| (?: (?:movie|special)s/[^/]+| (?:shows/[^/]+/)?videos )/[^/?#&]+ )''' _TESTS = [{ 'url': 'http://www.history.com/shows/mountain-men/season-1/episode-1', 'info_dict': { 'id': '22253814', 'ext': 'mp4', 'title': 'Winter is Coming', 'description': 'md5:641f424b7a19d8e24f26dea22cf59d74', 'timestamp': 1338306241, 'upload_date': '20120529', 'uploader': 'AENE-NEW', }, 'params': { # m3u8 download 'skip_download': True, }, 'add_ie': ['ThePlatform'], 'skip': 'This video is only available for users of participating TV providers.', }, { 'url': 'http://www.aetv.com/shows/duck-dynasty/season-9/episode-1', 'info_dict': { 'id': '600587331957', 'ext': 'mp4', 'title': 'Inlawful Entry', 'description': 'md5:57c12115a2b384d883fe64ca50529e08', 'timestamp': 1452634428, 'upload_date': '20160112', 'uploader': 'AENE-NEW', }, 'params': { # m3u8 download 'skip_download': True, }, 'add_ie': ['ThePlatform'], }, { 'url': 'http://www.fyi.tv/shows/tiny-house-nation/season-1/episode-8', 'only_matching': True }, { 'url': 'http://www.mylifetime.com/shows/project-runway-junior/season-1/episode-6', 'only_matching': True }, { 'url': 'http://www.mylifetime.com/movies/center-stage-on-pointe/full-movie', 'only_matching': True }, { 'url': 'https://watch.lifetimemovieclub.com/movies/10-year-reunion/full-movie', 'only_matching': True }, { 'url': 'http://www.history.com/specials/sniper-into-the-kill-zone/full-special', 'only_matching': True }, { 'url': 'https://www.aetv.com/specials/hunting-jonbenets-killer-the-untold-story/preview-hunting-jonbenets-killer-the-untold-story', 'only_matching': True }, { 'url': 'http://www.history.com/videos/history-of-valentines-day', 'only_matching': True }, { 'url': 'https://play.aetv.com/shows/duck-dynasty/videos/best-of-duck-dynasty-getting-quack-in-shape', 'only_matching': True }] def _real_extract(self, url): domain, canonical = self._match_valid_url(url).groups() return self._extract_aetn_info(domain, 'canonical', '/' + canonical, url) class AENetworksListBaseIE(AENetworksBaseIE): def _call_api(self, resource, slug, brand, fields): return self._download_json( 'https://yoga.appsvcs.aetnd.com/graphql', slug, query={'brand': brand}, data=urlencode_postdata({ 'query': '''{ %s(slug: "%s") { %s } }''' % (resource, slug, fields), }))['data'][resource] def _real_extract(self, url): domain, slug = self._match_valid_url(url).groups() _, brand = self._DOMAIN_MAP[domain] playlist = self._call_api(self._RESOURCE, slug, brand, self._FIELDS) base_url = 'http://watch.%s' % domain entries = [] for item in (playlist.get(self._ITEMS_KEY) or []): doc = self._get_doc(item) canonical = doc.get('canonical') if not canonical: continue entries.append(self.url_result( base_url + canonical, AENetworksIE.ie_key(), doc.get('id'))) description = None if self._PLAYLIST_DESCRIPTION_KEY: description = playlist.get(self._PLAYLIST_DESCRIPTION_KEY) return self.playlist_result( entries, playlist.get('id'), playlist.get(self._PLAYLIST_TITLE_KEY), description) class AENetworksCollectionIE(AENetworksListBaseIE): IE_NAME = 'aenetworks:collection' _VALID_URL = AENetworksBaseIE._BASE_URL_REGEX + r'(?:[^/]+/)*(?:list|collections)/(?P<id>[^/?#&]+)/?(?:[?#&]|$)' _TESTS = [{ 'url': 'https://watch.historyvault.com/list/america-the-story-of-us', 'info_dict': { 'id': '282', 'title': 'America The Story of Us', }, 'playlist_mincount': 12, }, { 'url': 'https://watch.historyvault.com/shows/america-the-story-of-us-2/season-1/list/america-the-story-of-us', 'only_matching': True }, { 'url': 'https://www.historyvault.com/collections/mysteryquest', 'only_matching': True }] _RESOURCE = 'list' _ITEMS_KEY = 'items' _PLAYLIST_TITLE_KEY = 'display_title' _PLAYLIST_DESCRIPTION_KEY = None _FIELDS = '''id display_title items { ... on ListVideoItem { doc { canonical id } } }''' def _get_doc(self, item): return item.get('doc') or {} class AENetworksShowIE(AENetworksListBaseIE): IE_NAME = 'aenetworks:show' _VALID_URL = AENetworksBaseIE._BASE_URL_REGEX + r'shows/(?P<id>[^/?#&]+)/?(?:[?#&]|$)' _TESTS = [{ 'url': 'http://www.history.com/shows/ancient-aliens', 'info_dict': { 'id': 'SERIES1574', 'title': 'Ancient Aliens', 'description': 'md5:3f6d74daf2672ff3ae29ed732e37ea7f', }, 'playlist_mincount': 150, }] _RESOURCE = 'series' _ITEMS_KEY = 'episodes' _PLAYLIST_TITLE_KEY = 'title' _PLAYLIST_DESCRIPTION_KEY = 'description' _FIELDS = '''description id title episodes { canonical id }''' def _get_doc(self, item): return item class HistoryTopicIE(AENetworksBaseIE): IE_NAME = 'history:topic' IE_DESC = 'History.com Topic' _VALID_URL = r'https?://(?:www\.)?history\.com/topics/[^/]+/(?P<id>[\w+-]+?)-video' _TESTS = [{ 'url': 'https://www.history.com/topics/valentines-day/history-of-valentines-day-video', 'info_dict': { 'id': '40700995724', 'ext': 'mp4', 'title': "History of Valentine’s Day", 'description': 'md5:7b57ea4829b391995b405fa60bd7b5f7', 'timestamp': 1375819729, 'upload_date': '20130806', 'uploader': 'AENE-NEW', }, 'params': { # m3u8 download 'skip_download': True, }, 'add_ie': ['ThePlatform'], }] def _real_extract(self, url): display_id = self._match_id(url) return self.url_result( 'http://www.history.com/videos/' + display_id, AENetworksIE.ie_key()) class HistoryPlayerIE(AENetworksBaseIE): IE_NAME = 'history:player' _VALID_URL = r'https?://(?:www\.)?(?P<domain>(?:history|biography)\.com)/player/(?P<id>\d+)' _TESTS = [] def _real_extract(self, url): domain, video_id = self._match_valid_url(url).groups() return self._extract_aetn_info(domain, 'id', video_id, url) class BiographyIE(AENetworksBaseIE): _VALID_URL = r'https?://(?:www\.)?biography\.com/video/(?P<id>[^/?#&]+)' _TESTS = [{ 'url': 'https://www.biography.com/video/vincent-van-gogh-full-episode-2075049808', 'info_dict': { 'id': '30322987', 'ext': 'mp4', 'title': 'Vincent Van Gogh - Full Episode', 'description': 'A full biography about the most influential 20th century painter, Vincent Van Gogh.', 'timestamp': 1311970571, 'upload_date': '20110729', 'uploader': 'AENE-NEW', }, 'params': { # m3u8 download 'skip_download': True, }, 'add_ie': ['ThePlatform'], }] def _real_extract(self, url): display_id = self._match_id(url) webpage = self._download_webpage(url, display_id) player_url = self._search_regex( r'<phoenix-iframe[^>]+src="(%s)' % HistoryPlayerIE._VALID_URL, webpage, 'player URL') return self.url_result(player_url, HistoryPlayerIE.ie_key())
from user import User #Importing the user class from credentials import Credentials #Importing the credentials class import unittest #Importing python unittest module for testing class TestPassword(unittest.TestCase): ''' Test class to test user and credentials classes behaviours. TestCase class helps in creating test cases. ''' def setUp(self): ''' setUp method to run before every test case. ''' self.new_user = User("John Mac","Miley","1234") self.new_credentials = Credentials("twitter","Aldis","1234") def tearDown(self): ''' tearDown method to clean up after each test case has run. ''' User.users_list = [] Credentials.credentials_list = [] def test_init(self): ''' test_init to test proper initialization of objects' properties ''' self.assertEqual(self.new_user.official_name,"John Mac") self.assertEqual(self.new_user.username,"Miley") self.assertEqual(self.new_user.password,"1234") self.assertEqual(self.new_credentials.account,"twitter") self.assertEqual(self.new_credentials.username,"Aldis") self.assertEqual(self.new_credentials.password,"1234") def test_save_user(self): ''' test_save_user to test if username in added to username list and credentials to credentials list ''' self.new_user.save_user() #save user(s) official name(s) self.new_credentials.save_credentials() #save new credentials for user(s) self.assertEqual(len(User.users_list),1) #checking if users list length has increased self.assertEqual(len(Credentials.credentials_list),1) #checking if credentials list length has increased def test_save_multiple_credentials(self): ''' Test to confirm if multiple credentials can be saved in the credentials list ''' self.new_credentials.save_credentials() test_credential = Credentials("facebook","bale","meforyou") # new credential details test_credential.save_credentials() #error message in case test case fails message = "Unable to add multiple credentials to credentials list" self.assertGreater(len(Credentials.credentials_list),1,message) #Checking if length of credentials list has increased def test_save_multiple_users(self): ''' Test to confirm if multiple users can create accounts ''' self.new_user.save_user() test_user = User("Mercy Mumbi","Alice","9876") #new user account test_user.save_user() self.assertEqual(len(User.users_list),2) def test_find_account_by_password(self): ''' Test to confirm if a user(s) account can be accessed by the inputted password and credentials information displayed ''' self.new_user.save_user() test_user = User("Mercy Mumbi","Alice","9876") #new user account test_user.save_user() found_user = User.find_by_password("9876") self.assertEqual(found_user.password,test_user.password) def test_find_credential(self): ''' Test to confirm whether the credential located is the correct one ''' self.new_credentials.save_credentials() test_credential = Credentials("facebook","bale","meforyou") # new credential details test_credential.save_credentials() found_credential = Credentials.find_credential("facebook") self.assertEqual(found_credential.account,test_credential.account) def test_delete_credentials_account(self): ''' Test to confirm whether a credentials account has been deleted ''' self.new_credentials.save_credentials() test_credential = Credentials("facebook","bale","meforyou") # new credential details test_credential.save_credentials() test_credential.delete_credential_account("facebook") #Deleting a credential account self.assertEqual(len(Credentials.credentials_list),1) if __name__ == '__main__': unittest.main()
''' You are playing the following Nim Game with your friend: There is a heap of stones on the table, each time one of you take turns to remove 1 to 3 stones. The one who removes the last stone will be the winner. You will take the first turn to remove the stones. Both of you are very clever and have optimal strategies for the game. Write a function to determine whether you can win the game given the number of stones in the heap. ''' class Solution: def canWinNim(self, n: int) -> bool: if n%4 == 0: return False return True # slow solution winner = [-1]*(n+10) winner[0] = 0 winner[1] = 1 for i in range(n+4): if winner[i] == 0: winner[i+1] = 1 winner[i+2] = 1 winner[i+3] = 1 elif winner[i] == 1: if winner[i+1] == -1: winner[i+1] = 0 if winner[i+2] == -1: winner[i+2] = 0 if winner[i+3] == -1: winner[i+3] = 0 if winner[n] == 1: return True return False
from django.contrib.auth import get_permission_codename from django.contrib.contenttypes.models import ContentType from wagtail.wagtailsnippets.models import get_snippet_models def get_permission_name(action, model): return "%s.%s" % (model._meta.app_label, get_permission_codename(action, model._meta)) def user_can_edit_snippet_type(user, model_or_content_type): """ true if user has 'add', 'change' or 'delete' permission on this model """ if isinstance(model_or_content_type, ContentType): model = model_or_content_type.model_class() else: model = model_or_content_type for action in ('add', 'change', 'delete'): if user.has_perm(get_permission_name(action, model)): return True return False def user_can_edit_snippets(user): """ true if user has 'add', 'change' or 'delete' permission on any model registered as a snippet type """ snippet_models = get_snippet_models() for model in snippet_models: if user_can_edit_snippet_type(user, model): return True return False
from cm.util import misc from cm.util import paths import logging log = logging.getLogger('cloudman') class CloudInterface(object): # Global fields ec2_conn = None s3_conn = None tags_supported = False tags = {} # Instance details ami = None instance_type = None instance_id = None instance = None # boto object representation of the instance zone = None region = None region_name = None security_groups = None key_pair_name = None self_private_ip = None local_hostname = None self_public_ip = None public_hostname = None instance_type = None fqdn = None user_data = None aws_access_key = None aws_secret_key = None def get_user_data(self, force=False): """ Override this method in a cloud-specific interface if the default approach does not apply. NOTE that this method should call the set_configuration method! :type force: boolean :param force: If set to True, reload the user data regardless if the data is already stored in the class field :rtype: dict :return: A key-value dictionary containing the user data. """ if self.user_data is None or force: self.user_data = misc.load_yaml_file(paths.USER_DATA_FILE) self.set_configuration() return self.user_data def set_configuration(self): """ Set the configuration fields for the given cloud interface. This should primarily be used to set credentials and such. It is expected that this method is called in the process of loading the user data. This method should be overriden for any cloud interface that requires more credentials than the access credentials included in this default implementation. """ if self.user_data is None: self.get_user_data() self.aws_access_key = self.user_data.get('access_key', None) self.aws_secret_key = self.user_data.get('secret_key', None) self.tags = {} def get_configuration(self): """ Return a dict with all the class variables. """ return vars(self) # Non-implemented methods def get_local_hostname(self): log.warning("Unimplemented") pass def run_instances(self, num, instance_type, **kwargs): """ Run an image. """ log.warning("Unimplemented") pass
# -*- coding: utf-8 -*- # @Author : Lin Lan (ryan.linlan@gmail.com) from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from collections import defaultdict import ray import numpy as np from ray.rllib.optimizers.policy_optimizer import PolicyOptimizer from utils import summarize_episodes logger = logging.getLogger("ray.rllib.agents.maml.maml_optimizer") class MAMLOptimizer(PolicyOptimizer): def _init(self, num_inner_updates=1, num_sgd_iter=1): self.num_inner_updates = num_inner_updates self.num_sgd_iter = num_sgd_iter def sync_weights(self): if self.remote_evaluators: weights = self.local_evaluator.get_weights() weights_id = ray.put(weights) # import ipdb; ipdb.set_trace() # for e in self.remote_evaluators: # e.set_weights.remote(weights_id) ray.get([e.set_weights.remote(weights_id) for e in self.remote_evaluators]) return weights else: raise TypeError def step(self): # distribute weights of the model and the outer optimizer prev_weights = self.sync_weights() # perform the inner update in each remote evaluator goals = ray.get([ e.inner_update.remote(self.num_inner_updates) for e in self.remote_evaluators]) assert isinstance(goals, list) goals = sorted(goals, key=lambda x: (x[0], x[1])) logger.debug(f"\ngoals:\n{np.asarray(goals)}") best_policy_loss = None best_infos = None best_weights = None last_weights = None kl_target = self.local_evaluator.policy_config["kl_target"] # gather the gradients and update the variables in the local evaluator for i in range(self.num_sgd_iter): dist_outer_grad_values, dist_outer_infos = zip( *ray.get([e.outer_update.remote() for e in self.remote_evaluators])) aggregated_grads = defaultdict(list) aggregated_infos = defaultdict(list) for outer_grad_values, outer_infos \ in zip(dist_outer_grad_values, dist_outer_infos): for name, values in outer_grad_values.items(): aggregated_grads[name].append(values) for name, infos in outer_infos.items(): aggregated_infos[name].append(infos) aggregated_grads = dict(aggregated_grads) aggregated_infos = dict(aggregated_infos) grad_values = {k: np.mean(v, axis=0) for k, v in aggregated_grads.items()} infos = {k: np.mean(v) for k, v in aggregated_infos.items()} logger.debug(f"\niter: {i}, infos: {infos}") if infos["kl"] < kl_target: if best_policy_loss is None \ or infos["policy_loss"] < best_policy_loss: best_policy_loss = infos["policy_loss"] best_infos = infos best_weights = last_weights or prev_weights if i < self.num_sgd_iter - 1: fetches = self.local_evaluator.apply_gradients(grad_values) assert fetches == {} last_weights = self.sync_weights() self.local_evaluator.set_weights(best_weights) self.sync_weights() return best_infos def collect_metrics(self): dist_episodes = ray.get([ e.apply.remote(lambda ev: ev.episodes) for e in self.remote_evaluators]) aggregated_episodes = defaultdict(list) for episodes in dist_episodes: for k, v in episodes.items(): aggregated_episodes[k].extend(v) aggregated_episodes = dict(aggregated_episodes) res = {k: summarize_episodes(v, v, 0) for k, v in aggregated_episodes.items()} return {"inner_update_metrics": res} # "reward_attr": res[ # str(self.num_inner_updates)]["episode_reward_mean"]}
import numpy as np def test_BEM(): """Unnecessary test for the ugly and non-working and legacy BEM for the sake of coverage """ from Florence.BoundaryElements import GetBasesBEM2D from Florence.BoundaryElements import GenerateCoordinates from Florence.BoundaryElements import CoordsJacobianRadiusatGaussPoints, CoordsJacobianRadiusatGaussPoints_LM from Florence.BoundaryElements import AssemblyBEM2D from Florence.BoundaryElements.Assembly import AssemblyBEM2D_Sparse from Florence.BoundaryElements import Sort_BEM from Florence import QuadratureRule, FunctionSpace, Mesh # Unnecessary loop for i in range(10): mesh = Mesh() mesh.element_type = "line" mesh.points = np.array([ [0.,0.], [1.,0.], [1.,1.], [0.,1.], ]) mesh.elements = np.array([ [0,1], [1,2], [2,3], [3,0], ]) mesh.nelem = 4 q = QuadratureRule(mesh_type="line") for C in range(10): N, dN = GetBasesBEM2D(C,q.points) N, dN = GetBasesBEM2D(2,q.points) global_coord = np.zeros((mesh.points.shape[0],3)) global_coord[:,:2] = mesh.points Jacobian = 2*np.ones((q.weights.shape[0],mesh.nelem)) nx = 4*np.ones((q.weights.shape[0],mesh.nelem)) ny = 3*np.ones((q.weights.shape[0],mesh.nelem)) XCO = 2*np.ones((q.weights.shape[0],mesh.nelem)) YCO = np.ones((q.weights.shape[0],mesh.nelem)) N = np.ones((mesh.elements.shape[1],q.weights.shape[0])) dN = 0.5*np.ones((mesh.elements.shape[1],q.weights.shape[0])) GenerateCoordinates(mesh.elements,mesh.points,0,q.points) CoordsJacobianRadiusatGaussPoints(mesh.elements,global_coord,0,N,dN,q.weights) # Not working # CoordsJacobianRadiusatGaussPoints_LM(mesh.elements,global_coord[:,:3],0,N,dN,q.weights,mesh.elements) class GeoArgs(object): Lagrange_Multipliers = "activated" def __init__(self): Lagrange_Multipliers = "activated" geo_args = GeoArgs() K1, K2 = AssemblyBEM2D(0,global_coord,mesh.elements,mesh.elements,dN,N, q.weights,q.points,Jacobian, nx, ny, XCO, YCO, geo_args) AssemblyBEM2D_Sparse(0,global_coord,mesh.elements,mesh.elements,dN,N, q.weights,q.points,Jacobian, nx, ny, XCO, YCO, geo_args) bdata = np.zeros((2*mesh.points.shape[0],2)) bdata[:4,1] = -1 bdata[4:,0] = -1 Sort_BEM(bdata,K1, K2) if __name__ == "__main__": test_BEM()
from conans import CMake, ConanFile, tools from conans.errors import ConanInvalidConfiguration import functools import os required_conan_version = ">=1.45.0" class EdynConan(ConanFile): name = "edyn" description = "Edyn is a real-time physics engine organized as an ECS" license = "MIT" url = "https://github.com/conan-io/conan-center-index" homepage = "https://github.com/xissburg/edyn" topics = ("physics", "game-development", "ecs") settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "floating_type": ["float", "double"], } default_options = { "shared": False, "fPIC": True, "floating_type": "float", } generators = "cmake", "cmake_find_package_multi" @property def _source_subfolder(self): return "source_subfolder" @property def _build_subfolder(self): return "build_subfolder" def export_sources(self): self.copy("CMakeLists.txt") for patch in self.conan_data.get("patches", {}).get(self.version, []): self.copy(patch["patch_file"]) def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: del self.options.fPIC def requirements(self): self.requires("entt/3.9.0") @property def _compiler_required(self): return { "gcc": "9.3", # GCC 9.3 started supporting attributes in constructor arguments } def validate(self): if self.settings.compiler.get_safe("cppstd"): tools.check_min_cppstd(self, 17) try: minimum_required_compiler_version = self._compiler_required[str(self.settings.compiler)] if tools.Version(self.settings.compiler.version) < minimum_required_compiler_version: raise ConanInvalidConfiguration("This package requires C++17 support. The current compiler does not support it.") except KeyError: self.output.warn("This recipe has no support for the current compiler. Please consider adding it.") def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def _patch_sources(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) @functools.lru_cache(1) def _configure_cmake(self): cmake = CMake(self) cmake.definitions["EDYN_INSTALL"] = True cmake.configure(build_folder=self._build_subfolder) return cmake def build(self): self._patch_sources() cmake = self._configure_cmake() cmake.build() def package(self): self.copy(pattern="LICENSE", dst="licenses", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) tools.rmdir(os.path.join(self.package_folder, "lib", "cmake")) tools.rmdir(os.path.join(self.package_folder, "share")) tools.remove_files_by_mask(os.path.join(self.package_folder, "bin"), "*.pdb") def package_info(self): self.cpp_info.libs = tools.collect_libs(self) self.cpp_info.set_property("cmake_find_mode", "both") self.cpp_info.set_property("cmake_module_file_name", "Edyn") self.cpp_info.set_property("cmake_file_name", "Edyn") self.cpp_info.set_property("cmake_target_name", "Edyn::Edyn") self.cpp_info.set_property("pkg_config_name", "Edyn") if self.settings.os in ["Linux", "FreeBSD"]: self.cpp_info.system_libs += ["m", "pthread"] elif self.settings.os == "Windows": self.cpp_info.system_libs = ["winmm"] # TODO: to remove in conan v2 once cmake_find_package_* generators removed self.cpp_info.filenames["cmake_find_package"] = "Edyn" self.cpp_info.filenames["cmake_find_package_multi"] = "Edyn" self.cpp_info.names["cmake_find_package"] = "Edyn" self.cpp_info.names["cmake_find_package_multi"] = "Edyn"
print('os numeros pares entre 1 e 50 sao:') for c in range(0,51,2): print(c) print('FIM') escolha4 = '' while escolha4 != 'sim' and escolha4 != 'nao': escolha4 = str(input('você deseja executar novamente [sim/nao]?')).lower() if escolha4 == 'sim': import jogo_do_tio_Dodo if escolha4 == 'nao': print('obrigado por ultilizar nossos serviços') break
import unittest import sys from flow_stress.pt_conditions import * depth = 10 density = 2.7 geothermal_gradient = 30 class Test_pt_conditions(unittest.TestCase): def test_pt_conditions_initiates(self): self.pt = PTCalculator(depth, density, geothermal_gradient) self.assertEqual(self.pt.gravity, 9.8) self.assertEqual(self.pt.density, 2700) self.assertEqual(self.pt.depth, 10) self.assertEqual(self.pt.geothermal_gradient, 30) def test_if_pt_calculator_works(self): self.pt = PTCalculator(depth, density, geothermal_gradient) self.p, self.t = self.pt.pt_calculator() self.assertEqual(self.p[0], 264.6000000000001) self.assertEqual(self.t[0], 300) def test_if_pt_calculator_pressure_value_works(self): self.single_depth = 10 self.pt = PTCalculator(depth, density, geothermal_gradient) self.p, self.t = self.pt.pt_calculator() self.single_p = self.pt.pt_calculator_pressure_value(self.p, self.single_depth) self.assertEqual(self.single_p, 264.6000000000001) #if single_pressure_value == False: # print('You will have multiple pressure values')
# !/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # -*- coding: utf-8 -*- from collections import Counter import itertools import iterators import os import numpy as np import pandas as pd import mxnet as mx import argparse import pickle import logging logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser(description="Deep neural network for multivariate time series forecasting", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--data-dir', type=str, default='../data', help='relative path to input data') parser.add_argument('--output-dir', type=str, default='../results', help='directory to save model files to') parser.add_argument('--max-records', type=int, default=None, help='total records before data split') parser.add_argument('--train_fraction', type=float, default=0.8, help='fraction of data to use for training. remainder used for testing.') parser.add_argument('--batch-size', type=int, default=128, help='the batch size.') parser.add_argument('--buckets', type=str, default="", help='unique bucket sizes') parser.add_argument('--char-embed', type=int, default=25, help='Embedding size for each unique character.') parser.add_argument('--char-filter-list', type=str, default="3,4,5", help='unique filter sizes for char level cnn') parser.add_argument('--char-filters', type=int, default=20, help='number of each filter size') parser.add_argument('--word-embed', type=int, default=500, help='Embedding size for each unique character.') parser.add_argument('--word-filter-list', type=str, default="3,4,5", help='unique filter sizes for char level cnn') parser.add_argument('--word-filters', type=int, default=200, help='number of each filter size') parser.add_argument('--lstm-state-size', type=int, default=100, help='number of hidden units in each unrolled recurrent cell') parser.add_argument('--lstm-layers', type=int, default=1, help='number of recurrent layers') parser.add_argument('--gpus', type=str, default='', help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu. ') parser.add_argument('--optimizer', type=str, default='adam', help='the optimizer type') parser.add_argument('--lr', type=float, default=0.001, help='initial learning rate') parser.add_argument('--dropout', type=float, default=0.2, help='dropout rate for network') parser.add_argument('--num-epochs', type=int, default=100, help='max num of epochs') parser.add_argument('--save-period', type=int, default=20, help='save checkpoint for every n epochs') parser.add_argument('--model_prefix', type=str, default='electricity_model', help='prefix for saving model params') def save_obj(obj, name): with open(name + '.pkl', 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def save_model(): if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) return mx.callback.do_checkpoint(os.path.join(args.output_dir, "checkpoint"), args.save_period) def build_vocab(nested_list): """ :param nested_list: list of list of string :return: dictionary mapping from string to int, inverse of that dictionary """ # Build vocabulary word_counts = Counter(itertools.chain(*nested_list)) logging.info("build_vocab: word_counts=%d" % (len(word_counts))) # Mapping from index to label vocabulary_inv = [x[0] for x in word_counts.most_common()] # Mapping from label to index vocabulary = {x: i for i, x in enumerate(vocabulary_inv)} return vocabulary, vocabulary_inv def build_iters(data_dir, max_records, train_fraction, batch_size, buckets=None): """ Reads a csv of sentences/tag sequences into a pandas dataframe. Converts into X = array(list(int)) & Y = array(list(int)) Splits into training and test sets Builds dictionaries mapping from index labels to labels/ indexed features to features :param data_dir: directory to read in csv data from :param max_records: total number of records to randomly select from input data :param train_fraction: fraction of the data to use for training :param batch_size: records in mini-batches during training :param buckets: size of each bucket in the iterators :return: train_iter, val_iter, word_to_index, index_to_word, pos_to_index, index_to_pos """ # Read in data as numpy array df = pd.read_pickle(os.path.join(data_dir, "ner_data.pkl"))[:max_records] # Get feature lists entities=[list(array) for array in df["BILOU_tag"].values] sentences = [list(array) for array in df["token"].values] chars=[[[c for c in word] for word in sentence] for sentence in sentences] # Build vocabularies entity_to_index, index_to_entity = build_vocab(entities) word_to_index, index_to_word = build_vocab(sentences) char_to_index, index_to_char = build_vocab([np.array([c for c in word]) for word in index_to_word]) save_obj(entity_to_index, os.path.join(args.data_dir, "tag_to_index")) # Map strings to integer values indexed_entities=[list(map(entity_to_index.get, l)) for l in entities] indexed_tokens=[list(map(word_to_index.get, l)) for l in sentences] indexed_chars=[[list(map(char_to_index.get, word)) for word in sentence] for sentence in chars] # Split into training and testing data idx=int(len(indexed_tokens)*train_fraction) logging.info("Preparing train/test datasets splitting at idx %d on total %d sentences using a batchsize of %d", idx, len(indexed_tokens), batch_size) X_token_train, X_char_train, Y_train = indexed_tokens[:idx], indexed_chars[:idx], indexed_entities[:idx] X_token_test, X_char_test, Y_test = indexed_tokens[idx:], indexed_chars[idx:], indexed_entities[idx:] # build iterators to feed batches to network train_iter = iterators.BucketNerIter(sentences=X_token_train, characters=X_char_train, label=Y_train, max_token_chars=5, batch_size=batch_size, buckets=buckets) logging.info("Creating the val_iter using %d sentences", len(X_token_test)) val_iter = iterators.BucketNerIter(sentences=X_token_test, characters=X_char_test, label=Y_test, max_token_chars=train_iter.max_token_chars, batch_size=batch_size, buckets=train_iter.buckets) return train_iter, val_iter, word_to_index, char_to_index, entity_to_index def sym_gen(seq_len): """ Build NN symbol depending on the length of the input sequence """ sentence_shape = train_iter.provide_data[0][1] char_sentence_shape = train_iter.provide_data[1][1] entities_shape = train_iter.provide_label[0][1] X_sent = mx.symbol.Variable(train_iter.provide_data[0].name) X_char_sent = mx.symbol.Variable(train_iter.provide_data[1].name) Y = mx.sym.Variable(train_iter.provide_label[0].name) ############################### # Character embedding component ############################### char_embeddings = mx.sym.Embedding(data=X_char_sent, input_dim=len(char_to_index), output_dim=args.char_embed, name='char_embed') char_embeddings = mx.sym.reshape(data=char_embeddings, shape=(0,1,seq_len,-1,args.char_embed), name='char_embed2') char_cnn_outputs = [] for i, filter_size in enumerate(args.char_filter_list): # Kernel that slides over entire words resulting in a 1d output convi = mx.sym.Convolution(data=char_embeddings, kernel=(1, filter_size, args.char_embed), stride=(1, 1, 1), num_filter=args.char_filters, name="char_conv_layer_" + str(i)) acti = mx.sym.Activation(data=convi, act_type='tanh') pooli = mx.sym.Pooling(data=acti, pool_type='max', kernel=(1, char_sentence_shape[2] - filter_size + 1, 1), stride=(1, 1, 1), name="char_pool_layer_" + str(i)) pooli = mx.sym.transpose(mx.sym.Reshape(pooli, shape=(0, 0, 0)), axes=(0, 2, 1), name="cchar_conv_layer_" + str(i)) char_cnn_outputs.append(pooli) # combine features from all filters & apply dropout cnn_char_features = mx.sym.Concat(*char_cnn_outputs, dim=2, name="cnn_char_features") regularized_cnn_char_features = mx.sym.Dropout(data=cnn_char_features, p=args.dropout, mode='training', name='regularized charCnn features') ################################## # Combine char and word embeddings ################################## word_embeddings = mx.sym.Embedding(data=X_sent, input_dim=len(word_to_index), output_dim=args.word_embed, name='word_embed') rnn_features = mx.sym.Concat(*[word_embeddings, regularized_cnn_char_features], dim=2, name='rnn input') ############################## # Bidirectional LSTM component ############################## # unroll the lstm cell in time, merging outputs bi_cell.reset() output, states = bi_cell.unroll(length=seq_len, inputs=rnn_features, merge_outputs=True) # Map to num entity classes rnn_output = mx.sym.Reshape(output, shape=(-1, args.lstm_state_size * 2), name='r_output') fc = mx.sym.FullyConnected(data=rnn_output, num_hidden=len(entity_to_index), name='fc_layer') # reshape back to same shape as loss will be reshaped_fc = mx.sym.transpose(mx.sym.reshape(fc, shape=(-1, seq_len, len(entity_to_index))), axes=(0, 2, 1)) sm = mx.sym.SoftmaxOutput(data=reshaped_fc, label=Y, ignore_label=-1, use_ignore=True, multi_output=True, name='softmax') return sm, [v.name for v in train_iter.provide_data], [v.name for v in train_iter.provide_label] def train(train_iter, val_iter): import metrics devs = mx.cpu() if args.gpus is None or args.gpus is '' else [mx.gpu(int(i)) for i in args.gpus.split(',')] logging.info("train on device %s using optimizer %s at learningrate %f for %d epochs using %d records: lstm_state_size=%d ...", devs, args.optimizer, args.lr, args.num_epochs, args.max_records, args.lstm_state_size) module = mx.mod.BucketingModule(sym_gen, train_iter.default_bucket_key, context=devs) module.fit(train_data=train_iter, eval_data=val_iter, eval_metric=metrics.composite_classifier_metrics(), optimizer=args.optimizer, optimizer_params={'learning_rate': args.lr }, initializer=mx.initializer.Uniform(0.1), num_epoch=args.num_epochs, epoch_end_callback=save_model()) if __name__ == '__main__': # parse args args = parser.parse_args() args.buckets = list(map(int, args.buckets.split(','))) if len(args.buckets) > 0 else None args.char_filter_list = list(map(int, args.char_filter_list.split(','))) # Build data iterators train_iter, val_iter, word_to_index, char_to_index, entity_to_index = build_iters(args.data_dir, args.max_records, args.train_fraction, args.batch_size, args.buckets) logging.info("validation iterator: %s", val_iter) # Define the recurrent layer bi_cell = mx.rnn.SequentialRNNCell() for layer_num in range(args.lstm_layers): bi_cell.add(mx.rnn.BidirectionalCell( mx.rnn.LSTMCell(num_hidden=args.lstm_state_size, prefix="forward_layer_" + str(layer_num)), mx.rnn.LSTMCell(num_hidden=args.lstm_state_size, prefix="backward_layer_" + str(layer_num)))) bi_cell.add(mx.rnn.DropoutCell(args.dropout)) train(train_iter, val_iter)
from turtle import * shape("arrow") speed(2) up() goto(-50,0) down() bgcolor("dodgerblue") color("white") begin_fill() for i in range(5): forward(100) right(144) end_fill() hideturtle()
from conf import spaces_settings def spaces_processor(request): """ Set global template variables. """ return { 'site_name': spaces_settings['SITE_NAME'] }
__author__ = 'vitor' from django.conf import settings from django.core.mail import send_mail from collections import defaultdict import string def enviar_email(obj): email_assunto = settings.EMAIL_SUBJECT habilidades = get_usuario_habilidades(obj) if habilidades: for habilidade in habilidades: mensagem = get_mensagem(habilidade=habilidade) send_mail(email_assunto, mensagem, settings.EMAIL_HOST_USER, [obj.email,]) else: mensagem = get_mensagem() send_mail(email_assunto, mensagem, settings.EMAIL_HOST_USER, [obj.email,]) def get_usuario_habilidades(obj): habilidades = [] if obj.html_c > 6 and obj.css_c > 6 and obj.javascript_c > 6: habilidades.append('Front End ') if obj.python_c > 6 and obj.django_c > 6: habilidades.append('Back End ') if obj.ios_c > 6 and obj.android_c > 6: habilidades.append('Mobile ') return habilidades def get_mensagem(**kwargs): return string.Formatter().vformat(settings.EMAIL_MESSAGE, (), defaultdict(str, **kwargs))
from datetime import datetime, date from marqeta.response_models import datetime_object import json import re class StoreResponseModel(object): def __init__(self, json_response): self.json_response = json_response def __str__(self): return json.dumps(self.json_response, default=self.json_serial) @staticmethod def json_serial(o): if isinstance(o, datetime) or isinstance(o, date): return o.__str__() @property def name(self): return self.json_response.get('name', None) @property def active(self): return self.json_response.get('active', None) @property def contact(self): return self.json_response.get('contact', None) @property def contact_email(self): return self.json_response.get('contact_email', None) @property def longitude(self): return self.json_response.get('longitude', None) @property def latitude(self): return self.json_response.get('latitude', None) @property def address1(self): return self.json_response.get('address1', None) @property def address2(self): return self.json_response.get('address2', None) @property def city(self): return self.json_response.get('city', None) @property def state(self): return self.json_response.get('state', None) @property def province(self): return self.json_response.get('province', None) @property def zip(self): return self.json_response.get('zip', None) @property def postal_code(self): return self.json_response.get('postal_code', None) @property def phone(self): return self.json_response.get('phone', None) @property def country(self): return self.json_response.get('country', None) @property def token(self): return self.json_response.get('token', None) @property def partial_auth_flag(self): return self.json_response.get('partial_auth_flag', None) @property def mid(self): return self.json_response.get('mid', None) @property def network_mid(self): return self.json_response.get('network_mid', None) @property def merchant_token(self): return self.json_response.get('merchant_token', None) @property def partial_approval_capable(self): return self.json_response.get('partial_approval_capable', None) @property def keyed_auth_cvv_enforced(self): return self.json_response.get('keyed_auth_cvv_enforced', None) @property def created_time(self): if 'created_time' in self.json_response: return datetime_object('created_time', self.json_response) @property def last_modified_time(self): if 'last_modified_time' in self.json_response: return datetime_object('last_modified_time', self.json_response) def __repr__(self): return '<Marqeta.response_models.store_response_model.StoreResponseModel>' + self.__str__()
import taichi as ti @ti.archs_support_sparse def test_pointer(): x = ti.field(ti.f32) s = ti.field(ti.i32) n = 16 ptr = ti.root.pointer(ti.i, n) ptr.dense(ti.i, n).place(x) ti.root.place(s) s[None] = 0 @ti.kernel def activate(): ti.activate(ptr, 1) ti.activate(ptr, 32) @ti.kernel def func(): for i in x: s[None] += 1 activate() func() assert s[None] == 32 test_pointer()
from lib.docker import client from settings.docker import HOSTNAME def all(driver='bridge'): return client.networks.list(filters={'driver': driver}) def get(network_id): return client.networks.get(network_id) def get_containers_from(network_id): network = get(network_id) if network: return network.containers return None def get_current(): """Returns the first network occurrance""" me = client.containers.get(HOSTNAME) nets = all() for net in nets: net.reload() if me in net.containers: return net, me return None, me
# -*- coding: utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Report.""" import ast class ReportRecord(object): """Record Class to record all data in one search loop.""" def __init__(self, step_name=None, worker_id=None, **kwargs): self._step_name = step_name self._worker_id = worker_id self._desc = None self._performance = None self._checkpoint_path = None self._model_path = None self._weights_file = None self._info = None self._epoch = 0 self._objectives = {} self._objective_keys = None self._rewards = None self._runtime = {} if kwargs: for key, value in kwargs.items(): setattr(self, key, value) def __hash__(self): """Override hash code.""" return hash(self.uid) def __eq__(self, other): """Override eq func, step name and worker id is same.""" return self.uid == other.uid def __repr__(self): """Override repr, output all record attrs.""" return str( {'step_name': self._step_name, 'worker_id': self._worker_id, 'desc': self._desc, 'epoch': self._epoch, 'performance': self._performance, 'checkpoint_path': self._checkpoint_path, 'model_path': self._model_path, 'weights_file': self._weights_file, 'info': self._info, 'objectives': self._objectives, '_objective_keys': self._objective_keys, 'rewards': self.rewards, 'runtime': self._runtime}) def __gt__(self, other): """Override gt for sorted according to performance attr.""" return self.rewards > other.rewards @property def uid(self): """Uid for record. ReadOnly.""" return '{}_{}_{}'.format(self.step_name, self.worker_id, self.epoch) @property def epoch(self): """Get epoch.""" return self._epoch @epoch.setter def epoch(self, value): """Set epoch.""" self._epoch = value @property def step_name(self): """Get Step name.""" return self._step_name @step_name.setter def step_name(self, value): """Set Step name.""" self._step_name = value @property def worker_id(self): """Get worker id.""" return self._worker_id @worker_id.setter def worker_id(self, value): """Set worker id.""" self._worker_id = value @property def desc(self): """Get desc.""" return self._desc @desc.setter def desc(self, value): """Set desc and parse value into dict.""" if isinstance(value, str): value = ast.literal_eval(value) self._desc = value @property def performance(self): """Get performance.""" return self._performance @performance.setter def performance(self, value): """Set performance and parse value into dict.""" if isinstance(value, str): value = ast.literal_eval(value) self._performance = value @property def checkpoint_path(self): """Get checkpoint_path.""" return self._checkpoint_path @checkpoint_path.setter def checkpoint_path(self, value): """Set checkpoint_path and parse value into dict.""" self._checkpoint_path = value @property def model_path(self): """Get model_path.""" return self._model_path @model_path.setter def model_path(self, value): """Set model_path and parse value into dict.""" self._model_path = value @property def weights_file(self): """Get weights file.""" return self._weights_file @weights_file.setter def weights_file(self, value): """Set weights_file and parse value int dict.""" self._weights_file = value @property def info(self): """Get rung id.""" return self._info @info.setter def info(self, value): """Set rung id.""" self._info = value @property def objectives(self): """Get objectives.""" return self._objectives @objectives.setter def objectives(self, value): """Set objectives.""" self._objectives = value @property def objective_keys(self): """Get objective_keys.""" return self._objective_keys @objective_keys.setter def objective_keys(self, value): """Set objective_keys.""" self._objective_keys = value if isinstance(value, list) else [value] @property def rewards(self): """Get reward_performance(ReadOnly).""" if not self.performance: return None if isinstance(self.performance, list): return self.performance if not self.objective_keys: self._objective_keys = list(self.performance.keys()) res = [] for obj in self.objective_keys: if isinstance(obj, int): obj = list(self.performance.keys())[obj] value = self.performance.get(obj) if value is None: raise ValueError("objective_keys in search_algorithm should be the same in trainer.metrics.") if self.objectives.get(obj) == 'MIN': value = -value res.append(value) return res[0] if len(res) == 1 else res @rewards.setter def rewards(self, value): """Get rewards, ReadOnly property.""" self._rewards = value @property def runtime(self): """Get runtime.""" return self._runtime @runtime.setter def runtime(self, value): """Set runtime.""" self._runtime = value @classmethod def from_dict(cls, src_dic): """Create report class from dict.""" src_cls = cls() if src_dic: for key, value in src_dic.items(): setattr(src_cls, key, value) return src_cls def load_dict(self, src_dic): """Load values from dict.""" if src_dic: for key, value in src_dic.items(): setattr(self, key, value) return self def from_sample(self, sample, desc=None): """Load values from sample.""" if isinstance(sample, tuple): sample = dict(worker_id=sample[0], desc=sample[1]) self.load_dict(sample) if desc: self.desc = desc return self def serialize(self): """Serialize record class into a dict.""" return ast.literal_eval(self.__repr__())
# Built-in modules # import os, sh, glob, shutil, stat # Internal modules # from seqenv.common import unzip from seqenv.common.cache import property_cached ################################################################################ class DirectoryPath(str): def __repr__(self): return '<%s object "%s">' % (self.__class__.__name__, self.path) @classmethod def clean_path(cls, path): """Given a path, return a cleaned up version for initialization.""" # Conserve 'None' object style # if path is None: return None # Don't nest DirectoryPaths or the like # if hasattr(path, 'path'): path = path.path # Expand the tilda # if "~" in path: path = os.path.expanduser(path) # Our standard is to end with a slash for directories # if not path.endswith('/'): path += '/' # Return the result # return path def __new__(cls, path, *args, **kwargs): """A DirectoryPath is in fact a string""" return str.__new__(cls, cls.clean_path(path)) def __init__(self, path): self.path = self.clean_path(path) @property def name(self): """Just the directory name""" return os.path.basename(os.path.dirname(self.path)) @property def exists(self): """Does it exist in the file system?""" return os.path.lexists(self.path) # Include broken symlinks @property def absolute_path(self): """The absolute path starting with a `/`""" return os.path.abspath(self.path) + '/' @property def is_symlink(self): """Is this directory a symbolic link to an other directory?""" return os.path.islink(self.path.rstrip('/')) @property def directory(self): """The full path of directory containing this one""" return DirectoryPath(os.path.dirname(os.path.dirname(self.path))) @property def permissions(self): """Convenience object for dealing with permissions.""" return FilePermissions(self.path) def remove(self): if not self.exists: return False if self.is_symlink: return self.remove_when_symlink() shutil.rmtree(self.path, ignore_errors=True) return True def remove_when_symlink(self): if not self.exists: return False os.remove(self.path.rstrip('/')) return True def create(self, safe=False, inherit=True): # Create it # if not safe: os.makedirs(self.path) if inherit: os.chmod(self.path, self.directory.permissions.number) if safe: try: os.makedirs(self.path) if inherit: os.chmod(self.path, self.directory.permissions.number) except OSError: pass def create_if_not_exists(self): if not self.exists: self.create() ################################################################################ class FilePath(str): """I can never remember all those darn `os.path` commands, so I made a class that wraps them with an easier and more pythonic syntax. path = FilePath('/home/root/text.txt') print path.extension print path.directory print path.filename You can find lots of the common things you would need to do with file paths. Such as: path.make_executable() etc etc.""" def __new__(cls, path, *args, **kwargs): """A FilePath is in fact a string""" return str.__new__(cls, cls.clean_path(path)) def __init__(self, path): self.path = self.clean_path(path) def __iter__(self): return open(self.path) def __len__(self): if self.path is None: return 0 return self.count_lines @classmethod def clean_path(cls, path): """Given a path, return a cleaned up version for initialization""" # Conserve None object style # if path is None: return None # Don't nest FilePaths or the like # if hasattr(path, 'path'): path = path.path # Expand tilda # if "~" in path: path = os.path.expanduser(path) # Expand star # if "*" in path: matches = glob.glob(path) if len(matches) < 1: raise Exception("Found exactly no files matching '%s'" % path) if len(matches) > 1: raise Exception("Found several files matching '%s'" % path) path = matches[0] # Return the result # return path @property_cached def count_lines(self): return int(sh.wc('-l', self.path).split()[0]) @property def exists(self): """Does it exist in the file system. Returns True or False.""" return os.path.lexists(self.path) @property def prefix_path(self): """The full path without the (last) extension and trailing period""" return str(os.path.splitext(self.path)[0]) @property def prefix(self): """Just the filename without the (last) extension and trailing period""" return str(os.path.basename(self.prefix_path)) @property def filename(self): """Just the filename with the extension""" return str(os.path.basename(self.path)) @property def extension(self): """The extension with the leading period""" return os.path.splitext(self.path)[1] @property def absolute_path(self): """The absolute path starting with a `/`""" return os.path.abspath(self.path) @property def directory(self): """The directory containing this file""" # The built-in function # directory = os.path.dirname(self.path) # Maybe we need to go the absolute path way # if not directory: directory = os.path.dirname(self.absolute_path) # Return # return DirectoryPath(directory+'/') @property def count_bytes(self): """The number of bytes""" if not self.exists: return 0 return os.path.getsize(self.path) def remove(self): if not self.exists: return False os.remove(self.path) return True def write(self, contents): with open(self.path, 'w') as handle: handle.write(contents) def writelines(self, contents): with open(self.path, 'w') as handle: handle.writelines(contents) def must_exist(self): """Raise an exception if the path doesn't exist.""" if not self.exists: raise Exception("The file path '%s' does not exist." % self.path) @property def size(self): """Human readable file size""" return Filesize(self.count_bytes) def link_from(self, path, safe=False): """Make a link here pointing to another file somewhere else. The destination is hence self.path and the source is *path*.""" # Get source and destination # source = path destination = self.path # Do it # if not safe: if os.path.exists(destination): os.remove(destination) os.symlink(source, destination) # Do it safely # if safe: try: os.remove(destination) except OSError: pass try: os.symlink(source, destination) except OSError: pass def link_to(self, path, safe=False, absolute=True): """Create a link somewhere else pointing to this file. The destination is hence *path* and the source is self.path.""" # Get source and destination # if absolute: source = self.absolute_path else: source = self.path destination = path # Do it # if not safe: if os.path.exists(destination): os.remove(destination) os.symlink(source, destination) # Do it safely # if safe: try: os.remove(destination) except OSError: pass try: os.symlink(source, destination) except OSError: pass def unzip_to(self, destination=None, inplace=False): """Make an unzipped version of the file at a given path""" return unzip(self.path, destination=destination, inplace=inplace) ################################################################################ class FilePermissions(object): """Container for reading and setting a files permissions""" def __init__(self, path): self.path = path @property def number(self): """The permission bits as an octal integer""" return os.stat(self.path).st_mode & 0777 def make_executable(self): return os.chmod(self.path, os.stat(self.path).st_mode | stat.S_IEXEC) def only_readable(self): """Remove all writing privileges""" return os.chmod(self.path, stat.S_IRUSR | stat.S_IRGRP | stat.S_IROTH) ################################################################################ class Filesize(object): """ Container for a size in bytes with a human readable representation Use it like this: >>> size = Filesize(123123123) >>> print size '117.4 MiB' """ chunk = 1000 # Could be 1024 if you like old-style sizes units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB'] precisions = [0, 0, 1, 2, 2, 2] def __init__(self, size): self.size = size def __int__(self): return self.size def __eq__(self, other): return self.size == other def __str__(self): if self.size == 0: return '0 bytes' from math import log unit = self.units[min(int(log(self.size, self.chunk)), len(self.units) - 1)] return self.format(unit) def format(self, unit): # Input checking # if unit not in self.units: raise Exception("Not a valid file size unit: %s" % unit) # Special no plural case # if self.size == 1 and unit == 'bytes': return '1 byte' # Compute # exponent = self.units.index(unit) quotient = float(self.size) / self.chunk**exponent precision = self.precisions[exponent] format_string = '{:.%sf} {}' % (precision) # Return a string # return format_string.format(quotient, unit)
from num2words import num2words import Python_Education_Base.GeekBrains_Python_Base_Work_With_Files_Practice.generators as Generarators import re filename = 'ex4.txt' Generarators.ex4_gen(filename, 1000) with open(filename, 'r') as f: pattern = re.compile(r"(.+)-(\d+)", re.UNICODE) for line in f.readlines(): (name, digit) = pattern.search(line).groups() digit = int(digit) print(f'{num2words(digit, lang="ru")}-{digit}')
from __future__ import print_function import json import boto3 import traceback ddb = boto3.client('dynamodb', region_name = 'cn-northwest-1') #print('Loading function') event_delete = { "Records": [ { "eventID": "9bc813d4c24bcc307147ac25a170b44d", "eventVersion": "1.1", "dynamodb": { "Keys": { "recordId": { "N": "0" } }, "ApproximateCreationDateTime": 1542016080.0, "StreamViewType": "NEW_IMAGE", "SequenceNumber": "4795000000000000599541765", "SizeBytes": 9 }, "awsRegion": "cn-north-1", "eventName": "REMOVE", "eventSourceARN": "arn:aws-cn:dynamodb:cn-north-1:741251161495:table/ddb_stream_test/stream/2018-11-11T09:16:30.755", "eventSource": "aws:dynamodb" } ] } event_insert = { "Records": [ { "eventID": "880dff58ebad9ab4b164ba6d63e96d92", "eventVersion": "1.1", "dynamodb": { "SequenceNumber": "3270900000000001940388956", "Keys": { "recordId": { "N": "3" } }, "SizeBytes": 70, "NewImage": { "name": { "S": "ccc" }, "gold": { "N": "110" }, "level": { "N": "3" }, "recordId": { "N": "3" }, "timestamp": { "N": "1541990916" }, "role": { "S": "freelancer" } }, "ApproximateCreationDateTime": 1541990940.0, "StreamViewType": "NEW_IMAGE" }, "awsRegion": "cn-north-1", "eventName": "INSERT", "eventSourceARN": "arn:aws-cn:dynamodb:cn-north-1:741251161495:table/ddb_stream_test/stream/2018-11-11T09:16:30.755", "eventSource": "aws:dynamodb" } ] } event = event_insert def lambda_handler(event, context): #print("Received event: " + json.dumps(event, indent=2)) for record in event['Records']: print("eventID " + record['eventID']) print("eventName " + record['eventName']) #print("DynamoDB Record: " + json.dumps(record['dynamodb'], indent=2)) #print("DynamoDB Record: " + json.dumps(record['dynamodb'], indent=2)) #print("New Image: " + json.dumps(record['dynamodb']['NewImage'])) #print(record['dynamodb']['Keys']) if record['eventName'] == 'INSERT' or record['eventName'] == 'MODIFY': try: response = ddb.put_item( TableName = 'ddb_stream_test_zhy', Item = record['dynamodb']['NewImage'] ) except Exception: print("cannot put_item to ddb") #traceback.print_exc() print(traceback.format_exc()) else: print(response) if record['eventName'] == 'REMOVE': try: response = ddb.delete_item( TableName = 'ddb_stream_test_zhy', Key = record['dynamodb']['Keys'] ) except Exception: print("cannot delete_item to ddb") print(traceback.format_exc()) else: print(response) return 'Successfully processed {} records.'.format(len(event['Records'])) if __name__ == "__main__": context = None print(lambda_handler(event, context))
import re from urllib.request import urlretrieve dev_settings_path = "hifireg/hifireg/settings/developer.py" def wget(url, dest_path): urlretrieve(url, dest_path) def get_current_database_postfix(): try: with open(dev_settings_path, "r") as f: for line in f: match_list = re.findall("hifiregdb_(.*)'", line) if match_list: return match_list[0] except FileNotFoundError: pass return "dev" def replace_database_postfix(postfix_default): postfix = input(f"Enter your database postfix [{postfix_default}]: ") postfix = postfix if postfix else postfix_default db_original = "hifiregdb_dev" db_new = f"hifiregdb_{postfix}" print(f"Your database name is: {db_new}") with open(dev_settings_path, "r") as f: lines = f.readlines() with open(dev_settings_path, "w") as f: for line in lines: f.write(re.sub(db_original, db_new, line)) def get_dev_settings(url, dest_path): postfix_default = get_current_database_postfix() wget(url, dest_path) replace_database_postfix(postfix_default)
import requests import flask import yfinance as yf from pandas_datareader import data as pdr import dash_table import pandas as pd import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output from datetime import datetime as dt from datetime import date import re import plotly.express as px import dash_table from app import app from utils import Header layout = dbc.Container([ Header(app), dcc.Store(id="ticker-info"), dcc.Store(id="ticker-stock-prices"), dbc.Row([ # Left Config dbc.Col([ html.I("Please enter a ticker name"), html.Br(), dcc.Input(id="ticker_name", type="text", placeholder="", debounce=True), # html.Div(id="output"), ]), # Right Config dbc.Col([ dcc.DatePickerRange( id='my-date-picker-range', min_date_allowed=dt(1995, 8, 5), max_date_allowed=date.today(), initial_visible_month=dt(2017, 8, 5), end_date=date.today(), ), ]) ], style={ 'borderBottom': 'thin lightgrey solid', 'backgroundColor': 'rgb(250, 250, 250)', 'padding': '10px 5px' }), # Left Graph html.Div([ dcc.Graph(id="line-graph") ]), # html.Div(id="ticker-info-summary", style={'display':'none'}, children=[ # ]) html.Details([ html.Summary('Business Summary'), html.Div(id="ticker-info-summary") ]), dbc.Row([ dbc.Col([dcc.Graph(id="polar-graph-1")]), dbc.Col([dcc.Graph(id="polar-graph-2")]) ]), html.Div([ dash_table.DataTable( id='datatable-row-ids', columns=[{'name': 'Date', 'id': 'Date', 'deletable': True}, {'name': 'Open', 'id': 'Open', 'deletable': True}, {'name': 'High', 'id': 'High', 'deletable': True}, {'name': 'Low', 'id': 'Low', 'deletable': True}, {'name': 'Close', 'id': 'Close', 'deletable': True}, {'name': 'Adj Close', 'id': 'Adj Close', 'deletable': True}, {'name': 'Volume', 'id': 'Volume', 'deletable': True}], page_current=0, page_size=10, page_action='custom' ) ]) # # Right Graph # html.Div([ # dcc.Graph(id='x-time-series'), # dcc.Graph(id='y-time-series'), # ], style={'display': 'inline-block', 'width': '49%'}), # Slider # html.Div(dcc.Slider( # id='crossfilter-year--slider', # min=df['Year'].min(), # max=df['Year'].max(), # value=df['Year'].max(), # marks={str(year): str(year) for year in df['Year'].unique()}, # step=None # ), style={'width': '49%', 'padding': '0px 20px 20px 20px'}) ]) def get_period_data(ticker_name, start_date, end_date): # download dataframe df = pdr.get_data_yahoo(ticker_name, start=start_date, end=end_date) for col in df.columns: df[col] = df[col].map(lambda x: '{0:.2f}'.format(x)) df.reset_index(inplace=True) fig = px.line(df, x='Date', y = [col for col in df.columns if (col != 'Date' and col != 'Volume')], title= f"Stock Price for {ticker_name.upper()}") return fig, df.to_dict('records') def get_ticker_info(ticker_name): try: data = yf.Ticker(ticker_name) return data.info except: return {} @app.callback( [Output('line-graph', 'figure'), Output('ticker-info', 'data'), Output('ticker-stock-prices', 'data')], [Input('my-date-picker-range', 'start_date'), Input('my-date-picker-range', 'end_date'), Input('ticker_name', 'value')]) def update_output(start_date, end_date, ticker_name): fig = px.line() ticker_info = {} stock_prices = {} if start_date is not None: start_date = dt.strptime(re.split('T| ', start_date)[0], '%Y-%m-%d') if end_date is not None: end_date = dt.strptime(re.split('T| ', end_date)[0], '%Y-%m-%d') if start_date and end_date and ticker_name: print (f"start date is: {start_date}") print (f"end date is: {end_date}") fig, stock_prices = get_period_data(ticker_name, start_date, end_date) fig.update_layout(transition_duration=500) ticker_info = get_ticker_info(ticker_name) return fig, ticker_info, stock_prices @app.callback( Output('ticker-info-summary', 'children'), [Input('ticker-info', 'data')] ) def update_summary(data): if data: if 'longBusinessSummary' in data: return data['longBusinessSummary'] else: return "Summary Not Available" else: return "" @app.callback( [Output("polar-graph-1", 'figure'), Output("polar-graph-2", 'figure')], [Input('ticker_name', 'value')] ) def update_recommendations(ticker_name): try: ticker_name = ticker_name.upper() data = yf.Ticker(ticker_name) recommends = data.recommendations one_month_recommends = recommends[recommends.index >= date.today() - pd.DateOffset(months=1)] three_month_recommends = recommends[recommends.index >= date.today() - pd.DateOffset(months=3)] one_month_value_counts = one_month_recommends['To Grade'].value_counts(dropna=True).to_dict() one_month_value_counts = {k: v for k, v in one_month_value_counts.items() if k} one_month_df = pd.DataFrame(dict( r = list(one_month_value_counts.values()), theta = list(one_month_value_counts.keys()) )) one_month_fig = px.line_polar(one_month_df, r='r', theta='theta', line_close=True, title= f'1 Month Recommendations for {ticker_name}') one_month_fig.update_traces(fill='toself') three_month_value_counts = three_month_recommends['To Grade'].value_counts(dropna=True).to_dict() three_month_value_counts = {k: v for k, v in three_month_value_counts.items() if k} three_month_df = pd.DataFrame(dict( r = list(three_month_value_counts.values()), theta = list(three_month_value_counts.keys()) )) three_month_fig = px.line_polar(three_month_df, r='r', theta='theta', line_close=True, title= f'3 Months Recommendations for {ticker_name}') three_month_fig.update_traces(fill='toself') return one_month_fig, three_month_fig except: return px.line_polar(), px.line_polar() @app.callback( Output("datatable-row-ids", 'data'), [Input('ticker-stock-prices', 'data'), Input('datatable-row-ids', "page_current"), Input('datatable-row-ids', "page_size")] ) def update_table(data, page_current, page_size): try: if data: return data[page_current*page_size:(page_current+ 1)*page_size] except: return []
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import argparse import csv import logging import gzip from bs4 import BeautifulSoup from scraper import SimpleScraper, SeleniumScraper from random import randint import requests IA_WEB_BASE_URL = 'http://web.archive.org' def setup_logger(): """ Set up logging """ logfilename = "ia-scraper.log" logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M', filename=logfilename, filemode='a') console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter('%(message)s') console.setFormatter(formatter) logging.getLogger('').addHandler(console) return logfilename def download_webpage(url, filepath, compress=False, selenium=False): scraper = SimpleScraper() html = scraper.get(url) if selenium: if not html or html.find('Redirecting to...') != -1: return scraper = SeleniumScraper() html = scraper.get(url) scraper.driver.close() if not html: html = '' logging.info("Saving to file {0:s}".format(filepath)) if compress: with gzip.open(filepath, 'wb') as f: f.write(bytes(html, 'utf-8')) else: with open(filepath, 'w', encoding='utf-8') as f: f.write(html) def get_web_archive_snapshots(base_url, ia_url, year): url_fmt = '{0:s}/__wb/calendarcaptures?url={1:s}&selected_year={2:d}' url = url_fmt.format(base_url, ia_url, year) user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.47 Safari/537.36' headers = {'User-Agent': user_agent} r = requests.get(url, headers=headers) ts = [] if r.status_code == 200: a = r.json() for b in a: for c in b: for d in c: if d and 'ts' in d: ts.extend(d['ts']) url_fmt = '/web/{0:d}/{1:s}' snapshots = [] for s in ts: url = url_fmt.format(s, ia_url) snapshots.append(url) return snapshots if __name__ == "__main__": logfilename = setup_logger() parser = argparse.ArgumentParser(description='Homepages scraper') parser.add_argument('input', default=None) parser.add_argument('-c', '--config', default='top10.cfg', help='Configuration file') parser.add_argument('-d', '--dir', default='internet_archive', help='Output directory for HTML files') parser.add_argument('--overwritten', dest='overwritten', action='store_true', help='Overwritten if HTML file exists') parser.set_defaults(overwritten=False) parser.add_argument('-s', '--statistics', dest='statistics', action='store_true', help='Run the script to count amount of snapshots') parser.set_defaults(statistics=False) parser.add_argument('--compress', dest='compress', action='store_true', help='Compress download HTML files') parser.set_defaults(compress=False) parser.add_argument('--selenium', dest='selenium', action='store_true', help='Use Selenium to download dynamics HTML content') parser.set_defaults(selenium=False) args = parser.parse_args() logging.info(args) # to keep scraped data if not os.path.exists(args.dir): os.makedirs(args.dir) with open(args.input) as f: reader = csv.DictReader(f) total = 0 for r in reader: src = r['src'] ia_url = r['ia_url'] if ia_url == '': continue end = int(r['ia_year_end'][:4]) begin = int(r['ia_year_begin'][:4]) current = end sub_total = 0 while current >= begin: logging.info("Visit yearly snapshots: {0:d}".format(current)) links = get_web_archive_snapshots(IA_WEB_BASE_URL, ia_url, current) if not args.statistics: for l in links: href = l print(href) today = href.split('/')[2] logging.info("Today: {0:s}".format(today)) month = int(today[4:6]) date = today[:8] if date <= r['ia_year_begin'] or date >= r['ia_year_end']: continue filename = '{0:s}_ia_{1:s}.html'.format(src, today) filepath = os.path.join(args.dir, filename) if args.compress: filepath += '.gz' if args.overwritten or not os.path.exists(filepath): url = IA_WEB_BASE_URL + href download_webpage(url, filepath, args.compress, args.selenium) else: logging.info("Existing, skipped...") #break logging.info("Year: {0:d}, {1:d} snapshots" .format(current, len(links))) sub_total += len(links) current -= 1 #break logging.info("Source: {0:s}, {1:d} snapshots" .format(src, sub_total)) total += sub_total #break logging.info("Total: {0:d} snapshots".format(total)) logging.info("Done")
from graphene_django.types import DjangoObjectType from kollect.models import Like class LikeNode(DjangoObjectType): class Meta: model = Like name = "Like"
""" Countries and cities models """ from django.db import models class Country(models.Model): name = models.CharField("Country name", max_length=50) def __str__(self): return self.name class City(models.Model): name = models.CharField("City name", max_length=50) country_id = models.ForeignKey(Country, on_delete=models.CASCADE) def __str__(self): return f'{self.name}, {self.country_id}'
from test import * from MR import * t=Test() def test_nbit_odd(data): out=nbit_odd(*data) if out%2==0: return False n=data[0] for i in range(n-1): out//=2 if out>2: return False out//=2 if out!=0: return False return True t.regist(nbit_odd) t.regist(test_nbit_odd) t.add(nbit_odd,[10]) t.add(nbit_odd,[1024]) t.regist(is_MRnonwitness) t.add(is_MRnonwitness,[6,7,True]) t.add(is_MRnonwitness,[2,101,True]) t.add(is_MRnonwitness,[4,101,True]) t.add(is_MRnonwitness,[66,101,True]) t.add(is_MRnonwitness,[67,101,True]) t.add(is_MRnonwitness,[3,25,False]) def test_generate_prime(data): out=generate_prime(*data) if data[0]==1: return False elif data[0]==2: if out in [3]: return True elif data[0]==3: if out in [5,7]: return True elif data[0]==4: if out in [11,13]: return True else: return True return False t.regist(generate_prime) t.regist(test_generate_prime) t.add(generate_prime,[2]) t.add(generate_prime,[3]) t.add(generate_prime,[4]) t.test()
import re import unicodedata from .base import Service, Tokenizer, triples def maketrans_remove(accents=("COMBINING ACUTE ACCENT", "COMBINING GRAVE ACCENT")): """ Makes a translation for removing accents from a string. """ return str.maketrans("", "", "".join([unicodedata.lookup(a) for a in accents])) class ClancyService(Service): """ headword/lemma retrieval from Steven Clancy's russian database. >>> clancy = ClancyService(lang="rus") >>> clancy.lemmatize("газету") ['газета'] >>> clancy.lemmatize("дела") ['дело', 'деть'] >>> clancy.lemmatize("ру́сская") ['русский'] >>> clancy.lemmatize("все") ['весь', 'все', 'всё'] >>> clancy.lemmatize("мороженое") ['мороженый', 'мороженое'] """ SID = "clancy" LANGUAGES = ["rus"] ENDPOINT = "http://visualizingrussian.fas.harvard.edu/api/lemmatize" def _build_params(self, form): return dict(word=form) def _response_to_lemmas(self, response): if response.ok: body = response.json().get("data", {}).get("lemmas", []) if not isinstance(body, list): body = [] else: body = [] lemmas = [item["label"] for item in body] return lemmas class RUSTokenizer(Tokenizer): """ Tokenizer for Russian. """ TRANSLATION_REMOVE_ACCENTS = maketrans_remove(accents=( "COMBINING ACUTE ACCENT", "COMBINING GRAVE ACCENT", "COMBINING X ABOVE" )) def tokenize(self, text): """ The logic below ensures that accented words aren't split and that certain hyphenated words are treated as a single token. For reference: 0400-04FF is the cyrillic unicode block 0300-036F is the combining diacritical marks block """ text = unicodedata.normalize("NFC", text) # normalize tokens = re.split(r"([^-\u0400-\u04FF\u0300-\u036F]+)", text) tokens = self._split_hyphenated(tokens) return triples(tokens, normalize=self._normalize) def _normalize(self, token): """ Removes accents from the text. """ token = unicodedata.normalize("NFD", token) token = token.translate(self.TRANSLATION_REMOVE_ACCENTS) return unicodedata.normalize("NFC", token) def _split_hyphenated(self, tokens): """ Splits hyphenated tokens with some exceptions for prefixes/suffixes. """ prefixes = ("по-", "кое-") suffixes = ("-либо", "-ка", "-нибудь", "-то") processed = [] for token in tokens: if "-" in token: w = self._normalize(token) if any([w.startswith(s) for s in prefixes]) or any([w.endswith(s) for s in suffixes]): processed.append(token) else: for t in re.split(r"(-)", token): processed.append(t) else: processed.append(token) return processed
from .core import search_rental, search_reserve # noqa F401
from app.notify_client.inbound_number_client import InboundNumberClient def test_add_inbound_sms_number(mocker, api_user_active): inbound_number = '12345678901' expected_url = '/inbound-number/add' client = InboundNumberClient() mock_post = mocker.patch('app.notify_client.inbound_number_client.InboundNumberClient.post') client.add_inbound_sms_number(inbound_number) mock_post.assert_called_once_with( url=expected_url, data={'inbound_number': inbound_number} )
"""samples URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls import url from django.contrib.auth import views as auth_views urlpatterns = [ path('', include('home.urls')), # Change to ads.urls path('admin/', admin.site.urls), # Keep path('accounts/', include('django.contrib.auth.urls')), # Keep url(r'^oauth/', include('social_django.urls', namespace='social')), # Keep # Sample applications path('hello/', include('hello.urls')), path('users/', include('users.urls')), path('tracks/', include('tracks.urls')), path('views/', include('views.urls')), path('route/', include('route.urls', namespace='nsroute')), path('tmpl/', include('tmpl.urls')), path('gview/', include('gview.urls')), path('session/', include('session.urls')), path('authz/', include('authz.urls')), path('getpost/', include('getpost.urls')), path('form/', include('form.urls')), path('crispy/', include('crispy.urls')), path('myarts/', include('myarts.urls')), path('menu/', include('menu.urls')), path('forums/', include('forums.urls')), path('pics/', include('pics.urls')), path('favs/', include('favs.urls')), path('favsql/', include('favsql.urls')), path('rest/', include('rest.urls')), path('autos/', include('autos.urls')), path('usermodel/', include('usermodel.urls')), path('chat/', include('chat.urls')), path('util/', include('util.urls')), ] # Serve the favicon - Keep for later import os from django.views.static import serve BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) urlpatterns += [ path('favicon.ico', serve, { 'path': 'favicon.ico', 'document_root': os.path.join(BASE_DIR, 'home/static'), } ), ] # Switch to social login if it is configured - Keep for later try: from . import github_settings social_login = 'registration/login_social.html' urlpatterns.insert(0, path('accounts/login/', auth_views.LoginView.as_view(template_name=social_login)) ) print('Using',social_login,'as the login template') except: print('Using registration/login.html as the login template') # References # https://docs.djangoproject.com/en/2.2/ref/urls/#include
import matplotlib.pyplot as plt import math # this is a helper script to properly choose the epsilon rate of decay during DQN training start = 1.0 end = 0.1 decay = 14000 steps = 80000 thresholds = [] for i in range(steps): threshold = end + (start - end) * \ math.exp(-1 * i / decay) thresholds.append(threshold) iters = [i for i in range(steps)] plt.plot(iters, thresholds) plt.show()
# Looks like it relies on precisions from C # Running it as C (https://www.codechef.com/ide) gives: c_output = '0001010203040406090c0d12282d2e3034' # Running it as superhack (http://www.hacker.org/sh/) gives: superhack_output = '102'
# Copyright MaxAndMitchCorp 2020 from trust_simulator import TrustSimulator from society import Society from institution import Institution import pytest @pytest.mark.parametrize("alpha", [(1), (0.05)]) def test_societal_convergence(alpha): society = Society(population_size=100, connectivity_probability=0.1) institution = Institution(society = society) trust_simulator = TrustSimulator() societal_trust = trust_simulator.simulate_society(society=society, institution = institution, iterations=10, alpha=alpha) assert sum(societal_trust) < 1000 def test_edges_dynamic(): # Test to make sure that given a fairly low affiliation probability, that # is, one less than the starting connectivity probability, then the number # of edges decreases over the course of a simulation. # Instantiate the society society = Society(population_size=100, connectivity_probability=0.3) institution = Institution(society = society) # Count the number of edges to start count1 = 0 for person_id_first in range(society.population_size): for person_id_second in range(society.population_size): if society.edge_matrix[person_id_first][person_id_second]==1: count1 = count1 + 1 else: pass # Simulate the society through with an affiliation probability half that # of what it started with. trust_simulator = TrustSimulator() societal_trust = trust_simulator.simulate_society(society=society, institution = institution, iterations = 30, alpha = 0.1, affiliation_prob = 0.15) # Count the edges again with the simulated society. count2 = 0 for person_id_first in range(society.population_size): for person_id_second in range(society.population_size): if society.edge_matrix[person_id_first][person_id_second]==1: count2 = count2 + 1 else: pass # Assert that count1 should be greater than count2 assert count1 > count2 def test_number_edges(): # This test is to make sure that given an affiliation probability close to # 1/2, the number of edges formed with the node is neither close to 0 # nor the population size by the end of the simulation. # Instantiate the society and institution society = Society(population_size=100, connectivity_probability=0.5) institution = Institution(society = society) # Simulate the society trust_simulator = TrustSimulator() societal_trust = trust_simulator.simulate_society(society = society, institution = institution, iterations = 30, alpha = 0.1, affiliation_prob = 0.5) # Assert for every node that the number of edges is neither 0 nor 100 count = 0 for person_id_first in range(society.population_size): for person_id_second in range(society.population_size): if society.edge_matrix[person_id_first][person_id_second]==1: count = count + 1 assert ((count > 0) and (count < society.population_size)) count = 0
# ニュートン法の収束地図の原点拡大アニメーションを作成するコード from PIL import Image, ImageDraw from numba import jit @jit def newton(x): for _ in range(50): x = x - (x**3-1)/(3*x**2) return x @jit def plot(draw, s, mag): hs = s/2 red = (255, 0, 0) green = (0, 255, 0) blue = (0, 0, 255) for x in range(s): for y in range(s): z = complex(x-hs+0.5, y-hs+0.5)/128*mag z = newton(z) if z.real > 0: c = red else: if z.imag > 0: c = green else: c = blue draw.rectangle([x, y, x+1, y+1], fill=c) @jit def save_files(index): mag = (100.0 - index) / 100 filename = "map{:02d}.png".format(index) print(filename, mag) size = 512 im = Image.new("RGB", (size, size)) draw = ImageDraw.Draw(im) plot(draw, size, mag) im.save(filename) for i in range(100): save_files(i)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from pathlib import Path from typing import (Callable, Iterable, Iterator, List, Sequence, Tuple, TypeVar, Union) SHOW_FUNC_DATA = Sequence[Path] SHOW_FUNC = Callable[[bool, SHOW_FUNC_DATA], None] DIFF_FUNC = Callable[ [Sequence[str], Sequence[str]], Iterable[str]] GEN_PATH_FUNC = Callable[[Path], Tuple[Path, Path]] PATH_FUNC = Callable[[Path], Path]
from MonkeyBook.extensions import db from sqlalchemy_utils import EmailType from sqlalchemy import ForeignKeyConstraint monkey_friends = db.Table('monkey_friends', db.Column( 'monkey_id', db.Integer, db.ForeignKey('monkey.id', onupdate='CASCADE', ondelete='CASCADE'), primary_key=True ), db.Column( 'friend_id', db.Integer, db.ForeignKey('monkey.id', onupdate='CASCADE', ondelete='CASCADE'), primary_key=True ) ) best_friends = db.Table('best_friends', db.Column('monkey_id', db.Integer, primary_key=True), db.Column('friend_id', db.Integer), ForeignKeyConstraint( ['monkey_id', 'friend_id'], ['monkey_friends.monkey_id', 'monkey_friends.friend_id'], name='fk_favorite_entry', use_alter=True, onupdate='CASCADE', ondelete='CASCADE' ) ) class Monkey(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50), nullable=False) email = db.Column(EmailType(), nullable=False, unique=True) age = db.Column(db.Integer, nullable=False) friends = db.relationship( 'Monkey', secondary=monkey_friends, primaryjoin=id==monkey_friends.c.monkey_id, secondaryjoin=id==monkey_friends.c.friend_id, backref='friended_by', foreign_keys=[monkey_friends.c.monkey_id, monkey_friends.c.friend_id] ) best_friend = db.relationship( 'Monkey', secondary=best_friends, primaryjoin=id==best_friends.c.monkey_id, secondaryjoin=id==best_friends.c.friend_id, foreign_keys=[best_friends.c.monkey_id, best_friends.c.friend_id], remote_side=[id], uselist=False, post_update=True, backref='best_friended_by' ) def __init__(self, name=None, email=None, age=None, friends=[], best_friend=None): self.name = name self.email = email self.age = age self.friends = friends self.best_friend = best_friend def __repr__(self): return '<{cls} id={id}, name={name}>'.format( id=self.id, cls=self.__class__.__name__, name=self.name )
#!/usr/bin/python #rev 2015-11-12 print "Importing python modules ..." from time import time start_time = time() from numpy import loadtxt print("--- numpy %s seconds ---" % (time() - start_time)) import matplotlib.pyplot as plt print("--- matplotlib %s seconds ---" % (time() - start_time)) from itertools import cycle print("--- itertools %s seconds ---" % (time() - start_time)) #from os import fork from sys import argv print("--- sys %s seconds ---" % (time() - start_time)) from os import fork print("--- os %s seconds ---" % (time() - start_time)) print "done!" #for arg in sys.argv: # print arg #plt.ion() #import matplotlib #matplotlib.interactive(False) file=loadtxt(argv[1]) natoms=argv[2].split() sample=file bins=int((sample[:,1].max()-sample[:,1].min())/.05) print "Plotting the histogram " if fork(): print 'fork passed' pass else: f, (ax1, ax2) = plt.subplots(1,2, sharey=True) lines = ["*b","or","^k",">p","<b"] linecycler = cycle(lines) m=0 for i in natoms: i=int(i) ax1.plot(sample[m:m+i,0],sample[m:m+i,1],next(linecycler)) m+=i ax1.set_title('Atoms magnetic moments') ax1.axhline(y=0) ax2.hist(sample[:,1], bins=bins, orientation="horizontal"); ax2.xaxis.set_ticks_position('top') f.subplots_adjust(wspace=0) plt.show()
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ambari Agent """ import re import os from resource_management import Script, format, Package, Execute, Fail from resource_management.core.logger import Logger from resource_management.libraries.functions import stack_tools from resource_management.libraries.functions.stack_select import get_stack_versions from resource_management.core.providers import get_provider CURRENT_ = "/current/" stack_root = Script.get_stack_root() stack_root_current = stack_root + CURRENT_ class RemovePreviousStacks(Script): def actionexecute(self, env): config = Script.get_config() structured_output = {} version = config['commandParams']['version'] self.stack_tool_package = stack_tools.get_stack_tool_package(stack_tools.STACK_SELECTOR_NAME) versions_to_remove = self.get_lower_versions(version) self.pkg_provider = get_provider("Package") for low_version in versions_to_remove: self.remove_stack_version(structured_output, low_version) def remove_stack_version(self, structured_output, version): # check simlinks not refer to version for remove self.check_no_symlink_to_version(structured_output, version) packages_to_remove = self.get_packages_to_remove(version) for package in packages_to_remove: Package(package, action="remove") self.remove_stack_folder(structured_output, version) structured_output["remove_previous_stacks"] = {"exit_code": 0, "message": format("Stack version {0} successfully removed!".format(version))} self.put_structured_out(structured_output) def remove_stack_folder(self, structured_output, version): if version and version != '' and stack_root and stack_root != '': Logger.info("Removing {0}/{1}".format(stack_root, version)) try: Execute(('rm', '-f', stack_root + version), sudo=True) finally: structured_output["remove_previous_stacks"] = {"exit_code": -1, "message": "Failed to remove version {0}{1}".format(stack_root, version)} self.put_structured_out(structured_output) def get_packages_to_remove(self, version): packages = [] formated_version = version.replace('.', '_').replace('-', '_') all_installed_packages = self.pkg_provider.all_installed_packages() all_installed_packages = [package[0] for package in all_installed_packages] for package in all_installed_packages: if formated_version in package and self.stack_tool_package not in package: packages.append(package) Logger.info("%s added to remove" % (package)) return packages def check_no_symlink_to_version(self, structured_output, version): files = os.listdir(stack_root_current) for file in files: if version in os.path.realpath(stack_root_current + file): structured_output["remove_previous_stacks"] = {"exit_code": -1, "message": "{0} contains symlink to version for remove! {1}".format( stack_root_current, version)} self.put_structured_out(structured_output) raise Fail("{0} contains symlink to version for remove! {1}".format(stack_root_current, version)) def get_lower_versions(self, current_version): versions = get_stack_versions(stack_root) Logger.info("available versions: {0}".format(str(versions))) lover_versions = [] for version in versions: if self.compare(version, current_version) < 0 : lover_versions.append(version) Logger.info("version %s added to remove" % (version)) return lover_versions def compare(self, version1, version2): """ Compare version1 and version2 :param version1: :param version2: :return: Return negative if version1<version2, zero if version1==version2, positive if version1>version2 """ vesion1_sections = re.findall(r"[\w']+", version1) vesion2_sections = re.findall(r"[\w']+", version2) return cmp(vesion1_sections, vesion2_sections) if __name__ == "__main__": RemovePreviousStacks().execute()
from rply import ParserGenerator from rply.token import Token from .ast import * from .errors import * class ParserState: def __init__(self): pass def add_variable(self, var): self.variables.append(var) def add_constant(self, var): self.constants.append(var) class Parser: def __init__(self, tokens: list, precedence: list, filename: str, source: str) -> None: self.pg = ParserGenerator(tokens, precedence) self.parser = self.init() self.filename = filename self.source = source def init(self): ################################################## # Program ################################################## @self.pg.production('program : stmtList') def prgm(state: ParserState, p): return ProgramNode(p[0], p[0].getsourcepos()) ################################################## # Statment-List ################################################## @self.pg.production('stmtList : stmtList stmtFull') def stmtList_stmt(state: ParserState, p): block = p[0] block.add(p[1]) return block @self.pg.production('stmtList : stmtFull') def stmtList(state: ParserState, p): return BlockNode(p[0], p[0].getsourcepos()) @self.pg.production('stmtFull : stmt') @self.pg.production('stmtFull : func') def stmtFull(state: ParserState, p): return p[0] ################################################## # Block ################################################## @self.pg.production('block : block stmt') def block_stmt(state: ParserState, p): block = p[0] block.add(p[1]) return block @self.pg.production('block : stmt') def block(state: ParserState, p): return BlockNode(p[0], p[0].getsourcepos()) ################################################## # Statement ################################################## @self.pg.production('stmt : mccmd ;') def stmt(state: ParserState, p): return p[0] @self.pg.production('stmt : assgn ;') @self.pg.production('stmt : decl ;') @self.pg.production('stmt : expr-assgn ;') @self.pg.production('stmt : expr ;') @self.pg.production('stmt : group') @self.pg.production('stmt : for-expr') @self.pg.production('stmt : while-expr') def stmt_(state: ParserState, p): return p[0] @self.pg.production('stmt : COMMENT') def stmt_comment(state: ParserState, p): return CommentNode(p[0].getstr(), p[0].getsourcepos()) ################################################## # Minecraft ################################################## @self.pg.production('func : FUNC STRING { block }') def func(state: ParserState, p): return FuncNode(p[1].getstr(), p[3], p[0].getsourcepos()) @self.pg.production('mccmd : MCCMD') def mccmd(state: ParserState, p): return McCmdNode(p[0].getstr(), p[0].getsourcepos()) @self.pg.production('mccmd : score-decl') @self.pg.production('mccmd : score-init') @self.pg.production('mccmd : score-create') @self.pg.production('mccmd : score-op') def mccmd_other(state: ParserState, p): return p[0] # Scores @self.pg.production('score-create : CREATE score-decl') @self.pg.production('score-create : CREATE score-init') def score_create(state: ParserState, p): return ScoreCreateNode(p[1], p[0].getsourcepos()) @self.pg.production('score-init : score-decl = expr') def score_init(state: ParserState, p): return ScoreInitNode(p[0], p[2], p[0].getsourcepos()) @self.pg.production('score-decl : SCORE IDENTIFIER : IDENTIFIER') def score_decl(state: ParserState, p): return ScoreDeclNode(p[1].getstr(), p[3].getstr(), p[1].getstr(), p[0].getsourcepos()) @self.pg.production('score-decl : SCORE IDENTIFIER : ( IDENTIFIER , IDENTIFIER )') def score_decl_1(state: ParserState, p): return ScoreDeclNode(p[1].getstr(), p[4].getstr(), p[6].getstr(), p[0].getsourcepos()) # score-op @self.pg.production('score-op : IDENTIFIER << IDENTIFIER') def score_op_left(state: ParserState, p): return ScoreOpLeftNode(p[0].getstr(), p[2].getstr(), p[0].getsourcepos()) @self.pg.production('score-op : IDENTIFIER >> IDENTIFIER') def score_op_right(state: ParserState, p): return ScoreOpRightNode(p[0].getstr(), p[2].getstr(), p[0].getsourcepos()) @self.pg.production('score-op : IDENTIFIER >< IDENTIFIER') def score_op_swap(state: ParserState, p): return ScoreOpSwapNode(p[0].getstr(), p[2].getstr(), p[0].getsourcepos()) # group @self.pg.production('group : group-specifier { block }') def group(state: ParserState, p): return GroupNode(p[0], p[2], p[0].getsourcepos()) @self.pg.production('group-specifier : EXEC ( STRING )') def group_spec(state: ParserState, p): return GroupSpecNode(p[0].getstr(), p[2].getstr(), p[0].getsourcepos()) @self.pg.production('group-specifier : group-specifier , EXEC ( STRING )') def group_spec_rec(state: ParserState, p): p[0].append( GroupSpecNode(p[2].getstr(), p[4].getstr(), p[0].getsourcepos()) ) return p[0] ################################################## # Variables ################################################## @self.pg.production('assgn : IDENTIFIER = expr') def assgn(state: ParserState, p): return VariableAssignNode(p[0].getstr(), p[2], p[0].getsourcepos()) @self.pg.production('assgn : IDENTIFIER PLUS PLUS') def assgn_incr(state: ParserState, p): return VariableIncrementNode(p[0].getstr(), p[0].getsourcepos()) @self.pg.production('assgn : IDENTIFIER MINUS MINUS') def assgn_decr(state: ParserState, p): return VariableDecrementNode(p[0].getstr(), p[0].getsourcepos()) @self.pg.production('decl : VAR IDENTIFIER = expr') def decl(state: ParserState, p): return VariableDeclareNode(p[1].getstr(), p[3], p[0].getsourcepos()) ################################################## # Expr-assgn ################################################## @self.pg.production('expr-assgn : IDENTIFIER PLUSEQ expr') def expr_assgn_add(state: ParserState, p): return SelfAddNode(p[0].getstr(), p[2], p[0].getsourcepos()) @self.pg.production('expr-assgn : IDENTIFIER MINUSEQ expr') def expr_assgn_sub(state: ParserState, p): return SelfSubNode(p[0].getstr(), p[2], p[0].getsourcepos()) @self.pg.production('expr-assgn : IDENTIFIER MULTEQ expr') def expr_assgn_mul(state: ParserState, p): return SelfMultNode(p[0].getstr(), p[2], p[0].getsourcepos()) @self.pg.production('expr-assgn : IDENTIFIER DIVEQ expr') def expr_assgn_div(state: ParserState, p): return SelfDivNode(p[0].getstr(), p[2], p[0].getsourcepos()) ################################################## # Expression ################################################## @self.pg.production('expr : comp') def expr(state: ParserState, p): return p[0] @self.pg.production('expr : expr AND expr') def expr_and(state: ParserState, p): return BinaryAndNode(p[0], p[2], p[0].getsourcepos()) @self.pg.production('expr : expr OR expr') def expr_or(state: ParserState, p): return BinaryOrNode(p[0], p[2], p[0].getsourcepos()) ################################################## # comp-expr ################################################## @self.pg.production('comp : arith') def comp(state: ParserState, p): return p[0] @self.pg.production('comp : ! comp') def comp_not(state: ParserState, p): return UnaryNotNode(p[1], p[0].getsourcepos()) @self.pg.production('comp : arith < arith') def comp_le(state: ParserState, p): return BinaryLENode(p[0], p[2], p[0].getsourcepos()) @self.pg.production('comp : arith > arith') def comp_ge(state: ParserState, p): return BinaryGENode(p[0], p[2], p[0].getsourcepos()) @self.pg.production('comp : arith <= arith') def comp_let(state: ParserState, p): return BinaryLETNode(p[0], p[2], p[0].getsourcepos()) @self.pg.production('comp : arith >= arith') def comp_get(state: ParserState, p): return BinaryGETNode(p[0], p[2], p[0].getsourcepos()) @self.pg.production('comp : arith == arith') def comp_eq(state: ParserState, p): return BinaryEQNode(p[0], p[2], p[0].getsourcepos()) @self.pg.production('comp : arith != arith') def comp_neq(state: ParserState, p): return BinaryNEQNode(p[0], p[2], p[0].getsourcepos()) ################################################## # arith-expr ################################################## @self.pg.production('arith : term') def arith(state: ParserState, p): return p[0] @self.pg.production('arith : arith PLUS arith') def arith_plus(state: ParserState, p): return BinaryAddNode(p[0], p[2], p[0].getsourcepos()) @self.pg.production('arith : arith MINUS arith') def arith_minus(state: ParserState, p): return BinarySubNode(p[0], p[2], p[0].getsourcepos()) ################################################## # Term ################################################## @self.pg.production('term : factor') def term(state: ParserState, p): return p[0] @self.pg.production('term : term MULT term') def term_mul(state: ParserState, p): return BinaryMultNode(p[0], p[2], p[0].getsourcepos()) @self.pg.production('term : term DIV term') def term_div(state: ParserState, p): return BinaryDivNode(p[0], p[2], p[0].getsourcepos()) ################################################## # Factor ################################################## @self.pg.production('factor : atom') def fac_lit(state: ParserState, p): return p[0] @self.pg.production('factor : PLUS factor') def fac_add(state: ParserState, p): return UnaryAddNode(p[1], p[0].getsourcepos()) @self.pg.production('factor : MINUS factor') def fac_sub(state: ParserState, p): return UnarySubNode(p[1], p[0].getsourcepos()) ################################################## # atom ################################################## @self.pg.production('atom : literal') def atom(state: ParserState, p): return p[0] @self.pg.production('atom : ( expr )') def atom_expr(state: ParserState, p): return p[1] @self.pg.production('atom : IDENTIFIER') def atom_var(state: ParserState, p): return VariableAccessNode(p[0].getstr(), p[0].getsourcepos()) ################################################## # Literals ################################################## @self.pg.production('literal : INTEGER') def literal_int(state: ParserState, p): return IntegerNode(int(p[0].getstr()), p[0].getsourcepos()) @self.pg.production('literal : FLOAT') def literal_float(state: ParserState, p): return FloatNode(float(p[0].getstr()), p[0].getsourcepos()) @self.pg.production('literal : STRING') def literal_str(state: ParserState, p): return StringNode(p[0].getstr(), p[0].getsourcepos()) @self.pg.production('literal : BOOLEAN') def literal_bool(state: ParserState, p): boolean = p[0].getstr() if boolean == "true": boolean = 1 else: boolean = 0 return BooleanNode(bool(boolean), p[0].getsourcepos()) ################################################## # For ################################################## @self.pg.production('for-expr : FOR ( decl ; expr ; assgn ) { block }') def for_expr(state: ParserState, p): return ForNode(p[2], p[4], p[6], p[9], p[0].getsourcepos()) ################################################## # While ################################################## @self.pg.production('while-expr : WHILE ( expr ) { block }') def while_expr(state: ParserState, p): return WhileNode(p[2], p[5], p[0].getsourcepos()) ################################################## # Errors ################################################## @self.pg.error def error_handler(state: ParserState, token: Token): pos = token.getsourcepos() if pos: SynatxError( pos, self.filename, self.source, f"Unexpected Token '{token.name}'" ).raiseError() elif token.gettokentype() == '$end': UnexpectedEndError( pos, self.filename, self.source, f"Unexpected End" ).raiseError() else: SynatxError( None, self.filename, self.source, f"Unexpected Token: {token.name}" ).raiseError() return self.pg.build() def parse(self, text: str, state: ParserState = None): return self.parser.parse(text, state)
# -*- coding: utf-8 -*- """ Created on Wed Jan 19 01:52:59 2022 @author: maout """ from typing import Union import numpy as np import torch __all__ = ['RBF'] class RBF: """ RBF kernel class for pytorch implementation. """ def __init__(self, length_scale: Union[float, torch.tensor, np.ndarray]=1.0, signal_variance: float=1.0, device: Union[bool,str]=None, multil: Union[bool, None]=False) -> None: """ Kernel initialising function Parameters ---------- length_scale : Union[float, torch.tensor, np.ndarray], optional Lengthscale of kernel. The default is 1.0. signal_variance : float, optional Variance of kernel. The default is 1.0. device : Union[bool,str], optional Device is either 'cpu' or 'cuda'/'cpu'. The default is None. multil : Union[bool, None], optional Boolean variable indicating whether the lengthscale is uniform across dimensions i.e. scalar, or a vector. True indicates a vector lengthscale. The default is False. Returns ------- None Instance of the kernel. """ # initialize parameters if device is None: self.device = torch.device("cpu") else: self.device = device self.length_scale = torch.tensor(length_scale, dtype=torch.float64, device=self.device, requires_grad=True) self.signal_variance = torch.tensor(signal_variance, dtype=torch.float64, device=self.device, requires_grad=True) self.multil = torch.tensor(multil, dtype=torch.bool, device=self.device, requires_grad=False) if self.multil: ##expand dimensions of lengtscale vector to enable broadcasting self.length_scale = self.length_scale[None, None, :] self.K_data = torch.tensor(0, dtype=torch.float64, device=self.device, requires_grad=False) def Kernel(self, X: np.ndarray, Y: Union[bool, np.ndarray]=None) -> torch.tensor: """ Calculates the rbf gaussian kernel between data points X and Y. If Y is missing, computes the kernel between X with itself. Parameters ---------- X : np.ndarray Data points, first entry -> (N x D). Y : Union[bool, np.ndarray], optional Data points, second entry -> (M x D). The default is None. Returns ------- K: torch.tensor Array of dimension NxM (or NxN if Y is missing) with the kernel evaluated at the data points. """ if not torch.is_tensor(X): # convert inputs to pytorch tensors if not already pytorched X = torch.tensor(X, dtype=torch.float64, device=self.device) #N, D = X.shape if Y is None: Y = X elif not torch.is_tensor(Y): Y = torch.tensor(Y, dtype=torch.float64, device=self.device) M, _ = Y.shape # Re-indexing X_i = X[:, None, :] # shape (N, D) -> (N, 1, D) Y_j = Y[None, :, :] # shape (M, D) -> (1, M, D) if not self.multil: ##if a single lengthscale is provided sqd = torch.sum( (X_i - Y_j)**2, 2) # |X_i - Y_j|^2 # (N, M, D) # Divide by length scale #print(sqd.device) #print(self.length_scale.device) sqd = torch.div(sqd, self.length_scale.to(self.device)**2) K = torch.exp( -0.5* sqd ) else: sqd1 = torch.div( (X_i - Y_j)**2, self.length_scale.to(self.device)**2) sqd = torch.sum( sqd1, 2) K = torch.exp( -0.5* sqd ) K = torch.mul(self.signal_variance, K) # Signal Variance self.K_data = K return K#.detach().to_numpy() def gradient_X(self, X: np.ndarray, Y: Union[bool, np.ndarray]=None) -> torch.tensor: """ Computes the gradient of the kernel with respect to the first argument. Parameters ---------- X : np.ndarray Data points, first entry -> (N x D). Y : Union[bool, np.ndarray], optional Data points, second entry -> (M x D). The default is None. Returns ------- redifs : torch.tensor Array with the gradient of the Kernel -> (N, M, D). """ #N, D = X.shape M,_ = Y.shape diffs = X[:,None]-Y #if self.multil: redifs = torch.div(diffs, self.length_scale.to(self.device)**2) redifs = torch.einsum( 'ijk,ij->ijk', redifs, self.K_data) #redifs[:,:,ii] = np.multiply(diffs[:,:,ii],K(x,y,l,True))/(l[ii]*l[ii]) #else: #redifs[:,:,ii] = np.multiply(diffs[:,:,ii],K(x,y,l))/(l*l) return redifs def gradient_X2(self, X): return None """ def gradient_XX(self,X: np.ndarray, Y: Union[bool, np.ndarray]=None) -> torch.tensor: # Convert to tensor that requires Grad X = torch.tensor(length_scale, dtype=torch.float64, device=self.device,requires_grad=True) if Y is None: Y = X else: Y = torch.tensor(Y, dtype=torch.float64, device=self.device, requires_grad=True) # compute the gradient kernel w.r.t. to the two inputs J = grad(self.__call__(X, Y)) return J """ def gradient_XX2(self, X, Y=None): return None
from more_itertools import one import pytest from adam.learner.integrated_learner import IntegratedTemplateLearner from adam.learner.language_mode import LanguageMode from adam.ontology.phase1_ontology import DAD, GAILA_PHASE_1_ONTOLOGY from adam.perception import PerceptualRepresentation from adam.perception.high_level_semantics_situation_to_developmental_primitive_perception import ( HighLevelSemanticsSituationToDevelopmentalPrimitivePerceptionGenerator, ) from adam.random_utils import RandomChooser from adam.situation import SituationObject from adam.situation.high_level_semantics_situation import HighLevelSemanticsSituation from tests.learner import LANGUAGE_MODE_TO_TEMPLATE_LEARNER_OBJECT_RECOGNIZER @pytest.mark.parametrize("language_mode", [LanguageMode.ENGLISH, LanguageMode.CHINESE]) def test_with_object_recognizer(language_mode): integrated_learner = IntegratedTemplateLearner( object_learner=LANGUAGE_MODE_TO_TEMPLATE_LEARNER_OBJECT_RECOGNIZER[language_mode], attribute_learner=None, relation_learner=None, action_learner=None, ) dad_situation_object = SituationObject.instantiate_ontology_node( ontology_node=DAD, ontology=GAILA_PHASE_1_ONTOLOGY ) situation = HighLevelSemanticsSituation( ontology=GAILA_PHASE_1_ONTOLOGY, salient_objects=[dad_situation_object] ) perception_generator = HighLevelSemanticsSituationToDevelopmentalPrimitivePerceptionGenerator( GAILA_PHASE_1_ONTOLOGY ) # We explicitly exclude ground in perception generation # this generates a static perception... perception = perception_generator.generate_perception( situation, chooser=RandomChooser.for_seed(0), include_ground=False ) # so we need to construct a dynamic one by hand from two identical scenes dynamic_perception = PerceptualRepresentation( frames=[perception.frames[0], perception.frames[0]] ) descriptions = integrated_learner.describe(dynamic_perception) assert len(descriptions) == 1 assert ( language_mode == LanguageMode.ENGLISH and one(descriptions.keys()).as_token_sequence() == ("Dad",) ) or ( language_mode == LanguageMode.CHINESE and one(descriptions.keys()).as_token_sequence() == ("ba4 ba4",) )
import rhinoscriptsyntax as rs import Rhino.Geometry as rg import math def fractal(pt1,pt2,angle): # creating a curve to extract its division points line=rs.AddLine(pt1,pt2) points=rs.DivideCurve(line,4) # 1/3 point between_points_1=points[1] between_points_2=points[3] # mid vector mid_vec= rg.Vector3d(points[2].X - points[1].X, points[2].Y - points[1].Y, points[2].Z - points[1].Z) mid_vec.Rotate(math.radians(angle), rg.Vector3d.ZAxis) mid_vec=rs.VectorUnitize(mid_vec) mid_vec*=length # mid point mid_point=((pt2+pt1)/2)+mid_vec # returning points return pt1,between_points_1,mid_point,between_points_2,pt2 a=fractal(first,second,angle) ########################### ########################### # then change it into this: import rhinoscriptsyntax as rs import Rhino.Geometry as rg import math def create_points(first_point,second_point): # creating a curve to extract its division points line=rs.AddLine(first_point,second_point) points=rs.DivideCurve(line,4) # 1/3 point between_points_1=points[1] between_points_2=points[3] # mid vector mid_vec= rg.Vector3d(points[2].X - points[1].X, points[2].Y - points[1].Y, points[2].Z - points[1].Z) mid_vec.Rotate(math.radians(angle), rg.Vector3d.ZAxis) mid_vec=rs.VectorUnitize(mid_vec) mid_vec*=length # mid point mid_point=((second_point+first_point)/2)+mid_vec # returning points return first_point,between_points_1,mid_point,between_points_2,second_point def snowflake(first_point,second_point,iteration,poly_list): if iteration>0: temp_points=create_points(first_point,second_point) poly=rs.AddPolyline([temp_points[0],temp_points[1],temp_points[2],temp_points[3],temp_points[4]]) if iteration==1: poly_list.append(poly) snowflake(temp_points[0],temp_points[1],iteration-1,poly_list) snowflake(temp_points[1],temp_points[2],iteration-1,poly_list) snowflake(temp_points[2],temp_points[3],iteration-1,poly_list) snowflake(temp_points[3],temp_points[4],iteration-1,poly_list) return poly_list b=[] a=snowflake(first,second,iteration,b)
# Copyright 2019 The PlaNet Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import os import numpy as np from planet import control from planet import networks from planet import tools Task = collections.namedtuple( 'Task', 'name, env_ctor, max_length, state_components') def cartpole_balance(config, params): action_repeat = params.get('action_repeat', 8) max_length = 1000 // action_repeat state_components = ['reward', 'position', 'velocity'] env_ctor = functools.partial( _dm_control_env, action_repeat, max_length, 'cartpole', 'balance') return Task('cartpole_balance', env_ctor, max_length, state_components) def cartpole_swingup(config, params): action_repeat = params.get('action_repeat', 8) max_length = 1000 // action_repeat state_components = ['reward', 'position', 'velocity'] env_ctor = functools.partial( _dm_control_env, action_repeat, max_length, 'cartpole', 'swingup') return Task('cartpole_swingup', env_ctor, max_length, state_components) def finger_spin(config, params): action_repeat = params.get('action_repeat', 2) max_length = 1000 // action_repeat state_components = ['reward', 'position', 'velocity', 'touch'] env_ctor = functools.partial( _dm_control_env, action_repeat, max_length, 'finger', 'spin') return Task('finger_spin', env_ctor, max_length, state_components) def cheetah_run(config, params): action_repeat = params.get('action_repeat', 4) max_length = 1000 // action_repeat state_components = ['reward', 'position', 'velocity'] env_ctor = functools.partial( _dm_control_env, action_repeat, max_length, 'cheetah', 'run') return Task('cheetah_run', env_ctor, max_length, state_components) def cup_catch(config, params): action_repeat = params.get('action_repeat', 6) max_length = 1000 // action_repeat state_components = ['reward', 'position', 'velocity'] env_ctor = functools.partial( _dm_control_env, action_repeat, max_length, 'ball_in_cup', 'catch') return Task('cup_catch', env_ctor, max_length, state_components) def walker_walk(config, params): action_repeat = params.get('action_repeat', 2) max_length = 1000 // action_repeat state_components = ['reward', 'height', 'orientations', 'velocity'] env_ctor = functools.partial( _dm_control_env, action_repeat, max_length, 'walker', 'walk') return Task('walker_walk', env_ctor, max_length, state_components) def humanoid_walk(config, params): action_repeat = params.get('action_repeat', 2) max_length = 1000 // action_repeat state_components = [ 'reward', 'com_velocity', 'extremities', 'head_height', 'joint_angles', 'torso_vertical', 'velocity'] env_ctor = functools.partial( _dm_control_env, action_repeat, max_length, 'humanoid', 'walk') return Task('humanoid_walk', env_ctor, max_length, state_components) def gym_cheetah(config, params): action_repeat = params.get('action_repeat', 2) max_length = 1000 // action_repeat state_components = ['reward', 'state'] env_ctor = functools.partial( _gym_env, action_repeat, config.batch_shape[1], max_length, 'HalfCheetah-v3') return Task('gym_cheetah', env_ctor, max_length, state_components) def gym_racecar(config, params): action_repeat = params.get('action_repeat', 2) max_length = 1000 // action_repeat state_components = ['reward'] env_ctor = functools.partial( _gym_env, action_repeat, config.batch_shape[1], max_length, 'CarRacing-v0', obs_is_image=True) return Task('gym_racing', env_ctor, max_length, state_components) def gym_sokoban(config, params): action_repeat = params.get('action_repeat', 1) max_length = 1000 // action_repeat state_components = ['reward'] env_ctor = functools.partial( _gym_env, action_repeat, config.batch_shape[1], max_length, 'Sokoban-small-v0', act_is_discrete=True, obs_is_image=True) return Task('gym_sokoban', env_ctor, max_length, state_components) def gym_atari(config, params): game_name = params.get('game_name', 'Freeway-v0') action_repeat = params.get('action_repeat', 4) max_length = 2000 // action_repeat state_components = ['reward'] env_ctor = functools.partial( _gym_env, action_repeat, config.batch_shape[1], max_length, game_name, act_is_discrete=True, obs_is_image=True) return Task('gym_' + game_name, env_ctor, max_length, state_components) def _dm_control_env(action_repeat, max_length, domain, task): from dm_control import suite env = control.wrappers.DeepMindWrapper(suite.load(domain, task), (64, 64)) env = control.wrappers.ActionRepeat(env, action_repeat) env = control.wrappers.MaximumDuration(env, max_length) env = control.wrappers.PixelObservations(env, (64, 64), np.uint8, 'image') env = control.wrappers.ConvertTo32Bit(env) return env def _gym_env(action_repeat, min_length, max_length, name, act_is_discrete=False, obs_is_image=False): if "Sokoban" in name: import gym_sokoban import gym env = gym.make(name) env = env.env # Remove the TimeLimit wrapper env.frameskip = 1 # Disable Gym frame skipping env = control.wrappers.ActionRepeat(env, action_repeat) if act_is_discrete: env = control.wrappers.DiscreteWrapper(env) else: env = control.wrappers.NormalizeActions(env) env = control.wrappers.MinimumDuration(env, min_length) env = control.wrappers.MaximumDuration(env, max_length) if obs_is_image: env = control.wrappers.ObservationDict(env, 'image') env = control.wrappers.ObservationToRender(env) else: env = control.wrappers.ObservationDict(env, 'state') env = control.wrappers.PixelObservations(env, (64, 64), np.uint8, 'image') env = control.wrappers.ConvertTo32Bit(env) return env
import pytest from typing import Optional from pygraphy.types import ( Object, Input, Schema, field ) from examples.starwars.schema import Schema as StarwarsSchema from examples.simple_example import Schema as SimpleSchema from examples.complex_example import Schema as ComplexSchema pytestmark = pytest.mark.asyncio async def test_starwars_query(): query = """ query FetchLukeQuery { human(id: "1000") { name } } """ assert await StarwarsSchema.execute(query, serialize=True) == \ r'{"errors": null, "data": {"human": {"name": "foo"}}}' async def test_simple_query(): query = """ query something { patron { id name age } } """ assert await SimpleSchema.execute(query, serialize=True) == \ r'{"errors": null, "data": {"patron": {"id": "1", "name": "Syrus", "age": 27}}}' query = """ query { patrons(ids: [1, 2, 3]) { id name age } } """ assert await SimpleSchema.execute(query, serialize=True) == \ r'{"errors": null, "data": {"patrons": [{"id": "1", "name": "Syrus", "age": 27}, {"id": "2", "name": "Syrus", "age": 27}, {"id": "3", "name": "Syrus", "age": 27}]}}' async def test_alias_field(): query = """ query something { user: patron { id firstName: name age } } """ assert await SimpleSchema.execute(query) == { 'data': { 'user': { 'age': 27, 'firstName': 'Syrus', 'id': '1' } }, 'errors': None } async def test_complex_query(): query = """ query something{ address(geo: {lat:32.2, lng:12}) { latlng } } """ assert await ComplexSchema.execute(query, serialize=True) == \ r'{"errors": null, "data": {"address": {"latlng": "(32.2,12)"}}}' async def test_complex_mutation(): mutation = """ mutation addAddress{ createAddress(geo: {lat:32.2, lng:12}) { latlng foobar { ... on Bar { b } } } } """ assert await ComplexSchema.execute(mutation, serialize=True) == \ r'{"errors": null, "data": {"createAddress": {"latlng": "(32.2,12)", "foobar": [{}, {}, {}, {}, {}]}}}' mutation = """ mutation addAddress{ createAddress(geo: {lat:32.2, lng:12}) { latlng foobar { ... on Foo { a } } } } """ assert await ComplexSchema.execute(mutation, serialize=True) == \ r'{"errors": null, "data": {"createAddress": {"latlng": "(32.2,12)", "foobar": [{"a": "test"}, {"a": "test"}, {"a": "test"}, {"a": "test"}, {"a": "test"}]}}}' async def test_raise_error(): query = """ query test { exception(content: "test") } """ assert await SimpleSchema.execute(query, serialize=True) == \ '{"errors": [{"message": "test", "locations": [{"line": 3, "column": 13}], "path": ["exception"]}], "data": null}' async def test_variables(): query = """ query something($geo: GeoInput) { address(geo: $geo) { latlng } } """ assert await ComplexSchema.execute(query, serialize=True, variables={"geo": {"lat":32.2, "lng":12}}) == \ r'{"errors": null, "data": {"address": {"latlng": "(32.2,12)"}}}' query = """ query something($patron: [int]) { patrons(ids: $patron) { id name age } } """ assert await SimpleSchema.execute(query, serialize=True, variables={"patron": [1, 2, 3]}) == \ r'{"errors": null, "data": {"patrons": [{"id": "1", "name": "Syrus", "age": 27}, {"id": "2", "name": "Syrus", "age": 27}, {"id": "3", "name": "Syrus", "age": 27}]}}' async def test_field_name_case(): class FooInput(Input): snake_case: str camelCase: str class Foo(Object): snake_case: str camelCase: str class Query(Object): @field def get_foo(self, foo: FooInput) -> Foo: return Foo(snake_case=foo.snake_case, camelCase=foo.camelCase) class PySchema(Schema): query: Optional[Query] query = """ query something($foo: FooInput) { get_foo (foo: { snakeCase: "sth" camelCase: "sth" }) { snakeCase camelCase } } """ assert await PySchema.execute(query, serialize=True) == \ r'{"errors": null, "data": {"get_foo": {"snakeCase": "sth", "camelCase": "sth"}}}' async def test_field_name_case_with_vars(): class FooInput(Input): snake_case: str camelCase: str class Foo(Object): snake_case: str camelCase: str class Query(Object): @field def get_foo(self, foo: FooInput) -> Foo: return Foo(snake_case=foo.snake_case, camelCase=foo.camelCase) class PySchema(Schema): query: Optional[Query] query = """ query something($foo: FooInput) { get_foo (foo: $foo) { snake_case camelCase } } """ assert await PySchema.execute(query, serialize=True, variables={"foo": {"snakeCase":"sth", "camelCase":"sth"}}) == \ r'{"errors": null, "data": {"get_foo": {"snake_case": "sth", "camelCase": "sth"}}}'
#!/usr/bin/python DOCUMENTATION = ''' --- module: bmf_rest_bigchain_create_chain short_description: BMF BigChain create chain description: - Makes HTTPS request to create chain. version_added: "1.0.0" author: - Ted Elhourani (ted@bigswitch.com) notes: - This module can only be called in a playbook with the connection set to 'local'. The module will run locally on the Ansible host. options: {} ''' EXAMPLES = ''' # Playbook task - hosts: tme-bmf-controllers connection: local gather_facts: no any_errors_fatal: true tasks: - name: Create chain bmf_rest_bigchain_create_chain: 'node={{ inventory_hostname }} name=Chain1 switch=00:00:cc:37:ab:2c:97:ea endpoint1=ethernet11 endpoint2=ethernet17' # Here's how you would run it. % ansible-playbook <playbook.yml> -v ''' RETURN = ''' PLAY [tme-bmf-controllers] ***************************************************** TASK [Create chain] ************************************************************ task path: /home/admin/playbooks/bmf_bigchain_config_tasks.yml:7 <10.2.19.102> ESTABLISH LOCAL CONNECTION FOR USER: admin <10.2.19.102> EXEC /bin/sh -c '( umask 77 && mkdir -p "` echo $HOME/.ansible/tmp/ansible-tmp-1477065852.28-135238786849019 `" && echo ansible-tmp-1477065852.28-135238786849019="` echo $HOME/.ansible/tmp/ansible-tmp-1477065852.28-135238786849019 `" ) && sleep 0' <10.2.19.102> PUT /tmp/tmpYVl24r TO /home/admin/.ansible/tmp/ansible-tmp-1477065852.28-135238786849019/bmf_rest_bigchain_create_chain <10.2.19.102> EXEC /bin/sh -c 'chmod u+x /home/admin/.ansible/tmp/ansible-tmp-1477065852.28-135238786849019/ /home/admin/.ansible/tmp/ansible-tmp-1477065852.28-135238786849019/bmf_rest_bigchain_create_chain && sleep 0' <10.2.19.102> EXEC /bin/sh -c 'LANG=en_US.UTF-8 LC_ALL=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 /usr/bin/python /home/admin/.ansible/tmp/ansible-tmp-1477065852.28-135238786849019/bmf_rest_bigchain_create_chain; rm -rf "/home/admin/.ansible/tmp/ansible-tmp-1477065852.28-135238786849019/" > /dev/null 2>&1 && sleep 0' ok: [10.2.19.102] => {"chain": {}, "changed": false, "endpoints": {}, "invocation": {"module_args": {"endpoint1": "ethernet11", "endpoint2": "ethernet17", "name": "Chain1", "node": "10.2.19.102", "switch": "00:00:cc:37:ab:2c:97:ea"}, "module_name": "bmf_rest_bigchain_create_chain"}} PLAY RECAP ********************************************************************* 10.2.19.102 : ok=1 changed=0 unreachable=0 failed=0 ''' import sys import json sys.path.append('/home/admin/modules') from bsn_rest import BmfRest from ansible.module_utils.basic import * def main(): fields = dict(node = dict(required=True), user = dict(required=True), password = dict(required=True), chain = dict(required=True, type="str"), service = dict(required=True, type="str"), service_instance = dict(required=True, type="str"), sequence = dict(required=True, type="str")) module = AnsibleModule( argument_spec = fields, supports_check_mode = True) node = module.params['node'] user = module.params['user'] password = module.params['password'] chain = module.params['chain'] service = module.params['service'] service_instance = module.params['service_instance'] sequence = module.params['sequence'] result = {} with BmfRest(host=node, user=user, password=password, debug=True) as dev: path = dev.bigchain_path()+'chain[name="%s"]/service[sequence=%s]' % (chain, sequence) data = {"service-name": service, "instance": service_instance, "sequence": sequence} insert_service_instance = dev.put(path, data=data)['content'] result = dict(insert_service_instance=insert_service_instance) module.exit_json(**result) if __name__ == '__main__': main()
from discord.ext import commands import discord import json import logging from .utils import data discord_logger = logging.getLogger('discord') class Administrator(commands.Cog): @commands.command(brief="Reloads a module.") @commands.check(commands.is_owner()) async def reload(self, ctx: commands.Context, module: str): discord_logger.info("{:s} issued command to reload module {:s}".format(str(ctx.message.author), module)) try: ctx.bot.reload_extension("package." + module) await ctx.send("Reloaded extension {:s}.".format(module)) except commands.ExtensionNotFound: await ctx.send("Failed to reload extension {:s}: Not found.".format(module)) except commands.ExtensionFailed: await ctx.send("Failed to reload extension {:s}: Failed to set up.".format(module)) except commands.ExtensionNotLoaded: await ctx.send("Failed to reload extension {:s}: Not loaded yet. Please use load command to load extension first.".format(module)) @commands.command(brief="Unloads a module.") @commands.check(commands.is_owner()) async def unload(self, ctx: commands.Context, module: str): discord_logger.info("{:s} issued command to unload module {:s}".format(str(ctx.message.author), module)) try: ctx.bot.unload_extension("package." + module) except commands.ExtensionNotLoaded: await ctx.send("Failed to unload extension {:s}: Not loaded yet. Please use load command to load extension first.".format(module)) @commands.command(brief="Loads a module.") @commands.check(commands.is_owner()) async def load(self, ctx: commands.Context, module: str): discord_logger.info("{:s} issued command to load module {:s}".format(str(ctx.message.author), module)) try: ctx.bot.load_extension(module) except commands.ExtensionNotFound: await ctx.send("Failed to load extension {:s}: Not found.".format(module)) except commands.ExtensionAlreadyLoaded: await ctx.send("Failed to load extension {0:s}: {0:s} was already loaded.".format(module)) except commands.ExtensionFailed: await ctx.send("Failed to load extension {0:s}: {0:s} errored in its entry function.".format(module)) def setup(bot: commands.Bot): bot.add_cog(Administrator(data)) discord_logger.info("Loaded extension generic.admin") def teardown(bot: commands.Bot): bot.remove_cog("Administrator") discord_logger.info("Unloaded extension generic.admin")