repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
recommenders-team/recommenders
data-science
1,969
[BUG] Wide and Deep model raise error --- no attribute 'NanLossDuringTrainingError'
### Description <!--- Describe your issue/bug/request in detail --> ### In which platform does it happen? <!--- Describe the platform where the issue is happening (use a list if needed) --> <!--- For example: --> <!--- * Azure Data Science Virtual Machine. --> <!--- * Azure Databricks. --> <!--- * Other platforms. --> https://github.com/microsoft/recommenders/blob/main/examples/00_quick_start/wide_deep_movielens.ipynb Following the notebook here, change my own dataset, but it runs into this error ``` AttributeError: module 'tensorflow._api.v2.train' has no attribute 'NanLossDuringTrainingError' ``` ### How do we replicate the issue? <!--- Please be specific as possible (use a list if needed). --> <!--- For example: --> <!--- * Create a conda environment for pyspark --> <!--- * Run unit test `test_sar_pyspark.py` with `pytest -m 'spark'` --> <!--- * ... --> The dataset is very similar, wondering how different dataset would casue the problem ### Expected behavior (i.e. solution) <!--- For example: --> <!--- * The tests for SAR PySpark should pass successfully. --> ### Other Comments
closed
2023-08-16T16:20:12Z
2023-08-17T18:17:00Z
https://github.com/recommenders-team/recommenders/issues/1969
[ "bug" ]
Lulu20220
1
xlwings/xlwings
automation
1,727
executing python code
#### OS (Windows 10 ) #### Versions of xlwings0.24.9 #### Describe your issue (incl. Traceback!) ```python # Your traceback here ``` #### Include a minimal code sample to reproduce the issue (and attach a sample workbook if required!) ```python import xlwings as xw # def world(): # wb = xw.Book.caller() # wb.sheets[0].range('A11').value = 'Hello World!' x=2 y=45*x wb = xw.Book.caller() wb.sheets[0].range('A13').value = y ``` This is a very basic question...sorry if it doesn't make sense. Following your example, I can run the python function World() using RunPython "import hello; hello.world()". I have a python script which when executes runs some actions (like turning on an instrument in the lab etc..). How to run this script directly from excel vba with xlwings. For example my above code doesn't have the function world(). Can I run this python script from excel vba using xlwings to get a value of 90 in range(A13).
closed
2021-10-05T01:54:49Z
2022-02-05T20:08:30Z
https://github.com/xlwings/xlwings/issues/1727
[]
leyojoseph
1
raphaelvallat/pingouin
pandas
266
python3.7 unable to install
[lazy_loader](https://pypi.org/project/lazy_loader/) [pingouin](https://pypi.org/project/pingouin/) ![QQ图片20220515125037](https://user-images.githubusercontent.com/54659396/168457784-e41ef977-f96a-4f4a-86a3-9285718dd0c6.png) `lazy_loader`>=3.8 Reason: `lazy_loader` not supported 3.7
closed
2022-05-15T04:54:38Z
2022-12-17T23:34:40Z
https://github.com/raphaelvallat/pingouin/issues/266
[ "invalid :triangular_flag_on_post:" ]
mochazi
1
autokey/autokey
automation
720
All custom defined keybindings stopped working in "sticky keys" mode.
### Has this issue already been reported? - [X] I have searched through the existing issues. ### Is this a question rather than an issue? - [X] This is not a question. ### What type of issue is this? _No response_ ### Which Linux distribution did you use? Debian. ### Which AutoKey GUI did you use? _No response_ ### Which AutoKey version did you use? AutoKey-gtk ### How did you install AutoKey? apt install autokey-gtk ### Can you briefly describe the issue? All custom defined keybindings stopped working in "sticky keys" mode. For example, if I have defined control+f to be right_arrow, but it stops working once I am "sticky keys" mode after activated "Treat a sequence of modifier keys as a combination" in Debian's "Accessibility" -> "Typing assistance" tab. ### Can the issue be reproduced? Always ### What are the steps to reproduce the issue? Enable "sticky keys:Treat a sequence of modifier keys as a combination" in Debian's "Accessibility" -> "Typing assistance" tab. Type any keybinding defined in AutoKey. ### What should have happened? The keybinding should remain the same. ### What actually happened? Nothing as if the keybinding isn't triggered. ### Do you have screenshots? _No response_ ### Can you provide the output of the AutoKey command? _No response_ ### Anything else? _No response_
closed
2022-08-04T04:02:09Z
2022-08-05T20:54:47Z
https://github.com/autokey/autokey/issues/720
[ "autokey triggers", "invalid" ]
genehwung
3
AutoGPTQ/AutoGPTQ
nlp
176
[BUG] list index out of range for arch_list when building AutoGPTQ
**Describe the bug** The int4 quantization implementation of [baichuan-7B-GPTQ](https://huggingface.co/TheBloke/baichuan-7B-GPTQ) is based on this project. In an attempt to tetst that LLM, I tried building custom container for that purpose, where `AutoGPTQ` failed upon compiling. The `Dockerfile` ``` FROM pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel RUN apt update && apt install -y build-essential git && rm -rf /var/lib/apt/lists/* WORKDIR /build RUN git clone https://github.com/PanQiWei/AutoGPTQ WORKDIR /build/AutoGPTQ # RUN GITHUB_ACTIONS=true pip3 install . RUN GITHUB_ACTIONS=true pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple . # RUN pip3 install transformers WORKDIR /workspace ``` **Hardware details** Information about CPU and GPU, such as RAM, number, etc. **Software version** Ubuntu 22.04 on WSL2 Docker Desktop 4.20.1 Version of relevant software such as operation system, cuda toolkit, python, auto-gptq, pytorch, transformers, accelerate, etc. **To Reproduce** Steps to reproduce the behavior: 1. build the image with `Dockerfile` above: `docker build -t autogptq:latest .` Full log: ``` #0 16.59 Building wheels for collected packages: auto-gptq #0 16.59 Building wheel for auto-gptq (setup.py): started #0 41.98 Building wheel for auto-gptq (setup.py): finished with status 'error' #0 41.99 error: subprocess-exited-with-error #0 41.99 #0 41.99 × python setup.py bdist_wheel did not run successfully. #0 41.99 │ exit code: 1 #0 41.99 ╰─> [123 lines of output] #0 41.99 No CUDA runtime is found, using CUDA_HOME='/opt/conda' #0 41.99 running bdist_wheel #0 41.99 /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py:476: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow distutils backend. #0 41.99 warnings.warn(msg.format('we could not find ninja.')) #0 41.99 running build #0 41.99 running build_py #0 41.99 creating build #0 41.99 creating build/lib.linux-x86_64-cpython-310 #0 41.99 creating build/lib.linux-x86_64-cpython-310/auto_gptq #0 41.99 copying auto_gptq/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq #0 41.99 creating build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 41.99 copying auto_gptq/eval_tasks/text_summarization_task.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 41.99 copying auto_gptq/eval_tasks/sequence_classification_task.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 41.99 copying auto_gptq/eval_tasks/_base.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 41.99 copying auto_gptq/eval_tasks/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 41.99 copying auto_gptq/eval_tasks/language_modeling_task.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 41.99 creating build/lib.linux-x86_64-cpython-310/auto_gptq/quantization #0 41.99 copying auto_gptq/quantization/quantizer.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/quantization #0 41.99 copying auto_gptq/quantization/gptq.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/quantization #0 41.99 copying auto_gptq/quantization/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/quantization #0 41.99 creating build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 41.99 copying auto_gptq/nn_modules/fused_llama_mlp.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 41.99 copying auto_gptq/nn_modules/fused_llama_attn.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 41.99 copying auto_gptq/nn_modules/fused_gptj_attn.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 41.99 copying auto_gptq/nn_modules/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 41.99 copying auto_gptq/nn_modules/_fused_base.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 41.99 creating build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/moss.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/gpt_neox.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/gptj.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/baichuan.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/gpt2.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/auto.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/_const.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/codegen.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/opt.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/gpt_bigcode.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/rw.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/_base.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/llama.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 copying auto_gptq/modeling/bloom.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 41.99 creating build/lib.linux-x86_64-cpython-310/auto_gptq/utils #0 41.99 copying auto_gptq/utils/peft_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/utils #0 41.99 copying auto_gptq/utils/import_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/utils #0 41.99 copying auto_gptq/utils/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/utils #0 41.99 copying auto_gptq/utils/data_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/utils #0 41.99 creating build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks/_utils #0 41.99 copying auto_gptq/eval_tasks/_utils/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks/_utils #0 41.99 copying auto_gptq/eval_tasks/_utils/classification_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks/_utils #0 41.99 copying auto_gptq/eval_tasks/_utils/generation_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks/_utils #0 41.99 creating build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/qlinear #0 41.99 copying auto_gptq/nn_modules/qlinear/qlinear_triton.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/qlinear #0 41.99 copying auto_gptq/nn_modules/qlinear/qlinear_cuda_old.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/qlinear #0 41.99 copying auto_gptq/nn_modules/qlinear/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/qlinear #0 41.99 copying auto_gptq/nn_modules/qlinear/qlinear_cuda.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/qlinear #0 41.99 creating build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/triton_utils #0 41.99 copying auto_gptq/nn_modules/triton_utils/custom_autotune.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/triton_utils #0 41.99 copying auto_gptq/nn_modules/triton_utils/mixin.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/triton_utils #0 41.99 copying auto_gptq/nn_modules/triton_utils/kernels.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/triton_utils #0 41.99 copying auto_gptq/nn_modules/triton_utils/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/triton_utils #0 41.99 running build_ext #0 41.99 building 'autogptq_cuda_64' extension #0 41.99 creating build/temp.linux-x86_64-cpython-310 #0 41.99 creating build/temp.linux-x86_64-cpython-310/autogptq_cuda #0 41.99 gcc -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include -Iautogptq_cuda -I/opt/conda/include/python3.10 -c autogptq_cuda/autogptq_cuda_64.cpp -o build/temp.linux-x86_64-cpython-310/autogptq_cuda/autogptq_cuda_64.o -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -DTORCH_EXTENSION_NAME=autogptq_cuda_64 -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++14 #0 41.99 Traceback (most recent call last): #0 41.99 File "<string>", line 2, in <module> #0 41.99 File "<pip-setuptools-caller>", line 34, in <module> #0 41.99 File "/build/AutoGPTQ/setup.py", line 98, in <module> #0 41.99 setup( #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/__init__.py", line 87, in setup #0 41.99 return distutils.core.setup(**attrs) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 185, in setup #0 41.99 return run_commands(dist) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 201, in run_commands #0 41.99 dist.run_commands() #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 968, in run_commands #0 41.99 self.run_command(cmd) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/dist.py", line 1217, in run_command #0 41.99 super().run_command(command) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 987, in run_command #0 41.99 cmd_obj.run() #0 41.99 File "/opt/conda/lib/python3.10/site-packages/wheel/bdist_wheel.py", line 299, in run #0 41.99 self.run_command('build') #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 319, in run_command #0 41.99 self.distribution.run_command(command) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/dist.py", line 1217, in run_command #0 41.99 super().run_command(command) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 987, in run_command #0 41.99 cmd_obj.run() #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/build.py", line 132, in run #0 41.99 self.run_command(cmd_name) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 319, in run_command #0 41.99 self.distribution.run_command(command) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/dist.py", line 1217, in run_command #0 41.99 super().run_command(command) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 987, in run_command #0 41.99 cmd_obj.run() #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 84, in run #0 41.99 _build_ext.run(self) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 346, in run #0 41.99 self.build_extensions() #0 41.99 File "/opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 843, in build_extensions #0 41.99 build_ext.build_extensions(self) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 466, in build_extensions #0 41.99 self._build_extensions_serial() #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 492, in _build_extensions_serial #0 41.99 self.build_extension(ext) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 246, in build_extension #0 41.99 _build_ext.build_extension(self, ext) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 547, in build_extension #0 41.99 objects = self.compiler.compile( #0 41.99 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/ccompiler.py", line 599, in compile #0 41.99 self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 581, in unix_wrap_single_compile #0 41.99 cflags = unix_cuda_flags(cflags) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 548, in unix_cuda_flags #0 41.99 cflags + _get_cuda_arch_flags(cflags)) #0 41.99 File "/opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 1780, in _get_cuda_arch_flags #0 41.99 arch_list[-1] += '+PTX' #0 41.99 IndexError: list index out of range #0 41.99 [end of output] #0 41.99 #0 41.99 note: This error originates from a subprocess, and is likely not a problem with pip. #0 41.99 ERROR: Failed building wheel for auto-gptq #0 41.99 Running setup.py clean for auto-gptq #0 43.35 Failed to build auto-gptq #0 44.28 Installing collected packages: tokenizers, safetensors, xxhash, tzdata, rouge, regex, python-dateutil, pyarrow, packaging, multidict, fsspec, frozenlist, dill, async-timeout, yarl, pandas, multiprocess, huggingface-hub, aiosignal, accelerate, transformers, aiohttp, peft, datasets, auto-gptq #0 52.98 Running setup.py install for auto-gptq: started #0 74.51 Running setup.py install for auto-gptq: finished with status 'error' #0 74.52 error: subprocess-exited-with-error #0 74.52 #0 74.52 × Running setup.py install for auto-gptq did not run successfully. #0 74.52 │ exit code: 1 #0 74.52 ╰─> [127 lines of output] #0 74.52 No CUDA runtime is found, using CUDA_HOME='/opt/conda' #0 74.52 running install #0 74.52 /opt/conda/lib/python3.10/site-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. #0 74.52 warnings.warn( #0 74.52 running build #0 74.52 running build_py #0 74.52 creating build #0 74.52 creating build/lib.linux-x86_64-cpython-310 #0 74.52 creating build/lib.linux-x86_64-cpython-310/auto_gptq #0 74.52 copying auto_gptq/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq #0 74.52 creating build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 74.52 copying auto_gptq/eval_tasks/text_summarization_task.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 74.52 copying auto_gptq/eval_tasks/sequence_classification_task.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 74.52 copying auto_gptq/eval_tasks/_base.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 74.52 copying auto_gptq/eval_tasks/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 74.52 copying auto_gptq/eval_tasks/language_modeling_task.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks #0 74.52 creating build/lib.linux-x86_64-cpython-310/auto_gptq/quantization #0 74.52 copying auto_gptq/quantization/quantizer.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/quantization #0 74.52 copying auto_gptq/quantization/gptq.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/quantization #0 74.52 copying auto_gptq/quantization/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/quantization #0 74.52 creating build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 74.52 copying auto_gptq/nn_modules/fused_llama_mlp.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 74.52 copying auto_gptq/nn_modules/fused_llama_attn.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 74.52 copying auto_gptq/nn_modules/fused_gptj_attn.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 74.52 copying auto_gptq/nn_modules/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 74.52 copying auto_gptq/nn_modules/_fused_base.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules #0 74.52 creating build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/moss.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/gpt_neox.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/gptj.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/baichuan.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/gpt2.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/auto.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/_const.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/codegen.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/opt.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/gpt_bigcode.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/rw.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/_base.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/llama.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 copying auto_gptq/modeling/bloom.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/modeling #0 74.52 creating build/lib.linux-x86_64-cpython-310/auto_gptq/utils #0 74.52 copying auto_gptq/utils/peft_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/utils #0 74.52 copying auto_gptq/utils/import_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/utils #0 74.52 copying auto_gptq/utils/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/utils #0 74.52 copying auto_gptq/utils/data_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/utils #0 74.52 creating build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks/_utils #0 74.52 copying auto_gptq/eval_tasks/_utils/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks/_utils #0 74.52 copying auto_gptq/eval_tasks/_utils/classification_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks/_utils #0 74.52 copying auto_gptq/eval_tasks/_utils/generation_utils.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/eval_tasks/_utils #0 74.52 creating build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/qlinear #0 74.52 copying auto_gptq/nn_modules/qlinear/qlinear_triton.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/qlinear #0 74.52 copying auto_gptq/nn_modules/qlinear/qlinear_cuda_old.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/qlinear #0 74.52 copying auto_gptq/nn_modules/qlinear/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/qlinear #0 74.52 copying auto_gptq/nn_modules/qlinear/qlinear_cuda.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/qlinear #0 74.52 creating build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/triton_utils #0 74.52 copying auto_gptq/nn_modules/triton_utils/custom_autotune.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/triton_utils #0 74.52 copying auto_gptq/nn_modules/triton_utils/mixin.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/triton_utils #0 74.52 copying auto_gptq/nn_modules/triton_utils/kernels.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/triton_utils #0 74.52 copying auto_gptq/nn_modules/triton_utils/__init__.py -> build/lib.linux-x86_64-cpython-310/auto_gptq/nn_modules/triton_utils #0 74.52 running build_ext #0 74.52 /opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py:476: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow distutils backend. #0 74.52 warnings.warn(msg.format('we could not find ninja.')) #0 74.52 building 'autogptq_cuda_64' extension #0 74.52 creating build/temp.linux-x86_64-cpython-310 #0 74.52 creating build/temp.linux-x86_64-cpython-310/autogptq_cuda #0 74.52 gcc -pthread -B /opt/conda/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /opt/conda/include -fPIC -O2 -isystem /opt/conda/include -fPIC -I/opt/conda/lib/python3.10/site-packages/torch/include -I/opt/conda/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/opt/conda/lib/python3.10/site-packages/torch/include/TH -I/opt/conda/lib/python3.10/site-packages/torch/include/THC -I/opt/conda/include -Iautogptq_cuda -I/opt/conda/include/python3.10 -c autogptq_cuda/autogptq_cuda_64.cpp -o build/temp.linux-x86_64-cpython-310/autogptq_cuda/autogptq_cuda_64.o -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -DTORCH_EXTENSION_NAME=autogptq_cuda_64 -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++14 #0 74.52 Traceback (most recent call last): #0 74.52 File "<string>", line 2, in <module> #0 74.52 File "<pip-setuptools-caller>", line 34, in <module> #0 74.52 File "/build/AutoGPTQ/setup.py", line 98, in <module> #0 74.52 setup( #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/__init__.py", line 87, in setup #0 74.52 return distutils.core.setup(**attrs) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 185, in setup #0 74.52 return run_commands(dist) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 201, in run_commands #0 74.52 dist.run_commands() #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 968, in run_commands #0 74.52 self.run_command(cmd) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/dist.py", line 1217, in run_command #0 74.52 super().run_command(command) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 987, in run_command #0 74.52 cmd_obj.run() #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/command/install.py", line 68, in run #0 74.52 return orig.install.run(self) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/install.py", line 698, in run #0 74.52 self.run_command('build') #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 319, in run_command #0 74.52 self.distribution.run_command(command) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/dist.py", line 1217, in run_command #0 74.52 super().run_command(command) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 987, in run_command #0 74.52 cmd_obj.run() #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/build.py", line 132, in run #0 74.52 self.run_command(cmd_name) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 319, in run_command #0 74.52 self.distribution.run_command(command) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/dist.py", line 1217, in run_command #0 74.52 super().run_command(command) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 987, in run_command #0 74.52 cmd_obj.run() #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 84, in run #0 74.52 _build_ext.run(self) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 346, in run #0 74.52 self.build_extensions() #0 74.52 File "/opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 843, in build_extensions #0 74.52 build_ext.build_extensions(self) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 466, in build_extensions #0 74.52 self._build_extensions_serial() #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 492, in _build_extensions_serial #0 74.52 self.build_extension(ext) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 246, in build_extension #0 74.52 _build_ext.build_extension(self, ext) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 547, in build_extension #0 74.52 objects = self.compiler.compile( #0 74.52 File "/opt/conda/lib/python3.10/site-packages/setuptools/_distutils/ccompiler.py", line 599, in compile #0 74.52 self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 581, in unix_wrap_single_compile #0 74.52 cflags = unix_cuda_flags(cflags) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 548, in unix_cuda_flags #0 74.52 cflags + _get_cuda_arch_flags(cflags)) #0 74.52 File "/opt/conda/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 1780, in _get_cuda_arch_flags #0 74.52 arch_list[-1] += '+PTX' #0 74.52 IndexError: list index out of range #0 74.52 [end of output] #0 74.52 #0 74.52 note: This error originates from a subprocess, and is likely not a problem with pip. #0 74.52 error: legacy-install-failure #0 74.52 #0 74.52 × Encountered error while trying to install package. #0 74.52 ╰─> auto-gptq #0 74.52 #0 74.52 note: This is an issue with the package mentioned above, not pip. #0 74.52 hint: See above for output from the failure. ------ Dockerfile:10 -------------------- 8 | WORKDIR /build/AutoGPTQ 9 | # RUN GITHUB_ACTIONS=true pip3 install . 10 | >>> RUN GITHUB_ACTIONS=true pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple . 11 | # RUN pip3 install transformers 12 | WORKDIR /workspace -------------------- ERROR: failed to solve: process "/bin/sh -c GITHUB_ACTIONS=true pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple ." did not complete successfully: exit code: 1 ``` **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Additional context** Add any other context about the problem here.
closed
2023-06-25T11:30:38Z
2023-06-26T08:19:30Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/176
[ "bug" ]
BorisPolonsky
1
MaartenGr/BERTopic
nlp
1,290
TypeError: cannot unpack non-iterable BERTopic object
Greeting MaartenGr, could you please explain for me this type of error? TypeError: cannot unpack non-iterable BERTopic object Thanks, in advance.
closed
2023-05-22T22:35:35Z
2023-09-27T08:59:37Z
https://github.com/MaartenGr/BERTopic/issues/1290
[]
Keamww2021
2
RobertCraigie/prisma-client-py
pydantic
19
Add support for selecting fields
## Problem A crucial part of modern and performant ORMs is the ability to choose what fields are returned, Prisma Client Python is currently missing this feature. ## Mypy solution As we have a mypy plugin we can dynamically modify types on the fly, this means we would be able to make use of a more ergonomic solution. ```py class Model(BaseModel): id: str name: str points: Optional[int] class SelectedModel(BaseModel): id: Optional[str] name: Optional[str] points: Optional[int] ModelSelect = Iterable[Literal['id', 'name', 'points']] @overload def action( ... ) -> Model: ... @overload def action( ... select: ModelSelect ) -> SelectedModel: ... model = action(select={'id', 'name'}) ``` The mypy plugin would then dynamically remove the `Optional` from the model for every field that is selected, we might also be able to remove the fields that aren't selected although I don't know if this is possible. The downside to a solution like this is that unreachable code will not trigger an error when type checking with a type checker other than mypy, e.g. ```py user = await client.user.find_first(select={'name'}) if user.id is not None: print(user.id) ``` Will pass type checks although the if block will never be ran. EDIT: A potential solution for the above would be to not use optional and instead use our own custom type, e.g. maybe something like `PrismaMaybeUnset`. This has its own downsides though. EDIT: I also think we may also want to support setting a "default include" value so that relations will always be fetched unless explicitly given `False`. This will not change the generated types and they will still be `Optional[T]`. ## Type checker agnostic solution After #59 is implemented the query builder should only select the fields that are present on the given `BaseModel`. This would mean that users could generate partial types and then easily use them to select certain fields. ```py User.create_partial('UserOnlyName', include={'name'}) ``` ```py from prisma.partials import UserOnlyName user = await UserOnlyName.prisma().find_unique(where={'id': 'abc'}) ``` Or create models by themselves ```py class User(BaseUser): name: str user = await User.prisma().find_unique(where={'id': 'abc'}) ``` This will make typing generic functions to process models more difficult, for example, the following function would not accept custom models.: ```py def process_user(user: User) -> None: ... ``` It could however be modified to accept objects with the correct properties by using a `Protocol`. ```py class UserWithID(Protocol): id: str def process_user(user: UserWithID): ... ```
closed
2021-06-14T18:59:57Z
2023-03-08T12:41:27Z
https://github.com/RobertCraigie/prisma-client-py/issues/19
[ "kind/feature", "level/advanced", "priority/medium" ]
RobertCraigie
4
K3D-tools/K3D-jupyter
jupyter
17
Plot objects persist
If one has a plot with e.g. single object, then it cannot be removed: from k3d import K3D plot = K3D() plot += K3D.text("HEY",(1,1,1)) print("Expect one object",plot.objects ) plot = K3D() print("Shold be empty list:",plot.objects)
closed
2017-05-04T10:18:59Z
2017-05-07T06:44:28Z
https://github.com/K3D-tools/K3D-jupyter/issues/17
[]
marcinofulus
0
nalepae/pandarallel
pandas
97
Bug with the progressbar
Hi! Thanks for the nice tool! :) I have an error only if I use the progress bar `TypeError: ("argument of type 'int' is not iterable", 'occurred at index M05218:191:000000000-D7R5H:1:1102:14482:19336')` It works well without the bar... Any idea? Cheers, Mathieu
closed
2020-06-10T12:22:35Z
2022-03-14T20:36:46Z
https://github.com/nalepae/pandarallel/issues/97
[]
mbahin
1
mwaskom/seaborn
data-visualization
3,268
Wrong ylim using pairplot
`pairplot` seems not to support `sharey=True` like `FacetGrid`. This may cause unnecessary problems if I have a draw a plot with different ylims using `pairplot`. Just take the iris dataset for an example. ```python import matplotlib.pyplot as plt import seaborn as sns iris = sns.load_dataset('iris') # pairplot() example g = sns.pairplot(iris, kind='scatter', diag_kind='hist', grid_kws=dict('sepal_length')) plt.show() ``` ![image](https://user-images.githubusercontent.com/96560962/219926017-bc390076-e2be-4f59-884f-83f34002b8d5.png) Though passing `'sepal_length'` to the function, the ylim of histogram is not the right value I want. If I use `sns.hisplot` to draw the histogram of sepal_length in iris dataset, the ylim is (0,25). ```pthon sns.histplot(iris,x='sepal_length') ``` ![image](https://user-images.githubusercontent.com/96560962/219927545-5ba87c86-91c6-4854-9cfd-2069e211b64c.png)
closed
2023-02-19T05:34:46Z
2023-02-19T17:31:01Z
https://github.com/mwaskom/seaborn/issues/3268
[]
kebuAAA
3
ymcui/Chinese-LLaMA-Alpaca
nlp
451
基于LLAMA基础模型,预训练adapter_config怎么产生?
*提示:将[ ]中填入x,表示打对钩。提问时删除这行。只保留符合的选项。* ### 详细描述问题 1. 基础模型是llama-7b。 2. tokenizer 是通过 merge_tokenizers (基础模型+中文sp) 3. 通过预训练脚本训练,训练出目录下 ![image](https://github.com/ymcui/Chinese-LLaMA-Alpaca/assets/14330290/59c807b4-f6ff-4ce1-b6db-e5ff9f1e11cf) 4. [wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/%E9%A2%84%E8%AE%AD%E7%BB%83%E8%84%9A%E6%9C%AC#%E8%AE%AD%E7%BB%83%E5%90%8E%E6%96%87%E4%BB%B6%E6%95%B4%E7%90%86) 这里训练后文件整理,adapter_config 这个从哪里生成? ### 运行截图或日志 ![image](https://github.com/ymcui/Chinese-LLaMA-Alpaca/assets/14330290/b141991c-1f26-488f-a514-4ea368e5f15e) ### 必查项目(前三项只保留你要问的) - [x ] **基础模型**:LLaMA / Alpaca / LLaMA-Plus / Alpaca-Plus - [ ] **运行系统**:Windows / MacOS / Linux - [ ] **问题分类**:下载问题 / 模型转换和合并 / 模型训练与精调 / 模型推理问题(🤗 transformers) / 模型量化和部署问题(llama.cpp、text-generation-webui、LlamaChat) / 效果问题 / 其他问题 - [x ] (必选)由于相关依赖频繁更新,请确保按照[Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki)中的相关步骤执行 - [ ] (必选)我已阅读[FAQ章节](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/常见问题)并且已在Issue中对问题进行了搜索,没有找到相似问题和解决方案 - [ ] (必选)第三方插件问题:例如[llama.cpp](https://github.com/ggerganov/llama.cpp)、[text-generation-webui](https://github.com/oobabooga/text-generation-webui)、[LlamaChat](https://github.com/alexrozanski/LlamaChat)等,同时建议到对应的项目中查找解决方案
closed
2023-05-29T09:20:06Z
2023-05-29T10:39:35Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/451
[]
richardkelly2014
5
miguelgrinberg/microblog
flask
228
Problem in Chapter 3 using flask-wtf
Hi, This is not really an issue but FYI, in working through chapter 3, I had trouble using the current version of flask-wtf or, technically, werkzeug. There was apparently a change to the way werkzeug handled url encoding as documented in [this link](https://github.com/pallets/flask/issues/3481). The solution (albeit temporary I guess) is to downgrade to a prior version of werkzeug as noted in that link. Here is my stack trace: [werkzeug_error.txt](https://github.com/miguelgrinberg/microblog/files/4536379/werkzeug_error.txt)
closed
2020-04-26T20:07:39Z
2020-06-30T22:48:50Z
https://github.com/miguelgrinberg/microblog/issues/228
[ "question" ]
TriumphTodd
1
plotly/dash-core-components
dash
756
Mapbox Graph wrapped in dcc.Loading lags one update behind
Hi there, when I wrap a Mapbox scatter plot in a dcc.Loading component, updates to this figure seem to be delayed by one update. The same logic with normal scatter plots works fine. I could reproduce this behavior with Dash Core Components 1.8.0 and previous versions. Here's a demo: ![withoutLoading](https://user-images.githubusercontent.com/32179158/74589413-766af100-5005-11ea-9c8c-7e9e1a67ec4d.gif) ![withLoading](https://user-images.githubusercontent.com/32179158/74589417-7965e180-5005-11ea-9ce5-b7f1652317aa.gif) and here's the code: ```python import dash import dash_html_components as html import dash_core_components as dcc import plotly.graph_objects as go from dash.dependencies import Output, Input app = dash.Dash(__name__) lat = [10, 10, 10, 10] lon = [10, 20, 30, 40] app.layout = html.Div([ html.Div('Select a point on the map:'), dcc.Slider(min=0, max=3, step=1, value=0, marks=[0, 1, 2, 3], id='slider'), dcc.Loading(dcc.Graph(id='graphContainer')) ]) @app.callback(Output('graphContainer', 'figure'), [Input('slider', 'value')]) def UpdateGraph(value): return {'data': [go.Scattermapbox(lat=lat, lon=lon, selectedpoints=[value])], 'layout': go.Layout(mapbox_style='carto-positron')} app.run_server() ```
closed
2020-02-15T14:19:45Z
2020-05-12T20:57:30Z
https://github.com/plotly/dash-core-components/issues/756
[]
ghost
6
qubvel-org/segmentation_models.pytorch
computer-vision
550
Custom weights
Is there a way to pass custom weights for models other than the ones mentioned in the table?
closed
2022-01-31T05:38:49Z
2022-01-31T08:26:31Z
https://github.com/qubvel-org/segmentation_models.pytorch/issues/550
[]
pranavsinghps1
2
aidlearning/AidLearning-FrameWork
jupyter
204
关于网络安全问题的考虑。Considerations on network security
cloud_ip功能是一个极好用的功能,但是他通过局域网http协议明文传输密码,这在大局域网例如校园是十分不安全的,别人通过抓包可以获取你的密码(特别是弱密码),并获得访问你个人手机数据的权限。我的建议是增加ip访问白名单机制,对所有请求ip列表进行临时授权。这个建议是否可行,或实用,如果有更好的方法请告知我。cloud_ IP is an excellent function, but it transmits passwords in plaintext through the LAN HTTP protocol, which is very unsafe in large LAN such as campus. Others can obtain your password (especially weak password) by capturing packets, and access your personal mobile phone data. My suggestion is to add IP access whitelist mechanism to temporarily authorize all request IP lists. Whether this suggestion is feasible or practical, please let me know if there is a better method.(Lazy translator from Baidu)
closed
2022-01-04T02:59:38Z
2022-12-05T12:23:46Z
https://github.com/aidlearning/AidLearning-FrameWork/issues/204
[]
LY1806620741
5
ResidentMario/missingno
data-visualization
2
Option to remove the sparkline
Hi, Many thanks for the awesome work! When the number of rows is large, the sparkline looks less useful (more difficult) to visually understand the #features available just looking at it. Wondering if an option to toggle the sparkline off could be added.
closed
2016-03-30T05:46:47Z
2016-04-08T05:29:41Z
https://github.com/ResidentMario/missingno/issues/2
[ "enhancement" ]
nipunbatra
3
andrew-hossack/dash-tools
plotly
105
https://github.com/badges/shields/issues/8671
closed
2023-02-02T15:08:15Z
2023-10-17T15:51:56Z
https://github.com/andrew-hossack/dash-tools/issues/105
[]
andrew-hossack
0
apache/airflow
data-science
48,026
KPO mapped task failing
### Apache Airflow version 3.0.0 ### If "Other Airflow 2 version" selected, which one? _No response_ ### What happened? Kpo Mapped task failing **Error** ``` scheduler [2025-03-20T17:28:28.774+0000] {dagrun.py:994} INFO - Marking run <DagRun kpo_override_resource_negative_case @ 2025-03-20 17:15:52.320478+00:00: scheduled__2025-03-20T17:15:52.320478+00:00, state:running, queued_at: 2025-03-20 17:15:57.320782+00:00. run_type: scheduled> successful scheduler Dag run in success state scheduler Dag run start:2025-03-20 17:15:57.356238+00:00 end:2025-03-20 17:28:28.775063+00:00 scheduler [2025-03-20T17:28:28.780+0000] {dagrun.py:1041} INFO - DagRun Finished: dag_id=kpo_override_resource_negative_case, logical_date=2025-03-20 17:15:52.320478+00:00, run_id=scheduled__2025-03-20T17:15:52.320478+00:00, run_start_date=2025-03-20 17:15:57.356238+00:00, run_end_date=2025-03-20 17:28:28.775063+00:00, run_duration=751.418825, state=success, run_type=scheduled, data_interval_start=2025-03-20 17:15:52.320478+00:00, data_interval_end=2025-03-20 17:15:52.320478+00:00, scheduler [2025-03-20T17:28:28.792+0000] {adapter.py:412} WARNING - Failed to emit DAG success event: scheduler Traceback (most recent call last): scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/engine/base.py", line 1910, in _execute_context scheduler self.dialect.do_execute( scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/engine/default.py", line 736, in do_execute scheduler cursor.execute(statement, parameters) scheduler psycopg2.OperationalError: lost synchronization with server: got message type "r", length 1919509605 scheduler scheduler scheduler The above exception was the direct cause of the following exception: scheduler scheduler Traceback (most recent call last): scheduler File "/usr/local/lib/python3.12/site-packages/airflow/providers/openlineage/plugins/adapter.py", line 397, in dag_success scheduler **get_airflow_state_run_facet(dag_id, run_id, task_ids, dag_run_state), scheduler ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ scheduler File "/usr/local/lib/python3.12/site-packages/airflow/providers/openlineage/utils/utils.py", line 561, in get_airflow_state_run_facet scheduler tis = DagRun.fetch_task_instances(dag_id=dag_id, run_id=run_id, task_ids=task_ids) scheduler ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ scheduler File "/usr/local/lib/python3.12/site-packages/airflow/utils/session.py", line 101, in wrapper scheduler return func(*args, session=session, **kwargs) scheduler ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ scheduler File "/usr/local/lib/python3.12/site-packages/airflow/models/dagrun.py", line 708, in fetch_task_instances scheduler return session.scalars(tis).all() scheduler ^^^^^^^^^^^^^^^^^^^^ scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/orm/session.py", line 1778, in scalars scheduler return self.execute( scheduler ^^^^^^^^^^^^^ scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/orm/session.py", line 1717, in execute scheduler result = conn._execute_20(statement, params or {}, execution_options) scheduler ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/engine/base.py", line 1710, in _execute_20 scheduler return meth(self, args_10style, kwargs_10style, execution_options) scheduler ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/sql/elements.py", line 334, in _execute_on_connection scheduler return connection._execute_clauseelement( scheduler ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/engine/base.py", line 1577, in _execute_clauseelement scheduler ret = self._execute_context( scheduler ^^^^^^^^^^^^^^^^^^^^^^ scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/engine/base.py", line 1953, in _execute_context scheduler self._handle_dbapi_exception( scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/engine/base.py", line 2134, in _handle_dbapi_exception scheduler util.raise_( scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/util/compat.py", line 211, in raise_ scheduler raise exception scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/engine/base.py", line 1910, in _execute_context scheduler self.dialect.do_execute( scheduler File "/usr/local/lib/python3.12/site-packages/sqlalchemy/engine/default.py", line 736, in do_execute scheduler cursor.execute(statement, parameters) scheduler sqlalchemy.exc.OperationalError: (psycopg2.OperationalError) lost synchronization with server: got message type "r", length 1919509605 scheduler scheduler [SQL: SELECT task_instance.rendered_map_index, task_instance.task_display_name, task_instance.id, task_instance.task_id, task_instance.dag_id, task_instance.run_id, task_instance.map_index, task_instance.start_date, task_instance.end_date, task_instance.duration, task_instance.state, task_instance.try_id, task_instance.try_number, task_instance.max_tries, task_instance.hostname, task_instance.unixname, task_instance.pool, task_instance.pool_slots, task_instance.queue, task_instance.priority_weight, task_instance.operator, task_instance.custom_operator_name, task_instance.queued_dttm, task_instance.scheduled_dttm, task_instance.queued_by_job_id, task_instance.last_heartbeat_at, task_instance.pid, task_instance.executor, task_instance.executor_config, task_instance.updated_at, task_instance.external_executor_id, task_instance.trigger_id, task_instance.trigger_timeout, task_instance.next_method, task_instance.next_kwargs, task_instance.dag_version_id, dag_run_1.state AS state_1, dag_run_1.id AS id_1, dag_run_1.dag_id AS dag_id_1, dag_run_1.queued_at, dag_run_1.logical_date, dag_run_1.start_date AS start_date_1, dag_run_1.end_date AS end_date_1, dag_run_1.run_id AS run_id_1, dag_run_1.creating_job_id, dag_run_1.run_type, dag_run_1.triggered_by, dag_run_1.conf, dag_run_1.data_interval_start, dag_run_1.data_interval_end, dag_run_1.run_after, dag_run_1.last_scheduling_decision, dag_run_1.log_template_id, dag_run_1.updated_at AS updated_at_1, dag_run_1.clear_number, dag_run_1.backfill_id, dag_run_1.bundle_version scheduler FROM task_instance JOIN dag_run AS dag_run_1 ON dag_run_1.dag_id = task_instance.dag_id AND dag_run_1.run_id = task_instance.run_id scheduler WHERE task_instance.dag_id = %(dag_id_2)s AND task_instance.run_id = %(run_id_2)s] scheduler [parameters: {'dag_id_2': 'kpo_override_resource_negative_case', 'run_id_2': 'scheduled__2025-03-20T17:15:52.320478+00:00'}] scheduler (Background on this error at: https://sqlalche.me/e/14/e3q8) scheduler scheduler-gc Trimming airflow logs to 1 days. scheduler-gc Trimming airflow logs to 1 days. scheduler-gc Trimming airflow logs to 1 days. scheduler-gc Trimming airflow logs to 1 days. scheduler-gc Trimming airflow logs to 1 days. ``` ### What you think should happen instead? _No response_ ### How to reproduce Try running below DAG ``` from datetime import datetime from airflow import DAG from airflow.providers.cncf.kubernetes.operators.pod import ( KubernetesPodOperator, ) from airflow.configuration import conf namespace = conf.get("kubernetes_executor", "NAMESPACE") with DAG( dag_id="kpo_mapped", start_date=datetime(1970, 1, 1), schedule=None, tags=["taskmap"] # render_template_as_native_obj=True, ) as dag: KubernetesPodOperator( task_id="cowsay_static", name="cowsay_statc", namespace=namespace, image="docker.io/rancher/cowsay", cmds=["cowsay"], arguments=["moo"], log_events_on_failure=True, ) KubernetesPodOperator.partial( task_id="cowsay_mapped", name="cowsay_mapped", namespace=namespace, image="docker.io/rancher/cowsay", cmds=["cowsay"], log_events_on_failure=True, ).expand(arguments=[["mooooove"], ["cow"], ["get out the way"]]) ``` ### Operating System linux ### Versions of Apache Airflow Providers _No response_ ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### Anything else? _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
open
2025-03-20T17:41:56Z
2025-03-24T13:06:03Z
https://github.com/apache/airflow/issues/48026
[ "kind:bug", "priority:high", "area:core", "area:dynamic-task-mapping", "provider:openlineage", "affected_version:3.0.0beta" ]
vatsrahul1001
0
blacklanternsecurity/bbot
automation
1,953
Is this a fork from SpiderFoot ?
**Question** Question: Is this a fork from Spiderfoot ?
closed
2024-11-11T12:25:48Z
2024-11-12T02:34:56Z
https://github.com/blacklanternsecurity/bbot/issues/1953
[ "enhancement" ]
izdrail
5
521xueweihan/HelloGitHub
python
2,718
【开源自荐】LunarLink - 接口自动化测试平台,帮助测试工程师快速编写接口自动化测试用例
- 项目地址:https://github.com/tahitimoon/LunarLink - 类别:Python - 项目标题:一个基于 Web 的接口自动化测试平台,可以快速编写和运行接口自动化测试用例 - 项目描述:基于HttpRunner + Django + Vue + Element UI 的接口自动化测试平台,生产可用。 - 项目文档:https://lunar-link-docs.fun - 亮点: - [x] 支持同步 YAPI(间接支持 Swagger,Postman,Har),无需手动录入接口 - [x] 继承[Requests](https://requests.readthedocs.io/projects/cn/zh_CN/latest/index.html)的全部特性,轻松实现 HTTP(S)的各种测试需求 - [x] 借助驱动代码(debugtalk.py),在测试脚本中轻松实现请求参数签名,加密和解密响应等 - [x] 支持完善的 hook 机制,通过请求前置和后置函数,完美解决单接口的 token 依赖和多个接口的参数传递 - [x] 支持录制HTTP(S)请求,简单操作即可生成测试用例 - [x] 类 crontab 的定时任务, 无需额外学习成本 - [x] 测试用例支持参数化和数据驱动机制 - [x] 测试结果统计报告简洁清晰,附带详尽统计信息和日志记录 - [x] 测试报告推送飞书,钉钉,企业微信等 - 截图: ![2](https://github.com/521xueweihan/HelloGitHub/assets/37645552/7774a858-b9ab-4e97-aa4c-b07946192c56) ![3](https://github.com/521xueweihan/HelloGitHub/assets/37645552/2fd5ad06-798a-4cf6-8a70-bc8fb6ed5b33) ![4](https://github.com/521xueweihan/HelloGitHub/assets/37645552/6a3cefa3-b35c-4002-92ae-7d35f06d9aeb) ![5](https://github.com/521xueweihan/HelloGitHub/assets/37645552/e512e2a2-a643-4a5f-b06b-43682f5fb44d) - 后续更新计划: 添加操作日志、优化接口调式页面、批量执行用例交互等
open
2024-03-29T01:53:22Z
2024-04-24T12:08:18Z
https://github.com/521xueweihan/HelloGitHub/issues/2718
[ "Python 项目" ]
tahitimoon
0
vimalloc/flask-jwt-extended
flask
281
How to call @admin_required like @jwt_required
I followed in this docs [custom_decorators](https://flask-jwt-extended.readthedocs.io/en/latest/custom_decorators.html) I have question. How to call @admin_required decorator in another file, namespace ... like @jwt_required Look like this ``` from flask_jwt_extended import (jwt_required admin_required) ```` Thank!
closed
2019-10-18T10:47:46Z
2019-10-18T14:33:34Z
https://github.com/vimalloc/flask-jwt-extended/issues/281
[]
tatdatpham
1
deeppavlov/DeepPavlov
nlp
1,194
Multi-Lingual Sentence Embedding
Can someone help me to get an example of multi-lingual sentence embedding? I want to extract the sentence embedding for Hindi using the Multi-lingual sentence embedding model. Thanks.
closed
2020-04-30T12:35:52Z
2020-05-14T05:07:47Z
https://github.com/deeppavlov/DeepPavlov/issues/1194
[]
ashispapu
3
s3rius/FastAPI-template
asyncio
172
How to use DAO in a websocket router?
I have a websocket router like this `@router.websocket( path="/ws", ) async def websocket( websocket: WebSocket, ): await websocket.accept() ...` and I want to use DAO to save the message in websocket,but if I use `async def websocket( websocket: WebSocket, dao: MessageDAO = Depends(), ):` when client connect to the websocket, I got a error File "/Users/xxls/Desktop/Project/db/dependencies.py", line 17, in get_db_session session: AsyncSession = request.app.state.db_session_factory() └ <taskiq_dependencies.dependency.Dependency object at 0x111e2bd10> AttributeError: 'Dependency' object has no attribute 'app'
closed
2023-06-19T15:56:52Z
2024-02-08T17:25:19Z
https://github.com/s3rius/FastAPI-template/issues/172
[]
eggb4by
15
ading2210/poe-api
graphql
35
Using custom bots
Can it be implementeD?
closed
2023-04-11T12:09:54Z
2023-04-12T00:40:45Z
https://github.com/ading2210/poe-api/issues/35
[ "invalid" ]
ghost
2
zappa/Zappa
django
509
[Migrated] Enhancement request: async execution for a non-defined function
Originally from: https://github.com/Miserlou/Zappa/issues/1332 by [michelorengo](https://github.com/michelorengo) ## Context My use case is to be able to execute a function ("task") using the async execution in a different lambda. That lambda has a different code base than the calling lambda. In other words, the function ("task") to be executed is not defined in the calling lambda. The async execution lets you specify a remote lambda and remote region but the function (to be executed) has to be defined in the code. The request is to be able to simply provide a function name as a string in the form of <module_name>.<function_name>. This obviously does not work for the decorator. It works only using "zappa.async.run". ## Expected Behavior The below should work: ` from zappa.async import run run(func="my_module.my_function", remote_aws_lambda_function_name="my_remote_lambda", remote_aws_region='us-east-1', kwargs=kwargs) ` ## Actual Behavior The function/task path is retrieved via inspection (hence requires a function type) by "get_func_task_path" ## Possible Fix This is a bit hackish but is the least intrusive. I'll make a PR but I'm thinking of: ` def get_func_task_path(func): """ Format the modular task path for a function via inspection if param is a function. If the param is of type string, it will simply return it. """ if isinstance(func , (str, unicode)): return func module_path = inspect.getmodule(func).__name__ task_path = '{module_path}.{func_name}'.format( module_path=module_path, func_name=func.__name__ ) return task_path `
closed
2021-02-20T09:43:41Z
2024-04-13T16:36:46Z
https://github.com/zappa/Zappa/issues/509
[ "enhancement", "feature-request", "good-idea", "has-pr", "no-activity", "auto-closed" ]
jneves
2
AutoViML/AutoViz
scikit-learn
101
ValueError
Hi, stumbled upon autoviz and failed to run even a minimal example. 1) Had to change 'seaborn' to 'seaborn-v0_8' in AutoViz_Class.py and AutoViz_Utils.py 2) After that i got the error below, where i don't know how to proceed Any suggestions or fixes? Thanks in advance. FYI: Here i used python 3.11.6. Had the same Error in python 3.11.4. Could not even install autoviz in python 3.12 `--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[10], line 2 1 import pandas as pd ----> 2 from autoviz.AutoViz_Class import AutoViz_Class 4 get_ipython().run_line_magic('matplotlib', 'inline') File ~\AppData\Roaming\Python\Python311\site-packages\autoviz\__init__.py:3 1 name = "autoviz" 2 from .__version__ import __version__, __holo_version__ ----> 3 from .AutoViz_Class import AutoViz_Class 4 from .AutoViz_Class import data_cleaning_suggestions 5 from .AutoViz_Class import FixDQ File ~\AppData\Roaming\Python\Python311\site-packages\autoviz\AutoViz_Class.py:61 59 from sklearn.model_selection import train_test_split 60 ########################################################################################## ---> 61 from autoviz.AutoViz_Holo import AutoViz_Holo 62 from autoviz.AutoViz_Utils import save_image_data, save_html_data, analyze_problem_type, draw_pivot_tables, draw_scatters 63 from autoviz.AutoViz_Utils import draw_pair_scatters, plot_fast_average_num_by_cat, draw_barplots, draw_heatmap File ~\AppData\Roaming\Python\Python311\site-packages\autoviz\AutoViz_Holo.py:5 3 import pandas as pd 4 ############# Import from autoviz.AutoViz_Class the following libraries ####### ----> 5 from autoviz.AutoViz_Utils import * 6 ############## make sure you use: conda install -c pyviz hvplot ############### 7 import hvplot.pandas # noqa File ~\AppData\Roaming\Python\Python311\site-packages\autoviz\AutoViz_Utils.py:61 59 from sklearn.model_selection import train_test_split 60 ######## This is where we import HoloViews related libraries ######### ---> 61 import hvplot.pandas 62 import holoviews as hv 63 from holoviews import opts File ~\AppData\Roaming\Python\Python311\site-packages\hvplot\__init__.py:12 8 import holoviews as _hv 10 from holoviews import Store ---> 12 from .converter import HoloViewsConverter 13 from .util import get_ipy 14 from .utilities import save, show # noqa File ~\AppData\Roaming\Python\Python311\site-packages\hvplot\converter.py:25 18 from holoviews.core.util import max_range, basestring 19 from holoviews.element import ( 20 Curve, Scatter, Area, Bars, BoxWhisker, Dataset, Distribution, 21 Table, HeatMap, Image, HexTiles, QuadMesh, Bivariate, Histogram, 22 Violin, Contours, Polygons, Points, Path, Labels, RGB, ErrorBars, 23 VectorField, Rectangles, Segments 24 ) ---> 25 from holoviews.plotting.bokeh import OverlayPlot, colormap_generator 26 from holoviews.plotting.util import process_cmap 27 from holoviews.operation import histogram File ~\AppData\Roaming\Python\Python311\site-packages\holoviews\plotting\bokeh\__init__.py:40 38 from .graphs import GraphPlot, NodePlot, TriMeshPlot, ChordPlot 39 from .heatmap import HeatMapPlot, RadialHeatMapPlot ---> 40 from .hex_tiles import HexTilesPlot 41 from .path import PathPlot, PolygonPlot, ContourPlot 42 from .plot import GridPlot, LayoutPlot, AdjointLayoutPlot File ~\AppData\Roaming\Python\Python311\site-packages\holoviews\plotting\bokeh\hex_tiles.py:22 18 from .selection import BokehOverlaySelectionDisplay 19 from .styles import base_properties, line_properties, fill_properties ---> 22 class hex_binning(Operation): 23 """ 24 Applies hex binning by computing aggregates on a hexagonal grid. 25 26 Should not be user facing as the returned element is not directly 27 useable. 28 """ 30 aggregator = param.ClassSelector( 31 default=np.size, class_=(types.FunctionType, tuple), doc=""" 32 Aggregation function or dimension transform used to compute bin 33 values. Defaults to np.size to count the number of values 34 in each bin.""") File ~\AppData\Roaming\Python\Python311\site-packages\holoviews\plotting\bokeh\hex_tiles.py:30, in hex_binning() 22 class hex_binning(Operation): 23 """ 24 Applies hex binning by computing aggregates on a hexagonal grid. 25 26 Should not be user facing as the returned element is not directly 27 useable. 28 """ ---> 30 aggregator = param.ClassSelector( 31 default=np.size, class_=(types.FunctionType, tuple), doc=""" 32 Aggregation function or dimension transform used to compute bin 33 values. Defaults to np.size to count the number of values 34 in each bin.""") 36 gridsize = param.ClassSelector(default=50, class_=(int, tuple)) 38 invert_axes = param.Boolean(default=False) File ~\AppData\Roaming\Python\Python311\site-packages\param\__init__.py:1367, in ClassSelector.__init__(self, class_, default, instantiate, is_instance, **params) 1365 self.is_instance = is_instance 1366 super(ClassSelector,self).__init__(default=default,instantiate=instantiate,**params) -> 1367 self._validate(default) File ~\AppData\Roaming\Python\Python311\site-packages\param\__init__.py:1371, in ClassSelector._validate(self, val) 1369 def _validate(self, val): 1370 super(ClassSelector, self)._validate(val) -> 1371 self._validate_class_(val, self.class_, self.is_instance) File ~\AppData\Roaming\Python\Python311\site-packages\param\__init__.py:1383, in ClassSelector._validate_class_(self, val, class_, is_instance) 1381 if is_instance: 1382 if not (isinstance(val, class_)): -> 1383 raise ValueError( 1384 "%s parameter %r value must be an instance of %s, not %r." % 1385 (param_cls, self.name, class_name, val)) 1386 else: 1387 if not (issubclass(val, class_)): **ValueError: ClassSelector parameter None value must be an instance of (function, tuple), not <function size at 0x0000019E7F3B3DF0>**.`
closed
2023-11-11T12:10:51Z
2023-12-24T12:14:44Z
https://github.com/AutoViML/AutoViz/issues/101
[]
DirtyStreetCoder
5
sqlalchemy/alembic
sqlalchemy
611
Allow to run statement before creating `alembic_version` table in Postgres
I need to run `SET ROLE writer_role;` before creating a table in Postgres, because the user role I use to login does not have `CREATE` permission in the schema. And it is not possible to login with `writer_role`. This causes the auto generation of the initial revision (`alembic revision --autogenerate -m "initial") to fail when it tries to create the `alembic_version` table and it does not generate the initial migration file. The output of the command mentioned above is: ``` INFO [alembic.runtime.migration] Context impl PostgresqlImpl. INFO [alembic.runtime.migration] Will assume transactional DDL. Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/engine/base.py", line 1249, in _execute_context cursor, statement, parameters, context File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/engine/default.py", line 580, in do_execute cursor.execute(statement, parameters) psycopg2.ProgrammingError: permission denied for schema public LINE 2: CREATE TABLE alembic_version ( ^ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/local/bin/alembic", line 11, in <module> sys.exit(main()) File "/usr/local/lib/python3.6/dist-packages/alembic/config.py", line 573, in main CommandLine(prog=prog).main(argv=argv) File "/usr/local/lib/python3.6/dist-packages/alembic/config.py", line 567, in main self.run_cmd(cfg, options) File "/usr/local/lib/python3.6/dist-packages/alembic/config.py", line 547, in run_cmd **dict((k, getattr(options, k, None)) for k in kwarg) File "/usr/local/lib/python3.6/dist-packages/alembic/command.py", line 214, in revision script_directory.run_env() File "/usr/local/lib/python3.6/dist-packages/alembic/script/base.py", line 489, in run_env util.load_python_file(self.dir, "env.py") File "/usr/local/lib/python3.6/dist-packages/alembic/util/pyfiles.py", line 98, in load_python_file module = load_module_py(module_id, path) File "/usr/local/lib/python3.6/dist-packages/alembic/util/compat.py", line 173, in load_module_py spec.loader.exec_module(module) File "<frozen importlib._bootstrap_external>", line 678, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "alembic/env.py", line 89, in <module> run_migrations_online() File "alembic/env.py", line 83, in run_migrations_online context.run_migrations() File "<string>", line 8, in run_migrations File "/usr/local/lib/python3.6/dist-packages/alembic/runtime/environment.py", line 846, in run_migrations self.get_context().run_migrations(**kw) File "/usr/local/lib/python3.6/dist-packages/alembic/runtime/migration.py", line 499, in run_migrations self._ensure_version_table() File "/usr/local/lib/python3.6/dist-packages/alembic/runtime/migration.py", line 440, in _ensure_version_table self._version.create(self.connection, checkfirst=True) File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/sql/schema.py", line 870, in create bind._run_visitor(ddl.SchemaGenerator, self, checkfirst=checkfirst) File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/engine/base.py", line 1615, in _run_visitor visitorcallable(self.dialect, self, **kwargs).traverse_single(element) File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/sql/visitors.py", line 138, in traverse_single return meth(obj, **kw) File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/sql/ddl.py", line 826, in visit_table include_foreign_key_constraints, File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/engine/base.py", line 988, in execute return meth(self, multiparams, params) File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/sql/ddl.py", line 72, in _execute_on_connection return connection._execute_ddl(self, multiparams, params) File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/engine/base.py", line 1050, in _execute_ddl compiled, File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/engine/base.py", line 1253, in _execute_context e, statement, parameters, cursor, context File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/engine/base.py", line 1473, in _handle_dbapi_exception util.raise_from_cause(sqlalchemy_exception, exc_info) File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/util/compat.py", line 398, in raise_from_cause reraise(type(exception), exception, tb=exc_tb, cause=cause) File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/util/compat.py", line 152, in reraise raise value.with_traceback(tb) File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/engine/base.py", line 1249, in _execute_context cursor, statement, parameters, context File "/usr/local/lib/python3.6/dist-packages/sqlalchemy/engine/default.py", line 580, in do_execute cursor.execute(statement, parameters) sqlalchemy.exc.ProgrammingError: (psycopg2.ProgrammingError) permission denied for schema public LINE 2: CREATE TABLE alembic_version ( ^ [SQL: CREATE TABLE alembic_version ( version_num VARCHAR(32) NOT NULL, CONSTRAINT alembic_version_pkc PRIMARY KEY (version_num) ) ] (Background on this error at: http://sqlalche.me/e/f405) ```
closed
2019-10-22T11:14:58Z
2023-10-18T17:58:59Z
https://github.com/sqlalchemy/alembic/issues/611
[ "question" ]
notrev
7
PrefectHQ/prefect
automation
16,810
Automation not working with basic auth enabled
### Bug summary I have set up automation for canceling long-running jobs and sending out notifications. I noticed that they do no longer work as expected. When a condition for cancellation is met (in running over 5 minutes) the flow is not cancelled, and I see an error message in the log: `| WARNING | prefect.server.events.actions - Action failed: "Unexpected status from 'cancel-flow-run' action: 403"` When I then try to cancel the flow manually, it should trigger the notification automation. This also doesn't work either. The following message is shown: `| WARNING | prefect.server.events.actions - Action failed: "Unexpected status from 'send-notification' action: 401"` I traced this error back to when I enabled basic authentication, so I assume it has something to do with that. ### Version info ```Text Version: 3.1.13 API version: 0.8.4 Python version: 3.12.8 Git commit: 16e85ce3 Built: Fri, Jan 17, 2025 8:46 AM OS/Arch: linux/x86_64 Profile: ephemeral Server type: server Pydantic version: 2.10.5 ``` ### Additional context This is the only line logged on the server even with DEBUG_MODE enabled. Server is hosted on azure in a docker container
closed
2025-01-22T10:28:16Z
2025-01-23T19:13:51Z
https://github.com/PrefectHQ/prefect/issues/16810
[ "bug" ]
dominik-eai
1
seleniumbase/SeleniumBase
web-scraping
3,434
Headless Mode refactoring for the removal of old Headless Mode
## Headless Mode refactoring for the removal of old Headless Mode As detailed in https://developer.chrome.com/blog/removing-headless-old-from-chrome, Chrome's old headless mode has been removed in Chrome 132. The SeleniumBase `headless1` option mapped to it (`--headless=old`). Before Chrome's newer headless mode appeared, it was just `headless`. After the newer `--headless=new` option appeared, the SeleniumBase `headless2` option mapped to it. Now that the old headless mode is gone, a few changes will occur to maintain backwards compatibility: * If the Chrome version is 132 (or newer), `headless1` will automatically remap to `--headless` / `--headless=new`. * If the Chrome version is less than 132, then `headless1` will continue mapping to `--headless=old`. So in summary, on Chrome 132 or newer (once this ticket is complete), `headless1` is the same as `headless` is the same as `headless2`. All those will map to the same (new) headless mode on Chrome. In the meantime, attempting to use the old headless mode on Chrome 132 (or newer) causes the following error to occur: ``selenium.common.exceptions.SessionNotCreatedException: Message: session not created: probably user data directory is already in use, please specify a unique value for --user-data-dir argument, or don't use --user-data-dir`` (Not sure where that error is coming from, but the message is misleading because the real cause of the error is the removal of Chrome's old headless mode, and not some problem with the user data directory.)
closed
2025-01-19T03:57:59Z
2025-01-21T23:42:39Z
https://github.com/seleniumbase/SeleniumBase/issues/3434
[ "enhancement" ]
mdmintz
1
docarray/docarray
fastapi
1,665
chore: Copyedit draft release note v0.34.0
# Release Note This release contains 2 breaking changes, 3 new features, 11 bug fixes, and 2 documentation improvements. ## :bomb: Breaking Changes ### Terminate Python 3.7 support :warning: :warning: DocArray will now require Python 3.8. We can no longer assure compatibility with Python 3.7. We decided to drop it for two reasons: * Several dependencies of DocArray require Python 3.8. * Python [long-term support for 3.7 is ending](https://endoflife.date/python) this week. This means there will no longer be security updates for Python 3.7, making this a good time for us to change our requirements. ### Changes to `DocVec` Protobuf definition (#1639) In order to fix a bug in the `DocVec` protobuf serialization described in [#1561](https://github.com/docarray/docarray/issues/1561), we have changed the `DocVec` .proto definition. This means that **`DocVec` objects serialized with DocArray v0.33.0 or earlier cannot be deserialized with DocArray v.0.34.0 or later, and vice versa**. :warning: :warning: **We strongly recommend** that everyone using Protobuf with `DocVec` upgrade to DocArray v0.34.0 or later. ## 🆕 Features ### Allow users to check if a Document is already indexed in a DocIndex (#1633) You can now check if a Document has already been indexed by using the `in` keyword: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray import numpy as np class MyDoc(BaseDoc): text: str embedding: NdArray[128] docs = DocList[MyDoc]( [MyDoc(text="Example text", embedding=np.random.rand(128)) for _ in range(2000)]) index = InMemoryExactNNIndex[MyDoc](docs) assert docs[0] in index assert MyDoc(text='New text', embedding=np.random.rand(128)) not in index ``` ### Support subindexes in `InMemoryExactNNIndex` (#1617) You can now use the [find_subindex](https://docs.docarray.org/user_guide/storing/docindex/#nested-data-with-subindex) method with the ExactNNSearch DocIndex. ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray import numpy as np class MyDoc(BaseDoc): text: str embedding: NdArray[128] docs = DocList[MyDoc]( [MyDoc(text="Example text", embedding=np.random.rand(128)) for _ in range(2000)]) index = InMemoryExactNNIndex[MyDoc](docs) assert docs[0] in index assert MyDoc(text='New text', embedding=np.random.rand(128)) not in index ``` ### Flexible tensor types for protobuf deserialization (#1645) You can deserialize any `DocVec` protobuf message to any tensor type, by passing the `tensor_type` parameter to `from_protobuf`. This means that you can choose at deserialization time if you are working with numpy, PyTorch, or TensorFlow tensors. ```python class MyDoc(BaseDoc): tensor: TensorFlowTensor da = DocVec[MyDoc](...) # doesn't matter what tensor_type is here proto = da.to_protobuf() da_after = DocVec[MyDoc].from_protobuf(proto, tensor_type=TensorFlowTensor) assert isinstance(da_after.tensor, TensorFlowTensor) ``` ## ⚙ Refactoring ### Add `DBConfig` to `InMemoryExactNNSearch` `InMemoryExactNNsearch` used to get a single parameter `index_file_path` as a constructor parameter, unlike the rest of the Indexers who accepted their own `DBConfig`. Now `index_file_path` is part of the `DBConfig` which allows to initialize from it. This will allow us to extend this config if more parameters are needed. The parameters of `DBConfig` can be passed at construction time as `**kwargs` making this change compatible with old usage. These two initializations are equivalent. ```python from docarray.index import InMemoryExactNNIndex db_config = InMemoryExactNNIndex.DBConfig(index_file_path='index.bin') index = InMemoryExactNNIndex[MyDoc](db_config=db_config) index = InMemoryExactNNIndex[MyDoc](index_file_path='index.bin') ``` ## 🐞 Bug Fixes ### Allow protobuf deserialization of `BaseDoc` with `Union` type (#1655) Serialization of `BaseDoc` types who have `Union` types parameter of Python native types is supported. ```python from docarray import BaseDoc from typing import Union class MyDoc(BaseDoc): union_field: Union[int, str] docs1 = DocList[MyDoc]([MyDoc(union_field="hello")]) docs2 = DocList[BasisUnion].from_dataframe(docs_basic.to_dataframe()) assert docs1 == docs2 ``` When these `Union` types involve other `BaseDoc` types, an exception is thrown. ```python class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) # raises an Exception DocList[CustomDoc].from_dataframe(docs.to_dataframe()) ``` ### Cast limit to integer when passed to `HNSWDocumentIndex` (#1657, #1656) If you call `find` or `find_batched` on an `HNSWDocumentIndex`, the `limit` parameter will automatically be cast to `integer`. ### Moved `default_column_config` from `RuntimeConfig` to `DBconfig` (#1648) `default_column_config` contains specific configuration information about the columns and tables inside the backend's database. This was previously put inside `RuntimeConfig` which caused an error because this information is required at initialization time. This information has been moved inside `DBConfig` so you can edit it there. ```python from docarray.index import HNSWDocumentIndex import numpy as np db_config = HNSWDocumentIndex.DBConfig() db_conf.default_column_config.get(np.ndarray).update({'ef': 2500}) index = HNSWDocumentIndex[MyDoc](db_config=db_config) ``` ### Fix issue with Protobuf (de)serialization for DocVec (#1639) This bug caused raw Protobuf objects to be stored as DocVec columns after they were deserialized from Protobuf, making the data essentially inaccessible. This has now been fixed, and `DocVec` objects are identical before and after (de)serialization. ### Fix order of returned matches when `find` and `filter` combination used in `InMemoryExactNNIndex` (#1642) Hybrid search (find+filter) for `InMemoryExactNNIndex` was prioritizing low similarities (lower scores) for returned matches. Fixed by adding an option to sort matches in a reverse order based on their scores. ```python # prepare a query q_doc = MyDoc(embedding=np.random.rand(128), text='query') query = ( db.build_query() .find(query=q_doc, search_field='embedding') .filter(filter_query={'text': {'$exists': True}}) .build() ) results = db.execute_query(query) # Before: results was sorted from worst to best matches # Now: It's sorted in the correct order, showing better matches first ``` ### Working with external Qdrant collections (#1632) When using `QdrandDocumentIndex` to connect to a Qdrant DB initialized outside of `docarray` raised a `KeyError`. This has been fixed, and now you can use `QdrantDocumentIndex` to connect to externally initialized collections. ## Other bug fixes - Update text search to match Weaviate client's new sig (#1654) - Fix `DocVec` equality (#1641, #1663) - Fix exception when `summary()` called for `LegacyDocument`. (#1637) - Fix `DocList` and `DocVec` coersion. (#1568) - Fix `update()` on `BaseDoc` with tensors fields (#1628) ## 📗 Documentation Improvements - Enhance DocVec section (#1658) - Qdrant in memory usage (#1634) ## 🤟 Contributors We would like to thank all contributors to this release: - Johannes Messner (@JohannesMessner) - Nikolas Pitsillos (@npitsillos) - Shukri (@hsm207) - Kacper Łukawski (@kacperlukawski) - Aman Agarwal (@agaraman0) - maxwelljin (@maxwelljin) - samsja (@samsja) - Saba Sturua (@jupyterjazz) - Joan Fontanals (@JoanFM)
closed
2023-06-20T18:10:10Z
2023-06-21T08:24:54Z
https://github.com/docarray/docarray/issues/1665
[]
scott-martens
0
quokkaproject/quokka
flask
623
cli: ensure and write test for installation (tox)
Write tests for cli init https://github.com/rochacbruno/quokka_ng/issues/48
open
2018-02-07T01:51:28Z
2018-02-07T01:51:28Z
https://github.com/quokkaproject/quokka/issues/623
[ "1.0.0", "hacktoberfest" ]
rochacbruno
0
huggingface/datasets
pytorch
7,305
Build Documentation Test Fails Due to "Bad Credentials" Error
### Describe the bug The `Build documentation / build / build_main_documentation (push)` job is consistently failing during the "Syncing repository" step. The error occurs when attempting to determine the default branch name, resulting in "Bad credentials" errors. ### Steps to reproduce the bug 1. Trigger the `build_main_documentation` job. 2. Observe the logs during the "Syncing repository" step. ### Expected behavior The workflow should be able to retrieve the default branch name without encountering credential issues. ### Environment info ```plaintext Syncing repository: huggingface/notebooks Getting Git version info Temporarily overriding HOME='/home/runner/work/_temp/00e62748-9940-4a4f-bbbc-eb2cda6d7ed6' before making global git config changes Adding repository directory to the temporary git global config as a safe directory /usr/bin/git config --global --add safe.directory /home/runner/work/datasets/datasets/notebooks Initializing the repository Disabling automatic garbage collection Setting up auth Determining the default branch Retrieving the default branch name Bad credentials - https://docs.github.com/rest Waiting 20 seconds before trying again Retrieving the default branch name Bad credentials - https://docs.github.com/rest Waiting 19 seconds before trying again Retrieving the default branch name Error: Bad credentials - https://docs.github.com/rest ```
open
2024-12-03T20:22:54Z
2025-01-08T22:38:14Z
https://github.com/huggingface/datasets/issues/7305
[]
ruidazeng
2
ray-project/ray
deep-learning
51,349
Release test map_groups.many_groups (sort_shuffle_pull_based) failed
Release test **map_groups.many_groups (sort_shuffle_pull_based)** failed. See https://buildkite.com/ray-project/release/builds/35758#0195916e-c154-473b-9806-e922721e0873 for more details. Managed by OSS Test Policy
closed
2025-03-13T22:07:28Z
2025-03-18T16:57:56Z
https://github.com/ray-project/ray/issues/51349
[ "bug", "P0", "triage", "data", "release-test", "jailed-test", "ray-test-bot", "weekly-release-blocker", "stability" ]
can-anyscale
1
huggingface/peft
pytorch
1,893
LORA finetuning gradients are scaled by a unknown constant factor
### System Info torch: 2.3.0+cu121 transformers: 4.41.2 peft: 0.11.1 datasets: 2.20.0 ### Who can help? @BenjaminBossan @sayakpaul ### Information - [ ] The official example scripts - [X] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction You can run the following Colab notebook: https://colab.research.google.com/drive/1lgFyKZaZ3ySXWRcfImsry92X7dhrVgZz?usp=sharing There are two sections in the linked Collab doc. - "Run finetuning" contains the code to fine-tune for two steps and save the weights and gradients to a file. - "Check optimizer" loads the saved weights/gradients from file and compares the updated weights with the expected values, printing the constant mismatch factor when there is one. ### Expected behavior I'm trying to integrate the `peft` library in our framework, but I am running into an unexplained behavior when performing LORA finetuning. I've noticed that an unidentified factor is scaling the gradients before they are used to update the weights in each optimization step. For example, when using the [SGD optimizer](https://pytorch.org/docs/stable/generated/torch.optim.SGD.html) with parameters `{lr: 1.0, maximize: False, momentum: 0, nesterov: False, weight_decay: 0.0}` and a constant learning rate scheduler, you would expect the weights to be updated as follows at each step: ``` updated_weight = original_weight - lr * weight_gradient ``` However, weights are instead updated as follows (note the `c` constant factor): ``` updated_weight = original_weight - lr * c * weight_gradient ``` Where does `c` come from, and what is its formula? With rank=lora_alpha=16, I'd expect a scaling of $16/16=1.0$. I have already looked through the code, and printed any scaling constants, such as this one: https://github.com/huggingface/peft/blob/main/src/peft/tuners/lora/layer.py#L122, which is always 1.0 as expected. I have also checked, and the learning rate at each optimizer stage is 1.0 as I've set it.
closed
2024-06-28T05:23:31Z
2024-06-29T18:19:22Z
https://github.com/huggingface/peft/issues/1893
[]
goliaro
2
CorentinJ/Real-Time-Voice-Cloning
python
964
Not sure if my Directory is wrong or i'm missing something but i get hit by this.What am i doing wrong? Thanks in advance :)
ERROR: Command errored out with exit status 1: command: 'D:\python\python.exe' 'D:\python\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py' prepare_metadata_for_build_wheel 'C:\Users\yasin\AppData\Local\Temp\tmp3hdlg1od' cwd: C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4 Complete output (135 lines): setup.py:66: RuntimeWarning: NumPy 1.20.3 may not yet support Python 3.10. warnings.warn( Running from numpy source directory. setup.py:485: UserWarning: Unrecognized setuptools command, proceeding with generating Cython sources and expanding templates run_build = parse_setuppy_commands() Processing numpy/random\_bounded_integers.pxd.in Processing numpy/random\bit_generator.pyx Processing numpy/random\mtrand.pyx Processing numpy/random\_bounded_integers.pyx.in Processing numpy/random\_common.pyx Processing numpy/random\_generator.pyx Processing numpy/random\_mt19937.pyx Processing numpy/random\_pcg64.pyx Processing numpy/random\_philox.pyx Processing numpy/random\_sfc64.pyx Cythonizing sources Could not locate executable g77 Could not locate executable f77 Could not locate executable ifort Could not locate executable ifl Could not locate executable f90 Could not locate executable DF Could not locate executable efl Could not locate executable gfortran Could not locate executable f95 Could not locate executable g95 Could not locate executable efort Could not locate executable efc Could not locate executable flang don't know how to compile Fortran code on platform 'nt' C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\system_info.py:1989: UserWarning: Optimized (vendor) Blas libraries are not found. Falls back to netlib Blas library which has worse performance. A better performance should be easily gained by switching Blas library. if self._calc_info(blas): C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\system_info.py:1989: UserWarning: Blas (http://www.netlib.org/blas/) libraries not found. Directories to search for the libraries can be specified in the numpy/distutils/site.cfg file (section [blas]) or by setting the BLAS environment variable. if self._calc_info(blas): C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\system_info.py:1989: UserWarning: Blas (http://www.netlib.org/blas/) sources not found. Directories to search for the sources can be specified in the numpy/distutils/site.cfg file (section [blas_src]) or by setting the BLAS_SRC environment variable. if self._calc_info(blas): C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\system_info.py:1849: UserWarning: Lapack (http://www.netlib.org/lapack/) libraries not found. Directories to search for the libraries can be specified in the numpy/distutils/site.cfg file (section [lapack]) or by setting the LAPACK environment variable. return getattr(self, '_calc_info_{}'.format(name))() C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\system_info.py:1849: UserWarning: Lapack (http://www.netlib.org/lapack/) sources not found. Directories to search for the sources can be specified in the numpy/distutils/site.cfg file (section [lapack_src]) or by setting the LAPACK_SRC environment variable. return getattr(self, '_calc_info_{}'.format(name))() C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\dist.py:275: UserWarning: Unknown distribution option: 'define_macros' warnings.warn(msg) non-existing path in 'numpy\\distutils': 'site.cfg' running dist_info running build_src creating build creating build\src.win-amd64-3.10 creating build\src.win-amd64-3.10\numpy creating build\src.win-amd64-3.10\numpy\distutils Traceback (most recent call last): File "D:\python\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py", line 363, in <module> main() File "D:\python\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py", line 345, in main json_out['return_val'] = hook(**hook_input['kwargs']) File "D:\python\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py", line 164, in prepare_metadata_for_build_wheel return hook(metadata_directory, config_settings) File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\build_meta.py", line 157, in prepare_metadata_for_build_wheel self.run_setup() File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\build_meta.py", line 248, in run_setup super(_BuildMetaLegacyBackend, File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\build_meta.py", line 142, in run_setup exec(compile(code, __file__, 'exec'), locals()) File "setup.py", line 513, in <module> setup_package() File "setup.py", line 505, in setup_package setup(**metadata) File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\core.py", line 169, in setup return old_setup(**new_attr) File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\__init__.py", line 165, in setup return distutils.core.setup(**attrs) File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\core.py", line 148, in setup dist.run_commands() File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\dist.py", line 967, in run_commands self.run_command(cmd) File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\dist.py", line 986, in run_command cmd_obj.run() File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\command\dist_info.py", line 31, in run egg_info.run() File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\command\egg_info.py", line 24, in run self.run_command("build_src") File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\cmd.py", line 313, in run_command self.distribution.run_command(command) File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\dist.py", line 986, in run_command cmd_obj.run() File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\command\build_src.py", line 144, in run self.build_sources() File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\command\build_src.py", line 155, in build_sources self.build_library_sources(*libname_info) File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\command\build_src.py", line 288, in build_library_sources sources = self.generate_sources(sources, (lib_name, build_info)) File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\command\build_src.py", line 378, in generate_sources source = func(extension, build_dir) File "numpy\core\setup.py", line 671, in get_mathlib_info st = config_cmd.try_link('int main(void) { return 0;}') File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\command\config.py", line 243, in try_link self._link(body, headers, include_dirs, File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\command\config.py", line 162, in _link return self._wrap_method(old_config._link, lang, File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\command\config.py", line 96, in _wrap_method ret = mth(*((self,)+args)) File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\command\config.py", line 137, in _link (src, obj) = self._compile(body, headers, include_dirs, lang) File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\command\config.py", line 105, in _compile src, obj = self._wrap_method(old_config._compile, lang, File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\command\config.py", line 96, in _wrap_method ret = mth(*((self,)+args)) File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\command\config.py", line 132, in _compile self.compiler.compile([src], include_dirs=include_dirs) File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\_msvccompiler.py", line 401, in compile self.spawn(args) File "C:\Users\yasin\AppData\Local\Temp\pip-build-env-6pkcd6kp\overlay\Lib\site-packages\setuptools\_distutils\_msvccompiler.py", line 505, in spawn return super().spawn(cmd, env=env) File "C:\Users\yasin\AppData\Local\Temp\pip-install-594l2te2\numpy_6377a46b864645e683fccdd25c76f1f4\numpy\distutils\ccompiler.py", line 90, in <lambda> m = lambda self, *args, **kw: func(self, *args, **kw) TypeError: CCompiler_spawn() got an unexpected keyword argument 'env' ---------------------------------------- WARNING: Discarding https://files.pythonhosted.org/packages/f3/1f/fe9459e39335e7d0e372b5e5dcd60f4381d3d1b42f0b9c8222102ff29ded/numpy-1.20.3.zip#sha256=e55185e51b18d788e49fe8305fd73ef4470596b33fc2c1ceb304566b99c71a69 (from https://pypi.org/simple/numpy/) (requires-python:>=3.7). Command errored out with exit status 1: 'D:\python\python.exe' 'D:\python\lib\site-packages\pip\_vendor\pep517\in_process\_in_process.py' prepare_metadata_for_build_wheel 'C:\Users\yasin\AppData\Local\Temp\tmp3hdlg1od' Check the logs for full command output. ERROR: Could not find a version that satisfies the requirement numpy==1.20.3 (from versions: 1.3.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.6.1, 1.6.2, 1.7.0, 1.7.1, 1.7.2, 1.8.0, 1.8.1, 1.8.2, 1.9.0, 1.9.1, 1.9.2, 1.9.3, 1.10.0.post2, 1.10.1, 1.10.2, 1.10.4, 1.11.0, 1.11.1, 1.11.2, 1.11.3, 1.12.0, 1.12.1, 1.13.0rc1, 1.13.0rc2, 1.13.0, 1.13.1, 1.13.3, 1.14.0rc1, 1.14.0, 1.14.1, 1.14.2, 1.14.3, 1.14.4, 1.14.5, 1.14.6, 1.15.0rc1, 1.15.0rc2, 1.15.0, 1.15.1, 1.15.2, 1.15.3, 1.15.4, 1.16.0rc1, 1.16.0rc2, 1.16.0, 1.16.1, 1.16.2, 1.16.3, 1.16.4, 1.16.5, 1.16.6, 1.17.0rc1, 1.17.0rc2, 1.17.0, 1.17.1, 1.17.2, 1.17.3, 1.17.4, 1.17.5, 1.18.0rc1, 1.18.0, 1.18.1, 1.18.2, 1.18.3, 1.18.4, 1.18.5, 1.19.0rc1, 1.19.0rc2, 1.19.0, 1.19.1, 1.19.2, 1.19.3, 1.19.4, 1.19.5, 1.20.0rc1, 1.20.0rc2, 1.20.0, 1.20.1, 1.20.2, 1.20.3, 1.21.0rc1, 1.21.0rc2, 1.21.0, 1.21.1, 1.21.2, 1.21.3, 1.21.4, 1.21.5, 1.22.0rc1, 1.22.0rc2, 1.22.0rc3) ERROR: No matching distribution found for numpy==1.20.3
closed
2021-12-28T18:35:06Z
2021-12-28T19:52:35Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/964
[]
santaonholidays
1
assafelovic/gpt-researcher
automation
1,081
Cloudflare Protection Blocking Crunchbase Results
**Is your feature request related to a problem? Please describe.** When trying to scrape Crunchbase pages through Tavily, the results are being blocked by Cloudflare's security protection. This affects the quality of company research as Crunchbase is a crucial source for company information. #### Current Behavior - Tavily attempts to scrape Crunchbase URLs (e.g., "https://www.crunchbase.com/organization/XXXXX") - Instead of getting company data, we receive Cloudflare's block page: ``` "please enable cookies. sorry, you have been blocked you are unable to access crunchbase.com..." ``` - This causes our similarity check to fail as the content doesn't contain company information **Describe the solution you'd like** - Tavily should be able to bypass Cloudflare protection - Successfully retrieve company information from Crunchbase pages **Describe alternatives you've considered** - Implement headless browser support in Tavily (e.g., Playwright, Puppeteer) - Add proper headers and cookie management
open
2025-01-17T20:11:35Z
2025-02-01T19:04:24Z
https://github.com/assafelovic/gpt-researcher/issues/1081
[]
PatricioCabo
1
microsoft/nni
pytorch
5,601
invalid syntax
**Describe the issue**: <img width="1116" alt="988a2d62f21801bbc49dafb253a1281c" src="https://github.com/microsoft/nni/assets/24861234/4c0c864c-d6d3-4456-ae7c-9c8f1d6d3e49"> <img width="1115" alt="95fad960da4a0ae0af53bdd5416e5e12" src="https://github.com/microsoft/nni/assets/24861234/34c64ca1-b5a1-4829-9d9f-5dca1ac75d2e"> **Environment**: - NNI version: 2.10.1 - Training service (local|remote|pai|aml|etc): local - Client OS: Linux - Server OS (for remote mode only): - Python version: 3.7.0 - PyTorch version: 1.12.1 - Is conda/virtualenv/venv used?: virtualenv - Is running in Docker?: no **Configuration**: - Experiment config (remember to remove secrets!): - Search space: **Log message**: - nnimanager.log: - dispatcher.log: - nnictl stdout and stderr: <!-- Where can you find the log files: LOG: https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/HowToDebug.md#experiment-root-director STDOUT/STDERR: https://nni.readthedocs.io/en/stable/reference/nnictl.html#nnictl-log-stdout --> **How to reproduce it?**:
closed
2023-06-07T09:10:56Z
2023-06-28T02:07:01Z
https://github.com/microsoft/nni/issues/5601
[]
sunjian2015
5
gradio-app/gradio
data-science
10,564
Misplaced Chat Avatar While Thinking
### Describe the bug When the chatbot is thinking, the Avatar icon is misplaced. When it is actually inferencing or done inferencing, the avatar is fine. Similar to https://github.com/gradio-app/gradio/issues/9655 I believe, but a special edge case. Also, I mostly notice the issue with rectangular images. ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import gradio as gr from time import sleep AVATAR = "./car.png" # Define a simple chatbot function def chatbot_response(message, hist): sleep(10) return f"Gradio is pretty cool!" # Create a chat interface using gr.ChatInterface chatbot = gr.ChatInterface(fn=chatbot_response, chatbot=gr.Chatbot( label="LLM", elem_id="chatbot", avatar_images=( None, AVATAR ), ) ) # Launch the chatbot chatbot.launch() ``` ### Screenshot ![Image](https://github.com/user-attachments/assets/cedf8945-fadf-4b2a-857e-b783cfdf1b1f) ![Image](https://github.com/user-attachments/assets/78dc971a-df22-451e-96f6-5dc5664e9259) ![Image](https://github.com/user-attachments/assets/b6366a85-b693-4b82-9d6f-bd0b83ab52ab) ### Logs ```shell ``` ### System Info ```shell (base) carter.yancey@Yancy-XPS:~$ gradio environment Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.13.1 gradio_client version: 1.6.0 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 3.7.1 audioop-lts is not installed. fastapi: 0.115.7 ffmpy: 0.3.2 gradio-client==1.6.0 is not installed. httpx: 0.25.1 huggingface-hub: 0.27.1 jinja2: 3.1.2 markupsafe: 2.1.3 numpy: 1.26.2 orjson: 3.9.10 packaging: 23.2 pandas: 1.5.3 pillow: 10.0.0 pydantic: 2.5.1 pydub: 0.25.1 python-multipart: 0.0.20 pyyaml: 6.0.1 ruff: 0.2.2 safehttpx: 0.1.6 semantic-version: 2.10.0 starlette: 0.45.3 tomlkit: 0.12.0 typer: 0.15.1 typing-extensions: 4.8.0 urllib3: 2.3.0 uvicorn: 0.24.0.post1 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2023.10.0 httpx: 0.25.1 huggingface-hub: 0.27.1 packaging: 23.2 typing-extensions: 4.8.0 websockets: 11.0.3 ``` ### Severity I can work around it
closed
2025-02-11T18:31:28Z
2025-03-04T21:23:07Z
https://github.com/gradio-app/gradio/issues/10564
[ "bug", "💬 Chatbot" ]
CarterYancey
0
wandb/wandb
data-science
8,769
[Bug-App]: Histogram render not working
### Describe the bug The web app doesn't display the beautiful histogram plots like it used to and renders rather ugly-looking teal rectangles instead. ![Example](https://github.com/user-attachments/assets/6e8d9eaf-52ae-402e-9baf-739c7801d66a) OS: macOS Sequoia 15.1 Browser: Safari 18.1 and firefox 131.0.3 (tested both)
open
2024-11-05T08:08:57Z
2025-01-06T14:32:21Z
https://github.com/wandb/wandb/issues/8769
[ "ty:bug", "a:app" ]
ddonatien
15
scanapi/scanapi
rest-api
242
Publish Sphinx Documentation
## Publish Sphinx Documentation The #230 implemented the auto-generated code documentation using [sphinx](http://sphinx-doc.org/). We can run it locally by running ```shell $ cd documentation $ make html ``` And we can access it opening the file `scanapi/documentation/build/html/index.html` in a browser. This is great, but it would be nice to have this documentation published somewhere else. One option would be to publish it inside our website [scanapi.dev](https://scanapi.dev), repository: https://github.com/scanapi/website
closed
2020-07-26T16:45:26Z
2021-08-01T13:47:19Z
https://github.com/scanapi/scanapi/issues/242
[ "Documentation" ]
camilamaia
13
Farama-Foundation/PettingZoo
api
524
Misc Needed Cooperative Pong Maintenance
(I'm only going by documentation for all this, I didn't check the code for these) -"max_cycles" should obviously be an argument by custom in any butterfly environment -The -100 reward penalty for the ball going off the screen seems like way too much relative to the other rewards available, to the point where it even makes interpreting learning graphs difficult. It should be like -10 by default, and it should be an environment argument. -The reward allocation between agents is confusing. According to the docs, "If the ball stays within bounds, both agents receive a combined reward of 100 / max_cycles (default 0.11)." It should per 100 per agent, this isn't how any other environment does it and makes reading the reward curves confusing. (note to Ben: this is much less important than the pistonball/waterworld fixes)
closed
2021-10-26T03:08:45Z
2021-11-30T06:44:28Z
https://github.com/Farama-Foundation/PettingZoo/issues/524
[]
jkterry1
0
StackStorm/st2
automation
6,146
Custom Scopes for Key-Value Store + RBAC for that Scopes
Hi Community, Than a Company have different Teams that shares a st2 instance it would be nice if any Team could create there own scope. So all Team Members of Team1 can see all Key/Values of Team1 and all Team2 Members can se all key Values of Team 2. But Team 1 can not access Team2 and Team 2 can not access Team1 keys. 1) Have Custom Scopes. 2) Allow set a rbac rule on Scope. 3) Allow a Setup in Rule to set the Scope for KV that shoud use by System for that Rule. What do you think about that Idea?
open
2024-02-21T07:07:15Z
2024-02-26T17:28:36Z
https://github.com/StackStorm/st2/issues/6146
[ "feature" ]
philipphomberger
1
mljar/mercury
jupyter
262
Is there OAuth2 support for the Mercury web service?
Or if it is easy to integrate one from users sides hence I'm not sure Mercury is using a popular Python web server component or a self-made one.
closed
2023-04-28T02:58:34Z
2023-05-01T13:39:03Z
https://github.com/mljar/mercury/issues/262
[]
xiamubobby
2
aio-libs-abandoned/aioredis-py
asyncio
505
Use alternate default "latest ID" for xread_group
When skipping the optional `latest_ids` kwarg to the `xread_group` command, the following error gets generated by the Redis server: > `ERR The $ ID is meaningless in the context of XREADGROUP` That's because both xread and xread_group share the `_xread` command builder which assumes `$` if latest ID isn't specified: ```py if latest_ids is None: latest_ids = ['$'] * len(streams) ``` A fix could be to make the default latest ID a parameter to the internal _xread method.
closed
2018-12-18T16:18:37Z
2021-03-18T23:53:44Z
https://github.com/aio-libs-abandoned/aioredis-py/issues/505
[ "resolved-via-latest" ]
dcecile
0
hzwer/ECCV2022-RIFE
computer-vision
363
No way to specify arbitrary timestep?
Looking at the RIFE codebase/examples, it seems the number of interpolated frames created by RIFE is always a power of 2, as it just recursively splits the remaining frame pairs in half as it performs its interpolation. Is this correct? What if I want to interpolate 2 images with 7 intermediate steps between them, instead of just 2/4/8/etc. Is that possible?
closed
2024-05-28T05:21:40Z
2024-05-28T05:33:04Z
https://github.com/hzwer/ECCV2022-RIFE/issues/363
[]
tyDiffusion
1
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
4,107
Implementation of a functionality to integrate KeyCloak IDP provider
### Proposal This ticket is about tracking research and development to integrate Keycloak as an identity provider. ### Motivation and context Basic idea is to use the functionality to enable support for third party authentications via Keycloak and in general OpenID Connect providers to authorize to be used to implement internal users logins based on external corporate policies. Requirement collected while working with: - Italian National Authority for Anticorruption (ANAC) that aims at integrating GlobaLeaks with [Keycloak](https://www.keycloak.org/) - Bank of Italy - Spanish Ministry of Justice
open
2024-06-15T05:47:16Z
2025-03-24T13:46:25Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/4107
[ "U: Admin", "C: Client", "C: Backend", "T: Feature" ]
evilaliv3
7
ydataai/ydata-profiling
data-science
1,264
Feature request: Add sample head and tail to minimal setting
### Missing functionality It would be good If we provide sample head and tail with minimal True. ### Proposed feature With minimal True we still able to see the head and tail of data, ### Alternatives considered _No response_ ### Additional context _No response_
closed
2023-02-08T13:20:19Z
2023-02-11T13:58:57Z
https://github.com/ydataai/ydata-profiling/issues/1264
[ "question/discussion ❓", "needs-triage" ]
monyoudom
2
dropbox/PyHive
sqlalchemy
434
Project is currently unsupported?
Hello, could someone explain to me the "Project is currently unsupported" statement? I looked into the issues and commit message which added that message, but it is not explanatory. **Does that mean the project is abandoned and there won't be new releases or fixes?** I am looking into using the library in a new project, but I want to be sure I did not choose dead technology. If that is the case, could someone please point me to an alternative Hive API for python? Best Martin!
open
2022-03-25T13:36:16Z
2022-04-11T05:39:01Z
https://github.com/dropbox/PyHive/issues/434
[]
mamiksik
1
piskvorky/gensim
nlp
2,961
Documentation of strip_punctuation vs strip_punctuation2 in gensim.parsing.preprocessing
Thanks for all the hard work on this fantastic library. I found a small quirk today, not really a bug, just a bit of a rough edge: In `gensim.parsing` [preprocessing.py ](https://github.com/RaRe-Technologies/gensim/blob/e210f73c42c5df5a511ca27166cbc7d10970eab2/gensim/parsing/preprocessing.py#L121) `strip_punctuation2` is defined: `strip_punctuation2 = strip_punctuation`. In the [documentation](https://radimrehurek.com/gensim/parsing/preprocessing.html) the description of [`strip_punctuation2`](https://radimrehurek.com/gensim/parsing/preprocessing.html#gensim.parsing.preprocessing.strip_punctuation2) is a duplication of [`strip_punctuation`](https://radimrehurek.com/gensim/parsing/preprocessing.html#gensim.parsing.preprocessing.strip_punctuation) rather than a statement of equality. I noticed this while reading the documentation and, assuming I was missing an obvious distinction, attempting to hand diff the the docs for the two functions. When I gave up and flipped to the source it became obvious how the two functions are related.
closed
2020-09-28T12:54:03Z
2021-06-29T01:44:31Z
https://github.com/piskvorky/gensim/issues/2961
[ "documentation" ]
sciatro
4
pyg-team/pytorch_geometric
pytorch
9,437
TypeError: 'list' object is not callable
### 🐛 Describe the bug ```python from torch.nn import Linear, ReLU, Dropout from torch_geometric.nn import Sequential, GCNConv, JumpingKnowledge from torch_geometric.nn import global_mean_pool model = Sequential('x, edge_index, batch', [ (Dropout(p=0.5), 'x -> x'), (GCNConv(2, 64), 'x, edge_index -> x1'), ReLU(inplace=True), (GCNConv(64, 64), 'x1, edge_index -> x2'), ReLU(inplace=True), (lambda x1, x2: [x1, x2], 'x1, x2 -> xs'), (JumpingKnowledge("cat", 64, num_layers=2), 'xs -> x'), (global_mean_pool, 'x, batch -> x'), Linear(2 * 64, 3), ]).to('cpu') ``` It throws `TypeError: 'list' object is not callable` ### Versions PyTorch version: 2.2.2+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.27.2 Libc version: glibc-2.35 Python version: 3.9.19 | packaged by conda-forge | (main, Mar 20 2024, 12:50:21) [GCC 12.3.0] (64-bit runtime) Python platform: Linux-6.2.0-39-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 Ti GPU 1: NVIDIA GeForce RTX 3090 Ti Nvidia driver version: 550.54.14 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.6.0 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn.so.8.5.0 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.5.0 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.5.0 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.5.0 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.5.0 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.5.0 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.5.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 48 On-line CPU(s) list: 0-47 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper 3960X 24-Core Processor CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU max MHz: 3800.0000 CPU min MHz: 2200.0000 BogoMIPS: 7585.68 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 768 KiB (24 instances) L1i cache: 768 KiB (24 instances) L2 cache: 12 MiB (24 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-47 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec rstack overflow: Mitigation; safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] fast-pytorch-kmeans==0.2.0.1 [pip3] flake8==7.0.0 [pip3] mypy==1.9.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.4 [pip3] numpydoc==1.6.0 [pip3] paddle2onnx==1.0.6 [pip3] pytorchts==0.6.0 [pip3] reformer-pytorch==1.4.4 [pip3] torch==2.2.2 [pip3] torch_cluster==1.6.3+pt22cu121 [pip3] torch-ema==0.3 [pip3] torch-geometric==2.6.0 [pip3] torch_scatter==2.1.2+pt22cu121 [pip3] torch_sparse==0.6.18+pt22cu121 [pip3] torch_spline_conv==1.2.2+pt22cu121 [pip3] torchaudio==2.2.2 [pip3] torchmetrics==0.10.1 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.17.2 [pip3] triton==2.2.0 [conda] fast-pytorch-kmeans 0.2.0.1 pypi_0 pypi [conda] nomkl 1.0 h5ca1d4c_0 conda-forge [conda] numpy 1.24.4 pypi_0 pypi [conda] numpydoc 1.6.0 pyhd8ed1ab_0 conda-forge [conda] pytorchts 0.6.0 pypi_0 pypi [conda] reformer-pytorch 1.4.4 pypi_0 pypi [conda] torch 2.2.2 pypi_0 pypi [conda] torch-cluster 1.6.3+pt22cu121 pypi_0 pypi [conda] torch-ema 0.3 pypi_0 pypi [conda] torch-geometric 2.6.0 pypi_0 pypi [conda] torch-scatter 2.1.2+pt22cu121 pypi_0 pypi [conda] torch-sparse 0.6.18+pt22cu121 pypi_0 pypi [conda] torch-spline-conv 1.2.2+pt22cu121 pypi_0 pypi [conda] torchaudio 2.2.2 pypi_0 pypi [conda] torchmetrics 0.10.1 pypi_0 pypi [conda] torchsummary 1.5.1 pypi_0 pypi [conda] torchvision 0.17.2 pypi_0 pypi [conda] triton 2.2.0 pypi_0 pypi
closed
2024-06-19T11:58:12Z
2024-06-24T12:01:12Z
https://github.com/pyg-team/pytorch_geometric/issues/9437
[ "bug", "nn" ]
nowyouseemejoe
1
vastsa/FileCodeBox
fastapi
222
文件上传后提示超过最大保存时间
Docker latest 4257a45f985e 文件上传后提示超过最大保存时间 上传判断逻辑需要调整,需要在点击上传文件前判断最长保存时间,避免大文件上传的浪费 ![image](https://github.com/user-attachments/assets/f62871b3-5560-43b8-b007-24fc5a82f069)
closed
2024-11-27T00:58:37Z
2025-03-02T07:27:14Z
https://github.com/vastsa/FileCodeBox/issues/222
[]
wuwei-yu
2
matplotlib/matplotlib
data-science
29,063
[MNT]: Add a default `markevery` for lines in rcParams
### Summary `markevery` is the only property regarding lines for which it is not possible to set a default value in `rcParams`. This property would be convenient if a user wants to set a default value, rather then needing to specify for each plot. ### Proposed fix Add `lines.markevery : None` to the defaut `matplotlibrc`
closed
2024-11-03T00:28:59Z
2024-11-03T02:20:45Z
https://github.com/matplotlib/matplotlib/issues/29063
[ "status: duplicate", "Maintenance" ]
LorenzoPeri17
1
proplot-dev/proplot
data-visualization
60
Cannot add text to projection axes
Currently, the `text` wrapper for `proplot` cannot handle projecting to geoaxes, making it impossible to accurately place text on a map projection. For `matplotlib` one just passes a `transform=ccrs.PlateCarree()` for example to the `ax.text()` to interpret the values as coordinates on the map: ```python import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature f, ax = plt.subplots(subplot_kw=dict(projection=ccrs.SouthPolarStereo(central_longitude=-70))) ax.set_extent([-180, 180, -90, -40], ccrs.PlateCarree()) ax.add_feature(cfeature.LAND, color='#d3d3d3') ax.text(120, -83, 'test', transform=ccrs.PlateCarree()) ``` <img width="261" alt="Screen Shot 2019-10-31 at 2 39 36 PM" src="https://user-images.githubusercontent.com/8881170/67984429-4c272c00-fbec-11e9-8b44-00af26912eb2.png"> `proplot` breaks when one tries to place `ccrs.PlateCarree()` into the `transform` keyword for the text wrapper. And the options of `data`, `axes`, `figure` don't fix this problem. Perhaps an extra keyword such as `geoaxes` could handle this? ```python import proplot as plot f, ax = plot.subplots(proj='spstere', proj_kw={'central_longitude': -70}) ax.text(120, -83, 'test', color='w', fontname='Helvetica') ax.format(land=True, boundinglat=-40) ``` <img width="241" alt="Screen Shot 2019-10-31 at 2 39 38 PM" src="https://user-images.githubusercontent.com/8881170/67984437-4fbab300-fbec-11e9-836f-04b046a64a90.png">
closed
2019-10-31T20:39:26Z
2019-11-01T14:55:20Z
https://github.com/proplot-dev/proplot/issues/60
[ "bug" ]
bradyrx
1
onnx/onnx
tensorflow
5,794
What is the correct way to make a tensor with a dynamic dimension for a Reshape operator?
# Ask a Question ### Question I am trying to add a Reshape node to a BERT onnx model that works with dynamic shapes. The reshape op should reshape a rank 3 tensor to a rank 2. The input to the reshape is of shape [unk__2,unk__3,768] and I need to collapse the first two dynamic dimensions into one and keep the last fixed dimension such as [[unk__2 * unk__3], 768]. How can I specify a dynamic dimension when making a tensor with the onnx helper? ### Further information When running the code snippet I provided below, I get the following error: ``` raise TypeError(f"'{value}' is not an accepted attribute value.") TypeError: 'name: "shape" type { tensor_type { elem_type: 7 shape { dim { dim_value: -1 } dim { dim_value: 768 } } } } ' is not an accepted attribute value. ``` - Is this issue related to a specific model? **Model name**: bert-base **Model opset**: 18 ### Notes Code snippet: ``` # Create a Constant node that contains the target shape shape_tensor = helper.make_tensor_value_info(name='shape', elem_type=onnx.TensorProto.INT64, shape=(-1,768)) shape_node = helper.make_node( 'Constant', inputs=[], outputs=[f'shape_{i}_output'], value=shape_tensor, name=f'shape_{i}' ) # Create a Reshape node reshape_node = helper.make_node( 'Reshape', inputs=[mm_node.input[0], f'shape_{i}_output'], outputs=[f'reshaped_output_{i}'], name=f'Reshape_{i}' ) ```
closed
2023-12-07T06:51:41Z
2025-01-02T06:44:37Z
https://github.com/onnx/onnx/issues/5794
[ "question", "stale" ]
ria143
1
robusta-dev/robusta
automation
1,176
Custom CA certificate cannot be set
**Describe the bug** Once specify a custom CA certificate with ``` runner: certificate: ``` The runner container will crash with: ```Matplotlib created a temporary cache directory at /tmp/matplotlib-d2tsy8fk because the default path (/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing. setting up colored logging 2023-11-17 22:29:20.541 INFO logger initialized using INFO log level Traceback (most recent call last): File "/usr/local/lib/python3.9/runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/local/lib/python3.9/runpy.py", line 87, in _run_code exec(code, run_globals) File "/app/src/robusta/runner/main.py", line 56, in <module> main() File "/app/src/robusta/runner/main.py", line 26, in main if add_custom_certificate(ADDITIONAL_CERTIFICATE): File "/app/src/robusta/runner/ssl_utils.py", line 10, in add_custom_certificate with open(certifi.where(), "ab") as outfile: PermissionError: [Errno 13] Permission denied: '/usr/local/lib/python3.9/site-packages/certifi/cacert.pem' ``` **To Reproduce** Steps to reproduce the behavior: 1. Set `runner.certificate` in values **Expected behavior** `prometheus-k8s` connection successful.
closed
2023-11-17T22:32:25Z
2024-01-08T08:38:42Z
https://github.com/robusta-dev/robusta/issues/1176
[ "bug" ]
bear-redhat
3
pytorch/vision
computer-vision
8,478
Put back MPS builds
(this is a follow-up and more up-to-date version of https://github.com/pytorch/vision/issues/8456) The M1 CI jobs were broken for ~1 week (https://github.com/pytorch/vision/issues/8456) and it turns out the problem was caused by the MPS build. We deactivated the MPS builds in https://github.com/pytorch/vision/pull/8472 and the M1 jobs (all using `macos-m1-stable`) are now green. We have to put back the MPS build before the release though, otherwise torchvision won't provide MPS-compatible custom ops. In https://github.com/pytorch/vision/pull/8476 (macos-m1-stable), https://github.com/pytorch/vision/pull/8473 (macos-m1-13) and https://github.com/pytorch/vision/pull/8477 (macos-m1-14) I'm trying to add back those MPS builds, but they all fail with the same error as previously seen back in https://github.com/pytorch/vision/issues/8456: ``` File "/Users/ec2-user/runner/_work/vision/vision/pytorch/vision/test/smoke_test.py", line 7, in <module> import torchvision File "/Users/ec2-user/runner/_work/vision/vision/pytorch/vision/torchvision/__init__.py", line 10, in <module> from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils # usort:skip File "/Users/ec2-user/runner/_work/vision/vision/pytorch/vision/torchvision/_meta_registrations.py", line 164, in <module> def meta_nms(dets, scores, iou_threshold): File "/opt/homebrew/Caskroom/miniconda/base/envs/ci/lib/python3.10/site-packages/torch/library.py", line 653, in register use_lib._register_fake(op_name, func, _stacklevel=stacklevel + 1) File "/opt/homebrew/Caskroom/miniconda/base/envs/ci/lib/python3.10/site-packages/torch/library.py", line 153, in _register_fake handle = entry.abstract_impl.register(func_to_register, source) File "/opt/homebrew/Caskroom/miniconda/base/envs/ci/lib/python3.10/site-packages/torch/_library/abstract_impl.py", line 30, in register if torch._C._dispatch_has_kernel_for_dispatch_key(self.qualname, "Meta"): RuntimeError: operator torchvision::nms does not exist ``` CC @malfet @huydhn
closed
2024-06-07T08:39:54Z
2024-06-10T13:24:38Z
https://github.com/pytorch/vision/issues/8478
[]
NicolasHug
6
mljar/mercury
data-visualization
281
Don't run the book at all until "Run" is pressed
Hi - is there a way you can prevent running the notebook until the green "Run" button is pressed? The use case is that the notebook runs some expensive queries and we don't want to do that until the user has filled out the parameters and hits the Run button. I've already set `continuous_update=False`, but that doesn't stop the initial run of the notebook. There are hacky work-arounds, like maybe calling Stop() if the input is empty, but would be nice if this was supported out of the box. And possibly for this use case, the `app` declaration can be on the first line.
closed
2023-05-19T19:38:48Z
2023-05-22T07:47:55Z
https://github.com/mljar/mercury/issues/281
[]
kapily
2
schemathesis/schemathesis
pytest
2,613
[BUG] '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self-signed certificate in certificate chain (_ssl.c:1006)' with verify=False
### Checklist - [x ] I checked the [FAQ section](https://schemathesis.readthedocs.io/en/stable/faq.html#frequently-asked-questions) of the documentation - [ x] I looked for similar issues in the [issue tracker](https://github.com/schemathesis/schemathesis/issues) - [x ] I am using the latest version of Schemathesis ### Describe the bug I am trying to use schemathesis against a base_url of a real service listening for incoming requests - I need to use the https protocol, but I don't want to / can't fetch the CA cert every time. In order to proceed with testing I've specified `response = case.call_and_validate(verify=False)` in my test case definition, but in the logs I'm still getting errors related to SSL cert verification. I've also tried to split the call in two (i.e. `response = case.call(verify=False); case.validate_response(response)`), but I'm seeing the same issue and `validate_response` does not support the `verify` argument. This is the openAPI spec I'm using: https://raw.githubusercontent.com/kubeflow/model-registry/main/api/openapi/model-registry.yaml This is the full trace of one such failure: ``` self = <urllib3.connectionpool.HTTPSConnectionPool object at 0x10fe47290>, conn = <urllib3.connection.HTTPSConnection object at 0x10fe44590>, method = 'GET' url = '/api/model_registry/v1alpha3/serving_environments/0/inference_services?name=entity-name&externalId=10&pageSize=100&orderBy=ID&sortOrder=DESC', body = None headers = {'User-Agent': 'schemathesis/3.38.9', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive', 'Content-Type': 'application/json', 'X-Schemathesis-TestCaseId': 'BEwkUo'} retries = Retry(total=0, connect=None, read=False, redirect=None, status=None), timeout = Timeout(connect=10.0, read=10.0, total=None), chunked = False, response_conn = <urllib3.connection.HTTPSConnection object at 0x10fe44590> preload_content = False, decode_content = False, enforce_content_length = True def _make_request( self, conn: BaseHTTPConnection, method: str, url: str, body: _TYPE_BODY | None = None, headers: typing.Mapping[str, str] | None = None, retries: Retry | None = None, timeout: _TYPE_TIMEOUT = _DEFAULT_TIMEOUT, chunked: bool = False, response_conn: BaseHTTPConnection | None = None, preload_content: bool = True, decode_content: bool = True, enforce_content_length: bool = True, ) -> BaseHTTPResponse: """ Perform a request on a given urllib connection object taken from our pool. :param conn: a connection from one of our connection pools :param method: HTTP request method (such as GET, POST, PUT, etc.) :param url: The URL to perform the request on. :param body: Data to send in the request body, either :class:`str`, :class:`bytes`, an iterable of :class:`str`/:class:`bytes`, or a file-like object. :param headers: Dictionary of custom headers to send, such as User-Agent, If-None-Match, etc. If None, pool headers are used. If provided, these headers completely replace any pool-specific headers. :param retries: Configure the number of retries to allow before raising a :class:`~urllib3.exceptions.MaxRetryError` exception. Pass ``None`` to retry until you receive a response. Pass a :class:`~urllib3.util.retry.Retry` object for fine-grained control over different types of retries. Pass an integer number to retry connection errors that many times, but no other types of errors. Pass zero to never retry. If ``False``, then retries are disabled and any exception is raised immediately. Also, instead of raising a MaxRetryError on redirects, the redirect response will be returned. :type retries: :class:`~urllib3.util.retry.Retry`, False, or an int. :param timeout: If specified, overrides the default timeout for this one request. It may be a float (in seconds) or an instance of :class:`urllib3.util.Timeout`. :param chunked: If True, urllib3 will send the body using chunked transfer encoding. Otherwise, urllib3 will send the body using the standard content-length form. Defaults to False. :param response_conn: Set this to ``None`` if you will handle releasing the connection or set the connection to have the response release it. :param preload_content: If True, the response's body will be preloaded during construction. :param decode_content: If True, will attempt to decode the body based on the 'content-encoding' header. :param enforce_content_length: Enforce content length checking. Body returned by server must match value of Content-Length header, if present. Otherwise, raise error. """ self.num_requests += 1 timeout_obj = self._get_timeout(timeout) timeout_obj.start_connect() conn.timeout = Timeout.resolve_default_timeout(timeout_obj.connect_timeout) try: # Trigger any extra validation we need to do. try: > self._validate_conn(conn) .venv/lib/python3.11/site-packages/urllib3/connectionpool.py:466: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .venv/lib/python3.11/site-packages/urllib3/connectionpool.py:1095: in _validate_conn conn.connect() .venv/lib/python3.11/site-packages/urllib3/connection.py:730: in connect sock_and_verified = _ssl_wrap_socket_and_match_hostname( .venv/lib/python3.11/site-packages/urllib3/connection.py:909: in _ssl_wrap_socket_and_match_hostname ssl_sock = ssl_wrap_socket( .venv/lib/python3.11/site-packages/urllib3/util/ssl_.py:469: in ssl_wrap_socket ssl_sock = _ssl_wrap_socket_impl(sock, context, tls_in_tls, server_hostname) .venv/lib/python3.11/site-packages/urllib3/util/ssl_.py:513: in _ssl_wrap_socket_impl return ssl_context.wrap_socket(sock, server_hostname=server_hostname) /Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/ssl.py:517: in wrap_socket return self.sslsocket_class._create( /Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/ssl.py:1104: in _create self.do_handshake() _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <ssl.SSLSocket [closed] fd=-1, family=2, type=1, proto=0>, block = False @_sslcopydoc def do_handshake(self, block=False): self._check_connected() timeout = self.gettimeout() try: if timeout == 0.0 and block: self.settimeout(None) > self._sslobj.do_handshake() E ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self-signed certificate in certificate chain (_ssl.c:1006) /Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/ssl.py:1382: SSLCertVerificationError During handling of the above exception, another exception occurred: self = <urllib3.connectionpool.HTTPSConnectionPool object at 0x10fe47290>, method = 'GET', url = '/api/model_registry/v1alpha3/serving_environments/0/inference_services?name=entity-name&externalId=10&pageSize=100&orderBy=ID&sortOrder=DESC' body = None, headers = {'User-Agent': 'schemathesis/3.38.9', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive', 'Content-Type': 'application/json', 'X-Schemathesis-TestCaseId': 'BEwkUo'} retries = Retry(total=0, connect=None, read=False, redirect=None, status=None), redirect = False, assert_same_host = False, timeout = Timeout(connect=10.0, read=10.0, total=None), pool_timeout = None, release_conn = False, chunked = False body_pos = None, preload_content = False, decode_content = False, response_kw = {} parsed_url = Url(scheme=None, auth=None, host=None, port=None, path='/api/model_registry/v1alpha3/serving_environments/0/inference_services', query='name=entity-name&externalId=10&pageSize=100&orderBy=ID&sortOrder=DESC', fragment=None) destination_scheme = None, conn = None, release_this_conn = True, http_tunnel_required = False, err = None, clean_exit = False def urlopen( # type: ignore[override] self, method: str, url: str, body: _TYPE_BODY | None = None, headers: typing.Mapping[str, str] | None = None, retries: Retry | bool | int | None = None, redirect: bool = True, assert_same_host: bool = True, timeout: _TYPE_TIMEOUT = _DEFAULT_TIMEOUT, pool_timeout: int | None = None, release_conn: bool | None = None, chunked: bool = False, body_pos: _TYPE_BODY_POSITION | None = None, preload_content: bool = True, decode_content: bool = True, **response_kw: typing.Any, ) -> BaseHTTPResponse: """ Get a connection from the pool and perform an HTTP request. This is the lowest level call for making a request, so you'll need to specify all the raw details. .. note:: More commonly, it's appropriate to use a convenience method such as :meth:`request`. .. note:: `release_conn` will only behave as expected if `preload_content=False` because we want to make `preload_content=False` the default behaviour someday soon without breaking backwards compatibility. :param method: HTTP request method (such as GET, POST, PUT, etc.) :param url: The URL to perform the request on. :param body: Data to send in the request body, either :class:`str`, :class:`bytes`, an iterable of :class:`str`/:class:`bytes`, or a file-like object. :param headers: Dictionary of custom headers to send, such as User-Agent, If-None-Match, etc. If None, pool headers are used. If provided, these headers completely replace any pool-specific headers. :param retries: Configure the number of retries to allow before raising a :class:`~urllib3.exceptions.MaxRetryError` exception. If ``None`` (default) will retry 3 times, see ``Retry.DEFAULT``. Pass a :class:`~urllib3.util.retry.Retry` object for fine-grained control over different types of retries. Pass an integer number to retry connection errors that many times, but no other types of errors. Pass zero to never retry. If ``False``, then retries are disabled and any exception is raised immediately. Also, instead of raising a MaxRetryError on redirects, the redirect response will be returned. :type retries: :class:`~urllib3.util.retry.Retry`, False, or an int. :param redirect: If True, automatically handle redirects (status codes 301, 302, 303, 307, 308). Each redirect counts as a retry. Disabling retries will disable redirect, too. :param assert_same_host: If ``True``, will make sure that the host of the pool requests is consistent else will raise HostChangedError. When ``False``, you can use the pool on an HTTP proxy and request foreign hosts. :param timeout: If specified, overrides the default timeout for this one request. It may be a float (in seconds) or an instance of :class:`urllib3.util.Timeout`. :param pool_timeout: If set and the pool is set to block=True, then this method will block for ``pool_timeout`` seconds and raise EmptyPoolError if no connection is available within the time period. :param bool preload_content: If True, the response's body will be preloaded into memory. :param bool decode_content: If True, will attempt to decode the body based on the 'content-encoding' header. :param release_conn: If False, then the urlopen call will not release the connection back into the pool once a response is received (but will release if you read the entire contents of the response such as when `preload_content=True`). This is useful if you're not preloading the response's content immediately. You will need to call ``r.release_conn()`` on the response ``r`` to return the connection back into the pool. If None, it takes the value of ``preload_content`` which defaults to ``True``. :param bool chunked: If True, urllib3 will send the body using chunked transfer encoding. Otherwise, urllib3 will send the body using the standard content-length form. Defaults to False. :param int body_pos: Position to seek to in file-like body in the event of a retry or redirect. Typically this won't need to be set because urllib3 will auto-populate the value when needed. """ parsed_url = parse_url(url) destination_scheme = parsed_url.scheme if headers is None: headers = self.headers if not isinstance(retries, Retry): retries = Retry.from_int(retries, redirect=redirect, default=self.retries) if release_conn is None: release_conn = preload_content # Check host if assert_same_host and not self.is_same_host(url): raise HostChangedError(self, url, retries) # Ensure that the URL we're connecting to is properly encoded if url.startswith("/"): url = to_str(_encode_target(url)) else: url = to_str(parsed_url.url) conn = None # Track whether `conn` needs to be released before # returning/raising/recursing. Update this variable if necessary, and # leave `release_conn` constant throughout the function. That way, if # the function recurses, the original value of `release_conn` will be # passed down into the recursive call, and its value will be respected. # # See issue #651 [1] for details. # # [1] <https://github.com/urllib3/urllib3/issues/651> release_this_conn = release_conn http_tunnel_required = connection_requires_http_tunnel( self.proxy, self.proxy_config, destination_scheme ) # Merge the proxy headers. Only done when not using HTTP CONNECT. We # have to copy the headers dict so we can safely change it without those # changes being reflected in anyone else's copy. if not http_tunnel_required: headers = headers.copy() # type: ignore[attr-defined] headers.update(self.proxy_headers) # type: ignore[union-attr] # Must keep the exception bound to a separate variable or else Python 3 # complains about UnboundLocalError. err = None # Keep track of whether we cleanly exited the except block. This # ensures we do proper cleanup in finally. clean_exit = False # Rewind body position, if needed. Record current position # for future rewinds in the event of a redirect/retry. body_pos = set_file_position(body, body_pos) try: # Request a connection from the queue. timeout_obj = self._get_timeout(timeout) conn = self._get_conn(timeout=pool_timeout) conn.timeout = timeout_obj.connect_timeout # type: ignore[assignment] # Is this a closed/new connection that requires CONNECT tunnelling? if self.proxy is not None and http_tunnel_required and conn.is_closed: try: self._prepare_proxy(conn) except (BaseSSLError, OSError, SocketTimeout) as e: self._raise_timeout( err=e, url=self.proxy.url, timeout_value=conn.timeout ) raise # If we're going to release the connection in ``finally:``, then # the response doesn't need to know about the connection. Otherwise # it will also try to release it and we'll have a double-release # mess. response_conn = conn if not release_conn else None # Make the request on the HTTPConnection object > response = self._make_request( conn, method, url, timeout=timeout_obj, body=body, headers=headers, chunked=chunked, retries=retries, response_conn=response_conn, preload_content=preload_content, decode_content=decode_content, **response_kw, ) .venv/lib/python3.11/site-packages/urllib3/connectionpool.py:789: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <urllib3.connectionpool.HTTPSConnectionPool object at 0x10fe47290>, conn = <urllib3.connection.HTTPSConnection object at 0x10fe44590>, method = 'GET' url = '/api/model_registry/v1alpha3/serving_environments/0/inference_services?name=entity-name&externalId=10&pageSize=100&orderBy=ID&sortOrder=DESC', body = None headers = {'User-Agent': 'schemathesis/3.38.9', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive', 'Content-Type': 'application/json', 'X-Schemathesis-TestCaseId': 'BEwkUo'} retries = Retry(total=0, connect=None, read=False, redirect=None, status=None), timeout = Timeout(connect=10.0, read=10.0, total=None), chunked = False, response_conn = <urllib3.connection.HTTPSConnection object at 0x10fe44590> preload_content = False, decode_content = False, enforce_content_length = True def _make_request( self, conn: BaseHTTPConnection, method: str, url: str, body: _TYPE_BODY | None = None, headers: typing.Mapping[str, str] | None = None, retries: Retry | None = None, timeout: _TYPE_TIMEOUT = _DEFAULT_TIMEOUT, chunked: bool = False, response_conn: BaseHTTPConnection | None = None, preload_content: bool = True, decode_content: bool = True, enforce_content_length: bool = True, ) -> BaseHTTPResponse: """ Perform a request on a given urllib connection object taken from our pool. :param conn: a connection from one of our connection pools :param method: HTTP request method (such as GET, POST, PUT, etc.) :param url: The URL to perform the request on. :param body: Data to send in the request body, either :class:`str`, :class:`bytes`, an iterable of :class:`str`/:class:`bytes`, or a file-like object. :param headers: Dictionary of custom headers to send, such as User-Agent, If-None-Match, etc. If None, pool headers are used. If provided, these headers completely replace any pool-specific headers. :param retries: Configure the number of retries to allow before raising a :class:`~urllib3.exceptions.MaxRetryError` exception. Pass ``None`` to retry until you receive a response. Pass a :class:`~urllib3.util.retry.Retry` object for fine-grained control over different types of retries. Pass an integer number to retry connection errors that many times, but no other types of errors. Pass zero to never retry. If ``False``, then retries are disabled and any exception is raised immediately. Also, instead of raising a MaxRetryError on redirects, the redirect response will be returned. :type retries: :class:`~urllib3.util.retry.Retry`, False, or an int. :param timeout: If specified, overrides the default timeout for this one request. It may be a float (in seconds) or an instance of :class:`urllib3.util.Timeout`. :param chunked: If True, urllib3 will send the body using chunked transfer encoding. Otherwise, urllib3 will send the body using the standard content-length form. Defaults to False. :param response_conn: Set this to ``None`` if you will handle releasing the connection or set the connection to have the response release it. :param preload_content: If True, the response's body will be preloaded during construction. :param decode_content: If True, will attempt to decode the body based on the 'content-encoding' header. :param enforce_content_length: Enforce content length checking. Body returned by server must match value of Content-Length header, if present. Otherwise, raise error. """ self.num_requests += 1 timeout_obj = self._get_timeout(timeout) timeout_obj.start_connect() conn.timeout = Timeout.resolve_default_timeout(timeout_obj.connect_timeout) try: # Trigger any extra validation we need to do. try: self._validate_conn(conn) except (SocketTimeout, BaseSSLError) as e: self._raise_timeout(err=e, url=url, timeout_value=conn.timeout) raise # _validate_conn() starts the connection to an HTTPS proxy # so we need to wrap errors with 'ProxyError' here too. except ( OSError, NewConnectionError, TimeoutError, BaseSSLError, CertificateError, SSLError, ) as e: new_e: Exception = e if isinstance(e, (BaseSSLError, CertificateError)): new_e = SSLError(e) # If the connection didn't successfully connect to it's proxy # then there if isinstance( new_e, (OSError, NewConnectionError, TimeoutError, SSLError) ) and (conn and conn.proxy and not conn.has_connected_to_proxy): new_e = _wrap_proxy_error(new_e, conn.proxy.scheme) > raise new_e E urllib3.exceptions.SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self-signed certificate in certificate chain (_ssl.c:1006) .venv/lib/python3.11/site-packages/urllib3/connectionpool.py:490: SSLError The above exception was the direct cause of the following exception: self = <requests.adapters.HTTPAdapter object at 0x10f494410>, request = <PreparedRequest [GET]>, stream = False, timeout = Timeout(connect=10.0, read=10.0, total=None), verify = True, cert = None, proxies = OrderedDict() def send( self, request, stream=False, timeout=None, verify=True, cert=None, proxies=None ): """Sends PreparedRequest object. Returns Response object. :param request: The :class:`PreparedRequest <PreparedRequest>` being sent. :param stream: (optional) Whether to stream the request content. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a :ref:`(connect timeout, read timeout) <timeouts>` tuple. :type timeout: float or tuple or urllib3 Timeout object :param verify: (optional) Either a boolean, in which case it controls whether we verify the server's TLS certificate, or a string, in which case it must be a path to a CA bundle to use :param cert: (optional) Any user-provided SSL certificate to be trusted. :param proxies: (optional) The proxies dictionary to apply to the request. :rtype: requests.Response """ try: conn = self.get_connection_with_tls_context( request, verify, proxies=proxies, cert=cert ) except LocationValueError as e: raise InvalidURL(e, request=request) self.cert_verify(conn, request.url, verify, cert) url = self.request_url(request, proxies) self.add_headers( request, stream=stream, timeout=timeout, verify=verify, cert=cert, proxies=proxies, ) chunked = not (request.body is None or "Content-Length" in request.headers) if isinstance(timeout, tuple): try: connect, read = timeout timeout = TimeoutSauce(connect=connect, read=read) except ValueError: raise ValueError( f"Invalid timeout {timeout}. Pass a (connect, read) timeout tuple, " f"or a single float to set both timeouts to the same value." ) elif isinstance(timeout, TimeoutSauce): pass else: timeout = TimeoutSauce(connect=timeout, read=timeout) try: > resp = conn.urlopen( method=request.method, url=url, body=request.body, headers=request.headers, redirect=False, assert_same_host=False, preload_content=False, decode_content=False, retries=self.max_retries, timeout=timeout, chunked=chunked, ) .venv/lib/python3.11/site-packages/requests/adapters.py:667: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .venv/lib/python3.11/site-packages/urllib3/connectionpool.py:843: in urlopen retries = retries.increment( _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = Retry(total=0, connect=None, read=False, redirect=None, status=None), method = 'GET', url = '/api/model_registry/v1alpha3/serving_environments/0/inference_services?name=entity-name&externalId=10&pageSize=100&orderBy=ID&sortOrder=DESC' response = None, error = SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self-signed certificate in certificate chain (_ssl.c:1006)')) _pool = <urllib3.connectionpool.HTTPSConnectionPool object at 0x10fe47290>, _stacktrace = <traceback object at 0x11a243e00> def increment( self, method: str | None = None, url: str | None = None, response: BaseHTTPResponse | None = None, error: Exception | None = None, _pool: ConnectionPool | None = None, _stacktrace: TracebackType | None = None, ) -> Self: """Return a new Retry object with incremented retry counters. :param response: A response object, or None, if the server did not return a response. :type response: :class:`~urllib3.response.BaseHTTPResponse` :param Exception error: An error encountered during the request, or None if the response was received successfully. :return: A new ``Retry`` object. """ if self.total is False and error: # Disabled, indicate to re-raise the error. raise reraise(type(error), error, _stacktrace) total = self.total if total is not None: total -= 1 connect = self.connect read = self.read redirect = self.redirect status_count = self.status other = self.other cause = "unknown" status = None redirect_location = None if error and self._is_connection_error(error): # Connect retry? if connect is False: raise reraise(type(error), error, _stacktrace) elif connect is not None: connect -= 1 elif error and self._is_read_error(error): # Read retry? if read is False or method is None or not self._is_method_retryable(method): raise reraise(type(error), error, _stacktrace) elif read is not None: read -= 1 elif error: # Other retry? if other is not None: other -= 1 elif response and response.get_redirect_location(): # Redirect retry? if redirect is not None: redirect -= 1 cause = "too many redirects" response_redirect_location = response.get_redirect_location() if response_redirect_location: redirect_location = response_redirect_location status = response.status else: # Incrementing because of a server error like a 500 in # status_forcelist and the given method is in the allowed_methods cause = ResponseError.GENERIC_ERROR if response and response.status: if status_count is not None: status_count -= 1 cause = ResponseError.SPECIFIC_ERROR.format(status_code=response.status) status = response.status history = self.history + ( RequestHistory(method, url, error, status, redirect_location), ) new_retry = self.new( total=total, connect=connect, read=read, redirect=redirect, status=status_count, other=other, history=history, ) if new_retry.is_exhausted(): reason = error or ResponseError(cause) > raise MaxRetryError(_pool, url, reason) from reason # type: ignore[arg-type] E urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='<SNIP>', port=443): Max retries exceeded with url: /api/model_registry/v1alpha3/serving_environments/0/inference_services?name=entity-name&externalId=10&pageSize=100&orderBy=ID&sortOrder=DESC (Caused by SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self-signed certificate in certificate chain (_ssl.c:1006)'))) .venv/lib/python3.11/site-packages/urllib3/util/retry.py:519: MaxRetryError During handling of the above exception, another exception occurred: admin_client_token = '<SNIP>' @wraps(test) > def test_function(*args: Any, **kwargs: Any) -> Any: .venv/lib/python3.11/site-packages/schemathesis/_hypothesis.py:80: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .venv/lib/python3.11/site-packages/hypothesis/core.py:1431: in _raise_to_user raise the_error_hypothesis_found tests/model_registry/test_rest_api.py:13: in test_mr_api response = case.call_and_validate(verify=False) .venv/lib/python3.11/site-packages/schemathesis/specs/openapi/checks.py:407: in ignored_auth new_response = case.operation.schema.transport.send(case) .venv/lib/python3.11/site-packages/schemathesis/transports/__init__.py:169: in send response = session.request(**data) # type: ignore .venv/lib/python3.11/site-packages/requests/sessions.py:589: in request resp = self.send(prep, **send_kwargs) .venv/lib/python3.11/site-packages/requests/sessions.py:703: in send r = adapter.send(request, **kwargs) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <requests.adapters.HTTPAdapter object at 0x10f494410>, request = <PreparedRequest [GET]>, stream = False, timeout = Timeout(connect=10.0, read=10.0, total=None), verify = True, cert = None, proxies = OrderedDict() def send( self, request, stream=False, timeout=None, verify=True, cert=None, proxies=None ): """Sends PreparedRequest object. Returns Response object. :param request: The :class:`PreparedRequest <PreparedRequest>` being sent. :param stream: (optional) Whether to stream the request content. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a :ref:`(connect timeout, read timeout) <timeouts>` tuple. :type timeout: float or tuple or urllib3 Timeout object :param verify: (optional) Either a boolean, in which case it controls whether we verify the server's TLS certificate, or a string, in which case it must be a path to a CA bundle to use :param cert: (optional) Any user-provided SSL certificate to be trusted. :param proxies: (optional) The proxies dictionary to apply to the request. :rtype: requests.Response """ try: conn = self.get_connection_with_tls_context( request, verify, proxies=proxies, cert=cert ) except LocationValueError as e: raise InvalidURL(e, request=request) self.cert_verify(conn, request.url, verify, cert) url = self.request_url(request, proxies) self.add_headers( request, stream=stream, timeout=timeout, verify=verify, cert=cert, proxies=proxies, ) chunked = not (request.body is None or "Content-Length" in request.headers) if isinstance(timeout, tuple): try: connect, read = timeout timeout = TimeoutSauce(connect=connect, read=read) except ValueError: raise ValueError( f"Invalid timeout {timeout}. Pass a (connect, read) timeout tuple, " f"or a single float to set both timeouts to the same value." ) elif isinstance(timeout, TimeoutSauce): pass else: timeout = TimeoutSauce(connect=timeout, read=timeout) try: resp = conn.urlopen( method=request.method, url=url, body=request.body, headers=request.headers, redirect=False, assert_same_host=False, preload_content=False, decode_content=False, retries=self.max_retries, timeout=timeout, chunked=chunked, ) except (ProtocolError, OSError) as err: raise ConnectionError(err, request=request) except MaxRetryError as e: if isinstance(e.reason, ConnectTimeoutError): # TODO: Remove this in 3.0.0: see #2811 if not isinstance(e.reason, NewConnectionError): raise ConnectTimeout(e, request=request) if isinstance(e.reason, ResponseError): raise RetryError(e, request=request) if isinstance(e.reason, _ProxyError): raise ProxyError(e, request=request) if isinstance(e.reason, _SSLError): # This branch is for urllib3 v1.22 and later. > raise SSLError(e, request=request) E requests.exceptions.SSLError: HTTPSConnectionPool(host='<SNIP>', port=443): Max retries exceeded with url: /api/model_registry/v1alpha3/serving_environments/0/inference_services?name=entity-name&externalId=10&pageSize=100&orderBy=ID&sortOrder=DESC (Caused by SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self-signed certificate in certificate chain (_ssl.c:1006)'))) E Falsifying explicit example: test_mr_api( E admin_client_token='<SNIP>', E case=, E ) .venv/lib/python3.11/site-packages/requests/adapters.py:698: SSLError ``` Something else I notice that might be causing issues is that in some of these calls the url seems to be truncated to only be the API endpoint, rather than base_url+endpoint, e.g.: ``` self = <urllib3.connectionpool.HTTPSConnectionPool object at 0x10fe47290>, method = 'GET', url = '/api/model_registry/v1alpha3/serving_environments/0/inference_services?name=entity-name&externalId=10&pageSize=100&orderBy=ID&sortOrder=DESC' [...] parsed_url = Url(scheme=None, auth=None, host=None, port=None, path='/api/model_registry/v1alpha3/[...] ```
closed
2024-12-10T10:18:21Z
2024-12-12T17:00:28Z
https://github.com/schemathesis/schemathesis/issues/2613
[ "Priority: High", "Type: Bug" ]
lugi0
11
databricks/koalas
pandas
1,285
Pandas accessor support
Can you extend this api like pandas accessor pattern and custom types?
closed
2020-02-16T03:13:39Z
2020-09-01T14:04:52Z
https://github.com/databricks/koalas/issues/1285
[ "discussions" ]
achapkowski
3
521xueweihan/HelloGitHub
python
1,916
hellogit
## 项目推荐 - 项目地址:仅收录 GitHub 的开源项目,请填写 GitHub 的项目地址 - 类别:请从中选择(C、C#、C++、CSS、Go、Java、JS、Kotlin、Objective-C、PHP、Python、Ruby、Swift、其它、书籍、机器学习) - 项目后续更新计划: - 项目描述: - 必写:这是个什么项目、能用来干什么、有什么特点或解决了什么痛点 - 可选:适用于什么场景、能够让初学者学到什么 - 描述长度(不包含示例代码): 10 - 256 个字符 - 推荐理由:令人眼前一亮的点是什么?解决了什么痛点? - 示例代码:(可选)长度:1-20 行 - 截图:(可选)gif/png/jpg ## 提示(提交时请删除以下内容) > 点击上方 “Preview” 更方便地阅读以下内容, 提高项目收录的概率方法如下: 1. 到 HelloGitHub 网站首页:https://hellogithub.com 搜索要推荐的项目地址,查看准备推荐的项目是否被推荐过。 2. 根据 [项目审核标准说明](https://github.com/521xueweihan/HelloGitHub/issues/271) 修改项目 3. 如您推荐的项目收录到《HelloGitHub》月刊,您的 GitHub 帐号将展示在 [贡献人列表](https://github.com/521xueweihan/HelloGitHub/blob/master/content/contributors.md),**同时会在本 issues 中通知您**。 再次感谢您对 HelloGitHub 项目的支持!
closed
2021-10-03T05:32:22Z
2021-10-03T05:32:26Z
https://github.com/521xueweihan/HelloGitHub/issues/1916
[ "恶意issue" ]
aeioui
1
pykaldi/pykaldi
numpy
260
kaldi Like Data Augmentation
How can we do Kaldi like data augmentation in the API only on acoustic data
open
2021-03-10T10:35:37Z
2021-03-10T10:35:37Z
https://github.com/pykaldi/pykaldi/issues/260
[]
shakeel608
0
modoboa/modoboa
django
2,645
Cannot complete migrate after running makemigrations
Hi, running modoboa 2.0.2 on FReeBSD 11.4 and mysql 5.7.37. I have tried to upgrade some extensions manually, I realised that running pip install extension does not upgrade to the latest version...so I started with trying to upgrade modboa-amavis to 1.4.0 I ran the following :- > pip install modoboa-amavis==1.4.0 Then I ran the following :- > python manage.py migrate I then received the red text about running makemigrations :- Operations to perform: Apply all migrations: admin, auth, authtoken, contenttypes, core, dnstools, lib, limits, maillog, modoboa_amavis, modoboa_dmarc, modoboa_postfix_autoreply, modoboa_radicale, otp_static, otp_totp, relaydomains, reversion, sessions, sites, transport Running migrations: No migrations to apply. Your models in app(s): 'admin', 'core', 'dnstools', 'limits', 'maillog', 'modoboa_dmarc', 'modoboa_postfix_autoreply', 'modoboa_radicale', 'relaydomains', 'transport' have changes that are not yet reflected in a migration, and so won't be applied. Run 'manage.py makemigrations' to make new migrations, and then re-run 'manage.py migrate' to apply them. So I ran the following:- > python manage.py makemigrations Now if I try to complete teh migration, the first one succeeded (Applying admin.0021_auto_20221017_1109... OK) then the second failed:- Applying core.0023_auto_20221017_1109...Traceback (most recent call last): File "/usr/local/lib/python3.8/site-packages/django/db/backends/utils.py", line 84, in _execute return self.cursor.execute(sql, params) File "/usr/local/lib/python3.8/site-packages/django/db/backends/mysql/base.py", line 73, in execute return self.cursor.execute(query, args) File "/usr/local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 206, in execute res = self._query(query) File "/usr/local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 319, in _query db.query(q) File "/usr/local/lib/python3.8/site-packages/MySQLdb/connections.py", line 254, in query _mysql.connection.query(self, query) MySQLdb._exceptions.OperationalError: (1833, "Cannot change column 'id': used in a foreign key constraint 'modoboa_contacts_category_user_id_4061c4f0_fk_core_user_id' of table 'mail.modoboa_contacts_category'") The above exception was the direct cause of the following exception: Traceback (most recent call last): File "manage.py", line 10, in <module> execute_from_command_line(sys.argv) File "/usr/local/lib/python3.8/site-packages/django/core/management/__init__.py", line 419, in execute_from_command_line utility.execute() File "/usr/local/lib/python3.8/site-packages/django/core/management/__init__.py", line 413, in execute self.fetch_command(subcommand).run_from_argv(self.argv) File "/usr/local/lib/python3.8/site-packages/django/core/management/base.py", line 354, in run_from_argv self.execute(*args, **cmd_options) File "/usr/local/lib/python3.8/site-packages/django/core/management/base.py", line 398, in execute output = self.handle(*args, **options) File "/usr/local/lib/python3.8/site-packages/django/core/management/base.py", line 89, in wrapped res = handle_func(*args, **kwargs) File "/usr/local/lib/python3.8/site-packages/django/core/management/commands/migrate.py", line 244, in handle post_migrate_state = executor.migrate( File "/usr/local/lib/python3.8/site-packages/django/db/migrations/executor.py", line 117, in migrate state = self._migrate_all_forwards(state, plan, full_plan, fake=fake, fake_initial=fake_initial) File "/usr/local/lib/python3.8/site-packages/django/db/migrations/executor.py", line 147, in _migrate_all_forwards state = self.apply_migration(state, migration, fake=fake, fake_initial=fake_initial) File "/usr/local/lib/python3.8/site-packages/django/db/migrations/executor.py", line 227, in apply_migration state = migration.apply(state, schema_editor) File "/usr/local/lib/python3.8/site-packages/django/db/migrations/migration.py", line 126, in apply operation.database_forwards(self.app_label, schema_editor, old_state, project_state) File "/usr/local/lib/python3.8/site-packages/django/db/migrations/operations/fields.py", line 244, in database_forwards schema_editor.alter_field(from_model, from_field, to_field) File "/usr/local/lib/python3.8/site-packages/django/db/backends/base/schema.py", line 608, in alter_field self._alter_field(model, old_field, new_field, old_type, new_type, File "/usr/local/lib/python3.8/site-packages/django/db/backends/base/schema.py", line 765, in _alter_field self.execute( File "/usr/local/lib/python3.8/site-packages/django/db/backends/base/schema.py", line 145, in execute cursor.execute(sql, params) File "/usr/local/lib/python3.8/site-packages/django/db/backends/utils.py", line 98, in execute return super().execute(sql, params) File "/usr/local/lib/python3.8/site-packages/django/db/backends/utils.py", line 66, in execute return self._execute_with_wrappers(sql, params, many=False, executor=self._execute) File "/usr/local/lib/python3.8/site-packages/django/db/backends/utils.py", line 75, in _execute_with_wrappers return executor(sql, params, many, context) File "/usr/local/lib/python3.8/site-packages/django/db/backends/utils.py", line 84, in _execute return self.cursor.execute(sql, params) File "/usr/local/lib/python3.8/site-packages/django/db/utils.py", line 90, in __exit__ raise dj_exc_value.with_traceback(traceback) from exc_value File "/usr/local/lib/python3.8/site-packages/django/db/backends/utils.py", line 84, in _execute return self.cursor.execute(sql, params) File "/usr/local/lib/python3.8/site-packages/django/db/backends/mysql/base.py", line 73, in execute return self.cursor.execute(query, args) File "/usr/local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 206, in execute res = self._query(query) File "/usr/local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 319, in _query db.query(q) File "/usr/local/lib/python3.8/site-packages/MySQLdb/connections.py", line 254, in query _mysql.connection.query(self, query) django.db.utils.OperationalError: (1833, "Cannot change column 'id': used in a foreign key constraint 'modoboa_contacts_category_user_id_4061c4f0_fk_core_user_id' of table 'mail.modoboa_contacts_category'") These are the changes that makemigrations has attempted to create:- Migrations for 'admin': /usr/local/lib/python3.8/site-packages/modoboa/admin/migrations/0021_auto_20221017_1109.py - Alter field id on alarm - Alter field id on alias - Alter field id on aliasrecipient - Alter field id on dnsblresult - Alter field id on domain - Alter field id on domainalias - Alter field id on mailbox - Alter field id on mailboxoperation - Alter field id on mxrecord - Alter field id on senderaddress Migrations for 'core': /usr/local/lib/python3.8/site-packages/modoboa/core/migrations/0023_auto_20221017_1109.py - Alter field id on extensionupdatehistory - Alter field id on localconfig - Alter field id on log - Alter field id on objectaccess - Alter field first_name on user - Alter field id on user - Alter field language on user Migrations for 'dnstools': /usr/local/lib/python3.8/site-packages/modoboa/dnstools/migrations/0002_alter_dnsrecord_id.py - Alter field id on dnsrecord Migrations for 'limits': /usr/local/lib/python3.8/site-packages/modoboa/limits/migrations/0007_auto_20221017_1109.py - Alter field id on domainobjectlimit - Alter field id on userobjectlimit Migrations for 'maillog': /usr/local/lib/python3.8/site-packages/modoboa/maillog/migrations/0004_alter_maillog_id.py - Alter field id on maillog Migrations for 'modoboa_dmarc': /usr/local/lib/python3.8/site-packages/modoboa_dmarc/migrations/0004_auto_20221017_1109.py - Alter field id on record - Alter field id on report - Alter field id on reporter - Alter field id on result Migrations for 'modoboa_postfix_autoreply': /usr/local/lib/python3.8/site-packages/modoboa_postfix_autoreply/migrations/0009_auto_20221017_1109.py - Alter field id on arhistoric - Alter field id on armessage Migrations for 'modoboa_radicale': /usr/local/lib/python3.8/site-packages/modoboa_radicale/migrations/0006_auto_20221017_1109.py - Alter field id on accessrule - Alter field id on sharedcalendar - Alter field id on usercalendar Migrations for 'relaydomains': /usr/local/lib/python3.8/site-packages/modoboa/relaydomains/migrations/0010_alter_recipientaccess_id.py - Alter field id on recipientaccess Migrations for 'transport': /usr/local/lib/python3.8/site-packages/modoboa/transport/migrations/0003_alter_transport_id.py - Alter field id on transport
closed
2022-10-17T11:26:11Z
2023-01-04T11:10:39Z
https://github.com/modoboa/modoboa/issues/2645
[ "bug" ]
ndoody
4
public-apis/public-apis
api
3,891
Top Up
closed
2024-07-05T03:42:51Z
2024-07-07T19:29:47Z
https://github.com/public-apis/public-apis/issues/3891
[]
MrQueen132
0
Johnserf-Seed/TikTokDownload
api
678
单个视频下载一直是丢失状态[BUG]
![image](https://github.com/Johnserf-Seed/TikTokDownload/assets/28301336/4693e3c0-d70c-424f-b304-f1d96206943a) ![image](https://github.com/Johnserf-Seed/TikTokDownload/assets/28301336/233efdfd-df43-456f-ad0a-e48de47e4766) 问题1:自定义配置文件中设置了cover、music都是‘no',但是依然下载封面和音乐; 问题2:音乐、封面都能下载,但是视频一直是丢失状态;
open
2024-03-13T16:13:16Z
2024-03-14T19:53:21Z
https://github.com/Johnserf-Seed/TikTokDownload/issues/678
[]
lingyu5219
2
lepture/authlib
django
604
Allow the instance of ResourceProtector to be a decorator without an unnecessary call if we don't have any 'call' attribute, solution provided.
for example on this page of [documentation](https://docs.authlib.org/en/latest/flask/2/resource-server.html) we can see: ```python @app.route('/user') @require_oauth() def user_profile(): user = current_token.user return jsonify(user) # or with None @app.route('/user') @require_oauth(None) def user_profile(): user = current_token.user return jsonify(user) ``` If we speak about transparency in coding, `@require_oauth()` is not an obvious practice. More often, you can encounter `@require_oauth`. Organizing the decorator for both cases — calling with and without attributes — is easy: ```python def __call__(self, *args, **kwargs): if args and callable(args[0]): return super().__call__()(*args, **kwargs) return super().__call__(*args, **kwargs) ```
open
2023-12-15T23:01:49Z
2025-02-20T20:21:45Z
https://github.com/lepture/authlib/issues/604
[ "good first issue", "feature request", "server" ]
danilovmy
0
open-mmlab/mmdetection
pytorch
12,277
mmdet in orin : No module named 'torch._C._distributed_c10d'; 'torch._C' is not a package
I tried to deploy the mmdet framework on Orin. After installation, the version output is normal, but when executing the code to initialize the references, the following error occurs. However, it seems that the installation is not the issue, and it has already been successfully installed? ---------------------------------------------------------------------- check version: python -c "import torch, torchvision, mmcv, mmdet; print(f'Torch Version: {torch.__version__}'); print(f'Torch CUDA Version: {torch.version.cuda}'); print(f'Torchvision Version: {torchvision.__version__}'); print(f'MMCV Version: {mmcv.__version__}'); print(f'MMDetection Version: {mmdet.__version__}')" Torch Version: 2.1.0a0+41361538.nv23.06 Torch CUDA Version: 11.4 Torchvision Version: 0.16.1 MMCV Version: 2.0.0 MMDetection Version: 3.3.0 ----------------------------------------------------------------------- error: ceback (most recent call last): File "/home/nvidia/zd/wk/devel/lib/viplanner_node/viplanner_node.py", line 15, in <module> exec(compile(fh.read(), python_script, 'exec'), context) File "/home/nvidia/zd/wk/src/ros/planner/src/viplanner_node.py", line 41, in <module> from src.m2f_inference import Mask2FormerInference File "/home/nvidia/zd/wk/src/ros/planner/src/m2f_inference.py", line 12, in <module> from mmdet.apis import inference_detector, init_detector File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmdet/apis/__init__.py", line 2, in <module> from .det_inferencer import DetInferencer File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmdet/apis/det_inferencer.py", line 15, in <module> from mmengine.infer.infer import BaseInferencer, ModelType File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/infer/__init__.py", line 2, in <module> from .infer import BaseInferencer File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/infer/infer.py", line 25, in <module> from mmengine.runner.checkpoint import (_load_checkpoint, File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/runner/__init__.py", line 2, in <module> from ._flexible_runner import FlexibleRunner File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/runner/_flexible_runner.py", line 14, in <module> from mmengine._strategy import BaseStrategy File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/_strategy/__init__.py", line 4, in <module> from .base import BaseStrategy File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/_strategy/base.py", line 19, in <module> from mmengine.model.wrappers import is_model_wrapper File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/model/__init__.py", line 6, in <module> from .base_model import BaseDataPreprocessor, BaseModel, ImgDataPreprocessor File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/model/base_model/__init__.py", line 2, in <module> from .base_model import BaseModel File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/model/base_model/base_model.py", line 12, in <module> from ..base_module import BaseModule File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/model/base_module.py", line 14, in <module> from .wrappers.utils import is_model_wrapper File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/model/wrappers/__init__.py", line 14, in <module> from .fully_sharded_distributed import \ File "/home/nvidia/zd/miniconda3/envs/py3810/lib/python3.8/site-packages/mmengine/model/wrappers/fully_sharded_distributed.py", line 10, in <module> from torch.distributed.fsdp.api import (FullStateDictConfig, File "/home/nvidia/.local/lib/python3.8/site-packages/torch/distributed/fsdp/__init__.py", line 1, in <module> from .flat_param import FlatParameter File "/home/nvidia/.local/lib/python3.8/site-packages/torch/distributed/fsdp/flat_param.py", line 30, in <module> from torch.distributed._tensor import DTensor File "/home/nvidia/.local/lib/python3.8/site-packages/torch/distributed/_tensor/__init__.py", line 6, in <module> import torch.distributed._tensor.ops File "/home/nvidia/.local/lib/python3.8/site-packages/torch/distributed/_tensor/ops/__init__.py", line 2, in <module> from .embedding_ops import * # noqa: F403 File "/home/nvidia/.local/lib/python3.8/site-packages/torch/distributed/_tensor/ops/embedding_ops.py", line 6, in <module> from torch.distributed._tensor.api import _Partial, DTensorSpec, Replicate, Shard File "/home/nvidia/.local/lib/python3.8/site-packages/torch/distributed/_tensor/api.py", line 8, in <module> import torch.distributed._tensor.dispatch as op_dispatch File "/home/nvidia/.local/lib/python3.8/site-packages/torch/distributed/_tensor/dispatch.py", line 10, in <module> from torch.distributed._tensor.device_mesh import DeviceMesh File "/home/nvidia/.local/lib/python3.8/site-packages/torch/distributed/_tensor/device_mesh.py", line 6, in <module> import torch.distributed._functional_collectives as funcol File "/home/nvidia/.local/lib/python3.8/site-packages/torch/distributed/_functional_collectives.py", line 7, in <module> import torch.distributed.distributed_c10d as c10d File "/home/nvidia/.local/lib/python3.8/site-packages/torch/distributed/distributed_c10d.py", line 17, in <module> from torch._C._distributed_c10d import ( ModuleNotFoundError: No module named 'torch._C._distributed_c10d'; 'torch._C' is not a package
open
2024-12-23T09:53:12Z
2024-12-23T09:53:26Z
https://github.com/open-mmlab/mmdetection/issues/12277
[ "reimplementation" ]
AugWrite
0
HumanSignal/labelImg
deep-learning
674
Multiple Labels/attributes for a single rectangle
<!-- Hi! I want to assign several other attributes for instance color, gender,age etc to the rectangle, can you guide about it? --> - **OS:** - **PyQt version:**
open
2020-11-17T12:38:57Z
2020-11-17T12:38:57Z
https://github.com/HumanSignal/labelImg/issues/674
[]
ZahraAnam
0
apache/airflow
python
47,983
DatabricksNotebookOperator generating invalid dependency graph
### Apache Airflow Provider(s) databricks ### Versions of Apache Airflow Providers apache-airflow-providers-common-sql==1.24.0 apache-airflow-providers-databricks==7.2.1 databricks-sql-connector==4.0.0 ### Apache Airflow version 2.10.3 ### Operating System MacOs ### Deployment Docker-Compose ### Deployment details Testing using [AWS MWAA Local Runner](https://github.com/aws/aws-mwaa-local-runner) ### What happened When upgraded the databricks provider to version 7.2.1 and tested the DAG with DatabricksNotebookOperator, DAG is failing with the below error: ```airflow.exceptions.AirflowException: Response: {"error_code":"INVALID_PARAMETER_VALUE","message":"Invalid dependency graph, task 'e771895875324e2902a93fdc2ff36326' can not reference itself."}, Status Code: 400``` <img width="1501" alt="Image" src="https://github.com/user-attachments/assets/e90a1526-f426-448f-a547-8319d2fa7369" /> ### What you think should happen instead Ideally, It should generate correct dependency between Databricks tasks and deploy the Databricks Job. Whereas it is generating the wrong dependency graph for databricks tasks (referencing the dependent task itself). ### How to reproduce Below is the DAG code to regenerate the error: ``` import os from airflow.models.dag import DAG from airflow.providers.databricks.operators.databricks import DatabricksNotebookOperator from airflow.providers.databricks.operators.databricks_workflow import DatabricksWorkflowTaskGroup from airflow.utils.timezone import datetime DATABRICKS_CONN_ID = os.getenv("DATABRICKS_CONN_ID", "databricks_default") job_cluster_spec = [ { "job_cluster_key": "Shared_job_cluster", "new_cluster": { "cluster_name": "", "spark_version": "11.3.x-scala2.12", "num_workers": 1, "spark_conf": {}, "node_type_id": "r3.xlarge", "ssh_public_keys": [], "custom_tags": {}, "spark_env_vars": {"PYSPARK_PYTHON": "/databricks/python3/bin/python3"}, "cluster_source": "JOB", "init_scripts": [], }, } ] dag = DAG( dag_id="example_databricks_workflow", start_date=datetime(2022, 1, 1), schedule=None, catchup=False, ) with dag: task_group = DatabricksWorkflowTaskGroup( group_id=f"test_workflow", databricks_conn_id=DATABRICKS_CONN_ID, job_clusters=job_cluster_spec, ) with task_group: notebook_1 = DatabricksNotebookOperator( task_id="workflow_notebook_1", databricks_conn_id=DATABRICKS_CONN_ID, notebook_path="/Shared/Notebook_1", source="WORKSPACE", job_cluster_key="Shared_job_cluster", ) notebook_2 = DatabricksNotebookOperator( task_id="workflow_notebook_2", databricks_conn_id=DATABRICKS_CONN_ID, notebook_path="/Shared/Notebook_2", source="WORKSPACE", job_cluster_key="Shared_job_cluster", ) notebook_1 >> notebook_2 ``` Code is from Databricks example dags: https://github.com/apache/airflow/blob/providers-databricks/7.2.1/providers/databricks/tests/system/databricks/example_databricks_workflow.py ### Anything else It was working fine in apache-airflow-providers-databricks==6.12.0, when upgraded to 7.2.1 version, started getting the error. Issue maybe related to this MR: https://github.com/apache/airflow/pull/44960 ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
open
2025-03-20T02:48:47Z
2025-03-20T03:32:53Z
https://github.com/apache/airflow/issues/47983
[ "kind:bug", "area:providers", "provider:databricks", "needs-triage" ]
dheerajkumar-solanki
2
mljar/mercury
jupyter
150
make dashboard example with pyecharts
pyecharts repo https://github.com/pyecharts
closed
2022-07-28T13:05:10Z
2022-12-12T12:08:06Z
https://github.com/mljar/mercury/issues/150
[]
pplonski
0
deepspeedai/DeepSpeed
deep-learning
6,917
[REQUEST] Deepspeed Inference Supports VL (vision language) model
**Is your feature request related to a problem? Please describe.** We have been using `deepspeed.init_inference` API for speeding up inference for text only models (e.g. mistral, qwen 2.5 series) with success. Was hoping we can extend support for vision language models as well, e.g. qwen 2 vl, etc, which is currently not supported. **Describe the solution you'd like** - `deepspeed.init_inference` to work for vision language models (for both embedding use case as well as generation use case) - and also make extending with our own model's tutorial clearer/cleaner. **Describe alternatives you've considered** N/A **Additional context** N/A
open
2024-12-26T17:17:13Z
2024-12-26T17:17:13Z
https://github.com/deepspeedai/DeepSpeed/issues/6917
[ "enhancement" ]
ethen8181
0
graphdeco-inria/gaussian-splatting
computer-vision
705
Questions about f_rest property in .ply file
Hello, I appreciate your excellent work. I have a few questions that I’d like to understand better. Could you please explain? Q1) Could you please provide a detailed explanation of the f_rest property in the context of Gaussian Splatting? Q2) Is it possible to generate or render an image without the f_rest property, and if so, will the quality of the image be affected? Q3) I’ve noticed that some Gaussian Splatting repositories do not include the f_rest property in their PLY files. Could you explain why this is the case? Q4) The paper mentions that at “30K iterations reaches about 200–500K Gaussians per scene”. Is there a method to cap the number of Gaussians to a specific limit, such as 150k or 200K? Q5) Is there a strategy to accelerate the training process without compromising the Image resolution and render quality?
open
2024-03-12T05:31:33Z
2024-03-13T04:40:34Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/705
[]
NithinJangid
2
davidteather/TikTok-Api
api
886
[FEATURE_REQUEST] - usage
in theory, based on this, you can create an account registrar with the ability to interact with live users?
closed
2022-05-12T10:17:23Z
2022-07-03T23:13:03Z
https://github.com/davidteather/TikTok-Api/issues/886
[ "feature_request" ]
A4pro
4
mwaskom/seaborn
data-visualization
3,227
seaborn objects scale with two visualisations with same kwargs?
Hello, I ran into a problem with scale, when I'm trying to display two visualizations with color mapped by column. I'm trying to create bar plot with labels on bars. Position of labels and color of labels depends on column of dataframe. Also, I would like to color bars by column. here is my question on stack overflow: https://stackoverflow.com/questions/75161245/how-to-use-seaborn-objects-scale-with-two-visualisations-with-same-kwargs Is there a way to do this? Thank you for answer
closed
2023-01-19T11:30:20Z
2023-01-20T00:30:28Z
https://github.com/mwaskom/seaborn/issues/3227
[]
vorel99
1
collerek/ormar
sqlalchemy
744
model.save() with server_default is failing on refreshing server_default values
**Describe the bug** model.save() is raising `NoMatch` when it tries to refresh a server_default that is a PK. I was able to fix this locally by just setting `self.pk = pk` in https://github.com/collerek/ormar/blob/master/ormar/models/model.py#L85-L96. happy to open a PR if the issue is valid. **To Reproduce** Steps to reproduce the behavior: ```py import asyncio import uuid from datetime import date, datetime from typing import Optional import ormar import sqlalchemy from databases import Database from sqlalchemy import func, text database = Database(url="postgresql://postgres@0.0.0.0:5432/postgres", force_rollback=True) engine = sqlalchemy.create_engine("postgresql://postgres@0.0.0.0:5432/postgres") metadata = sqlalchemy.MetaData() class BaseMeta: metadata = metadata database = database class Jimmy(ormar.Model): class Meta(BaseMeta): tablename = "jimmy_rus" id: uuid.UUID = ormar.UUID( primary_key=True, server_default=text("gen_random_uuid()"), uuid_format="string" ) async def main(): await database.connect() metadata.drop_all(bind=engine) metadata.create_all(bind=engine) jimmy = Jimmy() await jimmy.save() if __name__ == '__main__': asyncio.run(main()) ``` **Expected behavior** should not raise an exception after the item is already persisted to the db. **Versions (please complete the following information):** - Database backend used (mysql/sqlite/postgress) postgres - Python version 3.9 - `ormar` version 0.11.2 - `pydantic` version 1.9 **Additional context** I've tracked the offending code down: https://github.com/collerek/ormar/blob/master/ormar/models/model.py#L85-L96 from what I can tell, the pk is correctly returned via insert expr, however `self.pk` never gets set. so when `self.load` is called it doesnt correctly select for item that was insert since `self.pk` is `None`.
open
2022-07-15T21:12:37Z
2022-07-18T16:56:33Z
https://github.com/collerek/ormar/issues/744
[ "bug" ]
cmflynn
0
awesto/django-shop
django
172
don't allow going to CheckoutSelectionView if the cart is empty
knowing the url of CheckoutSelectionView might allow you to create empty orders
closed
2012-09-12T11:28:05Z
2012-09-14T15:37:04Z
https://github.com/awesto/django-shop/issues/172
[]
alesdotio
0
Lightning-AI/pytorch-lightning
data-science
20,490
Loading checkpoint before fabric.setup(model) gets abnormal loss when using fabric.init_module()
### Bug description Init model with `fabric.init_module(True)` and load checkpoint **after** `model = fabric.setup(model)`, the training loss is normal ``` with fabric.init_module(empty_init=(fabric.world_size > 1)): model = GPT(config) model = fabric.setup(model) load_checkpoint(fabric, model, checkpoint_path) step = 1 | loss train: 0.8448048233985901 step = 2 | loss train: 1.3229767084121704 step = 3 | loss train: 1.2647839784622192 step = 4 | loss train: 1.287076711654663 step = 5 | loss train: 1.0357563495635986 ``` but when loading checkpoint **before** `model = fabric.setup(model)`, get loss much larger ``` with fabric.init_module(empty_init=(fabric.world_size > 1)): model = GPT(config) load_checkpoint(fabric, model, checkpoint_path) model = fabric.setup(model) step = 1 | loss train: 12.027938842773438 step = 2 | loss train: 12.051375389099121 step = 3 | loss train: 12.112957954406738 step = 4 | loss train: 12.08558177947998 step = 5 | loss train: 12.089488983154297 ``` Another phenomenon is that, if not using `fabric.init_module()`, I can get normal loss when loading checkpoint before `fabric.setup(model)`, ``` # with fabric.init_module(empty_init=(fabric.world_size > 1)): if True: model = GPT(config) load_checkpoint(fabric, model, checkpoint_path) model = fabric.setup(model) step = 1 | loss train: 0.8447667956352234 step = 2 | loss train: 1.3229438066482544 step = 3 | loss train: 1.2663335800170898 step = 4 | loss train: 1.2902932167053223 step = 5 | loss train: 1.035811185836792 ``` So how to load hf models converted by `litgpt.scripts.convert_hf_checkpoint` in a correct way? ### What version are you seeing the problem on? v2.4 ### How to reproduce the bug ```python from pathlib import Path import torch import lightning as L from lightning.fabric.strategies import FSDPStrategy from litgpt.args import TrainArgs from litgpt.config import Config from litgpt.model import GPT, Block from litgpt.data import Alpaca2k from litgpt.tokenizer import Tokenizer from litgpt.utils import ( chunked_cross_entropy, load_checkpoint, num_parameters, get_default_supported_precision, ) def get_lr_scheduler(optimizer, warmup_steps: int, max_steps: int): # linear warmup followed by cosine annealing scheduler1 = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda step: step / warmup_steps) scheduler2 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=(max_steps - warmup_steps)) return torch.optim.lr_scheduler.SequentialLR(optimizer, [scheduler1, scheduler2], milestones=[warmup_steps]) def main( checkpoint_dir: Path, devices: int = 8, num_nodes: int = 1, precision: str = "bf16-true", seed: int = 1337, ) -> None: torch.set_float32_matmul_precision("high") train_args = TrainArgs( save_interval = 1000, log_interval = 1, global_batch_size = 64, micro_batch_size = 4, lr_warmup_steps = 1000, epochs = 10, max_steps = 10000, ) strategy = FSDPStrategy( auto_wrap_policy={Block}, activation_checkpointing_policy={Block}, state_dict_type="full", limit_all_gathers=True, cpu_offload=False, ) fabric = L.Fabric( accelerator="cuda", devices=devices, num_nodes=num_nodes, strategy=strategy, precision=precision, ) fabric.launch() fabric.seed_everything(seed) # same seed for every process to init model (FSDP) dataset = Alpaca2k() tokenizer = Tokenizer(str(checkpoint_dir)) dataset.connect(tokenizer, batch_size=train_args.micro_batch_size, max_seq_length=512) with fabric.rank_zero_first(): dataset.prepare_data() dataset.setup() dataloader = dataset.train_dataloader() dataloader = fabric.setup_dataloaders(dataloader) checkpoint_path = str(checkpoint_dir / "lit_model.pth") config = Config.from_file(checkpoint_dir / "model_config.yaml") with fabric.init_module(empty_init=(fabric.world_size > 1)): model = GPT(config) fabric.print(f"Number of trainable parameters: {num_parameters(model, requires_grad=True):,}") # load_checkpoint(fabric, model, checkpoint_path) model = fabric.setup(model) load_checkpoint(fabric, model, checkpoint_path) optimizer = torch.optim.AdamW(model.parameters(), lr=0.0002, weight_decay=0.0, betas=(0.9, 0.95)) optimizer = fabric.setup_optimizers(optimizer) scheduler = get_lr_scheduler(optimizer, warmup_steps=train_args.lr_warmup_steps, max_steps=train_args.max_steps) model.train() for epoch in range(train_args.epochs): for step, batch in enumerate(dataloader, 1): input, target = batch["input_ids"], batch["labels"] logits = model(input) loss = chunked_cross_entropy(logits[..., :-1, :], target[..., 1:]) fabric.backward(loss) optimizer.step() optimizer.zero_grad() scheduler.step() fabric.print(f"{step = } | loss train: {loss.detach().item()}") if __name__ == "__main__": checkpoint_dir = Path("./Qwen2.5-1.5B/") main(checkpoint_dir) ``` ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment <details> <summary>Current environment</summary> ``` #- PyTorch Lightning Version (e.g., 2.4.0): #- PyTorch Version (e.g., 2.4.1): #- Python version (e.g., 3.10): #- OS (e.g., Linux): #- CUDA/cuDNN version:12.1 #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): pip ``` </details> ### More info _No response_
open
2024-12-11T03:19:48Z
2024-12-12T03:47:08Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20490
[ "bug", "ver: 2.4.x" ]
kobenaxie
4
fastapi/sqlmodel
pydantic
405
Is it possible to filter data dynamically?
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python query = ( select(Employee) ) names = ["joe", "bob", "mary"] for name in names: query = query.filter(Employee.name = name) ``` ## want it to produce this type of SQL ``` Select * from Employee where name = joe OR name = bob OR name = mary ``` cant figure out how to do this via iterator, it only works if you provide specific OR statement ie, ``` query = query.filter(or_(Employee.name == joe, Employee.name == mary, Employee.name == bob)) ``` ``` ### Description is it possible to do a query dynamically via a list of search values? ### Operating System Linux ### Operating System Details ubuntu 20 python 3.9 ### SQLModel Version 0.0.6 ### Python Version 3.9 ### Additional Context _No response_
closed
2022-08-22T21:58:06Z
2022-08-23T01:25:41Z
https://github.com/fastapi/sqlmodel/issues/405
[ "question" ]
perfecto25
1
quokkaproject/quokka
flask
73
config, settings and current channel should be available in every context
Every context should have {{config('group', 'key')}} {{ current_channel }} {{settings}}
closed
2013-11-01T22:10:38Z
2015-07-16T02:56:41Z
https://github.com/quokkaproject/quokka/issues/73
[ "enhancement" ]
rochacbruno
1
sebp/scikit-survival
scikit-learn
235
Regularization parameter for ridge regression penalty in CoxPHSurvivalAnalysis
Thank you for the awesome package! I ran CoxPHSurvivalAnalysis multiple times with different choices of alpha (0, 0.01, 0.1) and didn't observe any differences in the resulting C-Index, so I checked the source code and found out that the penalty term was divided by n_samples, which doesn't look right to me. Perhaps you meant to divide it by n_features (which is also not common in my experience)? Apologies if I missed something! **Snippet from scikit-survival/sksurv/linear_model/coxph.py, line 188** ```python class CoxPHOptimizer: def nlog_likelihood(self, w): # add regularization term to log-likelihood return loss + numpy.sum(self.alpha * numpy.square(w)) / (2. * n_samples) ``` **Versions** ```python import sklearn; sklearn.show_versions() import sksurv; print("sksurv:", sksurv.__version__) # import cvxopt; print("cvxopt:", cvxopt.__version__) # import cvxpy; print("cvxpy:", cvxpy.__version__) import numexpr; print("numexpr:", numexpr.__version__) import osqp; print("osqp:", osqp.OSQP().version()) ``` System: python: 3.7.6 | packaged by conda-forge | (default, Mar 23 2020, 23:03:20) [GCC 7.3.0] executable: /opt/conda/bin/python machine: Linux-5.10.47-linuxkit-x86_64-with-debian-buster-sid Python dependencies: pip: 20.1 setuptools: 46.1.3.post20200325 sklearn: 0.24.1 numpy: 1.18.4 scipy: 1.6.0 Cython: 0.29.17 pandas: 1.3.2 matplotlib: 3.2.1 joblib: 0.14.1 threadpoolctl: 2.1.0 Built with OpenMP: True sksurv: 0.15.0.post0 numexpr: 2.7.1 osqp: 0.6.2
closed
2021-11-07T16:05:07Z
2021-11-08T13:47:44Z
https://github.com/sebp/scikit-survival/issues/235
[]
chang-hu
1
nschloe/tikzplotlib
matplotlib
191
histogram with log scale has display issues for small values
It seems matplotlib can not properly render histograms, when log scale is active for the y-axis and the absolute frequency is smaller than ~2.7, ie. 1 and 2. The Python code: ```py import pandas as pd import matplotlib.pyplot as plt from matplotlib2tikz import save as tikz_save plot_values = pd.DataFrame( { 'test0': pd.Series([0, 0, 0, .1, .1, .2]), 'test1': pd.Series([0, .1]), } ) plot_values.plot.hist(stacked=False) # Should not use stacked for log plot plt.gcf().set_size_inches(4, 3) plt.yscale('log') plt.ylim(ymin=.1) plt.savefig('/tmp/test_a.png') tikz_save('/tmp/test_a.tikz') ``` The png looks fine: ![test_a](https://user-images.githubusercontent.com/6399679/27768712-6538cd00-5f1a-11e7-99e0-99c1cf7353db.png) However, from the pdf it seems histogram bars are plotted with their lower bound starting at ~2.7 (instead of -inf). This will especially cause issues when the frequency is 1 or 2. ![test_a pdf](https://user-images.githubusercontent.com/6399679/27768706-4cfbd700-5f1a-11e7-82f2-08afe4c81ff5.png)
open
2017-07-02T09:39:57Z
2024-01-25T13:55:31Z
https://github.com/nschloe/tikzplotlib/issues/191
[]
maflcko
3
benbusby/whoogle-search
flask
410
[QUESTION] The README advertises "no JavaScript", but the code includes JavaScript
According to the README: "No javascript". It reiterates this a few times throughout the README and elsewhere. And yet: https://github.com/benbusby/whoogle-search/blob/68fdd554825f981a24ba3b3f1d728ec5ef260005/app/templates/display.html#L43-L45 https://github.com/benbusby/whoogle-search/blob/be3714f074c0807983148c6ffa51f1287e5f465d/app/templates/index.html#L20-L21 Perhaps we could make the promise true by removing this and changing the CSP JS policy to `none` instead of `self`. ref: https://github.com/benbusby/whoogle-search/blob/9f84a8ad832a130690f6a9524558522665e0c7b8/app/__init__.py#L76 Just wondering, am newbie, sorry if I'm mistaken!
closed
2021-09-01T04:17:09Z
2021-09-15T21:44:23Z
https://github.com/benbusby/whoogle-search/issues/410
[ "question" ]
mariavillosa
3
Netflix/metaflow
data-science
1,838
Question on Executing Metaflow Workflow from Python Script Without 'run' Argument
Hello Metaflow Team, I am exploring ways to automate Metaflow workflows and have a query regarding the initial execution of these workflows via a Python script. Specifically, I'm interested in whether it is possible to execute a Metaflow workflow directly from a script without explicitly using the run argument for the first time. Could you provide guidance or confirm if there's a recommended approach for initializing and running workflows programmatically without the run command? Any insights on setting up the environment or script adjustments to handle this use case would be greatly appreciated. ``` from metaflow import FlowSpec, step class ExampleFlow(FlowSpec): @step def start(self): print("This is the start step.") self.next(self.end) @step def end(self): print("This is the end step.") if __name__ == '__main__': # How to initiate this flow without using 'ExampleFlow().run()'? # HelloFlow 인스턴스 생성 flow = ExampleFlow() graph = flow._graph current_steps = ['start'] while current_steps: next_steps = [] for current_step in current_steps: print(f"Running step: {current_step}") run_step(flow, current_step) next_steps.extend(step.__name__ for step in flow._next_steps) print("Next steps:", next_steps) current_steps = next_steps ``` Thank you for your assistance!
closed
2024-05-16T01:05:45Z
2024-08-16T06:10:50Z
https://github.com/Netflix/metaflow/issues/1838
[]
sungreong
4
NullArray/AutoSploit
automation
1,301
Unhandled Exception (6f24d3e9f)
Autosploit version: `3.1` OS information: `Linux-3.10.0-1160.31.1.el7.x86_64-x86_64-with-Ubuntu-18.04-bionic` Running context: `autosploit.py` Error meesage: `object of type 'NoneType' has no len()` Error traceback: ``` Traceback (most recent call): File "/AutoSploit/autosploit/main.py", line 116, in main terminal.terminal_main_display(loaded_tokens) File "/AutoSploit/lib/term/terminal.py", line 494, in terminal_main_display if len(choice_data_list) < 4: TypeError: object of type 'NoneType' has no len() ``` Metasploit launched: `False`
open
2021-07-31T13:53:28Z
2021-07-31T13:53:28Z
https://github.com/NullArray/AutoSploit/issues/1301
[]
AutosploitReporter
0
paperless-ngx/paperless-ngx
machine-learning
7,322
[BUG] Filter documents by more than one owner
### Description When I want to add more than on owner to the filter the added owner is not listed but is recognized by the filter. If I change e.g. the tag-filter, the owners only filter by the first on. ![Permissions Owner](https://github.com/user-attachments/assets/cdfe8086-89bd-4dc3-a9a9-1db5fb0f86a4) ### Steps to reproduce Go to documents Open the permissions filter Add more than on owner Change e.g. the tag filter ### Webserver logs ```bash none ``` ### Browser logs _No response_ ### Paperless-ngx version 2.11.0 ### Host OS unraid / docker ### Installation method Docker - official image ### System status _No response_ ### Browser _No response_ ### Configuration changes _No response_ ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
closed
2024-07-25T17:15:45Z
2024-08-26T03:05:00Z
https://github.com/paperless-ngx/paperless-ngx/issues/7322
[ "not a bug" ]
bjoernpoettker
4
flairNLP/flair
nlp
2,979
Adding link to result classes
This repository is great work but it would be better to add description or link to description of result classes(for ner and pos)
closed
2022-11-04T16:45:16Z
2023-05-21T15:36:47Z
https://github.com/flairNLP/flair/issues/2979
[ "question", "wontfix" ]
11Alexei11
3
davidsandberg/facenet
tensorflow
814
About pretrained model accuracy on LFW
The accuracy for the model 20180402-114759 is about 0.99550,my parameter setting is as follows: detection and alignment: python align_dataset_mtcnn.py \ /media/zheng/02FCF89DFCF88BE31/face_dataset/LFW/lfw \ /media/zheng/02FCF89DFCF88BE31/face_dataset/LFW/aligned_lfw_tf \ --image_size 160 \ --margin 32 \ --random_order \ --gpu_memory_fraction 0.25 embedding extraction: python facenet_tf_extractor.py \ /media/zheng/02FCF89DFCF88BE31/face_dataset/LFW/aligned_lfw_tf \ pretrained_models/20180402-114759 \ --lfw_batch_size 64 \ --image_size 160 \ --lfw_pairs ../../pairs.txt \ --use_flipped_images \ --subtract_mean \ --use_fixed_image_standardization validate result: Accuracy: 0.99550+-0.00342 Validation rate: 0.98600+-0.00952 @ FAR=0.00100 Area Under Curve (AUC): 1.000 Equal Error Rate (EER): 0.004 why can't I reproduce the same result, my tensorflow version is 1.5,is this the problem?
open
2018-07-16T05:09:30Z
2018-11-19T23:43:09Z
https://github.com/davidsandberg/facenet/issues/814
[]
zyt1378
3
tensorpack/tensorpack
tensorflow
1,209
lmdb.Error There is not enough space on the disk.
If you're asking about an unexpected problem which you do not know the root cause, use this template. __PLEASE DO NOT DELETE THIS TEMPLATE, FILL IT__: If you already know the root cause to your problem, feel free to delete everything in this template. ### 1. What you did: (1) **If you're using examples, what's the command you run:** (2) **If you're using examples, have you made any changes to the examples? Paste `git status; git diff` here:** (3) **If not using examples, tell us what you did:** It's always better to copy-paste what you did than to describe them. Please try to provide enough information to let other __reproduce__ your issues. Without reproducing the issue, we may not be able to investigate it. I'm trying to create an LMDB file by following the "Efficient DataFlow" tutorial in Tensorpack. I was given a dataset with a CSV file with columns in [frame, xmin, xmax, ymin, ymax, class_id] for training an object detection model. Initially, I was using a reduced version of the file with 300 entries (extracted from a large number of entries) for internal development and debugging. But when I tried to create an LMDB file with LMDBSerializer.save(), following the tensorpack turorial, I got an error saying "lmdb.Error: train_small.lmdb: There is not enough space on the disk". But I had more than a terabyte of storage left. So I reduced the CSV file entries to only have 10 entries (3 distinct images) but I had the same error. I will attach the code zip file here. [wow.zip](https://github.com/tensorpack/tensorpack/files/3214007/wow.zip) ### 2. What you observed: (1) **Include the ENTIRE logs here:** It's always better to copy-paste what you observed instead of describing them. It's always better to paste **as much as possible**, although sometimes a partial log is OK. Tensorpack typically saves stdout to its training log. If stderr is relevant, you can run a command with `my_command 2>&1 | tee logs.txt` to save both stdout and stderr to one file. Traceback (most recent call last): File "debug2.py", line 111, in <module> LMDBSerializer.save(df, 'train_small.lmdb') File "C:\Users\dps42\AppData\Local\Continuum\miniconda3\envs\dps42_dev\lib\site-packages\tensorpack\dataflow\serialize.py", line 52, in save meminit=False, map_async=True) # need sync() at the end lmdb.Error: train_small.lmdb: There is not enough space on the disk. (2) **Other observations, if any:** For example, CPU/GPU utilization, output images, tensorboard curves, if relevant to your issue. ### 3. What you expected, if not obvious. If you expect higher speed, please read http://tensorpack.readthedocs.io/tutorial/performance-tuning.html before posting. If you expect certain accuracy, only in one of the two conditions can we help with it: (1) You're unable to reproduce the accuracy documented in tensorpack examples. (2) It appears to be a tensorpack bug. Otherwise, how to train a model to certain accuracy is a machine learning question. We do not answer machine learning questions and it is your responsibility to figure out how to make your models more accurate. Since there were only 10 entries in the CSV file and only 3 distinct images, I shouldn't see the message that "There is not enough space on the disk." ### 4. Your environment: + Paste the output of this command: `python -c 'import tensorpack.tfutils as u; print(u.collect_env_info())'` If this command failed, tell us your version of Python/TF/tensorpack. + You can install Tensorpack master by `pip install -U git+https://github.com/ppwwyyxx/tensorpack.git` and see if your issue is already solved. + If you're not using tensorpack under a normal command line shell (e.g., using an IDE or jupyter notebook), please retry under a normal command line shell. + Include relevant hardware information, e.g. number of GPUs used for training, amount of RAM. Windows 10. I think no GPU was used at the moment. You may often want to provide extra information related to your issue, but at the minimum please try to provide the above information __accurately__ to save effort in the investigation.
closed
2019-05-23T20:25:21Z
2019-05-28T14:59:22Z
https://github.com/tensorpack/tensorpack/issues/1209
[ "enhancement" ]
dps42
6
zihangdai/xlnet
nlp
259
OOM ERROR when using local batch size=128 on TPUv3-8
Hi, I am trying to train XLNet on protein sequences. I am running into OOM error when running the script train.py using a TPUv3-8 with train_batch_size=128. (I also get OOM error with train batch size 64, 48, but not with 32, 16). In the paper it is mentioned: "Specifically, we train on 512 TPU v3 chips for 500K steps with an Adam weight decay optimizer, linear learning rate decay, and a batch size of 8192, which takes about 5.5 days." If I understand this correctly then the local batch size used is also 128= (8192/(512/8)) and I shouldn't get an OOM error. for context, am using TPUv3-8 (version 1.14.1.dev20190518) and a cloud instance vm both in us-central1-a and Tensorflow version 1.13.1 For the data preprocessing I am using the script data_utils and it runs with no problem. Here are the command am using for both preprocessing and training : python xlnet/data_utils.py \ --use_tpu=True \ --save_dir=proc_data_bsz128/example \ --bsz_per_host=128 \ --num_core_per_host=8 \ --seq_len=512 \ --reuse_len=256 \ --input_glob=testdata_xlnet.txt \ --num_passes=20 \ --bi_data=True \ --sp_path=sp.model \ --mask_alpha=6 \ --mask_beta=1 \ --uncased=False \ --num_predict=85 python xlnet/train.py \ --use_tpu=True \ --tpu=name \ --record_info_dir=$DATA_DIR \ --save_steps=1000 \ --model_dir=$MODEL_DIR \ --train_batch_size=128 \ --seq_len=512 \ --reuse_len=256 \ --mem_len=384 \ --perm_size=256 \ --n_layer=24 \ --d_model=1024 \ --d_embed=1024 \ --n_head=16 \ --d_head=64 \ --d_inner=4096 \ --untie_r=True \ --mask_alpha=6 \ --mask_beta=1 \ --num_predict=85 $DATA_DIR and $MODEL_DIR are google bucket directories. Is there something am missing here? Thanks for your help in advance.
open
2020-03-18T15:53:21Z
2021-03-02T08:11:25Z
https://github.com/zihangdai/xlnet/issues/259
[]
GhaliaRehawi
1
OpenInterpreter/open-interpreter
python
1,373
Is this service has ability to read directly PDF, or what is to be installed enabled, if any to read them?
### Is your feature request related to a problem? Please describe. _No response_ ### Describe the solution you'd like We need to have an ability to feed the endpoints with the pdf files ### Describe alternatives you've considered _No response_ ### Additional context _No response_
open
2024-07-31T11:02:24Z
2024-08-02T11:47:25Z
https://github.com/OpenInterpreter/open-interpreter/issues/1373
[]
lion137
4
apache/airflow
data-science
47,905
Fix mypy-boto3-appflow version
### Body We set TODO to handle the version limitation https://github.com/apache/airflow/blob/9811f1d6d0fe557ab204b20ad5cdf7423926bd22/providers/src/airflow/providers/amazon/provider.yaml#L146-L148 I open issue for viability as it's a small scope and good task for new contributors. ### Committer - [x] I acknowledge that I am a maintainer/committer of the Apache Airflow project.
closed
2025-03-18T11:28:58Z
2025-03-19T13:33:43Z
https://github.com/apache/airflow/issues/47905
[ "provider:amazon", "area:providers", "good first issue", "kind:task" ]
eladkal
2
autogluon/autogluon
data-science
4,271
Release on Conda Forge [1.1.1]
Release AutoGluon 1.1.1 on Conda Forge TODO: - [x] Release AutoGluon 1.1.1 on Conda Forge - [x] Add instructions on how to perform Conda Forge release: https://github.com/autogluon/autogluon/blob/master/release_instructions/ReleaseInstructions.md#conda-forge-release - [x] Add instructions on how to perform post-release Conda Forge patching: https://github.com/autogluon/autogluon/blob/master/release_instructions/ReleaseInstructions.md#conda-forge-release
closed
2024-06-14T22:11:35Z
2024-06-27T00:27:42Z
https://github.com/autogluon/autogluon/issues/4271
[ "install", "priority: 0" ]
Innixma
0
robotframework/robotframework
automation
5,273
What happened to robotdiff.py?
I noticed a tool from way back in v2.1.2: https://robotframework.org/robotframework/2.1.2/tools/robotdiff.html What happened to this tool? Do we have a modern equivalent?
closed
2024-11-21T00:05:57Z
2024-11-21T12:15:07Z
https://github.com/robotframework/robotframework/issues/5273
[]
nogjam
1
davidsandberg/facenet
computer-vision
932
Identification using a video stream
Hi, I want to create a system for face identification, but use few frames for both acquisition and test time, in order to reduce errors. 1. I couldn't find any work for comparing 2 populations instead of 2 points. Moreover, I would like to apply a threshold in order to add an 'Unknown' class. I would appreciate if you share any resources regarding those points. 2. Can I assume that the embeddings of the same person would be Normally distributed? If so, why? 3. Are there weights trained on grayscale images? or would it be good enough to duplicate the singe channel 3 times? Thanks, Lee
open
2018-12-17T14:12:55Z
2021-10-09T17:26:02Z
https://github.com/davidsandberg/facenet/issues/932
[]
leetwito
1
keras-team/keras
data-science
20,189
Keras different versions have numerical deviations when using pretrain model
The following code will have output deviations between Keras 3.3.3 and Keras 3.5.0. ```python #download model from modelscope import snapshot_download base_path = 'q935499957/Qwen2-0.5B-Keras' import os dir = 'models' try: os.mkdir(dir) except: pass model_dir = snapshot_download(base_path,local_dir=dir) #config import os os.environ["KERAS_BACKEND"] = "torch" import keras keras.config.set_dtype_policy("bfloat16") from transformers import AutoTokenizer import numpy as np from bert4keras3.models import build_transformer_model,Llama from bert4keras3.snippets import sequence_padding base_path = dir+'/' config_path = base_path+'config.json' weights_path = base_path+'QWen.weights.h5'#保存路径expand_lm.weights.h5 dict_path = base_path+'qwen_tokenizer' tokenizer = AutoTokenizer.from_pretrained(dict_path) #define a model to print middle tensor class Llama_print(Llama): def apply_main_cache_layers(self, inputs, index,self_cache_update_index, cross_cache_update_index=None, attention_mask=None,position_bias=None, ): print(inputs[0][:,:,:8]) print(index) print(inputs[0].shape) print('-'*50) return super().apply_main_cache_layers(inputs, index,self_cache_update_index, cross_cache_update_index, attention_mask,position_bias) Novel = build_transformer_model( config_path, keras_weights_path=weights_path, model=Llama_print, with_lm=True, return_keras_model=False, ) x = np.array([tokenizer.encode('hello,')+[0]]) print(Novel.cache_call([x],input_lengths=[3], end_token=-1,search_mode='topp',k=1)) ``` This is a llama-like pre-trained model. The code above will output the middle tensor during the prefill process and the decode process. With the exact same code, the input during the prefill process is completely different in the two different versions. In the decode phase, even when the input is the same, there will be significant differences in the outputs as the iterations proceed between the two versions. keras 3.3.3 print ``` #prefill tensor([[[ 0.0164, 0.0070, -0.0019, -0.0013, 0.0156, 0.0074, -0.0055, -0.0139], [-0.0325, -0.0471, 0.0239, -0.0009, 0.0129, 0.0027, 0.0299, 0.0160], [-0.0204, -0.0093, 0.0121, 0.0091, -0.0065, -0.0225, 0.0149, 0.0108]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 0 torch.Size([1, 3, 896]) -------------------------------------------------- tensor([[[-0.0459, -0.0967, -0.0270, 0.0452, 0.2500, -0.1387, 0.1094, -0.1436], [ 0.0031, -0.0479, 0.0107, -0.0291, -0.0869, 0.0549, 0.0579, 0.0618], [-0.1099, 0.0183, 0.1309, -0.1406, 0.0204, -0.0154, 0.2656, 0.0669]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 1 torch.Size([1, 3, 896]) -------------------------------------------------- tensor([[[-0.3398, -0.2988, 0.1143, -0.2109, 0.5625, 0.0869, -0.3281, -0.1465], [ 0.1895, -0.1562, -0.0292, -0.1348, 0.0283, 0.0452, 0.2734, 0.0396], [ 0.0127, -0.0498, 0.0388, -0.1484, 0.0791, 0.1118, 0.2578, 0.0879]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 2 torch.Size([1, 3, 896]) -------------------------------------------------- tensor([[[-9.2188e-01, 1.7109e+00, 3.3281e+00, -2.5000e+00, -2.0312e-01, -4.7070e-01, -7.1250e+00, 3.7891e-01], [ 6.5918e-02, -3.2031e-01, -2.0312e-01, 1.2207e-01, -1.2598e-01, 1.7090e-03, 9.2773e-02, -1.6699e-01], [-1.6846e-02, -1.9531e-01, -2.1875e-01, 1.4648e-02, 7.3242e-04, 6.0303e-02, 4.2773e-01, 2.3438e-02]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 3 torch.Size([1, 3, 896]) -------------------------------------------------- tensor([[[-1.1719, 1.4062, 3.2031, -1.6328, -0.8047, -1.0938, -7.9062, 1.2266], [ 0.3594, -0.1025, 0.0869, 0.3496, -0.0132, 0.0515, 0.2168, 0.1016], [ 0.0449, -0.2910, -0.2305, 0.0383, 0.1592, -0.1016, 0.6328, 0.0190]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 4 torch.Size([1, 3, 896]) -------------------------------------------------- tensor([[[-2.1562e+00, 2.0156e+00, 4.3125e+00, 9.5312e-01, 2.7344e-01, -1.8750e+00, -1.3875e+01, 2.4062e+00], [ 4.5703e-01, -2.6172e-01, -2.4414e-02, 3.6133e-01, 1.6016e-01, 1.1768e-01, 4.1992e-01, -4.5898e-02], [ 9.6680e-02, -4.1016e-01, -2.8906e-01, 7.9346e-03, -1.5430e-01, -1.5430e-01, 4.7266e-01, -2.6562e-01]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 5 torch.Size([1, 3, 896]) #decode -------------------------------------------------- tensor(1, device='cuda:0', dtype=torch.int32)tensor([[[-0.0325, -0.0471, 0.0239, -0.0009, 0.0129, 0.0027, 0.0299, 0.0160]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 0 torch.Size([1, 1, 896]) -------------------------------------------------- tensor([[[ 0.0031, -0.0481, 0.0107, -0.0291, -0.0869, 0.0549, 0.0579, 0.0618]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 1 torch.Size([1, 1, 896]) -------------------------------------------------- tensor([[[ 0.1895, -0.1572, -0.0299, -0.1367, 0.0283, 0.0452, 0.2754, 0.0405]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 2 torch.Size([1, 1, 896]) -------------------------------------------------- tensor([[[ 0.0654, -0.3203, -0.2041, 0.1221, -0.1260, 0.0039, 0.0933, -0.1660]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 3 torch.Size([1, 1, 896]) -------------------------------------------------- tensor([[[ 0.3574, -0.0986, 0.0898, 0.3516, -0.0137, 0.0518, 0.2158, 0.1064]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 4 torch.Size([1, 1, 896]) -------------------------------------------------- ``` keras 3.5.0 print ``` #prefill tensor([[[-0.0096, 0.0126, -0.0063, 0.0044, 0.0121, 0.0038, 0.0104, -0.0009], [-0.0325, -0.0471, 0.0239, -0.0009, 0.0129, 0.0027, 0.0299, 0.0160], [-0.0204, -0.0093, 0.0121, 0.0091, -0.0065, -0.0225, 0.0149, 0.0108]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 0 torch.Size([1, 3, 896]) -------------------------------------------------- tensor([[[-0.1807, 0.0674, -0.3926, -0.0278, 0.2520, -0.0840, -0.0669, -0.3047], [-0.0072, -0.0415, 0.0123, -0.0146, -0.1270, 0.0679, 0.0610, -0.0205], [-0.1279, 0.0349, 0.2539, -0.1611, -0.0225, 0.0275, 0.1338, 0.0386]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 1 torch.Size([1, 3, 896]) -------------------------------------------------- tensor([[[ 5.6250e-01, -2.3633e-01, -1.0781e+00, -1.2988e-01, 3.4180e-01, 3.7109e-01, -3.1250e-01, -1.9531e-01], [ 1.2598e-01, -1.2695e-02, -7.1289e-02, -1.3672e-01, 3.3203e-02, 1.4941e-01, 1.9922e-01, -2.1875e-01], [-9.5215e-02, -5.9570e-02, 2.0117e-01, -3.2031e-01, 3.6621e-04, 5.8350e-02, 1.6504e-01, -8.9355e-02]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 2 torch.Size([1, 3, 896]) -------------------------------------------------- tensor([[[ 0.4277, 0.6680, 2.3750, -2.8750, -0.5039, 0.0742, -6.5625, 0.4082], [ 0.2256, -0.3047, -0.0349, -0.0859, 0.1191, 0.2334, 0.3262, -0.0088], [-0.1025, -0.0918, 0.3105, -0.2227, -0.0162, 0.2715, 0.4746, 0.0371]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 3 torch.Size([1, 3, 896]) -------------------------------------------------- tensor([[[ 0.1719, 0.3652, 2.2812, -2.0156, -1.0938, -0.5547, -7.3438, 1.2500], [ 0.5938, -0.3047, -0.0126, -0.0981, 0.2676, 0.0479, 0.0771, 0.1455], [ 0.2051, -0.2188, 0.0391, -0.2949, 0.2539, 0.0566, 0.4355, 0.0227]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 4 torch.Size([1, 3, 896]) -------------------------------------------------- tensor([[[-8.0469e-01, 9.8438e-01, 3.4062e+00, 6.0938e-01, -7.8125e-03, -1.3438e+00, -1.3375e+01, 2.4219e+00], [ 6.3672e-01, -5.7422e-01, 2.8931e-02, -3.1250e-01, 3.2422e-01, -6.7871e-02, 4.0430e-01, -4.0039e-02], [ 3.5156e-01, -4.4531e-01, -1.8066e-02, -2.2070e-01, 1.1377e-01, 3.0884e-02, 4.5508e-01, 1.4160e-01]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) #decode -------------------------------------------------- tensor(1, device='cuda:0', dtype=torch.int32)tensor([[[-0.0325, -0.0471, 0.0239, -0.0009, 0.0129, 0.0027, 0.0299, 0.0160]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 0 torch.Size([1, 1, 896]) -------------------------------------------------- tensor([[[-0.0072, -0.0415, 0.0122, -0.0146, -0.1270, 0.0679, 0.0610, -0.0205]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 1 torch.Size([1, 1, 896]) -------------------------------------------------- tensor([[[ 0.1230, -0.0083, -0.0713, -0.1260, 0.0293, 0.1436, 0.2051, -0.2090]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 2 torch.Size([1, 1, 896]) -------------------------------------------------- tensor([[[ 0.2266, -0.3008, -0.0327, -0.0791, 0.1143, 0.2285, 0.3320, -0.0068]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 3 torch.Size([1, 1, 896]) -------------------------------------------------- tensor([[[ 0.5977, -0.2930, -0.0059, -0.0884, 0.2637, 0.0449, 0.0889, 0.1465]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 4 torch.Size([1, 1, 896]) -------------------------------------------------- tensor([[[ 0.6367, -0.5586, 0.0376, -0.3047, 0.3242, -0.0654, 0.4277, -0.0312]]], device='cuda:0', dtype=torch.bfloat16, grad_fn=<SliceBackward0>) 5 torch.Size([1, 1, 896]) -------------------------------------------------- ```
closed
2024-08-30T11:21:08Z
2024-08-31T07:38:23Z
https://github.com/keras-team/keras/issues/20189
[]
pass-lin
2
PedroBern/django-graphql-auth
graphql
161
Rewrote this Package for Django 4 and Graphene 3+
Hello, if you reading this you probably interested in using `django-graphql-auth` with the latest version of Django, graphene, graphene Django and `django-graphql-jwt` If so, I might be able to provide a replacement as I created a Django app highly inspired from this package that works with all the latest updates. If there are a lot of people insterested, I can create a public repository where it can be battle-tested and packaged 📦 for pypi. Let me know!
open
2023-01-06T15:37:00Z
2024-03-03T05:17:17Z
https://github.com/PedroBern/django-graphql-auth/issues/161
[]
itzomen
13
thunlp/OpenPrompt
nlp
304
How to solve the logits equality of LLaMA output
# This is my code. from datasets import load_dataset from transformers import set_seed from openprompt.data_utils import InputExample import os from tqdm import tqdm device = "cuda" classes = ["negative", "positive"] set_seed(1024) from accelerate import Accelerator accelerator = Accelerator() data_path = 'data' test_path = os.path.join(data_path, 'test.json') test_dataset = load_dataset('json', data_files=test_path)['train'] # 1 positive 0 negative y_true = test_dataset['label'] dataset = [] import copy data = [] copy_test_dataset = copy.deepcopy(test_dataset) for example in copy_test_dataset: temp_data = {"guid": example["label"], "text_a": example["sentence"]} data.append(temp_data) for item in data: dataset.append(InputExample(guid=item["guid"], text_a=item["text_a"])) from openprompt import plms from openprompt.plms import * from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer plms._MODEL_CLASSES["llama"]= ModelClass(**{"config": LlamaConfig, "tokenizer": LlamaTokenizer, "model": LlamaForCausalLM, "wrapper": LMTokenizerWrapper}) from openprompt.plms import load_plm plm, tokenizer, model_config, WrapperClass = load_plm("llama", "huggyllama/llama-7b") tokenizer.pad_token_id = 0 from openprompt.prompts import ManualTemplate promptTemplate = ManualTemplate( text=' {"placeholder":"text_a"} This sentence was {"mask"}', tokenizer=tokenizer, ) from openprompt.prompts import ManualVerbalizer promptVerbalizer = ManualVerbalizer(classes=classes, label_words={"negative": ["bad"], "positive": ["good", "wonderful", "great"], }, tokenizer=tokenizer, ) from openprompt import PromptForClassification promptModel = PromptForClassification(template=promptTemplate, plm=plm, verbalizer=promptVerbalizer, ) from openprompt import PromptDataLoader data_loader = PromptDataLoader(dataset=dataset, tokenizer=tokenizer, template=promptTemplate, tokenizer_wrapper_class=WrapperClass, batch_size=1) import torch promptModel.eval() print(promptModel) promptModel, data_loader = accelerator.prepare(promptModel, data_loader) promptModel.to(device) predictions = [] with torch.no_grad(): for batch in tqdm(data_loader, desc="Processing batches"): batch = {k: v.to(device) for k, v in batch.items()} print(batch) logits = promptModel(batch) print(logits) exit() preds = torch.argmax(logits, dim=-1) for i in preds: predictions.append(i.item()) from sklearn.metrics import accuracy_score accuracy = accuracy_score(y_true, predictions) print('Accuracy: %.2f' % (accuracy * 100)) # The output logits is : tensor([[-1.3863, -1.3863]])
open
2023-12-19T07:19:23Z
2024-03-21T09:29:19Z
https://github.com/thunlp/OpenPrompt/issues/304
[]
shuaizhao95
3
proplot-dev/proplot
matplotlib
469
why saving .svg too slow?
<!-- Thanks for helping us make proplot a better package! If this is a bug report, please use the template provided below. If this is a feature request, you can delete the template text (just try to be descriptive with your request). --> ### Description [Description of the bug or feature.] ### Steps to reproduce A "[Minimal, Complete and Verifiable Example](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports)" will make it much easier for maintainers to help you. ```python # your code here # we should be able to copy-paste this into python and exactly reproduce your bug ``` **Expected behavior**: [What you expected to happen] **Actual behavior**: [What actually happened] ### Equivalent steps in matplotlib Please try to make sure this bug is related to a proplot-specific feature. If you're not sure, try to replicate it with the [native matplotlib API](https://matplotlib.org/3.1.1/api/index.html). Matplotlib bugs belong on the [matplotlib github page](https://github.com/matplotlib/matplotlib). ```python # your code here, if applicable import matplotlib.pyplot as plt ``` ### Proplot version Paste the results of `import matplotlib; print(matplotlib.__version__); import proplot; print(proplot.version)` here.
closed
2024-11-13T11:53:47Z
2024-11-14T01:44:51Z
https://github.com/proplot-dev/proplot/issues/469
[]
KingRyu1998
2
hanwenlu2016/web-ui
pytest
5
django+rest_framework+react 请问这部分有时间开源么?
closed
2021-06-25T01:42:01Z
2021-08-18T02:29:32Z
https://github.com/hanwenlu2016/web-ui/issues/5
[]
god-pane
5
freqtrade/freqtrade
python
11,249
Address:Port conflict
I have managed to install Docker Desktop for Windows and the Freqtrade image. I started Freqtrade in the container and see bot heartbeats update each minute. I can also start from the terminal and see the same. I can't access the UI at localhost:8080 because I already have another app using 127.0.0.1:8080. If I shutdown that app, I can get the FreqtradeUI up. I can't find where to change the address and/or port so that the two apps don't conflict. I looked through the documentation and searched online to no avail. I know this is simple, but I just don't understand this stuff. (in over my head). I'm running Windows 10 Pro with Python 3.13 Someone please give me the simple answer. Thank you
closed
2025-01-17T22:41:46Z
2025-01-21T13:03:27Z
https://github.com/freqtrade/freqtrade/issues/11249
[ "Question", "Docker" ]
TheFirstVillageIdiot
7
plotly/dash
plotly
2,716
dcc.Input selectionStart not functioning as expected
**Describe the bug** dcc.Input properties selectionStart and selectionEnd not updating and returning None or initial set value **Expected behavior** Expect that the values of selectionStart (or selectionEnd) will return the offset into the element's text content of the first (or last) selected character. **Screenshots** This is reported in the following community posts: https://community.plotly.com/t/explaining-selectionstart-in-dash-input-component/39023 https://community.plotly.com/t/selectionstart-and-selectionend-doesnt-seem-to-work-for-input-not-available-for-textarea/54746 https://community.plotly.com/t/selection-in-dash-component-not-working/36707 <img width="712" alt="Screen Shot 2023-12-20 at 3 33 41 PM" src="https://github.com/plotly/dash/assets/44043492/1fdb685f-a967-4b68-9d9e-b375a4564ffb">
open
2023-12-20T20:37:21Z
2024-08-13T19:44:12Z
https://github.com/plotly/dash/issues/2716
[ "bug", "sev-2", "P3" ]
e-wallace
0