repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
Gozargah/Marzban
api
1,086
subscription v2ray-json does not support quic
Hi, this quic inbound works for v2ray format, but does not work for v2ray-json format, i mean subscription cannot update inbound: ``` { "listen": "0.0.0.0", "port": 3636, "protocol": "vless", "settings": { "clients": [], "decryption": "none", "fallbacks": [] }, "sniffing": { "destOverride": [ "tls", "quic", "fakedns" ], "enabled": true, "metadataOnly": false, "routeOnly": false }, "streamSettings": { "network": "quic", "quicSettings": { "header": { "type": "none" }, "key": "key", "security": "none" }, "security": "none" }, "tag": "inbound-3636" }, ``` marzban logs: ![image](https://github.com/Gozargah/Marzban/assets/109550653/1451d8f7-4c9b-4e0c-8e21-00bd8b4889a1) ![image](https://github.com/Gozargah/Marzban/assets/109550653/43893bd4-a675-4c2b-87d9-0da92d9724c8)
closed
2024-07-04T23:32:48Z
2024-08-13T21:35:09Z
https://github.com/Gozargah/Marzban/issues/1086
[ "Bug" ]
m0x61h0x64i
2
mars-project/mars
pandas
2,585
[BUG] TimeoutError: Timeout in request queue
When fetching dataframe to local, when chunks is greater than 200, following errors happen: ![image](https://user-images.githubusercontent.com/12445254/143425623-d828facb-4251-41d1-9019-51c3f1dafe8b.png)
open
2021-11-25T10:35:52Z
2021-11-25T10:35:52Z
https://github.com/mars-project/mars/issues/2585
[]
chaokunyang
0
roboflow/supervision
machine-learning
1,694
Crash when filtering empty detections: xyxy shape (0, 0, 4).
Reproduction code: ```python import supervision as sv import numpy as np CLASSES = [0, 1, 2] prediction = sv.Detections.empty() prediction = prediction[np.isin(prediction["class_name"], CLASSES)] ``` Error: ``` Traceback (most recent call last): File "/Users/linasko/.settler_workspace/pr/supervision-fresh/run_detections.py", line 7, in <module> prediction = prediction[np.isin(prediction["class_name"], CLASSES)] File "/Users/linasko/.settler_workspace/pr/supervision-fresh/supervision/detection/core.py", line 1206, in __getitem__ return Detections( File "<string>", line 10, in __init__ File "/Users/linasko/.settler_workspace/pr/supervision-fresh/supervision/detection/core.py", line 144, in __post_init__ validate_detections_fields( File "/Users/linasko/.settler_workspace/pr/supervision-fresh/supervision/validators/__init__.py", line 120, in validate_detections_fields validate_xyxy(xyxy) File "/Users/linasko/.settler_workspace/pr/supervision-fresh/supervision/validators/__init__.py", line 11, in validate_xyxy raise ValueError( ValueError: xyxy must be a 2D np.ndarray with shape (_, 4), but got shape (0, 0, 4) ```
closed
2024-11-28T11:31:18Z
2024-12-04T10:15:33Z
https://github.com/roboflow/supervision/issues/1694
[ "bug" ]
LinasKo
0
flasgger/flasgger
rest-api
146
OpenAPI 3.0
https://www.youtube.com/watch?v=wBDSR0x3GZo
open
2017-08-10T17:42:13Z
2020-07-16T10:23:14Z
https://github.com/flasgger/flasgger/issues/146
[ "hacktoberfest" ]
rochacbruno
10
piskvorky/gensim
machine-learning
3,536
scipy probably not needed in [build-system.requires] table
<!-- **IMPORTANT**: - Use the [Gensim mailing list](https://groups.google.com/g/gensim) to ask general or usage questions. Github issues are only for bug reports. - Check [Recipes&FAQ](https://github.com/RaRe-Technologies/gensim/wiki/Recipes-&-FAQ) first for common answers. Github bug reports that do not include relevant information and context will be closed without an answer. Thanks! --> #### Problem description I believe that specifying `scipy` as a build-only dependency is unnecessary. Pip builds the library in isolated environment (by default) where it first downloads (and alternatively builds) build-only dependencies. This behaviour creates additional problems for architectures for which there are not many _.whl_ distributions, like e.g. **ppc64le**. #### Steps/code/corpus to reproduce 1) create an environment where there is already an older `scipy` library version installed 2) ```sh cd gensim/ pip install . ``` 3) As there is no `gensim` _.whl_ distribution for **ppc64le**, pip will try building `gensim` in a new isolated environment with build-only dependencies. As there is no `scipy` _.whl_ distribution for ppc64le either, pip will try building that as well. Despite the fact that `scipy` is already installed in desired version within the target environment. Not only there will be a `scipy` version mismatch (pip will be building the latest version in the isolated environment) but it will also: * significantly prolong the install phase, as `scipy` takes relatively long to build from source, * create additional dependencies mess, as `scipy` build requires multiple other dependencies and system-level libraries #### Desired resolution I've tested locally installing gensim with modified `pyproject.toml` file (deleted `scipy`) and it works as expected. Is there any other logic that does not allow deleting `scipy` as a build-only dependency? #### Versions `gensim>4.3.*`
closed
2024-06-06T13:42:33Z
2024-07-18T12:03:09Z
https://github.com/piskvorky/gensim/issues/3536
[ "awaiting reply" ]
filip-komarzyniec
2
albumentations-team/albumentations
deep-learning
2,097
[Add transform] Add RandomJPEG
Add RandomJPEG which is a child of ImageCompression and has the same API as Kornia's https://kornia.readthedocs.io/en/latest/augmentation.module.html#kornia.augmentation.RandomJPEG
closed
2024-11-08T15:50:40Z
2024-11-09T00:58:42Z
https://github.com/albumentations-team/albumentations/issues/2097
[ "enhancement" ]
ternaus
0
gyli/PyWaffle
data-visualization
2
width problems with a thousand blocks
When plotting a larger number of blocks, the width of the white space between them become unstable: ``` plt.figure( FigureClass=Waffle, rows=20, columns=80, values=[300, 700], figsize=(18, 10) ); plt.savefig('example.png') ``` ![image](https://user-images.githubusercontent.com/11890487/33184016-b6279972-d061-11e7-8817-79cfee1e9934.png) This is probably outside the original scope of the package and maybe should even be discouraged, but sometimes is useful to give the reader the impression of dealing with a large population. Feel free to close this issue.
open
2017-11-23T17:27:12Z
2019-10-06T22:29:14Z
https://github.com/gyli/PyWaffle/issues/2
[]
lincolnfrias
2
pyjanitor-devs/pyjanitor
pandas
1,200
[BUG] `deprecated_kwargs` (list[str]) in v0.24 raises type object not subscriptable error
# Brief Description The addition of deprecated_kwargs in version 0.23 causes a type object not subscriptable error. # System Information I'm using Python 3.8.12 on a sagemaker instance. I'm pretty sure this is the issue, that my company has us locked at 3.8.12 right now. Selecting the v.0.23 does solve the problem. I'm sorry if this isn't enough information at the moment, let me know if you need anything else. # Error ``` TypeError Traceback (most recent call last) /tmp/ipykernel_18038/2902872131.py in <cell line: 1>() ----> 1 import janitor ~/anaconda3/envs/python3/lib/python3.8/site-packages/janitor/__init__.py in <module> 7 8 from .accessors import * # noqa: F403, F401 ----> 9 from .functions import * # noqa: F403, F401 10 from .io import * # noqa: F403, F401 11 from .math import * # noqa: F403, F401 ~/anaconda3/envs/python3/lib/python3.8/site-packages/janitor/functions/__init__.py in <module> 17 18 ---> 19 from .add_columns import add_columns 20 from .also import also 21 from .bin_numeric import bin_numeric ~/anaconda3/envs/python3/lib/python3.8/site-packages/janitor/functions/add_columns.py in <module> 1 import pandas_flavor as pf 2 ----> 3 from janitor.utils import check, deprecated_alias 4 import pandas as pd 5 from typing import Union, List, Any, Tuple ~/anaconda3/envs/python3/lib/python3.8/site-packages/janitor/utils.py in <module> 214 215 def deprecated_kwargs( --> 216 *arguments: list[str], 217 message: str = ( 218 "The keyword argument '{argument}' of '{func_name}' is deprecated." TypeError: 'type' object is not subscriptable ```
closed
2022-11-14T16:11:14Z
2022-11-21T06:04:41Z
https://github.com/pyjanitor-devs/pyjanitor/issues/1200
[ "bug" ]
zykezero
11
modelscope/modelscope
nlp
1,122
from modelscope.msdatasets import MsDataset 报错
(Pdb) from modelscope.msdatasets import MsDataset *** ModuleNotFoundError: No module named 'datasets.download' (Pdb) import modelscope (Pdb) modelscope.__version__ '1.17.0' (Pdb) datasets.__version__ '2.0.0' Python 3.10.15,ubuntu 22.04 系统 当前modescope 需要使用哪个版本的datasets ?
closed
2024-12-04T10:15:02Z
2024-12-19T12:13:28Z
https://github.com/modelscope/modelscope/issues/1122
[]
robator0127
1
microsoft/UFO
automation
190
Batch Mode and Follower Mode get "No module named 'ufo.config'; 'ufo' is not a package" exception
When trying the steps with [Batch Mode](https://microsoft.github.io/UFO/advanced_usage/batch_mode/) and [Follower Mode](https://microsoft.github.io/UFO/advanced_usage/follower_mode/) based on the document, it will throw "ModuleNotFoundError: No module named 'ufo.config'; 'ufo' is not a package" exception which result to the command cannot be executed. **Here is the repro steps:** Assume the Plan file is prepared based on the document. 1. Open Command Prompt Window and navigate to the cloned UFO folder. 2. Run "python ufo\ufo.py --task_name testbatchmode --mode batch_normal --plan "parentpath\planfilename.json"". **Expected Result:** Command will be run without errors. **Actually Result:** Failed with below error: ``` Traceback (most recent call last): File "E:\Repos\UFO\ufo\ufo.py", line 7, in <module> from ufo.config.config import Config File "E:\Repos\UFO\ufo\ufo.py", line 7, in <module> from ufo.config.config import Config ModuleNotFoundError: No module named 'ufo.config'; 'ufo' is not a package ``` **What we have did:** We tried use pip install command to install ufo or ufo.config, but both them are could not be found: ![Image](https://github.com/user-attachments/assets/2f1792ab-ffe7-4139-9221-411d0b944c8d) We also tried with the newest vyokky/dev branch, but the error still exists.
open
2025-03-19T06:33:06Z
2025-03-19T08:28:24Z
https://github.com/microsoft/UFO/issues/190
[]
WeiweiCaiAcpt
2
automl/auto-sklearn
scikit-learn
1,573
Add pylint linter
After we have removed all mypy ignores.
open
2022-08-22T11:23:17Z
2022-08-24T04:04:50Z
https://github.com/automl/auto-sklearn/issues/1573
[ "maintenance" ]
mfeurer
0
RobertCraigie/prisma-client-py
pydantic
106
Experimental support for the Decimal type
## Why is this experimental? Currently Prisma Client Python does not have access to the field metadata containing the precision of `Decimal` fields at the database level. This means that we cannot: - Raise an error if you attempt to pass a `Decimal` value with a greater precision than the database supports, leading to implicit truncation which may cause confusing errors - Set the precision level on the returned `decimal.Decimal` objects to match the database level, potentially leading to even more confusing errors. To try and mitigate the effects of these errors you must be explicit that you understand that the support for the `Decimal` type is not up to the standard of the other types. You do this by setting the `enable_experimental_decimal` config flag, e.g. ```prisma generator py { provider = "prisma-client-py" enable_experimental_decimal = true } ```
closed
2021-11-07T23:58:44Z
2022-03-24T22:03:06Z
https://github.com/RobertCraigie/prisma-client-py/issues/106
[ "topic: types", "kind/feature", "level/advanced", "priority/medium" ]
RobertCraigie
12
graphdeco-inria/gaussian-splatting
computer-vision
986
Error when installing the SIBR viewer on Ubuntu 22.04
Hi! I had this error when I ran the installation command `cmake -Bbuild . -DCMAKE_BUILD_TYPE=Release` > There is no provided OpenCV library for your compiler, relying on find_package to find it -- Found OpenCV: /usr (found suitable version "4.5.4", minimum required is "4.5") -- Populating library imgui... -- Populating library nativefiledialog... -- Checking for module 'gtk+-3.0' -- Package 'Lerc', required by 'libtiff-4', not found CMake Error at /usr/share/cmake-3.22/Modules/FindPkgConfig.cmake:603 (message): A required package was not found Call Stack (most recent call first): /usr/share/cmake-3.22/Modules/FindPkgConfig.cmake:825 (_pkg_check_modules_internal) extlibs/nativefiledialog/nativefiledialog/CMakeLists.txt:20 (pkg_check_modules) -- Configuring incomplete, errors occurred! See also "/home/yiduo/projects/code/gs/SIBR_viewers/build/CMakeFiles/CMakeOutput.log". System: Ubuntu 22.04.5 LTS Cmake version: 3.22.1 ![Screenshot from 2024-09-12 20-01-10](https://github.com/user-attachments/assets/d39bb96c-eb5c-446b-a2c8-a839ae124b3d) It seems like this is not necessarily related to the codebase here. But does anyone have any idea how to solve this? Thanks a lot!
open
2024-09-13T00:09:47Z
2024-09-13T00:09:47Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/986
[]
yiduohao
0
koxudaxi/datamodel-code-generator
fastapi
1,982
AttributeError: 'FieldInfo' object has no attribute '<EnumName>'
**Describe the bug** Generating from a schema with an Enum type causes `AttributeError: 'FieldInfo' object has no attribute '<EnumName>'` **To Reproduce** File structure after codegen should look like: ``` schemas/ ├─ bean.json ├─ bean_type.json src/ ├─ __init__.py ├─ bean.py ├─ bean_type.py main.py ``` With the schemas defined as follows: `schemas/bean.json` ```json { "$schema": "https://json-schema.org/draft/2020-12/schema", "$id": "bean.json", "type": "object", "title": "Bean", "properties": { "beanType": { "$ref": "bean_type.json" }, "name": { "type": "string" } }, "additionalProperties": false, "required": ["beanType", "name"] } ``` `schemas/bean_type.json` ```json { "$schema": "https://json-schema.org/draft/2020-12/schema", "$id": "bean_type.json", "title": "BeanType", "additionalProperties": false, "enum": ["STRING_BEAN", "RUNNER_BEAN", "GREEN_BEAN", "BAKED_BEAN"] } ``` and `main.py` ```py from src.bean import Bean if __name__ == "__main__": pass ``` **Used commandline** ``` $ datamodel-codegen \ --use-title-as-name \ --use-standard-collections \ --snake-case-field \ --target-python-version 3.12 \ --input schemas \ --input-file-type jsonschema \ --output src ``` **Expected behavior** Exactly what happened, except we should then be able to import and use the generated classes. Instead, an AttributeError is raised. **Version:** - OS: MacOS 14.3.1 (23D60) - Python version: 3.12.3 - Pydantic version: 2.7.2 - datamodel-code-generator version: 0.25.6 **Additional context** In the generated file `src/bean.py`, if we manually change `from . import bean_type` to `from .bean_type import BeanType`, and the corresponding usage in the `Bean` class definition, the error disappears. Might be related to #1683 / #1684
closed
2024-06-02T15:01:30Z
2024-06-18T05:14:07Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1982
[]
alpoi-x
0
tensorflow/tensor2tensor
machine-learning
1,523
The evolved transformer code is the final graph or the whole procedure to find the best graph?
I'm new to neural architecture search. Thank you.
open
2019-03-25T02:27:41Z
2020-11-12T15:56:57Z
https://github.com/tensorflow/tensor2tensor/issues/1523
[]
guotong1988
6
ghtmtt/DataPlotly
plotly
257
Display every record as a line in a scatter plot
Hi, **Short Feature Explanation** I am wondering if it would be possible to create a scatter plot that displays a line per record instead of a point per record. This would be done by selecting two columns storing arrays of values for the x and y fields. For example, with a table: Temp(xs int[], ys[]), selecting the xs and ys columns for the x and y fields respectively would create a scatterplot with as many lines as records in table A, and as many points per line as values in the xs and ys arrays. (Of course, xs and ys should have the same amount of elements each) **Context** To explain my problem, I am a developer of [MobilityDB](https://github.com/MobilityDB/MobilityDB), and I am trying to display temporal properties in QGIS using DataPlotly. An example of a table that we want to display would be: Ports(name text, port geometry(Polygon), shipsInside tint) Every record thus represents a port and has an attribute storing the number of ships inside this port over time. The ports are represented as polygons on the map, and I would thus like to represent the 'shipsInside' attribute as a line on a scatter plot. For simplicity, let's assume that this temporal attribute is stored in two columns: one containing an array of timestamps, and one containing an array of values: (this can be done in practice as well) Ports(name text, port geometry, ts timestamptz[], vals int[]) **Current Workaround** Currently, I can display a single record of the original table by creating a new table for it: Ports_temp(name text, port geometry, t timestamptz, val int) This table contains a record for each pair of (t, val) in the arrays of the original record. Using this table, I can then create a scatterplot using t and val as the x and y fields respectively. Of course, this solution is not ideal, since this demands a new table for each record of the original Ports table. **Conclusion** I am thus wondering how hard it would be to allow scatterplots to display such records with temporal attributes as lines on a scatterplot. Ideally, this should be done either by selecting two columns that store arrays of values or selecting a single temporal column (tint, float or tbool). Best Regards, Maxime Schoemans
open
2021-03-15T17:03:19Z
2021-03-24T12:58:10Z
https://github.com/ghtmtt/DataPlotly/issues/257
[ "enhancement" ]
mschoema
6
apache/airflow
python
47,970
"consuming_dags" and "producing_tasks" do not correct account for Asset.ref
### Body They are direct SQLAlchemy relationships to only concrete references (DagAssetScheduleReference and TaskOutletAssetReference). Not quite sure how to fix this. Maybe they should be plain properties that return list-of-union instead? We don’t really need those relationships…. ### Committer - [x] I acknowledge that I am a maintainer/committer of the Apache Airflow project.
open
2025-03-19T18:23:11Z
2025-03-19T18:29:31Z
https://github.com/apache/airflow/issues/47970
[ "kind:bug", "area:datasets" ]
uranusjr
1
coqui-ai/TTS
deep-learning
3,177
[Bug] Loading XTTS via Xtts.load_checkpoint()
### Describe the bug When loading the model using `Xtts.load_checkpoint`, exception is raised as `Error(s) in loading state_dict for Xtts`, which leads to missing keys GPT embedding weights and size mismatch on Mel embedding. Even tried providing the directory which had base(v2) model checkpoints and got the same result. ### To Reproduce ``` import os import torch import torchaudio from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts print("Loading model...") config = XttsConfig() config.load_json("/path/to/xtts/config.json") model = Xtts.init_from_config(config) model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", use_deepspeed=True) model.cuda() print("Computing speaker latents...") gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=["reference.wav"]) print("Inference...") out = model.inference( "It took me quite a long time to develop a voice and now that I have it I am not going to be silent.", "en", gpt_cond_latent, speaker_embedding, temperature=0.7, # Add custom parameters here ) torchaudio.save("xtts.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000) ``` ### Expected behavior Load the checkpoint and run inference without exception. ### Logs ```shell 11-08 22:13:53 [__main__ ] ERROR - Error(s) in loading state_dict for Xtts: Missing key(s) in state_dict: "gpt.gpt.wte.weight", "gpt.prompt_embedding.weight", "gpt.prompt_pos_embedding.emb.weight", "gpt.gpt_inference.transformer.h.0.ln_1.weight", "gpt.gpt_inference.transformer.h.0.ln_1.bias", "gpt.gpt_inference.transformer.h.0.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.0.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.0.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.0.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.0.ln_2.weight", "gpt.gpt_inference.transformer.h.0.ln_2.bias", "gpt.gpt_inference.transformer.h.0.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.0.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.0.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.0.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.1.ln_1.weight", "gpt.gpt_inference.transformer.h.1.ln_1.bias", "gpt.gpt_inference.transformer.h.1.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.1.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.1.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.1.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.1.ln_2.weight", "gpt.gpt_inference.transformer.h.1.ln_2.bias", "gpt.gpt_inference.transformer.h.1.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.1.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.1.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.1.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.2.ln_1.weight", "gpt.gpt_inference.transformer.h.2.ln_1.bias", "gpt.gpt_inference.transformer.h.2.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.2.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.2.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.2.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.2.ln_2.weight", "gpt.gpt_inference.transformer.h.2.ln_2.bias", "gpt.gpt_inference.transformer.h.2.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.2.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.2.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.2.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.3.ln_1.weight", "gpt.gpt_inference.transformer.h.3.ln_1.bias", "gpt.gpt_inference.transformer.h.3.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.3.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.3.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.3.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.3.ln_2.weight", "gpt.gpt_inference.transformer.h.3.ln_2.bias", "gpt.gpt_inference.transformer.h.3.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.3.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.3.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.3.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.4.ln_1.weight", "gpt.gpt_inference.transformer.h.4.ln_1.bias", "gpt.gpt_inference.transformer.h.4.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.4.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.4.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.4.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.4.ln_2.weight", "gpt.gpt_inference.transformer.h.4.ln_2.bias", "gpt.gpt_inference.transformer.h.4.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.4.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.4.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.4.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.5.ln_1.weight", "gpt.gpt_inference.transformer.h.5.ln_1.bias", "gpt.gpt_inference.transformer.h.5.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.5.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.5.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.5.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.5.ln_2.weight", "gpt.gpt_inference.transformer.h.5.ln_2.bias", "gpt.gpt_inference.transformer.h.5.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.5.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.5.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.5.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.6.ln_1.weight", "gpt.gpt_inference.transformer.h.6.ln_1.bias", "gpt.gpt_inference.transformer.h.6.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.6.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.6.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.6.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.6.ln_2.weight", "gpt.gpt_inference.transformer.h.6.ln_2.bias", "gpt.gpt_inference.transformer.h.6.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.6.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.6.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.6.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.7.ln_1.weight", "gpt.gpt_inference.transformer.h.7.ln_1.bias", "gpt.gpt_inference.transformer.h.7.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.7.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.7.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.7.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.7.ln_2.weight", "gpt.gpt_inference.transformer.h.7.ln_2.bias", "gpt.gpt_inference.transformer.h.7.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.7.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.7.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.7.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.8.ln_1.weight", "gpt.gpt_inference.transformer.h.8.ln_1.bias", "gpt.gpt_inference.transformer.h.8.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.8.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.8.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.8.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.8.ln_2.weight", "gpt.gpt_inference.transformer.h.8.ln_2.bias", "gpt.gpt_inference.transformer.h.8.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.8.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.8.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.8.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.9.ln_1.weight", "gpt.gpt_inference.transformer.h.9.ln_1.bias", "gpt.gpt_inference.transformer.h.9.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.9.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.9.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.9.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.9.ln_2.weight", "gpt.gpt_inference.transformer.h.9.ln_2.bias", "gpt.gpt_inference.transformer.h.9.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.9.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.9.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.9.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.10.ln_1.weight", "gpt.gpt_inference.transformer.h.10.ln_1.bias", "gpt.gpt_inference.transformer.h.10.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.10.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.10.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.10.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.10.ln_2.weight", "gpt.gpt_inference.transformer.h.10.ln_2.bias", "gpt.gpt_inference.transformer.h.10.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.10.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.10.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.10.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.11.ln_1.weight", "gpt.gpt_inference.transformer.h.11.ln_1.bias", "gpt.gpt_inference.transformer.h.11.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.11.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.11.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.11.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.11.ln_2.weight", "gpt.gpt_inference.transformer.h.11.ln_2.bias", "gpt.gpt_inference.transformer.h.11.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.11.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.11.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.11.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.12.ln_1.weight", "gpt.gpt_inference.transformer.h.12.ln_1.bias", "gpt.gpt_inference.transformer.h.12.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.12.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.12.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.12.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.12.ln_2.weight", "gpt.gpt_inference.transformer.h.12.ln_2.bias", "gpt.gpt_inference.transformer.h.12.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.12.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.12.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.12.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.13.ln_1.weight", "gpt.gpt_inference.transformer.h.13.ln_1.bias", "gpt.gpt_inference.transformer.h.13.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.13.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.13.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.13.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.13.ln_2.weight", "gpt.gpt_inference.transformer.h.13.ln_2.bias", "gpt.gpt_inference.transformer.h.13.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.13.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.13.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.13.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.14.ln_1.weight", "gpt.gpt_inference.transformer.h.14.ln_1.bias", "gpt.gpt_inference.transformer.h.14.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.14.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.14.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.14.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.14.ln_2.weight", "gpt.gpt_inference.transformer.h.14.ln_2.bias", "gpt.gpt_inference.transformer.h.14.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.14.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.14.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.14.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.15.ln_1.weight", "gpt.gpt_inference.transformer.h.15.ln_1.bias", "gpt.gpt_inference.transformer.h.15.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.15.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.15.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.15.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.15.ln_2.weight", "gpt.gpt_inference.transformer.h.15.ln_2.bias", "gpt.gpt_inference.transformer.h.15.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.15.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.15.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.15.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.16.ln_1.weight", "gpt.gpt_inference.transformer.h.16.ln_1.bias", "gpt.gpt_inference.transformer.h.16.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.16.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.16.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.16.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.16.ln_2.weight", "gpt.gpt_inference.transformer.h.16.ln_2.bias", "gpt.gpt_inference.transformer.h.16.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.16.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.16.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.16.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.17.ln_1.weight", "gpt.gpt_inference.transformer.h.17.ln_1.bias", "gpt.gpt_inference.transformer.h.17.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.17.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.17.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.17.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.17.ln_2.weight", "gpt.gpt_inference.transformer.h.17.ln_2.bias", "gpt.gpt_inference.transformer.h.17.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.17.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.17.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.17.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.18.ln_1.weight", "gpt.gpt_inference.transformer.h.18.ln_1.bias", "gpt.gpt_inference.transformer.h.18.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.18.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.18.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.18.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.18.ln_2.weight", "gpt.gpt_inference.transformer.h.18.ln_2.bias", "gpt.gpt_inference.transformer.h.18.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.18.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.18.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.18.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.19.ln_1.weight", "gpt.gpt_inference.transformer.h.19.ln_1.bias", "gpt.gpt_inference.transformer.h.19.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.19.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.19.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.19.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.19.ln_2.weight", "gpt.gpt_inference.transformer.h.19.ln_2.bias", "gpt.gpt_inference.transformer.h.19.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.19.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.19.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.19.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.20.ln_1.weight", "gpt.gpt_inference.transformer.h.20.ln_1.bias", "gpt.gpt_inference.transformer.h.20.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.20.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.20.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.20.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.20.ln_2.weight", "gpt.gpt_inference.transformer.h.20.ln_2.bias", "gpt.gpt_inference.transformer.h.20.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.20.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.20.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.20.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.21.ln_1.weight", "gpt.gpt_inference.transformer.h.21.ln_1.bias", "gpt.gpt_inference.transformer.h.21.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.21.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.21.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.21.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.21.ln_2.weight", "gpt.gpt_inference.transformer.h.21.ln_2.bias", "gpt.gpt_inference.transformer.h.21.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.21.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.21.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.21.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.22.ln_1.weight", "gpt.gpt_inference.transformer.h.22.ln_1.bias", "gpt.gpt_inference.transformer.h.22.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.22.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.22.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.22.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.22.ln_2.weight", "gpt.gpt_inference.transformer.h.22.ln_2.bias", "gpt.gpt_inference.transformer.h.22.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.22.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.22.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.22.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.23.ln_1.weight", "gpt.gpt_inference.transformer.h.23.ln_1.bias", "gpt.gpt_inference.transformer.h.23.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.23.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.23.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.23.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.23.ln_2.weight", "gpt.gpt_inference.transformer.h.23.ln_2.bias", "gpt.gpt_inference.transformer.h.23.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.23.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.23.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.23.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.24.ln_1.weight", "gpt.gpt_inference.transformer.h.24.ln_1.bias", "gpt.gpt_inference.transformer.h.24.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.24.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.24.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.24.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.24.ln_2.weight", "gpt.gpt_inference.transformer.h.24.ln_2.bias", "gpt.gpt_inference.transformer.h.24.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.24.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.24.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.24.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.25.ln_1.weight", "gpt.gpt_inference.transformer.h.25.ln_1.bias", "gpt.gpt_inference.transformer.h.25.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.25.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.25.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.25.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.25.ln_2.weight", "gpt.gpt_inference.transformer.h.25.ln_2.bias", "gpt.gpt_inference.transformer.h.25.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.25.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.25.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.25.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.26.ln_1.weight", "gpt.gpt_inference.transformer.h.26.ln_1.bias", "gpt.gpt_inference.transformer.h.26.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.26.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.26.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.26.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.26.ln_2.weight", "gpt.gpt_inference.transformer.h.26.ln_2.bias", "gpt.gpt_inference.transformer.h.26.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.26.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.26.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.26.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.27.ln_1.weight", "gpt.gpt_inference.transformer.h.27.ln_1.bias", "gpt.gpt_inference.transformer.h.27.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.27.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.27.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.27.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.27.ln_2.weight", "gpt.gpt_inference.transformer.h.27.ln_2.bias", "gpt.gpt_inference.transformer.h.27.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.27.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.27.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.27.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.28.ln_1.weight", "gpt.gpt_inference.transformer.h.28.ln_1.bias", "gpt.gpt_inference.transformer.h.28.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.28.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.28.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.28.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.28.ln_2.weight", "gpt.gpt_inference.transformer.h.28.ln_2.bias", "gpt.gpt_inference.transformer.h.28.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.28.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.28.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.28.mlp.c_proj.bias", "gpt.gpt_inference.transformer.h.29.ln_1.weight", "gpt.gpt_inference.transformer.h.29.ln_1.bias", "gpt.gpt_inference.transformer.h.29.attn.c_attn.weight", "gpt.gpt_inference.transformer.h.29.attn.c_attn.bias", "gpt.gpt_inference.transformer.h.29.attn.c_proj.weight", "gpt.gpt_inference.transformer.h.29.attn.c_proj.bias", "gpt.gpt_inference.transformer.h.29.ln_2.weight", "gpt.gpt_inference.transformer.h.29.ln_2.bias", "gpt.gpt_inference.transformer.h.29.mlp.c_fc.weight", "gpt.gpt_inference.transformer.h.29.mlp.c_fc.bias", "gpt.gpt_inference.transformer.h.29.mlp.c_proj.weight", "gpt.gpt_inference.transformer.h.29.mlp.c_proj.bias", "gpt.gpt_inference.transformer.ln_f.weight", "gpt.gpt_inference.transformer.ln_f.bias", "gpt.gpt_inference.transformer.wte.weight", "gpt.gpt_inference.pos_embedding.emb.weight", "gpt.gpt_inference.embeddings.weight", "gpt.gpt_inference.final_norm.weight", "gpt.gpt_inference.final_norm.bias", "gpt.gpt_inference.lm_head.0.weight", "gpt.gpt_inference.lm_head.0.bias", "gpt.gpt_inference.lm_head.1.weight", "gpt.gpt_inference.lm_head.1.bias". Unexpected key(s) in state_dict: "gpt.conditioning_perceiver.latents", "gpt.conditioning_perceiver.layers.0.0.to_q.weight", "gpt.conditioning_perceiver.layers.0.0.to_kv.weight", "gpt.conditioning_perceiver.layers.0.0.to_out.weight", "gpt.conditioning_perceiver.layers.0.1.0.weight", "gpt.conditioning_perceiver.layers.0.1.0.bias", "gpt.conditioning_perceiver.layers.0.1.2.weight", "gpt.conditioning_perceiver.layers.0.1.2.bias", "gpt.conditioning_perceiver.layers.1.0.to_q.weight", "gpt.conditioning_perceiver.layers.1.0.to_kv.weight", "gpt.conditioning_perceiver.layers.1.0.to_out.weight", "gpt.conditioning_perceiver.layers.1.1.0.weight", "gpt.conditioning_perceiver.layers.1.1.0.bias", "gpt.conditioning_perceiver.layers.1.1.2.weight", "gpt.conditioning_perceiver.layers.1.1.2.bias", "gpt.conditioning_perceiver.norm.gamma". size mismatch for gpt.mel_embedding.weight: copying a param with shape torch.Size([1026, 1024]) from checkpoint, the shape in current model is torch.Size([8194, 1024]). size mismatch for gpt.mel_head.weight: copying a param with shape torch.Size([1026, 1024]) from checkpoint, the shape in current model is torch.Size([8194, 1024]). size mismatch for gpt.mel_head.bias: copying a param with shape torch.Size([1026]) from checkpoint, the shape in current model is torch.Size([8194]). ``` ### Environment ```shell { "CUDA": { "GPU": ["NVIDIA A100-SXM4-80GB"], "available": true, "version": "11.8" }, "Packages": { "PyTorch_debug": false, "PyTorch_version": "2.1.0+cu118", "TTS": "0.20.1", "numpy": "1.22.0" }, "System": { "OS": "Linux", "architecture": [ "64bit", "ELF" ], "processor": "x86_64", "python": "3.9.18", "version": "#183-Ubuntu SMP Mon Oct 2 11:28:33 UTC 2023" } } ``` ### Additional context _No response_
closed
2023-11-09T03:28:30Z
2024-06-25T12:46:25Z
https://github.com/coqui-ai/TTS/issues/3177
[ "bug" ]
caffeinetoomuch
12
ultralytics/yolov5
pytorch
13,243
Exporting trained yolov5 model (trained on custom dataset) to 'saved model' format changes the no. of classes and the name of classes to default coco128 values
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report. ### YOLOv5 Component Export ### Bug I trained yolov5s model to detect various logos (amazon, ups, fedex etc). The model detects the logos well. The command used for training is: ```python train.py --weights yolov5s.pt --epoch 100 --data C:\projects\logo_detector\yolov5\datasetv3\data.yaml``` The command used for detecting logos is: ```python detect.py --weights best.pt --source 0``` Screenshot of trained yolov5s model detecting the logos: ![yolov5s model](https://github.com/user-attachments/assets/80179804-737c-4a5b-91c9-37971f6121c8) When I use export.py to convert the above model to saved model format, the model starts giving wrong output. The command used for exporting the model is: ```python export.py --weights best.pt --data C:\projects\logo_detector\yolov5\datasetv3\data.yaml --include saved_model``` The command used for detection of logos using this saved model is: ```python detect.py --weights best_saved_model --source 0``` Screenshot of yolov5s saved model giving wrong output is: ![yolov5s saved model](https://github.com/user-attachments/assets/fc8af90d-e4ac-41af-86c8-6cb07d5101eb) As far as I can understand, the model starts giving output according to the default coco128.yaml file. But I have not specified this file in my commands, so I cannot understand the reason behind this behaviour. Please let me know how to get correct output. ### Environment - I have used the default git repository for yolov5 - OS: Windows 10 Pro - Python: 3.12.3 ### Minimal Reproducible Example _No response_ ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
open
2024-08-05T07:38:31Z
2024-10-27T13:30:48Z
https://github.com/ultralytics/yolov5/issues/13243
[ "bug" ]
ssingh17j
2
Lightning-AI/pytorch-lightning
deep-learning
19,978
Running `test` with LightningCLI, the program can quit before the test loop ends
### Bug description Within my `LightningModule`, I used `self.log_dict(metrics, on_step=True, on_epoch=True)` in `test_step`, and run with `python main.py test --config config.yaml`, with `main.py` containing only `cli = LightningCLI()`, and `config.yaml` providing both the datasets and model. The `TensorBoardLogger` is used. However, after the programs ends, sometimes I can normally get the metrics `epoch`, `test_accuracy_epoch` and `test_loss_epoch` in the logger file, but at most attempts these 3 metrics didn't show up, and step-level logged objects can always be seen normally. When the problems occurs, nothing abnormal can be seen from command line outputs. It looks as if the program quited normally. I find a walkaround to be sleeping for a while in `main.py` right after `cli = LightningCLI()`. It seems like this is because a child thread is not waited to the end. ### What version are you seeing the problem on? v2.2 ### How to reproduce the bug main.py ```python from lightning.pytorch.cli import LightningCLI from lightning.pytorch.loggers import TensorBoardLogger from lightning.pytorch.callbacks import ModelCheckpoint from model import Model from datamodule import DataModule def cli_main(): cli = LightningCLI() if __name__ == "__main__": cli_main() from time import sleep sleep(2) # The problem can be solved by adding sleep. ``` config.yaml ```yaml # lightning.pytorch==2.2.5 ckpt_path: null seed_everything: 0 model: class_path: model.Model init_args: learning_rate: 1e-3 data: class_path: datamodule.DataModule init_args: data_dir: data trainer: accelerator: gpu strategy: auto devices: 1 num_nodes: 1 precision: null fast_dev_run: false max_epochs: 100 min_epochs: null max_steps: -1 min_steps: null max_time: null limit_train_batches: null limit_val_batches: 10 limit_test_batches: null limit_predict_batches: null logger: class_path: lightning.pytorch.loggers.TensorBoardLogger init_args: save_dir: lightning_logs/resnet50 name: normalized callbacks: class_path: lightning.pytorch.callbacks.ModelCheckpoint init_args: save_top_k: 5 monitor: valid_loss filename: "{epoch}-{step}-{valid_loss:.8f}" overfit_batches: 0.0 val_check_interval: 50 check_val_every_n_epoch: 1 num_sanity_val_steps: null log_every_n_steps: 50 enable_checkpointing: null enable_progress_bar: null enable_model_summary: null accumulate_grad_batches: 1 gradient_clip_val: null gradient_clip_algorithm: null deterministic: false benchmark: null inference_mode: true use_distributed_sampler: true profiler: null detect_anomaly: false barebones: false plugins: null sync_batchnorm: true reload_dataloaders_every_n_epochs: 0 default_root_dir: null ``` model.py ```Python import torch from torch import nn import torch.nn.functional as F import lightning as pl from torchvision.models import resnet50 class Model(pl.LightningModule): def __init__(self, learning_rate: float): super().__init__() self.save_hyperparameters() CHARS = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" class_num = len(CHARS) self.text_len = 4 resnet = resnet50() resnet.conv1 = nn.Conv2d( 1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False ) layers = list(resnet.children()) self.resnet = nn.Sequential(*layers[:9]) self.linear = nn.Linear(512, class_num) self.softmax = nn.Softmax(2) def _calc_softmax(self, x: torch.Tensor) -> torch.Tensor: x = self.resnet(x) # (batch, 2048, 1, 1) x = x.reshape(x.shape[0], self.text_len, -1) # (batch, 4, 512) x = self.linear(x) # (batch, 4, 62) x = self.softmax(x) # (batch, 4, 62) return x def forward(self, x: torch.Tensor) -> torch.Tensor: # in lightning, forward defines the prediction/inference actions x = self._calc_softmax(x) # (batch, 4, 62) return torch.argmax(x, 2) # (batch, 4) def training_step(self, batch: torch.Tensor, batch_idx: int) -> torch.Tensor: # training_step defined the train loop. # It is independent of forward img, target = batch batch_size = img.shape[0] pred_softmax = self._calc_softmax(img) # (batch, 4, 62) pred_softmax_permute = pred_softmax.permute((0, 2, 1)) # (batch, 62, 4) loss = F.cross_entropy(pred_softmax_permute, target) with torch.no_grad(): pred = torch.argmax(pred_softmax, 2) # (batch, 4) char_correct = (pred == target).sum(1) # (batch) batch_correct = (char_correct == self.text_len).sum() batch_accuracy = batch_correct / batch_size metrics = {"train_accuracy": batch_accuracy, "train_loss": loss} self.log_dict(metrics, prog_bar=True, logger=True, on_step=True, on_epoch=True) return loss def configure_optimizers(self) -> torch.optim.Optimizer: optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) return optimizer def validation_step(self, batch: torch.Tensor, batch_idx: int) -> torch.Tensor: # validation_step defined the validation loop. # It is independent of forward img, target = batch batch_size = img.shape[0] pred_softmax = self._calc_softmax(img) # (batch, 4, 62) pred_softmax_permute = pred_softmax.permute((0, 2, 1)) # (batch, 62, 4) loss = F.cross_entropy(pred_softmax_permute, target) with torch.no_grad(): pred = torch.argmax(pred_softmax, 2) # (batch, 4) char_correct = (pred == target).sum(1) # (batch) batch_correct = (char_correct == self.text_len).sum() batch_accuracy = batch_correct / batch_size metrics = {"valid_accurary": batch_accuracy, "valid_loss": loss} self.log_dict(metrics, prog_bar=True, logger=True, on_step=True, on_epoch=True) return loss def test_step(self, batch: torch.Tensor, batch_idx: int) -> torch.Tensor: # test_step defined the test loop. # It is independent of forward img, target = batch batch_size = img.shape[0] pred_softmax = self._calc_softmax(img) # (batch, 4, 62) pred_softmax_permute = pred_softmax.permute((0, 2, 1)) # (batch, 62, 4) loss = F.cross_entropy(pred_softmax_permute, target) with torch.no_grad(): pred = torch.argmax(pred_softmax, 2) # (batch, 4) char_correct = (pred == target).sum(1) # (batch) batch_correct = (char_correct == self.text_len).sum() batch_accuracy = batch_correct / batch_size metrics = {"test_accurary": batch_accuracy, "test_loss": loss} self.log_dict(metrics, prog_bar=True, logger=True, on_step=True, on_epoch=True) ## The `on_epoch` part of behaviors are unstable, but `test_accuracy_step` can always be seen. ## If `on_step=False` and `on_epoch=True`, it works fine to me. return loss ``` ``` ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment <details> <summary>Current environment</summary> ``` - PyTorch Lightning Version: 2.2.5 - PyTorch Version: 2.3.1+cu121 - Python version: 3.12.4 - OS: Windows 11 - CUDA/cuDNN version: 12.1 - GPU models and configuration: GTX 1650 - How you installed Lightning: pip ``` </details> ### More info _No response_
open
2024-06-15T16:24:26Z
2024-06-15T16:36:11Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19978
[ "bug", "needs triage" ]
t4rf9
0
autogluon/autogluon
computer-vision
4,792
[timeseries] Clarify the documentation for `known_covariates` during `predict()`
## Description We should clarify which values should be provided as `known_covariates` during prediction time. The [current documentation](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-indepth.html) says: "The timestamp index must include the values for prediction_length many time steps into the future from the end of each time series in train_data". This formulation is ambiguous. - [ ] impove wording in the documentation - [ ] add a method `TimeSeriesPredictor.get_forecast_index(data) -> pd.MultiIndex` that returns the `item_id, timestamp` index that should be covered by the `known_covariates` during `predict()`.
open
2025-01-14T08:03:33Z
2025-01-14T08:05:06Z
https://github.com/autogluon/autogluon/issues/4792
[ "API & Doc", "enhancement", "module: timeseries" ]
shchur
0
pyeve/eve
flask
711
extra_response_fields should be after (not before) any on_inserted hooks on POST
Currently, `extra_response_fields` are processed after `on_insert` hooks are complete but before any `on_inserted` hooks. It would be intuitive and great to have `extra_response_fields` processed after both of these hooks are complete - in case we changed something during `on_inserted`.
closed
2015-09-14T05:20:29Z
2018-05-18T18:19:30Z
https://github.com/pyeve/eve/issues/711
[ "enhancement", "on hold", "stale" ]
kenmaca
2
DistrictDataLabs/yellowbrick
scikit-learn
949
Some plot directive visualizers not rendering in Read the Docs
Currently on Read the Docs (develop branch), a few of our visualizers that use the plot directive (#687) are not rendering the plots: - [Classification Report](http://www.scikit-yb.org/en/develop/api/classifier/classification_report.html) - [Silhouette Scores](http://www.scikit-yb.org/en/develop/api/cluster/silhouette.html) - [ScatterPlot](http://www.scikit-yb.org/en/develop/api/contrib/scatter.html) - [JointPlot](http://www.scikit-yb.org/en/develop/api/features/jointplot.html)
closed
2019-08-15T20:58:39Z
2019-08-29T00:03:24Z
https://github.com/DistrictDataLabs/yellowbrick/issues/949
[ "type: bug", "type: documentation" ]
rebeccabilbro
1
plotly/dash
flask
2,754
[BUG] Dropdown options not rendering on the UI even though it is generated
**Describe your context** Python Version -> `3.8.18` `poetry show | grep dash` gives the below packages: ``` dash 2.7.0 A Python framework for building reac... dash-bootstrap-components 1.5.0 Bootstrap themed components for use ... dash-core-components 2.0.0 Core component suite for Dash dash-html-components 2.0.0 Vanilla HTML components for Dash dash-prefix 0.0.4 Dash library for managing component IDs dash-table 5.0.0 Dash table ``` - if frontend related, tell us your Browser, Version and OS - OS: MacOSx (Sonoma 14.3) - Browser: Chrome (also tried on Firefox and Safari) - Version: 121.0.6167.160 (Official Build) (x86_64) **Describe the bug** I have a multi-dropdown that syncs up with the input from a separate tab to pull in the list of regions associated with a country. A particular country, GB, when selected does not seem to populate the dropdown options. The UI element created was written to stdout which lists the elements correctly, but it does not render on the UI itself. stdout printout is as follows: ``` Div([P(children='Group A - (Control)', style={'marginBottom': 5}), Dropdown(options=[ {'label': 'Cheshire', 'value': 'Cheshire'}, {'label': 'Leicestershire', 'value': 'Leicestershire'}, {'label': 'Hertfordshire', 'value': 'Hertfordshire'}, {'label': 'Surrey', 'value': 'Surrey'}, {'label': 'Lancashire', 'value': 'Lancashire'}, {'label': 'Warwickshire', 'value': 'Warwickshire'}, {'label': 'Cumbria', 'value': 'Cumbria'}, {'label': 'Northamptonshire', 'value': 'Northamptonshire'}, {'label': 'Dorset', 'value': 'Dorset'}, {'label': 'Isle of Wight', 'value': 'Isle of Wight'}, {'label': 'Kent', 'value': 'Kent'}, {'label': 'Lincolnshire', 'value': 'Lincolnshire'}, {'label': 'Hampshire', 'value': 'Hampshire'}, {'label': 'Cornwall', 'value': 'Cornwall'}, {'label': 'Scotland', 'value': 'Scotland'}, {'label': 'Berkshire', 'value': 'Berkshire'}, {'label': 'Gloucestershire, Wiltshire & Bristol', 'value': 'Gloucestershire, Wiltshire & Bristol'}, {'label': 'Durham', 'value': 'Durham'}, {'label': 'Rutland', 'value': 'Rutland'}, {'label': 'Northumberland', 'value': 'Northumberland'}, {'label': 'West Midlands', 'value': 'West Midlands'}, {'label': 'Derbyshire', 'value': 'Derbyshire'}, {'label': 'Merseyside', 'value': 'Merseyside'}, {'label': 'East Sussex', 'value': 'East Sussex'}, {'label': 'Northern Ireland', 'value': 'Northern Ireland'}, {'label': 'Oxfordshire', 'value': 'Oxfordshire'}, {'label': 'Herefordshire', 'value': 'Herefordshire'}, {'label': 'Staffordshire', 'value': 'Staffordshire'}, {'label': 'East Riding of Yorkshire', 'value': 'East Riding of Yorkshire'}, {'label': 'South Yorkshire', 'value': 'South Yorkshire'}, {'label': 'West Sussex', 'value': 'West Sussex'}, {'label': 'Tyne and Wear', 'value': 'Tyne and Wear'}, {'label': 'Buckinghamshire', 'value': 'Buckinghamshire'}, {'label': 'West Yorkshire', 'value': 'West Yorkshire'}, {'label': 'Wales', 'value': 'Wales'}, {'label': 'Somerset', 'value': 'Somerset'}, {'label': 'Worcestershire', 'value': 'Worcestershire'}, {'label': 'North Yorkshire', 'value': 'North Yorkshire'}, {'label': 'Shropshire', 'value': 'Shropshire'}, {'label': 'Nottinghamshire', 'value': 'Nottinghamshire'}, {'label': 'Essex', 'value': 'Essex'}, {'label': 'Greater London & City of London', 'value': 'Greater London & City of London'}, {'label': 'Cambridgeshire', 'value': 'Cambridgeshire'}, {'label': 'Greater Manchester', 'value': 'Greater Manchester'}, {'label': 'Suffolk', 'value': 'Suffolk'}, {'label': 'Norfolk', 'value': 'Norfolk'}, {'label': 'Devon', 'value': 'Devon'}, {'label': 'Bedfordshire', 'value': 'Bedfordshire'}], value=[], multi=True, id={'role': 'experiment-design-geoassignment-manual-geodropdown', 'group_id': 'Group-ID1234'})]) ``` **Expected behavior** When the country GB is selected, I expect the relevant options to be populated in the dropdown that can be selected. The code below: ``` python def get_geos(self, all_geos): element = html.Div( [ html.P("TEST", style={"marginBottom": 5}), dcc.Dropdown( id={"role": self.prefix("dropdown"), "group_id": "1234"}, multi=True, value=[], searchable=True, options=[{"label": g, "value": g} for g in all_geos], ), ] ) print(element) # Print output is posted above showing that the callback is working fine. But it is not rendering correctly on the front end return element ``` **Screen Recording** https://github.com/plotly/dash/assets/94958897/13909683-244c-4cbe-853a-be148f3aae1c
closed
2024-02-08T13:47:01Z
2024-05-31T20:12:51Z
https://github.com/plotly/dash/issues/2754
[]
malavika-menon
2
nikitastupin/clairvoyance
graphql
100
500 internal server error
Hey tool showing 500 ERROR on loop, i then burp Intercepted my clairvoyance traffic clairvoyance -H "Authorization: Bearer" -H "X-api-key:" -x "127.1:8080" -k http://example.com/graphql **Body it sending** `{"query": "query { reporting essential myself tours platform load affiliate labor immediately admin nursing defense machines designated tags heavy covered recovery joe guys integrated configuration merchant comprehensive expert universal protect drop solid cds presentation languages became orange compliance vehicles prevent theme rich im campaign marine improvement vs guitar finding pennsylvania examples ipod saying spirit ar claims challenge motorola acceptance strategies mo seem affairs touch intended towards sa }"}` **Response** ``` HTTP/2 500 Internal Server Error Content-Type: application/json; charset=utf-8 {"errors":[{"message":"Too many validation errors, error limit reached. Validation aborted.","extensions":{"code":"INTERNAL_SERVER_ERROR"}}]} ``` but sending manually this it works: `{"query": "query { along among death writing speed }"}`
open
2024-05-15T15:16:51Z
2024-08-27T06:13:53Z
https://github.com/nikitastupin/clairvoyance/issues/100
[ "bug" ]
649abhinav
1
predict-idlab/plotly-resampler
plotly
341
Dash Callback says FigureResampler is not JSON serializable
Apologies, this is more of a "this broke and I don't know what went wrong" type of issue. What it looks like so far is that everything in the dash dashboard ive made works except for the plotting. This is the exception i get: ``` dash.exceptions.InvalidCallbackReturnValue: The callback for `[<Output `data-plot.figure`>, <Output `store.data`>, <Output `status-msg.children`>]` returned a value having type `FigureResampler` which is not JSON serializable. The value in question is either the only value returned, or is in the top level of the returned list, and has string representation `FigureResampler({ 'data': [{'mode': 'lines', 'name': '<b style="color:sandybrown">[R]</b> Category1 <i style="color:#fc9944">~10s</i>', 'type': 'scatter', 'uid': 'c78a3bb2-658c-44d0-b791-dfc0bbe76cd8', 'x': array([datetime.datetime(2025, 1, 22, 18, 38, 21),... ``` The relevant code chunks that could cause this break is: ``` from dash import Dash, html, dcc, Output, Input, State, callback, no_update, ctx from dash_extensions.enrich import DashProxy, ServersideOutputTransform, Serverside import dash_bootstrap_components as dbc import pandas as pd import plotly.express as px app = DashProxy( __name__, external_stylesheets=[dbc.themes.LUX], transforms=[ServersideOutputTransform()], ) # assume app creation within a dbc. container here dcc.Graph(id="data-plot", figure=go.Figure()) # this is the callback for the function triggering the break: @callback( [Output("data-plot", "figure"), Output("store", "data"), # Cache the figure data Output("status-msg", "children")], [Input("load-btn", "n_clicks"), State("dropdown-1", "value"), State("dropdown-2", "value"), State("dropdown-3", "value"), State("dropdown-4", "value"), State("dropdown-5", "value")], prevent_initial_call=True # Prevents callback from running at startup ) # this is how i made the figure, assume its right next to the call back from above fig = FigureResampler(go.Figure(), default_n_shown_samples=10000) # added trace and update layout here # and then i return fig, Serverside(fig), "this thing works" # i also use this function to update the resampling @app.callback( Output("data-plot", "figure", allow_duplicate=True), Input("data-plot", "relayoutData"), State("store", "data"), # The server side cached FigureResampler per session prevent_initial_call=True, ) def update_fig(relayoutdata: dict, fig: FigureResampler): if fig is None: return no_update return fig.construct_update_data_patch(relayoutdata) ``` it looks like from the docs that you can return plotly resample figures as returns to the output for dcc.Graph. what could have gone wrong?
closed
2025-03-05T20:37:21Z
2025-03-06T18:06:15Z
https://github.com/predict-idlab/plotly-resampler/issues/341
[]
FDSRashid
1
matplotlib/matplotlib
matplotlib
29,799
[ENH]: set default color cycle to named color sequence
### Problem It would be great if I could put something like this in my matplotlibrc to use the petroff10 color sequence by default: ``` axes.prop_cycle : cycler('color', 'petroff10') ``` ### Proposed solution Currently if a single string is supplied we try to interpret as a list of single character colors https://github.com/matplotlib/matplotlib/blob/a9dc9acc2dd1bab761b45e48c8d63aa108811a82/lib/matplotlib/rcsetup.py#L105-L108 None of the current built in color sequences can be interpreted that way, so it would not be ambiguous to try both that and querying the color sequence registry. However, maybe we would need something to guard against user- or third-party-defined color sequences having a name like "rygbk"?
open
2025-03-24T16:57:39Z
2025-03-24T17:42:14Z
https://github.com/matplotlib/matplotlib/issues/29799
[ "New feature", "topic: rcparams", "topic: color/cycle" ]
rcomer
2
horovod/horovod
pytorch
3,795
Seen with tf-head: ModuleNotFoundError: No module named 'keras.optimizers.optimizer_v2'
Problem with tf-head / Keras seen in CI, for instance at https://github.com/horovod/horovod/actions/runs/3656223581/jobs/6180240570 ``` ___________ ERROR collecting test/parallel/test_tensorflow_keras.py ____________ ImportError while importing test module '/horovod/test/parallel/test_tensorflow_keras.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) test_tensorflow_keras.py:36: in <module> from keras.optimizers.optimizer_v2 import optimizer_v2 E ModuleNotFoundError: No module named 'keras.optimizers.optimizer_v2' ``` ``` ___________ ERROR collecting test/parallel/test_tensorflow2_keras.py ___________ ImportError while importing test module '/horovod/test/parallel/test_tensorflow2_keras.py'. Hint: make sure your test modules/packages have valid Python names. Traceback: /usr/lib/python3.8/importlib/__init__.py:127: in import_module return _bootstrap._gcd_import(name[level:], package, level) test_tensorflow2_keras.py:35: in <module> from keras.optimizers.optimizer_v2 import optimizer_v2 E ModuleNotFoundError: No module named 'keras.optimizers.optimizer_v2' ```
closed
2022-12-09T14:25:50Z
2022-12-10T09:54:00Z
https://github.com/horovod/horovod/issues/3795
[ "bug" ]
maxhgerlach
1
plotly/dash-table
plotly
700
`Backspace` on cell only reflects deleted content after cell selection changes
In the recording below, `backspace` is hit right after the cell selection and the displayed cell content only updates after the selected cell changed. ![Feb-20-2020 12-04-07](https://user-images.githubusercontent.com/8092993/74959742-29a66200-53d9-11ea-926f-8259d552cef6.gif)
open
2020-02-20T17:08:28Z
2024-01-25T21:34:23Z
https://github.com/plotly/dash-table/issues/700
[ "dash-type-bug", "regression" ]
Marc-Andre-Rivet
2
AirtestProject/Airtest
automation
1,205
airtest自动安装的urllib3库, 需要旧版 (比如1.26.17) 才能通过uid连接ios手机
**描述问题bug** airtest自动安装的urllib3库, 需要旧版 (比如1.26.17) 才能通过uuid连接ios手机, 否则会提示wda未准备好并且在20秒等待后报错, 当你将 urllib3库改为旧版本可以解决这个问题, 控制端mac和windows 设备端ios15/16/17 下均是如此. **python 版本:** `python3.11` **airtest 版本:** `1.3.3` **设备:** - 手机型号: [iphone se2] - 控制端: [mbp m1/windows11] - 手机系统: [ios15/ios16/ios17]
open
2024-04-15T06:33:57Z
2024-04-15T06:41:39Z
https://github.com/AirtestProject/Airtest/issues/1205
[]
yh1121yh
0
ultrafunkamsterdam/undetected-chromedriver
automation
2,155
[NODRIVER] Add ability to capture and return screenshot as base64 - changes are ready to PR merge
Hello, I would like to create a PR to (as title suggest) giving the base64 of the screenshots instead of saving files locally Here is the commit: https://github.com/falmar/nodriver/commit/d903cca8aac2406ff0c4462785b61d5ce474256c it includes and demo example EDIT: I'm unable to create PR on the nodriver [repository](https://github.com/ultrafunkamsterdam/nodriver)
closed
2025-03-07T12:29:58Z
2025-03-10T07:48:53Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/2155
[]
falmar
2
xinntao/Real-ESRGAN
pytorch
209
希望能增加带去除扫描图片网纹的超分辨率算法
在进行扫图的杂志 周边 同人志等超分辨率的时候 网纹也会被放大得非常明显 不知道有没有办法先把网纹去除后再进行超分辨率呢?
open
2022-01-02T15:53:01Z
2022-01-02T15:53:01Z
https://github.com/xinntao/Real-ESRGAN/issues/209
[]
sistinafibe
0
2noise/ChatTTS
python
3
运行到一半就自动停止了
![image](https://github.com/2noise/ChatTTS/assets/23243630/95f9abdc-e97c-4a01-a768-053581a12336) 如图,运行到一半就停止了。。 系统:linux python版本:3.12 另外建议写个requirements吧
closed
2024-05-28T02:50:19Z
2024-05-28T11:29:23Z
https://github.com/2noise/ChatTTS/issues/3
[]
luosaidage
1
kizniche/Mycodo
automation
442
install mycodo error???
what happen ?! How to install mycodo version lower to 5.6.10? I'm want to install mycodo version 5.5.24. how can i do? ![image](https://user-images.githubusercontent.com/38012416/38234397-fc1c8170-3747-11e8-855e-a4e9a40622c7.png)
closed
2018-04-03T07:11:43Z
2018-04-06T00:42:52Z
https://github.com/kizniche/Mycodo/issues/442
[]
bike2538
4
InstaPy/InstaPy
automation
6,296
Not posting the comment when mentioning any account.
## InstaPy configuration InstaPy Version: 0.6.14-AS I am trying to comment on a hashtag by mentioning some page with @..... but it seems like when I am using the @.... it doesn't post the comment instead it skips it. Anyone else is facing the same issue? What is the solution?
open
2021-08-16T09:16:11Z
2021-10-10T00:35:52Z
https://github.com/InstaPy/InstaPy/issues/6296
[]
moshema10
6
StackStorm/st2
automation
6,160
Provide support for passing "=" in a string
**alias yaml** `--- name: "launch_quasar" action_ref: "quasar.quasar1" description: "launch a quasar execution" formats: - display: "*<command>* *<payload>*" representation: - "{{ command }} {{ payload }}" result: format: | ```{{ execution.result.result }}``` ` **action yaml** name: quasar1 description: Action that takes an input parameter runner_type: 'python-script' entry_point: 'quasar1.py' enabled: true parameters: command: type: string description: 'Input parameter' required: true payload: type: string description: 'Input parameter' required: true user: type: "string" description: "Slack user who triggered the action" required: false default: "{{action_context.api_user}}" **Representation used:** "{{ command }} {{ payload }}" **Parameter defintion**: payload: type: string description: 'Input parameter' required: true We have an usecase where we need to pass a string with "=" in it for payload for some reason stackstorm is not allowing me to do that, if i pass such value it is not taking it as a seperate string and causing multiple issues Issue is not oberved if we are putting ":" instead of "=" and also putting a space after "=" solves the issue Have tried different things (using jinja template replace option and replaced "=" with "= " but i am getting internal server error. if i am able to pass the yaml validation, i can have my own validation in action py file but the issue the execution is not even going to the python file. basically this should be accepted by stackstorm **quasar create cluster_name=weekly_nats** <img width="372" alt="Screenshot 2024-03-04 at 11 35 28 AM" src="https://github.com/StackStorm/st2/assets/41072130/ae316000-c84a-4493-976e-e2e6f5b38fbc">
open
2024-03-04T06:08:03Z
2024-03-04T06:09:32Z
https://github.com/StackStorm/st2/issues/6160
[]
sivudu47
0
assafelovic/gpt-researcher
automation
645
UnicodeEncodeError: 'charmap' codec can't encode character '\U0001f50e' in position 0: character maps to <undefined>
I'm testing a simple next.js/fastapi app on Windows 11, using the example FastAPI from https://docs.tavily.com/docs/gpt-researcher/pip-package (btw I think this example is missing the query parameter) It's a very simple parameter report test with api call/url of ``` const query = encodeURIComponent("What is 42?"); const type = encodeURIComponent("outline_report"); const URL = `/api/reporttest/${query}/${type}`; const URL2 = `/api/report/${query}/${type}`; ``` URL is a simple parameter test ``` @app.get("/api/reporttest/{query}/{report_type}") async def get_report(query: str, report_type: str) -> dict: return {"report": query, "type": report_type} ``` Output: {"report":"What is 42?","type":"outline_report"} URL2 is used for the GPT-Researcher FastAPI call test which is resulting in the error. ``` @app.get("/api/report/{query}/{report_type}") async def get_report(query: str, report_type: str) -> dict: researcher = GPTResearcher(query, report_type) research_result = await researcher.conduct_research() report = await researcher.write_report() return {"report": report} ``` It appears to be a utf-8 issue perhaps, However, I don't encounter this on Windows when running the actual gpt-researcher code. ref: https://ask.replit.com/t/unicodeencodeerror-charmap-codec-cant-encode-character-ufb01/76667 Then again, running this as an api call is a little different from the regular FE/BE GPT-R. Any clues? Full error log is: ``` ] INFO: 127.0.0.1:52833 - "GET /api/reporttest/What%20is%2042%3F/outline_report HTTP/1.1" 200 OK [0] GET / 200 in 28ms [1] INFO: 127.0.0.1:52843 - "GET /api/report/What%20is%2042%3F/outline_report HTTP/1.1" 500 Internal Server Error [1] ERROR: Exception in ASGI application [1] Traceback (most recent call last): [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\uvicorn\protocols\http\httptools_impl.py", line 399, in run_asgi [1] result = await app( # type: ignore[func-returns-value] [1] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\uvicorn\middleware\proxy_headers.py", line 70, in __call__ [1] return await self.app(scope, receive, send) [1] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\fastapi\applications.py", line 1054, in __call__ [1] await super().__call__(scope, receive, send) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\applications.py", line 123, in __call__ [1] await self.middleware_stack(scope, receive, send) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\middleware\errors.py", line 186, in __call__ [1] raise exc [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\middleware\errors.py", line 164, in __call__ [1] await self.app(scope, receive, _send) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\middleware\exceptions.py", line 65, in __call__ [1] await wrap_app_handling_exceptions(self.app, conn)(scope, receive, send) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\_exception_handler.py", line 64, in wrapped_app [1] raise exc [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\_exception_handler.py", line 53, in wrapped_app [1] await app(scope, receive, sender) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\routing.py", line 756, in __call__ [1] await self.middleware_stack(scope, receive, send) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\routing.py", line 776, in app [1] await route.handle(scope, receive, send) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\routing.py", line 297, in handle [1] await self.app(scope, receive, send) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\routing.py", line 77, in app [1] await wrap_app_handling_exceptions(app, request)(scope, receive, send) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\_exception_handler.py", line 64, in wrapped_app [1] raise exc [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\_exception_handler.py", line 53, in wrapped_app [1] await app(scope, receive, sender) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\starlette\routing.py", line 72, in app [1] response = await func(request) [1] ^^^^^^^^^^^^^^^^^^^ [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\fastapi\routing.py", line 278, in app [1] raw_response = await run_endpoint_function( [1] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\fastapi\routing.py", line 191, in run_endpoint_function [1] return await dependant.call(**values) [1] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\api\index.py", line 23, in get_report [1] research_result = await researcher.conduct_research() [1] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\gpt_researcher\master\agent.py", line 77, in conduct_research [1] await stream_output("logs", f"\U0001f50e Starting the research task for '{self.query}'...", self.websocket) [1] File "E:\Source Control\AI Apps\Python\nextjs-fastapi\.venv\Lib\site-packages\gpt_researcher\master\actions.py", line 321, in stream_output [1] print(output) [1] File "D:\Python\Lib\encodings\cp1252.py", line 19, in encode [1] return codecs.charmap_encode(input,self.errors,encoding_table)[0] [1] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [1] UnicodeEncodeError: 'charmap' codec can't encode character '\U0001f50e' in position 0: character maps to <undefined> ```
closed
2024-07-06T05:39:07Z
2024-07-07T03:38:54Z
https://github.com/assafelovic/gpt-researcher/issues/645
[]
sonicviz
5
gunthercox/ChatterBot
machine-learning
2,033
Creating a chatbot
Errors in importing the chatterbot and installing Chatbot to python
closed
2020-08-27T15:48:33Z
2025-02-26T11:43:08Z
https://github.com/gunthercox/ChatterBot/issues/2033
[]
Anwarite
4
netbox-community/netbox
django
18,327
error after update to NetBox 4.2.0: requires_internet
### Deployment Type Self-hosted ### Triage priority N/A ### NetBox Version v4.2.0 ### Python Version 3.12 ### Steps to Reproduce After updating NetBox to 4.20 using the Git method. Login Page works fine if not logged in. After login the error occurs. ### Expected Behavior Can Login normally. ### Observed Behavior Server Error There was a problem with your request. Please contact an administrator. The complete exception is provided below: <class 'KeyError'> 'requires_internet' Python version: 3.12.3 NetBox version: 4.2.0 Plugins: None installed If further assistance is required, please post to the [NetBox discussion forum](https://github.com/netbox-community/netbox/discussions) on GitHub.
closed
2025-01-07T15:13:52Z
2025-01-07T15:36:49Z
https://github.com/netbox-community/netbox/issues/18327
[ "type: bug", "status: duplicate" ]
Kujo01243
4
babysor/MockingBird
deep-learning
794
PPG训练时的报错,请帮忙看看
PPG预处理很顺利,ppg2mel.yaml路径也改了,但是这个错误提示怎么都解决不了,请大家帮忙看看能否有经验分享下。 D:\MockingBird-main>python ppg2mel_train.py --config .\ppg2mel\saved_models\ppg2mel.yaml --oneshotvc Traceback (most recent call last): File "D:\MockingBird-main\ppg2mel_train.py", line 67, in <module> main() File "D:\MockingBird-main\ppg2mel_train.py", line 50, in main config = HpsYaml(paras.config) File "D:\MockingBird-main\utils\load_yaml.py", line 44, in __init__ hps = load_hparams(yaml_file) File "D:\MockingBird-main\utils\load_yaml.py", line 8, in load_hparams for doc in docs: File "C:\Users\benny\AppData\Local\Programs\Python\Python39\lib\site-packages\yaml\__init__.py", line 127, in load_all loader = Loader(stream) File "C:\Users\benny\AppData\Local\Programs\Python\Python39\lib\site-packages\yaml\loader.py", line 34, in __init__ Reader.__init__(self, stream) File "C:\Users\benny\AppData\Local\Programs\Python\Python39\lib\site-packages\yaml\reader.py", line 85, in __init__ self.determine_encoding() File "C:\Users\benny\AppData\Local\Programs\Python\Python39\lib\site-packages\yaml\reader.py", line 124, in determine_encoding self.update_raw() File "C:\Users\benny\AppData\Local\Programs\Python\Python39\lib\site-packages\yaml\reader.py", line 178, in update_raw data = self.stream.read(size) UnicodeDecodeError: 'gbk' codec can't decode byte 0x86 in position 176: illegal multibyte sequence
open
2022-12-01T14:03:43Z
2022-12-03T02:45:27Z
https://github.com/babysor/MockingBird/issues/794
[]
benny1227
1
psf/requests
python
6,830
PreparedRequests can't bypass URL normalization when proxies are used
Related to #5289, where [akmalhisyam found a way to bypass URL normalization using PreparedRequests](https://github.com/psf/requests/issues/5289#issuecomment-573632625), however, the solution doesn't work when you have proxies provided. ## Expected Result This should be able to explicitly set the request URL without getting normalized (from `/../something.txt` to `/something.txt`) ``` url = "http://example.com/../something.txt" s = requests.Session() req = requests.Request(method='POST' ,url=url, headers=headers, data=data) prep = req.prepare() prep.url = url r = s.send(prep, proxies={"http": "http://127.0.0.1"}, verify=False) ``` ## Actual Result The code above doesn't work, this one works though: ``` url = "http://example.com/../something.txt" s = requests.Session() req = requests.Request(method='POST' ,url=url, headers=headers, data=data) prep = req.prepare() prep.url = url r = s.send(prep, verify=False) ``` ## Reproduction Steps Use the code in **Expected Result** and check your proxy request log, you will see it doesn't work ## System Information $ python -m requests.help ```json { "chardet": { "version": "5.2.0" }, "charset_normalizer": { "version": "2.0.12" }, "cryptography": { "version": "38.0.4" }, "idna": { "version": "3.4" }, "implementation": { "name": "CPython", "version": "3.11.4" }, "platform": { "release": "4.4.0-19041-Microsoft", "system": "Linux" }, "pyOpenSSL": { "openssl_version": "30000080", "version": "21.0.0" }, "requests": { "version": "2.32.3" }, "system_ssl": { "version": "30000030" }, "urllib3": { "version": "2.0.4" }, "using_charset_normalizer": false, "using_pyopenssl": true } ```
open
2024-11-18T17:06:17Z
2025-01-27T18:44:36Z
https://github.com/psf/requests/issues/6830
[]
shelld3v
1
microsoft/nlp-recipes
nlp
285
[ASK] Add ReadMe for subfolder unit under tests
### Description Add a ReadaMe file descriping the scope of all unit tests. Are we having full coverage of units tests for all utils and notebooks? ### Other Comments **Principles of NLP Documentation** Each landing page at the folder level should have a ReadMe which explains - ○ Summary of what this folder offers. ○ Why and how it benefits users ○ As applicable - Documentation of using it, brief description etc **Scenarios folder:** ○ Root Scenario folder should have a summary on what value these example notebook provides. ○ Include a table with scenario name, description, algorithm, Dataset ○ Other instructions, Pre-req of running these notebooks ○ Each scenario folder should have a summary text explaining about the scenario, what utils its using. Any benchmark numbers if applicable. Explain any concept relevant to the scenario ○ Under each scenario folder there should be one Quick Start example notebook, name starting with "QuickStart: ..." and atleast one AML notebook **Example Notebooks Guiding Principles:** ○ We are providing recipes for solving NLP scenarios on Azure AI ○ We make it easier by providing Util packages ○ We provide example notebooks on how to use the utils for solving common NLP scenarios ○ Based on these principles above, all notebook examples should be using utils wherever applicable. Ex: If your example is doing classification using BERT, use the BERTSequenceClassifier instead of directly calling BertForSequenceClassification. Same with tokenization.
closed
2019-08-13T22:13:37Z
2019-08-16T20:56:48Z
https://github.com/microsoft/nlp-recipes/issues/285
[ "documentation", "release-blocker" ]
dipanjan77
1
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
4,345
Verify possibility to restrict the content security policy preventing usage of inline CSS styles
### Proposal This ticket is to keep track of the activities related to verify possibility to restrict the content security policy preventing usage of inline styles and the possible implementations necessary to achieve this goal on globaleaks v5 as previously achieved on client globaleaks 4. At the moment it seems that the library requiring to used inline styles is only: [ng-bootstrap](https://github.com/ng-bootstrap/ng-bootstrap/issues/2085) that uses inline styles for example for the tooltip and calendar implementations.
closed
2024-12-03T13:44:20Z
2024-12-06T16:14:48Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/4345
[ "T: Enhancement", "C: Client", "C: Backend", "F: Security" ]
evilaliv3
1
bigscience-workshop/petals
nlp
282
http://health.petals.ml/ shows "broken" in the same timeframe i spin up a docker petals
Hi there. I think your project is awesome and want to support you by sharing my resources. I noticed an outage on bloom and bloomz, yesterday when i used a dockercompose to spin up a new docker image. I noticed a second outage just now on bloom, when i started the colab on https://colab.research.google.com/drive/1Ervk6HPNS6AYVr3xVdQnY5a-TjjmLCdQ?usp=sharing Maybe its just coincidence, but maybe some script for taking the new node in crashes your config something...? Just let you know in case. Thanks for that awesome project.
closed
2023-03-09T12:15:15Z
2023-03-09T23:59:01Z
https://github.com/bigscience-workshop/petals/issues/282
[]
worldpeaceenginelabs
1
biolab/orange3
pandas
7,009
Metavariables are not excluded in feature selection methods
A longstanding issue is that metavariables are not excluded from methods. For example, in "find informative projections" for scatter plots, they appear as suggestions. Also, in feature suggestions, the metas are included. If there are many, the automatic feature selection breaks down. This is a nuisance, as metas often contain the solution to a classification problem. "Find informative mosaics" has the same issue, as does the violin plot where ordering by relevance also includes metas. Tree prediction does ignore them, though. I am currently using version 338 on a Mac, and this error is present in the PC version as well. This issue has existed in every version of Orange that I can recall. Best larerooreal
open
2025-01-30T13:21:18Z
2025-02-19T10:01:28Z
https://github.com/biolab/orange3/issues/7009
[ "needs discussion", "bug report" ]
lareooreal
4
scrapy/scrapy
python
5,944
Improve statscollector.py along with test_stats.py and test_link.py
## Summary Remove unused code from statscollector.py and improve test suits in test_stats.py and test_link.py ## Motivation I was working with the project and reviewed some of the code trying to understand how the stats collection is working and I noticed that some of the code hasn't been implemented in the statscollectors.py file as well as the testing suites in test_stats.py and test_link.py are not properly testing the files. I wanted to bring up these issues to improve the project, increase the testing coverage for statscollector.py and make it easier to maintain. ## Describe alternatives you've considered Reviewing the files, I think the best approach is to remove the DummyStatsCollector class in the statscollector.py file since it is not used anywhere in the project and complete the open_spider and _persist_stats methods in the StatsCollector class. In the test_stats.py and test_link.py files, the best approach would be to separate the tests in unique test cases and fill in for the missing methods in the test_stats.py file in order to increase testing coverage.
closed
2023-06-04T20:58:39Z
2023-06-21T09:20:59Z
https://github.com/scrapy/scrapy/issues/5944
[]
DeanDro
1
chatopera/Synonyms
nlp
56
请问下相似度计算公式是什么?
请问下相似度计算公式是什么? 目前我用的多的是textrank + word2vec 请问本工具的算法是?我想做下对比,可能的话我把我的算法也pr过来
closed
2018-03-19T15:48:23Z
2018-03-24T23:05:03Z
https://github.com/chatopera/Synonyms/issues/56
[]
Wall-ee
2
wkentaro/labelme
computer-vision
459
Add shortcut for ‘Add Point to Edge’
Hello, i really appreciate your work, the software really helps me a lot. I want to add shortcut for ‘Add Point to Edge’, but it does not work. The mouse needs to be in a specific location, how can I add shortcut?
closed
2019-08-07T11:10:25Z
2019-08-23T10:00:40Z
https://github.com/wkentaro/labelme/issues/459
[]
stormlands
2
mkhorasani/Streamlit-Authenticator
streamlit
71
Saving cookie failed when deploying the app with docker
Hey everybody, I implemented the auth as described in your README and tested it locally on my machine - works fine. Then i deployed the same app using Docker and the authentification does not work as expected. Seems like the client-side cookies are not saved when using Docker. Does anyone know the problem or even the solution? Thanks a lot!
open
2023-06-12T07:23:31Z
2024-07-27T14:42:48Z
https://github.com/mkhorasani/Streamlit-Authenticator/issues/71
[ "help wanted" ]
ArnoSchiller
3
QingdaoU/OnlineJudge
django
50
2.0重构版规划
本OJ大约是1年前开始开发的,目前逐渐暴露出一些问题。打算进行一个比较大的重构,主要包括 - [x] vue.js重写所有前端页面 - [x] 前端后端的国际化,多语言和时区 - [x] 导入导出题目(但是目前考虑的hustoj的FPS格式还有些问题,可能在当前版本中也会做) - [x] 更方便的添加多编程程序语言支持,统一配置规则(有些问题还没解决)题目选择可以使用的语言 - [x] 比赛的OI模式(排名,查看单独测试数据是否通过等) - [x] SPJ更加方便的添加代码和测试 - [x] 超级管理员 - 管理所有 普通管理员- 默认创建小组内比赛和不能创建题目题目,但是可以通过两个选项允许 - [x] 完善后端的测试,跑CI - [x] 代码风格问题 - [x] 题目和公告使用markdown编辑器 - [x] 判题服务器的健康检查和添加时候的检查 目前基本上只有我一个人在维护这个项目,时间不多,都是在工作之余做,但是放弃了也太可惜。如果有愿意参与的,可以回复一下。 扫描二维码献出你的一份爱心 ![wxpay](https://user-images.githubusercontent.com/4939404/35159696-02000c44-fd76-11e7-94d4-f00773ac1901.jpg)
closed
2016-06-24T05:32:44Z
2019-01-05T06:15:41Z
https://github.com/QingdaoU/OnlineJudge/issues/50
[]
virusdefender
27
JaidedAI/EasyOCR
pytorch
1,335
FileNotFoundError in `download_and_unzip` when running multiple easyocr's concurrently
When we try to run two or more easyocr's concurrently, we get an error in the downloader. I am guessing that the download logic uses a fixed download filepath? ```shell EasyOcrModel( File ".../lib/python3.10/site-packages/docling/models self.reader = easyocr.Reader(config["lang"]) File ".../lib/python3.10/site-packages/easyocr/easyocr.py", line 92, in __init__ detector_path = self.getDetectorPath(detect_network) File ".../lib/python3.10/site-packages/easyocr/easyocr.py", line 253, in getDetectorPath download_and_unzip(self.detection_models[self.detect_network]['url'], self.detection_models[self.detect_network]['filename'], self.model_storage_directory, self.verbose) File ".../lib/python3.10/site-packages/easyocr/utils.py", line 631, in download_and_unzip os.remove(zip_path) FileNotFoundError: [Errno 2] No such file or directory: '/home/runner/.EasyOCR//model/temp.zip' ```
open
2024-11-18T21:39:58Z
2024-12-18T10:27:48Z
https://github.com/JaidedAI/EasyOCR/issues/1335
[]
starpit
2
tflearn/tflearn
tensorflow
960
TypeError: only integer scalar arrays can be converted to a scalar index
Exception in thread Thread-8: Traceback (most recent call last): File "C:\Users\Bhumit\Anaconda3\lib\threading.py", line 916, in _bootstrap_inner self.run() File "C:\Users\Bhumit\Anaconda3\lib\threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "C:\Users\Bhumit\Anaconda3\lib\site-packages\tflearn\data_flow.py", line 187, in fill_feed_dict_queue data = self.retrieve_data(batch_ids) File "C:\Users\Bhumit\Anaconda3\lib\site-packages\tflearn\data_flow.py", line 222, in retrieve_data utils.slice_array(self.feed_dict[key], batch_ids) File "C:\Users\Bhumit\Anaconda3\lib\site-packages\tflearn\utils.py", line 187, in slice_array return X[start] TypeError: only integer scalar arrays can be converted to a scalar index Anyone, please suggest solutions for above errors
open
2017-11-17T13:02:41Z
2017-11-17T13:02:41Z
https://github.com/tflearn/tflearn/issues/960
[]
AdivarekarBhumit
0
blb-ventures/strawberry-django-plus
graphql
256
Using input_mutation with a None return type throws an exception
I have a mutation that looks something like ```python @gql.django.input_mutation(permission_classes=[IsAdmin]) def mutate_thing( self, info: Info, ) -> None: # do the thing return None ``` This throws an exception when I try to generate my schema: ``` File "/Users/tao/dev/cinder/myapp/mutations.py", line 599, in Mutation @gql.django.input_mutation(permission_classes=[IsAdmin]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/tao/dev/cinder/.venv/lib/python3.11/site-packages/strawberry_django_plus/mutations/fields.py", line 126, in __call__ types_ = tuple(get_possible_types(annotation.resolve())) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/tao/dev/cinder/.venv/lib/python3.11/site-packages/strawberry_django_plus/utils/inspect.py", line 171, in get_possible_types assert_never(gql_type) File "/Users/tao/.asdf/installs/python/3.11.1/lib/python3.11/typing.py", line 2459, in assert_never raise AssertionError(f"Expected code to be unreachable, but got: {value}") AssertionError: Expected code to be unreachable, but got: None ``` It looks like the issue occurs in `get_possible_types`, which doesn't handle a None return type. It's possible to work around this by setting the return type annotation to `Void._scalar_definition` instead of `None`, but that feels like a hack!
open
2023-07-02T21:39:36Z
2023-07-03T13:15:57Z
https://github.com/blb-ventures/strawberry-django-plus/issues/256
[]
taobojlen
1
DistrictDataLabs/yellowbrick
matplotlib
560
Add 'Yellowbrick for Teachers' slidedeck to docs
**Describe the solution you'd like** Add a sample slide deck to the docs for machine learning teachers to use in teaching model selection & visual diagnostics **Is your feature request related to a problem? Please describe.** I've been asked a few times by other teachers of machine learning if I had any slides or teaching materials they could use in their classes. I have some slides that I could put together and publish, or else this might be a good candidate for [Jupyter Notebook slides](https://medium.com/@mjspeck/presenting-code-using-jupyter-notebook-slides-a8a3c3b59d67) **Examples** <img width="801" alt="screen shot 2018-08-10 at 2 36 48 pm" src="https://user-images.githubusercontent.com/8760385/43975216-dd9a8d14-9caa-11e8-9f7d-2466cd58df44.png"> <img width="802" alt="screen shot 2018-08-10 at 2 37 31 pm" src="https://user-images.githubusercontent.com/8760385/43975245-f456554c-9caa-11e8-91ef-1b8d1263c05b.png">
closed
2018-08-10T18:38:19Z
2018-08-13T15:17:14Z
https://github.com/DistrictDataLabs/yellowbrick/issues/560
[]
rebeccabilbro
3
gee-community/geemap
jupyter
2,011
error with 'geemap.requireJS'
<!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information ![image](https://github.com/gee-community/geemap/assets/116633147/06a07c24-3f21-4fdc-b12f-84972451d0a1) ### Description error with 'geemap.requireJS' ### What I Did ``` import geemap WS = geemap.requireJS('users/dushuai/showANDdownload_rec_of_rgb:learningCode_from_articles/whittaker_smoother') --------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) File E:\ProgramData\Anaconda3\envs\gee1\Lib\site-packages\geemap\common.py:13482, in requireJS(lib_path, Map) 13481 try: > 13482 from oeel import oeel 13483 except ImportError: File E:\ProgramData\Anaconda3\envs\gee1\Lib\site-packages\oeel\oeel.py:17 16 from . import external ---> 17 from . import colab 18 oeelLibPath=os.path.dirname(__file__) File E:\ProgramData\Anaconda3\envs\gee1\Lib\site-packages\oeel\colab.py:3 2 import IPython ----> 3 from google.colab import output 4 from google.oauth2.credentials import Credentials File E:\ProgramData\Anaconda3\envs\gee1\Lib\site-packages\google\colab\__init__.py:23 22 from google.colab import _shell_customizations ---> 23 from google.colab import _system_commands 24 from google.colab import _tensorflow_magics File E:\ProgramData\Anaconda3\envs\gee1\Lib\site-packages\google\colab\_system_commands.py:24 23 import os ---> 24 import pty 25 import select File E:\ProgramData\Anaconda3\envs\gee1\Lib\pty.py:12 11 import sys ---> 12 import tty 14 # names imported directly for test mocking purposes File E:\ProgramData\Anaconda3\envs\gee1\Lib\tty.py:5 3 # Author: Steen Lumholt. ----> 5 from termios import * 7 __all__ = ["setraw", "setcbreak"] ModuleNotFoundError: No module named 'termios' During handling of the above exception, another exception occurred: ImportError Traceback (most recent call last) Cell In[7], line 2 1 import geemap ----> 2 WS = geemap.requireJS('users/dushuai/showANDdownload_rec_of_rgb:learningCode_from_articles/whittaker_smoother') File E:\ProgramData\Anaconda3\envs\gee1\Lib\site-packages\geemap\common.py:13484, in requireJS(lib_path, Map) 13482 from oeel import oeel 13483 except ImportError: > 13484 raise ImportError( 13485 "oeel is required for requireJS. Please install it using 'pip install oeel'." 13486 ) 13488 ee_initialize() 13490 if lib_path is None: ImportError: oeel is required for requireJS. Please install it using 'pip install oeel'. ```
closed
2024-05-14T02:45:35Z
2024-05-16T18:05:29Z
https://github.com/gee-community/geemap/issues/2011
[ "bug" ]
Dushuai12138
5
liangliangyy/DjangoBlog
django
191
Centos 7 + apache2 部署
![image](https://user-images.githubusercontent.com/37951601/49684244-0cef7880-fb0c-11e8-8823-f7d8b01352f2.png) 请问这是什么错误啊...弄了一天实在没头绪
closed
2018-12-08T09:11:07Z
2018-12-11T10:22:49Z
https://github.com/liangliangyy/DjangoBlog/issues/191
[]
FishWoWater
5
Evil0ctal/Douyin_TikTok_Download_API
fastapi
166
[BUG] Tiktok接口是挂了吗?
最近发现接口频繁返回:{"status_code":0,"status_msg":"","block_code":2018},貌似现在强制性需要提供X-Argus、X-Ladon两个算参数才能返回了,但我发现douyin.wtf的接口是可以正常拿到数据的,有点疑惑,难道是因为ip的问题?
closed
2023-03-08T02:24:42Z
2023-03-09T02:35:00Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/166
[ "BUG" ]
juedi998
5
pydantic/pydantic-ai
pydantic
496
Configuration and parameters for `all_messages()` and `new_messages()`
It would be helpful if the `all_messages()` and `new_messages()` methods had an option to exclude the system prompt like `all_messages(system_prompt=False)`. This would probably be a better default behavior too. Why? Well, when do you use these methods? ### 1. Passing messages to the client/frontend ```python @app.post("/chat") async def chat(data): ... result = await agent.run(data.message, message_history=data.history) return result.all_messages() ``` You probably don't want to pass the system prompt along. ### 2. When storing messages in a database ```python ... result = await agent.run(data.message, message_history=data.history) db.table("conversations").insert(result.all_messages_json()) ... ``` You probably don't want to store the system prompt for every conversation. ### 3. When handing over a conversation to a different agent ```python result1 = agent1.run(message, message_history=history) ... # handover detected result2 = agent2.run(message, message_history=result1.all_messages()) ```` You want the chat messages for context, but the system prompt of the new agent. --- More parameters to exclude tool calls or just tool call responses would be another great addition, I think.
open
2024-12-19T12:06:26Z
2025-02-17T04:24:12Z
https://github.com/pydantic/pydantic-ai/issues/496
[ "Feature request" ]
pietz
7
amidaware/tacticalrmm
django
1,913
tactical meshagent memory leak
**Server Info (please complete the following information):** - OS: Ubuntu 22.04.4 - Browser: chrome - RMM Version (as shown in top left of web UI): v0.18.2 **Installation Method:** - [ x ] Standard **Agent Info (please complete the following information):** - Agent version (as shown in the 'Summary' tab of the agent from web UI): Agent v2.7.0 - Agent OS: Ubuntu 22.04.4 **Describe the bug** tactical meshagent service has a memory leak and slowly grows to 10s of gigabytes of memory usage until it is restarted. **To Reproduce** Steps to reproduce the behavior: 1. install tactical agent on ubuntu 22.04.4 **Expected behavior** agent uses a reasonable amount of ram and doesnt need to be restarted to reduce memory usage **Screenshots** ![image](https://github.com/amidaware/tacticalrmm/assets/8379092/1cabea83-88d8-46b0-b416-0c7fc3a1b080)
closed
2024-07-08T21:54:19Z
2024-07-10T05:10:02Z
https://github.com/amidaware/tacticalrmm/issues/1913
[]
slapplebags
1
MaxHalford/prince
scikit-learn
144
Not compatible with pandas 2.0.0
I'm having dependency conflicts when trying to install prince and pandas==2.0.0 in the same environment.
closed
2023-04-17T20:42:03Z
2023-04-18T12:56:10Z
https://github.com/MaxHalford/prince/issues/144
[]
JuanCruzC97
4
scikit-learn/scikit-learn
python
30,699
Make scikit-learn OpenML more generic for the data download URL
According to https://github.com/orgs/openml/discussions/20#discussioncomment-11913122 our code hardcodes where to find the OpenML data. I am not quite sure what needs to be done right now but maybe @PGijsbers has some suggestions (not urgent at all though, I am guessing you have bigger fish to fry right now 😉) or maybe @glemaitre .
closed
2025-01-22T09:13:44Z
2025-02-25T15:09:52Z
https://github.com/scikit-learn/scikit-learn/issues/30699
[ "Enhancement", "module:datasets" ]
lesteve
3
oegedijk/explainerdashboard
dash
147
Add support to Imbalanced-learn pipelines in ClassifierExplainer
When I try to generate a `ClassifierExplainer``on a imblearn pipeline I get the following **error**: ``` TypeError: All intermediate steps should be transformers and implement fit and transform or be the string 'passthrough' 'SMOTETomek(random_state=42)' (type <class 'imblearn.combine._smote_tomek.SMOTETomek'>) doesn't ``` **Full traceback:** ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-75-2a92cf12a19d> in <module> 1 from explainerdashboard import ClassifierExplainer, InlineExplainer ----> 2 explainer = ClassifierExplainer(best_model, X_test, y_test) /opt/conda/lib/python3.7/site-packages/explainerdashboard/explainers.py in __init__(self, model, X, y, permutation_metric, shap, X_background, model_output, cats, cats_notencoded, idxs, index_name, target, descriptions, n_jobs, permutation_cv, cv, na_fill, precision, labels, pos_label) 1999 cats, cats_notencoded, idxs, index_name, target, 2000 descriptions, n_jobs, permutation_cv, cv, na_fill, -> 2001 precision) 2002 2003 assert hasattr(model, "predict_proba"), \ /opt/conda/lib/python3.7/site-packages/explainerdashboard/explainers.py in __init__(self, model, X, y, permutation_metric, shap, X_background, model_output, cats, cats_notencoded, idxs, index_name, target, descriptions, n_jobs, permutation_cv, cv, na_fill, precision) 138 if shap != 'kernel': 139 pipeline_model = model.steps[-1][1] --> 140 pipeline_transformer = Pipeline(model.steps[:-1]) 141 if hasattr(model, "predict") and hasattr(pipeline_transformer, "transform"): 142 X_transformed = pipeline_transformer.transform(X) /opt/conda/lib/python3.7/site-packages/sklearn/utils/validation.py in inner_f(*args, **kwargs) 61 extra_args = len(args) - len(all_args) 62 if extra_args <= 0: ---> 63 return f(*args, **kwargs) 64 65 # extra_args > 0 /opt/conda/lib/python3.7/site-packages/sklearn/pipeline.py in __init__(self, steps, memory, verbose) 116 self.memory = memory 117 self.verbose = verbose --> 118 self._validate_steps() 119 120 def get_params(self, deep=True): /opt/conda/lib/python3.7/site-packages/sklearn/pipeline.py in _validate_steps(self) 169 "transformers and implement fit and transform " 170 "or be the string 'passthrough' " --> 171 "'%s' (type %s) doesn't" % (t, type(t))) 172 173 # We allow last estimator to be None as an identity transformation TypeError: All intermediate steps should be transformers and implement fit and transform or be the string 'passthrough' 'SMOTETomek(random_state=42)' (type <class 'imblearn.combine._smote_tomek.SMOTETomek'>) doesn't ``` **Versions** System: python: 3.7.10 | packaged by conda-forge | (default, Feb 19 2021, 16:07:37) [GCC 9.3.0] executable: /opt/conda/bin/python machine: Linux-5.4.120+-x86_64-with-debian-buster-sid Python dependencies: pip: 21.1.2 setuptools: 49.6.0.post20210108 sklearn: 0.24.2 imblearn: 0.8.0 explainerdashboard: latest numpy: 1.19.5 scipy: 1.6.3 Cython: 0.29.23 pandas: 1.2.4 matplotlib: 3.4.2 joblib: 1.0.1 threadpoolctl: 2.1.0
closed
2021-09-17T12:18:59Z
2021-12-26T21:25:17Z
https://github.com/oegedijk/explainerdashboard/issues/147
[]
Abdelgha-4
6
jowilf/starlette-admin
sqlalchemy
563
Bug: sorting by datetime does not work
hi postgres+asyncpg starlette-admin==0.13.2 models.py ```python class Log(Base): created_at: Mapped[datetime] = mapped_column(DateTime(timezone=True), server_default=func.now()) ... ``` ``` 2024-07-17 12:25:35.227 UTC [4632] ERROR: operator does not exist: timestamp with time zone >= character varying at character 156 2024-07-17 12:25:35.227 UTC [4632] HINT: No operator matches the given name and argument types. You might need to add explicit type casts. 2024-07-17 12:25:35.227 UTC [4632] STATEMENT: SELECT logs.url, logs.endpoint, logs.created_at, logs.status_code, logs.content_length, logs.api_key, logs.body, logs.id FROM logs WHERE logs.created_at BETWEEN $1::VARCHAR AND $2::VARCHAR ORDER BY logs.created_at DESC LIMIT $3::INTEGER OFFSET $4::INTEGER (sqlalchemy.dialects.postgresql.asyncpg.ProgrammingError) <class 'asyncpg.exceptions.UndefinedFunctionError'>: operator does not exist: timestamp with time zone >= character varying HINT: No operator matches the given name and argument types. You might need to add explicit type casts. [SQL: SELECT logs.url, logs.endpoint, logs.created_at, logs.status_code, logs.content_length, logs.api_key, logs.body, logs.id FROM logs WHERE logs.created_at BETWEEN $1::VARCHAR AND $2::VARCHAR ORDER BY logs.created_at DESC LIMIT $3::INTEGER OFFSET $4::INTEGER] [parameters: ('2024-07-17T15:25:00+03:00', '2024-07-18T15:25:00+03:00', 100, 0)] (Background on this error at: https://sqlalche.me/e/20/f405) 2024-07-17 12:25:35.229 UTC [4632] ERROR: current transaction is aborted, commands ignored until end of transaction block 2024-07-17 12:25:35.229 UTC [4632] STATEMENT: SELECT logs.url, logs.endpoint, logs.created_at, logs.status_code, logs.content_length, logs.api_key, logs.body, logs.id FROM logs WHERE logs.created_at BETWEEN $1::VARCHAR AND $2::VARCHAR ORDER BY logs.created_at DESC LIMIT $3::INTEGER OFFSET $4::INTEGER INFO: 172.21.0.1:51892 - "GET /admin/api/log?skip=0&limit=100&order_by=created_at%20desc&where=%7B%22and%22%3A%5B%7B%22created_at%22%3A%7B%22between%22%3A%5B%222024-07-17T15%3A25%3A00%2B03%3A00%22%2C%222024-07-18T15%3A25%3A00%2B03%3A00%22%5D%7D%7D%5D%7D HTTP/1.1" 500 Internal Server Error ``` how do I fix it?
open
2024-07-17T12:29:13Z
2025-03-19T14:43:56Z
https://github.com/jowilf/starlette-admin/issues/563
[ "bug" ]
Kaiden0001
1
youfou/wxpy
api
46
如何根据接收的消息在多线程中控制注册消息?
文档中说明要在额外的线程控制开关注册消息。 但我在代码中测试过程中,发现在单个线程中也能个进行开关注册。 想问问作者多线程中如何实现,谢谢
closed
2017-05-04T09:37:39Z
2017-05-06T08:20:56Z
https://github.com/youfou/wxpy/issues/46
[ "question" ]
cxyfreedom
1
coqui-ai/TTS
pytorch
3,142
Fairseq voice cloning
### Describe the bug There seems to be an issue of activating voice conversion in Coqui when using _Fairseq_ models. Argument `--speaker_wav` works fine on identical text with the XTTS model, but with Fairseq it seems to be ignored. Have tried both .wav and .mp3, different lengths, file locations/names, with and without CUDA, several languages. There are no errors, just always the same generic male voice. Is this a known issue with voice cloning and Fairseq on Windows’ command line or is something wrong with my setup? ### To Reproduce _No response_ ### Expected behavior _No response_ ### Logs _No response_ ### Environment ```shell Windows, tts.exe ``` ### Additional context _No response_
closed
2023-11-05T17:02:20Z
2024-11-28T20:16:24Z
https://github.com/coqui-ai/TTS/issues/3142
[ "bug" ]
Poccapx
21
ultralytics/ultralytics
computer-vision
19,550
Yolov11-12 tensorboard images section
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Hello I'm collage student that using yolo models for object detection. I got stuck in somewhere. I have 10 labels for detection and these got pretty high mAP50 scores, but some labels are not as good scores as on the mAP50-95. For instance, I have traffic_light label. This label got 0.919 mAP50 score, but got 0.615 mAP50-95 score. Due to that, I want to see images that got false-true etc. on my data. I tried to use tensorboard but I couldn't view images section. So here is my question: **"Is there an any way to view the images with tensorboard ? "** if there isn possible, for this situation(higher mAP50, lower mAP50-95) what could I do ?. Thanks in advance. ### Additional _No response_
open
2025-03-06T09:53:21Z
2025-03-11T17:57:57Z
https://github.com/ultralytics/ultralytics/issues/19550
[ "question", "detect" ]
MehmetKaTR
7
sanic-org/sanic
asyncio
2,982
Github Actions need updating
### Is there an existing issue for this? - [X] I have searched the existing issues ### Is your feature request related to a problem? Please describe. GitHub actions for publishing a package are on an old version, which uses a deprecated version of Node JS. <img width="1109" alt="image" src="https://github.com/sanic-org/sanic/assets/25409753/757a829c-6a27-49cd-9cc4-ea9d40f6834b"> ### Describe the solution you'd like Update actions to latest versions. ### Additional context _No response_
open
2024-06-30T12:38:42Z
2024-06-30T15:28:45Z
https://github.com/sanic-org/sanic/issues/2982
[]
prryplatypus
3
davidteather/TikTok-Api
api
262
great job!! I want post a comment under a post,is there have any api for this?
**Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
closed
2020-09-14T15:44:09Z
2020-09-14T16:23:52Z
https://github.com/davidteather/TikTok-Api/issues/262
[ "feature_request" ]
Gh-Levi
3
thunlp/OpenPrompt
nlp
140
Use 2.1_conditional_generation.py , after fine-tuning, it only generates the same char. Why ?
use 2.1_conditional_generation.py in datasets/CondGen/webnlg_2017/ generated txt: ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
closed
2022-04-15T10:08:09Z
2022-05-30T09:14:56Z
https://github.com/thunlp/OpenPrompt/issues/140
[]
353xiong
4
torchbox/wagtail-grapple
graphql
297
grapple vs wagtail-grapple
Initially I foundy myself confused by the difference between grapple and wagtail grapple. I had to pip install wagtail-grapple, but then import grapple in my code. It would be nice if the package only had one canonical name.
closed
2023-01-13T15:09:56Z
2024-09-20T09:49:55Z
https://github.com/torchbox/wagtail-grapple/issues/297
[]
dopry
14
marcomusy/vedo
numpy
1,053
Is delete_cells_by_point_index parallelisable?
Current code: ``` def delete_cells_by_point_index(self, indices): """ Delete a list of vertices identified by any of their vertex index. See also `delete_cells()`. Examples: - [delete_mesh_pts.py](https://github.com/marcomusy/vedo/tree/master/examples/basic/delete_mesh_pts.py) ![](https://vedo.embl.es/images/basic/deleteMeshPoints.png) """ cell_ids = vtki.vtkIdList() self.dataset.BuildLinks() n = 0 for i in np.unique(indices): self.dataset.GetPointCells(i, cell_ids) for j in range(cell_ids.GetNumberOfIds()): self.dataset.DeleteCell(cell_ids.GetId(j)) # flag cell n += 1 self.dataset.RemoveDeletedCells() self.dataset.Modified() self.pipeline = OperationNode("delete_cells_by_point_index", parents=[self]) return self ``` Are there any issues with parallelising these two for loops? Even if it's via setting the number of jobs with joblib? It doesn't scale well (e.g. deleting half of a 150,000 point mesh). I'm not sure how VTK datasets work under the hood.
open
2024-02-16T02:52:30Z
2024-02-16T12:22:56Z
https://github.com/marcomusy/vedo/issues/1053
[]
JeffreyWardman
1
matterport/Mask_RCNN
tensorflow
2,191
How to reduce inference detection time
I am using CPU for detection, when I run model.detect([image], verbose=1), it takes more than 25 seconds to detect for single image. Is there any way to reduce the detection time?
open
2020-05-17T15:32:42Z
2020-11-19T10:31:00Z
https://github.com/matterport/Mask_RCNN/issues/2191
[]
Dgs29
3
JaidedAI/EasyOCR
pytorch
856
TypeError: __init__() got an unexpected keyword argument 'detection'
Hi, I am trying to run this line ; _reader = easyocr.Reader(['en'], detection='DB', recognition = 'Transformer') But it is throwing me the following error; TypeError: __init__() got an unexpected keyword argument 'detection'
closed
2022-09-17T19:06:30Z
2022-09-17T19:14:53Z
https://github.com/JaidedAI/EasyOCR/issues/856
[]
sabaina-Haroon
1
deezer/spleeter
deep-learning
751
[Discussion] your question
ERROR: Cannot uninstall 'llvmlite'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.
closed
2022-04-17T21:48:13Z
2022-04-29T09:14:45Z
https://github.com/deezer/spleeter/issues/751
[ "question" ]
sstefanovski21
0
LAION-AI/Open-Assistant
machine-learning
3,744
Can't open dashboard
ERROR: type should be string, got "\r\nhttps://github.com/LAION-AI/Open-Assistant/assets/29770761/254db19d-a284-41ca-8612-99103df12fac\r\n\r\n"
closed
2024-01-06T16:14:36Z
2024-01-06T17:25:55Z
https://github.com/LAION-AI/Open-Assistant/issues/3744
[]
DRYN07
1
benlubas/molten-nvim
jupyter
291
[Help] How to use cell magic like "%%time", "!ls" without pyright complaining?
First of all big thank you for this wonderful plugin. I'm trying to use cell magic like so: <img width="726" alt="Image" src="https://github.com/user-attachments/assets/0c41a1ee-1e75-4429-be26-b8601487cac3" /> They would execute perfectly fine via ipython, but pyright complains about the syntax. Is there a way to suppress the error message? On a side note that may be related, I'm not sure which plugin is causing this auto indent behavior after writing a cell magic: https://github.com/user-attachments/assets/9db4d2b4-1339-4075-91ba-a8b3f58e2ae5
closed
2025-03-02T13:48:28Z
2025-03-04T17:12:45Z
https://github.com/benlubas/molten-nvim/issues/291
[]
kanghengliu
6
kubeflow/katib
scikit-learn
2,149
Consolidate katib-cert-generator to katib-controller
/kind feature **Describe the solution you'd like** [A clear and concise description of what you want to happen.] I would like to consolidate the katib-cert-generator to the katib-controller. Currently, if we use the standalone cert-generator to generate self-signed certs for the webhooks, we can not use `Fail` as a failurePolicy for the `mutator.pod.katib.kubeflow.org` since we face the deadlock when we create the cert-generator pod via batch/job. By generating the self-signed certs in katib-controller, we can avoid the above dead lock. Ref: #2018 **Anything else you would like to add:** [Miscellaneous information that will assist in solving the issue.] --- <!-- Don't delete this message to encourage users to support your issue! --> Love this feature? Give it a 👍 We prioritize the features with the most 👍
closed
2023-04-24T13:40:15Z
2023-08-04T19:31:23Z
https://github.com/kubeflow/katib/issues/2149
[ "kind/feature", "release/0.16" ]
tenzen-y
4
huggingface/diffusers
deep-learning
10,745
Unloading multiple loras: norms do not return to their original values
When unloading from multiple loras on flux pipeline, I believe that the norm layers are not restored [here](https://github.com/huggingface/diffusers/blob/464374fb87610c53b2cf81e08d3df628fada3ce4/src/diffusers/loaders/lora_pipeline.py#L1575). Shouldn't we have: ```python if len(transformer_norm_state_dict) > 0: original_norm_layers_state_dict = self._load_norm_into_transformer( transformer_norm_state_dict, transformer=transformer, discard_original_layers=False, ) if not hasattr(transformer, "_transformer_norm_layers"): transformer._transformer_norm_layers = original_norm_layers_state_dict ```
open
2025-02-07T15:43:12Z
2025-03-17T15:03:25Z
https://github.com/huggingface/diffusers/issues/10745
[ "stale" ]
christopher5106
26
ultralytics/yolov5
pytorch
13,044
Parameters Fusion
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question How to integrate some parameters from imported external modules into the entire YOLOv5 model for joint training?I want to introduce some filters as a module into the YOLOv5 model to enhance images. Input the original image of Yolov5 to the result of additional enhancement module, and the enhanced image is obtained in the first layer of the convolution block into Yolov5, and then trained together.How can I merge the parameters inside the filters into the trainable parameter list of YOLOv5 for joint training and updating?Thank you for help. In common.py ![Enhanced module](https://github.com/ultralytics/yolov5/assets/106502924/c8d60082-affb-460e-a2c5-5ce47c897e9d) In yaml ![Enhance_yaml](https://github.com/ultralytics/yolov5/assets/106502924/291c6b54-0846-4357-ac84-7cd6cdaaef48) In train.py ![train_optimizer](https://github.com/ultralytics/yolov5/assets/106502924/e6efed26-0e61-4d17-943c-d1a356804de3) ### Additional _No response_
closed
2024-05-28T08:24:22Z
2024-10-20T19:46:44Z
https://github.com/ultralytics/yolov5/issues/13044
[ "question", "Stale" ]
znmzdx-zrh
9
JaidedAI/EasyOCR
pytorch
1,028
RuntimeError: DataLoader worker (pid(s) 4308) exited unexpectedly
I get this error on training and don't know what is causing it Traceback (most recent call last): File "<string>", line 1, in <module> File "C:\Users\FireAngelEmpire\anaconda3\lib\multiprocessing\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel) File "C:\Users\FireAngelEmpire\anaconda3\lib\multiprocessing\spawn.py", line 125, in _main prepare(preparation_data) File "C:\Users\FireAngelEmpire\anaconda3\lib\multiprocessing\spawn.py", line 236, in prepare _fixup_main_from_path(data['init_main_from_path']) File "C:\Users\FireAngelEmpire\anaconda3\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path main_content = runpy.run_path(main_path, File "C:\Users\FireAngelEmpire\anaconda3\lib\runpy.py", line 289, in run_path return _run_module_code(code, init_globals, run_name, File "C:\Users\FireAngelEmpire\anaconda3\lib\runpy.py", line 96, in _run_module_code _run_code(code, mod_globals, init_globals, File "C:\Users\FireAngelEmpire\anaconda3\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "D:\situri\EasyOCRtrainer\trainer\main.py", line 37, in <module> train(opt, amp=False) File "D:\situri\EasyOCRtrainer\trainer\train.py", line 40, in train train_dataset = Batch_Balanced_Dataset(opt) File "D:\situri\EasyOCRtrainer\trainer\dataset.py", line 83, in __init__ self.dataloader_iter_list.append(iter(_data_loader)) File "C:\Users\FireAngelEmpire\anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 441, in __iter__ return self._get_iterator() File "C:\Users\FireAngelEmpire\anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 388, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "C:\Users\FireAngelEmpire\anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 1042, in __init__ w.start() File "C:\Users\FireAngelEmpire\anaconda3\lib\multiprocessing\process.py", line 121, in start self._popen = self._Popen(self) File "C:\Users\FireAngelEmpire\anaconda3\lib\multiprocessing\context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "C:\Users\FireAngelEmpire\anaconda3\lib\multiprocessing\context.py", line 336, in _Popen return Popen(process_obj) File "C:\Users\FireAngelEmpire\anaconda3\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__ prep_data = spawn.get_preparation_data(process_obj._name) File "C:\Users\FireAngelEmpire\anaconda3\lib\multiprocessing\spawn.py", line 154, in get_preparation_data _check_not_importing_main() File "C:\Users\FireAngelEmpire\anaconda3\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main raise RuntimeError(''' RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgotten to use the proper idiom in the main module: if __name__ == '__main__': freeze_support() ... The "freeze_support()" line can be omitted if the program is not going to be frozen to produce an executable. Traceback (most recent call last): File "C:\Users\FireAngelEmpire\anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 1132, in _try_get_data data = self._data_queue.get(timeout=timeout) File "C:\Users\FireAngelEmpire\anaconda3\lib\queue.py", line 179, in get raise Empty _queue.Empty The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\situri\EasyOCRtrainer\trainer\main.py", line 37, in <module> train(opt, amp=False) File "D:\situri\EasyOCRtrainer\trainer\train.py", line 203, in train image_tensors, labels = train_dataset.get_batch() File "D:\situri\EasyOCRtrainer\trainer\dataset.py", line 101, in get_batch image, text = next(data_loader_iter) File "C:\Users\FireAngelEmpire\anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 633, in __next__ data = self._next_data() File "C:\Users\FireAngelEmpire\anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 1328, in _next_data idx, data = self._get_data() File "C:\Users\FireAngelEmpire\anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 1284, in _get_data success, data = self._try_get_data() File "C:\Users\FireAngelEmpire\anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 1145, in _try_get_data raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str)) from e RuntimeError: DataLoader worker (pid(s) 4308) exited unexpectedly I use default en_filtered_config.yaml settings
open
2023-05-23T22:58:06Z
2025-01-21T13:53:56Z
https://github.com/JaidedAI/EasyOCR/issues/1028
[]
deadworldisee
1
kizniche/Mycodo
automation
1,313
Add "lock" feature to functions & outputs pages similar to Dashboard "lock" button function.
Sometimes when accessing the Mycodo web GUI from a phone, functions and outputs can accidentally get moved and jumbled if the drag handles are touched when trying to scroll the screen. Would it be possible to add a lock feature like on the Dashboard pages that prevents any of the widgets from being moved? I now have a Mycodo system running that is being accessed by multiple users, and it would be nice to lock the Function and Output screens the same way I can lock the Dashboards to prevent them from getting jumbled by accident... or from changing layout when viewed on a different resolution browser.
open
2023-06-13T08:09:19Z
2023-08-11T03:40:47Z
https://github.com/kizniche/Mycodo/issues/1313
[ "enhancement" ]
LucidEye
1
ultralytics/ultralytics
machine-learning
19,838
where is yolo3D?
### Search before asking - [x] I have searched the Ultralytics [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar feature requests. ### Description where is yolo3D? ### Use case _No response_ ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
open
2025-03-24T08:35:01Z
2025-03-24T10:43:16Z
https://github.com/ultralytics/ultralytics/issues/19838
[ "enhancement", "question" ]
xinsuinizhuan
2
CPJKU/madmom
numpy
92
refactor add_arguments of all FilteredSpectrogramProcessor and MultiBandSpectrogramProcessor
Most of the duplicated code could be refactored to `audio.filters`.
closed
2016-02-18T12:56:16Z
2016-02-24T08:21:30Z
https://github.com/CPJKU/madmom/issues/92
[]
superbock
0
iterative/dvc
data-science
9,891
dvc data status: handle broken symlinks to cache
Managing shared caches is difficult, and so sometimes we are naughty and just delete data from the cache directly. (This is much easier than trying to manage `dvc gc -p`.) The result is dangling symlinks, and `dvc data status` trips over these with ... ``` ERROR: unexpected error - [Errno 2] No such file or directory ``` It would be nice to either have an `--allow-missing` option, so that `dvc data status` processes what _is_ there, or perhaps `dvc data status` could handle these situations as "not in cache", which would be a fair description.
open
2023-08-31T04:51:52Z
2023-09-06T03:26:34Z
https://github.com/iterative/dvc/issues/9891
[]
johnyaku
2
nvbn/thefuck
python
1,177
Feature Request: rvm
Would be great to add support for rvm, such as in the following example: ``` mensly ~> rvm use 2.7.2 Required ruby-2.7.2 is not installed. To install do: 'rvm install "ruby-2.7.2"' mensly ~> fuck No fucks given mensly ~> rvm install "ruby-2.7.2" ```
open
2021-03-22T02:41:38Z
2021-07-23T16:31:17Z
https://github.com/nvbn/thefuck/issues/1177
[ "help wanted", "hacktoberfest" ]
mensly
0
jupyter-book/jupyter-book
jupyter
1,912
Footnote does not show up with Utterances.
### Describe the bug Hi, I wish this is not a duplicated issue and I am sorry for my poor English in advance. **context** I have used Utterances as commenting service on my Jupyter Book and I just found out that a footnote does not show up with Utterances. I would like to note that I have manually inserted Utterances into each page by using the following code (which can be found [here](https://github.com/executablebooks/jupyter-book/blob/master/docs/interactive/comments/utterances.md#configure-utterances)) because Utterances had not showed up when I followed the [instruction](https://jupyterbook.org/en/stable/interactive/comments/utterances.html#utterances). ~~~ ```{raw} html <script type="text/javascript" src="https://utteranc.es/client.js" async="async" repo="HiddenBeginner/Deep-Reinforcement-Learnings" issue-term="pathname" theme="github-light" label="💬 comment" crossorigin="anonymous" /> ``` ~~~ ### Reproduce the bug The followings are one of my pages that contain footnotes and the corresponding Markdown/HTML files. I apologize this is not an English page. As you can see, I tried to add a footnote at the word "SOTA", but it did not show up. When I removed codes for embedding Utterance, the footnote showed up properly. - **Page**: https://hiddenbeginner.github.io/Deep-Reinforcement-Learnings/book/intro.html - **Markdown**: https://github.com/HiddenBeginner/Deep-Reinforcement-Learnings/blob/master/book/intro.md - **HTML**: https://github.com/HiddenBeginner/Deep-Reinforcement-Learnings/blob/gh-pages/book/intro.html#L396 - **_config.yml**: https://github.com/HiddenBeginner/Deep-Reinforcement-Learnings/blob/master/_config.yml ### List your environment ``` > jupyter-book --version Jupyter Book : 0.13.1 External ToC : 0.2.4 MyST-Parser : 0.15.2 MyST-NB : 0.13.2 Sphinx Book Theme : 0.3.3 Jupyter-Cache : 0.4.3 NbClient : 0.5.13 ``` Thank you in advance :).
open
2023-01-21T04:22:04Z
2023-01-24T06:45:16Z
https://github.com/jupyter-book/jupyter-book/issues/1912
[ "bug" ]
HiddenBeginner
1
slackapi/bolt-python
fastapi
350
Problem with globals in Socket Mode + Flask?
Hi! I use SocketMode in my application in conjunction with Flask, in order to make a health check of the probes, so I use in this form: ```bash @flask_app.route('/readiness') def readiness(): return {"status": "Ok"} if __name__ == "__main__": SocketModeHandler(app, settings.slack_app_token).connect() flask_app.run(host="0.0.0.0", port=14111, threaded=True, debug=True) ``` but in this case, for some reason, my global variables in the application are periodically lost between calls to actions. When I use it like this without Flask, everything works fine, but I need this health check probe ```bash if __name__ == "__main__": SocketModeHandler(app, settings.slack_app_token).start() ``` What could be the reason? And how can you get around this? #### The `slack_bolt` version slack-bolt==1.4.4 slack-sdk==3.4.2 #### Python runtime version Python 3.8.2 #### OS info ProductName: Mac OS X ProductVersion: 10.15.7 BuildVersion: 19H2 Darwin Kernel Version 19.6.0
closed
2021-05-25T13:34:29Z
2021-06-19T01:52:34Z
https://github.com/slackapi/bolt-python/issues/350
[ "question", "area:adapter" ]
De1f364
7
tflearn/tflearn
tensorflow
987
Interface for 3D max pooling inconsistent.
`tflearn.layers.conv.max_pool_1d` and `tflearn.layers.conv.max_pool_2d` default strides is equal to the kernel size. For`tflearn.layers.conv.max_pool_3d` this is not the case, there the default strides equals to 1. While not really a bug this could lead to confusion with people which are used to the 1d and 2d interfaces and do not realize that the interface is different in the 3d version.
open
2017-12-30T09:48:31Z
2017-12-30T09:49:14Z
https://github.com/tflearn/tflearn/issues/987
[]
deeplearningrobotics
0
jowilf/starlette-admin
sqlalchemy
391
Enhancement: Customizable profile menu
**Is your feature request related to a problem? Please describe.** The profile menu has only one button: logout. I'm proposing to implement a way to extend this menu from the python side. Maybe a hook like `auth_provider`. `profile_menu` could have a bunch of items in it and we could define the functionality with `expose` feature that I proposed in #389 **Additional context** I'm planning to do some work on this, wdyt about this feature @jowilf?
closed
2023-11-08T09:19:11Z
2023-12-04T00:53:33Z
https://github.com/jowilf/starlette-admin/issues/391
[ "enhancement" ]
hasansezertasan
0
Evil0ctal/Douyin_TikTok_Download_API
fastapi
452
[BUG] 一个星期前使用Web app过并且成功下载了200+视频,但是这个星期突然不行了,按照视频教程更换了Cookie,仍然不行
***发生错误的平台?*** 如:抖音 ***发生错误的端点?*** 如:Web APP ***提交的输入值?*** 如:短视频链接 ***是否有再次尝试?*** 如:是,发生错误后X时间后错误依旧存在。 ***你有查看本项目的自述文件或接口文档吗?*** 如:有,并且很确定该问题是程序导致的。 这是我的Cookie,已经按照了视频教程重复过多次,并且在一个星期前已经成功下载了200+视频,但是不知道为什么最近这几天突然出现视频教程中的情况突然不能解析了,有可能是我的Cookie除了问题吗? ttwid=1%7C-0dflMMeBDApYTLvDCHU5M9zmhMbAw9bQwL1B888aeQ%7C1721186940%7C5f2afca82abcb491efe8c7e89507eb2efd7065db436ad029b9968907e3204dfe; UIFID_TEMP=3c3e9d4a635845249e00419877a3730e2149197a63ddb1d8525033ea2b3354c2b36d8dea70ec55ef3bfed51712fd79effc967048ca658629071e58a611b087b705e805e59215e9bd4f3f99e55df3d64d; strategyABtestKey=%221721186954.034%22; FORCE_LOGIN=%7B%22videoConsumedRemainSeconds%22%3A180%7D; passport_csrf_token=74f7f4e43ed3f216c16e4796982cdf05; passport_csrf_token_default=74f7f4e43ed3f216c16e4796982cdf05; bd_ticket_guard_client_web_domain=2; UIFID=3c3e9d4a635845249e00419877a3730e2149197a63ddb1d8525033ea2b3354c2262f6b2f53dc3e825dd4d5b94b2c1b7e271861bbbf8ec76081e02ae101abda49170744221a288426c30f82755020708ebdb1479ed9405f571b2e832c09476249b27dc14a5e112b9987dfedeb2710df8fd409b287156739d0644f0bea9f02e0376d32a2eaf2a7630384bf1373393aeb43f580dae88956ae8b798841594723fce1; publish_badge_show_info=%220%2C0%2C0%2C1721187009386%22; _bd_ticket_crypt_doamin=2; __security_server_data_status=1; store-region-src=uid; volume_info=%7B%22isUserMute%22%3Afalse%2C%22isMute%22%3Atrue%2C%22volume%22%3A0.5%7D; stream_player_status_params=%22%7B%5C%22is_auto_play%5C%22%3A0%2C%5C%22is_full_screen%5C%22%3A0%2C%5C%22is_full_webscreen%5C%22%3A0%2C%5C%22is_mute%5C%22%3A1%2C%5C%22is_speed%5C%22%3A1%2C%5C%22is_visible%5C%22%3A0%7D%22; download_guide=%223%2F20240717%2F0%22; WallpaperGuide=%7B%22showTime%22%3A1721197085102%2C%22closeTime%22%3A0%2C%22showCount%22%3A1%2C%22cursor1%22%3A12%2C%22cursor2%22%3A0%7D; pwa2=%220%7C0%7C3%7C0%22; stream_recommend_feed_params=%22%7B%5C%22cookie_enabled%5C%22%3Atrue%2C%5C%22screen_width%5C%22%3A1920%2C%5C%22screen_height%5C%22%3A1080%2C%5C%22browser_online%5C%22%3Atrue%2C%5C%22cpu_core_num%5C%22%3A6%2C%5C%22device_memory%5C%22%3A8%2C%5C%22downlink%5C%22%3A1.3%2C%5C%22effective_type%5C%22%3A%5C%223g%5C%22%2C%5C%22round_trip_time%5C%22%3A400%7D%22; d_ticket=d3be1d1c514794e148e688b89e54f96380010; passport_assist_user=CkDm--hTvOv3nEIRYcioVyfALzX8qEAQEtREu2tsz6MopT5gQZjQb61iJsUpB4XmasV7N1vOMO0wf7eXqpkBBHkOGkoKPHfDqDGzaj8jgaZ3v9CbokP7pgRqx5kPzx0j_ruHplQ5i0w-UcKgL2arE5Q-yPDkskxtqJcCPOn7qwL-yRC38tYNGImv1lQgASIBAxZNPMs%3D; n_mh=CXji1rShkMmP9Poc3bNuzzGe8F_66lf_NsDkrYBa_Ok; sso_uid_tt=ff2232aa2246a526d1f5688fc341e51c; sso_uid_tt_ss=ff2232aa2246a526d1f5688fc341e51c; toutiao_sso_user=6bac0b1120e173cf26cf7982ef052dd0; toutiao_sso_user_ss=6bac0b1120e173cf26cf7982ef052dd0; sid_ucp_sso_v1=1.0.0-KDc0ODA3ZWZjMmFmYzFlMGU1NGE2NTk5Mjk2Njc3NDVjNTUyZjc0NzIKIAiP8uDD5Y0qELj73bQGGO8xIAww3I-WjwY4BkD0B0gGGgJobCIgNmJhYzBiMTEyMGUxNzNjZjI2Y2Y3OTgyZWYwNTJkZDA; ssid_ucp_sso_v1=1.0.0-KDc0ODA3ZWZjMmFmYzFlMGU1NGE2NTk5Mjk2Njc3NDVjNTUyZjc0NzIKIAiP8uDD5Y0qELj73bQGGO8xIAww3I-WjwY4BkD0B0gGGgJobCIgNmJhYzBiMTEyMGUxNzNjZjI2Y2Y3OTgyZWYwNTJkZDA; passport_auth_status=64b41651d22ef01c3bd7caabc5b4a3c3%2Cbd35a4f84b65debf4e03b65971e4218b; passport_auth_status_ss=64b41651d22ef01c3bd7caabc5b4a3c3%2Cbd35a4f84b65debf4e03b65971e4218b; uid_tt=fc9cc028b2baed1909e2390fb7b91756; uid_tt_ss=fc9cc028b2baed1909e2390fb7b91756; sid_tt=6e1976c2fda4e56d99ac2ed7092ef80e; sessionid=6e1976c2fda4e56d99ac2ed7092ef80e; sessionid_ss=6e1976c2fda4e56d99ac2ed7092ef80e; IsDouyinActive=true; FOLLOW_NUMBER_YELLOW_POINT_INFO=%22MS4wLjABAAAAXp9b19ZnYlvq_ENlNiL4OXsFHV2k2je9Yt1CbGCjJf0%2F1721232000000%2F0%2F1721204159595%2F0%22; home_can_add_dy_2_desktop=%221%22; _bd_ticket_crypt_cookie=c1acf69845fdeffea2b61ab4b4860e20; bd_ticket_guard_client_data=eyJiZC10aWNrZXQtZ3VhcmQtdmVyc2lvbiI6MiwiYmQtdGlja2V0LWd1YXJkLWl0ZXJhdGlvbi12ZXJzaW9uIjoxLCJiZC10aWNrZXQtZ3VhcmQtcmVlLXB1YmxpYy1rZXkiOiJCSGN0Z29QdlYrMER4MmR5TGVXcTl4cmY2UHlCR2syeENMZDVBNXhJakVxblBRa2Fham44dkhxL0NTOHpkR3lZNzIwUGp2YW90UkpnR3BRdW11K1RkVGM9IiwiYmQtdGlja2V0LWd1YXJkLXdlYi12ZXJzaW9uIjoxfQ%3D%3D; sid_guard=6e1976c2fda4e56d99ac2ed7092ef80e%7C1721204164%7C5183991%7CSun%2C+15-Sep-2024+08%3A15%3A55+GMT; sid_ucp_v1=1.0.0-KGQ4MjQ1YTAxYjE3M2Y3MDJhMzc5N2U3MmE5ZjJkMDFmY2IxZWJiNTIKGgiP8uDD5Y0qEMT73bQGGO8xIAw4BkD0B0gEGgJobCIgNmUxOTc2YzJmZGE0ZTU2ZDk5YWMyZWQ3MDkyZWY4MGU; ssid_ucp_v1=1.0.0-KGQ4MjQ1YTAxYjE3M2Y3MDJhMzc5N2U3MmE5ZjJkMDFmY2IxZWJiNTIKGgiP8uDD5Y0qEMT73bQGGO8xIAw4BkD0B0gEGgJobCIgNmUxOTc2YzJmZGE0ZTU2ZDk5YWMyZWQ3MDkyZWY4MGU; biz_trace_id=7e842496; store-region=cn-gd; odin_tt=be8a61af146d51affbe8ab19ff575abc11b795bef9755e544d0cc8410ac6ee759197ac56b90a0e262a033ebc23c7114a29c14ae6010dd3459af6a82a58ba659f
closed
2024-07-17T08:47:35Z
2024-07-27T21:53:09Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/452
[ "BUG" ]
Losoy1
6
deeppavlov/DeepPavlov
tensorflow
876
DeepPavlov Bert 10x slower than Pytorch Pretrained Bert
Hi, I modified the default DeepPavlov Bert to only output the pooled output (I followed the instructions given in [my previous issue](https://github.com/deepmipt/DeepPavlov/issues/825)). However, this modified DeepPavlov Bert version is 10x slower than the [Pytorch Pretrained Bert](https://github.com/huggingface/pytorch-pretrained-BERT). The code used for DeepPavlov Bert: ``` text = "Once when I was six years old I saw a magnificent picture in a book, called True Stories from Nature, about the primeval forest. It was a picture of a boa constrictor in the act of swallowing an animal. Here is a copy of the drawing." model = deeppavlov.build_model('tools/deeppavlov/squad_bert.json') embedding = model([text], [''])[0] ``` It takes 0.85 second to get the embedding. Moreover, `model([text*10], [''])[0]` only takes 1 second, whereas `model([text]*10, ['']*10)[0]` takes 4 seconds. This should take the same time, isn't it?
closed
2019-06-11T13:09:42Z
2020-05-13T09:48:54Z
https://github.com/deeppavlov/DeepPavlov/issues/876
[]
lcswillems
1
pydata/pandas-datareader
pandas
453
RLS 0.6.0
There have been a lot of changes in the past few days. Please report any issues here. I there are none raised by the start of next week, 0.6.0 will be released then. - [x] Add release date to what's new - [x] Tag release
closed
2018-01-18T16:36:28Z
2018-01-29T21:42:08Z
https://github.com/pydata/pandas-datareader/issues/453
[]
bashtage
24
opengeos/streamlit-geospatial
streamlit
39
issue
how to download data from this app and how to add districts,towns,etc how to add lat and long from live APi
closed
2022-04-12T16:39:32Z
2022-05-19T13:15:40Z
https://github.com/opengeos/streamlit-geospatial/issues/39
[]
Zar-Jamil
1
lundberg/respx
pytest
138
Consider changing the badges
[![tests](https://img.shields.io/github/workflow/status/lundberg/respx/test?label=tests&logo=github&logoColor=white&style=for-the-badge)](https://github.com/lundberg/respx/actions/workflows/test.yml) [![codecov](https://img.shields.io/codecov/c/github/lundberg/respx?logo=codecov&logoColor=white&style=for-the-badge)](https://codecov.io/gh/lundberg/respx) [![PyPi Version](https://img.shields.io/pypi/v/respx?logo=pypi&logoColor=white&style=for-the-badge)](https://pypi.org/project/respx/) [![Python Versions](https://img.shields.io/pypi/pyversions/respx?logo=python&logoColor=white&style=for-the-badge)](https://pypi.org/project/respx/)
closed
2021-03-03T21:13:58Z
2021-07-06T08:37:35Z
https://github.com/lundberg/respx/issues/138
[]
lundberg
0
ets-labs/python-dependency-injector
asyncio
865
Implement Python dependency injector library in Azure Functions
### Description of Issue I am trying to implement the dependency injector for Python Azure functions. i tried to implement it using a Python library called Dependency Injector. pip install dependency-injector [https://python-dependency-injector.ets-labs.org](https://python-dependency-injector.ets-labs.org/) However, I am getting below error. > Error: "functions.http_app_func. System.Private.CoreLib: Result: Failure Exception: AttributeError: 'dict' object has no attribute 'encode'" This is the code I am trying to implement. Please have someone guide me here. > function app file name: function_app.py ``` import azure.functions as func from fastapi import FastAPI, Depends, Request, Response from dependency_injector.wiring import inject, Provide from abstraction.di_container import DIContainer import logging import json from src.config.app_settings import AppSettings container = DIContainer() container.wire(modules=[__name__]) fast_app = FastAPI() @fast_app.exception_handler(Exception) async def handle_exception(request: Request, exc: Exception): return Response( status_code=400, content={"message": str(exc)}, ) @fast_app.get("/") @inject async def home(settings: AppSettings = Depends(Provide[DIContainer.app_config])): cont_name = settings.get("ContainerName", "No setting found") return { "info": f"Try to get values from local.settings using DI {cont_name}" } @fast_app.get("/v1/test/{test}") async def get_test(self, test: str): return { "test": test } app = func.AsgiFunctionApp(app=fast_app, http_auth_level=func.AuthLevel.ANONYMOUS) ``` > Dependency Injector file name: di_container.py ``` from dependency_injector import containers, providers from src.config.app_settings import AppSettings class DIContainer(containers.DeclarativeContainer): app_config = providers.Singleton(AppSettings) ``` > Application Setting to read local.settings.json file: app_settings.py ``` import json import os from dependency_injector import containers, providers class AppSettings: def __init__(self, file_path="local.settings.json"): self.config_data = {} if os.path.exists(file_path): with open(file_path, "r", encoding="utf-8") as file: data = json.load(file) self.config_data = data.get("Values", {}) def get(self, key: str, default=None): return os.getenv(key,self.config_data.get(key, default)) ```
open
2025-03-03T05:29:25Z
2025-03-03T05:29:25Z
https://github.com/ets-labs/python-dependency-injector/issues/865
[]
Ramkisubramanian
0
pydantic/logfire
fastapi
813
Cannot incorporate VCS root_path
I am struggling to get the root_path component of my VCS configuration to work. I've tried configuring via `logfire.CodeSource()` as well as setting the `OTEL_RESOURCE_ATTRIBUTES` environment variable (not at the same time). My current configuration is as follows - ``` logfire.configure( environment=os.environ["ENVIRONMENT"], code_source=logfire.CodeSource( repository=os.environ["LOGFIRE_REPOSITORY"], revision=os.environ["LOGFIRE_REVISION"], root_path=os.environ["LOGFIRE_ROOT_PATH"], ), ) ``` The root directory of my code is in a subdirectory mounted in my Docker container at - /repository_root_path/code_subdirectory And my actual python code runs out of - /repository_root_path/code_subdirectory/src I've set the variables as the following - ``` LOGFIRE_REPOSITORY=https://github.com/my-org/my-repo LOGFIRE_REVISION=main LOGFIRE_ROOT_PATH=code_subdirectory ``` The resulting links generated in Logfire follow this format - https://github.com/my-org/my-repo/blob/main/src/path/to/code Whereas the valid link is - https://github.com/my-org/my-repo/blob/main/code_subdirectory/src/path/to/code Upon further review, it seems like changing the `root_path` doesn't impact the links at all so I'm not sure what to do.
open
2025-01-21T16:14:51Z
2025-01-23T16:28:00Z
https://github.com/pydantic/logfire/issues/813
[]
fwinokur
6
PaddlePaddle/PaddleHub
nlp
2,195
paddlehub 引用sklearn 报 cannot load any more object with static TLS 错误
系统环境 paddle.__version__ 2.4.0-rc0 #### 具体代码 !/usr/bin/env python #-*- coding=utf8 -*- import os import sys import paddlehub as hub module = hub.Module(name="lac") test_text = '小明硕士毕业于中国科学院计算所,后在日本京都大学深造' results = module.lexical_analysis(texts=test_text) ############### Traceback (most recent call last): File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/sklearn/__check_build/__init__.py", line 44, in <module> from ._check_build import check_build # noqa ImportError: dlopen: cannot load any more object with static TLS During handling of the above exception, another exception occurred: Traceback (most recent call last): File "test_lac.py", line 5, in <module> import paddlehub as hub File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/paddlehub/__init__.py", line 31, in <module> from paddlehub import datasets File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/paddlehub/datasets/__init__.py", line 16, in <module> from paddlehub.datasets.chnsenticorp import ChnSentiCorp File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/paddlehub/datasets/chnsenticorp.py", line 19, in <module> from paddlehub.datasets.base_nlp_dataset import TextClassificationDataset File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/paddlehub/datasets/base_nlp_dataset.py", line 21, in <module> import paddlenlp File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/paddlenlp/__init__.py", line 29, in <module> from . import metrics File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/paddlenlp/metrics/__init__.py", line 16, in <module> from .chunk import ChunkEvaluator File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/paddlenlp/metrics/chunk.py", line 6, in <module> from seqeval.metrics.sequence_labeling import get_entities File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/seqeval/metrics/__init__.py", line 1, in <module> from seqeval.metrics.sequence_labeling import (accuracy_score, File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/seqeval/metrics/sequence_labeling.py", line 14, in <module> from seqeval.metrics.v1 import SCORES, _precision_recall_fscore_support File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/seqeval/metrics/v1.py", line 5, in <module> from sklearn.exceptions import UndefinedMetricWarning File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/sklearn/__init__.py", line 79, in <module> from . import __check_build # noqa: F401 File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/sklearn/__check_build/__init__.py", line 46, in <module> raise_build_error(e) File "/ssd4/liuyaping/python38/lib/python3.8/site-packages/sklearn/__check_build/__init__.py", line 31, in raise_build_error raise ImportError("""%s ImportError: dlopen: cannot load any more object with static TLS ___________________________________________________________________________ Contents of /ssd4/liuyaping/python38/lib/python3.8/site-packages/sklearn/__check_build: _check_build.cpython-38-x86_64-linux-gnu.sosetup.py __pycache__ __init__.py ___________________________________________________________________________ It seems that scikit-learn has not been built correctly.
open
2023-01-12T06:42:38Z
2023-01-13T09:38:14Z
https://github.com/PaddlePaddle/PaddleHub/issues/2195
[]
hnlslyp
1
JaidedAI/EasyOCR
machine-learning
746
Export to ONNX and use ONNX Runtime, working. Guide.
This is an explanation of how to export the recognition model and the detection model to ONNX format. Then a brief explanation of how to use ONNX Runtime to use these models. ONNX is an intercompatibility standard for AI models. It allows us to use the same model in different types of programming languages, operating systems, acceleration platforms and runtimes. Personally I need to make a C++ build of EasyOCR functionality. After failing, due to several reasons, to make a C++ build using Pytorch and the EasyOCR models, I found that the best solution is to transform the models to ONNX and then program in C++ using ONNX Runtime. Then, compiling is very easy compared to PyTorch. Due to time constraints I am not presenting a PR. It will be necessary for you to modify a copy of EasyOCR locally. ## Requirements We must install the modules: [onnx](https://github.com/onnx/onnx) and [onnxruntime](https://onnxruntime.ai/docs/get-started/with-python.html). In my case I also had to manually install the [protobuf](https://pypi.org/project/protobuf/) module in version **3.20**. I am using: - EasyOCR 1.5.0 - Python 3.9.9 - torch 1.10.1 - torchvision 0.11.2 - onnx 1.11.0 - onnxruntime 1.11.1 ## Exporting ONNX models The best place to modify the EasyOCR code to export the models is right after EasyOCR uses the loaded model to perform the prediction. ### Exporting detection model In `easyocr/detection.py` after `y, feature = net(x)` (line 46) add: ``` batch_size_1 = 500 batch_size_2 = 500 in_shape=[1, 3, batch_size_1, batch_size_2] dummy_input = torch.rand(in_shape) dummy_input = dummy_input.to(device) torch.onnx.export( net.module, dummy_input, "detectionModel.onnx", export_params=True, opset_version=11, input_names = ['input'], output_names = ['output'], dynamic_axes={'input' : {2 : 'batch_size_1', 3: 'batch_size_2'}}, ) ``` We generate a dumb input, totally random, so that onnx can perform the export. It doesn't matter the input, the important thing is that it has the correct structure. The detection model uses an input that is a 4-dimensional tensor, where the first dimension always has a value of 1, the second a value of 3 and the third and fourth values depend on the resolution of the analyzed image. I have assumed this conclusion after analyzing the data flow, I may be in error and this needs to be corrected. Note that we export with the parameters (`export_params=True`) and specify that the two final dimensions of the input tensor are of dynamic size (`dynamic_axes=...`). Then we can add this code to immediately import the exported model and validate that it is not corrupted: ``` onnx_model = onnx.load("detectionModel.onnx") try: onnx.checker.check_model(onnx_model) except onnx.checker.ValidationError as e: print('The model is invalid: %s' % e) else: print('The model is valid!') ``` Remember to `import onnx` in the file header. To run the export just use EasyOCR and perform an analysis on any image indicating the language to be detected. This will download the corresponding model, run the detection and simultaneously export the model. If we change the language we will have to export a new model. Once the model is exported, we can comment or delete the code. ### Exporting the recognition model This model is a bit more difficult to export and we will have to do some black magic. In `easyocr/recognition.py` after `preds = model(image, text_for_pred)` (line 111) add: ``` batch_size_1_1 = 500 in_shape_1=[1, 1, 64, batch_size_1_1] dummy_input_1 = torch.rand(in_shape_1) dummy_input_1 = dummy_input_1.to(device) batch_size_2_1 = 50 in_shape_2=[1, batch_size_2_1] dummy_input_2 = torch.rand(in_shape_2) dummy_input_2 = dummy_input_2.to(device) dummy_input = (dummy_input_1, dummy_input_2) torch.onnx.export( model.module, dummy_input, "recognitionModel.onnx", export_params=True, opset_version=11, input_names = ['input1','input2'], output_names = ['output'], dynamic_axes={'input1' : {3 : 'batch_size_1_1'}}, ) ``` As with the detection model, we create a dumb input to be able to export the model. In this case, the model input is 2 elements. The first element is a 4-dimensional tensor, where the first dimension always has a value of 1, the second a value of 1, the third a value of 64 and the fourth a dynamic value. The second element is a 2-dimensional tensor, where the first dimension always has a value of 1 and the second a dynamic value. Again, I may be wrong about the structure of these inputs, it was what I observed empirically. **First strange thing:** ONNX for some reason, in performing its analysis of the model structure, concludes that the second input element does not perform any function. So even if we tell ONNX to export a model with 2 input elements, it will always export a model with 1 input element. It appears that this is due to an internal ONNX process where it "cuts" parts of the network defining graph that do not alter the network output. According to the documentation we can stop this "cutting" process and export the network without optimization using the `do_constant_folding=False` parameter as an option. [But due to a bug](https://github.com/pytorch/pytorch/issues/44299) it is not taking effect. In spite of the above, we can observe that this lack of the second element does not generate losses in the accuracy of the model. For this reason, in the dynamic elements (`dynamic_axes=`) we only define one element where its third dimension is variable in size. If anyone manages to export the model with the two input elements, it would be appreciated if you could notify us. **Second strange thing:** In order to export the recognition model, we must edit `easyocr/model/vgg_model.py`. It turns out that the [AdaptiveAvgPool2d](https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveAvgPool2d.html) operator is not fully [supported](https://github.com/onnx/onnx/blob/main/docs/Operators.md) by ONNX. **When it uses the "None" option**, in the configuration tuple (which indicates that the size must be equal to the input), the export fails. To fix this we need to change line 11: From `self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1))` to `self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((256, 1))` Why 256? I don't know. Is there a better option? I have not found one. Does it generate errors in the model? I have not been able to find any accuracy problems. If someone can explain why with 256 it works and what the consequences are, it would be appreciated. Well then, just like the detection model we can add these lines to validate the exported model: ``` onnx_model = onnx.load("detectionModel.onnx") try: onnx.checker.check_model(onnx_model) except onnx.checker.ValidationError as e: print('The model is invalid: %s' % e) else: print('The model is valid!') ``` Remember to `import onnx` in the file header. To export the recognition model we must run EasyOCR using any image and the desired language. In the process you will see that some alerts will be generated, but you can ignore them. The model will be exported several times, since the added code has been placed inside a for loop. But this should not cause any problems. Remember to comment or remove the added code afterwards. If you change language, you must export a new ONNX model. ## Using ONNX models in EasyOCR To test and validate that the models work, we will modify the code again. This time we will comment the lines where EasyOCR uses the Pytorch prediction and we will add the code to use ONNX Runtime to perform the prediction. ### Using the ONNX detection model First we must add this helper function to the file `easyocr/detection.py`: ``` def to_numpy(tensor): return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() ``` Then we must comment on linear 46 where it says `y, feature = net(x)`. After this line we must add: ``` ort_session = onnxruntime.InferenceSession("detectionModel.onnx") ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)} ort_outs = ort_session.run(None, ort_inputs) y = ort_outs[0] ``` Remember to `import onnxruntime` in the file header. In this way we load the ONNX model of detection and pass as input the value "x". Since ONNX does not use Pytorch, we must convert "x" from a Tensor to a standard numpy array. Para eso usamos la función de ayuda The output of ONNX is left in the "y" variable. One last modification must be made on lines 51 and 52. Change from: ``` score_text = out[:, :, 0].cpu().data.numpy() score_link = out[:, :, 1].cpu().data.numpy() ``` to ``` score_text = out[:, :, 0] score_link = out[:, :, 1] ``` This is because the model output is already a numpy array and does not need to be converted from a Tensor. **To test, we can run EasyOCR with some image and see the result.** ### Using the ONNX recognition model We must add the help function to the file `easyocr/recognition.py`: ``` def to_numpy(tensor): return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() ``` Then we must comment on linear 111 to stop using PyTorch prediction: `preds = model(image, text_for_pred)`. And right after that add: ``` ort_session = onnxruntime.InferenceSession("recognitionModel.onnx") ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(image)} ort_outs = ort_session.run(None, ort_inputs) preds = torch.from_numpy(ort_outs[0]) ``` Remember to `import onnxruntime` in the file header. We can see how we are only passing one input entity. Although this model, in theory, is supposed to receive two. As with the detection model, the input must be transformed from a Tensor to a numpy array. We convert the output from an array to a Tensor, so that the data flow continues normally. **To test, we can run EasyOCR with some image and see the result.** ## Others We can use this function to compare the output of the PyTorch model and the ONNX model to quantify the difference: `np.testing.assert_allclose(to_numpy(<PYTORCH_PREDICTION>), <ONNX_PREDICTION>, rtol=1e-03, atol=1e-05)` In my tests, the difference between the detection models is minimal and passes the test correctly. In case of the difference in the recognition models, the difference is slightly larger and the test fails. In spite of this it fails by very little and I have not observed failures in the actual recognition of the characters. I don't know if this is due to the problem with ONNX not detecting the two input entities, the problem with AdaptiveAvgPool2d or just a natural error in the model export and decimal approximations. ## Final note I hope this will be of help to continue with the development of this excellent tool. I hope that exporters in EasyOCR and Pytorch can review this and find the answers to the questions raised.
open
2022-06-05T22:38:00Z
2025-03-05T11:58:29Z
https://github.com/JaidedAI/EasyOCR/issues/746
[]
Kromtar
42
rthalley/dnspython
asyncio
599
tsigkey not recognized by peer with 2.0.0 (but works with 1.16.0)
Something changed in how tsigkey names are transmitted to the DNS server. This is the exact same code with 2.0.0 vs 1.16.0: > (pyddns) mira/scanner (64) $ ./dnspython-delete-name.py usenet CNAME kamidake > Deleting key 'usenet', of type 'CNAME' with value 'kamidake' in 'apricot.com' > Traceback (most recent call last): > File "./dnspython-delete-name.py", line 59, in <module> > main() > File "./dnspython-delete-name.py", line 50, in main > response = dns.query.tcp(update, args['--dns_server']) > File "/Users/scanner/.virtualenvs/pyddns/lib/python3.8/site-packages/dns/query.py", line 759, in tcp > (r, received_time) = receive_tcp(s, expiration, one_rr_per_rrset, > File "/Users/scanner/.virtualenvs/pyddns/lib/python3.8/site-packages/dns/query.py", line 691, in receive_tcp > r = dns.message.from_wire(wire, keyring=keyring, request_mac=request_mac, > File "/Users/scanner/.virtualenvs/pyddns/lib/python3.8/site-packages/dns/message.py", line 933, in from_wire > m = reader.read() > File "/Users/scanner/.virtualenvs/pyddns/lib/python3.8/site-packages/dns/message.py", line 859, in read > self._get_section(MessageSection.ADDITIONAL, adcount) > File "/Users/scanner/.virtualenvs/pyddns/lib/python3.8/site-packages/dns/message.py", line 820, in _get_section > dns.tsig.validate(self.parser.wire, > File "/Users/scanner/.virtualenvs/pyddns/lib/python3.8/site-packages/dns/tsig.py", line 183, in validate > raise PeerBadKey > dns.tsig.PeerBadKey: The peer didn't know the key we used vs: > (pyddns) mira/scanner (70) $ ./dnspython-delete-name.py usenet CNAME kamidake > Deleting key 'usenet', of type 'CNAME' with value 'kamidake' in 'apricot.com' > Got response: id 43936 > opcode UPDATE > rcode NOERROR > flags QR > ;ZONE > apricot.com. IN SOA > ;PREREQ > ;UPDATE > ;ADDITIONAL ``` keyring = dns.tsigkeyring.from_text({TSIG_KEYNAME: tsig_key}) .... update = dns.update.Update(args['--zone'], keyring=keyring) update.delete(args['<name>'], args['<type>'], args['<value>']) response = dns.query.tcp(update, args['--dns_server']) ```
closed
2020-10-28T23:17:35Z
2021-10-21T06:28:38Z
https://github.com/rthalley/dnspython/issues/599
[]
scanner
3
ansible/ansible
python
84,075
`ansible-test` host properties detection sometimes tracebacks in CI
### Summary Specifically, this https://github.com/ansible/ansible/blob/f1f0d9bd5355de5b45b894a9adf649abb2f97df5/test/lib/ansible_test/_internal/docker_util.py#L327C31-L327C37 causes an `IndexError`, meaning that blocks is sometimes a list of 2 elements and not 3. ### Issue Type Bug Report ### Component Name ansible-test ### Ansible Version ```console devel ``` ### Configuration ```console N/A ``` ### OS / Environment Ubuntu 24.04 in our CI ### Steps to Reproduce Context: https://dev.azure.com/ansible/ansible/_build/results?buildId=125234&view=logs&j=6ce7cab1-69aa-56f4-11b1-869c767eb409&t=84972f9e-94d6-5fa2-afad-226d677b2f72&l=150 ### Expected Results Exception is handled, but I don't know what causes `ansible-test-probe` to print out less lines. ### Actual Results ```python-traceback Traceback (most recent call last): File "/__w/1/ansible/bin/ansible-test", line 44, in <module> main() File "/__w/1/ansible/bin/ansible-test", line 35, in main cli_main(args) File "/__w/1/ansible/test/lib/ansible_test/_internal/__init__.py", line 65, in main main_internal(cli_args) File "/__w/1/ansible/test/lib/ansible_test/_internal/__init__.py", line 91, in main_internal args.func(config) File "/__w/1/ansible/test/lib/ansible_test/_internal/commands/integration/posix.py", line 43, in command_posix_integration host_state, internal_targets = command_integration_filter(args, all_targets) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/__w/1/ansible/test/lib/ansible_test/_internal/commands/integration/__init__.py", line 941, in command_integration_filter cloud_init(args, internal_targets) File "/__w/1/ansible/test/lib/ansible_test/_internal/commands/integration/cloud/__init__.py", line 162, in cloud_init provider.setup() File "/__w/1/ansible/test/lib/ansible_test/_internal/commands/integration/cloud/httptester.py", line 57, in setup descriptor = run_support_container( ^^^^^^^^^^^^^^^^^^^^^^ File "/__w/1/ansible/test/lib/ansible_test/_internal/containers.py", line 157, in run_support_container max_open_files = detect_host_properties(args).max_open_files ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/__w/1/ansible/test/lib/ansible_test/_internal/docker_util.py", line 327, in detect_host_properties mounts = MountEntry.loads(blocks[2]) ~~~~~~^^^ IndexError: list index out of range ``` ### Code of Conduct - [X] I agree to follow the Ansible Code of Conduct
open
2024-10-08T13:34:04Z
2025-02-24T19:00:57Z
https://github.com/ansible/ansible/issues/84075
[ "bug", "has_pr" ]
webknjaz
14