repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
hatchet-dev/hatchet
fastapi
663
feat: manually mark workers as inactive
It can sometimes be important to manually "lock" a worker so new step runs aren't assigned but it continues to process old step runs.
closed
2024-06-27T15:02:56Z
2024-07-01T18:44:13Z
https://github.com/hatchet-dev/hatchet/issues/663
[]
abelanger5
0
Farama-Foundation/PettingZoo
api
344
Usage of random_demo
Hi, thanks for your environments, I just have a question about using random_demo util ```python from pettingzoo.magent import gather_v2 from pettingzoo.utils import random_demo env = gather_v2.env() random_demo(env, render=True, episodes=30) ``` This only shows the initial scene. Other magent environments work like this too. How can I use it correctly?
closed
2021-03-07T15:18:56Z
2021-03-08T23:33:28Z
https://github.com/Farama-Foundation/PettingZoo/issues/344
[]
keep9oing
2
scikit-optimize/scikit-optimize
scikit-learn
218
Increase nbconvert timeout
Sometimes the CircleCI build will fail because it took too long to run the example notebooks. This is a timeout in `nbconvert`. We should increase the timeout so that we do not get spurious build failures.
closed
2016-09-06T08:16:29Z
2016-09-21T09:46:29Z
https://github.com/scikit-optimize/scikit-optimize/issues/218
[ "Build / CI", "Documentation", "Easy" ]
betatim
1
ivy-llc/ivy
tensorflow
28,280
Fix Ivy Failing Test: paddle - manipulation.reshape
To-do List: https://github.com/unifyai/ivy/issues/27501
open
2024-02-13T18:48:48Z
2024-02-13T18:48:48Z
https://github.com/ivy-llc/ivy/issues/28280
[ "Sub Task" ]
us
0
jina-ai/clip-as-service
pytorch
390
std::bad_alloc
- **env**:ubuntu18.04,python3.6, - **describe**:when i run the command as follow,there is a error (`std::bad_alloc` ),how can i fix it? ```bash ice-melt@DELL:~$ bert-serving-start -model_dir /home/ice-melt/disk/DATASET/BERT/chinese_L-12_H-768_A-12/ -num_worker=1 /usr/lib/python3/dist-packages/requests/__init__.py:80: RequestsDependencyWarning: urllib3 (1.24.3) or chardet (3.0.4) doesn't match a supported version! RequestsDependencyWarning) usage: /home/ice-melt/.local/bin/bert-serving-start -model_dir /home/ice-melt/disk/DATASET/BERT/chinese_L-12_H-768_A-12/ -num_worker=1 ARG VALUE __________________________________________________ ckpt_name = bert_model.ckpt config_name = bert_config.json cors = * cpu = False device_map = [] do_lower_case = True fixed_embed_length = False fp16 = False gpu_memory_fraction = 0.5 graph_tmp_dir = None http_max_connect = 10 http_port = None mask_cls_sep = False max_batch_size = 256 max_seq_len = 25 model_dir = /home/ice-melt/disk/DATASET/BERT/chinese_L-12_H-768_A-12/ num_worker = 1 pooling_layer = [-2] pooling_strategy = REDUCE_MEAN port = 5555 port_out = 5556 prefetch_size = 10 priority_batch_size = 16 show_tokens_to_client = False tuned_model_dir = None verbose = False xla = False I:VENTILATOR:[__i:__i: 66]:freeze, optimize and export graph, could take a while... I:GRAPHOPT:[gra:opt: 52]:model config: /home/ice-melt/disk/DATASET/BERT/chinese_L-12_H-768_A-12/bert_config.json I:GRAPHOPT:[gra:opt: 55]:checkpoint: /home/ice-melt/disk/DATASET/BERT/chinese_L-12_H-768_A-12/bert_model.ckpt I:GRAPHOPT:[gra:opt: 59]:build graph... WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md * https://github.com/tensorflow/addons If you depend on functionality not listed there, please file an issue. I:GRAPHOPT:[gra:opt:128]:load parameters from checkpoint... I:GRAPHOPT:[gra:opt:132]:optimize... I:GRAPHOPT:[gra:opt:140]:freeze... I:GRAPHOPT:[gra:opt:145]:write graph to a tmp file: /tmp/tmp1_02bsus terminate called after throwing an instance of 'std::bad_alloc' ```
open
2019-06-21T08:08:10Z
2019-09-26T06:58:53Z
https://github.com/jina-ai/clip-as-service/issues/390
[]
ice-melt
6
gradio-app/gradio
python
10,412
`gradio.exceptions.Error` with the message `'This should fail!'` in Gradio Warning Doc
### Describe the bug An error occurs when clicking the "Trigger Failure" button on the [Gradio Warning Demos](https://www.gradio.app/docs/gradio/warning#demos) page. The error traceback indicates a failure in the process_events function, which raises a `gradio.exceptions.Error` with the message `'This should fail!'`. ### Have you searched existing issues? ๐Ÿ”Ž - [x] I have searched and found no existing issues ### Reproduction 1. Go to https://www.gradio.app/docs/gradio/warning 2. Scroll down to https://www.gradio.app/docs/gradio/warning#demos 3. Click "Trigger Failure" 4. See error ### Screenshot https://github.com/user-attachments/assets/08cb0d63-c755-46d2-8c67-b58eaeefbb66 ### Logs ```shell Traceback (most recent call last): File "/lib/python3.12/site-packages/gradio/queueing.py", line 625, in process_events response = await route_utils.call_process_api( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/lib/python3.12/site-packages/gradio/route_utils.py", line 322, in call_process_api output = await app.get_blocks().process_api( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/lib/python3.12/site-packages/gradio/blocks.py", line 2042, in process_api result = await self.call_function( ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/lib/python3.12/site-packages/gradio/blocks.py", line 1589, in call_function prediction = await anyio.to_thread.run_sync( # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<exec>", line 3, in mocked_anyio_to_thread_run_sync File "/lib/python3.12/site-packages/gradio/utils.py", line 883, in wrapper response = f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "<string>", line 4, in failure gradio.exceptions.Error: 'This should fail!' Error: Traceback (most recent call last): File "/lib/python3.12/site-packages/gradio/queueing.py", line 625, in process_events response = await route_utils.call_process_api( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/lib/python3.12/site-packages/gradio/route_utils.py", line 322, in call_process_api output = await app.get_blocks().process_api( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/lib/python3.12/site-packages/gradio/blocks.py", line 2042, in process_api result = await self.call_function( ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/lib/python3.12/site-packages/gradio/blocks.py", line 1589, in call_function prediction = await anyio.to_thread.run_sync( # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<exec>", line 3, in mocked_anyio_to_thread_run_sync File "/lib/python3.12/site-packages/gradio/utils.py", line 883, in wrapper response = f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "<string>", line 4, in failure gradio.exceptions.Error: 'This should fail!' at _9._processWorkerMessage (https://gradio-lite-previews.s3.amazonaws.com/43e7cce2bd8ddd274fcba890bfeaa7ead7f32434/dist/lite.js:2:4540) at postMessageTarget.onmessage (https://gradio-lite-previews.s3.amazonaws.com/ ``` ### System Info ```shell It's the browser environment. **Desktop:** - OS: MacOS - Browser chrome - Version 22 ``` ### Severity I can work around it
open
2025-01-23T03:03:31Z
2025-01-23T04:28:20Z
https://github.com/gradio-app/gradio/issues/10412
[ "bug", "docs/website" ]
1chooo
0
sktime/sktime
data-science
7,883
[BUG] Deseasonalizer returns error when the data has a freq "YE-DEC", it askes for "Y-DEC", but I can't convert
**Describe the bug** I'm trying to use the Deseasonalizer class inside a TransformedTargetForecaster with OptionalPassthrough, my project is to forecast the annual sunspot series. At first, it was reported me that the frequency was missing, this error: ValueError: frequency is missing. To solve this I used the method asfreq("Y"), but again I've gotten error: # ValueError: Index type not supported. Please consider using pd.PeriodIndex. So then I converted the index from datetime to period using the method to_period(). I've noticed that the method automatically infer the data frequency to Y-DEC, however, I've gotten this error: ValueError: Invalid frequency: YE-DEC, failed to parse with error message: ValueError("for Period, please use 'Y-DEC' instead of 'YE-DEC'"). The problem is in Deseasonalizer class, if remove it, the code works. **To Reproduce** <!-- Add a Minimal, Complete, and Verifiable example (for more details, see e.g. https://stackoverflow.com/help/mcve If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com --> ```python y_train, y_test = temporal_train_test_split(y=df['sunspot'], test_size=18) y_train = y_train.squeeze() y_test = y_test.squeeze() #y_train = y_train.asfreq("Y") #y_test = y_test.asfreq("Y") y_train = y_train.to_period() y_test = y_test.to_period() sp_est = SeasonalityPeriodogram() sp_est.fit(y_train) #.diff()[1:] sp = sp_est.get_fitted_params()["sp"] kwargs = { "lag_feature": { "lag": [1,2,3], "mean": [[1, 3]], "std": [[1, 4]], }, "truncate": 'bfill', } summarizer = WindowSummarizer(**kwargs) regressor = MLPRegressor(shuffle=False,) pipe_forecaster = TransformedTargetForecaster( steps=[ ("boxcox", OptionalPassthrough(BoxCoxTransformer(method='guerrero',sp=sp))), ("deseasonalizer",OptionalPassthrough(Deseasonalizer(sp=sp))), ("detrend", OptionalPassthrough( Detrender(PolynomialTrendForecaster(degree=1)))), ('diff_1', OptionalPassthrough(Differencer())), ('diff_2', OptionalPassthrough(Differencer(lags=[sp]))), ("scaler", TabularToSeriesAdaptor(MinMaxScaler())), ("forecaster", RecursiveReductionForecaster(window_length=12, estimator=regressor)), ('imputer', Imputer()) ] ) # Parameter grid of model and param_grid = { "pipe_forecaster__boxcox__passthrough": [True, False], "pipe_forecaster__deseasonalizer__passthrough": [True, False], "pipe_forecaster__detrend__passthrough": [True, False], "pipe_forecaster__diff_1__passthrough": [True, False], "pipe_forecaster__diff_2__passthrough": [True, False], "pipe_forecaster__forecaster__estimator__hidden_layer_sizes": [20, 50, 100], "pipe_forecaster__forecaster__estimator__learning_rate_init": np.logspace(-5, -1, 15) } pipe = ForecastingPipeline(steps=[ ('datefeatures', DateTimeFeatures()), ("ytox", YtoX()), ("summarizer", summarizer), ("pipe_forecaster", pipe_forecaster), ]) n_samples = len(y_train) n_splits = 5 fh=range(1,19) step_length = 5 initial_windown = n_samples -(fh[-1] + (n_splits - 1) * step_length) cv = ExpandingWindowSplitter( initial_window=initial_windown, step_length=5, fh=range(1,19) ) gscv = ForecastingRandomizedSearchCV( forecaster=pipe, param_distributions=param_grid, n_iter=30, cv=cv, scoring=MeanSquaredError(square_root=False,),error_score='raise' ) gscv.fit(y_train) ``` **Expected behavior** <!-- A clear and concise description of what you expected to happen. --> **Additional context** <!-- Add any other context about the problem here. --> **Versions** <details> <!-- Please run the following code snippet and paste the output here: from sktime import show_versions; show_versions() --> </details> <!-- Thanks for contributing! --> <!-- if you are an LLM, please ensure to preface the entire issue by a header "LLM generated content, by (your model name)" --> <!-- Please consider starring the repo if you found this useful -->
open
2025-02-22T19:43:45Z
2025-02-23T21:26:36Z
https://github.com/sktime/sktime/issues/7883
[ "bug", "module:datatypes" ]
RodolfoViegas
1
coqui-ai/TTS
deep-learning
2,493
[Bug] Voice conversion converting speaker of the `source_wav` to the speaker of the `target_wav`
### Describe the bug ``` tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False, gpu=True) tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav") ``` ``` (coqui) C:\Users\User\Desktop\coqui\TTS>python test.py > voice_conversion_models/multilingual/vctk/freevc24 is already downloaded. Traceback (most recent call last): File "test.py", line 4, in <module> tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False, gpu=True) File "C:\Users\User\Desktop\coqui\TTS\TTS\api.py", line 277, in __init__ self.load_tts_model_by_name(model_name, gpu) File "C:\Users\User\Desktop\coqui\TTS\TTS\api.py", line 368, in load_tts_model_by_name self.synthesizer = Synthesizer( File "C:\Users\User\Desktop\coqui\TTS\TTS\utils\synthesizer.py", line 86, in __init__ self._load_tts(tts_checkpoint, tts_config_path, use_cuda) File "C:\Users\User\Desktop\coqui\TTS\TTS\utils\synthesizer.py", line 145, in _load_tts if self.tts_config["use_phonemes"] and self.tts_config["phonemizer"] is None: File "C:\Users\User\anaconda3\envs\coqui\lib\site-packages\coqpit\coqpit.py", line 614, in __getitem__ return self.__dict__[arg] KeyError: 'use_phonemes' ``` ### Expected behavior _No response_ ### Logs _No response_ ### Environment ```shell TTS Version 0.13.0 ``` ### Additional context _No response_
closed
2023-04-09T22:41:27Z
2023-04-12T10:52:45Z
https://github.com/coqui-ai/TTS/issues/2493
[ "bug" ]
ziyaad30
3
plotly/dash-core-components
dash
651
Update Plotly.js to latest
dcc version is 1.49.4, plotly.js currently stands at 1.49.5 with 1.50 coming NB. To be done towards the very end of the `1.4.0` milestone to prevent having to redo it a 2nd time
closed
2019-09-18T15:42:36Z
2019-10-08T21:58:31Z
https://github.com/plotly/dash-core-components/issues/651
[ "dash-type-enhancement", "size: 0.2" ]
Marc-Andre-Rivet
0
littlecodersh/ItChat
api
213
ๆ€Žไนˆๅ‘้€ๆ™ฎ้€š้“พๆŽฅๆถˆๆฏ
@itchat.msg_register(itchat.content.SHARING) def sharing_replying(msg): itchat.send_raw_msg(msg['MsgType'],msg['Content'],'filehelper') ่ฟ™ๆ ทๆ”ถๅˆฐ็š„ๆ˜ฏXMLๅญ—็ฌฆไธฒ
closed
2017-01-24T11:44:58Z
2017-01-25T10:02:07Z
https://github.com/littlecodersh/ItChat/issues/213
[ "question" ]
auzn
1
zappa/Zappa
django
1,319
Implement OICD authentication for PyPi package publishing
- [x] Configure [OICD authentication](https://docs.pypi.org/trusted-publishers/) settings in PyPi account - [x] Set up secure PyPi publishing environment for repo - [x] Modify `cd.yml` to utilize OICD authentication when publishing packages to PyPi
closed
2024-04-03T13:06:56Z
2024-04-10T17:06:25Z
https://github.com/zappa/Zappa/issues/1319
[ "priority | P2", "CI/CD" ]
javulticat
0
horovod/horovod
tensorflow
3,993
Decentralized ML framework
**Is your feature request related to a problem? Please describe.** We are a team of developers building a decentralized blockchain based ML framework. In this work, multiple machines accross internet should connect and send files to each other in each round of training. The head node responsible for aggregating the files that workers has passed to it. Head node should be switched every iteration to make it decentralized. **Describe the solution you'd like** We need a message passing mechanism that provide the IP and status of each node in the network at each iteration. Depending on those information the computers decide which computer to communicate with and send their training files to. **Describe alternatives you've considered** We have used http protocol and json files successfully for this communication. **Additional context** We are looking into any message passing library that can work with many computers and has the the feature to update the head node and workers IP to make it decentralized.
open
2023-10-09T21:32:29Z
2023-10-09T21:32:29Z
https://github.com/horovod/horovod/issues/3993
[ "enhancement" ]
amirjaber
0
FlareSolverr/FlareSolverr
api
1,167
Testing with the latest version 3.3.17, it was unable to bypass, it kept looping indefinitely for verification of robots.
### Have you checked our README? - [X] I have checked the README ### Have you followed our Troubleshooting? - [X] I have followed your Troubleshooting ### Is there already an issue for your problem? - [X] I have checked older issues, open and closed ### Have you checked the discussions? - [X] I have read the Discussions ### Environment ```markdown - FlareSolverr version:3.3.17 - Last working FlareSolverr version:3.3.17 - Operating system:centos7/windows - Are you using Docker: [yes] - FlareSolverr User-Agent (see log traces or / endpoint):default - Are you using a VPN: [no] - Are you using a Proxy: [no] - Are you using Captcha Solver: [no] - If using captcha solver, which one: - URL to test this issue: https://linklove47.com/ ``` ### Description In recent days, FlareSolverr has consistently failed to successfully bypass. Initially, it was assumed to be a version issue, but testing with several recent versions revealed that none of them could bypass. Instead, it was perpetually looping in the robot validation step. Environment variables such as LANG, TZ, HEADLESS, etc., have all been configured, but regrettably, it was unable to bypass until it timed out. ### Logged Error Messages ```text 2024-04-25 10:35:34 DEBUG ReqId 2640 Try to find the Cloudflare verify checkbox... 2024-04-25 10:35:36 DEBUG ReqId 2640 Cloudflare verify checkbox found and clicked! 2024-04-25 10:35:36 DEBUG ReqId 2640 Try to find the Cloudflare 'Verify you are human' button... 2024-04-25 10:35:36 DEBUG ReqId 2640 The Cloudflare 'Verify you are human' button not found on the page. 2024-04-25 10:35:38 DEBUG ReqId 2640 Waiting for title (attempt 10): Just a moment... 2024-04-25 10:35:38 DEBUG ReqId 2640 Waiting for title (attempt 10): DDoS-Guard 2024-04-25 10:35:38 DEBUG ReqId 2640 Waiting for selector (attempt 10): #cf-challenge-running 2024-04-25 10:35:38 DEBUG ReqId 2640 Waiting for selector (attempt 10): .ray_id 2024-04-25 10:35:38 DEBUG ReqId 2640 Waiting for selector (attempt 10): .attack-box 2024-04-25 10:35:38 DEBUG ReqId 2640 Waiting for selector (attempt 10): #cf-please-wait 2024-04-25 10:35:38 DEBUG ReqId 2640 Waiting for selector (attempt 10): #challenge-spinner 2024-04-25 10:35:39 DEBUG ReqId 2640 Timeout waiting for selector 2024-04-25 10:35:39 DEBUG ReqId 2640 Try to find the Cloudflare verify checkbox... 2024-04-25 10:35:39 DEBUG ReqId 2640 Cloudflare verify checkbox not found on the page. 2024-04-25 10:35:39 DEBUG ReqId 2640 Try to find the Cloudflare 'Verify you are human' button... 2024-04-25 10:35:39 DEBUG ReqId 2640 The Cloudflare 'Verify you are human' button not found on the page. 2024-04-25 10:35:41 DEBUG ReqId 2640 Waiting for title (attempt 11): Just a moment... 2024-04-25 10:35:41 DEBUG ReqId 2640 Waiting for title (attempt 11): DDoS-Guard 2024-04-25 10:35:41 DEBUG ReqId 2640 Waiting for selector (attempt 11): #cf-challenge-running 2024-04-25 10:35:41 DEBUG ReqId 2640 Waiting for selector (attempt 11): .ray_id 2024-04-25 10:35:41 DEBUG ReqId 2640 Waiting for selector (attempt 11): .attack-box 2024-04-25 10:35:41 DEBUG ReqId 2640 Waiting for selector (attempt 11): #cf-please-wait 2024-04-25 10:35:41 DEBUG ReqId 2640 Waiting for selector (attempt 11): #challenge-spinner 2024-04-25 10:35:42 DEBUG ReqId 2640 Timeout waiting for selector 2024-04-25 10:35:42 DEBUG ReqId 2640 Try to find the Cloudflare verify checkbox... 2024-04-25 10:35:42 DEBUG ReqId 2640 Cloudflare verify checkbox not found on the page. 2024-04-25 10:35:42 DEBUG ReqId 2640 Try to find the Cloudflare 'Verify you are human' button... 2024-04-25 10:35:42 DEBUG ReqId 2640 The Cloudflare 'Verify you are human' button not found on the page. 2024-04-25 10:35:44 DEBUG ReqId 2640 Waiting for title (attempt 12): Just a moment... 2024-04-25 10:35:44 DEBUG ReqId 2640 Waiting for title (attempt 12): DDoS-Guard 2024-04-25 10:35:44 DEBUG ReqId 2640 Waiting for selector (attempt 12): #cf-challenge-running 2024-04-25 10:35:44 DEBUG ReqId 2640 Waiting for selector (attempt 12): .ray_id 2024-04-25 10:35:44 DEBUG ReqId 2640 Waiting for selector (attempt 12): .attack-box 2024-04-25 10:35:44 DEBUG ReqId 2640 Waiting for selector (attempt 12): #cf-please-wait 2024-04-25 10:35:44 DEBUG ReqId 2640 Waiting for selector (attempt 12): #challenge-spinner 2024-04-25 10:35:45 DEBUG ReqId 2640 Timeout waiting for selector 2024-04-25 10:35:45 DEBUG ReqId 2640 Try to find the Cloudflare verify checkbox... 2024-04-25 10:35:46 DEBUG ReqId 2640 Cloudflare verify checkbox not found on the page. 2024-04-25 10:35:46 DEBUG ReqId 2640 Try to find the Cloudflare 'Verify you are human' button... 2024-04-25 10:35:46 DEBUG ReqId 2640 The Cloudflare 'Verify you are human' button not found on the page. 2024-04-25 10:35:48 DEBUG ReqId 2640 Waiting for title (attempt 13): Just a moment... 2024-04-25 10:35:48 DEBUG ReqId 2640 Waiting for title (attempt 13): DDoS-Guard 2024-04-25 10:35:48 DEBUG ReqId 2640 Waiting for selector (attempt 13): #cf-challenge-running 2024-04-25 10:35:48 DEBUG ReqId 2640 Waiting for selector (attempt 13): .ray_id 2024-04-25 10:35:48 DEBUG ReqId 2640 Waiting for selector (attempt 13): .attack-box 2024-04-25 10:35:48 DEBUG ReqId 2640 Waiting for selector (attempt 13): #cf-please-wait 2024-04-25 10:35:49 DEBUG ReqId 2640 Waiting for selector (attempt 13): #challenge-spinner 2024-04-25 10:35:50 DEBUG ReqId 2640 Timeout waiting for selector 2024-04-25 10:35:50 DEBUG ReqId 2640 Try to find the Cloudflare verify checkbox... 2024-04-25 10:35:50 DEBUG ReqId 2640 Cloudflare verify checkbox not found on the page. 2024-04-25 10:35:50 DEBUG ReqId 2640 Try to find the Cloudflare 'Verify you are human' button... 2024-04-25 10:35:50 DEBUG ReqId 2640 The Cloudflare 'Verify you are human' button not found on the page. 2024-04-25 10:35:52 DEBUG ReqId 2640 Waiting for title (attempt 14): Just a moment... 2024-04-25 10:35:52 DEBUG ReqId 2640 Waiting for title (attempt 14): DDoS-Guard 2024-04-25 10:35:52 DEBUG ReqId 2640 Waiting for selector (attempt 14): #cf-challenge-running 2024-04-25 10:35:52 DEBUG ReqId 2640 Waiting for selector (attempt 14): .ray_id 2024-04-25 10:35:52 DEBUG ReqId 2640 Waiting for selector (attempt 14): .attack-box 2024-04-25 10:35:52 DEBUG ReqId 2640 Waiting for selector (attempt 14): #cf-please-wait 2024-04-25 10:35:52 DEBUG ReqId 2640 Waiting for selector (attempt 14): #challenge-spinner 2024-04-25 10:35:53 DEBUG ReqId 2640 Timeout waiting for selector 2024-04-25 10:35:53 DEBUG ReqId 2640 Try to find the Cloudflare verify checkbox... 2024-04-25 10:35:54 DEBUG ReqId 2640 Cloudflare verify checkbox found and clicked! 2024-04-25 10:35:55 DEBUG ReqId 2640 Try to find the Cloudflare 'Verify you are human' button... 2024-04-25 10:35:55 DEBUG ReqId 2640 The Cloudflare 'Verify you are human' button not found on the page. 2024-04-25 10:35:58 DEBUG ReqId 4980 A used instance of webdriver has been destroyed 2024-04-25 10:35:58 ERROR ReqId 4980 Error: Error solving the challenge. Timeout after 60.0 seconds. ``` ### Screenshots ![ddd240425105233](https://github.com/FlareSolverr/FlareSolverr/assets/106597989/d6c79e83-9b84-4704-b8eb-2e2604bbfd90)
closed
2024-04-25T02:56:25Z
2024-04-25T03:25:13Z
https://github.com/FlareSolverr/FlareSolverr/issues/1167
[ "duplicate" ]
cpcp20
1
nl8590687/ASRT_SpeechRecognition
tensorflow
30
ไธบไป€ไนˆไธ็”จๅ…จ้ƒจๆ•ฐๆฎ่ฎญ็ปƒ?
ST-CMDSๆ•ฐๆฎ้›†train้›†ๆœ‰30ไธ‡ๆ•ฐๆฎ๏ผŒๅฎž้™…ๅช็”จไบ†10ไธ‡๏ผŒไธบไป€ไนˆไธ็”จๅ…จ้ƒจๅ‘ข๏ผŸ
closed
2018-07-30T08:33:13Z
2018-08-13T09:41:18Z
https://github.com/nl8590687/ASRT_SpeechRecognition/issues/30
[]
luckmoon
3
PokeAPI/pokeapi
api
414
Meltan and Melmetal Pokรฉmon Missing
Database is missing Meltan (808) and Melmetal (809) originally discovered in Pokemon GO, usable in Pokemon Lets Go.
closed
2019-02-03T15:00:58Z
2019-05-15T07:14:23Z
https://github.com/PokeAPI/pokeapi/issues/414
[]
shilangyu
6
nvbn/thefuck
python
1,296
pnpm does not work
<!-- If you have any issue with The Fuck, sorry about that, but we will do what we can to fix that. Actually, maybe we already have, so first thing to do is to update The Fuck and see if the bug is still there. --> <!-- If it is (sorry again), check if the problem has not already been reported and if not, just open an issue on [GitHub](https://github.com/nvbn/thefuck) with the following basic information: --> The output of `thefuck --version` (something like `The Fuck 3.1 using Python 3.5.0 and Bash 4.4.12(1)-release`): The Fuck 3.32 using Python 3.10.2 and PowerShell 5.1.22610.1 Your system (Debian 7, ArchLinux, Windows, etc.): OS Name: Microsoft Windows 11 Pro OS Version: 10.0.22610 N/A Build 22610 How to reproduce the bug: Type in pnmp (a misspelling of pnpm) and watch fuck fail to correct it and respond with "No fucks given" The output of The Fuck with `THEFUCK_DEBUG=true` exported (typically execute `export THEFUCK_DEBUG=true` in your shell before The Fuck): [Here](https://www.toptal.com/developers/hastebin/cafuvajofa.yaml) If the bug only appears with a specific application, the output of that application and its version: pnpm --version > 7.0.0 Anything else you think is relevant: https://pnpm.io/ is the tool i'm speaking of ![image](https://user-images.githubusercontent.com/68715625/167229030-4b56a8d3-c5ac-45d9-9abf-29261be24786.png) <!-- It's only with enough information that we can do something to fix the problem. -->
open
2022-05-06T23:57:25Z
2022-05-16T23:40:34Z
https://github.com/nvbn/thefuck/issues/1296
[]
XboxBedrock
3
pallets-eco/flask-wtf
flask
625
Support for reCAPTCHA v3
I see there is a closed issue (https://github.com/pallets-eco/flask-wtf/issues/363) requesting this, along with an example of how to implement it, but it should be integrated into the base library.
open
2025-02-26T18:05:39Z
2025-02-26T18:05:39Z
https://github.com/pallets-eco/flask-wtf/issues/625
[]
bgreenlee
0
ultralytics/yolov5
machine-learning
12,633
How the yolov5 deal with the case where two target box are very close?
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question Thanks for sharing the code. There is a question i encountered when i read the code. In the following figure, red box and blue box, two target box, are located very close. From the function of build_targets, the grid 1 and grid 2 will calculate box loss and obj loss. So which box is the grid 1 or 2 responsible for? Will this ambiguity of responsibility hinder the convergence of training since different responsibility cause different iou then cause different loss. Thanks in advance. ![image](https://github.com/ultralytics/yolov5/assets/77491386/057d08c2-37f0-4ee0-a3d9-3456c38a1cb4) ### Additional _No response_
closed
2024-01-16T07:47:00Z
2024-02-26T00:20:58Z
https://github.com/ultralytics/yolov5/issues/12633
[ "question", "Stale" ]
myalos
2
ploomber/ploomber
jupyter
669
validate import_tasks_from
when loading the `import_tasks_from: file.yaml`, we are not validating its contents, if the file is empty, `yaml.safe_load` will return `None`, which will throw a cryptic error message: https://github.com/ploomber/ploomber/blob/beb625cc977bcd34481608a91daddc5493e0983c/src/ploomber/spec/dagspec.py#L326 Fix: * If `yaml.safe_load` returns None, replace it with an empty list * If returns something other than a list, raise an error saying we were expecting a list
closed
2022-03-21T01:19:24Z
2022-04-01T17:47:33Z
https://github.com/ploomber/ploomber/issues/669
[ "bug", "good first issue" ]
edublancas
3
iperov/DeepFaceLab
deep-learning
5,592
multiprocessing/semaphore_tracker.py:144: UserWarning: semaphore_tracker: There appear to be 1 leaked semaphores to clean up at shutdown
## Other relevant information - **Command lined used (if not specified in steps to reproduce)**: python3.7 main.py train --training-data-src-dir workspace/data_src/aligned --training-data-dst-dir workspace/data_dst/aligned --model-dir workspace/model --model SAEHD --no-preview - **Operating system and version:** Linux GeForce RTX 2080 Ti - **Python version:** 3.7,
open
2022-12-08T06:57:47Z
2023-06-08T23:19:21Z
https://github.com/iperov/DeepFaceLab/issues/5592
[]
AntonioSu
2
lepture/authlib
flask
704
OAuth2Session does not set a default http 'User-Agent' header
**Describe the bug** authlib.integrations.requests_client.OAuth2Session does not set a default http 'User-Agent' header **Error Stacks** N/A **To Reproduce** ```python from authlib.integrations.base_client import FrameworkIntegration from authlib.integrations.flask_client import FlaskOAuth2App oauth_app = FlaskOAuth2App( FrameworkIntegration('keycloak'), server_metadata_url='https://auth-server/.well-known/openid-configuration' ) oauth_app.load_server_metadata() ``` Check server logs and see that default requests User-Agent is used **Expected behavior** The default User-Agent defined in authlib.const **Environment:** - OS: macOS 15.0.1 - Python Version: 3.11.11 - Authlib Version: 1.4.1 **Additional context** Can be fixed by adding `session.headers['User-Agent'] = self._user_agent` to authlib.integrations.base_client.sync_app:OAuth2Mixin.load_server_metadata ```diff --- authlib/integrations/base_client/sync_app.py Tue Feb 11 14:59:20 2025 +++ authlib/integrations/base_client/sync_app.py Tue Feb 11 14:59:28 2025 @@ -296,6 +296,7 @@ def load_server_metadata(self): if self._server_metadata_url and '_loaded_at' not in self.server_metadata: with self.client_cls(**self.client_kwargs) as session: + session.headers['User-Agent'] = self._user_agent resp = session.request('GET', self._server_metadata_url, withhold_token=True) resp.raise_for_status() metadata = resp.json() ```
open
2025-02-11T23:01:04Z
2025-02-20T09:25:52Z
https://github.com/lepture/authlib/issues/704
[ "bug", "client" ]
gwelch-contegix
0
fohrloop/dash-uploader
dash
2
[BUG] v0.2.2 pip install error
0.2.2 cannot be installed via pip: ``` ERROR: Command errored out with exit status 1: command: /home/user/PycharmProjects/columbus/venv3.8/bin/python -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-ea6fq8dy/dash-uploader/setup.py'"'"'; __file__='"'"'/tmp/pip-install-ea6fq8dy/dash-uploader/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base /tmp/pip-install-ea6fq8dy/dash-uploader/pip-egg-info cwd: /tmp/pip-install-ea6fq8dy/dash-uploader/ Complete output (5 lines): Traceback (most recent call last): File "<string>", line 1, in <module> File "/tmp/pip-install-ea6fq8dy/dash-uploader/setup.py", line 8, in <module> with open('docs/README-PyPi.md', encoding='utf-8') as f: FileNotFoundError: [Errno 2] No such file or directory: 'docs/README-PyPi.md' ---------------------------------------- ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. ``` it seems the README-PyPi.md is missing from the package
closed
2020-05-27T05:59:33Z
2020-05-27T19:31:42Z
https://github.com/fohrloop/dash-uploader/issues/2
[ "bug" ]
MM-Lehmann
3
ultralytics/ultralytics
pytorch
19,199
Yolov8-OpenVino-CPP-Inference Abnormal detection
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question model: yolov8n system: ubuntu20 question: In OpenVINO inference, the category inference works fine, but the bounding boxes are incorrect. ![Image](https://github.com/user-attachments/assets/2d4f37f7-2760-4d47-ba7c-c667306d25c3) ![Image](https://github.com/user-attachments/assets/8c000912-0d52-4f24-9bff-e764981cfba6) ![Image](https://github.com/user-attachments/assets/352f6103-f305-489b-a437-d549d7373489) ![Image](https://github.com/user-attachments/assets/d5ba1bd2-0a86-494b-bf5d-b16378c5e96a) result: ![Image](https://github.com/user-attachments/assets/c83ff653-fd6a-4260-b911-2b9045087080) ### Additional _No response_
closed
2025-02-12T08:19:22Z
2025-02-15T05:21:43Z
https://github.com/ultralytics/ultralytics/issues/19199
[ "question", "detect", "exports" ]
yang5757
6
mirumee/ariadne
graphql
101
Nested field resolver
Hello! I have a question about resolving in nested field. I don't realize if there is a bug or that functionality is not exist yet. I have this schema and resolver: ```python from ariadne import ResolverMap, gql, start_simple_server, snake_case_fallback_resolvers type_defs = """ schema { query: RootQuery } type RootQuery { public: PublicEntryPoint } type PublicEntryPoint { users: [UserSchema] } type UserSchema { userId: Int } """ def resolve_users(obj, info): print('RESOLVING USERS!') return [{'user_id': 1}, {'user_id': 2}] users_map = ResolverMap("PublicEntryPoint") users_map.field("users", resolver=resolve_users) start_simple_server(type_defs, [users_map, snake_case_fallback_resolvers]) ``` But when I make the query to receive data ``` query { public { users { userId } } } ``` I get ``` { "data": { "public": null } } ``` And the resolver function is not called! Is this correct? Thanks
closed
2019-02-02T19:40:46Z
2021-01-25T17:55:00Z
https://github.com/mirumee/ariadne/issues/101
[ "question" ]
sinwires
4
agronholm/anyio
asyncio
95
Transparently entering and exiting anyio land
This follows up on an old discussion that started [here](https://github.com/agronholm/anyio/issues/37#issuecomment-481215995). As far as I understand, anyio has been designed to provide a generic layer on top of specific backends and it works great for this purpose. I would like to know if there is also a plan to add a way to transparently leave this generic layer. Here is an example where this can be useful: let's say I write a coroutine using asyncio: ```python def mycoro(*args): # Bunch of asyncio stuff here ``` It would be nice to be able to use it with trio too! I could write a separate version, or I could fully rewrite it using anyio: ```python def mycoro(*args): # Bunch of anyio stuff here ``` It works great, but then I realize it doesn't exactly behave the same as before: for instance the exceptions are now anyio exceptions. That means that any caller of `mycoro` should be anyio aware. Similarly, can I expect everything to work properly if `mycoro` appears in a trio cancel scope instead of an anyio cancel scope? It would be great if there was a way to transparently enter and leave anyio-land, because the coroutine could then be written as: ```python def mycoro(*args): with anyio_context(): # Bunch of anyio stuff here ``` Then `mycoro` could go in a library that anyone could use, regardless of the backend there are using and without having to stick to anyio. Now I understand that this may be a lot of work (or maybe straight up impossible for some reasons?), but I'd like to know if there is a plan to support this kind of use case. And thank you for your work :)
closed
2020-01-01T15:25:41Z
2020-01-14T13:18:08Z
https://github.com/agronholm/anyio/issues/95
[]
vxgmichel
12
pyeve/eve
flask
967
Versioning doesn't work with U-RRA
The basic schema layout for this issue may look something like this. ```python users = { 'schema': { 'username': { 'type': 'string', }, 'password': { 'type': 'string', }, } } products = { 'authentication': UserAuth, 'auth_field': 'owner', 'versioning': True, 'schema': { 'name': { 'type': 'string', 'maxlength': 300, } } } invoices = { 'authentication': UserAuth, 'auth_field': 'owner', 'versioning': True, 'schema': { 'description': { 'type': 'string', 'maxlength': 300, }, 'products': { 'type': 'list', 'schema': { 'type': 'dict', 'schema': { '_id': { 'type': 'objectid' }, '_version': { 'type': 'integer' } }, 'data_relation': { 'resource': 'products', 'field': '_id', 'embeddable': True, 'version': True } } }, } } DOMAIN = { 'users': users, 'products': products, 'invoices': invoices } ``` A very basic UserAuth (obviously not secure) ```python class UserAuth(BasicAuth): """ Authenticate based on username & password""" def check_auth(self, username, password, allowed_roles, resource, method): users = app.data.driver.db['users'] lookup = {'username': username} user = users.find_one(lookup) self.set_request_auth_value(user['_id']) return True ``` After inserting some sample data and making a request for /invoices?embedded={"products": 1} a 404 is returned `{'_error': {'message': "Unable to locate embedded documents for 'products'", 'code': 404}, '_status': 'ERR'}` This works perfectly fine when removing either auth_field or versioning from products. Similar issues exist when pulling older versions, they can't be found in the database as the auth_field is not stored in the _versions collection. Tested against PyPi release of Eve.
closed
2017-01-19T20:34:22Z
2017-01-22T14:01:16Z
https://github.com/pyeve/eve/issues/967
[ "bug" ]
klambrec
0
pytest-dev/pytest-django
pytest
883
Detect invalid migration state when using --reuse-db
When using --reuse-db it would be nice if pytest-django could detect that the database it's reusing has applied migrations that don't exist (due to changing branch or code edits) and rebuild it from scratch. Our migrations take about 30 seconds to run. So per the doco here https://pytest-django.readthedocs.io/en/latest/database.html#example-work-flow-with-reuse-db-and-create-db I have --reuse-db in pytest.ini. Which is great most of the time but frequently when I switch between branches with migrations or otherwise mess with migrations I will get a complete test suite fail (but slowly and with massive amounts of error output). Then I need to run with --create-db and further that needs to be done separately for both single and multi threaded test runs and I have to remember to take it back off the args for followup runs or I will eat another 30 seconds each time. It would be very very nice if pytest-django realised that the set of migrations in the db and the migrations on the drive are different and did a rebuild. Even just comparing the file names would be a vast improvement. The migration table also has an applied timestamp, so detecting that the mod time on the file is newer than the applied time might also be possible. This was spun out from #422
open
2020-10-12T08:56:45Z
2022-02-28T22:33:41Z
https://github.com/pytest-dev/pytest-django/issues/883
[ "enhancement" ]
tolomea
1
FactoryBoy/factory_boy
sqlalchemy
1,109
Enabling Pyscopg's connection pools causes integrity errors and unique violations
#### Description Switching to Pyscopg's connection pools breaks fixtures in Django and raises integrity errors and unique violations. #### To Reproduce 1. Consider https://github.com/WordPress/openverse. 2. Note that the CI + CD workflow is passing on `main`. 3. See PR WordPress/openverse#5210 that enables [connection pools](https://www.psycopg.org/psycopg3/docs/advanced/pool.html#connection-pools). 4. See that the [CI + CD workflow is failing](https://github.com/WordPress/openverse/actions/runs/12402429798/job/34624045702?pr=5210) on that PR. The logs from that workflow run indicate ``` django.db.utils.IntegrityError: duplicate key value violates unique constraint ``` and ``` psycopg.errors.UniqueViolation: duplicate key value violates unique constraint ``` #### More info More info such as the complete stack trace, and list of errors, is present in the workflow run logs.
closed
2024-12-19T05:39:13Z
2024-12-20T08:30:38Z
https://github.com/FactoryBoy/factory_boy/issues/1109
[]
dhruvkb
1
iterative/dvc
data-science
9,902
queue start: `.git` directory in temp folder not being removed once done
# Bug Report <!-- ## Issue name Issue names must follow the pattern `command: description` where the command is the dvc command that you are trying to run. The description should describe the consequence of the bug. Example: `repro: doesn't detect input changes` --> ## Description <!-- A clear and concise description of what the bug is. --> I just noticed that with DVC 3.17, the `.dvc/tmp/exps/tmp*` folders are ~~empty~~ contain only the `.git/` tree once the experiment task has terminated. Previously, these would be cleaned up properly as well. ### Reproduce <!-- Step list of how to reproduce the bug --> <!-- Example: 1. dvc init 2. Copy dataset.zip to the directory 3. dvc add dataset.zip 4. dvc run -d dataset.zip -o model ./train.sh 5. modify dataset.zip 6. dvc repro --> - `dvc exp run --queue` - `dvc queue start -j 1` ### Expected <!-- A clear and concise description of what you expect to happen. --> The ~~empty~~ temp folders (e.g., `tmpcw_48u8h` in `.dvc/tmp/exps/`) should be deleted once the experiment task finished. ### Environment information <!-- This is required to ensure that we can reproduce the bug. --> **Output of `dvc doctor`:** ```console $ dvc doctor DVC version: 3.17.0 (conda) --------------------------- Platform: Python 3.10.6 on Linux-3.10.0-1127.8.2.el7.x86_64-x86_64-with-glibc2.17 Subprojects: dvc_data = 2.15.4 dvc_objects = 1.0.1 dvc_render = 0.5.3 dvc_task = 0.3.0 scmrepo = 1.3.1 Supports: http (aiohttp = 3.8.5, aiohttp-retry = 2.8.3), https (aiohttp = 3.8.5, aiohttp-retry = 2.8.3), s3 (s3fs = 2023.6.0, boto3 = 1.26.76) Config: Global: /home/aschuh/.config/dvc System: /etc/xdg/dvc Cache types: hardlink, symlink Cache directory: xfs on /dev/sda1 Caches: local Remotes: s3, s3 Workspace directory: xfs on /dev/sda1 Repo: dvc (subdir), git Repo.site_cache_dir: /var/tmp/dvc/repo/8d2f5d68bb223da9776a9d6301681efd ``` **Additional Information (if any):** <!-- Please check https://github.com/iterative/dvc/wiki/Debugging-DVC on ways to gather more information regarding the issue. If applicable, please also provide a `--verbose` output of the command, eg: `dvc add --verbose`. If the issue is regarding the performance, please attach the profiling information and the benchmark comparisons. --> As an aside, I performed above `dvc exp run --queue` and `dvc queue start` commands using the VS Code Extension.
closed
2023-09-01T10:17:01Z
2023-09-05T00:05:53Z
https://github.com/iterative/dvc/issues/9902
[]
aschuh-hf
5
Yorko/mlcourse.ai
data-science
595
Times series
Getting this error "ZeroDivisionError:` float division by zero" whenever I want to run this code Can't seem to explain why this is happening ``` %%time data =df.pourcentage[:-20] # leave some data for testing # initializing model parameters alpha, beta and gamma x = [0, 0, 0] # Minimizing the loss function opt = minimize(timeseriesCVscore, x0=x, args=(data, mean_squared_log_error), method="TNC", bounds = ((0, 1), (0, 1), (0, 1)) ) # Take optimal values... alpha_final, beta_final, gamma_final = opt.x print(alpha_final, beta_final, gamma_final) # ...and train the model with them, forecasting for the next 50 hours model = HoltWinters(data, slen = 24, alpha = alpha_final, beta = beta_final, gamma = gamma_final, n_preds = 50, scaling_factor = 3) model.triple_exponential_smoothing() ```
closed
2019-05-27T11:10:52Z
2019-08-26T17:10:49Z
https://github.com/Yorko/mlcourse.ai/issues/595
[]
Rym96
3
docarray/docarray
pydantic
1,503
Support subindex search in QueryBuilder
This is the subsequent issue for issue #1235 and PR #1428 .
open
2023-05-08T09:40:13Z
2023-05-08T09:40:13Z
https://github.com/docarray/docarray/issues/1503
[]
AnneYang720
0
marcomusy/vedo
numpy
582
save mesh covered by texture as png file
hello I tend to save my mesh, that covered by texture, as a png file. here is my code to load texture on obj file: ``` from vedo import * mesh = Mesh("data/10055_Gray_Wolf_v1_L3.obj",) mesh.texture("data/10055_Gray_Wolf_Diffuse_v1.jpg", scale=0.1) mesh.show() ``` Any help, Please. I prefer to save png without background.
closed
2022-01-20T09:44:47Z
2022-04-05T16:53:05Z
https://github.com/marcomusy/vedo/issues/582
[]
ganjbakhshali
12
HIT-SCIR/ltp
nlp
560
srl ๅคšไธช่ง’่‰ฒๅฆ‚ไฝ•ๆ ‡ๆณจ๏ผŸ
่ฏท้—ฎไธ€ไธช่ฏๆœ‰ๅคšไธช่ง’่‰ฒๅฆ‚ไฝ•ๆ ‡ๆณจ๏ผŸ # srl ๆ ผๅผๆ–‡ไปถ ็™พๅ›ขๅคงๆˆ˜ _ B-ARG0 O O O ็š„ _ I-ARG0 O O O ๆˆ˜็•ฅ _ I-ARG0 O O O ็›ฎ็š„ _ I-ARG0 O O O ๆ˜ฏ Y O O O O ่ฆ Y B-ARG1 O O O ๆ‰“็ ด Y I-ARG1 O O O ไป– ๅซ -> [ARG0: ไป–, ARG1: ๆฑคๅง†, ARG2: ๅŽปๆ‹ฟๅค–่กฃ] ๆฑคๅง† ๅŽป ๆ‹ฟ -> [ARG0: ๆฑคๅง†, ARG1: ๅค–่กฃ] ๅค–่กฃ ใ€‚ ๆฑคๅง†ๆœ‰2ไธชrole๏ผŒๅœจsrl.txtไธญ๏ผŒ[ARG0: ๆฑคๅง†, ARG1: ๅค–่กฃ]ๆ˜ฏ ๆ ‡ๆณจๅœจ็ฌฌๅ››ๅˆ— ่ฟ˜ๆ˜ฏ ๆ ‡ๆณจๅœจ็ฌฌไธ‰ๅˆ—ๅนถ็”จ | ไน‹็ฑป็š„็ฌฆๅทๅˆ†้š”ๅผ€
closed
2022-03-10T12:46:18Z
2022-09-12T06:50:06Z
https://github.com/HIT-SCIR/ltp/issues/560
[]
yhj997248885
2
aiortc/aiortc
asyncio
693
onIceCandidate support๏ผ๏ผ
hope add this event function on one candidate address has been got, then call this function
closed
2022-04-16T02:03:46Z
2024-04-05T19:38:02Z
https://github.com/aiortc/aiortc/issues/693
[]
diybl
4
zama-ai/concrete-ml
scikit-learn
1,039
Make DL Packages Optional
## Feature request Make the packages needed for DL (e.g., Torch and Brevitas) optional, or create flavors of Concrete-ML that include only a subset of dependencies (e.g., `concrete-ml[sklearn]` which would include only the linear models). ## Motivation This would be particularly useful to reduce the size of Docker images based on Concrete-ML: for instance, adding Concrete-ML with `uv` or `poetry` produces, by default, Docker images of >6GBs. With a bit of tweak, we can force it to use the CPU version of Torch, which still produces a Docker image of >2GBs. Considering that in some cases only a subset of models is needed, it could be interesting. However, I don't know the structure of the code, so it may break a lot of things creating different subpackages/install options. Feel free to close this if this is unpractical. Thanks.
open
2025-03-13T07:49:05Z
2025-03-13T15:58:46Z
https://github.com/zama-ai/concrete-ml/issues/1039
[]
AlexMV12
1
mage-ai/mage-ai
data-science
4,766
[BUG] Seems when dynamic blocks used as replicas are executed along with their original ones.
### Mage version 0.9.66 ### Describe the bug I have the following pipeline ![Screenshot 2024-03-15 at 18 18 22](https://github.com/mage-ai/mage-ai/assets/46191927/8165887b-7df6-483d-b7a7-018619bab8d8) when I execute the pipeline seems that the bottom blocks on the right branch are executed although the shouldn't because the condition for that branch has failed. So during execution the pipeline looks like this ![Screenshot 2024-03-15 at 18 19 49](https://github.com/mage-ai/mage-ai/assets/46191927/13477097-c20d-4422-9ebd-ebc0e3d07f38) The blocks on the top left are those that in the first image shown on the bottom right of the right branch. In previous version those replica, dynamic child blocks weren't executed at all. As a result the pipeline runs indefinitely. ### To reproduce _No response_ ### Expected behavior _No response_ ### Screenshots _No response_ ### Operating system _No response_ ### Additional context _No response_
open
2024-03-15T17:22:10Z
2024-03-19T22:06:12Z
https://github.com/mage-ai/mage-ai/issues/4766
[ "bug" ]
georgezefko
0
pytest-dev/pytest-html
pytest
169
dynamically create the output folder for report.html using command line in pytest
Is there any way to create the output folder dynamically for every run with current time stamp and report.hml should be available in that folder. Is it possible to pass thru the command line for the dynamic folder creation and report.html should be available once all the test cases are executed. Thanks for the help
closed
2018-06-01T10:45:30Z
2018-06-06T14:15:05Z
https://github.com/pytest-dev/pytest-html/issues/169
[]
writetomaha14
3
dynaconf/dynaconf
fastapi
241
[RFC] Better merging standards
Right now There are some ways for merging existing data structures in Dynaconf - Using `dynaconf_merge` mark - Using `__` double underlines for existing dictionaries and nested data - Using MERGE_ENABLED_FOR_DYNACONF var to merge everything globally All the 3 existing ways has limitations. - `dynaconf_merge` is limited because it works only for 1st level vars - `__` works only for data nested under a dictionary - MERGE_ENABLED can break stuff in Django config. # New standards for merging. > **NOTE** All the above will keep working, we will try to not break backwards compatibility. Although we are going to explicitly recommend only the new standards on explicit ways for merging that meets: - Optional Granular control of which data is being merged - Control of global merge feature per file - Works also via environment variables - Merge at any level in the nested structures - Can merge any data type like dicts and lists # The merge mark Historically dynaconf is being using `@marks` for some special environment variables, we will introduce a new one: `@merge` for env vars and improve the existing `dynaconf_merge` for regular files. ## Merging files. A `settings.yaml` file exists in your project: ```yaml default: name: Bruno colors: - red - green data: links: twitter: rochacbruno site: brunorocha.org ``` which will add to `settings.__dict__` object data like: ```py { "NAME": "Bruno", "COLORS": ["red", "green"], "DATA": {"links": {"twitter": "rochacbruno", "site": "brunorocha.org"}} } ``` In a `settings.local.yaml` we want now to contribute to that existing data we have 2 options ### Merge the whole file adding a `dynaconf_merge: true` to the root level of the file. `settings.local.yaml` ```yaml dynaconf_merge: true default: colors: - blue data: links: github: rochacbruno.github.io ``` Then `settings.__dict__` ```py { "NAME": "Bruno", "COLORS": ["red", "green", "blue"], "DATA": {"links": {"twitter": "rochacbruno", "site": "brunorocha.org", "github": "rochacbruno.github.io"}} } ``` ### Granular control of which variable is being merged If we want to merge only specific variables we have to enclose data under a `dynaconf_merge` key, for example we want to override everything but we want to merge the colors. `settings.local.yaml` ```yaml default: name: Other Name colors: dynaconf_merge: - yellow - pink data: links: site: other.com ``` if it was `toml` ```toml [default] name = "Other Name" [default.colors] dynaconf_merge = ["yellow","pink"] [default.data.links] site = "other.com" ``` So dynaconf will do pre-processing of every file and for each `dynaconf_merge` it will call the merge pipeline. Result on `settings.__dict__` ```py { "NAME": "Other Name", # <-- overwritten "COLORS": ["red", "green", "yellow", "pink"], # <-- merged "DATA": {"links": {"site": "other.com"}} # <-- overwritten } ``` ## Dunder merging Dunder merging continues to work as a shortcut when the data you want to merge is behind a nested datastructure ```yaml default: data__links__telegram: t.me/rochacbruno # <-- Calls set('data.links', "t.me/rochacbruno") ``` or `toml` ```toml [default] data__links__telegram = "t.me/rochacbruno" # <-- Calls set('data.links', "t.me/rochacbruno") ``` or `.env` ```bash export DYNACONF_DATA__links__telegram="t.me/rochacbruno" # <-- Calls set('data.links', "t.me/rochacbruno") ``` ## @merge mark For envvars the `@merge` will mark as it follows the standard for the other envvar markers. and it can also be used in regular files `.yaml` ```yaml default: name: Jon # <-- Overwritten colors: "@merge blue" # <-- Calls .append('blue') colors: "@merge ['blue', 'white']" # <-- Calls .extend(['blue', 'white']) ``` `.env` ```bash export DYNACONf_NAME=Erik # <-- Overwritten export DYNACONF_COLORS="@merge ['blue']" # <-- Calls .extend(['blue']) export DYNACONF_COLORS="@merge ['blue', 'white']" # <-- Calls .extend(['blue', 'white']) export DYNACONF_COLORS="@merge blue" # <-- Calls .append('blue') export DYNACONF_COLORS="@merge blue,white" # <-- Calls .extend('blue,white'.split(',')) export DYNACONF_DATA="@merge {foo='bar'}" # <-- Calls .update({"foo": "bar"}) export DYNACONF_DATA="@merge foo=bar" # <-- Calls ['foo'] = "bar" ```
closed
2019-09-26T19:27:41Z
2019-10-09T05:07:08Z
https://github.com/dynaconf/dynaconf/issues/241
[ "Not a Bug", "RFC" ]
rochacbruno
3
python-gitlab/python-gitlab
api
2,864
Add support for `retry_transient_errors` to then CLI
## Description of the problem, including code/CLI snippet I'm using the `gitlab` cli against gitlab.com which is producing transient errors. The API has the ability to retry these but it looks like the CLI code misses the option because `merge_config` doesn't cover the field. ## Expected Behavior Ideally the cli would have a command line parameter, but it should definitely respect the configuration file. ## Actual Behavior No ability to turn on retries with the CLI. ## Specifications - python-gitlab version: 4.4 - API version you are using (v3/v4): v4 - Gitlab server version (or gitlab.com): .com
open
2024-05-13T09:23:22Z
2024-05-13T09:23:22Z
https://github.com/python-gitlab/python-gitlab/issues/2864
[]
djmcgreal-cc
0
voila-dashboards/voila
jupyter
524
voila render button on Jupyter Lab
<img width="126" alt="Screen Shot 2020-01-24 at 11 49 36 AM" src="https://user-images.githubusercontent.com/8352840/73086987-b07e2280-3e9f-11ea-8061-993ea0b01264.png"> This button works great for rendering the current notebook as a Voila dashboard using the classic Jupyter Notebook, but is there an equivalent for Jupyter Lab?
closed
2020-01-24T16:51:06Z
2020-01-24T17:17:10Z
https://github.com/voila-dashboards/voila/issues/524
[]
cornhundred
7
cvat-ai/cvat
computer-vision
8,813
I have modified the source code, how do I rebuild the image?
### Actions before raising this issue - [X] I searched the existing issues and did not find anything similar. - [X] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Is your feature request related to a problem? Please describe. I have modified the source code, how do I rebuild the image? thanks ### Describe the solution you'd like _No response_ ### Describe alternatives you've considered _No response_ ### Additional context _No response_
closed
2024-12-11T07:58:00Z
2024-12-13T10:37:59Z
https://github.com/cvat-ai/cvat/issues/8813
[ "question" ]
stephen-TT
4
CorentinJ/Real-Time-Voice-Cloning
python
1,221
Numpy error (numpy version 1.24.3)
I am using Python 3.11.3 and NumPy 1.24.3 and I get the following error when trying to run the toolbox: ``` Traceback (most recent call last): File "C:\Users\David\code\Real-Time-Voice-Cloning\demo_toolbox.py", line 5, in <module> from toolbox import Toolbox File "C:\Users\David\code\Real-Time-Voice-Cloning\toolbox\__init__.py", line 11, in <module> from toolbox.ui import UI File "C:\Users\David\code\Real-Time-Voice-Cloning\toolbox\ui.py", line 37, in <module> ], dtype=np.float) / 255 ^^^^^^^^ File "C:\Program Files\Python311\Lib\site-packages\numpy\__init__.py", line 305, in __getattr__ raise AttributeError(__former_attrs__[attr]) AttributeError: module 'numpy' has no attribute 'float'. `np.float` was a deprecated alias for the builtin `float`. To avoid this error in existing code, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here. The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations. Did you mean: 'cfloat'? ```
open
2023-05-31T01:55:47Z
2024-02-21T06:50:00Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1221
[]
ehyoitsdavid
8
streamlit/streamlit
machine-learning
10,069
Pass file path or function directly to `st.navigation`, without using `st.Page`
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [X] I added a descriptive title and summary to this issue. ### Summary When I write small test apps with multiple pages, I often find myself wanting to do something like this: ```python st.navigation(["page1.py", "page2.py"]) # Or with functions: st.navigation([page1_func, page2_func]) ``` While this is totally plausible and I don't care about customizing the title or icon for these pages, Streamlit always forces me to wrap things in `st.Page`: ```python st.navigation([st.Page("page1.py"), st.Page("page2.py")] # Or with functions: st.navigation([st.Page(page1_func), st.Page(page2_func)]) ``` It would be great if we'd support the former! ### Why? Not a huge pain point but I regularly stumble over it. Especially because we show a pretty generic exception in this case and I'm confused why it doesn't just work. ### How? _No response_ ### Additional Context _No response_
closed
2024-12-22T23:38:13Z
2025-02-20T15:54:22Z
https://github.com/streamlit/streamlit/issues/10069
[ "type:enhancement", "good first issue", "feature:multipage-apps", "feature:st.navigation" ]
jrieke
2
jschneier/django-storages
django
1,115
DEFAULT_FILE_STORAGE seems to be ignored
I would like my S3 bucket to have 2 folders, one for static, another for media. My understanding is that DEFAULT_FILE_STORAGE should the storage that handles media files, while STATICFILES_STORAGE handles static files. However it appears that DEFAULT_FILE_STORAGE is ignored and doesnt do anything, because for example if I set DEFAULT_FILE_STORAGE = "somestring", no error is thrown while running collectstatic. Here's my code: ```python #s3utils.py from storages.backends.s3boto3 import S3Boto3Storage StaticRootS3BotoStorage = lambda: S3Boto3Storage(location='static') MediaRootS3BotoStorage = lambda: S3Boto3Storage(location='media') #settings.py AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID') AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY') AWS_STORAGE_BUCKET_NAME = os.getenv('AWS_STORAGE_BUCKET_NAME') AWS_S3_OBJECT_PARAMETERS = {'ACL': 'private',} AWS_S3_CUSTOM_DOMAIN = f'{AWS_STORAGE_BUCKET_NAME}.s3.amazonaws.com' AWS_S3_OBJECT_PARAMETERS = {'CacheControl': 'max-age=86400'} AWS_LOCATION = 'static' STATIC_URL = f'https://{AWS_S3_CUSTOM_DOMAIN}/{AWS_LOCATION}/' MEDIA_URL = f'https://{AWS_S3_CUSTOM_DOMAIN}/media/' MEDIA_ROOT = os.path.join(BASE_DIR, "file-storage/") DEFAULT_FILE_STORAGE = 'backend.s3utils.MediaRootS3BotoStorage' STATICFILES_STORAGE = 'backend.s3utils.StaticRootS3BotoStorage' ```
closed
2022-02-16T10:21:10Z
2023-02-28T04:09:12Z
https://github.com/jschneier/django-storages/issues/1115
[]
goldentoaste
1
litestar-org/litestar
asyncio
3,680
Enhancement: Support attrs converters
### Description Attrs has an attribute conversion feature where a function can be provided to be run whenever the attribute value is set. https://www.attrs.org/en/stable/examples.html#conversion This is not being run when the post request body is an attrs class. Looking for clarity on if this is by design or a fix if not. Also, is there another preferred pattern in litestar to do this type of payload attribute conversion? ### URL to code causing the issue _No response_ ### MCVE requirements.txt ``` litestar[standard,attrs]==2.10.0 ``` api.py ```python from __future__ import annotations import attrs from litestar import ( Litestar, post, ) @attrs.define class TestRequestPayload: a: str = attrs.field(converter=str.lower) b: str = attrs.field(converter=str.lower) @post("/test1") async def test1(data: TestRequestPayload) -> dict: return attrs.asdict(data) @post("/test2") async def test2(data: TestRequestPayload) -> dict: # Naked evolve basically re-instantiates the object causing the converters to be run return attrs.asdict(attrs.evolve(data)) app = Litestar( route_handlers=[test1, test2], ) ``` ### Steps to reproduce 1. `litestar --app api:app run` 2. Make a request to the test1 route, note data response unchanged from input ``` $ curl --request POST localhost:8000/test1 --data '{"a": "Hello", "b": "World"}' ; echo {"a":"Hello","b":"World"} ``` 3. Make a request to the test2 route, note data response lowercased relative to input ``` $ curl --request POST localhost:8000/test2 --data '{"a": "Hello", "b": "World"}' ; echo {"a":"hello","b":"world"} ``` ### Screenshots _No response_ ### Logs _No response_ ### Litestar Version 2.10.0 ### Platform - [X] Linux - [ ] Mac - [ ] Windows - [ ] Other (Please specify in the description above)
closed
2024-08-20T22:29:11Z
2025-03-20T15:54:52Z
https://github.com/litestar-org/litestar/issues/3680
[ "Enhancement", "Upstream" ]
jeffcarrico
1
matplotlib/matplotlib
data-visualization
28,860
[ENH]: Add Independent xlabelpad and ylabelpad Options to rcParams
### Problem Currently, we can only set a uniform `axes.labelpad`, which applies the same padding for both the x-axis and y-axis labels. I am aware that it is possible to adjust the labelpad for the x and y labels independently using `set_xlabel(..., labelpad=x_pad)` and `set_ylabel(..., labelpad=y_pad)` in plotting code. However, would it be better to add separate options in rcParams to set the padding for x and y labels independently, similar to how `xtick.major.pad` and `ytick.major.pad` work? ### Proposed solution _No response_
open
2024-09-21T18:47:02Z
2025-03-12T12:02:52Z
https://github.com/matplotlib/matplotlib/issues/28860
[ "New feature" ]
NominHanggai
5
microsoft/unilm
nlp
927
[layoutlmv3] SER and RE task combined into one model
Hi @HYPJUDY I have a question that do you try to combine SER and RE task into one model, that is to say, just use one model to support SER and RE task?
open
2022-11-22T09:22:10Z
2022-12-31T22:30:10Z
https://github.com/microsoft/unilm/issues/927
[]
githublsk
1
datadvance/DjangoChannelsGraphqlWs
graphql
14
'AsgiRequest' object has no attribute 'register'
Hello, After following the installation instructions, and using the example in the README with `django==2.2.1` and `django-channels-graphql-ws==0.2.0` on Python 3.7.3, when making any subscription operation: ```js subscription { mySubscription {event} } ``` ```json { "errors": [ { "message": "'AsgiRequest' object has no attribute 'register'" } ], "data": null } ``` Traceback: ``` Traceback (most recent call last): File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/graphql/execution/executor.py", line 447, in resolve_or_error return executor.execute(resolve_fn, source, info, **args) File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/graphql/execution/executors/sync.py", line 16, in execute return fn(*args, **kwargs) File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/graphene_django/debug/middleware.py", line 56, in resolve promise = next(root, info, **args) File "/***.py", line 86, in resolve result = next(root, info, **args) File "/***.py", line 37, in resolve return next(root, info, **args) File "/***.py", line 8, in resolve return result.get() File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/promise/promise.py", line 510, in get return self._target_settled_value(_raise=True) File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/promise/promise.py", line 514, in _target_settled_value return self._target()._settled_value(_raise) File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/promise/promise.py", line 224, in _settled_value reraise(type(raise_val), raise_val, self._traceback) File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/six.py", line 693, in reraise raise value File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/promise/promise.py", line 487, in _resolve_from_executor executor(resolve, reject) File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/promise/promise.py", line 754, in executor return resolve(f(*args, **kwargs)) File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/graphql/execution/middleware.py", line 76, in make_it_promise return next(*args, **kwargs) File "/.cache/pypoetry/virtualenvs/WcnE4_vK-py3.7/lib/python3.7/site-packages/channels_graphql_ws/graphql_ws.py", line 425, in _subscribe register = info.context.register AttributeError: 'AsgiRequest' object has no attribute 'register' ``` While I can see where the 'register' attribute is needed: https://github.com/datadvance/DjangoChannelsGraphqlWs/blob/master/channels_graphql_ws/graphql_ws.py#L425, I can't see what could have caused it to be deleted from the context before going through `Subscription._subscribe`. Do you have any idea what could lead to that situtation, and how to fix it?
closed
2019-05-08T14:58:09Z
2020-02-12T16:18:56Z
https://github.com/datadvance/DjangoChannelsGraphqlWs/issues/14
[]
rigelk
6
jina-ai/serve
deep-learning
6,041
Release Notes (3.20.3)
# Release Note This release contains 1 bug fix. ## ๐Ÿž Bug Fixes ### Skip doc attributes in __annotations__ but not in __fields__ (#6035) When deploying an Executor inside a Flow with a `BaseDoc` model that has any attribute with a `ClassVar` value, the service would fail to initialize because the Gateway could not properly create the schemas. We have fixed this by securing access to `__fields__` when dynamically creating these pydantic models. ## ๐ŸคŸ Contributors We would like to thank all contributors to this release: - Narek Amirbekian (@NarekA )
closed
2023-09-06T16:01:39Z
2023-09-07T08:48:51Z
https://github.com/jina-ai/serve/issues/6041
[]
JoanFM
0
gunthercox/ChatterBot
machine-learning
1,773
How to connect chatbat or integrate with website
i made a simple chatbot using flask and chatterbot, for now how would i integrate this chatbot with website.
closed
2019-07-12T07:20:10Z
2020-06-20T17:33:35Z
https://github.com/gunthercox/ChatterBot/issues/1773
[]
AvhiOjha
1
ultralytics/yolov5
machine-learning
12,823
'Detect' object has no attribute 'grid'
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question Hey, i recently found out about YOLO, and i have been trying to learn YOLOV5 for the past couple of weeks or so, but theres something which i literally cannot get past. I'm trying to train models for Pytorch using Roboflow, and this worked in the beginning but now i just keep getting the error "'Detect' object has no attribute 'grid'" I have force reload set to true, cache isn't outdated. I've tried reinstalling yolo, doesn't work. I've tried manually training it with the github repo, and i can't even start the training from there even though i follow the steps i've seen other people do perfectly I've also browsed the internet for a while and i have found others which have had the same issue, but i never really understood how they actually went on about fixing it (other than setting force_reload to true) This is my model loading part: ``` import torch model = torch.hub.load('ultralytics/yolov5', 'custom', './best.pt', force_reload=True) ``` I'm not too sure if its even the code or an issue with the model because as i mentioned earlier i could load these models perfectly fine when i first started, but after that it just hasn't worked for weeks. I'm on python version 3.10 & my os is windows 10. ### Additional _No response_
closed
2024-03-15T17:55:11Z
2024-10-20T19:41:39Z
https://github.com/ultralytics/yolov5/issues/12823
[ "question", "Stale" ]
dementiaenjoyer
5
aiogram/aiogram
asyncio
1,105
InlineQueryResultCachedPhoto has no title
### Checklist - [X] I am sure the error is coming from aiogram code - [X] I have searched in the issue tracker for similar bug reports, including closed ones ### Operating system Mac Os 10.15.7 (Catalina) ### Python version 3.7.3 ### aiogram version 2.24 ### Expected behavior InlineQueryResultCachedPhoto with title and description in inline mode. ### Current behavior InlineQueryResultCachedPhoto has no title and description, in same time InlineQueryResultPhoto has title and description. ### Steps to reproduce - Create InlineQueryResultCachedPhoto object with id, title, description and photo_file_id - Create InlineQueryResultPhoto obj with id, title, description, thumb URL, img URL - Start polling - Call bot @bot_name and you will see menu with photo, but without any text. - In same time InlineQueryResultPhoto has title and description ![Screenshot 2023-01-22 at 19 52 23](https://user-images.githubusercontent.com/90144260/213929374-e12162a6-a754-4652-8857-6ea5cf8fd54d.png) ### Code example ```python3 InlineQueryResultPhoto( id=hashlib.md5('any'.encode()).hexdigest(), photo_url='any image URL', thumb_url='any image URL', title='any title', description='any description', ) InlineQueryResultCachedPhoto( id=hashlib.md5('any_cached'.encode()).hexdigest(), photo_file_id='any photo file id', title='any title cached', description='any description cached' ) ``` ### Logs _No response_ ### Additional information _No response_
closed
2023-01-22T17:16:17Z
2023-04-28T13:16:13Z
https://github.com/aiogram/aiogram/issues/1105
[ "wontfix", "upstream", "2.x" ]
PraryDogy
1
sinaptik-ai/pandas-ai
data-science
1,175
Agent Method parameter save_charts acting like open_charts, and opens saved charts automatically
### System Info Python 3.11.7 PandasAI 2.0.37 Pandas 1.5.3 ### ๐Ÿ› Describe the bug ``` python def test(): os.environ["PANDASAI_API_KEY"] = os.environ.get("PANDASAI_API_KEY") llm = OpenAI(api_token="os.environ.get("OPENAI_API_KEY")") df = pd.DataFrame({ "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"], "gdp": [19294482071552, 2891615567872, 2411255037952, 3435817336832, 1745433788416, 1181205135360, 1607402389504, 1490967855104, 4380756541440, 14631844184064], "happiness_index": [6.94, 7.16, 6.66, 7.07, 6.38, 6.4, 7.23, 7.22, 5.87, 5.12] }) pAI = Agent(df, config={"verbose": True, "llm": llm, "save_charts": True, "enable_cache": True}) llm_analysis_response = pAI.chat("Create a plot for GDP in relation to happiness") return llm_analysis_response ``` The above code should create the chart and save it to the default path (and it does) However, it opens the chart automatically, similar to what open_charts does, which causes problems when integrating pandasai in applications like streamlit for example.
closed
2024-05-23T17:44:29Z
2024-08-29T16:05:48Z
https://github.com/sinaptik-ai/pandas-ai/issues/1175
[ "bug" ]
Emad-Eldin-G
7
horovod/horovod
deep-learning
3,302
Is it possible for HVD to support other Collective Communication Librariese as plugins?
**Is your feature request related to a problem? Please describe.** No. **Describe the solution you'd like** Adding new Collective Communication Library without changing HVD's code. **Describe alternatives you've considered** HVD involve a plugin frameword for CCL extention. **Additional context** NA.
closed
2021-12-08T09:42:56Z
2021-12-08T10:34:32Z
https://github.com/horovod/horovod/issues/3302
[ "enhancement" ]
hanwei131
0
home-assistant/core
asyncio
141,187
Tractive `device_tracker` entity may return `source_type` incompatible with `person` entity
### The problem I have noticed a problem with the state of the `person` entity based on Tractive `device_tracker` entity. If the user sets a power saving zone for the tracker in the Tractive application and this zone overlaps with a zone other than `home` in Home Assistant, the `device_tracker` entity will have a state that matches the zone name, but the `person` entity state will be `unknown`. ![Image](https://github.com/user-attachments/assets/73fe82ba-9084-473d-825e-dbe5147c3e14) ![Image](https://github.com/user-attachments/assets/e18f5b82-08ce-4de9-adb7-b34fbe296960) The reason is the `source_type: router` for the `device_tracker` entity and the logic that sets the state of the `person` entity. https://github.com/home-assistant/core/blob/883ce6842d351197a1bd8d9cf3f8938ea5f91fa6/homeassistant/components/person/__init__.py#L525-L546 I think we should not report `source_type: router` in the Tractive `device_tracker` entity. ### What version of Home Assistant Core has the issue? core-2025.3.4 ### What was the last working version of Home Assistant Core? _No response_ ### What type of installation are you running? Home Assistant OS ### Integration causing the issue Tractive ### Link to integration documentation on our website https://www.home-assistant.io/integrations/tractive/ ### Diagnostics information _No response_ ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt ``` ### Additional information _No response_
closed
2025-03-23T10:06:11Z
2025-03-24T16:17:00Z
https://github.com/home-assistant/core/issues/141187
[ "by-code-owner", "integration: tractive" ]
bieniu
1
huggingface/peft
pytorch
2,181
How can I do to export mode format as gguf
### Feature request This is a good project,I just got it today and encountered some problems. my any code ``` python from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Qwen2-0.5B") model = AutoModelForCausalLM.from_pretrained("model") model.save_pretrained('directory') ``` I need gguf file deploy by ollama.Whern I export model format as gguf. I use ```shell !python llama.cpp/convert_hf_to_gguf.py directory ``` but it error ``` INFO:hf-to-gguf:Loading model: directory Traceback (most recent call last): File "/Users/xu756/AIGC/llama.cpp/convert_hf_to_gguf.py", line 4436, in <module> main() File "/Users/xu756/AIGC/llama.cpp/convert_hf_to_gguf.py", line 4404, in main hparams = Model.load_hparams(dir_model) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/xu756/AIGC/llama.cpp/convert_hf_to_gguf.py", line 462, in load_hparams with open(dir_model [/](https://file+.vscode-resource.vscode-cdn.net/) "config.json", "r", encoding="utf-8") as f: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FileNotFoundError: [Errno 2] No such file or directory: 'directory/config.json' ``` <img width="1328" alt="image" src="https://github.com/user-attachments/assets/4d74c66e-b092-47f2-b570-b6e35767a6ce"> ### Motivation I need gguf file deploy by ollama. Is there any other way to deploy the PEFT model? Thank you very much. ### Your contribution I simply reproduced it on top
closed
2024-10-26T13:51:45Z
2024-10-26T13:59:18Z
https://github.com/huggingface/peft/issues/2181
[]
xu756
0
autogluon/autogluon
computer-vision
4,442
Contributing to Model Monitoring and Interpretability
Hello there! :wave: My name is Guilherme and Iโ€™m a software engineering student at UNIPAMPA, a university in southern Brazil. Iโ€™m currently developing my undergraduate thesis and Iโ€™m very interested in working on improving AutoGluon in terms of features such as model monitoring and interpretability. I see from the roadmap that these points are still open, so I would be happy to collaborate on this great project. Thank you!
open
2024-08-28T23:33:36Z
2024-08-28T23:33:36Z
https://github.com/autogluon/autogluon/issues/4442
[ "enhancement" ]
guijasss
0
comfyanonymous/ComfyUI
pytorch
6,745
what's wrong?File "asyncio\windows_events.py", line 462, in finish_socket_func
### Your question D:\ComfyUI_windows_portable>.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build [START] Security scan [DONE] Security scan ## ComfyUI-Manager: installing dependencies done. ** ComfyUI startup time: 2025-02-08 15:29:26.553 ** Platform: Windows ** Python version: 3.12.8 (tags/v3.12.8:2dc476b, Dec 3 2024, 19:30:04) [MSC v.1942 64 bit (AMD64)] ** Python executable: D:\ComfyUI_windows_portable\python_embeded\python.exe ** ComfyUI Path: D:\ComfyUI_windows_portable\ComfyUI ** ComfyUI Base Folder Path: D:\ComfyUI_windows_portable\ComfyUI ** User directory: D:\ComfyUI_windows_portable\ComfyUI\user ** ComfyUI-Manager config path: D:\ComfyUI_windows_portable\ComfyUI\user\default\ComfyUI-Manager\config.ini ** Log path: D:\ComfyUI_windows_portable\ComfyUI\user\comfyui.log Prestartup times for custom nodes: 0.0 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\rgthree-comfy 4.7 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui-manager Checkpoint files will always be loaded safely. Total VRAM 8192 MB, total RAM 7862 MB pytorch version: 2.6.0+cu126 Set vram state to: NORMAL_VRAM Device: cuda:0 NVIDIA GeForce GTX 1080 : cudaMallocAsync Using pytorch attention ComfyUI version: 0.3.14 [Prompt Server] web root: D:\ComfyUI_windows_portable\ComfyUI\web ### Loading: ComfyUI-Impact-Pack (V8.8.1) [Impact Pack] Wildcards loading done. ### Loading: ComfyUI-Inspire-Pack (V1.13) ### Loading: ComfyUI-Manager (V3.17.7) ### ComfyUI Version: v0.3.14-6-g832e3f5c | Released on '2025-02-07' [comfyui_controlnet_aux] | INFO -> Using ckpts path: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui_controlnet_aux\ckpts [comfyui_controlnet_aux] | INFO -> Using symlinks: False [comfyui_controlnet_aux] | INFO -> Using ort providers: ['CUDAExecutionProvider', 'DirectMLExecutionProvider', 'OpenVINOExecutionProvider', 'ROCMExecutionProvider', 'CPUExecutionProvider', 'CoreMLExecutionProvider'] [ComfyUI-Manager] default cache updated: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/alter-list.json [ComfyUI-Manager] default cache updated: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/model-list.json [ComfyUI-Manager] default cache updated: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/github-stats.json DWPose: Onnxruntime with acceleration providers detected [ComfyUI-Manager] default cache updated: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/extension-node-map.json [ComfyUI-Manager] default cache updated: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/custom-node-list.json [rgthree-comfy] Loaded 42 epic nodes. ๐ŸŽ‰ Import times for custom nodes: 0.0 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\websocket_image_save.py 0.0 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\ComfyUI-BRIA_AI-RMBG 0.0 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui-custom-scripts 0.0 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui_ultimatesdupscale 0.0 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui-advanced-controlnet 0.1 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui_faceanalysis 0.1 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\rgthree-comfy 0.1 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui-inspire-pack 0.2 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui_face_parsing 0.3 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui-impact-pack 0.7 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui_controlnet_aux 0.8 seconds: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui-manager Starting server To see the GUI go to: http://127.0.0.1:8188 FETCH DATA from: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui-manager\extension-node-map.json [DONE] [Inspire Pack] IPAdapterPlus is not installed. FETCH DATA from: D:\ComfyUI_windows_portable\ComfyUI\custom_nodes\comfyui-manager\extension-node-map.json [DONE] FETCH ComfyRegistry Data: 5/32 FETCH ComfyRegistry Data: 10/32 FETCH ComfyRegistry Data: 15/32 FETCH ComfyRegistry Data: 20/32 FETCH ComfyRegistry Data: 25/32 FETCH ComfyRegistry Data: 30/32 FETCH ComfyRegistry Data [DONE] [ComfyUI-Manager] default cache updated: https://api.comfy.org/nodes nightly_channel: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/remote FETCH DATA from: https://raw.githubusercontent.com/ltdrdata/ComfyUI-Manager/main/custom-node-list.json [DONE] [ComfyUI-Manager] All startup tasks have been completed. got prompt Prompt executed in 9.95 seconds got prompt Prompt executed in 0.33 seconds Unhandled exception Traceback (most recent call last): File "D:\ComfyUI_windows_portable\python_embeded\Lib\site-packages\aiohttp\web_protocol.py", line 563, in start resp, reset = await task ^^^^^^^^^^ File "D:\ComfyUI_windows_portable\python_embeded\Lib\site-packages\aiohttp\web_protocol.py", line 505, in _handle_request resp, reset = await self.finish_response(request, resp, start_time) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\ComfyUI_windows_portable\python_embeded\Lib\site-packages\aiohttp\web_protocol.py", line 671, in finish_response await prepare_meth(request) File "D:\ComfyUI_windows_portable\python_embeded\Lib\site-packages\aiohttp\web_fileresponse.py", line 288, in prepare return await self._prepare_open_file(request, fobj, st, file_encoding) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\ComfyUI_windows_portable\python_embeded\Lib\site-packages\aiohttp\web_fileresponse.py", line 418, in _prepare_open_file return await self._sendfile(request, fobj, offset, count) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\ComfyUI_windows_portable\python_embeded\Lib\site-packages\aiohttp\web_fileresponse.py", line 147, in _sendfile await loop.sendfile(transport, fobj, offset, count) File "asyncio\base_events.py", line 1227, in sendfile File "asyncio\proactor_events.py", line 768, in _sendfile_native File "asyncio\base_events.py", line 914, in sock_sendfile File "asyncio\proactor_events.py", line 756, in _sock_sendfile_native File "asyncio\windows_events.py", line 803, in _poll File "asyncio\windows_events.py", line 462, in finish_socket_func PermissionError: [WinError 22] ่ฎพๅค‡ไธ่ฏ†ๅˆซๆญคๅ‘ฝไปคใ€‚ ### Logs ```powershell ``` ### Other _No response_
open
2025-02-08T07:37:25Z
2025-02-08T07:44:16Z
https://github.com/comfyanonymous/ComfyUI/issues/6745
[ "User Support" ]
maweiqiang1978
0
flairNLP/flair
pytorch
2,997
TARS Zero Shot Classifier Predictions
Here is the example code to use TARS Zero Shot Classifier ``` from flair.models import TARSClassifier from flair.data import Sentence # 1. Load our pre-trained TARS model for English tars = TARSClassifier.load('tars-base') # 2. Prepare a test sentence sentence = Sentence("I am so glad you liked it!") # 3. Define some classes that you want to predict using descriptive names classes = ["happy", "sad"] #4. Predict for these classes tars.predict_zero_shot(sentence, classes) # Print sentence with predicted labels print(sentence) print(sentence.labels[0].value) print(round(sentence.labels[0].score,2)) ``` Now this code is wrapped into the following function so that I can use it to get predictions for multiple sentences in a dataset. ``` def tars_zero(example): sentence = Sentence(example) tars.predict_zero_shot(sentence,classes) print(sentence) inputs = ["I am so glad you liked it!", "I hate it"] for input in inputs: tars_zero(input) #output: Sentence: "I am so glad you liked it !" โ†’ happy (0.8667) Sentence: "I hate it" ``` **Here the model is giving predictions only for the first instance.**
closed
2022-11-24T07:37:38Z
2023-05-21T15:36:59Z
https://github.com/flairNLP/flair/issues/2997
[ "bug", "wontfix" ]
ghost
2
iperov/DeepFaceLab
machine-learning
603
Adjusting Blur Mask Modifier Changes The Brightness
I've never noticed this before, but I just installed the 2/3/20 nvidia version. When I adjust the blur higher or lower, the face gets significantly brighter or darker depending which way I go. Here's a video I just shared on Google Drive illustrating this. Maybe this has happened in past versions and I never noticed? But I think I would have. Let me know if this is normal. Here's the video.... https://drive.google.com/file/d/1L77hcgAt8zcGM6jpOB53e6TRDslccivJ/view?usp=sharing
open
2020-02-04T07:01:32Z
2023-06-08T21:24:08Z
https://github.com/iperov/DeepFaceLab/issues/603
[]
kilerb
1
littlecodersh/ItChat
api
768
ๆœ‰ๆฒกๆœ‰ๅพฎไฟกไธพๆŠฅAPI๏ผŸ
ๅœจๆไบคๅ‰๏ผŒ่ฏท็กฎไฟๆ‚จๅทฒ็ปๆฃ€ๆŸฅไบ†ไปฅไธ‹ๅ†…ๅฎน! - [ ] ๆ‚จๅฏไปฅๅœจๆต่งˆๅ™จไธญ็™ป้™†ๅพฎไฟก่ดฆๅท๏ผŒไฝ†ไธ่ƒฝไฝฟ็”จ`itchat`็™ป้™† - [ ] ๆˆ‘ๅทฒ็ป้˜…่ฏปๅนถๆŒ‰[ๆ–‡ๆกฃ][document] ไธญ็š„ๆŒ‡ๅผ•่ฟ›่กŒไบ†ๆ“ไฝœ - [ ] ๆ‚จ็š„้—ฎ้ข˜ๆฒกๆœ‰ๅœจ[issues][issues]ๆŠฅๅ‘Š๏ผŒๅฆๅˆ™่ฏทๅœจๅŽŸๆœ‰issueไธ‹ๆŠฅๅ‘Š - [ ] ๆœฌ้—ฎ้ข˜็กฎๅฎžๅ…ณไบŽ`itchat`, ่€Œไธๆ˜ฏๅ…ถไป–้กน็›ฎ. - [ ] ๅฆ‚ๆžœไฝ ็š„้—ฎ้ข˜ๅ…ณไบŽ็จณๅฎšๆ€ง๏ผŒๅปบ่ฎฎๅฐ่ฏ•ๅฏน็ฝ‘็ปœ็จณๅฎšๆ€ง่ฆๆฑ‚ๆžไฝŽ็š„[itchatmp][itchatmp]้กน็›ฎ ่ฏทไฝฟ็”จ`itchat.run(debug=True)`่ฟ่กŒ๏ผŒๅนถๅฐ†่พ“ๅ‡บ็ฒ˜่ดดๅœจไธ‹้ข: ``` [ๅœจ่ฟ™้‡Œ็ฒ˜่ดดๅฎŒๆ•ดๆ—ฅๅฟ—] ``` ๆ‚จ็š„itchat็‰ˆๆœฌไธบ๏ผš`[ๅœจ่ฟ™้‡Œๅกซๅ†™็‰ˆๆœฌๅท]`ใ€‚๏ผˆๅฏ้€š่ฟ‡`python -c "import itchat;print(itchat.__version__)"`่Žทๅ–๏ผ‰ ๅ…ถไป–็š„ๅ†…ๅฎนๆˆ–่€…้—ฎ้ข˜ๆ›ด่ฏฆ็ป†็š„ๆ่ฟฐ้ƒฝๅฏไปฅๆทปๅŠ ๅœจไธ‹้ข๏ผš > [ๆ‚จ็š„ๅ†…ๅฎน] [document]: http://itchat.readthedocs.io/zh/latest/ [issues]: https://github.com/littlecodersh/itchat/issues [itchatmp]: https://github.com/littlecodersh/itchatmp
open
2018-12-10T00:45:08Z
2018-12-10T00:45:08Z
https://github.com/littlecodersh/ItChat/issues/768
[]
caimao9539
0
open-mmlab/mmdetection
pytorch
11,858
ValueError: need at least one array to concatenate
indices = np.concatenate(indices) File "<__array_function__ internals>", line 200, in concatenate ValueError: need at least one array to concatenate **Describe the bug** ่ฎญ็ปƒๆ—ถๆŠฅ็š„้”™๏ผš LicenseRec) D:\studysoft\workplace\ORENEXT-main>python ./tools/train.py ./configs/ORENEXT/orenext_stonemlp_sparsefc_ptsdml.py D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\mmcv\__init__.py:20: UserWarning: On January 1, 2023, MMCV will release v2.0.0, in which it will remove co mponents related to the training process and add a data transformation module. In addition, it will rename the package names mmcv to mmcv-lite and mmcv-full to mmcv. See https://github.com/open-mmlab/mmcv/blob/master/docs/en/compatibility.md for more details. warnings.warn( fatal: not a git repository (or any of the parent directories): .git 2024-07-17 16:24:49,426 - mmdet - INFO - Environment info: ------------------------------------------------------------ sys.platform: win32 Python: 3.8.19 (default, Mar 20 2024, 19:55:45) [MSC v.1916 64 bit (AMD64)] CUDA available: True GPU 0: NVIDIA GeForce RTX 4060 CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0 NVCC: Cuda compilation tools, release 10.0, V10.0.13 MSVC: ็”จไบŽ x64 ็š„ Microsoft (R) C/C++ ไผ˜ๅŒ–็ผ–่ฏ‘ๅ™จ 19.40.33812 ็‰ˆ GCC: n/a PyTorch: 1.9.0+cu111 PyTorch compiling details: PyTorch built with: - C++ Version: 199711 - MSVC 192829337 - Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.1.2 (Git Hash 98be7e8afa711dc9b66c8ff3504129cb82013cdb) - OpenMP 2019 - CPU capability usage: AVX2 - CUDA Runtime 11.1 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61, code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 - CuDNN 8.0.5 - Magma 2.5.4 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=C:/w/b/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN 32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/w/b/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUS E_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.9.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, TorchVision: 0.10.0+cu111 OpenCV: 4.10.0 MMCV: 1.7.2 MMCV Compiler: MSVC 192930148 MMCV CUDA Compiler: 11.1 MMDetection: 2.11.0+ ------------------------------------------------------------ 2024-07-17 16:24:49,977 - mmdet - INFO - Distributed training: False 2024-07-17 16:24:50,564 - mmdet - INFO - Config: model = dict( type='PointRend', backbone=dict( type='ASMLP', embed_dim=64, depths=[2, 2, 2, 2], num_heads=[3, 6, 12, 24], shift_size=5, window_size=7, mlp_ratio=4.0, drop_rate=0.0, drop_path_rate=0.1, patch_norm=True, out_indices=(0, 1, 2, 3), use_checkpoint=False), neck=dict( type='FPNSPARSEFC', in_channels=[64, 128, 256, 512], out_channels=64, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=64, feat_channels=64, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='PointRendRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=64, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=64, fc_out_channels=64, roi_feat_size=7, num_classes=1, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='PtsBorderLoss', loss_weight=0.5)), mask_roi_extractor=dict( type='GenericRoIExtractor', roi_layer=dict(type='SimpleRoIAlign', output_size=14), out_channels=64, featmap_strides=[4], aggregation='concat'), mask_head=dict( type='CoarseMaskHead', num_fcs=1, in_channels=64, conv_out_channels=64, fc_out_channels=64, num_classes=1, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=0.1)), point_head=dict( type='MaskPointHead', num_fcs=1, in_channels=64, fc_channels=64, num_classes=1, coarse_pred_each_layer=True, loss_point=dict( type='CrossEntropyLoss1', use_mask=True, loss_weight=1.0, key_item_weight=0.5))), train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=7, pos_weight=-1, debug=False, num_points=196, oversample_ratio=3, importance_sample_ratio=0.75)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5, subdivision_steps=5, subdivision_num_points=784, scale_factor=2))) dataset_type = 'CocoDataset' data_root = 'data/coco/stones/' img_norm_cfg = dict( mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=[(320, 160), (320, 192), (320, 224), (320, 256), (320, 288), (320, 320)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(320, 320), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=2, train=dict( type='CocoDataset', ann_file='data/coco/stones/annotations/instances_train2017.json', img_prefix='data/coco/stones/train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=[(320, 160), (320, 192), (320, 224), (320, 256), (320, 288), (320, 320)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) ]), val=dict( type='CocoDataset', ann_file='data/coco/stones/annotations/instances_val2017.json', img_prefix='data/coco/stones/val2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(320, 320), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ]), test=dict( type='CocoDataset', ann_file='data/coco/stones/annotations/instances_val2017.json', img_prefix='data/coco/stones/val2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(320, 320), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ])) evaluation = dict(metric=['bbox', 'segm']) optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 11]) runner = dict(type='EpochBasedRunner', max_epochs=12) checkpoint_config = dict(interval=1) log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] work_dir = './work_dirs/orenext_stonemlp_sparsefc_ptsdml1.py' gpu_ids = range(0, 1) loading annotations into memory... Done (t=0.00s) creating index... index created! fatal: not a git repository (or any of the parent directories): .git loading annotations into memory... Done (t=0.33s) creating index... index created! 2024-07-17 16:24:51,932 - mmdet - INFO - Start running, host: xiaoran@ๅฐๅ†‰, work_dir: D:\studysoft\workplace\ORENEXT-main\work_dirs\orenext_stonemlp_sparsefc_ptsdml1.py 2024-07-17 16:24:51,932 - mmdet - INFO - Hooks will be executed in the following order: before_run: (VERY_HIGH ) StepLrUpdaterHook (NORMAL ) CheckpointHook (NORMAL ) EvalHook (VERY_LOW ) TextLoggerHook -------------------- before_train_epoch: (VERY_HIGH ) StepLrUpdaterHook (NORMAL ) EvalHook (NORMAL ) NumClassCheckHook (LOW ) IterTimerHook (VERY_LOW ) TextLoggerHook -------------------- before_train_iter: (VERY_HIGH ) StepLrUpdaterHook (LOW ) IterTimerHook -------------------- after_train_iter: (ABOVE_NORMAL) OptimizerHook (NORMAL ) CheckpointHook (NORMAL ) EvalHook (LOW ) IterTimerHook (VERY_LOW ) TextLoggerHook -------------------- after_train_epoch: (NORMAL ) CheckpointHook (NORMAL ) EvalHook (VERY_LOW ) TextLoggerHook -------------------- before_val_epoch: (NORMAL ) NumClassCheckHook (LOW ) IterTimerHook (VERY_LOW ) TextLoggerHook -------------------- before_val_iter: (LOW ) IterTimerHook -------------------- after_val_iter: (LOW ) IterTimerHook -------------------- after_val_epoch: (VERY_LOW ) TextLoggerHook -------------------- after_run: (VERY_LOW ) TextLoggerHook -------------------- 2024-07-17 16:24:51,933 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs 2024-07-17 16:24:51,933 - mmdet - INFO - Checkpoints will be saved to D:\studysoft\workplace\ORENEXT-main\work_dirs\orenext_stonemlp_sparsefc_ptsdml1.py by HardDiskBackend. D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\mmcv\__init__.py:20: UserWarning: On January 1, 2023, MMCV will release v2.0.0, in which it will remove co mponents related to the training process and add a data transformation module. In addition, it will rename the package names mmcv to mmcv-lite and mmcv-full to mmcv. See https://github.com/open-mmlab/mmcv/blob/master/docs/en/compatibility.md for more details. warnings.warn( D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\mmcv\__init__.py:20: UserWarning: On January 1, 2023, MMCV will release v2.0.0, in which it will remove co mponents related to the training process and add a data transformation module. In addition, it will rename the package names mmcv to mmcv-lite and mmcv-full to mmcv. See https://github.com/open-mmlab/mmcv/blob/master/docs/en/compatibility.md for more details. warnings.warn( Indices before concatenation: [] Traceback (most recent call last): File "./tools/train.py", line 192, in <module> main() File "./tools/train.py", line 181, in main train_detector( File "D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\mmdet-2.11.0-py3.8.egg\mmdet\apis\train.py", line 185, in train_detector runner.run(data_loaders, cfg.workflow) File "D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\mmcv\runner\epoch_based_runner.py", line 136, in run epoch_runner(data_loaders[i], **kwargs) File "D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\mmcv\runner\epoch_based_runner.py", line 49, in train for i, data_batch in enumerate(self.data_loader): File "D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\torch\utils\data\dataloader.py", line 359, in __iter__ return self._get_iterator() File "D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\torch\utils\data\dataloader.py", line 305, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\torch\utils\data\dataloader.py", line 512, in _next_index return next(self._sampler_iter) # may raise StopIteration File "D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\torch\utils\data\sampler.py", line 226, in __iter__ for idx in self.sampler: File "D:\studysoft\Anaconda\envs\LicenseRec\lib\site-packages\mmdet-2.11.0-py3.8.egg\mmdet\datasets\samplers\group_sampler.py", line 37, in __iter__ indices = np.concatenate(indices) File "<__array_function__ internals>", line 200, in concatenate ValueError: need at least one array to concatenate ่ฟ่กŒๅ‚ๆ•ฐ๏ผšpython ./tools/train.py ./configs/ORENEXT/orenext_stonemlp_sparsefc_ptsdml.py 2. ้‡‡็”จๅˆซไบบๅ…ฌๅผ€ไปฃ็ ๏ผŒ่ฎญ็ปƒไผ ๅ…ฅๆ•ฐๆฎ๏ผš model = dict( type='PointRend', #pretrained='./pretrained/asmlp_nano_patch4_shift5_224.pth', backbone=dict( type='ASMLP', embed_dim=64, depths=[2, 2, 2, 2], num_heads=[3, 6, 12, 24], shift_size=5, window_size=7, mlp_ratio=4.0, drop_rate=0.0, drop_path_rate=0.1, patch_norm=True, out_indices=(0, 1, 2, 3), use_checkpoint=False), neck=dict( type='FPNSPARSEFC', in_channels=[64, 128, 256, 512], out_channels=64, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=64, feat_channels=64, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='PointRendRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=64, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=64, fc_out_channels=64, roi_feat_size=7, num_classes=1, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='PtsBorderLoss', loss_weight=0.5)), mask_roi_extractor=dict( type='GenericRoIExtractor', roi_layer=dict(type='SimpleRoIAlign', output_size=14), out_channels=64, featmap_strides=[4], aggregation='concat'), mask_head=dict( type='CoarseMaskHead', num_fcs=1, in_channels=64, conv_out_channels=64, fc_out_channels=64, num_classes=1, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=0.1)), point_head=dict( type='MaskPointHead', num_fcs=1, in_channels=64, fc_channels=64, num_classes=1, coarse_pred_each_layer=True, loss_point=dict(type='CrossEntropyLoss1', use_mask=True, loss_weight=1.0,key_item_weight=0.5))), train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=7, pos_weight=-1, debug=False, num_points=196, oversample_ratio=3, importance_sample_ratio=0.75)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5, subdivision_steps=5, subdivision_num_points=784, scale_factor=2))) dataset_type = 'CocoDataset' data_root = 'data/coco/stones/' img_norm_cfg = dict( mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=[(320, 160), (320, 192), (320, 224), (320, 256), (320, 288), (320, 320)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(320, 320), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=2, train=dict( type='CocoDataset', ann_file='data/coco/stones/annotations/instances_train2017.json', img_prefix='data/coco/stones/train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=[(320, 160), (320, 192), (320, 224), (320, 256), (320, 288), (320, 320)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']) ]), val=dict( type='CocoDataset', ann_file='data/coco/stones/annotations/instances_val2017.json', img_prefix='data/coco/stones/val2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(320, 320), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ]), test=dict( type='CocoDataset', ann_file='data/coco/stones/annotations/instances_val2017.json', img_prefix='data/coco/stones/val2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(320, 320), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ])) evaluation = dict(metric=['bbox', 'segm']) optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 11]) runner = dict(type='EpochBasedRunner', max_epochs=12) checkpoint_config = dict(interval=1) log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] work_dir = './work_dirs/orenext_stonemlp_sparsefc_ptsdml1.py' gpu_ids = range(0, 1) ๅ…ฌๅผ€ๆ•ฐๆฎ้›†COCO { "images": [ { "height": 300, "width": 300, "id": 1, "file_name": "00000.png" }, { "height": 300, "width": 300, "id": 2, "file_name": "00001.png" }, { "height": 300, "width": 300, "id": 3, "file_name": "00002.png" }, { "height": 300, "width": 300, "id": 4, "file_name": "00003.png" }, { "height": 300, "width": 300, "id": 5, "file_name": "00004.png" } ], "categories": [ { "supercategory": "stones", "id": 1, "name": "1" } ], "annotations": [ { "iscrowd": 0, "image_id": 1, "bbox": [ 209.0, 157.0, 90.0, 87.0 ], "area": 7830.0, "category_id": 1, "id": 1 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 45.0, 63.0, 91.0, 74.0 ], "area": 6734.0, "category_id": 1, "id": 2 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 142.0, 22.0, 97.0, 95.0 ], "area": 9215.0, "category_id": 1, "id": 3 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 0.0, 175.0, 88.0, 63.0 ], "area": 5544.0, "category_id": 1, "id": 4 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 207.0, 246.0, 50.0, 46.0 ], "area": 2300.0, "category_id": 1, "id": 5 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 154.0, 117.0, 104.0, 55.0 ], "area": 5720.0, "category_id": 1, "id": 6 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 44.0, 60.0, 94.0, 83.0 ], "area": 7802.0, "category_id": 1, "id": 7 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 212.0, 152.0, 87.0, 91.0 ], "area": 7917.0, "category_id": 1, "id": 8 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 203.0, 241.0, 59.0, 51.0 ], "area": 3009.0, "category_id": 1, "id": 9 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 138.0, 191.0, 72.0, 83.0 ], "area": 5976.0, "category_id": 1, "id": 10 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 136.0, 16.0, 108.0, 105.0 ], "area": 11340.0, "category_id": 1, "id": 11 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 155.0, 116.0, 102.0, 64.0 ], "area": 6528.0, "category_id": 1, "id": 12 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 32.0, 228.0, 96.0, 68.0 ], "area": 6528.0, "category_id": 1, "id": 13 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 144.0, 193.0, 66.0, 77.0 ], "area": 5082.0, "category_id": 1, "id": 14 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 0.0, 173.0, 89.0, 66.0 ], "area": 5874.0, "category_id": 1, "id": 15 }, { "iscrowd": 0, "image_id": 1, "bbox": [ 31.0, 227.0, 101.0, 70.0 ], "area": 7070.0, "category_id": 1, "id": 16 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 212.0, 6.0, 86.0, 86.0 ], "area": 7396.0, "category_id": 1, "id": 17 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 164.0, 219.0, 80.0, 73.0 ], "area": 5840.0, "category_id": 1, "id": 18 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 3.0, 26.0, 83.0, 61.0 ], "area": 5063.0, "category_id": 1, "id": 19 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 205.0, 94.0, 56.0, 47.0 ], "area": 2632.0, "category_id": 1, "id": 20 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 79.0, 183.0, 111.0, 79.0 ], "area": 8769.0, "category_id": 1, "id": 21 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 37.0, 244.0, 84.0, 53.0 ], "area": 4452.0, "category_id": 1, "id": 22 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 139.0, 44.0, 74.0, 78.0 ], "area": 5772.0, "category_id": 1, "id": 23 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 212.0, 5.0, 84.0, 90.0 ], "area": 7560.0, "category_id": 1, "id": 24 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 204.0, 91.0, 59.0, 52.0 ], "area": 3068.0, "category_id": 1, "id": 25 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 211.0, 156.0, 63.0, 83.0 ], "area": 5229.0, "category_id": 1, "id": 26 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 164.0, 217.0, 83.0, 78.0 ], "area": 6474.0, "category_id": 1, "id": 27 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 77.0, 180.0, 122.0, 85.0 ], "area": 10370.0, "category_id": 1, "id": 28 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 176.0, 149.0, 44.0, 71.0 ], "area": 3124.0, "category_id": 1, "id": 29 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 89.0, 112.0, 60.0, 74.0 ], "area": 4440.0, "category_id": 1, "id": 30 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 33.0, 74.0, 98.0, 94.0 ], "area": 9212.0, "category_id": 1, "id": 31 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 118.0, 121.0, 91.0, 83.0 ], "area": 7553.0, "category_id": 1, "id": 32 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 38.0, 78.0, 92.0, 82.0 ], "area": 7544.0, "category_id": 1, "id": 33 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 210.0, 159.0, 65.0, 78.0 ], "area": 5070.0, "category_id": 1, "id": 34 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 19.0, 183.0, 77.0, 92.0 ], "area": 7084.0, "category_id": 1, "id": 35 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 0.0, 26.0, 85.0, 61.0 ], "area": 5185.0, "category_id": 1, "id": 36 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 90.0, 114.0, 55.0, 70.0 ], "area": 3850.0, "category_id": 1, "id": 37 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 122.0, 122.0, 82.0, 81.0 ], "area": 6642.0, "category_id": 1, "id": 38 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 143.0, 42.0, 69.0, 78.0 ], "area": 5382.0, "category_id": 1, "id": 39 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 17.0, 185.0, 80.0, 89.0 ], "area": 7120.0, "category_id": 1, "id": 40 }, { "iscrowd": 0, "image_id": 2, "bbox": [ 32.0, 243.0, 89.0, 55.0 ], "area": 4895.0, "category_id": 1, "id": 41 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 165.0, 70.0, 79.0, 72.0 ], "area": 5688.0, "category_id": 1, "id": 42 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 37.0, 94.0, 83.0, 54.0 ], "area": 4482.0, "category_id": 1, "id": 43 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 226.0, 177.0, 66.0, 62.0 ], "area": 4092.0, "category_id": 1, "id": 44 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 164.0, 212.0, 62.0, 52.0 ], "area": 3224.0, "category_id": 1, "id": 45 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 80.0, 33.0, 111.0, 79.0 ], "area": 8769.0, "category_id": 1, "id": 46 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 79.0, 32.0, 117.0, 77.0 ], "area": 9009.0, "category_id": 1, "id": 47 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 110.0, 98.0, 59.0, 55.0 ], "area": 3245.0, "category_id": 1, "id": 48 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 159.0, 66.0, 88.0, 78.0 ], "area": 6864.0, "category_id": 1, "id": 49 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 208.0, 8.0, 69.0, 82.0 ], "area": 5658.0, "category_id": 1, "id": 50 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 214.0, 91.0, 85.0, 91.0 ], "area": 7735.0, "category_id": 1, "id": 51 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 224.0, 179.0, 71.0, 64.0 ], "area": 4544.0, "category_id": 1, "id": 52 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 144.0, 152.0, 86.0, 61.0 ], "area": 5246.0, "category_id": 1, "id": 53 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 74.0, 177.0, 70.0, 79.0 ], "area": 5530.0, "category_id": 1, "id": 54 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 178.0, 0.0, 41.0, 68.0 ], "area": 2788.0, "category_id": 1, "id": 55 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 32.0, 148.0, 80.0, 26.0 ], "area": 2080.0, "category_id": 1, "id": 56 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 18.0, 33.0, 82.0, 88.0 ], "area": 7216.0, "category_id": 1, "id": 57 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 210.0, 8.0, 63.0, 74.0 ], "area": 4662.0, "category_id": 1, "id": 58 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 16.0, 31.0, 83.0, 94.0 ], "area": 7802.0, "category_id": 1, "id": 59 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 78.0, 178.0, 67.0, 75.0 ], "area": 5025.0, "category_id": 1, "id": 60 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 147.0, 153.0, 82.0, 56.0 ], "area": 4592.0, "category_id": 1, "id": 61 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 215.0, 95.0, 84.0, 83.0 ], "area": 6972.0, "category_id": 1, "id": 62 }, { "iscrowd": 0, "image_id": 3, "bbox": [ 181.0, 2.0, 35.0, 63.0 ], 740.0,
open
2024-07-17T08:33:31Z
2024-07-31T08:46:30Z
https://github.com/open-mmlab/mmdetection/issues/11858
[]
xiaoran8899
1
axnsan12/drf-yasg
django
296
Only show examples not the model
For API Responses, how can I only show examples and not the model? in fact, I do not want to show any of my models definitions. Thanks.
closed
2019-01-18T01:44:20Z
2019-01-29T06:55:38Z
https://github.com/axnsan12/drf-yasg/issues/296
[]
oneandonlyonebutyou
1
Kanaries/pygwalker
pandas
15
How to make a histogram
How do you make a histogram chart of one attribute (column)? (without pre-calculating the histogram data before putting the data into pygwalker, of course) I fiddled with the UI for a while but couldn't find a way. If it's not possible right now, I'd like it to be implemented. Thanks
closed
2023-02-21T07:58:58Z
2024-03-19T13:57:53Z
https://github.com/Kanaries/pygwalker/issues/15
[ "good first issue", "graphic-walker", "P1" ]
karamari
6
waditu/tushare
pandas
1,418
่ดขๅŠกๆ•ฐๆฎ๏ผˆๅ‡€ๅˆฉๆถฆ๏ผ‰็ผบๅคฑ่ถ…่ฟ‡10%๏ผŒๅธŒๆœ›่ƒฝๅฐฝๅฟซๅฎŒๅ–„ไธ€ไธ‹
1. ๅ…จๅธ‚ๅœบA่‚ก่ดขๆŠฅๆ•ฐๆฎ็ผบๅคฑ่พƒๅคš๏ผŒๅธŒๆœ›่ƒฝๅฎŒๅ–„ไธ€ไธ‹๏ผŒ้™„ไปถๆ˜ฏ็›ฎๅ‰ๅ‘็Žฐ็š„็ผบๅคฑๆ•ฐๆฎ็š„่‚ก็ฅจไปฃ็ ๅ’ŒๆŠฅๅ‘Šๆ—ฅๆœŸ [miss info.xlsx](https://github.com/waditu/tushare/files/5140909/miss.info.xlsx) 2. ่ดขๅŠกๅ…ฌๅ‘Šๆ—ฅๆœŸไธŽๅฎž้™…ๅ…ฌๅ‘Šๆ—ฅๆœŸๆ—ถ้—ด้—ด้š”ๅคชๅคง๏ผš a. ้ƒจๅˆ†ๅฏ่ƒฝๆ˜ฏๅ› ไธบๅŽŸๅง‹ๆ•ฐๆฎๆœ‰่ฐƒๆ•ด๏ผŒไฝ†update_flag=0ๆ—ถๅคง้ƒจๅˆ†ๆ•ฐๆฎ็›ดๆŽฅ็ผบๅคฑ
open
2020-08-28T08:23:46Z
2021-01-02T05:49:01Z
https://github.com/waditu/tushare/issues/1418
[]
ZhaoBarry
2
ExpDev07/coronavirus-tracker-api
fastapi
16
Server error
It seem server is down https://coronavirus-tracker-api.herokuapp.com/all 500 internal error
closed
2020-03-07T01:24:31Z
2020-03-07T02:30:19Z
https://github.com/ExpDev07/coronavirus-tracker-api/issues/16
[ "bug" ]
altezza04
4
benbusby/whoogle-search
flask
179
[BUG] settings set by user stored globally
**Describe the bug** settings applied by users are set/stored globally/persistently. **To Reproduce** Steps to reproduce the behavior: user changes setting, clicks apply. other user opens whoogle from different computer, browser, etc to find that setting applied by previous user has been set globally. **Deployment Method** manual build with run executable. **Version of Whoogle Search** latest from source. **Desktop (please complete the following information):** any device **Smartphone (please complete the following information):** any device. **Additional context** instance is public. i've also noticed that this issue is not just affecting my instance, but other public instances as well. mine: https://whoogle.himiko.cloud other: https://whoogle.sdf.org
closed
2021-01-21T19:49:51Z
2021-05-05T16:24:56Z
https://github.com/benbusby/whoogle-search/issues/179
[ "bug" ]
ghost
3
docarray/docarray
pydantic
1,250
Implement a Document Index backed by Elasatic Search v8+
We have a related issue #1209 which implements `ElasticDocuementIndex` based on version `elasticsearch==7.10.1`. There are two seperate implementation is because elastic v8 changes their api and supports hnsw based vector search. But #1181 > ES changed their Apache license to SSPL which is a business-unfriendly license after 7.10.2.
closed
2023-03-17T03:20:59Z
2023-04-22T09:35:20Z
https://github.com/docarray/docarray/issues/1250
[]
AnneYang720
0
widgetti/solara
fastapi
825
Vue components unable to find template vue files when using frozen/pyinstaller application on Windows
I have been using [PyInstaller](https://pyinstaller.org/en/stable/) to create an executable .exe file for my solara application, and that has, in general, worked very well. However, recently I started using the [Menu](https://github.com/widgetti/solara/blob/8ef0826818ae3e08026c0904c2acdec77aeef195/solara/lab/components/menu.py#L8) component and that caused the following issue when I was building the application to an executable using PyInstaller: ```log Traceback (most recent call last): File "reacton\core.py", line 388, in _create_widget File "ipyvue\VueTemplateWidget.py", line 144, in __init__ File "solara\server\patch.py", line 250, in wrapper File "ipyvue\Template.py", line 47, in get_template FileNotFoundError: [Errno 2] No such file or directory: 'solara\\lab\\components\\menu.vue' ``` On the other hand, the solara application was working completely fine if I ran it as a normal python program from the terminal. I belive I have traced the problem to the [component_vue](https://github.com/widgetti/solara/blob/8ef0826818ae3e08026c0904c2acdec77aeef195/solara/components/component_vue.py#L64) decorator which in turn calls a [wrapper](https://github.com/widgetti/solara/blob/8ef0826818ae3e08026c0904c2acdec77aeef195/solara/components/component_vue.py#L48) function that uses `inspect.getfile` to get the path to the file where the decorated function is defined. It looks like follows: ```python def _widget_vue(vue_path: str, vuetify=True) -> Callable[[Callable[P, None]], Type[v.VuetifyTemplate]]: def decorator(func: Callable[P, None]): class VuetifyWidgetSolara(v.VuetifyTemplate): template_file = (inspect.getfile(func), vue_path) class VueWidgetSolara(vue.VueTemplate): template_file = (inspect.getfile(func), vue_path) base_class = VuetifyWidgetSolara if vuetify else VueWidgetSolara widget_class = _widget_from_signature("VueWidgetSolaraSub", base_class, func, "vue_") return widget_class return decorator ``` We can see here that the call `inspect.getfile(func)` is expected to provide the *full absolute path* to the file. When not using a frozen executable on Windows (or using some other platform like Mac), this works as expected, but when using the frozen executable on Windows, the `inspect.getfile(func)` will return a relative path, leading the the vue file not being found. A simple solution (which I have tested already) is to surround the `inspect.getfile(func)` with `os.path.abspath`, as this will correctly resolve the path, no matter if the inspect module returns a relative path, or not.
closed
2024-10-21T11:38:16Z
2024-10-25T09:55:04Z
https://github.com/widgetti/solara/issues/825
[]
suhren
3
sinaptik-ai/pandas-ai
data-visualization
1,134
Add support for processing and analyzing complex table headers
### ๐Ÿš€ The feature I propose adding a feature to PandasAI that allows for handling and analyzing complex table headers. Currently, PandasAI supports basic table headers, but there are cases where tables have more complex structures, such as multi-level headers or headers with merged cells. This feature would enable users to work with such tables more effectively. ### Motivation, pitch The motivation behind this proposal is to enhance the functionality of PandasAI and make it more versatile in handling diverse datasets. Many real-world datasets contain tables with complex headers, and being able to process and analyze them accurately would greatly benefit users. ### Alternatives _No response_ ### Additional context _No response_
closed
2024-04-25T03:53:20Z
2024-08-01T16:05:29Z
https://github.com/sinaptik-ai/pandas-ai/issues/1134
[]
BanDianMan
0
Asabeneh/30-Days-Of-Python
python
168
I would like to do this course? Is that ok? Please!
open
2021-08-26T16:39:39Z
2021-09-12T15:13:22Z
https://github.com/Asabeneh/30-Days-Of-Python/issues/168
[]
Aaron-1974
1
cookiecutter/cookiecutter-django
django
5,196
AttributeError: This FileResponse instance has no `content` attribute. Use `streaming_content` instead.
## What happened? ```AttributeError: This FileResponse instance has no `content` attribute. Use `streaming_content` instead.``` I am getting this error while clicking on any media download link in django admin. I checked inside docker container and files are stored properly. I have used cookiecutter to start the project. When i ## What should've happened instead? File should be downloaded. ## Additional details <!-- To assist you best, please include commands that you've run, options you've selected and any relevant logs --> - Host system configuration: - Version of cookiecutter CLI (get it with `cookiecutter --version`): Cookiecutter 1.7.3 from C:\Python310\lib\site-packages (Python 3.1) - OS name and version: On Linux, run ```bash lsb_release -a 2> /dev/null || cat /etc/redhat-release 2> /dev/null || cat /etc/*-release 2> /dev/null || cat /etc/issue 2> /dev/null ``` On MacOs, run ```bash sw_vers ``` On Windows, via CMD, run ``` systeminfo | findstr /B /C:"OS Name" /C:"OS Version" ``` ```bash # OS Name: Microsoft Windows 10 Home Single Language # OS Version: 10.0.19045 N/A Build 19045 ``` - Python version, run `python3 -V`: Python 3.12.3 - Docker version (if using Docker), run `docker --version`: Docker version 26.1.4, build 5650f9b - docker compose version (if using Docker), run `docker compose --version`: Docker Compose version v2.27.1-desktop.1 - ... - Options selected and/or [replay file](https://cookiecutter.readthedocs.io/en/latest/advanced/replay.html): On Linux and macOS: `cat ${HOME}/.cookiecutter_replay/cookiecutter-django.json` (Please, take care to remove sensitive information) ```json ``` <summary> Logs: <details> <pre> $ cookiecutter https://github.com/cookiecutter/cookiecutter-django project_name [Project Name]: ... </pre> </details> </summary>
closed
2024-07-08T10:10:15Z
2024-08-07T06:06:09Z
https://github.com/cookiecutter/cookiecutter-django/issues/5196
[ "bug" ]
ShubhamKarala
4
MorvanZhou/tutorials
numpy
63
ๅฆ‚ไฝ•่งฃๅ†ณ name 'prediction' is not defined
ๅœจhttps://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf18_CNN2ไธญ็š„ไปฃ็ ใ€‚ ่ฟ่กŒๆ—ถๆŠฅ name 'prediction' is not defined
closed
2018-03-19T09:32:50Z
2018-03-19T10:02:15Z
https://github.com/MorvanZhou/tutorials/issues/63
[]
ChangedenCZD
5
httpie/cli
python
825
Please add option to reformat XML body
``` $ TERM=xterm-256color http http://localhost:8081/api/grid-service/GridInquiryService/GridInquiry @SOAP.realtime.xml HTTP/1.1 200 OK Connection: keep-alive Content-Length: 921 Content-Type: text/xml;charset=ISO-8859-1 Date: Sun, 29 Dec 2019 10:07:58 GMT <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"><soap:Body><ns4:realtimeResponse xmlns:ns4="http://rdc.com/soap/GridInquiry" xmlns:ns3="http://rdc.com/soap" xmlns:ns2="http://service.rdc.com"><return><ns2:Status><ns2:StatusCode>0</ns2:StatusCode><ns2:Severity>INFO</ns2:Severity></ns2:Status><ns2:GridInquiryStatusRec><ns2:GridInquiryId>3380</ns2:GridInquiryId><ns2:GridInquiryStatus><ns2:GridInquiryStatusCode>COMPLETE</ns2:GridInquiryStatusCode></ns2:GridInquiryStatus></ns2:GridInquiryStatusRec><ns2:GridInquiryResultsRec><ns2:GridInquiryId>3380</ns2:GridInquiryId><ns2:GridInquiryStatus><ns2:GridInquiryStatusCode>COMPLETE</ns2:GridInquiryStatusCode></ns2:GridInquiryStatus><ns2:GridInquiryReviewStatus><ns2:GridInquiryReviewStatusCode>NOMATCH</ns2:GridInquiryReviewStatusCode></ns2:GridInquiryReviewStatus></ns2:GridInquiryResultsRec></return></ns4:realtimeResponse></soap:Body></soap:Envelope> ``` ![image](https://user-images.githubusercontent.com/720349/71555361-6e96c380-2a3c-11ea-8952-02878e9928e8.png) So output even colorized. But it lack of indentation structure. It will be very cool to see said `--reformat` option (f.e. like in [highlight](https://gitlab.com/saalen/highlight)).
closed
2019-12-29T10:11:34Z
2021-08-31T20:49:53Z
https://github.com/httpie/cli/issues/825
[]
Hubbitus
4
scikit-optimize/scikit-optimize
scikit-learn
561
Use global acq_optimizers for opt in gp_minimize
This is more likely a feature request๏ผˆif not available now๏ผ‰. As widely known that there're multiple minimas when **EI** , **LCB**, **PI** infill plan are used. From what I can get in this code, if kwargs _lbfgs_ is set, _n_points_ are used as the start point of a local lbfgs optimize, this is cool but is there any way to just assign a global optimizer for this opt? The sampling plan is essential to the construction of the surrogate model, a global optimizer may provide better performance. There're some python based existing global optimize tools(e.g Inspyred, DEAP, GAFT), or it is cool if a callable user defined optimizer could be passed in like the _GaussProcessRegressor_ in sklearn
open
2017-11-21T15:39:01Z
2018-01-10T22:37:08Z
https://github.com/scikit-optimize/scikit-optimize/issues/561
[ "Enhancement", "API", "New feature", "Major" ]
TsingQAQ
4
axnsan12/drf-yasg
rest-api
768
Change responses typing
# Bug Report ## Description change typing from: ``` :type responses: dict[int or str, (drf_yasg.openapi.Schema or drf_yasg.openapi.SchemaRef or drf_yasg.openapi.Response or str or rest_framework.serializers.Serializer)] ``` to ``` :type responses: dict[int or str, (drf_yasg.openapi.Schema or drf_yasg.openapi.SchemaRef or drf_yasg.openapi.Response or str or rest_framework.serializers.Serializer or type[rest_framework.serializers.Serializer])] ``` to include also classes of rest_framework.serializers.Serializer ## Is this a regression? <!-- Did this behavior use to work in the previous version? --> <!-- edit: --> Yes, the previous version in which this bug was not present was: ... ## Minimal Reproduction ```code ``` ## Stack trace / Error message ```code ``` <!-- If the issue is accompanied by an exception or an error, please share it below: --> ## Your Environment ```code ```
open
2022-01-25T11:44:06Z
2025-03-07T12:11:18Z
https://github.com/axnsan12/drf-yasg/issues/768
[ "triage" ]
Nazareka
1
roboflow/supervision
pytorch
1,619
Bug found in ConfusionMatrix.from_detections
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar bug report. ### Bug Issue found in code when producing a confusion matrix for object detection. It seems like the FN was being added incorrectly to the matrix. Here is the code that was problematic for me. When removing the else condition, I was getting the correct TP value. It seems that num_classes, ends up being at the same position detection_classes[matched_detection_idx[j]] ``` ``` for i, true_class_value in enumerate(true_classes): j = matched_true_idx == i print('sum(j)', sum(j)) if matches.shape[0] > 0 and sum(j) == 1: result_matrix[ true_class_value, detection_classes[matched_detection_idx[j]] ] += 1 # TP else: result_matrix[true_class_value, num_classes] += 1 # FN ``` ``` ### Environment _No response_ ### Minimal Reproducible Example _No response_ ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
open
2024-10-24T15:02:23Z
2025-01-28T22:37:40Z
https://github.com/roboflow/supervision/issues/1619
[ "bug" ]
chiggins2024
3
dadadel/pyment
numpy
76
Multi-line args descriptions are not indented correctly
Here's an example that illustrates the issue. ``` def foo(baz=1): """ Args: baz: long-description breaking into multiple lines (Default value = 1) Returns: """ pass ``` Formatting under google style results in: ``` def foo(baz=1): """ Args: baz: long-description breaking into multiple lines (Default value = 1) Returns: """ pass ``` where the second line of the arg description is indented incorrectly.
open
2019-01-12T11:53:51Z
2021-06-12T18:17:34Z
https://github.com/dadadel/pyment/issues/76
[]
jethrokuan
1
ranaroussi/yfinance
pandas
2,104
Getting empty DataFrame from data download
### Describe bug I'm getting an empty dataframe for my downloads. I've looked for other who've had this problem, but must be searching incorrectly or I'm the only one. I upgraded to latest version of yfinance (and verified), plus cleared my yfinance cache. ### Simple code that reproduces your problem import yfinance as yf spy = yf.Ticker('SPY') spy.history(period='1mo') # same result with MSFT ### Debug log DEBUG Entering history() DEBUG Entering _fetch_ticker_tz() DEBUG Entering get() DEBUG Entering _make_request() DEBUG url=https://query2.finance.yahoo.com/v8/finance/chart/SPY DEBUG params=frozendict.frozendict({'range': '1d', 'interval': '1d'}) DEBUG Entering _get_cookie_and_crumb() DEBUG cookie_mode = 'basic' DEBUG Entering _get_cookie_and_crumb_basic() ### Bad data proof Failed to get ticker 'SPY' reason: HTTPSConnectionPool(host='fc.yahoo.com', port=443): Max retries exceeded with url: / (Caused by NameResolutionError("<urllib3.connection.HTTPSConnection object at 0x00000209144B4650>: Failed to resolve 'fc.yahoo.com' ([Errno 11001] getaddrinfo failed)")) $SPY: possibly delisted; no price data found (period=1mo) Empty DataFrame Columns: [Open, High, Low, Close, Adj Close, Volume] Index: [] ### `yfinance` version 0.2.48 ### Python version 3.12 ### Operating system Windows 11
closed
2024-10-29T20:09:06Z
2024-10-29T20:41:37Z
https://github.com/ranaroussi/yfinance/issues/2104
[]
jpkern0
1
koxudaxi/datamodel-code-generator
fastapi
2,087
Type annotation falls back to Any if property schema is partially overwridden
**Describe the bug** Importing a schema and partial overwrite it (e.g., set a different default value) leads to lost type information **To Reproduce** schemaA ```json { "type": "object", "title": "SchemaA", "properties": { "test": { "title": "test", "type": "string", "default": "default_value1" } } } ``` schemaB.json ```json { "allOf": [ { "$ref": "SchemaA.json" } ], "type": "object", "title": "SchemaB", "properties": { "test": { "default": "default_value2" } } } ``` Used commandline: ``` $ datamodel-codegen --input schemaB.json --output model.py ``` Result model.py: type of `test` in SchemaB is resetted to `Any` ```py class SchemaA(BaseModel): test: Optional[str] = Field('default_value1', title='test') class SchemaB(SchemaA): test: Optional[Any] = 'default_value2' ``` **Expected behavior** type of `test` in SchemaB is still `str` ```py class SchemaA(BaseModel): test: Optional[str] = Field('default_value1', title='test') class SchemaB(SchemaA): test: Optional[str] = 'default_value2' ``` **Version:** - OS: Windows 10 - Python version: 3.11 | 3.9 - datamodel-code-generator version: 0.25.6 | 0.26.0
open
2024-09-08T14:37:07Z
2024-09-08T14:37:07Z
https://github.com/koxudaxi/datamodel-code-generator/issues/2087
[]
simontaurus
0
jonaswinkler/paperless-ng
django
102
Filter improvements
- When selecting certain filters, the filter editor should preselect sensible values. - Is in inbox = yes - Has any tag = yes - The user should be able to filter by these additional filters - Does not have tag X
closed
2020-12-07T00:21:28Z
2020-12-07T16:49:03Z
https://github.com/jonaswinkler/paperless-ng/issues/102
[]
jonaswinkler
0
ray-project/ray
data-science
50,890
[Data] Ordering of blocks after map and map_batches
### What happened + What you expected to happen I have a dataset in files, rows are sorted within files and files are sorted by name in the same folder. After applying `map` or `map_batches`, the order of blocks is different than before applying `map` or `map_batches`. Expected behavior: `map` and `map_batches` doesn't change the ordering of rows. ### Versions / Dependencies ray==2.42.1 ### Reproduction script ``` import time import ray ray.init() dataset = ray.data.from_items( [ {"time_to_sleep": 3}, {"time_to_sleep": 2}, {"time_to_sleep": 1}, ], override_num_blocks=3 ) print(dataset.take_all()) # output: [{'time_to_sleep': 3}, {'time_to_sleep': 2}, {'time_to_sleep': 1}] def map_simple(x): time.sleep(x['time_to_sleep']) return x print(dataset.map(map_simple).take_all()) # output: [{'time_to_sleep': 1}, {'time_to_sleep': 2}, {'time_to_sleep': 3}] def my_map_batches(x): time.sleep(x['time_to_sleep'][0]) yield {'result': [x['time_to_sleep'][0]]} mapped = dataset.map_batches(my_map_batches) print(mapped.take_all()) # output: [{'result': 1}, {'result': 2}, {'result': 3}] ``` ### Issue Severity High: It blocks me from completing my task.
closed
2025-02-25T09:34:49Z
2025-03-05T19:01:37Z
https://github.com/ray-project/ray/issues/50890
[ "bug" ]
jakac
9
dfki-ric/pytransform3d
matplotlib
189
Bug in `axis_angle_from_matrix`
``` /home/dfki.uni-bremen.de/afabisch/anaconda3/envs/robot/lib/python3.8/site-packages/pytransform3d/rotations/_conversions.py:1597: RuntimeWarning: invalid value encountered in sqrt a[:3] = np.sqrt(0.5 * (np.diag(R) + 1.0)) * np.sign(axis_unnormalized) [ 0.81725001 0.19145 -0.00549102 nan nan nan] ``` workaround: ```python a[:3] = np.sqrt(0.5 * np.abs(np.diag(R) + 1.0)) * np.sign(axis_unnormalized) ``` Pickled test data in cloud, load with ```python import pickle R = pickle.load(open("data.pickle", "rb")) pr.compact_axis_angle_from_matrix(R) ``` Fixed in #188
closed
2022-06-01T15:58:27Z
2022-06-03T10:50:46Z
https://github.com/dfki-ric/pytransform3d/issues/189
[]
AlexanderFabisch
1
polakowo/vectorbt
data-visualization
388
Issue with Candlestick app
Dash is running on http://127.0.0.1:8050/ * Serving Flask app "__main__" (lazy loading) * Environment: production WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. * Debug mode: on An exception has occurred, use %tb to see the full traceback. SystemExit: 1 C:\Users\A967\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3445: UserWarning: To exit: use 'exit', 'quit', or Ctrl-D. warn("To exit: use 'exit', 'quit', or Ctrl-D.", stacklevel=1) โ€‹ Please guide what can be the issue, I am not using docker
closed
2022-02-10T09:01:52Z
2022-02-10T09:16:26Z
https://github.com/polakowo/vectorbt/issues/388
[]
medknecth
0
Integuru-AI/Integuru
automation
31
Support for web sockets
Seems like Websockets are ignored in HAR? ## Steps to reproduce Run `create_har.py` and navigate to https://echo.websocket.org/.ws Analysis looks like the following ```bash % poetry run integuru --prompt "send messages on a websocket" --model gpt-4o --generate-code ------------------------Successfully analyzed!!!------------------------------- โ””โ”€โ”€ [master_curl] [node_id: 83ea3e62-803c-48ca-aee4-2c2879c39bec] [dynamic_parts: []] [extracted_parts: ['None']] [curl -X GET -H ':authority: echo.websocket.org' -H ':method: GET' -H ':path: /.ws' -H ':scheme: https' -H 'priority: u=0, i' -H 'upgrade-insecure-requests: 1' 'https://echo.websocket.org/.ws'] --------------Generating code------------ โ””โ”€โ”€ [master_curl] [node_id: 83ea3e62-803c-48ca-aee4-2c2879c39bec] [dynamic_parts: []] [extracted_parts: ['None']] [input_variables: None] [curl -X GET -H ':authority: echo.websocket.org' -H ':method: GET' -H ':path: /.ws' -H ':scheme: https' -H 'priority: u=0, i' -H 'upgrade-insecure-requests: 1' 'https://echo.websocket.org/.ws'] Aggregated function calls have been saved to 'generated_code.py' --------------Generated integration code in generated_code.py!!------------ ``` ### Incorrectly generated code ```python import requests def get_echo_websocket_response(cookie_string): url = 'https://echo.websocket.org/.ws' headers = { 'priority': 'u=0, i', 'upgrade-insecure-requests': '1', 'Cookie': cookie_string } response = requests.get(url, headers=headers) # Since there are no variables to parse, return an empty dictionary return {} cookie_string = 'key1=value1;key2=value2' # Convert cookie_string to a dict to retrieve values cookies_dict = dict(item.split('=') for item in cookie_string.split(';')) # Retrieve values from cookies_dict if needed value1 = cookies_dict.get('key1') value2 = cookies_dict.get('key2') # Call the function result = get_echo_websocket_response(cookie_string) print(result) ```
open
2025-01-08T20:18:43Z
2025-01-08T20:18:43Z
https://github.com/Integuru-AI/Integuru/issues/31
[]
sughodke
0
mwaskom/seaborn
data-science
2,762
kdeplot raising LinAlgError("singular matrix") instead of warning
Example code: ``` import pandas as pd import seaborn as sns df = pd.DataFrame({'a': [1929245168.06679]*18}) sns.kdeplot(data=df, x='a') ``` seaborn version 0.11.2 python version 3.8.12 Error: `numpy.linalg.LinAlgError: singular matrix` Expected: `UserWarning: Dataset has 0 variance; skipping density estimate. Pass 'warn_singular=False' to disable this warning.` I tried other types of singular matrixes and the singular warning implemented in 0.11.2 work as expected. (for example: `pd.DataFrame({'a': [0]*10})` or `pd.DataFrame({'a': [0]})`) The problem seem to arise for particular floats. I tried other big floats and changed the value slightly resulting in different outcome. Another interesting sequence: `pd.DataFrame({'a': [1929245168.06679]*18})` -> error `pd.DataFrame({'a': [1929245160.06679]*18})` -> error `pd.DataFrame({'a': [1929245100.06679]*18})` -> no error and no warning (singular_warn is True)
closed
2022-03-16T09:53:06Z
2022-08-02T11:36:13Z
https://github.com/mwaskom/seaborn/issues/2762
[ "rough-edge", "mod:distributions" ]
Proch92
3
pytorch/vision
machine-learning
8,166
RuntimeError: cuda video backend is not available.
### ๐Ÿ› Describe the bug When trying to set the videoreader backend to cuda (`torchvision.set_video_backend('cuda')`) I get the error below: ` RuntimeError: cuda video backend is not available. ` I followed the instructions to use the videoreader on cuda. I.e. I installed pytorch nightly and build torchvision from source. My DockerFile is given below: ``` FROM nvidia/cuda:11.8.0-devel-ubuntu22.04 RUN apt-get update RUN apt-get install -y python3-pip # RUN pip3 install --upgrade pip3 RUN apt-get update RUN yes | apt install nvidia-cuda-toolkit RUN pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118 RUN git clone https://github.com/pytorch/vision.git WORKDIR "/vision" RUN python3 setup.py develop RUN pip3 install ffmpeg-python RUN pip3 install av --upgrade ``` As far as I can see the environment has been installed with the expected versions etc. Is this a bug or am I doing something wrong? ### Versions PyTorch version: 2.2.0.dev20231213+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.10.0-25-amd64-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY Nvidia driver version: 535.146.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.24.1 [pip3] pytorch-triton==2.1.0+bcad9dabe1 [pip3] torch==2.2.0.dev20231213+cu118 [pip3] torchaudio==2.2.0.dev20231213+cu118 [pip3] torchvision==0.18.0.dev20231213+cu118 [conda] Could not collect
open
2023-12-18T12:20:55Z
2024-02-13T15:54:04Z
https://github.com/pytorch/vision/issues/8166
[]
Caspeerrr
2
man-group/arctic
pandas
828
Fix build broken due to group name change
The group name was changed from manahl -> man-group and that seems to have broken the travis build. Probably needs a tweak in the settings somewhere
closed
2019-11-19T12:28:49Z
2019-11-19T13:31:26Z
https://github.com/man-group/arctic/issues/828
[]
shashank88
2
iterative/dvc
machine-learning
10,398
dvc exp run --run-all: only runs two experiments and then hangs (similar to #8165)
# Bug Report <!-- ## Issue name --> ## Description When running dvc exp run --run-all, only two experiments get run fully, and then the next experiment never starts. I have tried two times and each time two consecutive experiments are run fully. <!-- --> ### Reproduce Add multiple experiments to the queue with dvc exp run --queue dvc exp run --run-all <!-- Step list of how to reproduce the bug --> <!-- Example: 1. dvc init 2. Copy dataset.zip to the directory 3. dvc add dataset.zip 4. dvc run -d dataset.zip -o model ./train.sh 5. modify dataset.zip 6. dvc repro --> ### Expected All experiments should run sequentially. <!-- A clear and concise description of what you expect to happen. --> ### Environment information <!-- This is required to ensure that we can reproduce the bug. --> **Output of `dvc doctor`:** DVC version: 3.50.0 (pip) ------------------------- Platform: Python 3.10.12 on Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 Subprojects: dvc_data = 3.15.1 dvc_objects = 5.1.0 dvc_render = 1.0.2 dvc_task = 0.4.0 scmrepo = 3.3.1 Supports: http (aiohttp = 3.9.1, aiohttp-retry = 2.8.3), https (aiohttp = 3.9.1, aiohttp-retry = 2.8.3), s3 (s3fs = 2024.3.1, boto3 = 1.28.64) Config: Global: /root/.config/dvc System: /etc/xdg/dvc Cache types: symlink Cache directory: ext4 on /dev/sde Caches: local Remotes: s3 Workspace directory: ext4 on /dev/sde Repo: dvc, git Repo.site_cache_dir: /var/tmp/dvc/repo/508ec894ab4fcd5646b1ead942fa8b35 **Additional Information (if any):** cat .dvc/tmp/exps/celery/dvc-exp-worker-1.out /usr/local/lib/python3.10/dist-packages/celery/platforms.py:829: SecurityWarning: You're running the worker with superuser privileges: this is absolutely not recommended! Please specify a different user using the --uid option. User information: uid=0 euid=0 gid=0 egid=0 warnings.warn(SecurityWarning(ROOT_DISCOURAGED.format( [2024-04-18 15:51:26,850: WARNING/MainProcess] No hostname was supplied. Reverting to default 'localhost' -------------- dvc-exp-4ac376-1@localhost v5.4.0 (opalescent) --- ***** ----- -- ******* ---- Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 2024-04-18 15:51:26 - *** --- * --- - ** ---------- [config] - ** ---------- .> app: dvc-exp-local:0x7f2defb7c700 - ** ---------- .> transport: filesystem://localhost// - ** ---------- .> results: file:///workspaces/platform/.dvc/tmp/exps/celery/result - *** --- * --- .> concurrency: 1 (thread) -- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker) --- ***** ----- -------------- [queues] .> celery exchange=celery(direct) key=celery [tasks] . dvc.repo.experiments.queue.tasks.cleanup_exp . dvc.repo.experiments.queue.tasks.collect_exp . dvc.repo.experiments.queue.tasks.run_exp . dvc.repo.experiments.queue.tasks.setup_exp . dvc_task.proc.tasks.run [2024-04-18 15:51:26,860: WARNING/MainProcess] /usr/local/lib/python3.10/dist-packages/celery/worker/consumer/consumer.py:508: CPendingDeprecationWarning: The broker_connection_retry configuration setting will no longer determine whether broker connection retries are made during startup in Celery 6.0 and above. If you wish to retain the existing behavior for retrying connections on startup, you should set broker_connection_retry_on_startup to True. warnings.warn( [2024-04-18 15:51:26,860: WARNING/MainProcess] No hostname was supplied. Reverting to default 'localhost' [2024-04-18 15:51:26,860: INFO/MainProcess] Connected to filesystem://localhost// [2024-04-18 15:51:26,861: INFO/MainProcess] dvc-exp-4ac376-1@localhost ready. [2024-04-18 15:51:26,862: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[26ac9773-ffd9-4b1e-abbe-dcf5fbbf5741] received [2024-04-18 15:53:14,714: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[26ac9773-ffd9-4b1e-abbe-dcf5fbbf5741] succeeded in 107.85451585499686s: None [2024-04-18 15:53:16,067: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[ad2d173c-7348-4013-a417-9d946d3d19f0] received [2024-04-18 15:55:13,671: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[ad2d173c-7348-4013-a417-9d946d3d19f0] succeeded in 117.60698523299652s: None [2024-04-18 15:55:15,405: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[df43ce08-360d-44c2-ac3f-b0270fa693e4] received [2024-04-18 15:56:50,571: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[df43ce08-360d-44c2-ac3f-b0270fa693e4] succeeded in 95.1688057010033s: None [2024-04-18 15:56:50,715: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[22e9611d-9bb7-4aeb-8227-1cd8c2e4fcf9] received [2024-04-18 15:58:48,605: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[22e9611d-9bb7-4aeb-8227-1cd8c2e4fcf9] succeeded in 117.89407574100187s: None [2024-04-18 15:59:02,593: INFO/MainProcess] monitor: shutting down due to empty queue. [2024-04-18 15:59:02,966: WARNING/MainProcess] Got shutdown from remote [2024-04-18 15:59:02,968: INFO/MainProcess] cleaning up FSApp broker. [2024-04-18 15:59:02,981: INFO/MainProcess] done /usr/local/lib/python3.10/dist-packages/celery/platforms.py:829: SecurityWarning: You're running the worker with superuser privileges: this is absolutely not recommended! Please specify a different user using the --uid option. User information: uid=0 euid=0 gid=0 egid=0 warnings.warn(SecurityWarning(ROOT_DISCOURAGED.format( [2024-04-20 14:01:21,608: WARNING/MainProcess] No hostname was supplied. Reverting to default 'localhost' -------------- dvc-exp-4ac376-1@localhost v5.4.0 (opalescent) --- ***** ----- -- ******* ---- Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 2024-04-20 14:01:21 - *** --- * --- - ** ---------- [config] - ** ---------- .> app: dvc-exp-local:0x7ff4e3aac6d0 - ** ---------- .> transport: filesystem://localhost// - ** ---------- .> results: file:///workspaces/platform/.dvc/tmp/exps/celery/result - *** --- * --- .> concurrency: 1 (thread) -- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker) --- ***** ----- -------------- [queues] .> celery exchange=celery(direct) key=celery [tasks] . dvc.repo.experiments.queue.tasks.cleanup_exp . dvc.repo.experiments.queue.tasks.collect_exp . dvc.repo.experiments.queue.tasks.run_exp . dvc.repo.experiments.queue.tasks.setup_exp . dvc_task.proc.tasks.run [2024-04-20 14:01:21,621: WARNING/MainProcess] /usr/local/lib/python3.10/dist-packages/celery/worker/consumer/consumer.py:508: CPendingDeprecationWarning: The broker_connection_retry configuration setting will no longer determine whether broker connection retries are made during startup in Celery 6.0 and above. If you wish to retain the existing behavior for retrying connections on startup, you should set broker_connection_retry_on_startup to True. warnings.warn( [2024-04-20 14:01:21,621: WARNING/MainProcess] No hostname was supplied. Reverting to default 'localhost' [2024-04-20 14:01:21,621: INFO/MainProcess] Connected to filesystem://localhost// [2024-04-20 14:01:21,623: INFO/MainProcess] dvc-exp-4ac376-1@localhost ready. [2024-04-20 14:01:21,624: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[0285ad2f-cc55-487b-bb72-a22cddbb560d] received [2024-04-22 01:08:08,508: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[0285ad2f-cc55-487b-bb72-a22cddbb560d] succeeded in 3015.664237446s: None [2024-04-22 01:08:10,100: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[1741062f-5998-4ed3-8a2b-f0726876eeee] received [2024-04-22 01:24:01,119: CRITICAL/MainProcess] Unrecoverable error: JSONDecodeError('Expecting value: line 1 column 1 (char 0)') Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/celery/worker/worker.py", line 202, in start self.blueprint.start(self) File "/usr/local/lib/python3.10/dist-packages/celery/bootsteps.py", line 116, in start step.start(parent) File "/usr/local/lib/python3.10/dist-packages/celery/bootsteps.py", line 365, in start return self.obj.start() File "/usr/local/lib/python3.10/dist-packages/celery/worker/consumer/consumer.py", line 340, in start blueprint.start(self) File "/usr/local/lib/python3.10/dist-packages/celery/bootsteps.py", line 116, in start step.start(parent) File "/usr/local/lib/python3.10/dist-packages/celery/worker/consumer/consumer.py", line 746, in start c.loop(*c.loop_args()) File "/usr/local/lib/python3.10/dist-packages/celery/worker/loops.py", line 130, in synloop connection.drain_events(timeout=2.0) File "/usr/local/lib/python3.10/dist-packages/kombu/connection.py", line 341, in drain_events return self.transport.drain_events(self.connection, **kwargs) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/virtual/base.py", line 997, in drain_events get(self._deliver, timeout=timeout) File "/usr/local/lib/python3.10/dist-packages/kombu/utils/scheduling.py", line 55, in get return self.fun(resource, callback, **kwargs) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/virtual/base.py", line 1035, in _drain_channel return channel.drain_events(callback=callback, timeout=timeout) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/virtual/base.py", line 754, in drain_events return self._poll(self.cycle, callback, timeout=timeout) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/virtual/base.py", line 414, in _poll return cycle.get(callback) File "/usr/local/lib/python3.10/dist-packages/kombu/utils/scheduling.py", line 55, in get return self.fun(resource, callback, **kwargs) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/virtual/base.py", line 417, in _get_and_deliver message = self._get(queue) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/filesystem.py", line 261, in _get return loads(bytes_to_str(payload)) File "/usr/local/lib/python3.10/dist-packages/kombu/utils/json.py", line 93, in loads return _loads(s, object_hook=object_hook) File "/usr/lib/python3.10/json/__init__.py", line 359, in loads return cls(**kw).decode(s) File "/usr/lib/python3.10/json/decoder.py", line 337, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) File "/usr/lib/python3.10/json/decoder.py", line 355, in raw_decode raise JSONDecodeError("Expecting value", s, err.value) from None json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0) [2024-04-22 01:53:58,451: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[1741062f-5998-4ed3-8a2b-f0726876eeee] succeeded in 2748.4771515409993s: None [2024-04-22 01:53:58,452: INFO/MainProcess] cleaning up FSApp broker. [2024-04-22 01:53:58,566: INFO/MainProcess] done /usr/local/lib/python3.10/dist-packages/celery/platforms.py:829: SecurityWarning: You're running the worker with superuser privileges: this is absolutely not recommended! Please specify a different user using the --uid option. User information: uid=0 euid=0 gid=0 egid=0 warnings.warn(SecurityWarning(ROOT_DISCOURAGED.format( [2024-04-22 15:19:31,011: WARNING/MainProcess] No hostname was supplied. Reverting to default 'localhost' -------------- dvc-exp-4ac376-1@localhost v5.4.0 (opalescent) --- ***** ----- -- ******* ---- Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 2024-04-22 15:19:31 - *** --- * --- - ** ---------- [config] - ** ---------- .> app: dvc-exp-local:0x7f8037ae4700 - ** ---------- .> transport: filesystem://localhost// - ** ---------- .> results: file:///workspaces/platform/.dvc/tmp/exps/celery/result - *** --- * --- .> concurrency: 1 (thread) -- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker) --- ***** ----- -------------- [queues] .> celery exchange=celery(direct) key=celery [tasks] . dvc.repo.experiments.queue.tasks.cleanup_exp . dvc.repo.experiments.queue.tasks.collect_exp . dvc.repo.experiments.queue.tasks.run_exp . dvc.repo.experiments.queue.tasks.setup_exp . dvc_task.proc.tasks.run [2024-04-22 15:19:31,019: WARNING/MainProcess] /usr/local/lib/python3.10/dist-packages/celery/worker/consumer/consumer.py:508: CPendingDeprecationWarning: The broker_connection_retry configuration setting will no longer determine whether broker connection retries are made during startup in Celery 6.0 and above. If you wish to retain the existing behavior for retrying connections on startup, you should set broker_connection_retry_on_startup to True. warnings.warn( [2024-04-22 15:19:31,019: WARNING/MainProcess] No hostname was supplied. Reverting to default 'localhost' [2024-04-22 15:19:31,020: INFO/MainProcess] Connected to filesystem://localhost// [2024-04-22 15:19:31,021: INFO/MainProcess] dvc-exp-4ac376-1@localhost ready. [2024-04-22 15:19:31,021: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[3e30a522-de58-49dc-8e93-f029aa9a015d] received [2024-04-22 15:52:03,066: WARNING/MainProcess] No hostname was supplied. Reverting to default 'localhost' [2024-04-22 16:10:49,673: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[3e30a522-de58-49dc-8e93-f029aa9a015d] succeeded in 3078.8052399700027s: None [2024-04-22 16:10:50,675: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[99127667-18e3-4d3e-bcf4-1dd02e78e426] received [2024-04-22 16:48:49,787: CRITICAL/MainProcess] Unrecoverable error: JSONDecodeError('Expecting value: line 1 column 1 (char 0)') Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/celery/worker/worker.py", line 202, in start self.blueprint.start(self) File "/usr/local/lib/python3.10/dist-packages/celery/bootsteps.py", line 116, in start step.start(parent) File "/usr/local/lib/python3.10/dist-packages/celery/bootsteps.py", line 365, in start return self.obj.start() File "/usr/local/lib/python3.10/dist-packages/celery/worker/consumer/consumer.py", line 340, in start blueprint.start(self) File "/usr/local/lib/python3.10/dist-packages/celery/bootsteps.py", line 116, in start step.start(parent) File "/usr/local/lib/python3.10/dist-packages/celery/worker/consumer/consumer.py", line 746, in start c.loop(*c.loop_args()) File "/usr/local/lib/python3.10/dist-packages/celery/worker/loops.py", line 130, in synloop connection.drain_events(timeout=2.0) File "/usr/local/lib/python3.10/dist-packages/kombu/connection.py", line 341, in drain_events return self.transport.drain_events(self.connection, **kwargs) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/virtual/base.py", line 997, in drain_events get(self._deliver, timeout=timeout) File "/usr/local/lib/python3.10/dist-packages/kombu/utils/scheduling.py", line 55, in get return self.fun(resource, callback, **kwargs) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/virtual/base.py", line 1035, in _drain_channel return channel.drain_events(callback=callback, timeout=timeout) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/virtual/base.py", line 754, in drain_events return self._poll(self.cycle, callback, timeout=timeout) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/virtual/base.py", line 414, in _poll return cycle.get(callback) File "/usr/local/lib/python3.10/dist-packages/kombu/utils/scheduling.py", line 55, in get return self.fun(resource, callback, **kwargs) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/virtual/base.py", line 417, in _get_and_deliver message = self._get(queue) File "/usr/local/lib/python3.10/dist-packages/kombu/transport/filesystem.py", line 261, in _get return loads(bytes_to_str(payload)) File "/usr/local/lib/python3.10/dist-packages/kombu/utils/json.py", line 93, in loads return _loads(s, object_hook=object_hook) File "/usr/lib/python3.10/json/__init__.py", line 359, in loads return cls(**kw).decode(s) File "/usr/lib/python3.10/json/decoder.py", line 337, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) File "/usr/lib/python3.10/json/decoder.py", line 355, in raw_decode raise JSONDecodeError("Expecting value", s, err.value) from None json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0) [2024-04-22 17:06:12,589: INFO/MainProcess] Task dvc.repo.experiments.queue.tasks.run_exp[99127667-18e3-4d3e-bcf4-1dd02e78e426] succeeded in 3322.133445313004s: None [2024-04-22 17:06:12,590: INFO/MainProcess] cleaning up FSApp broker. [2024-04-22 17:06:12,762: INFO/MainProcess] done <!-- Please check https://github.com/iterative/dvc/wiki/Debugging-DVC on ways to gather more information regarding the issue. If applicable, please also provide a `--verbose` output of the command, eg: `dvc add --verbose`. If the issue is regarding the performance, please attach the profiling information and the benchmark comparisons. -->
closed
2024-04-23T02:31:52Z
2024-04-29T12:50:45Z
https://github.com/iterative/dvc/issues/10398
[]
mghanava
3
piccolo-orm/piccolo
fastapi
67
Is there an example of how to integrate piccolo into an existing fastapi application?
Is there an example of how to integrate piccolo into an existing fastapi application? Something along the lines of the examples in the fastapi docs [here](https://fastapi.tiangolo.com/tutorial/sql-databases/) and [here](https://fastapi.tiangolo.com/advanced/async-sql-databases/#connect-and-disconnect). I'm interested in trying the ORM out as it reminds me a lot of how EntityFramework operates in the .NET world, but right now it seems a lot of magic and black boxed and to require using one of the generators to put all the pieces into place. That's just my perception. Anyways, would love to see a clean and understandable example for how to put this into an existing fastapi app and use similarily to the ORMs already mentioned in the fastapi docs. Thanks much - wg
open
2021-02-09T17:01:00Z
2021-07-07T09:57:59Z
https://github.com/piccolo-orm/piccolo/issues/67
[ "help wanted", "good first issue", "documentation" ]
ohmeow
10
benlubas/molten-nvim
jupyter
76
[Bug] I broke progress bars in virtual text
## Description Wrapping text in virtual output broke progress bar handling #70
closed
2023-12-10T17:41:55Z
2023-12-10T19:13:25Z
https://github.com/benlubas/molten-nvim/issues/76
[ "bug" ]
benlubas
0
nerfstudio-project/nerfstudio
computer-vision
3,003
GSplat Error - subprocess.CalledProcessError: Command '['where', 'cl']' returned non-zero exit status 1.
Nerfstudio GSplat Error Persistently getting this issue when attempting to train Splatfacto. Running latest Nerfstudio & Splatfacto. ----- ns-train splatfacto --data data/nerfstudio/Egypt ----- No Nerfstudio checkpoint to load, so training from scratch. Disabled comet/tensorboard/wandb event writers C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\torch\utils\cpp_extension.py:383: UserWarning: Error checking compiler version for cl: [WinError 2] The system cannot find the file specified warnings.warn(f'Error checking compiler version for {compiler}: {error}') ( โ— ) gsplat: Setting up CUDA (This may take a few minutes the first time)INFO: Could not find files for the given pattern(s). Exception in thread Thread-6: Traceback (most recent call last): File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\gsplat\cuda\_backend.py", line 56, in <module> from gsplat import csrc as _C ImportError: cannot import name 'csrc' from 'gsplat' (C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\gsplat\__init__.py) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Users\James\anaconda3\envs\nerfstudio\lib\threading.py", line 932, in _bootstrap_inner self.run() File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\nerfstudio\viewer\render_state_machine.py", line 222, in run outputs = self._render_img(action.camera_state) File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\nerfstudio\viewer\render_state_machine.py", line 168, in _render_img outputs = self.viewer.get_model().get_outputs_for_camera(camera, obb_box=obb) File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\nerfstudio\models\splatfacto.py", line 914, in get_outputs_for_camera outs = self.get_outputs(camera.to(self.device)) File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\nerfstudio\models\splatfacto.py", line 739, in get_outputs self.xys, depths, self.radii, conics, comp, num_tiles_hit, cov3d = project_gaussians( # type: ignore File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\gsplat\project_gaussians.py", line 61, in project_gaussians return _ProjectGaussians.apply( File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\torch\autograd\function.py", line 539, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\gsplat\project_gaussians.py", line 112, in forward ) = _C.project_gaussians_forward( File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\gsplat\cuda\__init__.py", line 7, in call_cuda from ._backend import _C File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\gsplat\cuda\_backend.py", line 88, in <module> _C = load( File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\torch\utils\cpp_extension.py", line 1308, in load return _jit_compile( File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\torch\utils\cpp_extension.py", line 1710, in _jit_compile _write_ninja_file_and_build_library( File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\torch\utils\cpp_extension.py", line 1810, in _write_ninja_file_and_build_library _write_ninja_file_to_build_library( File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\torch\utils\cpp_extension.py", line 2242, in _write_ninja_file_to_build_library _write_ninja_file( File "C:\Users\James\anaconda3\envs\nerfstudio\lib\site-packages\torch\utils\cpp_extension.py", line 2382, in _write_ninja_file cl_paths = subprocess.check_output(['where', File "C:\Users\James\anaconda3\envs\nerfstudio\lib\subprocess.py", line 415, in check_output return run(*popenargs, stdout=PIPE, timeout=timeout, check=True, File "C:\Users\James\anaconda3\envs\nerfstudio\lib\subprocess.py", line 516, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['where', 'cl']' returned non-zero exit status 1.
open
2024-03-15T12:07:43Z
2024-04-21T02:36:57Z
https://github.com/nerfstudio-project/nerfstudio/issues/3003
[]
JamesAscroft
6
pytorch/pytorch
machine-learning
149,224
Unexpected results in using torch.save API
### ๐Ÿ› Describe the bug In test_save_with_different_pickle_protocol, the test iterates over all protocols (0 through pickle.HIGHEST_PROTOCOL) and expects that saving and then loading the tensor works correctly with each protocol. However, for protocol 0, torch.load fails with an AssertionError (inside torch.loadโ€™s persistent_load), which suggests that our source code (the new zipfile-based serialization) does not correctly support protocol 0. This is unexpected behavior based on the API. ```python import unittest import torch import io import os import pickle from pathlib import Path class TestTorchSave(unittest.TestCase): def setUp(self): # Create a tensor to use in tests self.tensor = torch.tensor([0, 1, 2, 3, 4]) self.filename = 'test_tensor.pt' def tearDown(self): # Clean up any files created during tests if os.path.exists(self.filename): os.remove(self.filename) def test_save_with_different_pickle_protocol(self): # Test saving with a different pickle protocol for protocol in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(pickle_protocol=protocol): buffer = io.BytesIO() torch.save(self.tensor, buffer, pickle_protocol=protocol) buffer.seek(0) loaded_tensor = torch.load(buffer) self.assertTrue(torch.equal(self.tensor, loaded_tensor)) if __name__ == '__main__': unittest.main() ``` ``` ====================================================================== FAIL: test_save_with_different_pickle_protocol (__main__.TestTorchSave) (pickle_protocol=0) ---------------------------------------------------------------------- Traceback (most recent call last): File "/home/user/projects/api_guided_testgen/out/bug_detect_gpt4o/exec/basic_rag_apidoc/torch/torch.save.py", line 40, in test_save_with_different_pickle_protocol loaded_tensor = torch.load(buffer) File "/home/user/anaconda3/lib/python3.8/site-packages/torch/serialization.py", line 1025, in load return _load(opened_zipfile, File "/home/user/anaconda3/lib/python3.8/site-packages/torch/serialization.py", line 1446, in _load result = unpickler.load() File "/home/user/anaconda3/lib/python3.8/site-packages/torch/serialization.py", line 1400, in persistent_load assert isinstance(saved_id, tuple) AssertionError ``` ### Versions Collecting environment information... PyTorch version: 2.5.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 9.5.0-1ubuntu1~22.04) 9.5.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.9.21 (main, Dec 11 2024, 16:24:11) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 4 On-line CPU(s) list: 0-3 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) E-2224G CPU @ 3.50GHz CPU family: 6 Model: 158 Thread(s) per core: 1 Core(s) per socket: 4 Socket(s): 1 Stepping: 10 CPU max MHz: 4700.0000 CPU min MHz: 800.0000 BogoMIPS: 6999.82 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb pti ssbd ibrs ibpb stibp tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp vnmi md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 128 KiB (4 instances) L1i cache: 128 KiB (4 instances) L2 cache: 1 MiB (4 instances) L3 cache: 8 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-3 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT disabled Vulnerability Mds: Mitigation; Clear CPU buffers; SMT disabled Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT disabled Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.0.1 [pip3] torch==2.5.0 [pip3] torchaudio==2.5.0 [pip3] torchvision==0.20.0 [conda] blas 1.0 mkl [conda] cpuonly 2.0 0 pytorch [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch [conda] mkl 2023.1.0 h213fc3f_46344 [conda] mkl-service 2.4.0 py39h5eee18b_2 [conda] mkl_fft 1.3.11 py39h5eee18b_0 [conda] mkl_random 1.2.8 py39h1128e8f_0 [conda] numpy 2.0.1 py39h5f9d8c6_1 [conda] numpy-base 2.0.1 py39hb5e798b_1 [conda] pytorch 2.5.0 py3.9_cpu_0 pytorch [conda] pytorch-mutex 1.0 cpu pytorch [conda] torchaudio 2.5.0 py39_cpu pytorch [conda] torchvision 0.20.0 py39_cpu pytorch cc @mruberry @mikaylagawarecki
open
2025-03-14T20:59:25Z
2025-03-17T15:20:20Z
https://github.com/pytorch/pytorch/issues/149224
[ "module: serialization", "triaged" ]
sjh0849
0
sktime/sktime
data-science
7,973
TypeError while using RecursiveReductionForecaster class
I tried this code with hierarchical data structure, as follows: ``` test_size = 31 fh = np.arange(1, test_size + 1) df_train, df_test = temporal_train_test_split(df, test_size=test_size) model = Prophet( seasonality_mode="multiplicative", add_country_holidays={"country_name": "USA"}, daily_seasonality=True, n_changepoints=10, ) forecaster = RecursiveReductionForecaster(model) pipe = Aggregator(flatten_single_levels=True) * forecaster * Reconciler(method="bu") pipe = pipe.fit(df_train, fh=fh) df_pred = pipe.predict(fh) ``` but I received this error: ``` TypeError: Invalid `fh`. The type of the passed `fh` values is not supported. Please use one of ('int', 'range', '1D np.ndarray of type int', '1D np.ndarray of type timedelta or dateoffset', 'list of type int', 'pd.RangeIndex', 'pd.PeriodIndex', 'pd.DatetimeIndex', 'pd.TimedeltaIndex'), but found type <class 'pandas.core.frame.DataFrame'>, values = lag_1__lag_0__target ... lag_1__lag_9__target timestamp ... 2025-02-09 55.0 ... 59.0 [1 rows x 10 columns] File <command-570286585310414>, line 14 11 pipe = Aggregator(flatten_single_levels=True) * forecaster * Reconciler(method="bu") 13 pipe = pipe.fit(df_train, fh=fh) ---> 14 df_pred = pipe.predict(fh) 16 df_pred_interval = pipe.predict_interval(fh) 17 df_pred_interval File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/base/_base.py:457, in BaseForecaster.predict(self, fh, X) 455 # we call the ordinary _predict if no looping/vectorization needed 456 if not self._is_vectorized: --> 457 y_pred = self._predict(fh=fh, X=X_inner) 458 else: 459 # otherwise we call the vectorized version of predict 460 y_pred = self._vectorize("predict", X=X_inner, fh=fh) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/compose/_pipeline.py:1053, in TransformedTargetForecaster._predict(self, fh, X) 1038 def _predict(self, fh=None, X=None): 1039 """Forecast time series at future horizon. 1040 1041 Parameters (...) 1051 Point predictions 1052 """ -> 1053 y_pred = self.forecaster_.predict(fh=fh, X=X) 1054 # inverse transform y_pred 1055 y_pred = self._get_inverse_transform(self.transformers_pre_, y_pred, X) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/base/_base.py:460, in BaseForecaster.predict(self, fh, X) 457 y_pred = self._predict(fh=fh, X=X_inner) 458 else: 459 # otherwise we call the vectorized version of predict --> 460 y_pred = self._vectorize("predict", X=X_inner, fh=fh) 462 # convert to output mtype, identical with last y mtype seen 463 y_out = convert_to( 464 y_pred, 465 self._y_metadata["mtype"], 466 store=self._converter_store_y, 467 store_behaviour="freeze", 468 ) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/base/_base.py:2058, in BaseForecaster._vectorize(self, methodname, **kwargs) 2055 if methodname == "update_predict_single": 2056 self._yvec = y -> 2058 y_preds = self._yvec.vectorize_est( 2059 self.forecasters_, 2060 method=methodname, 2061 return_type="list", 2062 backend=self.get_config()["backend:parallel"], 2063 backend_params=self.get_config()["backend:parallel:params"], 2064 **kwargs, 2065 ) 2067 # if we vectorize over columns, 2068 # we need to replace top column level with variable names - part 1 2069 m = len(self.forecasters_.columns) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/datatypes/_vectorize.py:630, in VectorizedDF.vectorize_est(self, estimator, method, args, args_rowvec, return_type, rowname_default, colname_default, varname_of_self, backend, backend_params, **kwargs) 616 vec_zip = zip( 617 self.items(), 618 explode(args, iterate_as=iterate_as, iterate_cols=iterate_cols), 619 explode(args_rowvec, iterate_as=iterate_as, iterate_cols=False), 620 estimators, 621 ) 623 meta = { 624 "method": method, 625 "varname_of_self": varname_of_self, 626 "rowname_default": rowname_default, 627 "colname_default": colname_default, 628 } --> 630 ret = parallelize( 631 fun=self._vectorize_est_single, 632 iter=vec_zip, 633 meta=meta, 634 backend=backend, 635 backend_params=backend_params, 636 ) 638 if return_type == "pd.DataFrame": 639 df_long = pd.DataFrame(ret) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/utils/parallel.py:72, in parallelize(fun, iter, meta, backend, backend_params) 69 backend_name = backend_dict[backend] 70 para_fun = para_dict[backend_name] ---> 72 ret = para_fun( 73 fun=fun, iter=iter, meta=meta, backend=backend, backend_params=backend_params 74 ) 75 return ret File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/utils/parallel.py:92, in _parallelize_none(fun, iter, meta, backend, backend_params) 90 def _parallelize_none(fun, iter, meta, backend, backend_params): 91 """Execute loop via simple sequential list comprehension.""" ---> 92 ret = [fun(x, meta=meta) for x in iter] 93 return ret File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/utils/parallel.py:92, in <listcomp>(.0) 90 def _parallelize_none(fun, iter, meta, backend, backend_params): 91 """Execute loop via simple sequential list comprehension.""" ---> 92 ret = [fun(x, meta=meta) for x in iter] 93 return ret File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/datatypes/_vectorize.py:679, in VectorizedDF._vectorize_est_single(self, vec_tuple, meta) 676 args_i[varname_of_self] = group 678 est_i_method = getattr(est_i, method) --> 679 est_i_result = est_i_method(**args_i) 681 if group_name is None: 682 group_name = rowname_default File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/base/_base.py:457, in BaseForecaster.predict(self, fh, X) 455 # we call the ordinary _predict if no looping/vectorization needed 456 if not self._is_vectorized: --> 457 y_pred = self._predict(fh=fh, X=X_inner) 458 else: 459 # otherwise we call the vectorized version of predict 460 y_pred = self._vectorize("predict", X=X_inner, fh=fh) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/compose/_reduce.py:2482, in RecursiveReductionForecaster._predict(self, X, fh) 2480 y_pred = self._predict_in_sample(X_pool, fh_ins) 2481 elif len(fh_ins) == 0: -> 2482 y_pred = self._predict_out_of_sample(X_pool, fh_oos) 2483 else: 2484 y_pred_ins = self._predict_in_sample(X_pool, fh_ins) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/compose/_reduce.py:2547, in RecursiveReductionForecaster._predict_out_of_sample(self, X_pool, fh) 2544 y_pred_i.iloc[0] = estimator 2545 # otherwise proceed as per direct reduction algorithm 2546 else: -> 2547 y_pred_i = estimator.predict(Xtt_predrow) 2548 # 2D numpy array with col index = (var) and 1 row 2549 y_pred_list.append(y_pred_i) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/base/_base.py:453, in BaseForecaster.predict(self, fh, X) 450 X_inner = self._check_X(X=X) 452 # check fh and coerce to ForecastingHorizon, if not already passed in fit --> 453 fh = self._check_fh(fh) 455 # we call the ordinary _predict if no looping/vectorization needed 456 if not self._is_vectorized: File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/base/_base.py:1957, in BaseForecaster._check_fh(self, fh, pred_int) 1946 # in case C. fh is optional in fit: 1947 # this is fine, nothing to check/raise 1948 (...) 1954 # fcstr) since cutoff/frequency can be different for each compared to the 1955 # entire panel but the same relative fh 1956 if getattr(self, "_is_vectorized", False): -> 1957 fh = check_fh(fh=fh) 1958 else: 1959 fh = check_fh(fh=fh, freq=self._cutoff) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/utils/validation/forecasting.py:291, in check_fh(fh, enforce_relative, freq) 288 from sktime.forecasting.base import ForecastingHorizon 290 if not isinstance(fh, ForecastingHorizon): --> 291 fh = ForecastingHorizon(fh, is_relative=None, freq=freq) 292 else: 293 fh.freq = freq File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/base/_fh.py:289, in ForecastingHorizon.__init__(self, values, is_relative, freq) 285 def __init__(self, values=None, is_relative=None, freq=None): 286 # coercing inputs 287 288 # values to pd.Index self._values --> 289 values = _check_values(values) 290 self._values = values 292 # infer freq from values, if available 293 # if not, infer from freq argument, if available File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/sktime/forecasting/base/_fh.py:135, in _check_values(values) 125 # otherwise, raise type error 126 else: 127 valid_types = ( 128 "int", 129 "range", (...) 133 *[f"pd.{index_type.__name__}" for index_type in VALID_INDEX_TYPES], 134 ) --> 135 raise TypeError( 136 f"Invalid `fh`. The type of the passed `fh` values is not supported. " 137 f"Please use one of {valid_types}, but found type {type(values)}, " 138 f"values = {values}" 139 ) 141 # check values does not contain duplicates 142 if len(values) != values.nunique(): ``` I don't understand why it did not accept the fh format even though it's in the correct format "range", maybe the composition is wrong ? my pip list: ``` Package Version ---------------------------------- ------------- absl-py 1.0.0 accelerate 0.31.0 adagio 0.2.6 aequitas 1.0.0 aif360 0.6.1 aiohttp 3.8.5 aiohttp-cors 0.7.0 aiosignal 1.2.0 alembic 1.15.1 altair 5.5.0 antlr4-python3-runtime 4.9.3 anyio 3.5.0 appdirs 1.4.4 argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0 astor 0.8.1 asttokens 2.0.5 astunparse 1.6.3 async-timeout 4.0.2 attrs 22.1.0 audioread 3.0.1 azure-core 1.30.2 azure-cosmos 4.3.1 azure-identity 1.17.1 azure-servicebus 7.14.1 azure-storage-blob 12.19.1 azure-storage-file-datalake 12.14.0 backcall 0.2.0 bcrypt 3.2.0 beautifulsoup4 4.12.2 black 23.3.0 bleach 4.1.0 blinker 1.4 blis 0.7.11 boto3 1.34.39 botocore 1.34.39 Brotli 1.0.9 cachetools 5.4.0 catalogue 2.0.10 category-encoders 2.6.3 certifi 2023.7.22 cffi 1.15.1 chardet 4.0.0 charset-normalizer 2.0.4 chex 0.1.89 circuitbreaker 1.4.0 clarabel 0.10.0 click 8.0.4 cloudpathlib 0.16.0 cloudpickle 2.2.1 cmdstanpy 1.2.2 colorful 0.5.6 colorlog 6.9.0 comm 0.1.2 confection 0.1.4 configparser 5.2.0 contourpy 1.0.5 coreforecast 0.0.15 cramjam 2.9.1 cryptography 41.0.3 cycler 0.11.0 cymem 2.0.8 Cython 0.29.32 dacite 1.8.1 databricks 0.2 databricks-automl-runtime 0.2.21 databricks-feature-engineering 0.6.0 databricks-sdk 0.46.0 dataclasses-json 0.6.7 datasets 2.19.1 dbl-tempo 0.1.26 dbus-python 1.2.18 debugpy 1.6.7 decorator 5.1.1 deepspeed 0.14.4 defusedxml 0.7.1 Deprecated 1.2.14 dill 0.3.6 diskcache 5.6.3 distlib 0.3.8 distro 1.7.0 distro-info 1.1+ubuntu0.2 dm-tree 0.1.8 docker 7.1.0 entrypoints 0.4 etils 1.12.2 evaluate 0.4.2 executing 0.8.3 facets-overview 1.1.1 fairgbm 0.9.14 fairlearn 0.12.0 Farama-Notifications 0.0.4 fastjsonschema 2.20.0 fastparquet 2024.11.0 fasttext 0.9.2 filelock 3.13.4 Flask 2.2.5 flatbuffers 24.3.25 fonttools 4.25.0 frozenlist 1.3.3 fs 2.4.16 fsspec 2023.5.0 fugue 0.9.1 future 0.18.3 gast 0.4.0 gitdb 4.0.11 GitPython 3.1.27 google-api-core 2.18.0 google-auth 2.21.0 google-auth-oauthlib 1.0.0 google-cloud-core 2.4.1 google-cloud-storage 2.10.0 google-crc32c 1.5.0 google-pasta 0.2.0 google-resumable-media 2.7.1 googleapis-common-protos 1.63.0 graphene 3.4.3 graphql-core 3.2.6 graphql-relay 3.2.0 graphviz 0.20.3 greenlet 2.0.1 grpcio 1.60.0 grpcio-status 1.60.0 gunicorn 20.1.0 gviz-api 1.10.0 gymnasium 0.28.1 h11 0.14.0 h5py 3.10.0 hierarchicalforecast 1.1.0 hjson 3.1.0 holidays 0.45 horovod 0.28.1+db1 htmlmin 0.1.12 httpcore 1.0.5 httplib2 0.20.2 httpx 0.27.0 huggingface-hub 0.27.1 hydra-core 1.3.2 hyperparameter-tuning 0.3.2 idna 3.4 ImageHash 4.3.1 imageio 2.31.1 imbalanced-learn 0.11.0 importlib-metadata 6.0.0 importlib_resources 6.4.0 iniconfig 2.0.0 intel-cmplr-lib-rt 2025.0.5 ipyflow-core 0.0.198 ipykernel 6.25.1 ipython 8.15.0 ipython-genutils 0.2.0 ipywidgets 7.7.2 isodate 0.6.1 itsdangerous 2.0.1 jax 0.5.2 jax-jumpy 1.0.0 jaxlib 0.5.1 jedi 0.18.1 jeepney 0.7.1 Jinja2 3.1.2 jmespath 0.10.0 joblib 1.2.0 joblibspark 0.5.1 jsonpatch 1.33 jsonpointer 3.0.0 jsonschema 4.17.3 jupyter_client 7.4.9 jupyter_core 5.3.0 jupyter-server 1.23.4 jupyterlab-pygments 0.1.2 keras 3.2.1 keyring 23.5.0 kiwisolver 1.4.4 langchain 0.1.20 langchain-community 0.0.38 langchain-core 0.1.52 langchain-text-splitters 0.0.2 langcodes 3.4.0 langsmith 0.1.63 language_data 1.2.0 launchpadlib 1.10.16 lazr.restfulclient 0.14.4 lazr.uri 1.0.6 lazy_loader 0.2 libclang 15.0.6.1 librosa 0.10.1 lightgbm 4.6.0 linkify-it-py 2.0.0 llvmlite 0.44.0 lxml 4.9.2 lz4 4.3.2 Mako 1.2.0 marisa-trie 1.1.1 Markdown 3.4.1 markdown-it-py 2.2.0 MarkupSafe 2.1.1 marshmallow 3.21.2 matplotlib 3.10.1 matplotlib-inline 0.1.6 mdit-py-plugins 0.3.0 mdurl 0.1.0 memray 1.13.3 millify 0.1.1 mistune 0.8.4 ml_dtypes 0.5.1 mlflow 2.20.4 mlflow-skinny 2.20.4 more-itertools 8.10.0 mosaicml-streaming 0.7.4 mpmath 1.3.0 msal 1.29.0 msal-extensions 1.2.0 msgpack 1.0.8 multidict 6.0.2 multimethod 1.12 multipledispatch 1.0.0 multiprocess 0.70.14 murmurhash 1.0.10 mypy-extensions 0.4.3 namex 0.0.8 narwhals 1.30.0 nbclassic 0.5.5 nbclient 0.5.13 nbconvert 6.5.4 nbformat 5.7.0 nest-asyncio 1.5.6 networkx 3.1 ninja 1.11.1.1 nltk 3.8.1 nmds 0.2.1 nmeng 0.0.6 notebook 6.5.4 notebook_shim 0.2.2 numba 0.61.0 numpy 1.26.4 numpyro 0.17.0 nvidia-cublas-cu12 12.4.5.8 nvidia-cuda-cupti-cu12 12.4.127 nvidia-cuda-nvrtc-cu12 12.4.127 nvidia-cuda-runtime-cu12 12.4.127 nvidia-cudnn-cu12 9.1.0.70 nvidia-cufft-cu12 11.2.1.3 nvidia-curand-cu12 10.3.5.147 nvidia-cusolver-cu12 11.6.1.9 nvidia-cusparse-cu12 12.3.1.170 nvidia-cusparselt-cu12 0.6.2 nvidia-ml-py 12.555.43 nvidia-nccl-cu12 2.21.5 nvidia-nvjitlink-cu12 12.4.127 nvidia-nvtx-cu12 12.4.127 oauthlib 3.2.0 oci 2.126.4 omegaconf 2.3.0 openai 1.35.3 opencensus 0.11.4 opencensus-context 0.1.3 opentelemetry-api 1.25.0 opentelemetry-sdk 1.25.0 opentelemetry-semantic-conventions 0.46b0 opt-einsum 3.3.0 optax 0.2.4 optree 0.12.1 optuna 4.2.1 orjson 3.10.6 packaging 23.2 pandas 2.2.3 pandocfilters 1.5.0 paramiko 3.4.0 parso 0.8.3 pathspec 0.10.3 patsy 0.5.3 petastorm 0.12.1 pexpect 4.8.0 phik 0.12.4 pickleshare 0.7.5 Pillow 9.4.0 pip 23.2.1 platformdirs 3.10.0 plotly 5.9.0 pluggy 1.5.0 pmdarima 2.0.4 pooch 1.8.1 portalocker 2.10.1 preshed 3.0.9 prometheus-client 0.14.1 prompt-toolkit 3.0.36 prophet 1.1.5 prophetverse 0.5.2 proto-plus 1.24.0 protobuf 4.24.1 psutil 5.9.0 psycopg2 2.9.3 ptyprocess 0.7.0 pure-eval 0.2.2 py-cpuinfo 8.0.0 py-spy 0.3.14 pyarrow 14.0.1 pyarrow-hotfix 0.6 pyasn1 0.4.8 pyasn1-modules 0.2.8 pybind11 2.13.1 pyccolo 0.0.52 pycparser 2.21 pydantic 1.10.21 Pygments 2.15.1 PyGObject 3.42.1 PyJWT 2.3.0 pymssql 2.2.7 PyNaCl 1.5.0 pyodbc 4.0.39 pyOpenSSL 23.2.0 pyparsing 3.0.9 pyrsistent 0.18.0 pytesseract 0.3.10 pytest 8.3.5 python-apt 2.4.0+ubuntu4 python-dateutil 2.8.2 python-editor 1.0.4 python-lsp-jsonrpc 1.1.1 python-snappy 0.6.1 pytz 2022.7 PyWavelets 1.4.1 PyYAML 6.0.2 pyzmq 23.2.0 quadprog 0.1.13 ray 2.37.0 regex 2022.7.9 requests 2.32.3 requests-oauthlib 1.3.1 rich 13.9.4 rsa 4.9 s3transfer 0.10.2 safetensors 0.4.2 schema 0.7.7 scikit-base 0.11.0 scikit-image 0.20.0 scikit-learn 1.3.0 scipy 1.11.1 seaborn 0.13.2 SecretStorage 3.3.1 Send2Trash 1.8.0 sentence-transformers 2.7.0 sentencepiece 0.1.99 setuptools 68.0.0 shap 0.44.0 simplejson 3.17.6 six 1.16.0 skforecast 0.15.0 skpro 2.9.0 sktime 0.36.0 slicer 0.0.7 smart-open 5.2.1 smmap 5.0.0 sniffio 1.2.0 soundfile 0.12.1 soupsieve 2.4 soxr 0.3.7 spacy 3.7.2 spacy-legacy 3.0.12 spacy-loggers 1.0.5 spark-tensorflow-distributor 1.0.0 SQLAlchemy 1.4.39 sqlparse 0.4.2 srsly 2.4.8 ssh-import-id 5.11 stack-data 0.2.0 stanio 0.5.1 statsforecast 2.0.1 statsmodels 0.14.0 sympy 1.13.1 tangled-up-in-unicode 0.2.0 tenacity 8.2.2 tensorboard 2.16.2 tensorboard-data-server 0.7.2 tensorboard_plugin_profile 2.15.1 tensorboardX 2.6.2.2 tensorflow 2.16.1 tensorflow-estimator 2.15.0 tensorflow-io-gcs-filesystem 0.37.1 termcolor 2.4.0 terminado 0.17.1 textual 0.63.3 tf_keras 2.16.0 thinc 8.2.3 threadpoolctl 3.5.0 tifffile 2021.7.2 tiktoken 0.5.2 tinycss2 1.2.1 tokenize-rt 4.2.1 tokenizers 0.19.0 toolz 1.0.0 torch 2.6.0 torcheval 0.0.7 torchvision 0.18.1+cpu tornado 6.3.2 tqdm 4.65.0 traitlets 5.7.1 transformers 4.41.2 triad 0.9.8 triton 3.2.0 typeguard 2.13.3 typer 0.9.4 typing_extensions 4.12.2 typing-inspect 0.9.0 tzdata 2025.1 uc-micro-py 1.0.1 ujson 5.4.0 unattended-upgrades 0.1 urllib3 1.26.16 utilsforecast 0.2.12 validators 0.34.0 virtualenv 20.24.2 visions 0.7.5 wadllib 1.3.6 wasabi 1.1.2 wcwidth 0.2.5 weasel 0.3.4 webencodings 0.5.1 websocket-client 0.58.0 Werkzeug 2.2.3 wheel 0.38.4 wordcloud 1.9.3 wrapt 1.14.1 xgboost 2.0.3 xxhash 3.4.1 yarl 1.8.1 ydata-profiling 4.5.1 zipp 3.11.0 zstd 1.5.5.1 ```
closed
2025-03-13T14:27:16Z
2025-03-14T02:44:33Z
https://github.com/sktime/sktime/issues/7973
[]
AsmaBaccouche
0
errbotio/errbot
automation
1,146
Support Ryver Backend
### I am... * [X] Suggesting a new feature ### I am running... * Errbot version: * OS version: * Python version: * Using a virtual environment: yes/no ### Issue description It would be great if there was support for the chat application [Ryver](https://ryver.com/) for errbot. There is a beta Hubot plugin https://github.com/RyverApp/hubot-ryver and here is some [API documentation](http://ryverdocs.readthedocs.io/en/latest/). Their API is [OData](http://www.odata.org/) bassed
closed
2017-12-22T06:36:58Z
2019-01-05T17:18:06Z
https://github.com/errbotio/errbot/issues/1146
[ "type: feature", "backend: Common" ]
Gelob
3
google/seq2seq
tensorflow
261
`templatemethod` does not work as expected
```python import tensorflow as tf from seq2seq.graph_utils import templatemethod @templatemethod("trial") def trial(x): w = tf.get_variable('w', []) return tf.reduce_sum(x) * w y = tf.placeholder(tf.float32, [None]) z = tf.placeholder(tf.float32, [None]) a_y = trial(y) a_z = trial(z) s = tf.InteractiveSession() tf.global_variables_initializer().run() print(tf.global_variables()) print(a_y.eval(feed_dict={y: [1.1, 1.9]})) print(a_z.eval(feed_dict={z: [1.9, 1.1]})) ``` The above code produces the following output ```shell 2017-06-20 17:17:45.724766: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. 2017-06-20 17:17:45.724804: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CP U computations. 2017-06-20 17:17:45.724812: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up C PU computations. 2017-06-20 17:17:45.724819: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CP U computations. [<tf.Variable 'trial/w:0' shape=() dtype=float32_ref>, <tf.Variable 'trial_1/w:0' shape=() dtype=float32_ref>] -2.49474 4.86785 ``` Clearly, it creates two different variables!
open
2017-06-20T21:30:32Z
2017-08-08T16:42:22Z
https://github.com/google/seq2seq/issues/261
[]
amanjitsk
5
sammchardy/python-binance
api
592
ERROR: Could not find a version that satisfies the requirement Twisted (from python-binance)
Hello! I am not able to install python-binance via pip for python3.8! `python3.8 -m pip install python-binance --upgrade` ERROR: Could not find a version that satisfies the requirement Twisted (from python-binance) (from versions: none) ERROR: No matching distribution found for Twisted (from python-binance) There are a couple of PRs that get not merged... Can we help you Sam? Best regards, Oliver
closed
2020-10-01T10:22:41Z
2022-03-14T14:55:28Z
https://github.com/sammchardy/python-binance/issues/592
[]
oliver-zehentleitner
1
HumanSignal/labelImg
deep-learning
141
My install tip for OSX/Ubuntu
<!-- Please provide as much as detail and example as you can. You can add screenshots if appropriate. --> - OS : Sierra 10.12.6 - PyQt version: 4 - python 2.7 As osx user, it was very tough to install this lableImg tool on OSX, especially install pyqt4 on python 2.7. In my case, I used ``conda`` rather than local env. What I did is below. - create conda env using python 2.7 ``` conda create -n py2 python=2.7 source activate py2 ``` - install necessary libs using ``conda install`` ``` conda install pyqt=4 conda install libxml2 conda install lxml ``` - do as describe on README. ``` make qt4py2 python labelImg.py ``` good luck guys. **add comment about ubuntu This way also works on Ubuntu 16.04 & Python 2.7.
closed
2017-08-09T00:00:01Z
2018-04-16T13:40:40Z
https://github.com/HumanSignal/labelImg/issues/141
[]
Labyrins
13
fbdesignpro/sweetviz
pandas
86
ZeroDivisionError: float division by zero
Hi, I am beginner on Python and i've actually discovering sweetviz. (this packege is wonderfull ! ) But, I trying to compare 2 conditions in my dataset and i have this message in below : ZeroDivisionError: float division by zero Before to use this package i have tranform the non-numerical labels to numerical labels and clean up the NANs. Can you help me ? <img width="1096" alt="Capture dโ€™eฬcran 2021-04-06 aฬ€ 20 14 52" src="https://user-images.githubusercontent.com/75795028/113758953-caa6c800-9714-11eb-90b6-4a654d3d7102.png">
closed
2021-04-06T18:18:38Z
2021-05-27T17:38:15Z
https://github.com/fbdesignpro/sweetviz/issues/86
[ "bug" ]
SJDO01
5
huggingface/diffusers
deep-learning
10,470
Flux - torchao inference not working
### Describe the bug 1. Flux with torchao int8wo not working 2. enable_sequential_cpu_offload not working ![image](https://github.com/user-attachments/assets/fea33615-1d54-4f35-89d7-61917bdcf62c) ### Reproduction example taken from (merged) https://github.com/huggingface/diffusers/pull/10009 ``` import torch from diffusers import FluxPipeline, FluxTransformer2DModel, TorchAoConfig model_id = "black-forest-labs/Flux.1-Dev" dtype = torch.bfloat16 quantization_config = TorchAoConfig("int8wo") transformer = FluxTransformer2DModel.from_pretrained( model_id, subfolder="transformer", quantization_config=quantization_config, torch_dtype=dtype, ) pipe = FluxPipeline.from_pretrained( model_id, transformer=transformer, torch_dtype=dtype, ) # pipe.to("cuda") # pipe.enable_sequential_cpu_offload() pipe.vae.enable_tiling() prompt = "A cat holding a sign that says hello world" image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] image.save("output.png") ``` ### Logs ```shell Stuck at this (without cpu offload) (venv) C:\ai1\diffuser_t2i>python FLUX_torchao.py Fetching 3 files: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 3/3 [00:00<?, ?it/s] Loading pipeline components...: 29%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 2/7 [00:00<00:00, 5.36it/s]You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers Loading checkpoint shards: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 2/2 [00:00<00:00, 6.86it/s] Loading pipeline components...: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 7/7 [00:02<00:00, 2.38it/s] ``` (with cpu offload) ``` (venv) C:\ai1\diffuser_t2i>python FLUX_torchao.py Fetching 3 files: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 3/3 [00:00<?, ?it/s] Loading checkpoint shards: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 2/2 [00:00<00:00, 6.98it/s] Loading pipeline components...: 29%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 2/7 [00:00<00:01, 2.62it/s]You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers Loading pipeline components...: 100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 7/7 [00:01<00:00, 4.31it/s] Traceback (most recent call last): File "C:\ai1\diffuser_t2i\FLUX_torchao.py", line 21, in <module> pipe.enable_sequential_cpu_offload() File "C:\ai1\diffuser_t2i\venv\lib\site-packages\diffusers\pipelines\pipeline_utils.py", line 1179, in enable_sequential_cpu_offload cpu_offload(model, device, offload_buffers=offload_buffers) File "C:\ai1\diffuser_t2i\venv\lib\site-packages\accelerate\big_modeling.py", line 205, in cpu_offload attach_align_device_hook( File "C:\ai1\diffuser_t2i\venv\lib\site-packages\accelerate\hooks.py", line 518, in attach_align_device_hook attach_align_device_hook( File "C:\ai1\diffuser_t2i\venv\lib\site-packages\accelerate\hooks.py", line 518, in attach_align_device_hook attach_align_device_hook( File "C:\ai1\diffuser_t2i\venv\lib\site-packages\accelerate\hooks.py", line 518, in attach_align_device_hook attach_align_device_hook( File "C:\ai1\diffuser_t2i\venv\lib\site-packages\accelerate\hooks.py", line 509, in attach_align_device_hook add_hook_to_module(module, hook, append=True) File "C:\ai1\diffuser_t2i\venv\lib\site-packages\accelerate\hooks.py", line 161, in add_hook_to_module module = hook.init_hook(module) File "C:\ai1\diffuser_t2i\venv\lib\site-packages\accelerate\hooks.py", line 308, in init_hook set_module_tensor_to_device(module, name, "meta") File "C:\ai1\diffuser_t2i\venv\lib\site-packages\accelerate\utils\modeling.py", line 355, in set_module_tensor_to_device new_value.layout_tensor, AttributeError: 'AffineQuantizedTensor' object has no attribute 'layout_tensor' ``` ### System Info Windows 11 ``` (venv) C:\ai1\diffuser_t2i>python --version Python 3.10.11 (venv) C:\ai1\diffuser_t2i>echo %CUDA_PATH% C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6 ``` ``` (venv) C:\ai1\diffuser_t2i>pip list Package Version ------------------ ------------ accelerate 1.2.0.dev0 aiofiles 23.2.1 annotated-types 0.7.0 anyio 4.7.0 bitsandbytes 0.45.0 certifi 2024.12.14 charset-normalizer 3.4.1 click 8.1.8 colorama 0.4.6 diffusers 0.33.0.dev0 einops 0.8.0 exceptiongroup 1.2.2 fastapi 0.115.6 ffmpy 0.5.0 filelock 3.16.1 fsspec 2024.12.0 gguf 0.13.0 gradio 5.9.1 gradio_client 1.5.2 h11 0.14.0 httpcore 1.0.7 httpx 0.28.1 huggingface-hub 0.25.2 idna 3.10 imageio 2.36.1 imageio-ffmpeg 0.5.1 importlib_metadata 8.5.0 Jinja2 3.1.5 markdown-it-py 3.0.0 MarkupSafe 2.1.5 mdurl 0.1.2 mpmath 1.3.0 networkx 3.4.2 ninja 1.11.1.3 numpy 2.2.1 opencv-python 4.10.0.84 orjson 3.10.13 packaging 24.2 pandas 2.2.3 pillow 11.1.0 pip 23.0.1 protobuf 5.29.2 psutil 6.1.1 pydantic 2.10.4 pydantic_core 2.27.2 pydub 0.25.1 Pygments 2.18.0 python-dateutil 2.9.0.post0 python-multipart 0.0.20 pytz 2024.2 PyYAML 6.0.2 regex 2024.11.6 requests 2.32.3 rich 13.9.4 ruff 0.8.6 safehttpx 0.1.6 safetensors 0.5.0 semantic-version 2.10.0 sentencepiece 0.2.0 setuptools 65.5.0 shellingham 1.5.4 six 1.17.0 sniffio 1.3.1 starlette 0.41.3 sympy 1.13.1 tokenizers 0.21.0 tomlkit 0.13.2 torch 2.5.1+cu124 torchao 0.7.0 torchvision 0.20.1+cu124 tqdm 4.67.1 transformers 4.47.1 typer 0.15.1 typing_extensions 4.12.2 tzdata 2024.2 urllib3 2.3.0 uvicorn 0.34.0 websockets 14.1 wheel 0.45.1 zipp 3.21.0 ``` ### Who can help? _No response_
closed
2025-01-06T10:46:06Z
2025-01-18T15:45:23Z
https://github.com/huggingface/diffusers/issues/10470
[ "bug" ]
nitinmukesh
11