repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
dask/dask
numpy
11,226
Negative lookahead suddenly incorrectly parsed
In Dask 2024.2.1 we suddenly have an issue with a regex with a negative lookahead. It somehow is invalid now. ```python import dask.dataframe as dd regex = 'negativelookahead(?!/check)' ddf = dd.from_dict( { "test": ["negativelookahead", "negativelookahead/check/negativelookahead", ], }, npartitions=1) ddf["test"].str.contains(regex).head() ``` This results in the following error: ```python --------------------------------------------------------------------------- ArrowInvalid Traceback (most recent call last) Cell In[2], line 8 2 regex = 'negativelookahead(?!/check)' 3 ddf = dd.from_dict( 4 { 5 "test": ["negativelookahead", "negativelookahead/check/negativelookahead", ], 6 }, 7 npartitions=1) ----> 8 ddf["test"].str.contains(regex).head() File /opt/conda/lib/python3.10/site-packages/dask_expr/_collection.py:702, in FrameBase.head(self, n, npartitions, compute) 700 out = new_collection(expr.Head(self, n=n, npartitions=npartitions)) 701 if compute: --> 702 out = out.compute() 703 return out File /opt/conda/lib/python3.10/site-packages/dask_expr/_collection.py:476, in FrameBase.compute(self, fuse, **kwargs) 474 out = out.repartition(npartitions=1) 475 out = out.optimize(fuse=fuse) --> 476 return DaskMethodsMixin.compute(out, **kwargs) File /opt/conda/lib/python3.10/site-packages/dask/base.py:375, in DaskMethodsMixin.compute(self, **kwargs) 351 def compute(self, **kwargs): 352 """Compute this dask collection 353 354 This turns a lazy Dask collection into its in-memory equivalent. (...) 373 dask.compute 374 """ --> 375 (result,) = compute(self, traverse=False, **kwargs) 376 return result File /opt/conda/lib/python3.10/site-packages/dask/base.py:661, in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs) 658 postcomputes.append(x.__dask_postcompute__()) 660 with shorten_traceback(): --> 661 results = schedule(dsk, keys, **kwargs) 663 return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)]) File /opt/conda/lib/python3.10/site-packages/dask_expr/_expr.py:3727, in Fused._execute_task(graph, name, *deps) 3725 for i, dep in enumerate(deps): 3726 graph["_" + str(i)] = dep -> 3727 return dask.core.get(graph, name) File /opt/conda/lib/python3.10/site-packages/dask_expr/_accessor.py:102, in FunctionMap.operation(obj, accessor, attr, args, kwargs) 100 @staticmethod 101 def operation(obj, accessor, attr, args, kwargs): --> 102 out = getattr(getattr(obj, accessor, obj), attr)(*args, **kwargs) 103 return maybe_wrap_pandas(obj, out) File /opt/conda/lib/python3.10/site-packages/pyarrow/compute.py:263, in _make_generic_wrapper.<locals>.wrapper(memory_pool, options, *args, **kwargs) 261 if args and isinstance(args[0], Expression): 262 return Expression._call(func_name, list(args), options) --> 263 return func.call(args, options, memory_pool) File /opt/conda/lib/python3.10/site-packages/pyarrow/_compute.pyx:385, in pyarrow._compute.Function.call() File /opt/conda/lib/python3.10/site-packages/pyarrow/error.pxi:154, in pyarrow.lib.pyarrow_internal_check_status() File /opt/conda/lib/python3.10/site-packages/pyarrow/error.pxi:91, in pyarrow.lib.check_status() ArrowInvalid: Invalid regular expression: invalid perl operator: (?! ``` **Environment**: - Dask version: 2024.2.1 - Python version: 3.10 - Operating System: Linux - Install method (conda, pip, source): pip
closed
2024-07-15T07:23:02Z
2024-07-17T12:59:24Z
https://github.com/dask/dask/issues/11226
[ "needs triage" ]
manschoe
3
iperov/DeepFaceLab
deep-learning
5,230
DFL training on RTX 3090 produces error "illegal instruction, core dumped" Linux but also some Windows installations
## Expected behavior Training SAEHD or XSeg on DFL with RTX 3090, tensorflow 2.4.0 ## Actual behavior Python throws Error code of "illegal instruction, core dumped" on last line of DFL script which says "train" This is despite Tensorflow 2.4.0 correctly recognising the RTX 3090, and despite cuda 11.0 or 11.1 and compatible nvidia drivers (455.28) all working correctly. ## Steps to reproduce Install DFL on Windows or Linux as per Nagadit repository but use python 3.8 instead, and cudnn 8.0.5 and cudatoolkit 11.0 from Conda or 11.1 from Nvidia direct. Tensorflow 2.4.0 Also same error on my friends Windows 10 installation of DFL for RTX 3090. **Solution:** This will only apply to some people out there with older CPUs, but here is what I eventually found: This is a Tensorflow 2.4.0 problem. Even if RTX 3090 works with TF 2.4.0, older CPUs do not in Linux and on some Windows builds it seems. TF requires AVX or AVX2 support. TF 2.3 supports AVX and AVX2. The tensorflow guys forgot to include AVX support in 2.4.0, despite it being compatible! Newer CPUs with AVX2 support will be ok. I therefore compiled my own tensorflow for my machine, and this produced TF 2.5.0 which had AVX support. I can now fully train DFL using RTX 3090! I don't have the Windows guide to compiling TF, but for linux TF you can use: https://www.tensorflow.org/install/source I compiled with cudnn 8.0.5 dev files (filename libcudnn8-dev_8.0.5.39-1+cuda11.1) and cudatoolkit 11.1 installed. This produced tensorflow 2.5.0 and this works great with RTX3090 and current DFL build. Don't think this problem is common (less so on Windows machines) but hopefully of some use to someone out there
closed
2021-01-02T23:51:20Z
2021-01-28T00:19:00Z
https://github.com/iperov/DeepFaceLab/issues/5230
[]
Joe-121
2
deepset-ai/haystack
nlp
8,177
🧪 Tools: support for tools in 4 Chat Generators
```[tasklist] ### Tasks - [ ] https://github.com/deepset-ai/haystack/issues/8178 - [ ] https://github.com/deepset-ai/haystack/issues/8190 - [ ] https://github.com/deepset-ai/haystack/issues/8261 - [ ] https://github.com/deepset-ai/haystack-experimental/pull/120 ```
closed
2024-08-08T15:14:47Z
2024-10-30T11:25:42Z
https://github.com/deepset-ai/haystack/issues/8177
[ "P1" ]
anakin87
1
betodealmeida/shillelagh
sqlalchemy
36
Implement different modes for GSheets DML
See https://github.com/betodealmeida/shillelagh/pull/35
closed
2021-06-27T02:40:01Z
2021-06-30T21:50:48Z
https://github.com/betodealmeida/shillelagh/issues/36
[]
betodealmeida
1
rthalley/dnspython
asyncio
1,174
custom verify path for dns.query.quic() and dns.query.https() (h3) only works for files, not dirs
**Describe the bug** Providing a custom verify path for `dns.query.quic()` and `dns.query.https()` (h3 only) lookups only works when the path is a file because this call to `aioquic.quic.configuration.QuicConfiguration.load_verify_locations()`: https://github.com/rthalley/dnspython/blob/19a5f048ec2fdd60ca6e5cd8b68d5b70ad8e0556/dns/quic/_common.py#L248 uses positional args and always hits the first arg which is `cafile`: https://github.com/aiortc/aioquic/blob/9bc1e43d13be3f06339841aca7c8560825053371/src/aioquic/quic/configuration.py#L153 I think the right fix would be to use `pathlib` to determine if the arg is a dir or file and provide the `cafile` or `capath` keyword arg to `aioquic.quic.configuration.QuicConfiguration.load_verify_locations()` as appropriate. In my own code I also support passing it as `cadata` (the third option) if `pathlib` says it is neither a file or a dir. I would be happy to provide a PR if you agree the above would be the right fix. Let me know :) **To Reproduce** In this example `/etc/ssl/certs/` is a normal linux ca dir with `c_rehash` style symlinks and also one big file with all the certs at `/etc/ssl/certs/ca-certificates.crt`. The first example shows the issue, the second shows it working with a file, the third shows the dir working with `dns.query.tls()` just for reference ``` (venv) user@privat-dev:~/devel/dns_exporter/src$ python Python 3.10.13 (main, Nov 15 2023, 13:09:29) [GCC 10.2.1 20210110] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import dns.message, dns.name, dns.query >>> dns.query.quic(q, "91.239.100.100", port=853, server_hostname="anycast.censurfridns.dk", verify="/etc/ssl/certs/") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/user/devel/dnspython/dns/query.py", line 1424, in quic with the_connection.make_stream(timeout) as stream: # pyright: ignore File "/home/user/devel/dnspython/dns/quic/_sync.py", line 236, in make_stream raise UnexpectedEOF dns.quic._common.UnexpectedEOF >>> dns.query.quic(q, "91.239.100.100", port=853, server_hostname="anycast.censurfridns.dk", verify="/etc/ssl/certs/ca-certificates.crt") <DNS message, ID 0> >>> dns.query.tls(q, "91.239.100.100", server_hostname="anycast.censurfridns.dk", verify="/etc/ssl/certs/") <DNS message, ID 0> >>> ``` **Context (please complete the following information):** - dnspython 2.7.0 - Python 3.10.13 - OS: qubes (debian)
closed
2025-01-12T21:24:51Z
2025-01-29T19:37:10Z
https://github.com/rthalley/dnspython/issues/1174
[ "Bug", "Fixed" ]
tykling
2
deepinsight/insightface
pytorch
1,960
blank
closed
2022-04-04T08:29:03Z
2022-04-04T13:56:50Z
https://github.com/deepinsight/insightface/issues/1960
[]
huynhtruc0309
0
pytorch/pytorch
machine-learning
149,389
[Docs] `torch.Library`'s `kind` is inconsistent with the code
### 🐛 Describe the bug The doc says that `kind` defaults to `IMPL` but it actually does not. <img width="821" alt="Image" src="https://github.com/user-attachments/assets/2eb7b65a-d642-4a13-b111-edc43080b3a0" /> Calling `torch.library.Library("fsdp")` will get this: ``` TypeError: Library.__init__() missing 1 required positional argument: 'kind' ``` ### Versions main cc @anjali411 @chauhang @penguinwu @zou3519 @bdhirsh
closed
2025-03-18T08:40:02Z
2025-03-21T04:42:13Z
https://github.com/pytorch/pytorch/issues/149389
[ "triaged", "actionable", "module: library" ]
shink
0
Guovin/iptv-api
api
660
最近几天工作流运行到排序阶段,每次都是到90%400个左右地址时就卡死了
### Don't skip these steps - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field - [X] I have checked through the search that there are no similar issues that already exist - [X] I will not submit any issues that are not related to this project ### Occurrence environment - [X] Workflow - [ ] GUI - [ ] Docker - [ ] Command line ### Question description ![1733990831516](https://github.com/user-attachments/assets/fef65a2a-0ca6-450e-a351-89a3f4386816) ### Related log ```shell 2024-12-11T22:49:36.9375379Z Sorting: 88%|████████▊ | 398/452 [08:28<00:22, 2.43it/s] 2024-12-11T22:49:39.4137289Z Sorting: 88%|████████▊ | 399/452 [08:30<00:35, 1.49it/s] 2024-12-11T22:49:40.4403014Z Sorting: 88%|████████▊ | 400/452 [08:32<00:51, 1.01it/s] 2024-12-11T22:49:42.2786633Z Sorting: 89%|████████▊ | 401/452 [08:33<00:51, 1.00s/it] 2024-12-11T22:49:43.4948484Z Sorting: 89%|████████▉ | 402/452 [08:35<00:59, 1.19s/it] 2024-12-11T22:49:43.6563080Z Sorting: 89%|████████▉ | 404/452 [08:37<00:46, 1.04it/s] 2024-12-11T22:49:45.9195749Z Sorting: 90%|████████▉ | 406/452 [08:37<00:29, 1.55it/s] 2024-12-11T22:49:47.9230660Z Sorting: 90%|█████████ | 409/452 [08:39<00:29, 1.44it/s] 2024-12-11T22:49:48.1289660Z Sorting: 91%|█████████ | 410/452 [08:41<00:38, 1.09it/s] 2024-12-11T22:49:50.1347287Z Sorting: 91%|█████████ | 411/452 [08:41<00:31, 1.29it/s] 2024-12-11T22:49:50.5647559Z Sorting: 92%|█████████▏| 414/452 [08:43<00:27, 1.37it/s] 2024-12-11T22:49:52.5679480Z Sorting: 92%|█████████▏| 415/452 [08:44<00:24, 1.48it/s] 2024-12-11T22:49:53.8792987Z Sorting: 92%|█████████▏| 416/452 [08:46<00:34, 1.06it/s] 2024-12-11T22:49:54.1267363Z Sorting: 92%|█████████▏| 417/452 [08:47<00:35, 1.03s/it] 2024-12-11T22:49:55.1093107Z Sorting: 92%|█████████▏| 418/452 [08:47<00:28, 1.19it/s] 2024-12-11T22:49:57.1147241Z Sorting: 93%|█████████▎| 419/452 [08:48<00:28, 1.14it/s] 2024-12-11T22:49:59.6656754Z Sorting: 94%|█████████▍| 424/452 [08:50<00:15, 1.76it/s] 2024-12-11T22:50:01.9091305Z Sorting: 94%|█████████▍| 425/452 [08:53<00:23, 1.14it/s] 2024-12-11T22:50:03.3305628Z Sorting: 94%|█████████▍| 427/452 [08:55<00:23, 1.05it/s] 2024-12-11T22:50:06.2629138Z Sorting: 95%|█████████▍| 428/452 [08:56<00:24, 1.04s/it] 2024-12-12T00:40:02.5542511Z ##[error]The operation was canceled. 2024-12-12T00:40:02.5624821Z Post job cleanup. 2024-12-12T00:40:02.6329510Z [command]/usr/bin/git version 2024-12-12T00:40:02.6365704Z git version 2.47.1 2024-12-12T00:40:02.6412663Z Temporarily overriding HOME='/home/runner/work/_temp/869a1f78-211b-41bc-acae-71e77d7ab470' before making global git config changes 2024-12-12T00:40:02.6413589Z Adding repository directory to the temporary git global config as a safe directory 2024-12-12T00:40:02.6416682Z [command]/usr/bin/git config --global --add safe.directory /home/runner/work/zg/zg 2024-12-12T00:40:02.6447380Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2024-12-12T00:40:02.6475288Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || :" 2024-12-12T00:40:02.6693801Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2024-12-12T00:40:02.6713414Z http.https://github.com/.extraheader 2024-12-12T00:40:02.6724364Z [command]/usr/bin/git config --local --unset-all http.https://github.com/.extraheader 2024-12-12T00:40:02.6752185Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || :" 2024-12-12T00:40:02.7073806Z Cleaning up orphan processes 2024-12-12T00:40:02.7270384Z Terminate orphan process: pid (2152) (python) ```
closed
2024-12-12T08:07:40Z
2024-12-12T08:31:06Z
https://github.com/Guovin/iptv-api/issues/660
[ "duplicate", "question" ]
zg4321
3
iterative/dvc
data-science
10,306
pull: "Fetching" step takes forever
# pull: "Fetching" takes forever ## Description Since the update to the version 3.45, ``dvc pull`` started to spend a massive amount of time for "Fetching". Can't tell precisely what is the reason, but at least the computation of the md5 of a large file is done repetitively within different ``dvc pull`` executions, even though it is stated that the computation is done only once. ### Reproduce 1. dvc pull ### Expected The "Fetching" should last very short, which is the situation that I have from another device where DVC 3.38.1 is being used. ### Environment information Problematic environment: - OS: macOS Sonoma 14.3 - DVC: 3.45.0 (brew) - Remote storage: S3 bucket Properly working environment: - OS: Ubuntu 22.04.3 LTS - DVC: 3.38.1 (pip) - Remote storage: S3 bucket (the same of before) **Output of `dvc doctor`:** ```console $ dvc doctor DVC version: 3.45.0 (brew) -------------------------- Platform: Python 3.12.2 on macOS-14.3-arm64-arm-64bit Subprojects: dvc_data = 3.13.0 dvc_objects = 5.0.0 dvc_render = 1.0.1 dvc_task = 0.3.0 scmrepo = 3.1.0 Supports: azure (adlfs = 2024.2.0, knack = 0.11.0, azure-identity = 1.15.0), gdrive (pydrive2 = 1.19.0), gs (gcsfs = 2024.2.0), http (aiohttp = 3.9.3, aiohttp-retry = 2.8.3), https (aiohttp = 3.9.3, aiohttp-retry = 2.8.3), oss (ossfs = 2023.12.0), s3 (s3fs = 2024.2.0, boto3 = 1.34.34), ssh (sshfs = 2023.10.0), webdav (webdav4 = 0.9.8), webdavs (webdav4 = 0.9.8), webhdfs (fsspec = 2024.2.0) Config: Global: /Users/zhf231298/Library/Application Support/dvc System: /opt/homebrew/share/dvc ```
closed
2024-02-16T16:01:25Z
2024-04-26T15:36:46Z
https://github.com/iterative/dvc/issues/10306
[ "bug", "performance", "regression" ]
zhf231298
5
ray-project/ray
data-science
51,483
CI test windows://python/ray/tests:test_ray_init_2 is consistently_failing
CI test **windows://python/ray/tests:test_ray_init_2** is consistently_failing. Recent failures: - https://buildkite.com/ray-project/postmerge/builds/8965#0195aad4-a541-45a9-b1ef-d27f9a1da383 - https://buildkite.com/ray-project/postmerge/builds/8965#0195aa03-5c4f-4168-a0da-6cbdc8cbd2df DataCaseName-windows://python/ray/tests:test_ray_init_2-END Managed by OSS Test Policy
closed
2025-03-18T23:07:30Z
2025-03-19T21:54:11Z
https://github.com/ray-project/ray/issues/51483
[ "bug", "triage", "core", "flaky-tracker", "ray-test-bot", "ci-test", "weekly-release-blocker", "stability" ]
can-anyscale
2
pytorch/pytorch
numpy
149,037
(Will PR if ok) Support generator returning values
### 🐛 Describe the bug Hi thanks for the library! It would be great if generators returning values could be supported. I will make a PR if this feature looks OK. For example: ```python import torch def exhaust_generator(g): ans = [] while True: try: ans.append(next(g)) except StopIteration as e: ans.append(e.value) break return ans def outer(): x = torch.tensor([1000]) output_from_inner = yield from inner(x) yield output_from_inner yield x + 10 yield x + 20 return x + 30 # DOES NOT WORK def inner(x): yield x + 1 yield x + 2 return x + 3 # DOES NOT WORK print(exhaust_generator(outer())) print(torch.compile(lambda: exhaust_generator(outer()))()) ``` It prints the following (note the two `None`s): ``` [tensor([1001]), tensor([1002]), tensor([1003]), tensor([1010]), tensor([1020]), tensor([1030])] [tensor([1001]), tensor([1002]), None, tensor([1010]), tensor([1020]), None] ``` In other words, the `return` in generator functions are silently removed. ### Error logs (see above) ### Versions Latest master c c @guilhermeleobas who made the generator support :) (below is not done by me but done by GitHub auto template; it seems the bot wants to change my cc above... so try "c c") cc @chauhang @penguinwu
open
2025-03-12T12:17:33Z
2025-03-13T06:30:28Z
https://github.com/pytorch/pytorch/issues/149037
[ "triaged", "oncall: pt2" ]
fzyzcjy
6
JaidedAI/EasyOCR
machine-learning
543
Missing chars from latin model
Hi! There are missing characters in the latin model, as I cannot see the `ő` and `Ő` characters, that are otherwise available in hungarian. Can you add them and update your latin model? OFF: The hungarian language file is incorrect, so I will provide a language update in a pull request later.
closed
2021-09-21T07:21:22Z
2022-05-31T12:03:41Z
https://github.com/JaidedAI/EasyOCR/issues/543
[]
timurlenk07
3
nvbn/thefuck
python
1,392
Last history contained "\", and get fatal error
<!-- If you have any issue with The Fuck, sorry about that, but we will do what we can to fix that. Actually, maybe we already have, so first thing to do is to update The Fuck and see if the bug is still there. --> <!-- If it is (sorry again), check if the problem has not already been reported and if not, just open an issue on [GitHub](https://github.com/nvbn/thefuck) with the following basic information: --> The output of `thefuck --version` (something like `The Fuck 3.1 using Python 3.5.0 and Bash 4.4.12(1)-release`): The Fuck 3.32 using Python 3.11.3 and ZSH 5.9 Your system (Debian 7, ArchLinux, Windows, etc.): ArchLinux How to reproduce the bug: bug on command ``` any command in Linux with \ ``` for example ``` git commut -a -m "commit message" \ <-- last on position ``` next the fuck: fuck ``` Traceback (most recent call last): File "/usr/bin/thefuck", line 8, in <module> sys.exit(main()) ^^^^^^ File "/usr/lib/python3.11/site-packages/thefuck/entrypoints/main.py", line 31, in main fix_command(known_args) File "/usr/lib/python3.11/site-packages/thefuck/entrypoints/fix_command.py", line 37, in fix_command command = types.Command.from_raw_script(raw_command) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/thefuck/types.py", line 82, in from_raw_script output = get_output(script, expanded) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/thefuck/output_readers/__init__.py", line 20, in get_output return rerun.get_output(script, expanded) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/thefuck/output_readers/rerun.py", line 66, in get_output if _wait_output(result, is_slow): ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/thefuck/output_readers/rerun.py", line 36, in _wait_output proc.wait(settings.wait_slow_command if is_slow File "/usr/lib/python3.11/site-packages/psutil/__init__.py", line 1270, in wait self._exitcode = self._proc.wait(timeout) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/psutil/_pslinux.py", line 1653, in wrapper return fun(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/psutil/_pslinux.py", line 1859, in wait return _psposix.wait_pid(self.pid, timeout, self._name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/psutil/_psposix.py", line 137, in wait_pid interval = sleep(interval) ^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/site-packages/psutil/_psposix.py", line 115, in sleep _sleep(interval) KeyboardInterrupt ```
closed
2023-07-27T13:00:47Z
2023-10-02T13:42:07Z
https://github.com/nvbn/thefuck/issues/1392
[]
badcast
2
allenai/allennlp
nlp
5,123
Make sure that metrics in allennlp-models work in the distributed setting
closed
2021-04-14T18:35:28Z
2021-04-19T07:04:24Z
https://github.com/allenai/allennlp/issues/5123
[]
AkshitaB
1
OthersideAI/self-operating-computer
automation
174
[FEATURE] Learning Process
If there is some learning process before the actual task it would be working accurately rather than navigating to unnecessary places or clicking on to wrong options. Like AppAgent which is built for smartphone has a human intervention with learning feature which lets the user to navigate and show how the task is done then it acts upon that learning. This would make this more faster for repetitive tasks and hence improve the flow reducing time and errors while completing tasks Thank You :)
open
2024-03-02T19:15:38Z
2024-03-06T07:57:56Z
https://github.com/OthersideAI/self-operating-computer/issues/174
[ "enhancement" ]
MirzaAreebBaig
1
drivendataorg/cookiecutter-data-science
data-science
278
adding Citation files (CFF) to cookiecutter-data-science template
With the upcoming release of v2, I think this would be a nice addition. With the addition of this CFF file Github enables academics and researchers to let people know how to correctly cite their work, especially in academic publications/materials. Originally proposed by the [research software engineering community](https://www.software.ac.uk/blog/2017-12-12-standard-format-citation-files), [CITATION.cff](https://citation-file-format.github.io/) files are plain text files with human- and machine-readable citation information. When we detect a CITATION.cff file in a repository, we use this information to create convenient [APA](https://apastyle.apa.org/) or [BibTeX](https://en.wikipedia.org/wiki/BibTeX) style citation links that can be referenced by others. This can be done easily with just a lines, as seen in my [branch here](https://github.com/kjgarza/cookiecutter-data-science/tree/citation-cff) (and its corresponding https://github.com/drivendata/cookiecutter-data-science/pull/274)
closed
2022-08-21T07:04:12Z
2024-06-01T22:48:53Z
https://github.com/drivendataorg/cookiecutter-data-science/issues/278
[]
kjgarza
0
iperov/DeepFaceLab
machine-learning
5,228
"data_src faceset extract" Failing
Choose one or several GPU idxs (separated by comma). [CPU] : CPU [0] : GeForce GTX 960M [0] Which GPU indexes to choose? : 0 [wf] Face type ( f/wf/head ?:help ) : wf [0] Max number of faces from image ( ?:help ) : 0 [512] Image size ( 256-2048 ?:help ) : 512 [90] Jpeg quality ( 1-100 ?:help ) : 90 [n] Write debug images to aligned_debug? ( y/n ) : n Extracting faces... Caching GPU kernels... Error while subprocess initialization: Traceback (most recent call last): File "E:\DeepFaceLab_NVIDIA - Copy\_internal\DeepFaceLab\core\joblib\SubprocessorBase.py", line 62, in _subprocess_run self.on_initialize(client_dict) File "E:\DeepFaceLab_NVIDIA - Copy\_internal\DeepFaceLab\mainscripts\Extractor.py", line 68, in on_initialize nn.initialize (device_config) File "E:\DeepFaceLab_NVIDIA - Copy\_internal\DeepFaceLab\core\leras\nn.py", line 113, in initialize nn.tf_sess = tf.Session(config=nn.tf_sess_config) File "E:\DeepFaceLab_NVIDIA - Copy\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 1596, in __init__ super(Session, self).__init__(target, graph, config=config) File "E:\DeepFaceLab_NVIDIA - Copy\_internal\python-3.6.8\lib\site-packages\tensorflow\python\client\session.py", line 711, in __init__ self._session = tf_session.TF_NewSessionRef(self._graph._c_graph, opts) tensorflow.python.framework.errors_impl.InternalError: cudaGetDevice() failed. Status: initialization error Traceback (most recent call last): File "E:\DeepFaceLab_NVIDIA - Copy\_internal\DeepFaceLab\main.py", line 324, in <module> arguments.func(arguments) File "E:\DeepFaceLab_NVIDIA - Copy\_internal\DeepFaceLab\main.py", line 45, in process_extract force_gpu_idxs = [ int(x) for x in arguments.force_gpu_idxs.split(',') ] if arguments.force_gpu_idxs is not None else None, File "E:\DeepFaceLab_NVIDIA - Copy\_internal\DeepFaceLab\mainscripts\Extractor.py", line 853, in main device_config=device_config).run() File "E:\DeepFaceLab_NVIDIA - Copy\_internal\DeepFaceLab\core\joblib\SubprocessorBase.py", line 210, in run raise Exception ( "Unable to start subprocesses." ) Exception: Unable to start subprocesses. Press any key to continue . . .
open
2021-01-02T11:18:19Z
2023-06-08T21:53:08Z
https://github.com/iperov/DeepFaceLab/issues/5228
[]
adam-eme
2
ultralytics/yolov5
pytorch
12,850
Inaccurate bounding boxes when detecting large images
### Search before asking - [x] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question I‘m trying to detect a circle with a diameter of 40 in an image with a resolution of 3500*13000 100M and I get a bounding box that is far from the circle. What can I do to make the center of the detection boxes close to the center of the circle? ![result](https://github.com/ultralytics/yolov5/assets/145435525/9db30d88-dcf5-4113-bc57-ba736f711116) ### Additional The training set has 2000 images, and the bounding boxes exactly frame the circular hole when making the training set. _No response_
closed
2024-03-25T12:48:34Z
2024-10-20T19:42:15Z
https://github.com/ultralytics/yolov5/issues/12850
[ "question", "Stale" ]
kyoryuuu
5
jupyter/nbgrader
jupyter
1,305
Error with late submission plugin class
<!-- Thanks for helping to improve nbgrader! If you are submitting a bug report or looking for support, please use the below template so we can efficiently solve the problem. If you are requesting a new feature, feel free to remove irrelevant pieces of the issue template. --> ### Operating system Ubuntu 16.04.6 LTS ### `nbgrader --version` 0.6.1 ### `jupyterhub --version` (if used with JupyterHub) 1.1.0 ### `jupyter notebook --version` 6.0.3 ### Expected behavior Autograding with custom late submission penalty class applies the specified penalty ### Actual behavior `nbgrader autograde <assignment name>` fails with error message "TypeError: late_submission_penalty() takes 3 positional arguments but 4 were given" ### Steps to reproduce the behavior Steps are copied from the [example in the docs](https://nbgrader.readthedocs.io/en/stable/plugins/late-plugin.html): - placed file `late.py` into course directory: ```python from nbgrader.plugins import BasePlugin class SubMarks(BasePlugin): def late_submission_penalty(student_id, score, total_seconds_late): """Penalty of 1 mark per hour late""" hours_late = total_seconds_late / 3600 return round(hours_late, 0) ``` - Added `c.AssignLatePenalties.plugin_class = 'late.SubMarks'` to `nbgrader_config.py` in the course directory. - Autograded a submitted assignment named "PHY332-test1": `nbgrader autograde PHY332-test1` - This command failed with the error message ``` [AutogradeApp | INFO] Copying /home/axel/PHY332/submitted/student1/PHY332-test1/timestamp.txt -> /home/axel/PHY332/autograded/student1/PHY332-test1/timestamp.txt [AutogradeApp | INFO] Creating/updating student with ID 'student1': {} [AutogradeApp | INFO] SubmittedAssignment<PHY332-test1 for student1> submitted at 2020-01-22 21:25:35.209420 [AutogradeApp | WARNING] SubmittedAssignment<PHY332-test1 for student1> is 177935.20942 seconds late [AutogradeApp | INFO] Overwriting files with master versions from the source directory [AutogradeApp | INFO] Sanitizing /home/axel/PHY332/submitted/student1/PHY332-test1/cube_escape.ipynb [AutogradeApp | INFO] Converting notebook /home/axel/PHY332/submitted/student1/PHY332-test1/cube_escape.ipynb [AutogradeApp | INFO] Writing 7939 bytes to /home/axel/PHY332/autograded/student1/PHY332-test1/cube_escape.ipynb [AutogradeApp | INFO] Autograding /home/axel/PHY332/autograded/student1/PHY332-test1/cube_escape.ipynb [AutogradeApp | INFO] Converting notebook /home/axel/PHY332/autograded/student1/PHY332-test1/cube_escape.ipynb [AutogradeApp | INFO] Executing notebook with kernel: python3 [AutogradeApp | WARNING] SubmittedAssignment<PHY332-test1 for student1> is 177935.20942 seconds late [AutogradeApp | ERROR] There was an error processing assignment: /home/axel/PHY332/submitted/student1/PHY332-test1 [AutogradeApp | ERROR] Traceback (most recent call last): File "/usr/local/lib/python3.5/dist-packages/nbgrader/converters/base.py", line 336, in convert_notebooks self.convert_single_notebook(notebook_filename) File "/usr/local/lib/python3.5/dist-packages/nbgrader/converters/autograde.py", line 195, in convert_single_notebook super(Autograde, self).convert_single_notebook(notebook_filename) File "/usr/local/lib/python3.5/dist-packages/nbgrader/converters/base.py", line 292, in convert_single_notebook output, resources = self.exporter.from_filename(notebook_filename, resources=resources) File "/usr/local/lib/python3.5/dist-packages/nbconvert/exporters/exporter.py", line 179, in from_filename return self.from_file(f, resources=resources, **kw) File "/usr/local/lib/python3.5/dist-packages/nbconvert/exporters/exporter.py", line 197, in from_file return self.from_notebook_node(nbformat.read(file_stream, as_version=4), resources=resources, **kw) File "/usr/local/lib/python3.5/dist-packages/nbconvert/exporters/notebook.py", line 32, in from_notebook_node nb_copy, resources = super(NotebookExporter, self).from_notebook_node(nb, resources, **kw) File "/usr/local/lib/python3.5/dist-packages/nbconvert/exporters/exporter.py", line 139, in from_notebook_node nb_copy, resources = self._preprocess(nb_copy, resources) File "/usr/local/lib/python3.5/dist-packages/nbconvert/exporters/exporter.py", line 316, in _preprocess nbc, resc = preprocessor(nbc, resc) File "/usr/local/lib/python3.5/dist-packages/nbconvert/preprocessors/base.py", line 47, in __call__ return self.preprocess(nb, resources) File "/usr/local/lib/python3.5/dist-packages/nbgrader/preprocessors/latesubmissions.py", line 66, in preprocess self.student_id, notebook.score, assignment.total_seconds_late) TypeError: late_submission_penalty() takes 3 positional arguments but 4 were given [AutogradeApp | WARNING] Removing failed assignment: /home/axel/PHY332/autograded/student1/PHY332-test1 [AutogradeApp | ERROR] There was an error processing assignment 'PHY332-test1' for student 'student1' [AutogradeApp | ERROR] Please see the the above traceback for details on the specific errors on the above failures. ```
open
2020-01-22T22:01:16Z
2020-01-22T22:01:16Z
https://github.com/jupyter/nbgrader/issues/1305
[]
amellinger
0
onnx/onnxmltools
scikit-learn
311
keras2onnx doesn't support python 2 and renders pip installation fail.
Env: python 2.7.15 Steps to reproduce: ``` $ pip install onnxmltools ... Collecting keras2onnx (from onnxmltools) Could not find a version that satisfies the requirement keras2onnx (from onnxmltools) (from versions: ) No matching distribution found for keras2onnx (from onnxmltools) ```
closed
2019-06-09T01:06:35Z
2019-09-25T17:32:33Z
https://github.com/onnx/onnxmltools/issues/311
[]
turtleizzy
3
streamlit/streamlit
data-visualization
10,350
st.logo randamly disappears after a while
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar issues. - [x] I added a very descriptive title to this issue. - [x] I have provided sufficient information below to help reproduce this issue. ### Summary My image that I rendered with st.logo (I am using nightly version) randomly disappear after a few minutes. ### Reproducible Code Example ```Python ``` ### Steps To Reproduce _No response_ ### Expected Behavior _No response_ ### Current Behavior _No response_ ### Is this a regression? - [ ] Yes, this used to work in a previous version. ### Debug info - Streamlit version: - Python version: - Operating System: - Browser: ### Additional Information _No response_
closed
2025-02-05T14:32:40Z
2025-02-13T23:59:20Z
https://github.com/streamlit/streamlit/issues/10350
[ "type:bug", "status:confirmed", "priority:P2", "feature:st.fragment", "feature:st.logo" ]
Martijn3161
4
proplot-dev/proplot
data-visualization
22
proplot having issues with `xarray` objects
Currently, when plotting values from an `xarray.DataArray`, `proplot` throws an error. Note that this didn't used to be an issue. The following works (note `A.values` has to be called, but `A.time.values` does not. So this is only an issue with the actual data being plotted and not coordinates) ```python import numpy as np import xarray as xr A = np.random.rand(120,) A = xr.DataArray(A, dims='time') A['time'] = np.arange('1990-01', '2000-01', dtype='datetime64[M]') f, ax = plot.subplots(width='12cm', aspect=4) ax.plot(A.time, A.values) ``` This does not work: ```python import numpy as np import xarray as xr A = np.random.rand(120,) A = xr.DataArray(A, dims='time') A['time'] = np.arange('1990-01', '2000-01', dtype='datetime64[M]') f, ax = plot.subplots(width='12cm', aspect=4) ax.plot(A.time, A) ``` ```python-traceback --------------------------------------------------------------------------- IndexError Traceback (most recent call last) <ipython-input-37-ae88108929a8> in <module> 5 A['time'] = np.arange('1990-01', '2000-01', dtype='datetime64[M]') 6 f, ax = plot.subplots(width='12cm', aspect=4) ----> 7 ax.plot(A.time, A) ~/miniconda3/envs/python3/lib/python3.7/site-packages/proplot/subplots.py in iterator(*args, **kwargs) 129 ret = [] 130 for func in attrs: --> 131 ret.append(func(*args, **kwargs)) 132 if len(ret)==1: 133 return ret[0] ~/miniconda3/envs/python3/lib/python3.7/site-packages/proplot/wrappers.py in wrapper(*args, **kwargs) 2555 @functools.wraps(func) 2556 def wrapper(*args, **kwargs): -> 2557 return driver(self, func, *args, **kwargs) 2558 return wrapper 2559 return decorator ~/miniconda3/envs/python3/lib/python3.7/site-packages/proplot/wrappers.py in _parse_1d(self, func, *args, **kwargs) 312 if kw: 313 self.format(**kw) --> 314 return func(x, *yss, *args, **kwargs) 315 316 def _parse_2d(self, func, *args, order='C', **kwargs): ~/miniconda3/envs/python3/lib/python3.7/site-packages/proplot/wrappers.py in wrapper(*args, **kwargs) 2555 @functools.wraps(func) 2556 def wrapper(*args, **kwargs): -> 2557 return driver(self, func, *args, **kwargs) 2558 return wrapper 2559 return decorator ~/miniconda3/envs/python3/lib/python3.7/site-packages/proplot/wrappers.py in plot_wrapper(self, func, cmap, values, *args, **kwargs) 455 raise ValueError(f'Expected 1-3 plot args, got {len(args)}.') 456 if cmap is None: --> 457 lines = func(*args, **kwargs) 458 else: 459 lines = self.cmapline(*args, cmap=cmap, values=values, **kwargs) ~/miniconda3/envs/python3/lib/python3.7/site-packages/proplot/wrappers.py in wrapper(*args, **kwargs) 2555 @functools.wraps(func) 2556 def wrapper(*args, **kwargs): -> 2557 return driver(self, func, *args, **kwargs) 2558 return wrapper 2559 return decorator ~/miniconda3/envs/python3/lib/python3.7/site-packages/proplot/wrappers.py in cycle_wrapper(self, func, cycle, cycle_kw, markers, linestyles, label, labels, values, legend, legend_kw, colorbar, colorbar_kw, *args, **kwargs) 1517 pass 1518 elif isinstance(y, DataArray): -> 1519 label = y.coords[y.dims[1]].values[i] 1520 label_cl = _auto_label(y.coords[y.dims[1]]) # coordinate label 1521 elif isinstance(y, DataFrame): IndexError: tuple index out of range ```
closed
2019-06-27T18:48:55Z
2019-09-14T21:22:55Z
https://github.com/proplot-dev/proplot/issues/22
[ "bug" ]
bradyrx
4
matplotlib/matplotlib
matplotlib
29,090
[MNT]: More consistent color parameters for bar()
### Summary From #29072. `bar()` supports - `color` : color or list of color - `edgecolor` : color or list of color - `facecolor`: color i.e. - `facecolor` cannot take a sequence - there are no plural aliase (e.g. `edgecolors`) - likely (t.b.c.) the aliases also do not support sequences, similar to #28884 ### Proposed fix Make `facecolor` accept sequences and check that the parameter precedence among `color`, `edgecolor` and `facecolor` is reasonable and comparable with `scatter`, which can take an explicit color via `c` (equivalent to `color` here). For now, I'd refrain from introducing plural aliase. `bar()` is originally and primarily a style-all-bars-identical function. Per-bar styling was added later on, and I don't think there's a strong need to support this additional use case with an added plural alias.
closed
2024-11-05T22:53:22Z
2024-11-30T19:54:18Z
https://github.com/matplotlib/matplotlib/issues/29090
[ "Maintenance" ]
timhoffm
1
tqdm/tqdm
jupyter
1,192
cannot install from source package tqdm-4.61.0.tar.gz
Because of my offline environment, I installed the tqdm with source package of pypi. But after I "pip install tqdm-4.61.1.tar.gz", I got Successfully built UNKNOWN instead of tqdm, how can i fix it. THANKS
closed
2021-06-23T03:04:35Z
2021-07-29T10:54:29Z
https://github.com/tqdm/tqdm/issues/1192
[ "invalid ⛔", "need-feedback 📢", "p3-framework ⚒" ]
CnBDM-Su
2
scrapy/scrapy
python
6,561
Improve the contribution documentation
It would be nice to have something like [this](https://github.com/scrapy/scrapy/issues/1615#issuecomment-2497663596) in a section of the contribution docs that we can link easily to such questions.
closed
2024-11-25T10:52:01Z
2024-12-12T10:38:31Z
https://github.com/scrapy/scrapy/issues/6561
[ "enhancement", "docs" ]
Gallaecio
2
babysor/MockingBird
deep-learning
31
使用预训练模型获得了奇怪的mel spectrogram和杂音
![image](https://user-images.githubusercontent.com/2220320/130367343-3bbe4b9c-57d0-4961-b266-4f2c3d5840cc.png) voicepart1.mp3 是一段时长为10秒钟、含7个句子的录音片段 ![image](https://user-images.githubusercontent.com/2220320/130367391-c45cff12-3bf3-4b92-b144-451ec60eb244.png) voicepart2.wav 是一段时长为5秒钟的类似片段 合成结果均为约2秒的背景杂音,无论输入内容长度。 ![image](https://user-images.githubusercontent.com/2220320/130367425-ea6c0590-fb67-4a06-b0f7-985b7bcd6bbd.png)
closed
2021-08-22T19:21:49Z
2021-08-23T03:40:33Z
https://github.com/babysor/MockingBird/issues/31
[]
wfjsw
6
wger-project/wger
django
1,180
Server Error (500) on API /workout/:id/log_data
Hi, I am testing the app and found an issue while investigating a bug with the mobile app (see wger-project/flutter#291) . The endpoint in object always answers with 500 Internal Server Error. After investigation it seems related to ``` wger/manager/api/views.py:106 ``` In method `log_data` the object `Exercise` doesn't have a `workoutlog_set` but `ExerciseBase` does! So it seems like an easy fix. Is there anything I'm missing? I tried to implement the fix and everything seems to be working, can anyone review my fix? Thanks for the great app!
closed
2022-11-14T02:13:42Z
2022-11-29T16:26:40Z
https://github.com/wger-project/wger/issues/1180
[]
manto89
2
LAION-AI/Open-Assistant
python
3,007
Next Iteration Meeting (Friday, May 5, 2023 7:00pm UTC)
Topics for the next meeting
open
2023-05-01T20:17:41Z
2023-05-07T16:54:03Z
https://github.com/LAION-AI/Open-Assistant/issues/3007
[ "meeting" ]
AbdBarho
14
plotly/dash
dash
3,023
add tooling to show Dash memory usage
It would be useful to have a way for Dash to report how much memory it is using where. The report could be textual (CSV / JSON) or graphical (an introspective chart?).
open
2024-10-02T16:52:20Z
2024-10-02T16:52:20Z
https://github.com/plotly/dash/issues/3023
[ "feature", "P3" ]
gvwilson
0
huggingface/transformers
nlp
36,363
目前使用Ktransformers进行DEEPSEEK-R1满血版和4bit量化版模型进行推理,推理速度有多少tokens/s?对应的计算资源配置分别是多少?
目前使用Ktransformers进行DEEPSEEK-R1满血版和4bit量化版模型进行推理,推理速度有多少tokens/s?对应的计算资源配置分别是多少? 目前本地部署测试能跑4bit量化版和Q2_K量化版,但推理速度只有不到0.1tokens/s,,(...o0^0o...),使用的配置如下: GPU:tesla A10 24G X 2 CPU:Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz X 100(--cpu_infer 100,支持AVX-512,不支持AMX) MemTotal:256G 磁盘:12T (15000rpm gpt-1.00 partitioned partitioned:gpt,hdd)
open
2025-02-24T03:30:06Z
2025-02-24T03:33:54Z
https://github.com/huggingface/transformers/issues/36363
[]
William-Cai123
0
Lightning-AI/pytorch-lightning
pytorch
20,024
Multiple subclassing levels required to use LightningDataModule in LightningCLI
### Bug description I get the following error message ```error: Parser key "data": Import path data.snemi.SNEMIDataModule does not correspond to a subclass of LightningDataModule ``` with yaml config ```yaml data: class_path: data.snemi.SNEMIDataModule ``` when defining SNEMIDataModule as follows ```python class SNEMIDataModule(LightningDataModule): ... ``` this problem is solved by creating a dummy subclass: ```python class DummyDataModule(LightningDataModule): pass class SNEMIDataModule(DummyDataModule): ... ``` Is this intended behavior? ### What version are you seeing the problem on? v2.2 ### How to reproduce the bug _No response_ ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment <details> <summary>Current environment</summary> ``` #- Lightning Component (e.g. Trainer, LightningModule, LightningApp, LightningWork, LightningFlow): #- PyTorch Lightning Version (e.g., 1.5.0): #- Lightning App Version (e.g., 0.5.2): #- PyTorch Version (e.g., 2.0): #- Python version (e.g., 3.9): #- OS (e.g., Linux): #- CUDA/cuDNN version: #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): #- Running environment of LightningApp (e.g. local, cloud): ``` </details> ### More info _No response_ cc @carmocca @mauvilsa
open
2024-06-27T21:57:17Z
2024-06-28T12:29:17Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20024
[ "bug", "lightningcli" ]
jasonkena
2
Kanaries/pygwalker
pandas
20
[Feat] Detect white-dark theme and use appropriate theme
Currently, using `pyg.walk(df)` on a Jupyter Notebook with a dark theme renders a white widget, where most text are so low contrast that they are effectively invisible.
closed
2023-02-21T20:27:56Z
2023-03-19T17:34:22Z
https://github.com/Kanaries/pygwalker/issues/20
[ "enhancement", "graphic-walker" ]
hyiltiz
4
deezer/spleeter
tensorflow
665
2.3.0 install uses cpu only
- [ ] I didn't find a similar issue already open. - [ ] I read the documentation (README AND Wiki) - [ ] I have installed FFMpeg - [ ] My problem is related to Spleeter only, not a derivative product (such as Webapplication, or GUI provided by others) ## Description <!-- Give us a clear and concise description of the bug you are reporting. --> ## Step to reproduce <!-- Indicates clearly steps to reproduce the behavior: --> 1. Installed using `...` 2. Run as `...` 3. Got `...` error ## Output ```bash Share what your terminal says when you run the script (as well as what you would expect). ``` ## Environment <!-- Fill the following table --> | | | | ----------------- | ------------------------------- | | OS | Windows | | Installation type | Conda / pip | | Hardware spec | GPU / CPU / etc ... | ## Additional context did not use gpu https://oss.canxingtv.com/upload/res.singschool.com/637679332437315016-min.png
open
2021-09-22T10:52:41Z
2022-02-21T03:29:20Z
https://github.com/deezer/spleeter/issues/665
[ "bug", "invalid" ]
yangxing5200
2
onnx/onnx
pytorch
5,809
Edit Input/Output Onnx file
# Ask a Question ### Question Hi, My goal is to change inputs/outputs names of Onnx file, I write this code: `import onnx onnx_model_path = "ostrack-256.onnx" original_model = onnx.load(onnx_model_path) for input in original_model.graph.input: if input.name == "x": input.name = "search" elif input.name == "z": input.name = "template" for output in original_model.graph.output: if output.name == "score_map": output.name = "output1" elif output.name == "size_map": output.name = "output2" elif output.name == "offset_map": output.name = "output3" modified_model_path = "modified_model.onnx" onnx.save(original_model, modified_model_path) print(f"Modified model saved to {modified_model_path}")` Then When I check my new onnx it's look like is change the name but now the input and output nodes not connect to the NN I not understand what I missing, I will be happy to any help. attached Images: Before Change name: ![input_before](https://github.com/onnx/onnx/assets/56262208/d040a94f-595c-4095-afdd-af8a0c748fa9) ![output_before](https://github.com/onnx/onnx/assets/56262208/60e06048-a72e-4fbc-ad98-3e895d3a256e) After changing names: ![After_change](https://github.com/onnx/onnx/assets/56262208/8743fbe7-2e62-4ecb-b331-4df9a20908fb)
closed
2023-12-18T13:32:02Z
2023-12-18T13:50:20Z
https://github.com/onnx/onnx/issues/5809
[ "question" ]
arielkantorovich
0
Evil0ctal/Douyin_TikTok_Download_API
api
127
抖音链接失效了
https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7175083035304398120 这个接口 无法访问了
closed
2022-12-22T12:38:22Z
2023-08-02T03:06:43Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/127
[ "BUG" ]
5wcx
22
Anjok07/ultimatevocalremovergui
pytorch
1,011
vocals separation stopped due to memory error
Last Error Received: Process: Ensemble Mode If this error persists, please contact the developers with the error details. Raw Error Details: MemoryError: "Unable to allocate 4.37 GiB for an array with shape (2, 769, 763136) and data type float32" Traceback Error: " File "UVR.py", line 6638, in process_start File "separate.py", line 1055, in seperate File "separate.py", line 1183, in inference_vr File "separate.py", line 1159, in _execute File "<__array_function__ internals>", line 180, in concatenate " Error Time Stamp [2023-12-07 16:15:44] Full Application Settings: vr_model: Choose Model aggression_setting: 5 window_size: 512 mdx_segment_size: 256 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: Choose Model chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: True is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_use_opencl: False is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: WAV wav_type_set: PCM_16 device_set: Default help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems mdx_stems: All Stems
open
2023-12-07T10:56:30Z
2023-12-08T14:57:50Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1011
[]
StephenBrahmi
1
robotframework/robotframework
automation
5,240
[Setup] and [Teardown] in test steps overrides Test Setup and Test Teardown from Settings
Hi, given below example ``` *** Settings *** Test Setup Log To Console test setup in settings Test Teardown Log To Console test teardown in settings *** Test Cases *** Test [Setup] Log To Console test setup in test steps Comment just testing [Teardown] Log To Console test teardown in test steps ``` the console output would be ``` ==================================================== Test test setup in test steps ..test teardown in test steps Test | PASS | ---------------------------------------------------------------------------------------- Tests.Helpers.Test | PASS | 1 test, 1 passed, 0 failed ==================================================== ``` meaning that steps from Settings declared Test Setup and Test Teardown keywords were overridden by [Setup] and [Teardown] from the test itself. I've found that behavior described in documentation https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#test-setup-and-teardown My proposal is to extend that behavior to make it more controllable. adding new command line argument for robot execution ``` --testsetupandteardown preservetests|preservesettings|merge Changes how setup and teardown are parsed. preservetests (default): [Setup] or [Teardown] from test will override Test Setup or Test Teardown from ***Settings*** preservesettings: Test Setup or Test Teardown from ***Settings*** will override [Setup] or [Teardown] from test merge: if both Test Setup or Test Teardown and [Setup] or [Teardown] are declared they will be executed one after another. [Setup] or [Teardown] will be executed first. ``` Rationale: there are cases when for convenience one would declare a common Test Teardown in Settings for several test cases in the suite. But one test case would have a special [Teardown] logic doing something extra. Current implementation would override Test Teardown and only [Teardown] logic would be executed for that tests which might not be wanted outcome.
closed
2024-10-17T09:21:05Z
2024-11-01T15:41:52Z
https://github.com/robotframework/robotframework/issues/5240
[]
MarcinGmurczyk
2
feature-engine/feature_engine
scikit-learn
6
DecisionTreeDiscretiser what page to read from CiML-v3-book.pdf
may you clarify what page from http://www.mtome.com/Publications/CiML/CiML-v3-book.pdf is relevant to read about https://feature-engine.readthedocs.io/en/latest/discretisers/DecisionTreeDiscretiser.html?highlight=DecisionTreeDiscretiser as you wrote The methods is inspired by the following article from the winners of the KDD 2009 competition: http://www.mtome.com/Publications/CiML/CiML-v3-book.pdf but there are 130 pages..
closed
2019-08-06T17:02:59Z
2019-09-04T08:03:12Z
https://github.com/feature-engine/feature_engine/issues/6
[ "question" ]
Sandy4321
1
Miserlou/Zappa
django
1,631
multiple api resource with lambda trigger
<!--- Provide a general summary of the issue in the Title above --> ## Context I am new to zappa world. Can zappa create multiple api gateway resource and their method(GET,POST,PUT) allowing to trigger lambda using JSON settings. Let me know if above statement made sense. Thank you ## Expected Behavior <!--- Tell us what should happen --> ## Actual Behavior <!--- Tell us what happens instead --> ## Possible Fix <!--- Not obligatory, but suggest a fix or reason for the bug --> ## Steps to Reproduce <!--- Provide a link to a live example, or an unambiguous set of steps to --> <!--- reproduce this bug include code to reproduce, if relevant --> 1. 2. 3. ## Your Environment <!--- Include as many relevant details about the environment you experienced the bug in --> * Zappa version used: * Operating System and Python version: * The output of `pip freeze`: * Link to your project (optional): * Your `zappa_settings.py`:
open
2018-10-03T09:32:22Z
2018-10-03T18:50:15Z
https://github.com/Miserlou/Zappa/issues/1631
[]
prashantbaditya
2
quokkaproject/quokka
flask
568
themes: find a way to download single pelican-themes
re-host pelican themes individually for easier download? https://github.com/rochacbruno/quokka_ng/issues/66
closed
2018-02-07T01:36:06Z
2018-02-07T01:39:06Z
https://github.com/quokkaproject/quokka/issues/568
[ "1.0.0", "hacktoberfest" ]
rochacbruno
0
nolar/kopf
asyncio
309
Unprocessable Entity
> <a href="https://github.com/brutus333"><img align="left" height="50" src="https://avatars0.githubusercontent.com/u/6450276?v=4"></a> An issue by [brutus333](https://github.com/brutus333) at _2020-02-10 14:15:34+00:00_ > Original URL: https://github.com/zalando-incubator/kopf/issues/309 > &nbsp; ## Long story short I've tried to qualify 0.25 based on existing tests built with KopfRunner context. These tests worked well with all versions from 0.21 to 0.24. However, using 0.25 will raise a framework error. ## Description One of the simplest tests creates a custom object, lets the operator create a pod based on custom object definition and delete the custom object (which by owner cascaded deletion deletes the pod too). ```python import kopf from kopf.testing import KopfRunner import os import unittest import time import subprocess KOPF_RUNNER_COMMAND = ['run', 'src/libvirt.py', '--namespace', 'default', '--standalone'] class MyTestCase(unittest.TestCase): def test_custom_object_creation_and_deletion(self): with KopfRunner(KOPF_RUNNER_COMMAND, timeout=30) as runner: # do something while the operator is running. subprocess.run("kubectl apply -f tests/libvirtds1.yaml", shell=True, check=True) time.sleep(5) # give it some time to react and to sleep and to retry subprocess.run("kubectl delete -f tests/libvirtds1.yaml", shell=True, check=True) time.sleep(30) # give it some time to react self.assertEqual(runner.exit_code,0) self.assertIs(runner.exception,None) self.assertIn('falling back to kubeconfig configuration', runner.stdout) self.assertIn('Starting to create pod on node', runner.stdout) self.assertIn('Running delete handler for pod', runner.stdout) self.assertIn('was deleted by k8s cascaded deletion of owner', runner.stdout) ``` ```bash pytest -x ``` ``` ==================================================================================== test session starts ===================================================================================== platform linux -- Python 3.7.5, pytest-5.3.5, py-1.8.1, pluggy-0.13.1 rootdir: /src, inifile: pytest.ini plugins: asyncio-0.10.0 collected 6 items tests/libvirt_test.py::MyTestCase::test_custom_object_creation_and_deletion --------------------------------------------------------------------------------------- live log call ---------------------------------------------------------------------------------------- INFO kopf.objects:libvirt.py:38 Starting libvirt operator WARNING kopf.objects:libvirt.py:44 Can't use in cluster configuration, falling back to kubeconfig configuration WARNING kopf.reactor.running:running.py:281 OS signals are ignored: running not in the main thread. INFO kopf.reactor.activities:activities.py:59 Initial authentication has been initiated. INFO kopf.activities.authentication:handling.py:571 Handler 'login_via_pykube' succeeded. INFO kopf.activities.authentication:handling.py:571 Handler 'login_via_client' succeeded. INFO kopf.reactor.activities:activities.py:68 Initial authentication has finished. INFO kopf.objects:libvirt.py:405 Looking after a daemonset with adoption labels: {'adopt-by': 'libvirt-ds'} INFO kopf.objects:libvirt.py:358 Node kind-worker does not have a pod. Creating one now. INFO kopf.objects:libvirt.py:174 Starting to create pod on node kind-worker INFO kopf.objects:handling.py:571 Handler 'create_libvirtds/kind-worker' succeeded. INFO kopf.objects:handling.py:571 Handler 'create_libvirtds' succeeded. INFO kopf.objects:handling.py:329 All handlers succeeded for creation. INFO kopf.objects:libvirt.py:468 Update handler called with: (('add', ('spec', 'template', 'spec', 'nodeSelector'), None, {'libvirt': 'yes'}), ('remove', ('spec', 'template', 'spec', 'af finity'), {'nodeAffinity': {'requiredDuringSchedulingIgnoredDuringExecution': {'nodeSelectorTerms': [{'matchFields': [{'key': 'metadata.name', 'operator': 'In', 'values': ['kind-worker']}]}] }}}, None), ('change', ('spec', 'template', 'spec', 'tolerations'), [{'operator': 'Exists'}, {'operator': 'Exists', 'effect': 'NoSchedule', 'key': 'node.kubernetes.io/disk-pressure'}, {'oper ator': 'Exists', 'effect': 'NoSchedule', 'key': 'node.kubernetes.io/memory-pressure'}, {'operator': 'Exists', 'effect': 'NoSchedule', 'key': 'node.kubernetes.io/unschedulable'}, {'operator': 'Exists', 'effect': 'NoSchedule', 'key': 'node.kubernetes.io/network-unavailable'}], [{'operator': 'Exists'}]), ('change', ('spec', 'template', 'spec', 'containers'), [{'image': 'nginx:1.8. 1', 'imagePullPolicy': 'IfNotPresent', 'name': 'nginx', 'ports': [{'containerPort': 80, 'protocol': 'TCP'}], 'resources': {}, 'terminationMessagePath': '/dev/termination-log', 'terminationMe ssagePolicy': 'File'}, {'command': ['/bin/sleep', '36000'], 'image': 'busybox', 'imagePullPolicy': 'IfNotPresent', 'name': 'busybox', 'resources': {'limits': {'memory': '1.74Gi'}, 'requests' : {'memory': '1.16Gi'}}, 'terminationMessagePath': '/dev/termination-log', 'terminationMessagePolicy': 'File'}], [{'image': 'nginx:1.8.1', 'imagePullPolicy': 'IfNotPresent', 'name': 'nginx', 'ports': [{'containerPort': 80, 'protocol': 'TCP'}], 'resources': {}, 'terminationMessagePath': '/dev/termination-log', 'terminationMessagePolicy': 'File'}, {'command': ['/bin/sleep', '3600 0'], 'image': 'busybox', 'imagePullPolicy': 'IfNotPresent', 'name': 'busybox', 'resources': {}, 'terminationMessagePath': '/dev/termination-log', 'terminationMessagePolicy': 'File'}])) INFO kopf.objects:libvirt.py:251 Looking at pod my-libvirt-ds-rl25c on node kind-worker INFO kopf.objects:libvirt.py:262 Found matching pod my-libvirt-ds-rl25c on node kind-worker INFO kopf.objects:libvirt.py:263 Found pod with metadata: {'annotations': None, 'cluster_name': None, 'creation_timestamp': datetime.datetime(2020, 2, 10, 13, 2, 30, tzinfo=tzlocal()), ' deletion_grace_period_seconds': None, 'deletion_timestamp': None, 'finalizers': ['kopf.zalando.org/KopfFinalizerMarker'], 'generate_name': 'my-libvirt-ds-', 'generation': None, 'initializers ': None, 'labels': {'app': 'qemu', 'comp': 'libvirt', 'owner-object-type': 'libvirt-ds'}, 'managed_fields': None, 'name': 'my-libvirt-ds-rl25c', 'namespace': 'default', 'owner_references': [ {'api_version': 'oiaas.org/v1', 'block_owner_deletion': True, 'controller': True, 'kind': 'LibvirtDaemonSet', 'name': 'my-libvirt-ds', 'uid': 'a4b1ea71-5c3b-4d71-bb0e-b5b35c4599e9'}], 'resou rce_version': '537734', 'self_link': '/api/v1/namespaces/default/pods/my-libvirt-ds-rl25c', 'uid': 'b1e466b8-3b18-407d-b589-ed2f40179c46'} INFO kopf.objects:libvirt.py:365 Received pod spec update with diff: (('add', ('spec', 'template', 'spec', 'nodeSelector'), None, {'libvirt': 'yes'}), ('remove', ('spec', 'template', 'sp ec', 'affinity'), {'nodeAffinity': {'requiredDuringSchedulingIgnoredDuringExecution': {'nodeSelectorTerms': [{'matchFields': [{'key': 'metadata.name', 'operator': 'In', 'values': ['kind-work er']}]}]}}}, None), ('change', ('spec', 'template', 'spec', 'tolerations'), [{'operator': 'Exists'}, {'operator': 'Exists', 'effect': 'NoSchedule', 'key': 'node.kubernetes.io/disk-pressure'} , {'operator': 'Exists', 'effect': 'NoSchedule', 'key': 'node.kubernetes.io/memory-pressure'}, {'operator': 'Exists', 'effect': 'NoSchedule', 'key': 'node.kubernetes.io/unschedulable'}, {'op erator': 'Exists', 'effect': 'NoSchedule', 'key': 'node.kubernetes.io/network-unavailable'}], [{'operator': 'Exists'}]), ('change', ('spec', 'template', 'spec', 'containers'), [{'image': 'ng inx:1.8.1', 'imagePullPolicy': 'IfNotPresent', 'name': 'nginx', 'ports': [{'containerPort': 80, 'protocol': 'TCP'}], 'resources': {}, 'terminationMessagePath': '/dev/termination-log', 'termi nationMessagePolicy': 'File'}, {'command': ['/bin/sleep', '36000'], 'image': 'busybox', 'imagePullPolicy': 'IfNotPresent', 'name': 'busybox', 'resources': {'limits': {'memory': '1.74Gi'}, 'r equests': {'memory': '1.16Gi'}}, 'terminationMessagePath': '/dev/termination-log', 'terminationMessagePolicy': 'File'}], [{'image': 'nginx:1.8.1', 'imagePullPolicy': 'IfNotPresent', 'name': 'nginx', 'ports': [{'containerPort': 80, 'protocol': 'TCP'}], 'resources': {}, 'terminationMessagePath': '/dev/termination-log', 'terminationMessagePolicy': 'File'}, {'command': ['/bin/sleep ', '36000'], 'image': 'busybox', 'imagePullPolicy': 'IfNotPresent', 'name': 'busybox', 'resources': {}, 'terminationMessagePath': '/dev/termination-log', 'terminationMessagePolicy': 'File'}] )) INFO kopf.objects:libvirt.py:366 Starting to update pod my-libvirt-ds-rl25c on node kind-worker INFO kopf.objects:libvirt.py:374 Received patch: {'spec': {'containers': [{'image': 'nginx:1.8.1', 'imagePullPolicy': 'IfNotPresent', 'name': 'nginx', 'ports': [{'containerPort': 80, 'pr otocol': 'TCP'}], 'resources': {}, 'terminationMessagePath': '/dev/termination-log', 'terminationMessagePolicy': 'File'}, {'command': ['/bin/sleep', '36000'], 'image': 'busybox', 'imagePullP olicy': 'IfNotPresent', 'name': 'busybox', 'resources': {}, 'terminationMessagePath': '/dev/termination-log', 'terminationMessagePolicy': 'File'}]}} INFO kopf.objects:handling.py:571 Handler 'update_libvirtds/kind-worker' succeeded. INFO kopf.objects:handling.py:571 Handler 'update_libvirtds' succeeded. INFO kopf.objects:handling.py:329 All handlers succeeded for update. INFO kopf.objects:libvirt.py:477 Custom object my-libvirt-ds is scheduled for deletion INFO kopf.objects:handling.py:571 Handler 'delete_libvirtds' succeeded. INFO kopf.objects:handling.py:329 All handlers succeeded for deletion. INFO kopf.objects:libvirt.py:484 Running delete handler for pod my-libvirt-ds-rl25c INFO kopf.objects:libvirt.py:495 Pod my-libvirt-ds-rl25c was deleted by k8s cascaded deletion of owner INFO kopf.objects:handling.py:571 Handler 'delete_pod' succeeded. INFO kopf.objects:handling.py:329 All handlers succeeded for deletion. ERROR kopf.reactor.queueing:queueing.py:182 functools.partial(<function resource_handler at 0x7f6ba6180ef0>, lifecycle=<function asap at 0x7f6ba6175ef0>, registry=<kopf.toolkits.legacy_re gistries.SmartGlobalRegistry object at 0x7f6ba40ca710>, memories=<kopf.structs.containers.ResourceMemories object at 0x7f6b9fe15a50>, resource=Resource(group='', version='v1', plural='pods') , event_queue=<Queue at 0x7f6ba40ca590 maxsize=0 _getters[1] tasks=10>) failed with an exception. Ignoring the event. Traceback (most recent call last): File "/usr/local/lib/python3.7/site-packages/kopf/reactor/queueing.py", line 179, in worker await handler(event=event, replenished=replenished) File "/usr/local/lib/python3.7/site-packages/kopf/reactor/handling.py", line 223, in resource_handler await patching.patch_obj(resource=resource, patch=patch, body=body) File "/usr/local/lib/python3.7/site-packages/kopf/clients/auth.py", line 46, in wrapper return await fn(*args, **kwargs, context=context) File "/usr/local/lib/python3.7/site-packages/kopf/clients/patching.py", line 54, in patch_obj raise_for_status=True, File "/usr/local/lib/python3.7/site-packages/aiohttp/client.py", line 588, in _request resp.raise_for_status() File "/usr/local/lib/python3.7/site-packages/aiohttp/client_reqrep.py", line 946, in raise_for_status headers=self.headers) aiohttp.client_exceptions.ClientResponseError: 422, message='Unprocessable Entity', url=URL('https://127.0.0.1:53032/api/v1/namespaces/default/pods/my-libvirt-ds-rl25c') INFO kopf.reactor.running:running.py:457 Stop-flag is set to True. Operator is stopping. PASSED ``` ## Environment <!-- The following commands can help: `kopf --version` or `pip show kopf` `kubectl version` `python --version` --> * Kopf version: 0.25 * Kubernetes version: 1.15.3 * Python version: 3.7.5 * OS/platform: Linux docker-desktop 4.9.184-linuxkit #1 SMP Tue Jul 2 22:58:16 UTC 2019 x86_64 GNU/Linux ``` aiohttp==3.6.2 aiojobs==0.2.2 async-timeout==3.0.1 attrs==19.3.0 cachetools==4.0.0 certifi==2019.11.28 chardet==3.0.4 Click==7.0 google-auth==1.11.0 idna==2.8 importlib-metadata==1.5.0 iso8601==0.1.12 Jinja2==2.11.1 jsonpatch==1.25 jsonpointer==2.0 kopf==0.25 kubernetes==10.0.0 MarkupSafe==1.1.1 more-itertools==8.2.0 multidict==4.7.4 oauthlib==3.1.0 packaging==20.1 pip==19.3.1 pluggy==0.13.1 py==1.8.1 pyasn1==0.4.8 pyasn1-modules==0.2.8 pykube-ng==20.1.0 pyparsing==2.4.6 pytest==5.3.5 pytest-asyncio==0.10.0 python-dateutil==2.8.1 PyYAML==5.3 requests==2.22.0 requests-oauthlib==1.3.0 rsa==4.0 setuptools==41.4.0 six==1.14.0 typing-extensions==3.7.4.1 urllib3==1.25.8 wcwidth==0.1.8 websocket-client==0.57.0 wheel==0.33.6 yarl==1.4.2 zipp==2.2.0 ``` --- > <a href="https://github.com/nolar"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> Commented by [nolar](https://github.com/nolar) at _2020-02-13 17:23:57+00:00_ > &nbsp; Hello. Thanks for this interesting use-case. I'm quite surprised that it worked with 0.24 and before — it should also fail. There were no changes that could avoid this error. There is a code for a similar case already — when 404 is returned from patching (see [code](https://github.com/nolar/kopf/blob/0.25/kopf/clients/patching.py#L57-L58)). However, in your case, it is not 404, but 422. We could catch "422 Unprocessable Entity" the same way — in case it is indeed the case from the Kubernetes API point of view. It would also be useful to see the full response body from this PATCH request — but this definitely should not be put on the logs. I will take some time to dive deep into the docs to understand why it is 422. Maybe I can reproduce it locally with the same use-case. --- > <a href="https://github.com/xavierbaude"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/3736161?v=4"></a> Commented by [xavierbaude](https://github.com/xavierbaude) at _2020-05-16 19:56:49+00:00_ > &nbsp; Hi, I also ran this issue with 0.25 and not with release 0.24. When deleting an Ingress object, I get an error : aiohttp.client_exceptions.ClientResponseError: 422, message='Unprocessable Entity' from k8s api when I delete the Ingress object. It's look like kopf try to patch or read an object that I've just deleted. --- > <a href="https://github.com/cliffburdick"><img align="left" height="30" src="https://avatars1.githubusercontent.com/u/30670611?v=4"></a> Commented by [cliffburdick](https://github.com/cliffburdick) at _2020-05-18 20:39:12+00:00_ > &nbsp; Hi [nolar](https://github.com/nolar), I'm seeing the same thing with an on.delete handler for pods. Do you need help reproducing it? It seems to happen every time the pod is deleted. Here is a sample: ``` [2020-05-18 22:02:31,184] nhd.Node [INFO ] Removing pod ('mypod-0', 'p09') from node pp-gcomp001.nae07.v3g-pp-compute.viasat.io [2020-05-18 22:02:31,196] kopf.reactor.queuein [ERROR ] functools.partial(<function process_resource_event at 0x7f41cba1d430>, lifecycle=<function asap at 0x7f41cbb74820>, registry=<kopf.toolkits.legacy_registries.SmartGlobalRegistry object at 0x7f41cba328b0>, memories=<kopf.structs.containers.ResourceMemories object at 0x7f41ceff7fa0>, resource=Resource(group='', version='v1', plural='pods'), event_queue=<Queue at 0x7f41cf004250 maxsize=0 _getters[1] tasks=12>) failed with an exception. Ignoring the event. Traceback (most recent call last): File "/usr/local/lib/python3.8/site-packages/kopf/reactor/queueing.py", line 179, in worker await processor(event=event, replenished=replenished) File "/usr/local/lib/python3.8/site-packages/kopf/reactor/processing.py", line 114, in process_resource_event await patching.patch_obj(resource=resource, patch=patch, body=body) File "/usr/local/lib/python3.8/site-packages/kopf/clients/auth.py", line 45, in wrapper return await fn(*args, **kwargs, context=context) File "/usr/local/lib/python3.8/site-packages/kopf/clients/patching.py", line 55, in patch_obj await context.session.patch( File "/usr/local/lib/python3.8/site-packages/aiohttp/client.py", line 588, in _request resp.raise_for_status() File "/usr/local/lib/python3.8/site-packages/aiohttp/client_reqrep.py", line 941, in raise_for_status raise ClientResponseError( aiohttp.client_exceptions.ClientResponseError: 422, message='Unprocessable Entity', url=URL('https://10.220.0.17:6443/api/v1/namespaces/p09/pods/mypod-0') [2020-05-18 22:02:32,495] kopf.reactor.queuein [ERROR ] functools.partial(<function process_resource_event at 0x7f41cba1d430>, lifecycle=<function asap at 0x7f41cbb74820>, registry=<kopf.toolkits.legacy_registries.SmartGlobalRegistry object at 0x7f41cba328b0>, memories=<kopf.structs.containers.ResourceMemories object at 0x7f41ceff7fa0>, resource=Resource(group='', version='v1', plural='pods'), event_queue=<Queue at 0x7f41cf004250 maxsize=0 _getters[1] tasks=12>) failed with an exception. Ignoring the event. Traceback (most recent call last): File "/usr/local/lib/python3.8/site-packages/kopf/reactor/queueing.py", line 179, in worker await processor(event=event, replenished=replenished) File "/usr/local/lib/python3.8/site-packages/kopf/reactor/processing.py", line 114, in process_resource_event await patching.patch_obj(resource=resource, patch=patch, body=body) File "/usr/local/lib/python3.8/site-packages/kopf/clients/auth.py", line 45, in wrapper return await fn(*args, **kwargs, context=context) File "/usr/local/lib/python3.8/site-packages/kopf/clients/patching.py", line 55, in patch_obj await context.session.patch( File "/usr/local/lib/python3.8/site-packages/aiohttp/client.py", line 588, in _request resp.raise_for_status() File "/usr/local/lib/python3.8/site-packages/aiohttp/client_reqrep.py", line 941, in raise_for_status raise ClientResponseError( aiohttp.client_exceptions.ClientResponseError: 422, message='Unprocessable Entity', url=URL('https://10.220.0.17:6443/api/v1/namespaces/p09/pods/mypod-0') ``` --- > <a href="https://github.com/cliffburdick"><img align="left" height="30" src="https://avatars1.githubusercontent.com/u/30670611?v=4"></a> Commented by [cliffburdick](https://github.com/cliffburdick) at _2020-05-26 16:44:08+00:00_ > &nbsp; [nolar](https://github.com/nolar) / [brutus333](https://github.com/brutus333) I think I see what's happening. Like the OP, I have a controller for a CRD that creates pods. I think what should happen is kopf would add the finalizer to those pods after they're created, but I don't see that happening. Instead, when the pod is deleted kopf tries to add the finalizer: ``` {'metadata': {'finalizers': ['kopf.zalando.org/KopfFinalizerMarker']}} ``` This returns a 422 error code because the pod is already in the terminating state, and this can be reproduced using kubectl as well. I couldn't find the general rule of when kopf is supposed to add the finalizers, but I would think it's before the deletion. --- > <a href="https://github.com/cliffburdick"><img align="left" height="30" src="https://avatars1.githubusercontent.com/u/30670611?v=4"></a> Commented by [cliffburdick](https://github.com/cliffburdick) at _2020-05-26 19:32:18+00:00_ > &nbsp; A bit more information: it looks like the pod did indeed have the finalizer handle to begin with. The on.delete handler is being called when the pod is deleted, and the finalizer is removed (correctly). But for some reason there's a second event getting fired that triggers a re-tag of the pod's finalizer, which fails since it's no longer here. Here's an example: ``` [2020-05-26 19:18:54,707] kopf.objects [DEBUG ] [p09/chim-0] Invoking handler 'TriadPodDelete'. <--- on.delete handler [2020-05-26 19:18:54,708] nhd.TriadController [INFO ] Saw deleted Triad pod p09.chim-0 [2020-05-26 19:18:54,708] nhd.TriadController [INFO ] TriadSet this pod belonged to was deleted. Not restarting pod [2020-05-26 19:18:54,710] kopf.objects [INFO ] [p09/chim-0] Handler 'TriadPodDelete' succeeded. [2020-05-26 19:18:54,711] kopf.objects [INFO ] [p09/chim-0] All handlers succeeded for deletion. [2020-05-26 19:18:54,713] kopf.objects [DEBUG ] [p09/chim-0] Removing the finalizer, thus allowing the actual deletion. [2020-05-26 19:18:54,713] kopf.objects [DEBUG ] [p09/chim-0] Patching with: {'metadata': {'finalizers': []}} [2020-05-26 19:18:54,842] kopf.objects [DEBUG ] [p09/chim-0] Adding the finalizer, thus preventing the actual deletion. [2020-05-26 19:18:54,843] kopf.objects [DEBUG ] [p09/chim-0] Patching with: {'metadata': {'finalizers': ['kopf.zalando.org/KopfFinalizerMarker']}} ``` --- > <a href="https://github.com/nolar"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> Commented by [nolar](https://github.com/nolar) at _2020-05-26 19:59:29+00:00_ > &nbsp; [cliffburdick](https://github.com/cliffburdick) Thank you for this investigation! Can you please verify this with 0.27rc6 in an isolated environment (because it is a release candidate yet)? --- The logic for finalizer addition/removal is located in `kopf/reactor/processing.py` ([link1](https://github.com/nolar/kopf/blob/0.27rc6/kopf/reactor/processing.py#L127-L153) & [link2](https://github.com/nolar/kopf/blob/0.27rc6/kopf/reactor/processing.py#L185-L191)). Previously, e.g. in 0.25, it was in `kopf/reactor/handling.py` ([link3](https://github.com/nolar/kopf/blob/0.25/kopf/reactor/handling.py#L295-L306) & [link4](https://github.com/nolar/kopf/blob/0.25/kopf/reactor/handling.py#L342-L343)). The finalizer decisioning logic was _significantly_ reworked in 0.27 RCs (due to a special type of handlers added: daemons & timers), but it is hard to say which cases were or were not solved as a side-effect compared to 0.25. However, thanks to your investigation, I can make a hypothesis, that in 0.25, the finalizer was added because it used 2 criteria only: a finalizer is needed (there are deletion handlers) AND the finalizer is absent on the object — as seen in the link 3. It could only work normally if the object is removed instantly after the finalizer is removed, and there are no additional cycles, e.g. with other controllers with their own finalziers. In 0.27, an additional 3rd criterion was added (as seen in the link 1): `deletion_is_ongoing` — and if the deletion is indeed ongoing, the finalizer is NOT added even if it seems needed according to the previous two criteria. So, with some above-zero probability, the issue is solved. But this needs to be verified. --- > <a href="https://github.com/cliffburdick"><img align="left" height="30" src="https://avatars1.githubusercontent.com/u/30670611?v=4"></a> Commented by [cliffburdick](https://github.com/cliffburdick) at _2020-05-26 20:01:15+00:00_ > &nbsp; [nolar](https://github.com/nolar) sure! I'll try it out and report back. For what it's worth, when this happens `requires_finalizer` was True, and `has_finalizer` was False --- > <a href="https://github.com/cliffburdick"><img align="left" height="30" src="https://avatars1.githubusercontent.com/u/30670611?v=4"></a> Commented by [cliffburdick](https://github.com/cliffburdick) at _2020-05-26 20:10:35+00:00_ > &nbsp; [nolar](https://github.com/nolar) I can confirm that 0.27rc6 indeed fixes the problem! I did notice a lot more aiohttp traffic to the k8s server while the pod was active compared to 0.25, but I am no longer seeing the 422 error code. I think this one can likely be closed. --- > <a href="https://github.com/nolar"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> Commented by [nolar](https://github.com/nolar) at _2020-05-26 20:30:38+00:00_ > &nbsp; [cliffburdick](https://github.com/cliffburdick) Regarding the traffic: Can you please create a separate issue with some excerpts and data? Is it in bytes or in rps? The byte-measured traffic can increase due to double-storage of Kopf's own status: annotations PLUS status — for smooth transitioning. Previously, it was only in status, but Kubernetes's "structural schemas" broke that since K8s 1.16+. This aspect can be [configured](https://kopf.readthedocs.io/en/latest/configuration/#handling-progress). The rps-measured traffic should not be higher than before. In theory. This is worth checking out. Anyway, I never tested Kopf for performance yet. Maybe, the time comes to start collecting some data & issues for this. --- > <a href="https://github.com/cliffburdick"><img align="left" height="30" src="https://avatars1.githubusercontent.com/u/30670611?v=4"></a> Commented by [cliffburdick](https://github.com/cliffburdick) at _2020-05-26 20:34:59+00:00_ > &nbsp; [nolar](https://github.com/nolar) sure. It was rps -- the bytes didn't increase much. I had some debug print statements in the aio library from trying to debug this issue, and saw those increase. I'll try to write up more detail. --- > <a href="https://github.com/nolar"><img align="left" height="30" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> Commented by [nolar](https://github.com/nolar) at _2020-05-26 20:35:13+00:00_ > &nbsp; [cliffburdick](https://github.com/cliffburdick) PS: 0.27rc6 is going to be 0.27 in a few days — I have finally finished testing it in action. But test it carefully before upgrading anyway — 0.27 is a huge change, and therefore it is risky (despite all backward compatibility and stability attempted) — and 6 (!) release candidates kind of suggest that it wasn't an easy release. --- > <a href="https://github.com/cliffburdick"><img align="left" height="30" src="https://avatars1.githubusercontent.com/u/30670611?v=4"></a> Commented by [cliffburdick](https://github.com/cliffburdick) at _2020-05-26 20:36:19+00:00_ > &nbsp; > [cliffburdick](https://github.com/cliffburdick) PS: 0.27rc6 is going to be 0.27 in a few days — I have finally finished testing it in action. But test it carefully before upgrading anyway — 0.27 is a huge change, and therefore it is risky (despite all backward compatibility and stability attempted) — and 6 (!) release candidates kind of suggest that it wasn't an easy release. Great! Luckily I'm still in the testing phase and it's not officially released anyways, so it shouldn't break anything on my end. --- > <a href="https://github.com/akojima"><img align="left" height="30" src="https://avatars1.githubusercontent.com/u/3386570?v=4"></a> Commented by [akojima](https://github.com/akojima) at _2020-06-24 23:20:32+00:00_ > &nbsp; I still see this issue in 0.27, but only when the operator uses a custom finalizer of its own. Whenever the delete handler removes a finalizer, the 422 exception is thrown, after the handler returns. It's mostly harmless because the delete handler finishes fine and since handlers are supposed to be idempotent anyway, nothing bad happens from the retried delete handler (plus, the extra finalizer is already gone, otherwise I suppose the retries would keep on forever). Still, it would be nice if the exception didn't happen, since that prevents clean test runs and can be confusing when troubleshooting. Let me know if you'd like me to provide a minimal test case.
open
2020-08-18T20:03:21Z
2020-08-23T20:55:24Z
https://github.com/nolar/kopf/issues/309
[ "bug", "archive" ]
kopf-archiver[bot]
0
TencentARC/GFPGAN
deep-learning
529
For Free
Please make this site free. My father doesn't have much money.
open
2024-03-20T04:30:08Z
2024-06-16T21:28:42Z
https://github.com/TencentARC/GFPGAN/issues/529
[]
md-roni-f
3
assafelovic/gpt-researcher
automation
245
smart_token_limit Exceeds Max Tokens
### Description I've been experimenting with different output token limits for research purposes. However, I encountered an error when setting the `smart_token_limit` to 8000 in `gpt_researcher/config/config.py`. ### Error Encountered The following error was thrown:Error code: 400 - {'error': {'message': 'max_tokens is too large: 8000. This model supports at most 4096 completion tokens, whereas you provided 8000.` ### Possible Cause I suspect this issue arises because `config.json` is configured with `smart_llm_model=gpt-4`. Interestingly, in `gpt_researcher/config/config.py`, the model is set to `smart_llm_model=gpt-4-1106-preview`. ### Question Is the discrepancy between the models in `config.json` and `config.py` intentional? Also, I'm running this setup in a Docker environment. Any insights or suggestions for resolving this issue would be greatly appreciated. ### Environment - Docker Thank you!
closed
2023-11-14T11:10:53Z
2023-11-30T14:17:18Z
https://github.com/assafelovic/gpt-researcher/issues/245
[]
outpost-caprice
2
koxudaxi/datamodel-code-generator
fastapi
1,762
Two variations of syntaxes for defining dictionaries/free-form objects give different results
**Describe the bug** According to [this OpenAPI guide](https://swagger.io/docs/specification/data-models/dictionaries/), there are two ways to define free-form objects (a.k.a., a dictionary with values of any type). They are equivalent and we expect the code generator to produce the same results `Optional[Dict[str, Any]] = None`. Unfortunately only one of the syntaxes works as expected. **To Reproduce** **Example schema with syntax 1 (`additionalProperties: true`)** ```yaml components: schemas: CustomObject: type: object properties: config: $ref: '#/components/schemas/Config' Config: type: object additionalProperties: true ``` **Output of syntax 1** ```python class Config(BaseModel): pass model_config = ConfigDict( extra="allow", ) class CustomObject(BaseModel): config: Optional[Config] = None ``` **Example schema with syntax 2 (`additionalProperties: {}`)** ```yaml components: schemas: CustomObject: type: object properties: config: $ref: '#/components/schemas/Config' Config: type: object additionalProperties: {} ``` **Output of syntax 2** ```python class CustomObject(BaseModel): config: Optional[Dict[str, Any]] = None ``` Used commandline: ``` $ datamodel-codegen --input test.yaml --input-file-type openapi --output test.py --snake-case-field --target-python-version 3.9 --use-schema-description --field-constraints --use-annotated --collapse-root-models --use-one-literal-as-default --enum-field-as-literal one --output-model-type pydantic_v2.BaseModel ``` **Expected behavior** We expect both syntaxes will result in **Output of syntax 2**. **Version:** - OS: macOS Ventura 13.6.1 - Python version: 3.9.18 - datamodel-code-generator version: 0.22.1, 0.25.1
open
2023-12-06T19:20:29Z
2023-12-22T15:09:36Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1762
[ "bug" ]
shuangwu5
1
bregman-arie/devops-exercises
python
10,230
Docker : is not available
docker is used in creating image of project
open
2023-10-02T11:08:46Z
2023-10-02T11:08:46Z
https://github.com/bregman-arie/devops-exercises/issues/10230
[]
Madhurchandran
0
gradio-app/gradio
data-visualization
10,813
ERROR: Exception in ASGI application after downgrading pydantic to 2.10.6
### Describe the bug There were reports of the same error in https://github.com/gradio-app/gradio/issues/10662, and the suggestion is to downgrade pydantic, but even after I downgraded pydantic, I am still seeing the same error. I am running my code on Kaggle and the error ``` ERROR: Exception in ASGI application Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/uvicorn/protocols/http/h11_impl.py", line 403, in run_asgi result = await app( # type: ignore[func-returns-value] File "/usr/local/lib/python3.10/dist-packages/uvicorn/middleware/proxy_headers.py", line 60, in __call__ return await self.app(scope, receive, send) File "/usr/local/lib/python3.10/dist-packages/fastapi/applications.py", line 1054, in __call__ await super().__call__(scope, receive, send) File "/usr/local/lib/python3.10/dist-packages/starlette/applications.py", line 112, in __call__ await self.middleware_stack(scope, receive, send) File "/usr/local/lib/python3.10/dist-packages/starlette/middleware/errors.py", line 187, in __call__ raise exc File "/usr/local/lib/python3.10/dist-packages/starlette/middleware/errors.py", line 165, in __call__ await self.app(scope, receive, _send) File "/usr/local/lib/python3.10/dist-packages/gradio/route_utils.py", line 789, in __call__ await self.app(scope, receive, send) File "/usr/local/lib/python3.10/dist-packages/starlette/middleware/exceptions.py", line 62, in __call__ await wrap_app_handling_exceptions(self.app, conn)(scope, receive, send) File "/usr/local/lib/python3.10/dist-packages/starlette/_exception_handler.py", line 53, in wrapped_app raise exc File "/usr/local/lib/python3.10/dist-packages/starlette/_exception_handler.py", line 42, in wrapped_app await app(scope, receive, sender) File "/usr/local/lib/python3.10/dist-packages/starlette/routing.py", line 714, in __call__ await self.middleware_stack(scope, receive, send) File "/usr/local/lib/python3.10/dist-packages/starlette/routing.py", line 734, in app await route.handle(scope, receive, send) File "/usr/local/lib/python3.10/dist-packages/starlette/routing.py", line 288, in handle await self.app(scope, receive, send) File "/usr/local/lib/python3.10/dist-packages/starlette/routing.py", line 76, in app await wrap_app_handling_exceptions(app, request)(scope, receive, send) File "/usr/local/lib/python3.10/dist-packages/starlette/_exception_handler.py", line 53, in wrapped_app raise exc File "/usr/local/lib/python3.10/dist-packages/starlette/_exception_handler.py", line 42, in wrapped_app await app(scope, receive, sender) File "/usr/local/lib/python3.10/dist-packages/starlette/routing.py", line 73, in app response = await f(request) File "/usr/local/lib/python3.10/dist-packages/fastapi/routing.py", line 301, in app raw_response = await run_endpoint_function( File "/usr/local/lib/python3.10/dist-packages/fastapi/routing.py", line 214, in run_endpoint_function return await run_in_threadpool(dependant.call, **values) File "/usr/local/lib/python3.10/dist-packages/starlette/concurrency.py", line 37, in run_in_threadpool return await anyio.to_thread.run_sync(func) File "/usr/local/lib/python3.10/dist-packages/anyio/to_thread.py", line 33, in run_sync return await get_asynclib().run_sync_in_worker_thread( File "/usr/local/lib/python3.10/dist-packages/anyio/_backends/_asyncio.py", line 877, in run_sync_in_worker_thread return await future File "/usr/local/lib/python3.10/dist-packages/anyio/_backends/_asyncio.py", line 807, in run result = context.run(func, *args) File "/usr/local/lib/python3.10/dist-packages/gradio/routes.py", line 584, in main gradio_api_info = api_info(request) File "/usr/local/lib/python3.10/dist-packages/gradio/routes.py", line 615, in api_info api_info = utils.safe_deepcopy(app.get_blocks().get_api_info()) File "/usr/local/lib/python3.10/dist-packages/gradio/blocks.py", line 3019, in get_api_info python_type = client_utils.json_schema_to_python_type(info) File "/usr/local/lib/python3.10/dist-packages/gradio_client/utils.py", line 931, in json_schema_to_python_type type_ = _json_schema_to_python_type(schema, schema.get("$defs")) File "/usr/local/lib/python3.10/dist-packages/gradio_client/utils.py", line 985, in _json_schema_to_python_type des = [ File "/usr/local/lib/python3.10/dist-packages/gradio_client/utils.py", line 986, in <listcomp> f"{n}: {_json_schema_to_python_type(v, defs)}{get_desc(v)}" File "/usr/local/lib/python3.10/dist-packages/gradio_client/utils.py", line 993, in _json_schema_to_python_type f"str, {_json_schema_to_python_type(schema['additionalProperties'], defs)}" File "/usr/local/lib/python3.10/dist-packages/gradio_client/utils.py", line 939, in _json_schema_to_python_type type_ = get_type(schema) File "/usr/local/lib/python3.10/dist-packages/gradio_client/utils.py", line 898, in get_type if "const" in schema: TypeError: argument of type 'bool' is not iterable ``` ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ``` !pip install -Uqq fastai !pip uninstall gradio -y !pip uninstall pydantic -y !pip cache purge !pip install pydantic==2.10.6 !pip install gradio import gradio as gr from fastai.learner import load_learner learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) result {labels[i]: float(probs[i].item()) for i in range(len(labels))} gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label() ).launch(share=True) ``` ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.21.0 gradio_client version: 1.7.2 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 22.1.0 anyio: 3.7.1 audioop-lts is not installed. fastapi: 0.115.11 ffmpy: 0.5.0 gradio-client==1.7.2 is not installed. groovy: 0.1.2 httpx: 0.28.1 huggingface-hub: 0.29.0 jinja2: 3.1.4 markupsafe: 2.1.5 numpy: 1.26.4 orjson: 3.10.12 packaging: 24.2 pandas: 2.2.3 pillow: 11.0.0 pydantic: 2.10.6 pydub: 0.25.1 python-multipart: 0.0.20 pyyaml: 6.0.2 ruff: 0.11.0 safehttpx: 0.1.6 semantic-version: 2.10.0 starlette: 0.46.1 tomlkit: 0.13.2 typer: 0.15.1 typing-extensions: 4.12.2 urllib3: 2.3.0 uvicorn: 0.34.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.12.0 httpx: 0.28.1 huggingface-hub: 0.29.0 packaging: 24.2 typing-extensions: 4.12.2 websockets: 14.1 ``` ### Severity Blocking usage of gradio
open
2025-03-15T15:27:56Z
2025-03-17T18:26:54Z
https://github.com/gradio-app/gradio/issues/10813
[ "bug" ]
yumengzhao92
1
jupyterhub/zero-to-jupyterhub-k8s
jupyter
3,442
Not possible to add a ServiceAccount to the Prepuller
### Bug description Even though `prepuller.hook.serviceaccount` is properly configured, these changes aren't applied in the pods ### How to reproduce 1. Configure `prepuller.hook.serviceaccount` with a service account 2. Apply the changes 3. Check that the pod `image-puller` uses the default service account, even though that was not the service account we defined #### Expected behaviour The Service Account should be properly set #### Actual behaviour The Service Account used is the default and we have no way to change it
closed
2024-06-23T11:06:34Z
2024-10-15T09:20:46Z
https://github.com/jupyterhub/zero-to-jupyterhub-k8s/issues/3442
[ "bug" ]
samyuh
2
thtrieu/darkflow
tensorflow
586
Failed to use tiny yolo
Hi, i tried to use tiny-yolo.cfg and tiny-yolo.weights, when i run the command `python3 flow --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights` I found some errors like this > Parsing ./cfg/tiny-yolo.cfg Parsing cfg/tiny-yolo.cfg Loading bin/tiny-yolo.weights ... Traceback (most recent call last): File "flow", line 6, in <module> cliHandler(sys.argv) File "/home/asus/darkflow/darkflow/cli.py", line 26, in cliHandler tfnet = TFNet(FLAGS) File "/home/asus/darkflow/darkflow/net/build.py", line 58, in __init__ darknet = Darknet(FLAGS) File "/home/asus/darkflow/darkflow/dark/darknet.py", line 27, in __init__ self.load_weights() File "/home/asus/darkflow/darkflow/dark/darknet.py", line 82, in load_weights wgts_loader = loader.create_loader(*args) File "/home/asus/darkflow/darkflow/utils/loader.py", line 105, in create_loader return load_type(path, cfg) File "/home/asus/darkflow/darkflow/utils/loader.py", line 19, in __init__ self.load(*args) File "/home/asus/darkflow/darkflow/utils/loader.py", line 70, in load val = walker.walk(new.wsize[par]) File "/home/asus/darkflow/darkflow/utils/loader.py", line 127, in walk 'Over-read {}'.format(self.path) AssertionError: Over-read bin/tiny-yolo.weights But when i used yolo.cfg and yolo.weights , no errors found like that. Anyone can solve this problem ?
open
2018-02-19T01:37:45Z
2019-04-17T13:39:23Z
https://github.com/thtrieu/darkflow/issues/586
[]
alfamousts
4
dgtlmoon/changedetection.io
web-scraping
2,336
Text taken from wrong step of browser steps
**Describe the bug** I'm having the same problem as issue #1911, except the text is being taken from step 3 of 4. I can see the saved snapshot is correct, but the saved text is not. When looking at the steps on disk that were grabbed, I can see the text matches step3.html, and the screenshot matches step4.html. Step 3 takes a few seconds to load. Step 4 is "wait for seconds" to ensure the page is fully loaded. I also tried setting "Wait seconds before extracting text" under the request tab. Neither fix the issue. **Version** v0.45.20 **To Reproduce** Steps to reproduce the behavior: 1. Create browser steps with 4 steps, where step 3 takes a few seconds to load. 2. Run it and see that the text is from step 3 and the snapshot is from step 4. **Expected behavior** The text matches the saved snapshot. **Screenshots** I know you want me to share the URL and steps, but unfortunately this one is going to a place that would reveal medical information so I don't want to do that. **Desktop (please complete the following information):** - OS: [e.g. iOS] MacOS - Browser [e.g. chrome, safari] Firefox - Version [e.g. 22] 124.0.2
closed
2024-04-26T00:29:59Z
2024-04-29T10:19:18Z
https://github.com/dgtlmoon/changedetection.io/issues/2336
[ "triage", "browser-steps" ]
fhriley
2
nteract/papermill
jupyter
253
Hiding Ingested Parameters when executing with `--report-mode`
I want to be able to hide the ingested parameters at least when running in report mode. Since a new cell is created by papermill when feeding in params, there is no way to add metadata for that cell in the notebook. When you want to execute a notebook in order to generate some sort of report where no code is visible I think that in most cases the ingested parameters should be hidden. #135 I'm not super familiar with the codebase but would it be as simple as adding: ``` newcell.metadata['jupyter']['source_hidden'] = True ``` Around here -> https://github.com/nteract/papermill/blob/master/papermill/execute.py#L112-L114 ? ---- Furthermore, it would be nice to have a neat way of handling secrets. According to my understanding it's currently not a very good idea to ingest secrets as parameters since, they are made available in the output notebook.
closed
2018-11-13T20:14:04Z
2018-11-14T16:55:23Z
https://github.com/nteract/papermill/issues/253
[]
LeonardAukea
2
nalepae/pandarallel
pandas
264
Memory usage increases across multiple `parallel_apply`
## General - **Operating System**: Linux - **Python version**: 3.10.8 - **Pandas version**: 1.5.3 - **Pandarallel version**: 1.6.5 ## Acknowledgement - [x] My issue is **NOT** present when using `pandas` without alone (without `pandarallel`) - [x] If I am on **Windows**, I read the [Troubleshooting page](https://nalepae.github.io/pandarallel/troubleshooting/) before writing a new bug report ## Bug description If I run continuous data processing tasks, each with a huge DataFrame using `parallel_apply` , their MEM footprints somehow accumulates. ### Observed behavior My code logic looks like below. ``` pandarallel.initialize(progress_bar=True, nb_workers=120) for file_path in file_paths: df = pd.read_csv(file_path) df = pd.DataFrame.from_dict( df.sample(frac=1.0).parallel_apply(SOME_FUNCTION, axis=1).to_dict(), orient="columns", ) ``` All tasks should have similar footprints in MEM. However, from the below image, one can tell the MEM drops after the first task is finished but soon climbs back up after loading the second task. <img width="1758" alt="image" src="https://github.com/nalepae/pandarallel/assets/70972517/bb8b78a1-0ee7-42e8-b740-0a194fa182fb"> ### Expected behavior Given that two tasks have similar MEM footprints, I would assume the MEM pattern to be repeated but not accumulated. ## Minimal but working code sample to ease bug fix for `pandarallel` team As the pseudocode I attached above.
closed
2024-03-04T19:56:13Z
2024-07-23T15:06:52Z
https://github.com/nalepae/pandarallel/issues/264
[]
hogan-roblox
3
aminalaee/sqladmin
fastapi
826
Add Inline models like Django, Flask-Admin
![django-inline-in-fieldset-with-css](https://github.com/user-attachments/assets/271255a0-ec6f-43e9-9557-01ff85a76265)
closed
2024-10-07T07:26:15Z
2024-10-14T15:33:15Z
https://github.com/aminalaee/sqladmin/issues/826
[]
logicli0n
1
scrapy/scrapy
python
5,755
警报:Passing a 'spider' argument to ExecutionEngine
请问大佬这个警报是什么意思啊,我该怎么解决 运行爬虫时: 2022-12-10 21:09:02 [py.warnings] WARNING: C:\Users\wsy\AppData\Roaming\Python\Python310\site-packages\scrapy_redis\spiders .py:197: ScrapyDeprecationWarning: Passing a 'spider' argument to ExecutionEngine.crawl is deprecated self.crawler.engine.crawl(req, spider=self)
closed
2022-12-11T09:06:22Z
2022-12-12T10:51:08Z
https://github.com/scrapy/scrapy/issues/5755
[]
maintain99
2
flairNLP/flair
pytorch
3,450
[Bug]: transformers 4.40.0 assumes infinite sequence length on many models and breaks
### Describe the bug This is due to a regression on the transformers side, see: https://github.com/huggingface/transformers/issues/30643 for details. Flair uses the `tokenizer.model_max_length` in the TransformerEmbeddings to truncate (if `allow_long_sentences=False`) or split (if `allow_long_sentences=True`) long sentences. ### To Reproduce ```python from flair.data import Sentence from flair.embeddings import TransformerWordEmbeddings emb = TransformerWordEmbeddings("distilbert-base-cased", allow_long_sentences=True) emb.embed(Sentence("Hallo World "*1024)) ``` ### Expected behavior The code should run through without any issue. ### Logs and Stack traces ```stacktrace Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Bened\anaconda3\envs\py312\Lib\site-packages\flair\embeddings\base.py", line 50, in embed self._add_embeddings_internal(data_points) File "C:\Users\Bened\anaconda3\envs\py312\Lib\site-packages\flair\embeddings\transformer.py", line 705, in _add_embeddings_internal embeddings = self._forward_tensors(tensors) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Bened\anaconda3\envs\py312\Lib\site-packages\flair\embeddings\transformer.py", line 1424, in _forward_tensors return self.forward(**tensors) ^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Bened\anaconda3\envs\py312\Lib\site-packages\flair\embeddings\transformer.py", line 1324, in forward hidden_states = self.model(input_ids, **model_kwargs)[-1] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Bened\anaconda3\envs\py312\Lib\site-packages\torch\nn\modules\module.py", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Bened\anaconda3\envs\py312\Lib\site-packages\torch\nn\modules\module.py", line 1541, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Bened\anaconda3\envs\py312\Lib\site-packages\transformers\models\distilbert\modeling_distilbert.py", line 806, in forward embeddings = self.embeddings(input_ids, inputs_embeds) # (bs, seq_length, dim) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Bened\anaconda3\envs\py312\Lib\site-packages\torch\nn\modules\module.py", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Bened\anaconda3\envs\py312\Lib\site-packages\torch\nn\modules\module.py", line 1541, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Bened\anaconda3\envs\py312\Lib\site-packages\transformers\models\distilbert\modeling_distilbert.py", line 144, in forward embeddings = input_embeds + position_embeddings # (bs, max_seq_length, dim) ~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~ RuntimeError: The size of tensor a (3074) must match the size of tensor b (512) at non-singleton dimension 1 ``` ### Screenshots _No response_ ### Additional Context This bug is on the side of https://github.com/huggingface/transformers/issues/30643 therefore this issue is only for visiblity. If you run into this problem, you can hotfix it in 2 ways: * pin `transformers<4.40.0` * provide the `model_max_length` parameter yourself, e.g. `emb = TransformerWordEmbeddings("distilbert-base-cased", allow_long_sentences=True, model_max_length=512)` ### Environment #### Versions: ##### Flair 0.13.1 ##### Pytorch 2.3.0+cpu ##### Transformers 4.40.0 #### GPU False
closed
2024-05-03T17:35:23Z
2024-12-31T13:38:55Z
https://github.com/flairNLP/flair/issues/3450
[ "bug" ]
helpmefindaname
3
encode/httpx
asyncio
2,276
GET method doesn't support body payload
It would be nice to be able to send a body with a GET request. I understand that this may not be considered a good practice, but this is necessary for the API that I have to work with. RFC 2616, section 4.3 clearly states: > A message-body **MUST NOT be included** in a request **if the specification of the request method** (section 5.1.1) **does not allow sending an entity-body** in requests. > https://tools.ietf.org/html/rfc2616#section-4.3 _However_, in the entirety of [section 9.3](https://tools.ietf.org/html/rfc2616#section-9.3), the section defining the GET verb, **nothing prevents a GET request from having a body**. But before you draw any conclusions - the functionality defined for the GET verb also **does not include any logic involving the message body**. In other words, if we are to follow the specification: 1. **It is possible** to send a message body with a GET request per specification. 2. However, the server responding to the GET request **must ignore the body** to follow the standard. Essentially, there is no point, per standard, to send a body with a GET request, even though it is not explicitly disallowed. [Roy T. Fielding](http://roy.gbiv.com/) backs this interpretation up: > ...**any HTTP request message is allowed to contain a message body**, and thus must parse messages with that in mind. **Server semantics for GET**, however, are restricted such that **a body**, if any, **has no semantic meaning to the request**. The requirements on parsing are separate from the requirements on method semantics. > So, yes, **you can send a body with GET, and no, it is never useful to do so**. > https://groups.yahoo.com/neo/groups/rest-discuss/conversations/messages/9962 More about this: https://github.com/swagger-api/swagger-ui/issues/2136
closed
2022-06-23T05:30:47Z
2022-06-23T07:41:33Z
https://github.com/encode/httpx/issues/2276
[]
ZhymabekRoman
2
sherlock-project/sherlock
python
2,369
False positive for: HackenProof
### Additional info Searching `goslnt` reliably produces a false positive for HackenProof, and unreliably produced false positives for ArtStation (redirected to 404) and AskFM. ### Code of Conduct - [X] I agree to follow this project's Code of Conduct
open
2024-11-17T23:14:48Z
2024-11-26T01:56:07Z
https://github.com/sherlock-project/sherlock/issues/2369
[ "false positive" ]
sudo-nano
3
google-research/bert
nlp
559
problem multiclass text classification
Hi, I am trying to classify text in 34 mutually exclusive classes using BERT. After preparing train, dev and test TSV files, and I try to execute the command for training and testing `!python bert/run_classifier.py \ --task_name=cola \ --do_train=true \ --do_eval=true \ --data_dir=./Bert_Input_Folder \ --vocab_file=./uncased_L-24_H-1024_A-16/vocab.txt \ --bert_config_file=./uncased_L-24_H-1024_A-16/bert_config.json \ --init_checkpoint=./uncased_L-24_H-1024_A-16/bert_model.ckpt \ --max_seq_length=512 \ --train_batch_size=32 \ --learning_rate=2e-5 \ --num_train_epochs=3.0 \ --output_dir=./Bert_Output_Folder` I get the following error `WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md * https://github.com/tensorflow/addons If you depend on functionality not listed there, please file an issue. WARNING:tensorflow:Estimator's model_fn (<function model_fn_builder.<locals>.model_fn at 0x7f4b945a01e0>) includes params argument, but params are not passed to Estimator. INFO:tensorflow:Using config: {'_model_dir': './Bert_Output_Folder', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': 1000, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f4b94f366a0>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=1000, num_shards=8, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None), '_cluster': None} INFO:tensorflow:_TPUContext: eval_on_tpu True WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False. INFO:tensorflow:Writing example 0 of 23834 Traceback (most recent call last): File "bert/run_classifier.py", line 981, in <module> tf.app.run() File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/platform/app.py", line 125, in run _sys.exit(main(argv)) File "bert/run_classifier.py", line 870, in main train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) File "bert/run_classifier.py", line 490, in file_based_convert_examples_to_features max_seq_length, tokenizer) File "bert/run_classifier.py", line 459, in convert_single_example label_id = label_map[example.label] KeyError: '33'` In the run_classifier.py file, I have modified the get_labels() function, originally written for a binary classification task, to return all 34 classes: `def get_labels(self): """See base class.""" return ["0", "1", "2", ..., "33"]` Any idea what is wrong or if I am missing additional steps? Thanks!
open
2019-04-07T02:13:04Z
2020-09-13T14:47:59Z
https://github.com/google-research/bert/issues/559
[]
86mm86
14
flavors/django-graphql-jwt
graphql
22
graphql_jwt.relay.ObtainJSONWebToken returns token when wrong credentials are submitted and Authorization header is set
I ran into a case when I had two users, `A` and `B`, and was sending a valid token of `A` when trying to obtain a new token for `B`. The mutation doesn't return any error, but instead returns a new token for `A`. I dig a little in the code and I found out it was because of using `authenticate` here: https://github.com/flavors/django-graphql-jwt/blob/master/graphql_jwt/decorators.py#L69 , as the middleware will authenticate the user using the token instead of validating against the credentials. So I ended up in a situation where, no matter what I was sending in the mutation input args, I was getting a valid token for another user. I believe that mutation should validate the credentials instead of using all middlewares to authenticate the user. A possible fix that pops in my mind right now would be calling `authenticate` only with username and password. What do you think about this? Thank you.
closed
2018-06-21T13:01:10Z
2018-06-29T20:18:32Z
https://github.com/flavors/django-graphql-jwt/issues/22
[ "bug" ]
vladcalin
2
hankcs/HanLP
nlp
1,214
感知机模型人名识别错误
<!-- 注意事项和版本号必填,否则不回复。若希望尽快得到回复,请按模板认真填写,谢谢合作。 --> ## 注意事项 请确认下列注意事项: * 我已仔细阅读下列文档,都没有找到答案: - [首页文档](https://github.com/hankcs/HanLP) - [wiki](https://github.com/hankcs/HanLP/wiki) - [常见问题](https://github.com/hankcs/HanLP/wiki/FAQ) * 我已经通过[Google](https://www.google.com/#newwindow=1&q=HanLP)和[issue区检索功能](https://github.com/hankcs/HanLP/issues)搜索了我的问题,也没有找到答案。 * 我明白开源社区是出于兴趣爱好聚集起来的自由社区,不承担任何责任或义务。我会礼貌发言,向每一个帮助我的人表示感谢。 * [x] 我在此括号内输入x打钩,代表上述事项确认完毕。 ## 版本号 <!-- 发行版请注明jar文件名去掉拓展名的部分;GitHub仓库版请注明master还是portable分支 --> 当前最新版本号是: 我使用的版本是:pyhanlp 0.1.45 <!--以上属于必填项,以下可自由发挥--> ## 我的问题 <!-- 请详细描述问题,越详细越可能得到解决 --> 对句子 “这时我女儿凤霞推门进来,又摇摇晃晃地把门关上。凤霞尖声细气地对我说:”分词, 会得到“。凤霞”也是个人名这种匪夷所思的结果。把句号改成逗号,分词结果就会变正常。 我已将“凤霞”加入词典,结果是相同的 ## 复现问题 <!-- 你是如何操作导致产生问题的?比如修改了代码?修改了词典或模型?--> ### 步骤 1. 首先…… 2. 然后…… 3. 接着…… ### 触发代码 ``` txt = "这时我女儿凤霞推门进来,又摇摇晃晃地把门关上,凤霞尖声细气地对我说:" data_path = "/home/dream/miniconda3/envs/py37/lib/python3.7/site-packages/pyhanlp/static/data/model/perceptron/large/cws.bin" PerceptronLexicalAnalyzer = JClass('com.hankcs.hanlp.model.perceptron.PerceptronLexicalAnalyzer') analyzer = PerceptronLexicalAnalyzer(data_path, HanLP.Config.PerceptronPOSModelPath, HanLP.Config.PerceptronNERModelPath) print(analyzer.seg(txt)) ``` ### 期望输出 <!-- 你希望输出什么样的正确结果?--> ``` [这时/r, 我/r, 女儿/n, 凤霞/nr, 推门/v, 进来/v, ,/w, 又/d, 摇摇晃晃/v, 地/u, 把/p, 门关/n, 上/f, 。/w, 凤霞/nr, 尖声/nz, 细气/a, 地/u, 对/p, 我/r, 说/v, :/w] ``` ### 实际输出 <!-- HanLP实际输出了什么?产生了什么效果?错在哪里?--> ``` [这时/r, 我/r, 女儿/n, 凤霞/nr, 推门/v, 进来/v, ,/w, 又/d, 摇摇晃晃/v, 地/u, 把/p, 门关/n, 上/f, 。 凤霞/nr, 尖声/nz, 细气/a, 地/u, 对/p, 我/r, 说/v, :/w] ``` ## 其他信息 <!-- 任何可能有用的信息,包括截图、日志、配置文件、相关issue等等。-->
closed
2019-06-28T03:36:45Z
2020-03-20T10:09:38Z
https://github.com/hankcs/HanLP/issues/1214
[ "question" ]
lingjiameng
2
kizniche/Mycodo
automation
490
Feature: Dedicated AC/Heating Function
This thread is for the development of a dedicated AC/Heating Function that incorporates the benefits of PID control with the features required for operating an efficient AC/Heating system. Additionally, features that would enable low temperatures with a wall/compact AC system can be integrated ([coolbot](https://www.storeitcold.com/) clone). Ref: #484 #346
closed
2018-06-05T15:40:23Z
2020-07-23T18:47:12Z
https://github.com/kizniche/Mycodo/issues/490
[ "enhancement" ]
kizniche
23
huggingface/datasets
tensorflow
6,854
Wrong example of usage when config name is missing for community script-datasets
As reported by @Wauplin, when loading a community dataset with script, there is a bug in the example of usage of the error message if the dataset has multiple configs (and no default config) and the user does not pass any config. For example: ```python >>> ds = load_dataset("google/fleurs") ValueError: Config name is missing. Please pick one among the available configs: ['af_za', 'am_et', 'ar_eg', 'as_in', 'ast_es', 'az_az', 'be_by', 'bg_bg', 'bn_in', 'bs_ba', 'ca_es', 'ceb_ph', 'ckb_iq', 'cmn_hans_cn', 'cs_cz', 'cy_gb', 'da_dk', 'de_de', 'el_gr', 'en_us', 'es_419', 'et_ee', 'fa_ir', 'ff_sn', 'fi_fi', 'fil_ph', 'fr_fr', 'ga_ie', 'gl_es', 'gu_in', 'ha_ng', 'he_il', 'hi_in', 'hr_hr', 'hu_hu', 'hy_am', 'id_id', 'ig_ng', 'is_is', 'it_it', 'ja_jp', 'jv_id', 'ka_ge', 'kam_ke', 'kea_cv', 'kk_kz', 'km_kh', 'kn_in', 'ko_kr', 'ky_kg', 'lb_lu', 'lg_ug', 'ln_cd', 'lo_la', 'lt_lt', 'luo_ke', 'lv_lv', 'mi_nz', 'mk_mk', 'ml_in', 'mn_mn', 'mr_in', 'ms_my', 'mt_mt', 'my_mm', 'nb_no', 'ne_np', 'nl_nl', 'nso_za', 'ny_mw', 'oc_fr', 'om_et', 'or_in', 'pa_in', 'pl_pl', 'ps_af', 'pt_br', 'ro_ro', 'ru_ru', 'sd_in', 'sk_sk', 'sl_si', 'sn_zw', 'so_so', 'sr_rs', 'sv_se', 'sw_ke', 'ta_in', 'te_in', 'tg_tj', 'th_th', 'tr_tr', 'uk_ua', 'umb_ao', 'ur_pk', 'uz_uz', 'vi_vn', 'wo_sn', 'xh_za', 'yo_ng', 'yue_hant_hk', 'zu_za', 'all'] Example of usage: `load_dataset('fleurs', 'af_za')` ``` Note the example of usage in the error message suggests loading "fleurs" instead of "google/fleurs".
closed
2024-05-02T06:59:39Z
2024-05-03T15:51:59Z
https://github.com/huggingface/datasets/issues/6854
[ "bug" ]
albertvillanova
0
ploomber/ploomber
jupyter
859
Shell script task with multiple products
I get the following error ``` Error: Failed to initialize task 'clean' 'Getitem' object has no attribute 'name' ``` when running the pipeline ### pipeline.yaml ```yaml tasks: - source: get_data.py product: nb: get_data.ipynb data: data.csv - source: clean.sh product: output.log ``` ### get_data.py ```python import numpy as np import pandas as pd # + tags=['parameters'] upstream = None product = None # - data = pd.DataFrame( {"A": np.random.randint(0, 10, 10), "B": np.random.randint(10, 20, 10)} ) data.to_csv(product["data"]) ``` ### clean.sh ```sh echo "Starting" >> {{product}} cat {{upstream['get_data']['data']}} ``` I tried to follow these [docs](https://docs.ploomber.io/en/latest/user-guide/shell.html#shell-tasks), but there wasn't an example using a shell script downstream of a Python script. FWIW, I found a work around by hard-coding my file paths into my shell script.
closed
2022-06-16T15:42:26Z
2022-06-17T15:05:02Z
https://github.com/ploomber/ploomber/issues/859
[]
reesehopkins
1
robotframework/robotframework
automation
4,497
Libdoc: Support setting dark or light mode explicitly
The HTML documentation generated by libdoc can be opened in an IDE, where many people use a dark theme. The contrast between the Robot Framework code on a dark background and the library documentation with a white background is unpleasant. This problem can be solved if libdoc has a stylesheet parameter to specify the CSS file that should be used to style the documentation. And maybe libdoc should include a light and a dark stylesheet.
closed
2022-10-06T11:01:38Z
2022-10-11T17:37:11Z
https://github.com/robotframework/robotframework/issues/4497
[ "enhancement", "priority: medium", "rc 2" ]
mardukbp
16
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
1,457
Pre-trained Model Archetecture
Hi @junyanz , I am using your pre-trained model to compare with my model. I downloaded the models from [link](http://efrosgans.eecs.berkeley.edu/cyclegan/pretrained_models/), but I am confused by the structure of the models. How should I load the models? It seems the .pth file contains parameters only and I could not find any information about the structure. Best/
open
2022-07-13T13:39:36Z
2022-07-13T13:40:59Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1457
[]
WuhaoStatistic
0
tensorflow/tensor2tensor
deep-learning
1,785
Common Voice Clean dataset giving error when using t2t-datagen
### Description I've been trying to generate the common voice dataset to improve the ASR checkpoint that was trained on librispeech but when using the command it downloads the file properly but seems to not find cv_corpus_v1. I think it probably doesn't extract the .tar properly ### Environment information ``` OS: Google Colab $ pip freeze | grep tensor mesh-tensorflow==0.1.9 tensor2tensor==1.11.0 tensorboard==1.14.0 tensorboardcolab==0.0.22 tensorflow==1.14.0 tensorflow-datasets==2.0.0 tensorflow-estimator==1.14.0 tensorflow-gan==2.0.0 tensorflow-hub==0.7.0 tensorflow-metadata==0.21.1 tensorflow-privacy==0.2.2 tensorflow-probability==0.7.0 $ python -V 3.6.9 ``` ### For bugs: reproduction and error logs ``` # Steps to reproduce: use !t2t-datagen \ --problem=common_voice_clean \ --data_dir=final_dir \ --tmp_dir=tmp_dir You should see the download happen smoothly until it finishes and get a FileNotFoundError ``` ``` # Error logs: INFO:tensorflow:Successfully downloaded cv_corpus_v1.tar.gz, 12852160484 bytes. I0204 09:30:56.961190 140237164398464 generator_utils.py:246] Successfully downloaded cv_corpus_v1.tar.gz, 12852160484 bytes. Traceback (most recent call last): File "/usr/local/bin/t2t-datagen", line 28, in <module> tf.app.run() File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/platform/app.py", line 40, in run _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef) File "/usr/local/lib/python3.6/dist-packages/absl/app.py", line 299, in run _run_main(main, args) File "/usr/local/lib/python3.6/dist-packages/absl/app.py", line 250, in _run_main sys.exit(main(argv)) File "/usr/local/bin/t2t-datagen", line 23, in main t2t_datagen.main(argv) File "/usr/local/lib/python3.6/dist-packages/tensor2tensor/bin/t2t_datagen.py", line 198, in main generate_data_for_registered_problem(problem) File "/usr/local/lib/python3.6/dist-packages/tensor2tensor/bin/t2t_datagen.py", line 260, in generate_data_for_registered_problem problem.generate_data(data_dir, tmp_dir, task_id) File "/usr/local/lib/python3.6/dist-packages/tensor2tensor/data_generators/common_voice.py", line 166, in generate_data self.generator(data_dir, tmp_dir, self.TEST_DATASETS), test_paths) File "/usr/local/lib/python3.6/dist-packages/tensor2tensor/data_generators/generator_utils.py", line 165, in generate_files for case in generator: File "/usr/local/lib/python3.6/dist-packages/tensor2tensor/data_generators/common_voice.py", line 136, in generator data_tuples = _collect_data(raw_data_dir) File "/usr/local/lib/python3.6/dist-packages/tensor2tensor/data_generators/common_voice.py", line 53, in _collect_data filename for filename in os.listdir(directory) FileNotFoundError: [Errno 2] No such file or directory: 'tmp_dir/cv_corpus_v1' ```
closed
2020-02-04T09:44:59Z
2020-02-04T14:03:17Z
https://github.com/tensorflow/tensor2tensor/issues/1785
[]
RegaliaXYZ
0
ageitgey/face_recognition
machine-learning
1,251
Getting irregular output when running compare faces with lists
* face_recognition version: 1.3.0 * Python version: 3.9.0 * Operating System: Windows I am trying to compare a sample face image with a list of encodings which are from stored in my files When I ran the compare_faces function on the sample image encoding and the list of encodings (encodings for only 2 images) I got the following: ``` [array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]), array([ True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True])] ``` ## What I Did ``` #empty dictionary for encodings in folders dictionary = {name:[] for name in os.listdir(ROOT)} #appending encodings to above initialized dictionary for folder in os.listdir(ROOT): for image in os.listdir(os.path.join(ROOT,folder)): img = face_recognition.load_image_file(f"{ROOT}/{folder}/{image}") dictionary[folder].append(face_recognition.face_encodings(img)) #dictionary looks like: {name:[list of encodings]} #load single sample image for comparison my_image = face_recognition.load_image_file("vedank.jpg") face_encodings = face_recognition.face_encodings(my_image,face_recognition.face_locations(my_image)) #user input to access the above dictionary user = input("enter your username") #print results print(face_recognition.compare_faces(np.array(face_encodings[0]),np.array(dictionary[user]))) ``` While playing around with the code, I realized that appending the encodings to lists causes this problem. Any way I can still use the above method and get proper results?
closed
2020-12-08T12:46:02Z
2020-12-09T11:19:25Z
https://github.com/ageitgey/face_recognition/issues/1251
[]
VedankPande
0
tfranzel/drf-spectacular
rest-api
749
Question: Using `TypedDict` as response
Hi! I saw in another issue that now we can use `TypedDict` class in the response instead of a serializer. Is it possible to provide an example or a documentation link elaborating this behavior? Thanks!
closed
2022-05-30T20:52:53Z
2022-06-18T13:37:21Z
https://github.com/tfranzel/drf-spectacular/issues/749
[]
kmehran1106
1
apache/airflow
machine-learning
47,501
AIP-38 | Add API Endpoint to serve connection types and extra form meta data
### Body To be able to implement #47496 and #47497 the connection types and extra form elements meta data needs to be served by an additional API endpoint. Note: The extra form parameters should be served in the same structure and format like the DAG params such that the form elements of FlexibleForm can be re-used in the UI. Assumption is that the needed connection types are serialized in a DB table. (No dependency to providers manager should be added to API server) ### Committer - [x] I acknowledge that I am a maintainer/committer of the Apache Airflow project.
closed
2025-03-07T14:54:17Z
2025-03-12T22:28:20Z
https://github.com/apache/airflow/issues/47501
[ "kind:feature", "area:API", "kind:meta" ]
jscheffl
0
encode/uvicorn
asyncio
1,230
Bug: calling `WebSocketProtocol.asgi_receive` returns close frame even if there are data messages before close frame in read queue
### Checklist - [x] The bug is reproducible against the latest release and/or `master`. - [x] There are no similar issues or pull requests to fix it yet. ### Describe the bug Once a client sends a close frame, calling `WebSocketProtocol.asgi_receive` returns `{"type": "websocket.disconnect", "code": exc.code}`, even if there are unread messages in the server's read queue that we sent **before** the close frame. ### To reproduce The easiest way for me to repro is to use an ASGI application framework written on top of `uvicorn`, e.g. FastAPI. - Install FastAPI and create a module `main.py` - Run the websocket server: `uvicorn main:app --reload --host 0.0.0.0 --port 8001` - Open the browser and create a websocket connection to this test endpoint `main.py` ```py import asyncio from fastapi import FastAPI from starlette.websockets import WebSocket app = FastAPI() @app.websocket("/echo") async def echo_ws(ws: WebSocket): await ws.accept() await asyncio.sleep(1) data = await ws.receive_bytes() print(data) ``` Paste the following into the browser console: ```js var socket = new WebSocket('ws://localhost:8001/atom_ws/echo') socket.onopen = () => { console.log('socket opened') socket.send('first') socket.send('second') socket.close() } ``` ### Expected behavior The call to `print(data)` should print `first`, and not raise a `starlette.websockets.WebSocketDisconnect` exception. ### Actual behavior `starlette.websockets.WebSocketDisconnect` is raised on the first read, even though messages were successfully sent to the server before the close frame, and these messages are in the connection's read queue. ### Debugging material Logs when running the server code from above: <img width="839" alt="Screen Shot 2021-11-01 at 9 24 46 PM" src="https://user-images.githubusercontent.com/1524088/139782096-84024344-6044-453e-9b8f-dff193aef53a.png"> If you instead run a simple websocket server written with code directly from the `websockets` library, [as suggested in their docs](https://websockets.readthedocs.io/en/3.0/intro.html#basic-example), you don't have this problem: ```py import asyncio import websockets async def echo(ws, path): print(f"accepted connection to path {path}") await asyncio.sleep(1) # By this time client has already closed connection # In uvicorn, `await ws.ensure_open()` is called before recv; this is the bug data = await ws.recv() print(data) # Prints first data = await ws.recv() print(data) # Prints second # The next `recv` call raises `websockets.exceptions.ConnectionClosedError`, because it reads the close frame data = await ws.recv() start_server = websockets.serve(echo, 'localhost', 8001) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever() ``` We can see that the `first` and `second` messages are received, even though the client sent the close frame before the server tried to read any messages: <img width="933" alt="Screen Shot 2021-11-01 at 9 30 37 PM" src="https://user-images.githubusercontent.com/1524088/139782584-0e436870-0c25-4d6b-b48e-11fdd36bec35.png"> ### Environment - MacOS 10.14.6 / Python 3.8.5 / uvicorn 0.15.0 (this bug is still present in 0.16.0, and in the latest commit in `master`) - Can also repro on Ubuntu 20.04 - The exact command you're running uvicorn with, all flags you passed included: `uvicorn main:app --reload --host 0.0.0.0 --port 8001` ### Additional context The bug is caused by this line of code: https://github.com/encode/uvicorn/blob/48edc940522a3d0d7529922a23ac019eeb53f629/uvicorn/protocols/websockets/websockets_impl.py#L286-L286 ```py await self.ensure_open() data = await self.recv() ``` This change was made in this commit: https://github.com/encode/uvicorn/commit/9a3040c9cd56844631b28631acd5862b5a4eafdd `uvicorn` depends on `websockets` under the hood, but it shouldn't be calling `ensure_open` before calling `recv`, because `ensure_open` raises an exception if a close frame has been sent by the client **even if there are earlier unread messages in the read queue**. I'm not sure what the intent of that line of code is, but the server shouldn't raise a "connection closed" exception on read until the actual close frame is read. Otherwise, neither the client nor the server has any way of knowing that data that was successfully sent from the client to the server was ignored by the server.
closed
2021-11-02T03:33:52Z
2021-11-25T09:09:08Z
https://github.com/encode/uvicorn/issues/1230
[]
kylebebak
1
blacklanternsecurity/bbot
automation
1,452
Optimize Neo4j
@t94j0 I did some testing with Neo4j, and you're right that it's slow to insert events. In big scans especially, when the events are really flooding in, the Neo4j queue can get backed up. To fix this, we'll need to figure out how to batch the cypher statements.
closed
2024-06-12T13:31:35Z
2024-08-01T19:47:41Z
https://github.com/blacklanternsecurity/bbot/issues/1452
[ "enhancement" ]
TheTechromancer
2
aeon-toolkit/aeon
scikit-learn
2,304
[test-pycatch22-allnighter] is STALE
@web-flow, test-pycatch22-allnighter has had no activity for 254 days. This branch will be automatically deleted in 0 days.
closed
2024-11-04T01:28:25Z
2024-11-11T01:28:39Z
https://github.com/aeon-toolkit/aeon/issues/2304
[ "stale branch" ]
aeon-actions-bot[bot]
0
CorentinJ/Real-Time-Voice-Cloning
python
740
Slow training on Tesla P40
![image](https://user-images.githubusercontent.com/20884858/115710754-45264780-a3a5-11eb-896e-7ddcdf7eb0f8.png)
closed
2021-04-22T12:00:24Z
2021-05-30T07:35:25Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/740
[]
wy192
2
ansible/ansible
python
84,726
_set_composite_vars doesn't support disable_lookups handling.
### Summary The `_set_composite_vars` method of the Constructable class of the inventory plugin don't have disable_lookups in its parameters. Therefore, when this method calls the `_compose` function of the same class, it always does so with disable_lookups=True. ``` https://github.com/ansible/ansible/blob/devel/lib/ansible/plugins/inventory/__init__.py#L334 def _compose(self, template, variables, disable_lookups=True): """ helper method for plugins to compose variables for Ansible based on jinja2 expression and inventory vars""" t = self.templar ``` ``` ## https://github.com/ansible/ansible/blob/devel/lib/ansible/plugins/inventory/__init__.py#L356 def _set_composite_vars(self, compose, variables, host, strict=False): """ loops over compose entries to create vars for hosts """ if compose and isinstance(compose, dict): for varname in compose: try: composite = self._compose(compose[varname], variables) ..... ``` ### Issue Type Feature Idea ### Component Name plugin inventory ### Additional Information - AWS Inventory plugin for ansible use this function: https://github.com/ansible-collections/amazon.aws/blob/main/plugins/inventory/aws_ec2.py#L788 ### Code of Conduct - [x] I agree to follow the Ansible Code of Conduct
open
2025-02-18T09:17:19Z
2025-02-18T15:01:05Z
https://github.com/ansible/ansible/issues/84726
[ "feature", "data_tagging" ]
jpaniorte
5
replicate/cog
tensorflow
1,406
Cog compatible image/container spec / allow base image in cog.yaml
Hello! I know that cog is aimed at research projects/researchers not super familiar with docker. However, I am investigating deploying models on replicate for the company I work for (i.e private models), and we already have a fully containerized workflow, which works with GPUs. It would be great if I could specify a parent image in the build section of `cog.yaml`. Perhaps this already works, and it is only the api specification of having a `Predictor` and associated server entrypoint in a given docker image that makes it "replicate" compatible, although I somehow doubt this is the case. My ideal workflow would be: - I have a prebuilt docker image - I write a predictor, and create a new docker image with the predictor as the entrypoint - I can push this image to replicate and run it Perhaps this is hard! Let me know if you have any suggestions for an ideal approach here. Thanks!
open
2023-11-30T01:31:27Z
2023-12-16T22:39:24Z
https://github.com/replicate/cog/issues/1406
[]
DeNeutoy
5
marshmallow-code/flask-marshmallow
rest-api
38
Some change in the Docs required , for security reasons json can't pass arrray
Docs to serialise SQLAlchemy with multiple rows suggest the code bellow: ``` python users_schema = UserSchema(many=True) @app.route('/api/users/') def users(): all_users = User.all() result = users_schema.dump(all_users) return jsonify(result.data) # OR # return user_schema.jsonify(all_users) ``` This code will actually give error because list objects can't be jsonified, (ref this)[https://github.com/pallets/flask/issues/673] Instead the example should be: ``` python users_schema = UserSchema(many=True) @app.route('/api/users/') def users(): all_users = User.all() result = users_schema.dump(all_users) return jsonify({'data':result.data}) # OR # return user_schema.jsonify({'data':result.data}) ```
closed
2016-04-23T04:04:03Z
2016-04-23T14:29:30Z
https://github.com/marshmallow-code/flask-marshmallow/issues/38
[]
karan1276
1
PokeAPI/pokeapi
api
1,138
Ability changes not recorded
<!-- Please search existing issues to avoid creating duplicates. Describe the feature you'd like. Certain abilities don't have their future generation effects i.e Prankster: Dark types are now immune to prankster speed up moves. Scrappy: Is now immume to intimidate. Thank you! -->
open
2024-10-07T17:54:27Z
2024-10-08T02:51:03Z
https://github.com/PokeAPI/pokeapi/issues/1138
[]
XeenProof
1
ets-labs/python-dependency-injector
flask
820
Cached Value
I want to have a Singleton which functions as a cache for a method call. I want the field `file_content` in my container be initialized one time by calling a given method (`reader.read`). From then on always that result should be returned instead of calling the method again. I have added a working code example below. Is there any better way? Maybe it might be useful if it was rewritten as a new Provider? ``` from pathlib import Path from dependency_injector import containers, providers class Reader: def read(self, filepath: Path, *args, **kwargs) -> str: print('read file') print('args:', args) print('kwargs:', kwargs) print() return filepath.read_text('utf-8') SingletonAsCache = lambda bound_method, *args, **kwargs: bound_method(*args, **kwargs) class MyContainer(containers.DeclarativeContainer): reader = providers.Factory(Reader) file_content = providers.Singleton(SingletonAsCache, reader.provided.read) container = MyContainer() def print_first_line(): c: str = container.file_content(Path(__file__), 'any arg', any_kwarg='any_kwarg_value') print('first line:', c.splitlines()[0]) print_first_line() print_first_line() print_first_line() ``` Output: ``` read file args: ('any arg',) kwargs: {'any_kwarg': 'any_kwarg_value'} first line: from pathlib import Path first line: from pathlib import Path first line: from pathlib import Path ```
open
2024-09-26T11:24:48Z
2024-11-13T18:28:16Z
https://github.com/ets-labs/python-dependency-injector/issues/820
[]
str-it
1
pallets-eco/flask-sqlalchemy
flask
959
How do i define the model?
i use this way to connect to oracle `SQLALCHEMY_DATABASE_URI = 'oracle://username:password@ip:port/servername'` How to specify the library when writing Model? `class MyselfModel(BaseModel): __tablename__ = 'user' username = db.Column(db.String(32)) ` How to specify the library corresponding to the user table? i checked the documention, but did not find. help me!thank!
closed
2021-04-23T10:48:52Z
2021-05-08T00:03:42Z
https://github.com/pallets-eco/flask-sqlalchemy/issues/959
[]
importTthis
0
marcomusy/vedo
numpy
398
Find the inner and outer contour of a set of points
Hi again @marcomusy. I have a set of points that I want to find the inner and outer contour of these points. This means the inner and outer contour of the red points below. The points order aren't organized. This is so I can compute the deviation between the outer and inner contour to the blue lines. I have tried to reconstruct a surface of the points with `recoSurface(pts)`, and tried to find the boundaries of the mesh, but I didnt suceed since the mesh was so coarse for my points. Also creating the surface with `delauney2d`. I have tried to reconstruct the same issue with some code below. In advance, thank you! ![image](https://user-images.githubusercontent.com/70319228/118664001-6ab23f80-b7f1-11eb-8a0b-762832e3586a.png) ```python from vedo import * cyl1 = Cylinder(pos=(0,0,0), r=2, height=4, axis=(1,0,0), alpha=.5, cap=0, res=100).triangulate() cyl2 = Cylinder(pos=(0,0,2), r=1, height=3, axis=(0,0.3,1), alpha=.5, cap=0, res=100).triangulate() cyl3 = Cylinder(pos=(0,0,2), r=1.1, height=3, axis=(0,0.3,1), alpha=.5, cap=0, res=100).triangulate() intersect_1 = cyl1.intersectWith(cyl2).join(reset=True).c('b') intersect_2 = cyl1.intersectWith(cyl3).join(reset=True).c('b') #show(cyl1,cyl2,cyl3, intersect_1, intersect_2).close() #Trying to cut out the the surface between the two intersect lines surf = cyl1.clone() surf.cutWithMesh(cyl3, invert= True) #These two lines doesn't work for me, to cut out the section between cyl2 and cyl3? Have I done it wrong? surf.cutWithMesh(cyl2, invert= True) # I tried using the cutWithCylinder also, instead of mesh, but the cut did end up with the same as cutWithMesh. An empty mesh. show(surf,cyl2, cyl3).close() #when figuring what I have done wrong with cutWithMesh, extract the points of the surf and find the countour. Maybe randomize the order of the points. pts = v.Points(surf.points()) #find a way to find the inner and outer contour? ``` ![image](https://user-images.githubusercontent.com/70319228/118668535-435d7180-b7f5-11eb-8272-3f67cb44d3f6.png)
closed
2021-05-18T13:49:15Z
2021-05-24T07:58:16Z
https://github.com/marcomusy/vedo/issues/398
[]
eivindtn
12
autogluon/autogluon
computer-vision
4,938
Survival Analysis?
Possible to use this library to train Survival Analysis models?
open
2025-02-26T00:11:58Z
2025-03-01T01:31:32Z
https://github.com/autogluon/autogluon/issues/4938
[ "enhancement" ]
austinmw
1
serengil/deepface
machine-learning
720
deepface docker build issue
Hello, I get the below error message when I try to build the deepface docker after cloning the repo: => ERROR [13/13] RUN pip install --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host=files.pythonhosted.org -e . 2.2s ------ > [13/13] RUN pip install --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host=files.pythonhosted.org -e .: #18 1.697 Obtaining file:///app #18 1.699 Preparing metadata (setup.py): started #18 1.906 Preparing metadata (setup.py): finished with status 'error' #18 1.912 error: subprocess-exited-with-error #18 1.912 #18 1.912 × python setup.py egg_info did not run successfully. #18 1.912 │ exit code: 1 #18 1.912 ╰─> [6 lines of output] #18 1.912 Traceback (most recent call last): #18 1.912 File "<string>", line 2, in <module> #18 1.912 File "<pip-setuptools-caller>", line 34, in <module> #18 1.912 File "/app/setup.py", line 6, in <module> #18 1.912 with open("requirements.txt", "r", encoding="utf-8") as f: #18 1.912 FileNotFoundError: [Errno 2] No such file or directory: 'requirements.txt' #18 1.912 [end of output] #18 1.912 #18 1.912 note: This error originates from a subprocess, and is likely not a problem with pip. #18 1.914 error: metadata-generation-failed #18 1.914 #18 1.914 × Encountered error while generating package metadata. #18 1.914 ╰─> See above for output. #18 1.914 #18 1.914 note: This is an issue with the package mentioned above, not pip. #18 1.914 hint: See above for details. #18 2.109 WARNING: You are using pip version 22.0.4; however, version 23.0.1 is available. #18 2.109 You should consider upgrading via the '/usr/local/bin/python -m pip install --upgrade pip' command. ------ executor failed running [/bin/sh -c pip install --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host=files.pythonhosted.org -e .]: exit code: 1
closed
2023-04-13T00:53:46Z
2023-04-13T08:22:58Z
https://github.com/serengil/deepface/issues/720
[ "bug" ]
WisamAbbasi
1
onnx/onnx
machine-learning
6,140
Error While Installing ONNX
# Bug Report ### Is the issue related to model conversion? no ### System information Ubuntu 14.04 onnx 1.9.0 python 2.7.6 protobuf 2.6.1 cmake 3.28.4 gcc 4.8.4 ### Describe the bug ``` Building wheels for collected packages: onnx Building wheel for onnx (PEP 517) ... error ERROR: Command errored out with exit status 1: command: /usr/bin/python /usr/local/lib/python2.7/dist-packages/pip-20.3.4-py2.7.egg/pip/_vendor/pep517/_in_process.py build_wheel /tmp/tmpfR3xK2 cwd: /tmp/pip-install-dMWHiR/onnx Complete output (267 lines): fatal: Not a git repository (or any of the parent directories): .git running bdist_wheel running build running build_py running create_version running cmake_build Using cmake args: [u'/usr/local/bin/cmake', u'-DPYTHON_INCLUDE_DIR=/usr/include/python2.7', u'-DPYTHON_EXECUTABLE=/usr/bin/python', u'-DBUILD_ONNX_PYTHON=ON', u'-DCMAKE_EXPORT_COMPILE_COMMANDS=ON', u'-DONNX_NAMESPACE=onnx', u'-DPY_EXT_SUFFIX=', u'-DCMAKE_BUILD_TYPE=Release', u'-DONNX_ML=1', '/tmp/pip-install-dMWHiR/onnx'] CMake Deprecation Warning at CMakeLists.txt:2 (cmake_minimum_required): Compatibility with CMake < 3.5 will be removed from a future version of CMake. Update the VERSION argument <min> value or use a ...<max> suffix to tell CMake that the project does not need compatibility with older versions. -- The C compiler identification is GNU 4.8.4 -- The CXX compiler identification is GNU 4.8.4 -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: /usr/bin/cc - skipped -- Detecting C compile features -- Detecting C compile features - done -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: /usr/bin/c++ - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done CMake Warning (dev) at CMakeLists.txt:114 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. -- Found PythonInterp: /usr/bin/python (found version "2.7.6") CMake Warning (dev) at CMakeLists.txt:115 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. This warning is for project developers. Use -Wno-dev to suppress it. -- Found PythonLibs: /usr/lib/x86_64-linux-gnu/libpython2.7.so (found version "2.7.6") -- Found Protobuf: /usr/local/lib/libprotobuf.so (found version "2.6.1") Generated: /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-ml.proto Generated: /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-operators-ml.proto Generated: /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-data.proto CMake Warning (dev) at /usr/local/share/cmake/pybind11/FindPythonLibsNew.cmake:98 (find_package): Policy CMP0148 is not set: The FindPythonInterp and FindPythonLibs modules are removed. Run "cmake --help-policy CMP0148" for policy details. Use the cmake_policy command to set the policy and suppress this warning. Call Stack (most recent call first): /usr/local/share/cmake/pybind11/pybind11Tools.cmake:50 (find_package) /usr/local/share/cmake/pybind11/pybind11Common.cmake:206 (include) /usr/local/share/cmake/pybind11/pybind11Config.cmake:250 (include) CMakeLists.txt:447 (find_package) This warning is for project developers. Use -Wno-dev to suppress it. -- Found PythonLibs: /usr/lib/x86_64-linux-gnu/libpython2.7.so -- Performing Test HAS_FLTO -- Performing Test HAS_FLTO - Success -- Found pybind11: /usr/local/include (found version "2.9.0") -- -- ******** Summary ******** -- CMake version : 3.28.4 -- CMake command : /usr/local/lib/python2.7/dist-packages/cmake/data/bin/cmake -- System : Linux -- C++ compiler : /usr/bin/c++ -- C++ compiler version : 4.8.4 -- CXX flags : -Wnon-virtual-dtor -- Build type : Release -- Compile definitions : -- CMAKE_PREFIX_PATH : -- CMAKE_INSTALL_PREFIX : /usr/local -- CMAKE_MODULE_PATH : -- -- ONNX version : 1.9.0 -- ONNX NAMESPACE : onnx -- ONNX_USE_LITE_PROTO : OFF -- USE_PROTOBUF_SHARED_LIBS : OFF -- ONNX_DISABLE_EXCEPTIONS : OFF -- ONNX_WERROR : OFF -- ONNX_BUILD_TESTS : OFF -- ONNX_BUILD_BENCHMARKS : OFF -- ONNXIFI_DUMMY_BACKEND : OFF -- ONNXIFI_ENABLE_EXT : OFF -- -- Protobuf compiler : /usr/local/bin/protoc -- Protobuf includes : /usr/local/include -- Protobuf libraries : /usr/local/lib/libprotobuf.so -- BUILD_ONNX_PYTHON : ON -- Python version : -- Python executable : /usr/bin/python -- Python includes : /usr/include/python2.7 -- Configuring done (1.1s) -- Generating done (0.0s) -- Build files have been written to: /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build [ 1%] Running gen_proto.py on onnx/onnx.in.proto [ 3%] Building C object CMakeFiles/onnxifi_loader.dir/onnx/onnxifi_loader.c.o [ 4%] Building C object CMakeFiles/onnxifi_dummy.dir/onnx/onnxifi_dummy.c.o Processing /tmp/pip-install-dMWHiR/onnx/onnx/onnx.in.proto Writing /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-ml.proto Writing /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-ml.proto3 generating /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx_pb.py [ 6%] Running C++ protocol buffer compiler on /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-ml.proto /tmp/pip-install-dMWHiR/onnx/onnx/onnxifi_dummy.c: In function ‘onnxGetExtensionFunctionAddress’: /tmp/pip-install-dMWHiR/onnx/onnx/onnxifi_dummy.c:177:21: warning: assignment from incompatible pointer type [enabled by default] *function = &onnxGetExtensionFunctionAddress; ^ /tmp/pip-install-dMWHiR/onnx/onnx/onnxifi_dummy.c:180:21: warning: assignment from incompatible pointer type [enabled by default] *function = &onnxSetIOAndRunGraph; ^ [ 7%] Linking C static library libonnxifi_loader.a Writing mypy to onnx/onnx_ml_pb2.pyi [ 9%] Linking C shared library libonnxifi_dummy.so [ 9%] Built target onnxifi_loader [ 9%] Built target gen_onnx_proto [ 10%] Running gen_proto.py on onnx/onnx-operators.in.proto [ 12%] Building C object CMakeFiles/onnxifi_wrapper.dir/onnx/onnxifi_wrapper.c.o [ 12%] Built target onnxifi_dummy [ 13%] Running gen_proto.py on onnx/onnx-data.in.proto Processing /tmp/pip-install-dMWHiR/onnx/onnx/onnx-operators.in.proto Writing /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-operators-ml.proto Writing /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-operators-ml.proto3 generating /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx_operators_pb.py [ 15%] Running C++ protocol buffer compiler on /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-operators-ml.proto Processing /tmp/pip-install-dMWHiR/onnx/onnx/onnx-data.in.proto Writing /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-data.proto Writing /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-data.proto3 generating /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx_data_pb.py [ 16%] Running C++ protocol buffer compiler on /tmp/pip-install-dMWHiR/onnx/.setuptools-cmake-build/onnx/onnx-data.proto Writing mypy to onnx/onnx_operators_ml_pb2.pyi Writing mypy to onnx/onnx_data_pb2.pyi [ 18%] Linking C shared module libonnxifi.so [ 20%] Building CXX object CMakeFiles/onnx_proto.dir/onnx/onnx-ml.pb.cc.o [ 21%] Building CXX object CMakeFiles/onnx_proto.dir/onnx/onnx-operators-ml.pb.cc.o [ 23%] Building CXX object CMakeFiles/onnx_proto.dir/onnx/onnx-data.pb.cc.o [ 23%] Built target onnxifi_wrapper [ 24%] Linking CXX static library libonnx_proto.a [ 27%] Built target onnx_proto [ 30%] Building CXX object CMakeFiles/onnx.dir/onnx/checker.cc.o [ 30%] Building CXX object CMakeFiles/onnx.dir/onnx/common/assertions.cc.o [ 32%] Building CXX object CMakeFiles/onnx.dir/onnx/common/interned_strings.cc.o [ 33%] Building CXX object CMakeFiles/onnx.dir/onnx/common/ir_pb_converter.cc.o [ 35%] Building CXX object CMakeFiles/onnx.dir/onnx/common/model_helpers.cc.o [ 36%] Building CXX object CMakeFiles/onnx.dir/onnx/common/path.cc.o [ 38%] Building CXX object CMakeFiles/onnx.dir/onnx/common/status.cc.o [ 40%] Building CXX object CMakeFiles/onnx.dir/onnx/defs/attr_proto_util.cc.o [ 41%] Building CXX object CMakeFiles/onnx.dir/onnx/defs/controlflow/defs.cc.o [ 43%] Building CXX object CMakeFiles/onnx.dir/onnx/defs/controlflow/old.cc.o [ 44%] Building CXX object CMakeFiles/onnx.dir/onnx/defs/data_type_utils.cc.o [ 46%] Building CXX object CMakeFiles/onnx.dir/onnx/defs/function.cc.o [ 47%] Building CXX object CMakeFiles/onnx.dir/onnx/defs/generator/defs.cc.o [ 49%] Building CXX object CMakeFiles/onnx.dir/onnx/defs/generator/old.cc.o [ 50%] Building CXX object CMakeFiles/onnx.dir/onnx/defs/logical/defs.cc.o /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:24:15: error: unterminated raw string doc = R"DOC( ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:23:5: error: stray ‘R’ in program POPULATE_OP_DOC_STR( ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:23:5: error: stray ‘`’ in program /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:23:5: error: stray ‘`’ in program /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:23:5: error: stray ‘`’ in program /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:23:5: error: stray ‘`’ in program /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:23:5: error: stray ‘`’ in program /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:23:5: error: stray ‘`’ in program /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:29:5: warning: missing terminating " character [enabled by default] )DOC"; ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:23:5: error: missing terminating " character POPULATE_OP_DOC_STR( ^ In file included from /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:7:0: /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc: In lambda function: /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:25:1: error: ‘Returns’ was not declared in this scope Returns the tensor resulted from performing the `{name}` logical operation ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/schema.h:1290:5: note: in definition of macro ‘POPULATE_OP_DOC_STR’ DocPopulatorCode \ ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:25:9: error: expected ‘;’ before ‘the’ Returns the tensor resulted from performing the `{name}` logical operation ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/schema.h:1290:5: note: in definition of macro ‘POPULATE_OP_DOC_STR’ DocPopulatorCode \ ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:25:58: error: ‘logical’ was not declared in this scope Returns the tensor resulted from performing the `{name}` logical operation ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/schema.h:1290:5: note: in definition of macro ‘POPULATE_OP_DOC_STR’ DocPopulatorCode \ ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:25:66: error: expected ‘;’ before ‘operation’ Returns the tensor resulted from performing the `{name}` logical operation ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/schema.h:1290:5: note: in definition of macro ‘POPULATE_OP_DOC_STR’ DocPopulatorCode \ ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:29:2: error: expected ‘;’ before ‘DOC’ )DOC"; ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:29:2: error: ‘DOC’ was not declared in this scope /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:30:9: error: expected ‘;’ before ‘ReplaceAll’ ReplaceAll(doc, "{name}", name); ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:32:75: error: expected primary-expression before ‘)’ token doc, "{broadcast_doc}", GenerateBroadcastingDocMul().c_str());); ^ /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:32:75: error: expected ‘;’ before ‘)’ token /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc: At global scope: /tmp/pip-install-dMWHiR/onnx/onnx/defs/logical/defs.cc:20:32: warning: unused parameter ‘name’ [-Wunused-parameter] std::function<void(OpSchema&)> BinaryLogicDocGenerator(const char* name) { ^ make[2]: *** [CMakeFiles/onnx.dir/onnx/defs/logical/defs.cc.o] 错误 1 make[2]: *** 正在等待未完成的任务.... make[1]: *** [CMakeFiles/onnx.dir/all] 错误 2 make: *** [all] 错误 2 Traceback (most recent call last): File "/usr/local/lib/python2.7/dist-packages/pip-20.3.4-py2.7.egg/pip/_vendor/pep517/_in_process.py", line 280, in <module> main() File "/usr/local/lib/python2.7/dist-packages/pip-20.3.4-py2.7.egg/pip/_vendor/pep517/_in_process.py", line 263, in main json_out['return_val'] = hook(**hook_input['kwargs']) File "/usr/local/lib/python2.7/dist-packages/pip-20.3.4-py2.7.egg/pip/_vendor/pep517/_in_process.py", line 205, in build_wheel metadata_directory) File "/usr/local/lib/python2.7/dist-packages/setuptools/build_meta.py", line 209, in build_wheel wheel_directory, config_settings) File "/usr/local/lib/python2.7/dist-packages/setuptools/build_meta.py", line 194, in _build_with_temp_dir self.run_setup() File "/usr/local/lib/python2.7/dist-packages/setuptools/build_meta.py", line 243, in run_setup self).run_setup(setup_script=setup_script) File "/usr/local/lib/python2.7/dist-packages/setuptools/build_meta.py", line 142, in run_setup exec(compile(code, __file__, 'exec'), locals()) File "setup.py", line 359, in <module> 'backend-test-tools = onnx.backend.test.cmd_tools:main', File "/usr/local/lib/python2.7/dist-packages/setuptools/__init__.py", line 162, in setup return distutils.core.setup(**attrs) File "/usr/lib/python2.7/distutils/core.py", line 151, in setup dist.run_commands() File "/usr/lib/python2.7/distutils/dist.py", line 953, in run_commands self.run_command(cmd) File "/usr/lib/python2.7/distutils/dist.py", line 972, in run_command cmd_obj.run() File "/tmp/pip-build-env-kdmVEW/overlay/lib/python2.7/site-packages/wheel/bdist_wheel.py", line 299, in run self.run_command('build') File "/usr/lib/python2.7/distutils/cmd.py", line 326, in run_command self.distribution.run_command(command) File "/usr/lib/python2.7/distutils/dist.py", line 972, in run_command cmd_obj.run() File "/usr/lib/python2.7/distutils/command/build.py", line 128, in run self.run_command(cmd_name) File "/usr/lib/python2.7/distutils/cmd.py", line 326, in run_command self.distribution.run_command(command) File "/usr/lib/python2.7/distutils/dist.py", line 972, in run_command cmd_obj.run() File "setup.py", line 233, in run self.run_command('cmake_build') File "/usr/lib/python2.7/distutils/cmd.py", line 326, in run_command self.distribution.run_command(command) File "/usr/lib/python2.7/distutils/dist.py", line 972, in run_command cmd_obj.run() File "setup.py", line 227, in run subprocess.check_call(build_args) File "/usr/lib/python2.7/subprocess.py", line 540, in check_call raise CalledProcessError(retcode, cmd) subprocess.CalledProcessError: Command '[u'/usr/local/bin/cmake', u'--build', '.', u'--', u'-j', '4']' returned non-zero exit status 2 ---------------------------------------- ERROR: Failed building wheel for onnx Failed to build onnx ERROR: Could not build wheels for onnx which use PEP 517 and cannot be installed directly ```
open
2024-05-20T06:13:51Z
2024-05-20T07:23:14Z
https://github.com/onnx/onnx/issues/6140
[ "question" ]
jh97321
3
yihong0618/running_page
data-visualization
63
[TODO] add type to db
run, bike walk ...... user can select only run.
closed
2020-12-16T00:55:17Z
2022-01-07T05:24:06Z
https://github.com/yihong0618/running_page/issues/63
[ "enhancement" ]
yihong0618
0
mwaskom/seaborn
matplotlib
3,330
Wrong handles in legend with boxplot
When trying to change the labels of the legend on a boxplot, there is a change on the symbol in the legend. Here is my minimal code ```import seaborn as sns import matplotlib.pyplot as plt import pingouin as pg data = pg.read_dataset('penguins') fig, ax = plt.subplots(layout='tight') fig.set_figwidth(8) fig.set_figheight(8) sns.boxplot(data=data, x='island', y='body_mass_g', hue='sex', ax=ax, palette='husl') ax.set_ylabel('Body mass (g)') ax.set_xlabel("Islands") ax.legend(title='Penguins', labels=['toto', 'tata']) plt.show() ``` I get that figure : ![image](https://user-images.githubusercontent.com/76151805/233020768-efcc8750-4a80-49fe-88e3-d61572ee58e0.png) while I was expecting that : ![image](https://user-images.githubusercontent.com/76151805/233020926-1dd8faf2-5cdf-4378-9136-6f2e4e774eee.png) It seems that the legend associates the second label with the matplotlib PathPatch object wich defines the first box. This may come from the order of creation of artist objects for the boxplots. One workaround is to replace the line ax.legend with : `plt.legend(handles=ax.get_legend_handles_labels()[0], title='Penguins', labels=['toto', 'tata'])`
closed
2023-04-19T08:59:19Z
2023-04-25T21:41:52Z
https://github.com/mwaskom/seaborn/issues/3330
[]
Djost43
1
AutoGPTQ/AutoGPTQ
nlp
575
[FEATURE] Add support for Phi models
Currently "phi" models don't seem to be supported ``` Traceback (most recent call last): File "/home/mgoin/marlin-example/apply_gptq_save_marlin.py", line 44, in <module> model = AutoGPTQForCausalLM.from_pretrained( File "/home/mgoin/venvs/test/lib/python3.10/site-packages/auto_gptq/modeling/auto.py", line 75, in from_pretrained model_type = check_and_get_model_type(pretrained_model_name_or_path, trust_remote_code) File "/home/mgoin/venvs/test/lib/python3.10/site-packages/auto_gptq/modeling/_utils.py", line 305, in check_and_get_model_type raise TypeError(f"{config.model_type} isn't supported yet.") TypeError: phi isn't supported yet. ```
closed
2024-03-02T01:09:08Z
2024-03-19T06:41:24Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/575
[ "enhancement" ]
mgoin
0
tfranzel/drf-spectacular
rest-api
768
Spectacular ignores settings
**Describe the bug** I set some parameters in my settings.py `SPECTACULAR_SETTINGS` but it wont get picked up **To Reproduce** I placed the example from the docs in my settings.py: ``` SPECTACULAR_SETTINGS = { 'TITLE': 'Your Project API', 'DESCRIPTION': 'Your project description', 'VERSION': '1.0.0', 'SERVE_INCLUDE_SCHEMA': False, # OTHER SETTINGS } ``` I confirmed its part of the settings using `python manage.py shell` and printed `settings.SPECTACULAR_SETTINGS` and the settings are there. But running `python manage.py spectacular` I get an openapi definition without title, description or version. **Expected behavior** The generated specification contains all above specified parameters.
closed
2022-07-13T13:13:39Z
2022-07-15T18:12:19Z
https://github.com/tfranzel/drf-spectacular/issues/768
[]
georgkrause
4
aimhubio/aim
data-visualization
3,251
Failed to initialize Aim DB, Can't locate revision.
## 🐛 Bug I am getting the following error when using `aim up`: ERROR [alembic.util.messaging] Can't locate revision identified by '3d5fd76e8485' FAILED: Can't locate revision identified by '3d5fd76e8485' Failed to initialize Aim DB. Please see the logs above for details. ### Environment - Aim 3.25.1 - Python 3.11.9 - Ubuntu 22.04.4 LTS
closed
2024-11-19T16:52:58Z
2025-01-07T12:05:16Z
https://github.com/aimhubio/aim/issues/3251
[ "type / bug", "help wanted" ]
maxbarton15
2
wkentaro/labelme
deep-learning
960
[BUG]
**Describe the bug** when edit toll selected create rectangle and i clicl any object after i need change to create polygone and i make second click then app crashes show video https://youtu.be/kD-cFZ2YO0Y
closed
2021-11-27T14:18:17Z
2022-10-23T12:10:29Z
https://github.com/wkentaro/labelme/issues/960
[]
doitauto
1
yihong0618/running_page
data-visualization
443
python3 scripts/strava_sync.py 同步不了strava数据
日志是这样的 Access ok Start syncing
closed
2023-07-05T03:48:31Z
2023-07-06T07:15:26Z
https://github.com/yihong0618/running_page/issues/443
[]
leosj
15
vastsa/FileCodeBox
fastapi
127
后台登录页面的bug,提示:未授权或授权校验失败
复现页面:https://share.lanol.cn/#/admin 复现方法:第一次登录成功,退出登录后,在进行登录会提示:未授权或授权校验失败 查看控制台提示如下: ![image](https://github.com/vastsa/FileCodeBox/assets/43441064/d21b0173-69c1-43fb-b29d-8969b7dd75a9) 仔细查看报错路径,发现登录接口路径少了/#/ 原登录接口:https://share.lanol.cn/#/admin/login 报错登录接口:https://share.lanol.cn/admin/login 包括在您的演示站也有这个bug。 测试浏览器为edge:版本 120.0.2210.144 (正式版本) (64 位) 系统版本为:win11 新编辑: 是因为登陆页面给了个默认密码,登录的时候就直接提示未授权了,所以建议删除这个默认密码,留空处理。
closed
2024-01-23T06:52:36Z
2024-07-12T05:19:07Z
https://github.com/vastsa/FileCodeBox/issues/127
[]
OuOumm
4
Morizeyao/GPT2-Chinese
nlp
2
generate.py error
generate.py 第80行应该放在79行前面哟。
closed
2019-07-25T16:58:36Z
2019-08-06T13:36:54Z
https://github.com/Morizeyao/GPT2-Chinese/issues/2
[]
hackerxiaobai
1
jofpin/trape
flask
231
TRACEBACK error while requirements are installed.
![Screenshot 2020-04-28 23:38:30](https://user-images.githubusercontent.com/31244653/80540438-9c1f5980-89a9-11ea-9a81-67d03891a268.png)
open
2020-04-28T21:40:21Z
2020-04-28T21:40:21Z
https://github.com/jofpin/trape/issues/231
[]
demaico
0
mljar/mljar-supervised
scikit-learn
329
Add support for currencies features
If column have currency symbol it should be automatically detected and currency symbol should be removed.
closed
2021-03-03T07:36:58Z
2024-09-30T11:34:58Z
https://github.com/mljar/mljar-supervised/issues/329
[]
pplonski
0
graphql-python/graphene-django
django
710
Start warning if `fields` or `exclude` are not defined on `DjangoObjectType`
So that model fields aren't accidentally exposed through DjangoObjectType I propose that we start warning if either `fields` or `exclude` aren't defined with the intention to error completely in the future. This would also align the API more with Django Rest Framework which hopefully makes it more familiar to most developers.
closed
2019-07-12T16:50:31Z
2020-07-01T12:07:09Z
https://github.com/graphql-python/graphene-django/issues/710
[ "✨enhancement", "v3" ]
jkimbo
6
SYSTRAN/faster-whisper
deep-learning
196
Where to put the model.bin and related files if I don't wanna them into C: disk?
https://huggingface.co/guillaumekln/faster-whisper-large-v2/tree/main How should I set up these files if I don't want to put them on disk C? Who knows? faster-whisper-large-v2 ![$EI}9FNQZCA_LRB~AEQ}3QT](https://user-images.githubusercontent.com/1331881/235278187-dba47c83-3bba-4d5f-bead-8bb2e9a0498e.png) ![V2Y 260VA)J7P_9QNVM2@)M](https://user-images.githubusercontent.com/1331881/235278186-2b80d8eb-69b9-4f7e-9938-4d290b92b8d3.png)
closed
2023-04-29T01:53:47Z
2023-05-03T20:11:25Z
https://github.com/SYSTRAN/faster-whisper/issues/196
[]
pendave
1
kizniche/Mycodo
automation
734
Daemon log doesn't display in GUI when logrotate splits it
Develop a more reliable method for serving the latest lines from the daemon log.
closed
2020-01-16T03:58:11Z
2020-01-29T20:30:13Z
https://github.com/kizniche/Mycodo/issues/734
[]
kizniche
0
lux-org/lux
jupyter
412
Converting Timestamp: Error
Hi, I am reading in a csv to my notebook, calling it df_plot. When I do a df_plot.head() it comes back saying that Timestamp maybe temperal. So I followed the suggested template and also tried a suggestion on the lux website. Neither works for me. See attached image from my csv file of the timestamp ![image](https://user-images.githubusercontent.com/36297901/130077001-1d2e78ae-3805-41be-a704-4c33812eaa55.png) So I tried this, as I believed that my timestamp was in the format dd-mm-yyy hh:mm:ss ``` df_plot['Timestamp'] = pd.to_datetime(df_plot['Timestamp'], format="%d-%m-%y%h:%m:%s") ##df['date'] = pd.to_datetime(df['date'], format="%Y-%m-%d") ``` And get this error ``` ValueError: 'h' is a bad directive in format '%d-%m-%y%h:%m:%s' --------------------------------------------------------------------------- TypeError Traceback (most recent call last) c:\xxx\capstone_python\venv\lib\site-packages\pandas\core\tools\datetimes.py in _convert_listlike_datetimes(arg, format, name, tz, unit, errors, infer_datetime_format, dayfirst, yearfirst, exact) 455 try: --> 456 values, tz = conversion.datetime_to_datetime64(arg) 457 dta = DatetimeArray(values, dtype=tz_to_dtype(tz)) pandas\_libs\tslibs\conversion.pyx in pandas._libs.tslibs.conversion.datetime_to_datetime64() TypeError: Unrecognized value type: <class 'str'> During handling of the above exception, another exception occurred: ValueError Traceback (most recent call last) ~\AppData\Local\Temp/ipykernel_35372/1760194970.py in <module> ----> 1 df_plot['Timestamp'] = pd.to_datetime(df_plot['Timestamp'], format="%d-%m-%y%h:%m:%s") 2 ##df['date'] = pd.to_datetime(df['date'], format="%Y-%m-%d") c:\xxx\Final_Project\capstone_python\venv\lib\site-packages\pandas\core\tools\datetimes.py in to_datetime(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache) 799 result = result.tz_localize(tz) 800 elif isinstance(arg, ABCSeries): --> 801 cache_array = _maybe_cache(arg, format, cache, convert_listlike) 802 if not cache_array.empty: 803 result = arg.map(cache_array) c:\xxx\capstone_python\venv\lib\site-packages\pandas\core\tools\datetimes.py in _maybe_cache(arg, format, cache, convert_listlike) 176 unique_dates = unique(arg) 177 if len(unique_dates) < len(arg): --> 178 cache_dates = convert_listlike(unique_dates, format) 179 cache_array = Series(cache_dates, index=unique_dates) 180 return cache_array c:\xxx\capstone_python\venv\lib\site-packages\pandas\core\tools\datetimes.py in _convert_listlike_datetimes(arg, format, name, tz, unit, errors, infer_datetime_format, dayfirst, yearfirst, exact) 458 return DatetimeIndex._simple_new(dta, name=name) 459 except (ValueError, TypeError): --> 460 raise e 461 462 if result is None: c:\xxx\capstone_python\venv\lib\site-packages\pandas\core\tools\datetimes.py in _convert_listlike_datetimes(arg, format, name, tz, unit, errors, infer_datetime_format, dayfirst, yearfirst, exact) 421 if result is None: 422 try: --> 423 result, timezones = array_strptime( 424 arg, format, exact=exact, errors=errors 425 ) pandas\_libs\tslibs\strptime.pyx in pandas._libs.tslibs.strptime.array_strptime() pandas\_libs\tslibs\strptime.pyx in pandas._libs.tslibs.strptime.array_strptime() ValueError: 'h' is a bad directive in format '%d-%m-%y%h:%m:%s' ```
closed
2021-08-19T13:31:21Z
2021-09-07T00:12:27Z
https://github.com/lux-org/lux/issues/412
[]
conorwa
1
tensorlayer/TensorLayer
tensorflow
539
Failed: TensorLayer (7f692946)
*Sent by Read the Docs (readthedocs@readthedocs.org). Created by [fire](https://fire.fundersclub.com/).* --- | TensorLayer build #7116848 --- | ![](https://media.readthedocs.org/images/email-header.png) --- | Build Failed for TensorLayer (latest) --- You can find out more about this failure here: [TensorLayer build #7116848](https://readthedocs.org/projects/tensorlayer/builds/7116848/) \- failed If you have questions, a good place to start is the FAQ: <https://docs.readthedocs.io/en/latest/faq.html> You can unsubscribe from these emails in your [Notification Settings](https://readthedocs.org/dashboard/tensorlayer/notifications/) Keep documenting, Read the Docs | Read the Docs <https://readthedocs.org> --- ![](http://email.readthedocs.org/o/eJwNzDsOwyAMANDTlNEixhAYOAwf00RKg2SSVL19Gd76ajQe0QS1R9SL12T0hESAziwOaF0tvkh_OWuCwfKwDBBO9dq49jKgy1ttsSWsmCiH5pCyrjabYpvzAUNhLFZJvPgcXY70Y5lh24Wh3WedXznuDKV__uPwK0I)
closed
2018-04-30T04:32:46Z
2018-05-15T08:59:04Z
https://github.com/tensorlayer/TensorLayer/issues/539
[]
fire-bot
0
proplot-dev/proplot
matplotlib
383
The attribute fontsize in legend can not execute.
### Description When set fontsize=300 in legend, the attribute fontsize in legend can not execute, the legned fontsize unchanged. ```python import proplot as pplt labels = ['a', 'bb', 'ccc', 'ddddd', 'eeeee'] fig, axs = pplt.subplots(ncols=2, share=False, axwidth=3) hs1, hs2 = [], [] state = np.random.RandomState(51423) for i,label in enumerate(labels): data = (state.rand(20) - 0.45).cumsum(axis=0) h1 = axs[0].plot(data, lw=4, label=label, legend='ul', legend_kw={'order':'F', 'title':'column major'}) hs1.extend(h1) h2 = axs[1].plot(data, lw=4, label=label, legend='r', cycle='Set3', legend_kw={'ncols':1, 'order':'F', 'frame':False, 'title':'No Frame', 'fontsize':40}) hs2.extend(h2) # Outer legends axs[0].legend(loc='b', ncols=3, facecolor='red', fontsize=300) ``` ![图片](https://user-images.githubusercontent.com/37328100/184653249-6ea4f258-7ce2-4d53-a442-8aea330ed44a.png)
closed
2022-08-15T14:25:14Z
2023-03-28T23:57:18Z
https://github.com/proplot-dev/proplot/issues/383
[ "already fixed" ]
NWPC-Whisperer
2
gunthercox/ChatterBot
machine-learning
2,248
Parts of speech classification problem.
I'm just playing with chatterbot. I trained a model with chatterbot list trainer using the data of a conversation with a real person. I was discovering how it works by seeing the contents of the sqlite database(which i used as the storage adapter). When I runned `SELECT * FROM statement` in sqlite shell, I saw that it classifies the strings in NOUN, PRONOUN, VERB etc. But most of the classifications were wrong. The input data was in Bengali language.
closed
2022-05-12T13:20:06Z
2024-02-23T16:22:20Z
https://github.com/gunthercox/ChatterBot/issues/2248
[]
SunPodder
0