repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
pytorch/vision
computer-vision
8,730
release for python 3.13
### 🚀 The feature Any plans to release for python 3.13? thanks ### Motivation, pitch torch is already compatible with 3.13 ### Alternatives _No response_ ### Additional context _No response_
closed
2024-11-14T08:41:04Z
2025-02-27T10:40:56Z
https://github.com/pytorch/vision/issues/8730
[]
dpinol
6
wagtail/wagtail
django
12,408
Streamfield migrations fail on revisions that don't have target field
### Issue Summary `wagtail.blocks.migrations.migrate_operation.MigrateStreamData` does not gracefully handle revisions that do not contain the field that is being operated on. This may occur when running a migration on a model that has revisions from before the creation of the field on the model. We do support limiting which revisions to operate on by date, but we should also gracefully handle this scenario (by doing nothing if the field does not exist in a given revision). ### Impact Prevents migrations from being successfully run. ### Steps to Reproduce 1. Start a new Wagtail project 2. makemigrations, migrate, createsuperuser 3. Save a revision of the homepage 4. Add a "body" StreamField to the homepage 5. makemigrations 6. Create an empty migration in the home app 7. Add a streamfield data migration operation that operates on the newly added "body" field ```python # Generated by Django 4.2.16 on 2024-10-12 10:51 from django.db import migrations from wagtail.blocks.migrations.migrate_operation import MigrateStreamData from wagtail.blocks.migrations.operations import AlterBlockValueOperation class Migration(migrations.Migration): dependencies = [ ('home', '0003_homepage_body'), ] operations = [ MigrateStreamData( "home", "homepage", "body", [ (AlterBlockValueOperation("Hello world"), "text") ] ) ] ``` 8. Run the migrations ```sh gitpod /workspace/wagtail-gitpod (main) $ python manage.py migrate Operations to perform: Apply all migrations: admin, auth, contenttypes, home, sessions, taggit, wagtailadmin, wagtailcore, wagtaildocs, wagtailembeds, wagtailforms, wagtailimages, wagtailredirects, wagtailsearch, wagtailusers Running migrations: Applying home.0003_homepage_body... OK Applying home.0004_auto_20241012_1051...Traceback (most recent call last): File "manage.py", line 10, in <module> execute_from_command_line(sys.argv) File "/workspace/.pip-modules/lib/python3.8/site-packages/django/core/management/__init__.py", line 442, in execute_from_command_line utility.execute() File "/workspace/.pip-modules/lib/python3.8/site-packages/django/core/management/__init__.py", line 436, in execute self.fetch_command(subcommand).run_from_argv(self.argv) File "/workspace/.pip-modules/lib/python3.8/site-packages/django/core/management/base.py", line 412, in run_from_argv self.execute(*args, **cmd_options) File "/workspace/.pip-modules/lib/python3.8/site-packages/django/core/management/base.py", line 458, in execute output = self.handle(*args, **options) File "/workspace/.pip-modules/lib/python3.8/site-packages/django/core/management/base.py", line 106, in wrapper res = handle_func(*args, **kwargs) File "/workspace/.pip-modules/lib/python3.8/site-packages/django/core/management/commands/migrate.py", line 356, in handle post_migrate_state = executor.migrate( File "/workspace/.pip-modules/lib/python3.8/site-packages/django/db/migrations/executor.py", line 135, in migrate state = self._migrate_all_forwards( File "/workspace/.pip-modules/lib/python3.8/site-packages/django/db/migrations/executor.py", line 167, in _migrate_all_forwards state = self.apply_migration( File "/workspace/.pip-modules/lib/python3.8/site-packages/django/db/migrations/executor.py", line 252, in apply_migration state = migration.apply(state, schema_editor) File "/workspace/.pip-modules/lib/python3.8/site-packages/django/db/migrations/migration.py", line 132, in apply operation.database_forwards( File "/workspace/.pip-modules/lib/python3.8/site-packages/django/db/migrations/operations/special.py", line 193, in database_forwards self.code(from_state.apps, schema_editor) File "/workspace/.pip-modules/lib/python3.8/site-packages/wagtail/blocks/migrations/migrate_operation.py", line 159, in migrate_stream_data_forward raw_data = json.loads(revision.content[self.field_name]) KeyError: 'body' ``` https://github.com/wagtail/wagtail/blob/309e47f0ccb19dba63aaa64d52914e87eef390dc/wagtail/blocks/migrations/migrate_operation.py#L159 ### Technical details - Python version: 3.8.12 - Django version: 4.2.16 - Wagtail version: 6.2.2
open
2024-10-12T11:03:21Z
2024-12-01T03:58:01Z
https://github.com/wagtail/wagtail/issues/12408
[ "type:Bug", "component:Streamfield" ]
jams2
2
xinntao/Real-ESRGAN
pytorch
328
请问在哪可以看到生成器的网络结构
作者您好,我没有在代码中找到生成器的arch文件,basicsr的arch文件夹下也没有ESRGAN的arch文件 请问在哪里可以看到ESRGAN的arch文件
closed
2022-05-12T10:41:16Z
2023-02-15T07:34:34Z
https://github.com/xinntao/Real-ESRGAN/issues/328
[]
EgbertMeow
1
miguelgrinberg/Flask-Migrate
flask
73
The multidb is not putting changes in the correct database.
I am having an issue where my schema changes are not showing up in the correct database. Furthermore, the test_multidb_migrate_upgrade fails when running "python setup.py test". When I run these commands: ``` sh cd tests rm *.db && rm -rf migrations # cleanup python app_multidb.py db init --multidb python app_multidb.py db migrate python app_multidb.py db upgrade ``` I get this version. Which is wrong, because User should be in upgrade_, not upgrade_db1. ``` python """empty message Revision ID: af440038899 Revises: Create Date: 2015-08-17 14:24:58.842302 """ # revision identifiers, used by Alembic. revision = 'af440038899' down_revision = None branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa def upgrade(engine_name): globals()["upgrade_%s" % engine_name]() def downgrade(engine_name): globals()["downgrade_%s" % engine_name]() def upgrade_(): pass def downgrade_(): pass def upgrade_db1(): ### commands auto generated by Alembic - please adjust! ### op.create_table('user', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('group', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint('id') ) ### end Alembic commands ### def downgrade_db1(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('group') op.drop_table('user') ### end Alembic commands ### ``` Using the latest libraries, not sure if a recent upgrade broke it: ``` $ pip freeze Flask==0.10.1 Flask-Migrate==1.5.0 Flask-SQLAlchemy==2.0 Flask-Script==2.0.5 Jinja2==2.8 Mako==1.0.1 MarkupSafe==0.23 SQLAlchemy==1.0.8 Werkzeug==0.10.4 alembic==0.8.0 itsdangerous==0.24 python-editor==0.3 wsgiref==0.1.2 ``` For sanity, can you confirm unit tests still pass with alembic 0.8, which I believe was released a few days ago? Thanks!
closed
2015-08-17T18:38:27Z
2015-09-04T17:57:35Z
https://github.com/miguelgrinberg/Flask-Migrate/issues/73
[ "bug" ]
espositocode
3
jina-ai/serve
fastapi
5,994
Dynamic k8s namespace for generating kubernetes yaml
**Describe the feature** The current implementation for to_kubernetes_yaml flow [takes `k8s_namespace` to be explicitly specified somewhere otherwise it outputs as `default` namespace](https://github.com/jina-ai/jina/blob/34664ee8db0a0e593a6c71dd6476cbf266a80641/jina/orchestrate/flow/base.py#L2772C69-L2772C69). The namespace need not be explicitly set and can be dynamically injected through metadata, hence improving the reusability of the generated templates. For example: ```shell kubectl apply -f "file.yaml" --namespace=prod kubectl apply -f "file.yaml" --namespace=dev ``` **Your proposal** We may accept that the Optional field can be `None` and propagate that when generating the yaml, in which case the generated yaml will include this for env injection: ```yaml - name: K8S_NAMESPACE_NAME valueFrom: fieldRef: fieldPath: metadata.namespace ``` And of course we may remove the injection of namespace for all the generated objects in this case. More info from official docs - https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-information/ - https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/
closed
2023-07-30T11:05:54Z
2024-06-06T00:18:51Z
https://github.com/jina-ai/serve/issues/5994
[ "Stale" ]
sansmoraxz
25
suitenumerique/docs
django
113
🐛Editor difference with PDF
## Bug Report Some properties of the editor are not reflected to the PDF (color / bg / alignment) An issue was opened about it: - [x] https://github.com/TypeCellOS/BlockNote/issues/893 ## Demo ![image](https://github.com/numerique-gouv/impress/assets/25994652/8462a56a-1406-45b9-8a19-ed2adb84cb52) ## Code https://github.com/numerique-gouv/impress/blob/9c19b22a66766018f91262f9d1bd243cdecfa884/src/frontend/apps/impress/src/features/docs/doc-tools/components/ModalPDF.tsx#L88
closed
2024-07-01T12:50:13Z
2024-08-02T15:34:03Z
https://github.com/suitenumerique/docs/issues/113
[ "bug", "enhancement", "frontend" ]
AntoLC
0
agronholm/anyio
asyncio
418
'get_coro' doesn't apply to a 'Task' object
Don't know if I should file it under `anyio` or `httpx`. I have a FastAPI web app that makes some external calls with `httpx`. I sometimes (timeout involved? loop terminated elsewhere?) get the following error. I was unsuccessful at reproducing it in a minimal example, so please forgive me for just pasting the traceback. As you can see in the first block, it is just a call with `httpx.AsycnClient` GET. using python 3.9 (dockerized with python:3.9-alpine3.14) anyio 3.5.0 httpx 0.19.0 EDIT: The problem could be related to the use of nest-asyncio elsewhere in the app. ``` File "/usr/local/lib/python3.9/site-packages/httpx/_client.py", line 1740, in get return await self.request( File "/usr/local/lib/python3.9/site-packages/httpx/_client.py", line 1494, in request response = await self.send( File "/usr/local/lib/python3.9/site-packages/httpx/_client.py", line 1586, in send response = await self._send_handling_auth( File "/usr/local/lib/python3.9/site-packages/httpx/_client.py", line 1616, in _send_handling_auth response = await self._send_handling_redirects( File "/usr/local/lib/python3.9/site-packages/httpx/_client.py", line 1655, in _send_handling_redirects response = await self._send_single_request(request, timeout) File "/usr/local/lib/python3.9/site-packages/httpx/_client.py", line 1699, in _send_single_request ) = await transport.handle_async_request( File "/usr/local/lib/python3.9/site-packages/httpx/_transports/default.py", line 281, in handle_async_request ) = await self._pool.handle_async_request( File "/usr/local/lib/python3.9/site-packages/httpcore/_async/connection_pool.py", line 219, in handle_async_request async with self._connection_acquiry_lock: File "/usr/local/lib/python3.9/site-packages/httpcore/_backends/base.py", line 76, in __aenter__ await self.acquire() File "/usr/local/lib/python3.9/site-packages/httpcore/_backends/anyio.py", line 104, in acquire await self._lock.acquire() File "/usr/local/lib/python3.9/site-packages/anyio/_core/_synchronization.py", line 119, in acquire self.acquire_nowait() File "/usr/local/lib/python3.9/site-packages/anyio/_core/_synchronization.py", line 150, in acquire_nowait task = get_current_task() File "/usr/local/lib/python3.9/site-packages/anyio/_core/_testing.py", line 59, in get_current_task return get_asynclib().get_current_task() File "/usr/local/lib/python3.9/site-packages/anyio/_backends/_asyncio.py", line 1850, in get_current_task return _create_task_info(current_task()) # type: ignore[arg-type] File "/usr/local/lib/python3.9/site-packages/anyio/_backends/_asyncio.py", line 1846, in _create_task_info return TaskInfo(id(task), parent_id, name, get_coro(task)) TypeError: descriptor 'get_coro' for '_asyncio.Task' objects doesn't apply to a 'Task' object ```
closed
2022-02-10T10:26:31Z
2022-05-08T19:08:01Z
https://github.com/agronholm/anyio/issues/418
[]
jacopo-exact
7
pytest-dev/pytest-cov
pytest
605
Maximum coverage in minimal time
# Summary Given a project where tests have been added incrementally over time and there is a significant amount of overlap between tests, I'd like to be able to generate a list of tests that creates maximum coverage in minimal time. Clearly this is a pure coverage approach and doesn't guarantee that functional coverage is maintained, but this could be a good approach to identifying redundant tests. I have a quick proof-of-concept that's not integrated into pytest that: * runs all tests with `pytest-cov` and `--durations=0` * processes `CoverageData` and the output of `--durations=0` to generate a list of arcs/lines that are covered for each context * reduces the list of subsets using the set cover algorithm * optionally applies a coverage 'confidence' in the event you want a faster smoke test that has reduced coverage (say 95%). I am happy to work on a PR and include tests, but before I do I wanted to gauge fit to your project's goals and if you'd rather not have this feature, I can always create a separate plugin for people who want it.
closed
2023-08-10T11:57:49Z
2023-12-11T09:26:55Z
https://github.com/pytest-dev/pytest-cov/issues/605
[]
masaccio
5
horovod/horovod
deep-learning
3,162
Spark with Horovod fails with py4j.protocol.Py4JJavaError
**Environment:** 1. Framework: TensorFlow, Keras 2. Framework version: tensorflow-2.4.3, keras-2.6.0 3. Horovod version: horovod-0.22.1 4. MPI version: 5. CUDA version: 6. NCCL version: 7. Python version: python-3.6.9 8. Spark / PySpark version: Spark-3.1.2 9. Ray version: 10. OS and version: Ubuntu 18 11. GCC version: gcc-7.5.0 12. CMake version: cmake-3.21.2 When running the sample script keras_spark_rossmann_estimator.py, spark app fails at model training with the following error: ``` Total params: 2,715,603 Trainable params: 2,715,567 Non-trainable params: 36 __________________________________________________________________________________________________ /home/cc/.local/lib/python3.6/site-packages/keras/optimizer_v2/optimizer_v2.py:356: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead. "The `lr` argument is deprecated, use `learning_rate` instead.") num_partitions=80 writing dataframes train_data_path=file:///tmp/intermediate_train_data.0 val_data_path=file:///tmp/intermediate_val_data.0 train_partitions=76===========================================> (15 + 1) / 16] val_partitions=8 /home/cc/.local/lib/python3.6/site-packages/horovod/spark/common/util.py:479: FutureWarning: The 'field_by_name' method is deprecated, use 'field' instead metadata, avg_row_size = make_metadata_dictionary(train_data_schema) train_rows=806871 val_rows=37467 Exception in thread Thread-3: (0 + 8) / 8] Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/runner.py", line 140, in run_spark result = procs.mapPartitionsWithIndex(mapper).collect() File "/usr/local/lib/python3.6/dist-packages/pyspark/rdd.py", line 949, in collect sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) File "/home/cc/.local/lib/python3.6/site-packages/py4j/java_gateway.py", line 1310, in __call__ answer, self.gateway_client, self.target_id, self.name) File "/usr/local/lib/python3.6/dist-packages/pyspark/sql/utils.py", line 111, in deco return f(*a, **kw) File "/home/cc/.local/lib/python3.6/site-packages/py4j/protocol.py", line 328, in get_return_value format(target_id, ".", name), value) py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : org.apache.spark.SparkException: Job 63 cancelled part of cancelled job group horovod.spark.run.0 at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2258) at org.apache.spark.scheduler.DAGScheduler.handleJobCancellation(DAGScheduler.scala:2154) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleJobGroupCancelled$4(DAGScheduler.scala:1048) at scala.runtime.java8.JFunction1$mcVI$sp.apply(JFunction1$mcVI$sp.java:23) at scala.collection.mutable.HashSet.foreach(HashSet.scala:79) at org.apache.spark.scheduler.DAGScheduler.handleJobGroupCancelled(DAGScheduler.scala:1047) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2407) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2387) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2376) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:868) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2196) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2217) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2236) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2261) at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1030) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:414) at org.apache.spark.rdd.RDD.collect(RDD.scala:1029) at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:180) at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:238) at java.lang.Thread.run(Thread.java:748) Traceback (most recent call last): File "keras_spark_rossmann_estimator.py", line 397, in <module> keras_model = keras_estimator.fit(train_df).setOutputCols(['Sales_output']) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/common/estimator.py", line 35, in fit return super(HorovodEstimator, self).fit(df, params) File "/usr/local/lib/python3.6/dist-packages/pyspark/ml/base.py", line 161, in fit return self._fit(dataset) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/common/estimator.py", line 81, in _fit backend, train_rows, val_rows, metadata, avg_row_size, dataset_idx) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/keras/estimator.py", line 317, in _fit_on_prepared_data env=env) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/common/backend.py", line 85, in run **self._kwargs) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/runner.py", line 284, in run _launch_job(use_mpi, use_gloo, settings, driver, env, stdout, stderr) File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/runner.py", line 155, in _launch_job settings.verbose) File "/home/cc/.local/lib/python3.6/site-packages/horovod/runner/launch.py", line 706, in run_controller gloo_run() File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/runner.py", line 152, in <lambda> run_controller(use_gloo, lambda: gloo_run(settings, nics, driver, env, stdout, stderr), File "/home/cc/.local/lib/python3.6/site-packages/horovod/spark/gloo_run.py", line 67, in gloo_run launch_gloo(command, exec_command, settings, nics, {}, server_ip) File "/home/cc/.local/lib/python3.6/site-packages/horovod/runner/gloo_run.py", line 271, in launch_gloo .format(name=name, code=exit_code)) RuntimeError: Horovod detected that one or more processes exited with non-zero status, thus causing the job to be terminated. The first process to do so was: Process name: 0 Exit code: 255 ``` This is followed by the following thread dump ``` 21/09/13 04:12:33 ERROR TransportRequestHandler: Error while invoking RpcHandler#receive() for one-way message. org.apache.spark.SparkException: Could not find CoarseGrainedScheduler. at org.apache.spark.rpc.netty.Dispatcher.postMessage(Dispatcher.scala:176) at org.apache.spark.rpc.netty.Dispatcher.postOneWayMessage(Dispatcher.scala:150) at org.apache.spark.rpc.netty.NettyRpcHandler.receive(NettyRpcEnv.scala:691) at org.apache.spark.network.server.TransportRequestHandler.processOneWayMessage(TransportRequestHandler.java:255) at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:111) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:140) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:53) at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:99) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:286) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:102) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1410) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:919) at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:163) at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:714) at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:650) at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:576) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:493) at io.netty.util.concurrent.SingleThreadEventExecutor$4.run(SingleThreadEventExecutor.java:989) at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74) at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30) at java.lang.Thread.run(Thread.java:748) 21/09/13 04:12:33 ERROR TransportRequestHandler: Error while invoking RpcHandler#receive() for one-way message. org.apache.spark.SparkException: Could not find CoarseGrainedScheduler. at org.apache.spark.rpc.netty.Dispatcher.postMessage(Dispatcher.scala:176) at org.apache.spark.rpc.netty.Dispatcher.postOneWayMessage(Dispatcher.scala:150) at org.apache.spark.rpc.netty.NettyRpcHandler.receive(NettyRpcEnv.scala:691) at org.apache.spark.network.server.TransportRequestHandler.processOneWayMessage(TransportRequestHandler.java:255) at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:111) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:140) at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:53) at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:99) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:286) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:102) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:357) at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1410) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:379) at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:365) at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:919) at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:163) at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:714) at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:650) at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:576) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:493) at io.netty.util.concurrent.SingleThreadEventExecutor$4.run(SingleThreadEventExecutor.java:989) at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74) at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30) at java.lang.Thread.run(Thread.java:748) ```
open
2021-09-13T05:06:05Z
2021-09-14T22:34:34Z
https://github.com/horovod/horovod/issues/3162
[ "bug" ]
aakash-sharma
2
scikit-optimize/scikit-optimize
scikit-learn
569
ImportError: cannot import name MaskedArray
I got scikit-optimize from your pypi release [here](https://pypi.python.org/pypi/scikit-optimize), where it says I need scikit-learn >= 0.18. "I'm in luck." thought I, for 0.18 I have. But trying to import skopt I get an error that MaskedArray can not be imported from sklearn.utils.fixes, and trying to import that class from there myself also yields an error. *Does scikit-optimize actually have a dependency on a later version of sklearn?*
closed
2017-12-11T19:31:36Z
2023-06-20T19:06:05Z
https://github.com/scikit-optimize/scikit-optimize/issues/569
[]
pavelkomarov
25
KevinMusgrave/pytorch-metric-learning
computer-vision
138
How to use a queue of negative samples as done in MoCo
Hi Kevin, I wonder if such an extended NT-Xent loss could be implemented? The NT-Xent implemented in this package can return the pairwise loss when given a mini-batch and a label array. I wonder if for the purpose of increasing negative samples to make the task harder, could we directly use this package? To be more specific, I use @JohnGiorgi's example: `import torch` `from pytorch_metric_learning.losses import NTXentLoss` `batch_size = 16` `embedding_dim = 512` `anchor_embeddings = torch.randn(batch_size, embedding_dim)` `positive_embeddings = torch.randn(batch_size, embedding_dim)` `embeddings = torch.cat((anchor_embeddings, positive_embeddings))` `indices = torch.arange(0, anchor_embeddings.size(0), device=anchor_embeddings.device)` `labels = torch.cat((indices, indices))` `loss = NTXentLoss(temperature=0.10)` `loss(embeddings, labels)` Assuming I have another list of negative samples with size 224 * 512, how could I use the package? I would be really appreciate if you could provide this function since this would be really useful for making the CL harder when limited by the resource.
closed
2020-07-14T01:22:43Z
2020-07-25T14:21:05Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/138
[ "Frequently Asked Questions", "question" ]
CSerxy
13
inventree/InvenTree
django
9,196
[FR] PUI: Please add IPN to supplier parts table
### Please verify that this feature request has NOT been suggested before. - [x] I checked and didn't find a similar feature request ### Problem statement With reference to #9179: The IPN is missing in the supplierpart table. In CUI it was combined with the name. An additional column is also fine. ### Suggested solution Either as in CUI or additional column ### Describe alternatives you've considered We can stay with CUI ### Examples of other systems _No response_ ### Do you want to develop this? - [ ] I want to develop this.
closed
2025-02-27T06:56:01Z
2025-02-27T12:18:00Z
https://github.com/inventree/InvenTree/issues/9196
[ "enhancement", "User Interface" ]
SergeoLacruz
3
graphql-python/graphene-django
graphql
750
Bug: Supposedly wrong types in query with filter_fields since 2.4.0
### Problem When using filter_fields I get an error about using wrong types which started appearing in 2.4.0. `Variable "startedAtNull" of type "Boolean" used in position expecting type "DateTime".` The error does not occur with graphene-django 2.3.2 ### Context - using django-filter 2.2.0 - django 2.4.0 ### **Schema.py** ``` DATETIME_FILTERS = ['exact', 'isnull', 'lt', 'lte', 'gt', 'gte', 'month', 'year', 'date'] class OrderNode(DjangoObjectType): class Meta: model = Order exclude = ('tenant', ) filter_fields = { 'id': ['exact'], 'start_at': DATETIME_FILTERS, 'finish_at': DATETIME_FILTERS, 'finished_at': DATETIME_FILTERS, 'started_at': DATETIME_FILTERS, } interfaces = (OrderNodeInterface,) ``` **Query:** ``` ORDERS_QUERY = ''' query order( $tenant: String $projectId: ID $startedAtNull: Boolean ) { orders( tenant: $tenant project_Id: $projectId startedAt_Isnull: $startedAtNull ) { edges { node { id, city } } } } ''' ``` **Result:** `Variable "startedAtNull" of type "Boolean" used in position expecting type "DateTime".` ### Solution I am confident it is related to this PR: https://github.com/graphql-python/graphene-django/pull/682/files . In graphene_django/filter/utils.py the way how to retrieve the Type of a field was changed. Or maybe I misunderstood the changelog.
closed
2019-08-16T09:43:08Z
2019-10-10T08:20:16Z
https://github.com/graphql-python/graphene-django/issues/750
[ "🐛bug" ]
lassesteffen
10
plotly/dash-table
dash
600
Incorrect cell validation / coercion
1 - Validation default is not applied correctly when its value is `0` (number) -- the value is falsy and trips the default case 2 - Deleting cell content with `backspace` does not run validation 1 - This is simple, update https://github.com/plotly/dash-table/blob/dev/src/dash-table/type/reconcile.ts#L67 to do a `R.isNil` check instead 2 - This is a bit more involved, I suggest that we start using the `on_change` settings applicable to each cell and use the reconciliation result of `null` if the reconciliation is successful. Otherwise, continue using `''` as we do right now.
closed
2019-09-24T12:34:57Z
2019-09-24T16:28:50Z
https://github.com/plotly/dash-table/issues/600
[ "dash-type-bug", "size: 0.5" ]
Marc-Andre-Rivet
0
stanfordnlp/stanza
nlp
808
Stanza sluggish with multiprocessing
Down below testcase. Stanza is fast if `parallel == 1`, but becomes sluggish when distributed among processes. ```` import os, multiprocessing, time import stanza parallel = os.cpu_count() language = 'cs' sentence = 'ponuže dobře al ja nemam i zpětlou vas dbu od policiei teto ty teto věci najitam spravným orbganutyperypřecuji nas praco zdněspotaměcham' stanza.download( language ) def nlp_stanza( ignore ): nlp_pipeline = stanza.Pipeline( language, logging_level='WARN', use_gpu=False ) for i in range(50): s = int(time.process_time()*1000) nlp_pipeline( sentence ) e = int(time.process_time()*1000) print( os.getpid(), str(e-s)+'ms:', sentence ) pool = multiprocessing.Pool( processes=parallel ) pool.map( nlp_stanza, range(parallel) ) pool.join() ````
closed
2021-09-16T12:41:13Z
2021-09-20T12:35:40Z
https://github.com/stanfordnlp/stanza/issues/808
[ "bug" ]
doublex
1
deepinsight/insightface
pytorch
2,328
batch SimilarityTransform
The following code implements face alignment using functions from the `skimage` library. In cases where there are a small number of faces, using this function for face alignment can yield satisfactory results. However, when dealing with a large collection of faces, I'm looking for a method to calculate similarity transformation matrices in batches. I have already achieved batch face alignment using similarity transformation matrices of shape [b, 2, 3] with the `kornia` library. However, I'm struggling to find a way to calculate similarity transformation matrices in batches while maintaining consistent results with the computation performed by `skimage`. Furthermore, I'm hoping to accomplish this using the PyTorch framework. I have attempted to replicate the computation of similarity transformation matrices from `skimage` using PyTorch, but the results do not match. This discrepancy could impact the accuracy of subsequent face recognition tasks. Has anyone successfully implemented this? Any help would be greatly appreciated. ``` tform = trans.SimilarityTransform() tform.estimate(src,dst) M = tform.params[0:2,:] ``` can stack the results of `trans.SimilarityTransform()` into a [n, 2, 3] matrix, which can then be used with `kornia.geometry.transform.warp_affine` along with the corresponding images to perform batch alignment tasks.
open
2023-06-06T03:29:15Z
2023-07-11T02:55:29Z
https://github.com/deepinsight/insightface/issues/2328
[]
muqishan
1
python-visualization/folium
data-visualization
1,850
export / save Folium map as static image (PNG)
Code: ```python colormap = branca.colormap.linear.plasma.scale(vmin, vmax).to_step(100) r_map = folium.Map(location=[lat, long], tiles='openstreetmap') for i in range(0, len(df)): r_lat = ... r_long = ... r_score = ... Circle(location=[r_lat, r_long], radius=5, color=colormap(r_score)).add_to(r_map) colormap.add_to(r_map) r_map ``` This works fine, but there seems to be no way to generate the map, optionally, as a fixed-size, non-zoomable bitmap in a decent format like PNG. A side-effect of this is - the map does not show in a PDF export of the Jupyter notebook where the map is generated. It would be nice if `folium.Map()` had a way to generate fixed bitmap output, e.g. like Matplotlib.pyplot. I've read the documentation, searched the web, there really seems to be no good solution other than a Selenium hack which requires too many moving parts and extra libraries. This should be instead a standard Folium feature. To be clear, I am running all this code in a Jupyter notebook. I don't think I have the time to implement a PR myself.
closed
2023-12-22T21:15:47Z
2024-05-25T14:11:19Z
https://github.com/python-visualization/folium/issues/1850
[]
FlorinAndrei
5
tradingstrategy-ai/web3-ethereum-defi
pytest
125
Error when loading last N blocks using JSONRPCReorganisationMonitor
How do you only load the last N blocks? This code wants to loads only last 5 blocks i believe, however it errors when adding new blocks. ``` reorg_mon = JSONRPCReorganisationMonitor(web3, check_depth=30) reorg_mon.load_initial_block_headers(block_count=5) while True: try: # Figure out the next good unscanned block range, # and fetch block headers and timestamps for this block range chain_reorg_resolution = reorg_mon.update_chain() if chain_reorg_resolution.reorg_detected: logger.info(f"Chain reorganisation data updated: {chain_reorg_resolution}") # Read specified events in block range for log_result in read_events( web3, start_block=chain_reorg_resolution.latest_block_with_good_data + 1, end_block=chain_reorg_resolution.last_live_block, filter=filter, notify=None, chunk_size=100, context=token_cache, extract_timestamps=None, reorg_mon=reorg_mon, ): pass ``` ``` INFO:eth_defi.event_reader.reorganisation_monitor:figure_reorganisation_and_new_blocks(), range 17,285,423 - 17,285,443, last block we have is 17,285,443, check depth is 20 ERROR: LoadError: Python: AssertionError: Blocks must be added in order. Last block we have: 17285443, the new record is: BlockHeader(block_number=17285423, block_hash='0x8d481922bd607150c9f3299004a113e44955327770ab04ed10de115e2172d6fe', timestamp=1684400615) Python stacktrace: [1] add_block @ eth_defi.event_reader.reorganisation_monitor ~/Library/Caches/pypoetry/virtualenvs/cryptopy-5siZoxZ4-py3.10/lib/python3.10/site-packages/eth_defi/event_reader/reorganisation_monitor.py:324 [2] figure_reorganisation_and_new_blocks @ eth_defi.event_reader.reorganisation_monitor ~/Library/Caches/pypoetry/virtualenvs/cryptopy-5siZoxZ4-py3.10/lib/python3.10/site-packages/eth_defi/event_reader/reorganisation_monitor.py:396 [3] update_chain ```
closed
2023-05-18T09:10:38Z
2023-08-08T11:47:19Z
https://github.com/tradingstrategy-ai/web3-ethereum-defi/issues/125
[]
bryaan
2
graphdeco-inria/gaussian-splatting
computer-vision
850
basic question from beginner of 3d reconstruction using 3DGS
Hello! I am trying to start 3d reconstruction with your 3DGS software. I'd like to ask some basic questions. 1. Does 3DGS needs camera intrinsic parameter? It just helps 3D quality, or it is must to have? 2. I am using Colmap to make SfM as prerequisite before train.py used to make 3DGS .ply file. I put 2800 images using basic gpu 16GB VRAM (10 fps from a movie), then takes nearly 30 hours to make a .ply for 3DGS. Do you know any good way to speed it up? like other tool. 3. so I should put .ply to train.py, right? or what do you mean "Colmap dataset" in readme? Thank you for your kind advice!
open
2024-06-15T15:19:30Z
2024-06-18T11:58:18Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/850
[]
RickMaruyama
1
hankcs/HanLP
nlp
1,806
文件流未正确关闭
<!-- 感谢找出bug,请认真填写下表: --> **Describe the bug** A clear and concise description of what the bug is. VectorsReader类的readVectorFile()方法未正确关闭文件流,导致资源泄漏 **Code to reproduce the issue** Provide a reproducible test case that is the bare minimum necessary to generate the problem. 使用Word2VecTrainer的train方法,或者new 一个WordVectorModel对象,进程进行中,删除模型文件比如model.txt,会无法删除 ```java ``` **Describe the current behavior** A clear and concise description of what happened. **Expected behavior** A clear and concise description of what you expected to happen. 我在使用该jar进行词向量模型训练或者文档转换为向量后,模型文件始终删除不掉,文件资源积压 **System information** - OS Platform and Distribution (e.g., Linux Ubuntu 16.04):任何系统都会出现 - Python version: - HanLP version:目前发现1.5-1.8.3的版本都会出现该问题 **Other info / logs** Include any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached. [VectorsReader.java](https://github.com/hankcs/HanLP/blob/v1.8.3/src/main/java/com/hankcs/hanlp/mining/word2vec/VectorsReader.java) * [x] I've completed this form and searched the web for solutions. <!-- ⬆️此处务必勾选,否则你的issue会被机器人自动删除! --> <!-- ⬆️此处务必勾选,否则你的issue会被机器人自动删除! --> <!-- ⬆️此处务必勾选,否则你的issue会被机器人自动删除! -->
closed
2023-02-24T13:40:24Z
2023-02-25T01:02:15Z
https://github.com/hankcs/HanLP/issues/1806
[ "bug" ]
zjqer
3
NullArray/AutoSploit
automation
406
Unhandled Exception (e195f1bf9)
Autosploit version: `3.0` OS information: `Linux-4.18.0-kali2-amd64-x86_64-with-Kali-kali-rolling-kali-rolling` Running context: `autosploit.py` Error meesage: `global name 'Except' is not defined` Error traceback: ``` Traceback (most recent call): File "/root/Puffader/Autosploit/autosploit/main.py", line 113, in main loaded_exploits = load_exploits(EXPLOIT_FILES_PATH) File "/root/Puffader/Autosploit/lib/jsonize.py", line 61, in load_exploits except Except: NameError: global name 'Except' is not defined ``` Metasploit launched: `False`
closed
2019-01-24T09:40:39Z
2019-04-02T20:27:09Z
https://github.com/NullArray/AutoSploit/issues/406
[]
AutosploitReporter
0
piskvorky/gensim
machine-learning
2,973
phrases.export_phrases() doesn't yield all bigrams
Hallo and thank you for this tool, phrases.export_phrases() doesn't yield all bigrams when some are part of a bigger n-gram. If I create a Phrases object with `phrases = gensim.models.phrases.Phrases(sentences, min_count=1, threshold=10, delimiter=b' ', scoring='default')` on the following two sentences New York City has the largest population of all the cities in the United States . Every year, many travelers come to the United States to visit New York City . `print(dict(phrases.export_phrases(sentences)))` only returns {b'New York': 11.5, b'United States': 11.5}. It should also return {b'York City': 11.5} however. line 187 of phrases.py should probably be changed to `last_uncommon = word` . It fixes the problem on my side and seems to be what the code was intended to be. Thank you, Olivier NC macOS-10.14.5-x86_64-i386-64bit Python 3.8.5 (v3.8.5:580fbb018f, Jul 20 2020, 12:11:27) [Clang 6.0 (clang-600.0.57)] Bits 64 NumPy 1.19.2 SciPy 1.5.2 gensim 3.8.3 FAST_VERSION 0
closed
2020-10-06T03:28:57Z
2020-10-09T00:04:27Z
https://github.com/piskvorky/gensim/issues/2973
[]
o-nc
3
cvat-ai/cvat
pytorch
8,431
Toggle switch for mask point does not work anymore
For instance segmentation, I used to draw the first mask. For the second mask which would always overlap the first mask, I usually used CTRL to make the points of mask 1 appear to have a suitable overlap in annotation. Now, the function of making the points of mask 1 appear is gone?! I can not turn the points on with CTRL, which makes the instance segmentation impossible for now. The only way to make the points appear is visible in figure 1 is to hover over it. But this does not work in draw mode. As soon as I enter the draw mode the points disappear, as seen in figure 2. ![Figure1](https://github.com/user-attachments/assets/2adb2dc6-809a-47ee-a54c-9e4f45519107) ![Figure2](https://github.com/user-attachments/assets/d3d00d95-cd7c-4f4d-b5ab-425b55991130) Please have a look at it. I'm sure its just a small oneliner that must have been the reason to make the Toggle of the points not work with CTRL.
closed
2024-09-11T10:24:34Z
2024-09-11T11:11:25Z
https://github.com/cvat-ai/cvat/issues/8431
[]
hasano20
2
encode/apistar
api
71
Interactive API Documentation
We'll be pulling in REST framework's existing interactive API docs. It's gonna be ✨fabulous✨.
closed
2017-04-20T14:07:21Z
2017-08-04T15:06:37Z
https://github.com/encode/apistar/issues/71
[ "Baseline feature" ]
tomchristie
6
pytorch/pytorch
machine-learning
149,516
```StateDictOptions``` in combination with ```cpu_offload=True``` and ```strict=False``` not working
### 🐛 Describe the bug When running the following for distributed weight loading: ``` options = StateDictOptions( full_state_dict=True, broadcast_from_rank0=True, strict=False, cpu_offload=True, ) set_model_state_dict(model=model, model_state_dict=weights, options=options) ``` I am getting `KeyError`for keys that are not in the model. I believe it has to do with not checking for strict at this point: https://github.com/pytorch/pytorch/blob/main/torch/distributed/_state_dict_utils.py#L656 Which only appears to be done afterwards. ### Versions Current main cc @LucasLLC @pradeepfn
open
2025-03-19T14:53:37Z
2025-03-20T19:19:49Z
https://github.com/pytorch/pytorch/issues/149516
[ "oncall: distributed checkpointing" ]
psinger
0
getsentry/sentry
django
86,783
Add ttid_contribution_rate() function
### Problem Statement Add ttid_contribution_rate() to eap via rpc ### Solution Brainstorm _No response_ ### Product Area Unknown
closed
2025-03-11T13:16:41Z
2025-03-11T17:46:36Z
https://github.com/getsentry/sentry/issues/86783
[]
DominikB2014
0
Evil0ctal/Douyin_TikTok_Download_API
fastapi
98
I can't use shortcuts on ios
I have updated to the latest 6.0 version but the shortcut still says to update, it makes me unable to download videos on tiktok I use iphone X iOS 15.5 ![image](https://user-images.githubusercontent.com/52899715/200649590-4b149430-e1ad-46d0-945c-0d8ab094c8bd.png)
closed
2022-11-08T18:48:19Z
2022-11-10T08:00:58Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/98
[ "API Down", "Fixed" ]
beelyhot5
1
timkpaine/lantern
plotly
169
Chop out email to separate jlab plugin
closed
2018-07-22T17:57:18Z
2018-08-10T19:55:22Z
https://github.com/timkpaine/lantern/issues/169
[ "feature" ]
timkpaine
2
deepspeedai/DeepSpeed
deep-learning
6,729
GPU mem doesn't release after delete tensors in optimizer.bit16groups
I'm developing a peft algorithm, basically it does the following: Say the training process has 30 steps in total, 1. For global step 0\~9: train `lmhead` + `layer_0` 2. For global step 10\~19: train `lmhead` + `layer_1` 3. For global step 20\~29: train `lmhead` + `layer_0` The key point is that, after the switch, the states of `lmhead` are expected to be kept, while the states of the body layers should be deleted. For example, the `step` in `lmhead` state should go from 0 to 29, while `step` for body layers count from 0 after every switch, even if the layer has been selected before. In this case, the parameter group looks like: ```python optimizer_grouped_parameters = [ { # this should always be lmhead: # `requires_grad` and `not in active_layers_names` rules out all body layers # `in decay_parameters` rules out ln "params": [ p for n, p in opt_model.named_parameters() if ( n not in self.active_layers_names and n in decay_parameters and p.requires_grad) ], "weight_decay": self.args.weight_decay, }, { # this should always be ln (outside of body layers) "params": [ p for n, p in opt_model.named_parameters() if ( n not in self.active_layers_names and n not in decay_parameters and p.requires_grad) ], "weight_decay": 0.0, }, { # selected body layers with decay "params": [ p for n, p in opt_model.named_parameters() if ( n in self.active_layers_names and n in decay_parameters and p.requires_grad) ], "weight_decay": self.args.weight_decay, }, { # selected body layers without decay "params": [ p for n, p in opt_model.named_parameters() if ( n in self.active_layers_names and n not in decay_parameters and p.requires_grad) ], "weight_decay": 0.0, }, ] ``` The first two represents layers that states should be kept, while the last two will change. An approach I came up with is that partially "re-init" the optimizer at the beginning of the step that should do the switch. I modified my huggingface trainer based on ds optimizer `__init__` method: ```python def _reinit_deepspeed_zero_optimizer_params(self, optimizer: DeepSpeedZeroOptimizer): num_non_lisa_body_layer_pgs = len(self.optimizer.param_groups) - len(LISA_BODY_LAYER_PARAM_GROUPS_IDX) objs = [ optimizer.bit16_groups, optimizer.round_robin_bit16_groups, optimizer.round_robin_bit16_indices, optimizer.round_robin_bit16_meta, optimizer.bit16_groups_flat, optimizer.groups_padding, optimizer.parallel_partitioned_bit16_groups, optimizer.single_partition_of_fp32_groups, optimizer.partition_size, optimizer.params_in_partition, optimizer.params_not_in_partition, optimizer.first_offset ] for obj in objs: del obj[num_non_lisa_body_layer_pgs:] empty_cache() torch.cuda.empty_cache() gc.collect() for i, param_group in enumerate(optimizer.optimizer.param_groups): if i in range(num_non_lisa_body_layer_pgs): # skip lmhead, ln, etc. continue ## same as deepspeed/runtime/zero/stage_1_and_2.py DeepSpeedZeroOptimizer.__init__ below partition_id = dist.get_rank(group=optimizer.real_dp_process_group[i]) # push this group to list before modify # TODO: Explore simplification that avoids the extra book-keeping by pushing the reordered group trainable_parameters = [] for param in param_group['params']: if param.requires_grad: param.grad_accum = None trainable_parameters.append(param) optimizer.bit16_groups.append(trainable_parameters) # not sure why apex was cloning the weights before flattening # removing cloning here see_memory_usage(f"Before moving param group {i} to CPU") # move all the parameters to cpu to free up GPU space for creating flat buffer # Create temp CPU param copies, free accelerator tensors orig_group_numel = 0 for param in optimizer.bit16_groups[i]: orig_group_numel += param.numel() param.cpu_data = param.data.cpu() param.data = torch.empty(1).to(param.device) empty_cache() see_memory_usage(f"After moving param group {i} to CPU", force=False) # Reorder group parameters for load balancing of gradient partitioning during backward among ranks. # This ensures that gradients are reduced in a fashion such that ownership round robins among the ranks. # For example, rather than 3 gradients (g_n+2, g_n+1, g_n) that are reduced consecutively belonging # to the same rank, instead they will belong to 3 ranks (r_m+2, r_m+1, r_m). if optimizer.round_robin_gradients: round_robin_tensors, round_robin_indices = optimizer._round_robin_reorder( optimizer.bit16_groups[i], dist.get_world_size(group=optimizer.real_dp_process_group[i])) else: round_robin_tensors = optimizer.bit16_groups[i] round_robin_indices = list(range(len(optimizer.bit16_groups[i]))) optimizer.round_robin_bit16_groups.append(round_robin_tensors) optimizer.round_robin_bit16_indices.append(round_robin_indices) # Create meta tensors list, ordered according to round_robin_tensors meta_tensors = [] for param in round_robin_tensors: meta_tensors.append(torch.zeros_like(param.cpu_data, device="meta")) optimizer.round_robin_bit16_meta.append(meta_tensors) # create flat buffer in CPU flattened_buffer = optimizer.flatten_dense_tensors_aligned( optimizer.round_robin_bit16_groups[i], optimizer.nccl_start_alignment_factor * dist.get_world_size(group=optimizer.real_dp_process_group[i]), use_cpu_data=True) # free temp CPU params for param in optimizer.bit16_groups[i]: del param.cpu_data # Move CPU flat tensor to the accelerator memory. optimizer.bit16_groups_flat.append(flattened_buffer.to(get_accelerator().current_device_name())) del flattened_buffer see_memory_usage(f"After flattening and moving param group {i} to GPU", force=False) # Record padding required for alignment if partition_id == dist.get_world_size(group=optimizer.real_dp_process_group[i]) - 1: padding = optimizer.bit16_groups_flat[i].numel() - orig_group_numel else: padding = 0 optimizer.groups_padding.append(padding) if dist.get_rank(group=optimizer.real_dp_process_group[i]) == 0: see_memory_usage(f"After Flattening and after emptying param group {i} cache", force=False) # set model bit16 weight to slices of flattened buffer optimizer._update_model_bit16_weights(i) # divide the flat weights into near equal partition equal to the data parallel degree # each process will compute on a different part of the partition data_parallel_partitions = optimizer.get_data_parallel_partitions(optimizer.bit16_groups_flat[i], i) optimizer.parallel_partitioned_bit16_groups.append(data_parallel_partitions) # verify that data partition start locations are 4-byte aligned for partitioned_data in data_parallel_partitions: assert (partitioned_data.data_ptr() % (2 * optimizer.nccl_start_alignment_factor) == 0) # A partition of the fp32 master weights that will be updated by this process. # Note that the params in single_partition_of_fp32_groups is cloned and detached # from the origin params of the model. if not optimizer.fp16_master_weights_and_gradients: weights_partition = optimizer.parallel_partitioned_bit16_groups[i][partition_id].to( optimizer.device).clone().float().detach() else: weights_partition = optimizer.parallel_partitioned_bit16_groups[i][partition_id].to( optimizer.device).clone().half().detach() if optimizer.cpu_offload: weights_partition = get_accelerator().pin_memory(weights_partition) optimizer.single_partition_of_fp32_groups.append(weights_partition) # Set local optimizer to have flat params of its own partition. # After this, the local optimizer will only contain its own partition of params. # In that case, the local optimizer only saves the states(momentum, variance, etc.) related to its partition's params(zero stage1). optimizer.single_partition_of_fp32_groups[ i].requires_grad = True # keep this in case internal optimizer uses it param_group['params'] = [optimizer.single_partition_of_fp32_groups[i]] partition_size = len(optimizer.bit16_groups_flat[i]) / dist.get_world_size(group=optimizer.real_dp_process_group[i]) params_in_partition, params_not_in_partition, first_offset = optimizer.get_partition_info( optimizer.round_robin_bit16_groups[i], partition_size, partition_id) optimizer.partition_size.append(partition_size) optimizer.params_in_partition.append(params_in_partition) optimizer.params_not_in_partition.append(params_not_in_partition) optimizer.first_offset.append(first_offset) ``` **However, I found `del obj` not working, as the mem profiling result shown below:** ![Image](https://github.com/user-attachments/assets/f150b809-4fc6-4055-8d1a-4a387237ada8) I noticed the tensors the arrows point at spawn when: ```python # Move CPU flat tensor to the accelerator memory. optimizer.bit16_groups_flat.append(flattened_buffer.to(get_accelerator().current_device_name())) ``` Are there any insights?
closed
2024-11-08T11:42:49Z
2024-12-06T21:59:52Z
https://github.com/deepspeedai/DeepSpeed/issues/6729
[]
wheresmyhair
2
ymcui/Chinese-LLaMA-Alpaca
nlp
575
跑run_pt.sh时,使用--deepspeed ds_zero2_no_offload.json运行卡住了
peft使用的指定的0.3.0dev,运行run_pt.sh时,参数都是默认配置,只修改了模型和token路径,运行后读取数据正常,但卡在下面这里不动了,试了几次都如此,但删除--deepspeed ${deepspeed_config_file}后不会卡住,单报其他错误,感觉问题可能出在deepspeed脚本上,下面是卡住时的log: Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 33/33 [00:12<00:00, 2.66it/s] Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 33/33 [00:12<00:00, 2.65it/s] [INFO|modeling_utils.py:3283] 2023-06-12 18:58:17,569 >> All model checkpoint weights were used when initializing LlamaForCausalLM. [INFO|modeling_utils.py:3291] 2023-06-12 18:58:17,569 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at /media/zzg/GJ_disk01/pretrained_model/text-generation-webui/models/decapoda-research_llama-7b-hf. If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training. [INFO|configuration_utils.py:537] 2023-06-12 18:58:17,572 >> loading configuration file /media/zzg/GJ_disk01/pretrained_model/text-generation-webui/models/decapoda-research_llama-7b-hf/generation_config.json [INFO|configuration_utils.py:577] 2023-06-12 18:58:17,572 >> Generate config GenerationConfig { "_from_model_config": true, "bos_token_id": 0, "eos_token_id": 1, "pad_token_id": 0, "transformers_version": "4.30.0.dev0" } 06/12/2023 18:58:34 - INFO - __main__ - Init new peft model 06/12/2023 18:58:34 - INFO - __main__ - target_modules: ['q_proj', 'v_proj', 'k_proj', 'o_proj', 'gate_proj', 'down_proj', 'up_proj'] 06/12/2023 18:58:34 - INFO - __main__ - lora_rank: 8 trainable params: 429203456 || all params: 6905475072 || trainable%: 6.2154080859739 [INFO|trainer.py:594] 2023-06-12 18:59:44,457 >> max_steps is given, it will override any value given in num_train_epochs /home/zzg/miniconda3/envs/py39_DL_cu118/lib/python3.9/site-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning warnings.warn( [2023-06-12 18:59:44,476] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed info: version=0.9.4, git-hash=unknown, git-branch=unknown 06/12/2023 18:59:47 - INFO - torch.distributed.distributed_c10d - Added key: store_based_barrier_key:2 to store for rank: 0 trainable params: 429203456 || all params: 6905475072 || trainable%: 6.2154080859739 /home/zzg/miniconda3/envs/py39_DL_cu118/lib/python3.9/site-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning warnings.warn( 06/12/2023 18:59:51 - INFO - torch.distributed.distributed_c10d - Added key: store_based_barrier_key:2 to store for rank: 1 06/12/2023 18:59:51 - INFO - torch.distributed.distributed_c10d - Rank 1: Completed store-based barrier for key:store_based_barrier_key:2 with 2 nodes. 06/12/2023 18:59:51 - INFO - torch.distributed.distributed_c10d - Rank 0: Completed store-based barrier for key:store_based_barrier_key:2 with 2 nodes. [2023-06-12 18:59:51,724] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False [2023-06-12 18:59:51,728] [INFO] [logging.py:96:log_dist] [Rank 0] Removing param_group that has no 'params' in the client Optimizer [2023-06-12 18:59:51,728] [INFO] [logging.py:96:log_dist] [Rank 0] Using client Optimizer as basic optimizer [2023-06-12 18:59:51,761] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Basic Optimizer = AdamW [2023-06-12 18:59:51,761] [INFO] [utils.py:54:is_zero_supported_optimizer] Checking ZeRO support for optimizer=AdamW type=<class 'transformers.optimization.AdamW'> [2023-06-12 18:59:51,761] [WARNING] [engine.py:1116:_do_optimizer_sanity_check] **** You are using ZeRO with an untested optimizer, proceed with caution ***** [2023-06-12 18:59:51,761] [INFO] [logging.py:96:log_dist] [Rank 0] Creating torch.float16 ZeRO stage 2 optimizer [2023-06-12 18:59:51,761] [INFO] [stage_1_and_2.py:133:__init__] Reduce bucket size 100000000 [2023-06-12 18:59:51,761] [INFO] [stage_1_and_2.py:134:__init__] Allgather bucket size 100000000 [2023-06-12 18:59:51,762] [INFO] [stage_1_and_2.py:135:__init__] CPU Offload: False [2023-06-12 18:59:51,762] [INFO] [stage_1_and_2.py:136:__init__] Round robin gradient partitioning: False Using /home/zzg/.cache/torch_extensions/py39_cu117 as PyTorch extensions root... Using /home/zzg/.cache/torch_extensions/py39_cu117 as PyTorch extensions root... deepspeed重新install后也同样如此,请问有解决办法吗?
closed
2023-06-12T11:04:47Z
2023-06-13T03:51:24Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/575
[]
guijuzhejiang
6
holoviz/panel
plotly
7,517
JSComponent not working in Jupyter
I'm on panel==1.5.4 panel-copy-paste==0.0.4 The `render_fn` cannot be found and the component does not display. ![Image](https://github.com/user-attachments/assets/5e3bc59a-5de5-4b90-91b7-1faf2edec505) ```python import panel as pn from panel_copy_paste import PasteToDataFrameButton import pandas as pd ACCENT = "#ff4a4a" pn.extension("tabulator") ``` ```python PasteToDataFrameButton(target=to_table) ``` I'm on a JupyterHub behind a reverse proxy if that matters?
open
2024-11-25T06:35:13Z
2025-01-21T10:50:40Z
https://github.com/holoviz/panel/issues/7517
[ "more info needed" ]
MarcSkovMadsen
2
donnemartin/data-science-ipython-notebooks
matplotlib
13
Command to run mrjob s3 log parser is incorrect
Current: ``` python mr-mr_s3_log_parser.py -r emr s3://bucket-source/ --output-dir=s3://bucket-dest/" ``` Should be: ``` python mr_s3_log_parser.py -r emr s3://bucket-source/ --output-dir=s3://bucket-dest/" ```
closed
2015-07-31T22:52:18Z
2015-12-28T13:14:13Z
https://github.com/donnemartin/data-science-ipython-notebooks/issues/13
[ "bug" ]
donnemartin
1
google-research/bert
tensorflow
782
InvalidArgumentError (see above for traceback): Found Inf or NaN global norm. : Tensor had NaN values [[{{node VerifyFinite/CheckNumerics}} = CheckNumerics[T=DT_FLOAT, message="Found Inf or NaN global norm.", _device="/job:localhost/replica:0/task:0/device:GPU:0"](global_norm/global_norm)]]
I add POS tag feature to the BERT model and meet the following problem,I tried to reduce the batch_size, but it was useless. python run_oqmrc_POS.py --task_name=MyPro --do_train=true --do_eval=true --data_dir=./data --vocab_file=chinese_bert/vocab.txt --pos_tag_vocab_file=pyltp_data/pos_tag_vocab.txt --bert_config_file=chinese_bert/bert_config.json --init_checkpoint=chinese_bert/bert_model.ckpt --max_seq_length=128 --train_batch_size=32 --learning_rate=2e-5 --num_train_epochs=3.0 --output_dir=tmp/mypro_output_POS/ ![image](https://user-images.githubusercontent.com/22828828/61690863-dbef4b80-ad5c-11e9-837b-009bb02e33a5.png) ![image](https://user-images.githubusercontent.com/22828828/61690871-e27dc300-ad5c-11e9-97a0-bcac536024a7.png)
open
2019-07-23T07:18:52Z
2019-07-23T07:18:52Z
https://github.com/google-research/bert/issues/782
[]
daishu7
0
AUTOMATIC1111/stable-diffusion-webui
pytorch
15,870
[Bug]: Stable Diffusion is now very slow and won't work at all
### Checklist - [ ] The issue exists after disabling all extensions - [ ] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [ ] The issue exists in the current version of the webui - [ ] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? Well, after switching to the babes 3.1 checkpoint I tried to generate an image, but when I stopped it because I didn't like it I got the little CUDA message, so I tried to generate another image and got the same thing. So I closed out Stable Diffusion, went into the files, deleted some of the useless past outputs, ran it again, there was nothing off about the startup process, and when I tried to reload the last set of prompts, it wouldn't do it. So I had to go into the parameters, copy and paste the last prompts, hit generate, and it won't even load up, which I found strange. So I closed out of stable diffusion, checked to see if my NVIDIA card needed updating, it did, installed the update, ran Stable Diffusion again, same dang thing happened. Then I thought it might be my laptop since it needed an update, so I ran the update on my laptop, then tried to run SD again, NOPE! Same thing happened AGAIN. Then, I realized, it's ONLY SD that's taking forever, everything else on my laptop is fine. As of the moment, I can't do ANYTHING on SD, can't check for extension updates, can't generate anything, can't switch to previous versions, can't switch checkpoints, I was lucky to get the sysinfo, I tried closing out, going into settings, removing the checkpoints until there was only one left, my usual default one, Anythingv5.0, can't even load that one. Currently, it has been almost 10 minutes while typing this, and before typing this I tried to generate something on SD, IT HASN'T EVEN STARTED, IT'S STILL PROCESSING, NOTHING ELSE ON SD IS LOADING, NOTHING IS PREVENTING IT FROM GENERATING. I honestly don't know what's going on, can someone please help me? ### Steps to reproduce the problem No idea ### What should have happened? It should not be very freaking slow. ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo [sysinfo-2024-05-23-05-16.json](https://github.com/AUTOMATIC1111/stable-diffusion-webui/files/15411881/sysinfo-2024-05-23-05-16.json) ### Console logs ```Shell C:\Users\zach\OneDrive\Desktop\Stable Diffusion\stable-diffusion-webui>git pull Already up to date. venv "C:\Users\zach\OneDrive\Desktop\Stable Diffusion\stable-diffusion-webui\venv\Scripts\Python.exe" Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)] Version: v1.9.3 Commit hash: 1c0a0c4c26f78c32095ebc7f8af82f5c04fca8c0 ####################################################################################################### Initializing Civitai Link If submitting an issue on github, please provide the below text for debugging purposes: Python revision: 3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)] Civitai Link revision: 115cd9c35b0774c90cb9c397ad60ef6a7dac60de SD-WebUI revision: 1c0a0c4c26f78c32095ebc7f8af82f5c04fca8c0 Checking Civitai Link requirements... ####################################################################################################### Launching Web UI with arguments: --precision full --no-half --skip-torch-cuda-test --xformers ControlNet preprocessor location: C:\Users\zach\OneDrive\Desktop\Stable Diffusion\stable-diffusion-webui\extensions\sd-webui-controlnet\annotator\downloads 2024-05-23 01:04:51,516 - ControlNet - INFO - ControlNet v1.1.448 Civitai: API loaded Loading weights [90bef92d4f] from C:\Users\zach\OneDrive\Desktop\Stable Diffusion\stable-diffusion-webui\models\Stable-diffusion\babes_31.safetensors [LyCORIS]-WARNING: LyCORIS legacy extension is now loaded, if you don't expext to see this message, please disable this extension. 2024-05-23 01:04:52,407 - ControlNet - INFO - ControlNet UI callback registered. Creating model from config: C:\Users\zach\OneDrive\Desktop\Stable Diffusion\stable-diffusion-webui\configs\v1-inference.yaml Running on local URL: http://127.0.0.1:7860 To create a public link, set `share=True` in `launch()`. Civitai: Check resources for missing info files Civitai: Check resources for missing preview images Startup time: 17.4s (prepare environment: 4.6s, import torch: 5.8s, import gradio: 1.1s, setup paths: 1.2s, initialize shared: 0.3s, other imports: 0.7s, load scripts: 2.5s, create ui: 0.6s, gradio launch: 0.4s). Civitai: Found 0 resources missing info files Civitai: No info found on Civitai Civitai: Found 0 resources missing preview images Civitai: No preview images found on Civitai Applying attention optimization: xformers... done. Model loaded in 4.1s (load weights from disk: 0.9s, create model: 0.7s, apply weights to model: 1.7s, apply float(): 0.3s, move model to device: 0.1s, calculate empty prompt: 0.4s). ``` ### Additional information Everything is updated, everything is all caught up, there is nothing that needs updating as far as I'm aware of, feel free to point something out if I missed it.
open
2024-05-23T05:24:37Z
2024-05-28T22:59:12Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15870
[ "bug-report" ]
MichaelDeathBringer
8
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
1,122
a trouble when testing cyclegan
Hi, appreciating your open source code, it's really a masterpiece. I've met some trouble when I run the test.py using cyclegan, like this: ![image](https://user-images.githubusercontent.com/69395938/89719307-f78fb900-d994-11ea-990b-f68e9b68708f.png) my input data are images with [256,256,3], I keep some flags the same as training, such as netG, norm, dropout, like belows: !python train.py --dataroot /content/data/single/ --netG unet_256 --batch_size 64 --model cycle_gan1 --gpu_ids 0 --serial_batches --preprocess none --no_flip --name XQ12_singlecycle_noidentity --n_epochs 50 --n_epochs_decay 50 --print_freq 3200 --save_epoch_freq 10 --save_latest_freq 12096 --update_html_freq 40000 --lambda_identity 0.0 --lambda_supervised 0.0 --lambda_per 0.0 --lambda_A 10 --lambda_B 10 --beta_A 10 --beta_B 10 --perceptual_layers 8 --continue_train --epoch_count 61 !python test.py --dataroot /content/data/single/ --batch_size 1 --netG unet_256 --model testcyclegan1 --gpu_ids 0 --serial_batches --preprocess none --no_flip --name XQ12_singlecycle_noidentity --input_nc 3 --no_dropout --eval --dataset_mode singlenew1 --results_dir /content/data/results1_singlecycle/ --num_test 14382 --model_suffix _A please don't mind some strange flags, I just add these flags for some new loss functions based on your wonderful code. I printed out the tensor size before this problem appeared, the size is [1,512,2,2], which I think is OK. Actually, I met this problem once before, that happened in the training stage, the reason is I used BN in my network and I set my batch_size as 1. I searched this problem on the internet, someone told me if using BN, the batch_size must >1. But in the cyclegan, we use IN right? I tried to change batch_size in the test.py to 2 which was 1 as default. Then, I would not meet this problem, but there is a new one, the results would skip a half of images. I can only get image0,2,4,6... without image1,3,5,7... . Could you please help me find out the solution? Thanks.
closed
2020-08-08T20:52:50Z
2020-08-09T14:40:49Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1122
[]
bearxiong333
7
sigmavirus24/github3.py
rest-api
1,111
The search result `total_count` is always 0
I'm trying to use GitHub3.py to find the number of total issues in a repository. For that, I want to use the Search API to search for the issues in a particular repository. For example, with the raw GitHub API, I can request [https://api.github.com/search/issues?q=repo%3Asigmavirus24/github3.py](https://api.github.com/search/issues?q=repo%3Asigmavirus24/github3.py) and then get the total issues count in "total_count" key. However, the following code snippet gives me zero: ```python gh = login(token=API_TOKEN) count = gh.search_issues(query="repo: sigmavirus24/github3.py").total_count print(count) # 0 ```
open
2022-09-28T14:25:29Z
2022-09-28T14:25:29Z
https://github.com/sigmavirus24/github3.py/issues/1111
[]
theoctober19th
0
MagicStack/asyncpg
asyncio
655
Does not work on ASGI servers
<!-- Thank you for reporting an issue/feature request. If this is a feature request, please disregard this template. If this is a bug report, please answer to the questions below. It will be much easier for us to fix the issue if a test case that reproduces the problem is provided, with clear instructions on how to run it. Thank you! --> * **asyncpg version**: 0.21.0 * **PostgreSQL version**: 13 * **Do you use a PostgreSQL SaaS? If so, which? Can you reproduce the issue with a local PostgreSQL install?**: N/A (No) * **Python version**: 3.9 * **Platform**: Fedora Rawhide * **Do you use pgbouncer?**: No * **Did you install asyncpg with pip?**: Yes * **If you built asyncpg locally, which version of Cython did you use?**: * **Can the issue be reproduced under both asyncio and [uvloop](https://github.com/magicstack/uvloop)?**: Yes <!-- Enter your issue details below this comment. --> When running asyncpg on an ASGI server (FastAPI/Quart), asyncpg crashes with another operation in progress. This does not happen on AIOHTTP or non-ASGI servers Also, when using uvicorn, i get an error Traceback (most recent call last): File "/usr/bin/uvicorn", line 33, in <module> sys.exit(load_entry_point('uvicorn==0.11.8', 'console_scripts', 'uvicorn')()) File "/home/rootspring/.local/lib/python3.9/site-packages/click/core.py", line 829, in __call__ return self.main(*args, **kwargs) File "/home/rootspring/.local/lib/python3.9/site-packages/click/core.py", line 782, in main rv = self.invoke(ctx) File "/home/rootspring/.local/lib/python3.9/site-packages/click/core.py", line 1066, in invoke return ctx.invoke(self.callback, **ctx.params) File "/home/rootspring/.local/lib/python3.9/site-packages/click/core.py", line 610, in invoke return callback(*args, **kwargs) File "/usr/lib/python3.9/site-packages/uvicorn/main.py", line 339, in main run(**kwargs) File "/usr/lib/python3.9/site-packages/uvicorn/main.py", line 362, in run server.run() File "/usr/lib/python3.9/site-packages/uvicorn/main.py", line 390, in run loop.run_until_complete(self.serve(sockets=sockets)) File "uvloop/loop.pyx", line 1456, in uvloop.loop.Loop.run_until_complete File "/usr/lib/python3.9/site-packages/uvicorn/main.py", line 397, in serve config.load() File "/usr/lib/python3.9/site-packages/uvicorn/config.py", line 278, in load self.loaded_app = import_from_string(self.app) File "/usr/lib/python3.9/site-packages/uvicorn/importer.py", line 20, in import_from_string module = importlib.import_module(module_str) File "/usr/lib64/python3.9/importlib/__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 1030, in _gcd_import File "<frozen importlib._bootstrap>", line 1007, in _find_and_load File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 680, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 790, in exec_module File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed File "./server_fastapi.py", line 85, in <module> db = loop.run_until_complete(setup_db()) File "uvloop/loop.pyx", line 1450, in uvloop.loop.Loop.run_until_complete File "uvloop/loop.pyx", line 1443, in uvloop.loop.Loop.run_until_complete File "uvloop/loop.pyx", line 1351, in uvloop.loop.Loop.run_forever File "uvloop/loop.pyx", line 480, in uvloop.loop.Loop._run RuntimeError: this event loop is already running.
closed
2020-11-21T09:29:53Z
2023-04-24T16:37:54Z
https://github.com/MagicStack/asyncpg/issues/655
[]
cheesycod
5
psf/requests
python
5,994
ca_certs zip file extraction permission issue with multiple users on Python 3.6
When you have multiple users on a machine that each use `requests` from zipapps with `certifi`, one user running a request should not block other users from successfully performing requests. This issue only appears when using a zipapp on python3.6. For python3.7+ the certifi library handles the tempfile and `requests.util.extract_zipped_paths` never sees the zipapp. https://github.com/certifi/python-certifi/blob/2021.10.08/certifi/core.py#L43-L44 ## Expected Result ``` user1 # python3.6 zipapp.2.26.zip get file user2 # python3.6 zipapp.2.26.zip get file ``` ## Actual Result ``` user1 # python3.6 zipapp.2.26.zip get file user2 # python3.6 zipapp.2.26.zip Traceback (most recent call last): File "/tmp/zipapp.2.26.zip/urllib3/util/ssl_.py", line 402, in ssl_wrap_socket PermissionError: [Errno 13] Permission denied During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/tmp/zipapp.2.26.zip/urllib3/connectionpool.py", line 706, in urlopen File "/tmp/zipapp.2.26.zip/urllib3/connectionpool.py", line 382, in _make_request File "/tmp/zipapp.2.26.zip/urllib3/connectionpool.py", line 1010, in _validate_conn File "/tmp/zipapp.2.26.zip/urllib3/connection.py", line 421, in connect File "/tmp/zipapp.2.26.zip/urllib3/util/ssl_.py", line 404, in ssl_wrap_socket urllib3.exceptions.SSLError: [Errno 13] Permission denied During the handling the above ....... <a bunch of MaxRetryError tracebacks> ``` ### Behaviors on versions: The core issue is that the changes in #5707 result in different file permissions on disk. Prior to that change, the file would be extracted with `0o664` permissions, but afterwords it is generated with `0o600` permissions from [mkstemp](https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp), which means that users other than the first runner couldn't access the certfille. https://github.com/psf/requests/blob/c193d9742ed58d41252e65a4f57a936683bb8dbd/requests/utils.py#L275-L276 https://github.com/psf/requests/blob/c193d9742ed58d41252e65a4f57a936683bb8dbd/requests/utils.py#L283-L288 #### Python3.6 w/ requests==2.25.1 ``` $ PYTHONPATH=zipapp.2.25.zip python3.6 >>> import certifi, requests >>> certifi.where() '/tmp/zipapp.2.25.zip/certifi/cacert.pem' >>> requests.utils.extract_zipped_paths(certifi.where()) '/tmp/certifi/cacert.pem' ``` ``` $ ls -lah /tmp/certifi/cacert.pem -rw-rw-r--. 1 user1 user1 278K May 7 2020 /tmp/certifi/cacert.pem ``` #### Python3.6 w/ requests==2.26.0 ``` $ PYTHONPATH=zipapp.2.26.zip python3.6 >>> import certifi, requests >>> certifi.where() '/tmp/zipapp.2.26.zip/certifi/cacert.pem' >>> requests.utils.extract_zipped_paths(certifi.where()) '/tmp/cacert.pem' ``` ``` $ ls -lah /tmp/cacert.pem -rw-------. 1 user1 user1 254K Sep 23 23:34 /tmp/cacert.pem ``` #### Python3.7 w/ requests==2.26.0 ``` $ PYTHONPATH=zipapp.2.26.zip python3.7 >>> import certifi, requests >>> certifi.where() '/tmp/tmpuwsvnshl' >>> requests.utils.extract_zipped_paths(certifi.where()) '/tmp/tmpuwsvnshl' ``` ``` $ ls -lah /tmp/tmpuwsvnshl -rw------- 1 user1 user1 260K Nov 30 15:46 /tmp/tmpuwsvnshl ``` ## System Information $ PYTHONPATH=zipapp.2.26.zip python3.6 -m requests.help ```json { "chardet": { "version": null }, "charset_normalizer": { "version": "2.0.8" }, "cryptography": { "version": "" }, "idna": { "version": "3.3" }, "implementation": { "name": "CPython", "version": "3.6.8" }, "platform": { "release": "3.10.0-862.3.2.el7.x86_64", "system": "Linux" }, "pyOpenSSL": { "openssl_version": "", "version": null }, "requests": { "version": "2.26.0" }, "system_ssl": { "version": "100020bf" }, "urllib3": { "version": "1.26.7" }, "using_charset_normalizer": true, "using_pyopenssl": false } ``` Ideally I'd prefer the `extract_zipped_paths` writer use a temporary file like `certifi` which gets cleaned up at the end of the program, but as a fallback the writer could be updated to save with `0o664` permissions again so that it doesn't matter which user first runs.
closed
2021-12-01T00:00:05Z
2022-04-02T17:01:56Z
https://github.com/psf/requests/issues/5994
[]
Peter200lx
2
JaidedAI/EasyOCR
machine-learning
1,301
numpy 2
hey, got issue related to numpy 1/2 binary builds can you confirm that Numpy 2 is supported, and, if not, please provide ETA for support
open
2024-09-05T00:06:22Z
2024-12-09T17:46:17Z
https://github.com/JaidedAI/EasyOCR/issues/1301
[]
Napolitain
1
alpacahq/alpaca-trade-api-python
rest-api
588
[WARNING] data websocket error, restarting connection: no close frame received or sent
### Is there an existing issue for this? - [X] I have searched the existing issues ### Current Behavior websocket connection on sip is unusable for me, a connection lost every 10 seconds, one of tow errors - [WARNING] data websocket error, restarting connection: no close frame received or sent - [WARNING] data websocket error, restarting connection: sent 1011 (unexpected error) keepalive ping timeout; no close frame received simple subscribtion to bars for all symbols attempts: - tested versions 1.5.0 1.5.1 - changed host (local machine, friend's machine, personal laptop, 2 vps servers) exact same behaviour - changed websocket versions i can't even remember how many log websocket shows ping timeout sometimes some suggested that api already reconnect automatically, that's not a solution because you're missing 5sec of timeout before the connection actually drop plus reconnection+subscription time, that leaves gaps in 1minute bars by the time you start receiving again. for 24h run i got a total of 290 candles on AAPL (because of this error) out of possible 960 candles that 70% lost data. my guess: - Alpaca servers websocket timeout ping interval is too short for such high traffic. - Alpaca servers deliberately drop random connections at saturation to prevent service failure (problem happens at peak hours) ### Expected Behavior Expected to work ### Steps To Reproduce ```markdown simple 1minute barse subscription for all symbols ``` ### Anything else? _No response_
open
2022-03-15T16:12:23Z
2022-12-14T20:12:40Z
https://github.com/alpacahq/alpaca-trade-api-python/issues/588
[]
kimboox44
11
yihong0618/running_page
data-visualization
380
【keep】为啥会存在轨迹缺失的问题
`actions` 倒没报错,但好像没获取`gpx`到数据,不太清楚原因,今天晚上再跑个步测试一下看看是不是脚本的问题。 <img width="1512" alt="image" src="https://user-images.githubusercontent.com/79169717/221772616-3a2623d8-65ff-4bb8-9729-02eb15ee04e5.png"> 还有这个彩蛋,左边的样式是不是有点问题。 <img width="1512" alt="image" src="https://user-images.githubusercontent.com/79169717/221772688-f081a074-973f-4a43-851c-70d79e48eb59.png">
closed
2023-02-28T06:34:49Z
2023-10-21T11:22:41Z
https://github.com/yihong0618/running_page/issues/380
[]
sun0225SUN
5
modelscope/modelscope
nlp
900
MsDataset.load报错
我执行下列代码加载数据集: from modelscope.msdatasets import MsDataset # Loading dataset hf_ds = MsDataset.load( 'ICASSP_2021_DNS_Challenge', namespace='modelscope',split='test') 出现以下报错: 2024-07-04 13:20:42,801 - modelscope - INFO - PyTorch version 1.11.0+cu113 Found. 2024-07-04 13:20:42,801 - modelscope - INFO - Loading ast index from /home/tian/.cache/modelscope/ast_indexer 2024-07-04 13:20:42,891 - modelscope - INFO - Loading done! Current index file version is 1.15.0, with md5 842522ac9e7126c035b0b056d88b631b and a total number of 980 components indexed transformer is not installed, please install it if you want to use related modules /home/tian/miniconda3/envs/frcrn/lib/python3.8/site-packages/datasets/load.py:2524: FutureWarning: 'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0. You can remove this warning by passing 'verification_mode=no_checks' instead. warnings.warn( /home/tian/miniconda3/envs/frcrn/lib/python3.8/site-packages/datasets/load.py:926: FutureWarning: The repository for audiolib contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at /home/tian/.cache/modelscope/hub/datasets/modelscope/ICASSP_2021_DNS_Challenge/master/meta/audiolib.py You can avoid this message in future by passing the argument `trust_remote_code=True`. Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`. warnings.warn( Traceback (most recent call last): File "train.py", line 9, in <module> hf_ds = MsDataset.load( File "/home/tian/miniconda3/envs/frcrn/lib/python3.8/site-packages/modelscope/msdatasets/ms_dataset.py", line 316, in load dataset_inst = remote_dataloader_manager.load_dataset( File "/home/tian/miniconda3/envs/frcrn/lib/python3.8/site-packages/modelscope/msdatasets/data_loader/data_loader_manager.py", line 132, in load_dataset oss_downloader.process() File "/home/tian/miniconda3/envs/frcrn/lib/python3.8/site-packages/modelscope/msdatasets/data_loader/data_loader.py", line 83, in process self._prepare_and_download() File "/home/tian/miniconda3/envs/frcrn/lib/python3.8/site-packages/modelscope/msdatasets/data_loader/data_loader.py", line 135, in _prepare_and_download self.dataset = hf_load_dataset( File "/home/tian/miniconda3/envs/frcrn/lib/python3.8/site-packages/datasets/load.py", line 2556, in load_dataset builder_instance = load_dataset_builder( File "/home/tian/miniconda3/envs/frcrn/lib/python3.8/site-packages/datasets/load.py", line 2265, in load_dataset_builder builder_instance: DatasetBuilder = builder_cls( TypeError: 'NoneType' object is not callable **Your Environments (__required__)** * OS: * Linux LAPTOP-L8O6SGOA 5.15.153.1-microsoft-standard-WSL2 #1 SMP Fri Mar 29 23:14:13 UTC 2024 x86_64 x86_64 x86_64 GNU/Linux * CPU: * Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 183 Model name: 13th Gen Intel(R) Core(TM) i9-13900HX Stepping: 1 CPU MHz: 2419.200 BogoMIPS: 4838.40 Virtualization: VT-x Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 48K L1i cache: 32K L2 cache: 2048K L3 cache: 36864K Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities * 下载pytorch:pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113 * python版本:3.8 @wangxingjun778
closed
2024-07-04T05:26:54Z
2024-08-11T01:58:34Z
https://github.com/modelscope/modelscope/issues/900
[ "Stale" ]
tianqiong123
3
jupyterhub/repo2docker
jupyter
1,289
Container engine initialization error, unclear why
<!-- Thank you for contributing. These HTML commments will not render in the issue, but you can delete them once you've read them if you prefer! --> ### Bug description <!-- Use this section to clearly and concisely describe the bug. --> I ran this command: `jupyter-repo2docker .` and apparently it cannot find the docker version. Even when I run it in debug mode I get no real info (`[Repo2Docker] Looking for repo2docker_config in #...`, and when I search the code for this string `repo2docker_config` in the documentation and code nothing really comes up. #### Expected behaviour <!-- Tell us what you thought would happen. --> I thought something would be built, because I am following this documentation: https://repo2docker.readthedocs.io/en/latest/usage.html#calling-repo2docker #### Actual behaviour ```shell Container engine initialization error: ('Check if docker is running on the host.', DockerException("Error while fetching server API version: ('Connection aborted.', FileNotFoundError(2, 'No such file or directory'))")) ``` ### How to reproduce 1. Buy a mac 2. Install brew 3. Install pyenv 4. Do `pyenv install 3.11.3` 5. Do `pyenv global 3.11.3` 6. Do `pip install pipx` 7. `pipx install jupyter-repo2docker` 8. Navigate to a directory where you want to build a docker image. 9. Install Docker, `Docker version 24.0.2, build cb74dfc` 10. Do `jupyter-repo2docker .` ### Your personal set up <!-- Tell us a little about the system you're using. You can see the guidelines for setting up and reporting this information at https://repo2docker.readthedocs.io/en/latest/contributing/contributing.html#setting-up-for-local-development. --> - OS: OSX 13.3.1 - Docker version: Docker version 24.0.2, build cb74dfc<!-- Run this command to get your version. --> - repo2docker version `2023.06.0` <!-- Run this command to get your version. --> #### What happens when I run `jupyter-repo2docker --no-build .` ```Dockerfile FROM docker.io/library/buildpack-deps:bionic # Avoid prompts from apt ENV DEBIAN_FRONTEND=noninteractive # Set up locales properly RUN apt-get -qq update && \ apt-get -qq install --yes --no-install-recommends locales > /dev/null && \ apt-get -qq purge && \ apt-get -qq clean && \ rm -rf /var/lib/apt/lists/* RUN echo "en_US.UTF-8 UTF-8" > /etc/locale.gen && \ locale-gen ENV LC_ALL=en_US.UTF-8 \ LANG=en_US.UTF-8 \ LANGUAGE=en_US.UTF-8 # Use bash as default shell, rather than sh ENV SHELL=/bin/bash # Set up user ARG NB_USER ARG NB_UID ENV USER=${NB_USER} \ HOME=/home/${NB_USER} RUN groupadd \ --gid ${NB_UID} \ ${NB_USER} && \ useradd \ --comment "Default user" \ --create-home \ --gid ${NB_UID} \ --no-log-init \ --shell /bin/bash \ --uid ${NB_UID} \ ${NB_USER} # Base package installs are not super interesting to users, so hide their outputs # If install fails for some reason, errors will still be printed RUN apt-get -qq update && \ apt-get -qq install --yes --no-install-recommends \ gettext-base \ less \ unzip \ > /dev/null && \ apt-get -qq purge && \ apt-get -qq clean && \ rm -rf /var/lib/apt/lists/* EXPOSE 8888 # Environment variables required for build ENV APP_BASE=/srv ENV CONDA_DIR=${APP_BASE}/conda ENV NB_PYTHON_PREFIX=${CONDA_DIR}/envs/notebook ENV NPM_DIR=${APP_BASE}/npm ENV NPM_CONFIG_GLOBALCONFIG=${NPM_DIR}/npmrc ENV NB_ENVIRONMENT_FILE=/tmp/env/environment.lock ENV MAMBA_ROOT_PREFIX=${CONDA_DIR} ENV MAMBA_EXE=${CONDA_DIR}/bin/mamba ENV CONDA_PLATFORM=linux-aarch64 ENV KERNEL_PYTHON_PREFIX=${NB_PYTHON_PREFIX} # Special case PATH ENV PATH=${NB_PYTHON_PREFIX}/bin:${CONDA_DIR}/bin:${NPM_DIR}/bin:${PATH} # If scripts required during build are present, copy them COPY --chown=501:501 build_script_files/-2fusers-2fsteven-2f-2elocal-2fpipx-2fvenvs-2fjupyter-2drepo2docker-2flib-2fpython3-2e11-2fsite-2dpackages-2frepo2docker-2fbuildpacks-2fconda-2factivate-2dconda-2esh-26bc03 /etc/profile.d/activate-conda.sh COPY --chown=501:501 build_script_files/-2fusers-2fsteven-2f-2elocal-2fpipx-2fvenvs-2fjupyter-2drepo2docker-2flib-2fpython3-2e11-2fsite-2dpackages-2frepo2docker-2fbuildpacks-2fconda-2fenvironment-2epy-2d3-2e10-2dlinux-2daarch64-2elock-9c3286 /tmp/env/environment.lock COPY --chown=501:501 build_script_files/-2fusers-2fsteven-2f-2elocal-2fpipx-2fvenvs-2fjupyter-2drepo2docker-2flib-2fpython3-2e11-2fsite-2dpackages-2frepo2docker-2fbuildpacks-2fconda-2finstall-2dbase-2denv-2ebash-a3eaa9 /tmp/install-base-env.bash RUN TIMEFORMAT='time: %3R' \ bash -c 'time /tmp/install-base-env.bash' && \ rm -rf /tmp/install-base-env.bash /tmp/env RUN mkdir -p ${NPM_DIR} && \ chown -R ${NB_USER}:${NB_USER} ${NPM_DIR} # ensure root user after build scripts USER root # Allow target path repo is cloned to be configurable ARG REPO_DIR=${HOME} ENV REPO_DIR=${REPO_DIR} # Create a folder and grant the user permissions if it doesn't exist RUN if [ ! -d "${REPO_DIR}" ]; then \ /usr/bin/install -o ${NB_USER} -g ${NB_USER} -d "${REPO_DIR}"; \ fi WORKDIR ${REPO_DIR} RUN chown ${NB_USER}:${NB_USER} ${REPO_DIR} # We want to allow two things: # 1. If there's a .local/bin directory in the repo, things there # should automatically be in path # 2. postBuild and users should be able to install things into ~/.local/bin # and have them be automatically in path # # The XDG standard suggests ~/.local/bin as the path for local user-specific # installs. See https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html ENV PATH=${HOME}/.local/bin:${REPO_DIR}/.local/bin:${PATH} # The rest of the environment ENV CONDA_DEFAULT_ENV=${KERNEL_PYTHON_PREFIX} # Run pre-assemble scripts! These are instructions that depend on the content # of the repository but don't access any files in the repository. By executing # them before copying the repository itself we can cache these steps. For # example installing APT packages. # If scripts required during build are present, copy them COPY --chown=501:501 src/binder/environment.yml ${REPO_DIR}/binder/environment.yml USER ${NB_USER} RUN TIMEFORMAT='time: %3R' \ bash -c 'time ${MAMBA_EXE} env update -p ${NB_PYTHON_PREFIX} --file "binder/environment.yml" && \ time ${MAMBA_EXE} clean --all -f -y && \ ${MAMBA_EXE} list -p ${NB_PYTHON_PREFIX} \ ' # ensure root user after preassemble scripts USER root # Copy stuff. COPY --chown=501:501 src/ ${REPO_DIR}/ # Run assemble scripts! These will actually turn the specification # in the repository into an image. # Container image Labels! # Put these at the end, since we don't want to rebuild everything # when these change! Did I mention I hate Dockerfile cache semantics? LABEL repo2docker.ref="None" LABEL repo2docker.repo="local" LABEL repo2docker.version="2023.06.0" # We always want containers to run as non-root USER ${NB_USER} # Make sure that postBuild scripts are marked executable before executing them RUN chmod +x binder/postBuild RUN ./binder/postBuild # Add start script # Add entrypoint ENV PYTHONUNBUFFERED=1 COPY /python3-login /usr/local/bin/python3-login COPY /repo2docker-entrypoint /usr/local/bin/repo2docker-entrypoint ENTRYPOINT ["/usr/local/bin/repo2docker-entrypoint"] # Specify the default command to run CMD ["jupyter", "notebook", "--ip", "0.0.0.0"] ```
closed
2023-06-14T21:46:01Z
2024-09-16T15:22:03Z
https://github.com/jupyterhub/repo2docker/issues/1289
[]
startakovsky
13
neuml/txtai
nlp
138
Add korean translation to README.md
Hi! ! I'm South Korean and I want to help you translate README.md to Korean. Is it okay to translate your README.md? Thank you.
closed
2021-11-07T15:45:15Z
2021-11-14T12:53:51Z
https://github.com/neuml/txtai/issues/138
[]
0206pdh
1
ccxt/ccxt
api
25,285
XT.com Futures - pagination in fetch_ohlcv
### Operating System Windows ### Programming Languages Python ### CCXT Version 4.4.59 ### Description The current implementation of `fetch_ohlcv` for XT.com does not support pagination (`params.paginate`) unlike most exchanges. Would it be possible to add it? https://github.com/ccxt/ccxt/blob/99fc65ec7aa5b8b88c70a20de5806850236216d8/python/ccxt/async_support/xt.py#L1385-L1398 ### Code ```    ```
open
2025-02-15T03:55:50Z
2025-02-19T10:59:10Z
https://github.com/ccxt/ccxt/issues/25285
[]
krasnyd
3
2noise/ChatTTS
python
93
数字、标点符号,字母,都会出错
数字、标点符号,字母,都会出错
closed
2024-05-30T09:51:14Z
2024-08-04T04:02:16Z
https://github.com/2noise/ChatTTS/issues/93
[ "stale" ]
weiyi88
5
sinaptik-ai/pandas-ai
pandas
917
Streamlit UI example for pandaAI
### 🚀 The feature To add example of UI for pandasAI. I can share source of my own UI - https://pva-ask-my-data-eqwdqswwf.streamlit.app/. Inside it's pandasAI. ### Motivation, pitch Maybe it can be useful for other people who use pandasAI ### Alternatives _No response_ ### Additional context _No response_
closed
2024-01-31T15:35:40Z
2024-03-16T16:20:48Z
https://github.com/sinaptik-ai/pandas-ai/issues/917
[]
PavelAgurov
3
plotly/dash-core-components
dash
626
Feature request: Rangeslider and slider to support datetime format
I've done some testing, and as far as I can see the sliders in Dash don't support datetime formats, only numerical formats. This would be great to have. It would be especially handy when working with time series data in pandas. https://dash.plot.ly/dash-core-components/slider https://dash.plot.ly/dash-core-components/rangeslider
open
2018-11-27T15:40:55Z
2019-08-30T16:13:44Z
https://github.com/plotly/dash-core-components/issues/626
[]
Judochopalots
1
dsdanielpark/Bard-API
nlp
57
Responce error
Response code not 200. Response Status is 302
closed
2023-06-08T04:44:37Z
2023-06-08T12:26:00Z
https://github.com/dsdanielpark/Bard-API/issues/57
[]
Ridoy302583
1
seleniumbase/SeleniumBase
web-scraping
3,569
Setting the `lang` arg via the `cdp_driver` isn't taking effect
## Setting the `lang` arg via the `cdp_driver` isn't taking effect https://github.com/seleniumbase/SeleniumBase/blob/5d732a412f1a1c5da10345bdb29f160182d00450/seleniumbase/undetected/cdp_driver/cdp_util.py#L235 This is the pure CDP Mode equivalent of setting the `locale` / `locale_code`.
closed
2025-02-26T05:35:48Z
2025-02-26T22:43:23Z
https://github.com/seleniumbase/SeleniumBase/issues/3569
[ "bug", "UC Mode / CDP Mode" ]
mdmintz
1
jupyterhub/jupyterhub-deploy-docker
jupyter
91
'make build' fails with Conda
Followed all the configurations and then it fails in build stage with error - ModuleNotFoundError: No module named 'conda'. Below is the full error trace, make build docker-compose build hub-db uses an image, skipping Building hub Step 1/9 : ARG JUPYTERHUB_VERSION Step 2/9 : FROM jupyterhub/jupyterhub-onbuild:$JUPYTERHUB_VERSION # Executing 1 build trigger ---> Using cache ---> b6927b9a433f Step 3/9 : RUN /opt/conda/bin/conda install -yq psycopg2=2.7 && /opt/conda/bin/conda clean -tipsy && /opt/conda/bin/pip install --no-cache-dir oauthenticator==0.8.* dockerspawner==0.9.* ---> Running in 794099d91a50 Solving environment: ...working... done ## Package Plan ## environment location: /opt/conda added / updated specs: - psycopg2=2.7 Preparing transaction: ...working... done Verifying transaction: ...working... done Executing transaction: ...working... done Traceback (most recent call last): File "/opt/conda/bin/conda", line 7, in <module> from conda.cli import main ModuleNotFoundError: No module named 'conda' ERROR: Service 'hub' failed to build: The command '/bin/sh -c /opt/conda/bin/conda install -yq psycopg2=2.7 && /opt/conda/bin/conda clean -tipsy && /opt/conda/bin/pip install --no-cache-dir oauthenticator==0.8.* dockerspawner==0.9.*' returned a non-zero code: 1
closed
2019-08-26T12:00:41Z
2021-04-27T10:50:58Z
https://github.com/jupyterhub/jupyterhub-deploy-docker/issues/91
[]
karthi4k
9
clovaai/donut
computer-vision
115
Train script hangs with no errors
```bash root@spot-a100-1670595978:/app# python3 train.py --config config/train_cord.yaml --pretrained_model_name_or_path "naver-clova-ix/donut-base" --dataset_name_or_paths "['/app/jsonl']" --exp_version "abay_experiment" resume_from_checkpoint_path: None result_path: ./result pretrained_model_name_or_path: naver-clova-ix/donut-base dataset_name_or_paths: - /app/jsonl sort_json_key: False train_batch_sizes: - 8 val_batch_sizes: - 1 input_size: - 1280 - 960 max_length: 768 align_long_axis: False num_nodes: 1 seed: 2022 lr: 3e-05 warmup_steps: 300 num_training_samples_per_epoch: 800 max_epochs: 30 max_steps: -1 num_workers: 8 val_check_interval: 1.0 check_val_every_n_epoch: 3 gradient_clip_val: 1.0 verbose: True exp_name: train_cord exp_version: abay_experiment Config is saved at result/train_cord/abay_experiment/config.yaml /usr/local/lib/python3.8/dist-packages/pytorch_lightning/utilities/seed.py:48: LightningDeprecationWarning: `pytorch_lightning.utilities.seed.seed_everything` has been deprecated in v1.8.0 and will be removed in v1.10.0. Please use `lightning_lite.utilities.seed.seed_everything` instead. rank_zero_deprecation( Global seed set to 2022 /usr/local/lib/python3.8/dist-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3190.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] Some weights of DonutModel were not initialized from the model checkpoint at naver-clova-ix/donut-base and are newly initialized because the shapes did not match: - encoder.model.layers.0.blocks.1.attn_mask: found shape torch.Size([3072, 100, 100]) in the checkpoint and torch.Size([768, 100, 100]) in the model instantiated - encoder.model.layers.1.blocks.1.attn_mask: found shape torch.Size([768, 100, 100]) in the checkpoint and torch.Size([192, 100, 100]) in the model instantiated - encoder.model.layers.2.blocks.1.attn_mask: found shape torch.Size([192, 100, 100]) in the checkpoint and torch.Size([48, 100, 100]) in the model instantiated - encoder.model.layers.2.blocks.3.attn_mask: found shape torch.Size([192, 100, 100]) in the checkpoint and torch.Size([48, 100, 100]) in the model instantiated - encoder.model.layers.2.blocks.5.attn_mask: found shape torch.Size([192, 100, 100]) in the checkpoint and torch.Size([48, 100, 100]) in the model instantiated - encoder.model.layers.2.blocks.7.attn_mask: found shape torch.Size([192, 100, 100]) in the checkpoint and torch.Size([48, 100, 100]) in the model instantiated - encoder.model.layers.2.blocks.9.attn_mask: found shape torch.Size([192, 100, 100]) in the checkpoint and torch.Size([48, 100, 100]) in the model instantiated - encoder.model.layers.2.blocks.11.attn_mask: found shape torch.Size([192, 100, 100]) in the checkpoint and torch.Size([48, 100, 100]) in the model instantiated - encoder.model.layers.2.blocks.13.attn_mask: found shape torch.Size([192, 100, 100]) in the checkpoint and torch.Size([48, 100, 100]) in the model instantiated - encoder.model.layers.3.blocks.1.attn_mask: found shape torch.Size([48, 100, 100]) in the checkpoint and torch.Size([12, 100, 100]) in the model instantiated You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. Resolving data files: 100%|████████████████████████████████████████████████████████████| 16197/16197 [00:00<00:00, 27669.39it/s] Resolving data files: 100%|██████████████████████████████████████████████████████████████| 2001/2001 [00:00<00:00, 13913.31it/s] Resolving data files: 100%|██████████████████████████████████████████████████████████████| 1801/1801 [00:00<00:00, 14983.16it/s] Using custom data configuration jsonl-9ae412abd68dd439 Found cached dataset imagefolder (/root/.cache/huggingface/datasets/imagefolder/jsonl-9ae412abd68dd439/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f) ``` Just hangs here, nothing happens
closed
2022-12-28T02:52:05Z
2024-12-16T10:05:42Z
https://github.com/clovaai/donut/issues/115
[]
abaybektursun
8
ranaroussi/yfinance
pandas
1,609
KeyError: shortName
My program needs to get the name for a stock. This is done in finance by getting the shortName value in the dictionary. This worked until version 0.2.22. However, after updating to 0.2.24 due to missing values, I am getting a KeyError for the shortName. I am guessing that after the update, shortName is not included in the info. Is this a global issue? How do I fix this? Python version is 3.10.6
closed
2023-07-16T08:21:43Z
2023-07-28T17:12:38Z
https://github.com/ranaroussi/yfinance/issues/1609
[]
vismoh2010
5
Yorko/mlcourse.ai
scikit-learn
370
locally built docker image doesn't work
I've created docker image locally, using docker image build and then tried to run it like this: `python run_docker_jupyter.py -t mlc_local` got this: ``` Running command docker run -it --rm -p 5022:22 -p 4545:4545 -v "/home/egor/private/mlcourse.ai":/notebooks -w /notebooks mlc_local jupyter Command: jupyter [I 12:44:17.454 NotebookApp] Writing notebook server cookie secret to /root/.local/share/jupyter/runtime/notebook_cookie_secret Traceback (most recent call last): File "/usr/local/lib/python3.5/dist-packages/traitlets/traitlets.py", line 528, in get value = obj._trait_values[self.name] KeyError: 'allow_remote_access' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.5/dist-packages/notebook/notebookapp.py", line 869, in _default_allow_remote addr = ipaddress.ip_address(self.ip) File "/usr/lib/python3.5/ipaddress.py", line 54, in ip_address address) ValueError: '' does not appear to be an IPv4 or IPv6 address During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/bin/jupyter-notebook", line 11, in <module> sys.exit(main()) File "/usr/local/lib/python3.5/dist-packages/jupyter_core/application.py", line 266, in launch_instance return super(JupyterApp, cls).launch_instance(argv=argv, **kwargs) File "/usr/local/lib/python3.5/dist-packages/traitlets/config/application.py", line 657, in launch_instance app.initialize(argv) File "<decorator-gen-7>", line 2, in initialize File "/usr/local/lib/python3.5/dist-packages/traitlets/config/application.py", line 87, in catch_config_error return method(app, *args, **kwargs) File "/usr/local/lib/python3.5/dist-packages/notebook/notebookapp.py", line 1629, in initialize self.init_webapp() File "/usr/local/lib/python3.5/dist-packages/notebook/notebookapp.py", line 1379, in init_webapp self.jinja_environment_options, File "/usr/local/lib/python3.5/dist-packages/notebook/notebookapp.py", line 158, in __init__ default_url, settings_overrides, jinja_env_options) File "/usr/local/lib/python3.5/dist-packages/notebook/notebookapp.py", line 251, in init_settings allow_remote_access=jupyter_app.allow_remote_access, File "/usr/local/lib/python3.5/dist-packages/traitlets/traitlets.py", line 556, in __get__ return self.get(obj, cls) File "/usr/local/lib/python3.5/dist-packages/traitlets/traitlets.py", line 535, in get value = self._validate(obj, dynamic_default()) File "/usr/local/lib/python3.5/dist-packages/notebook/notebookapp.py", line 872, in _default_allow_remote for info in socket.getaddrinfo(self.ip, self.port, 0, socket.SOCK_STREAM): File "/usr/lib/python3.5/socket.py", line 732, in getaddrinfo for res in _socket.getaddrinfo(host, port, family, type, proto, flags): socket.gaierror: [Errno -5] No address associated with hostname ```
closed
2018-10-10T12:50:06Z
2018-10-11T13:59:36Z
https://github.com/Yorko/mlcourse.ai/issues/370
[ "enhancement" ]
eignatenkov
7
matterport/Mask_RCNN
tensorflow
2,815
Differences in results for this model on TF2.0CPU and TF2.7 GPU
Hi, I ran this model on a custom dataset TF2.0 CPU and TF2.7GPU. Got good results on test data for object detection on TF2.0 but TF2.7 GPU results are totally bad. Not a single object was identified after same number of epochs. Is it because MRCNN model is not ported to TF2.7 as yet.
open
2022-04-22T00:07:16Z
2022-11-10T14:06:55Z
https://github.com/matterport/Mask_RCNN/issues/2815
[]
suraj123
3
axnsan12/drf-yasg
rest-api
518
Add type hints
HI! I started a https://github.com/intgr/drf-yasg-stubs repository since drf-yasg was the only major component in my project that did not include type stubs. For now it's still quite incomplete (some of it is still auto-generated files with `Any` types). I'm wondering what are your opinions on type stubs? [PEP 561](https://www.python.org/dev/peps/pep-0561/#specification) offers three ways to distribute stubs. Option 3 is what I'm doing right now, with a separate package. Clearly option 1 is out of the window if you want to retain Python 2 support. Although given its support ends ending in one week (and that Django already dropped it ages ago), perhaps dropping Python 2 altogether is due? Option 2 would be to merge the `.pyi` files that I've written into this drf-yasg repository. This might be the reasonable first step if you don't want to drop Python 2 yet. I'm willing to submit pull requests for it and do any other work that you deem necessary.
open
2019-12-24T11:37:34Z
2025-03-07T12:15:19Z
https://github.com/axnsan12/drf-yasg/issues/518
[ "triage" ]
intgr
8
widgetti/solara
flask
131
test/ci issue: coverage slows down some tests
After 172cdefeabd88f166d451873ea4582589a4cbb9b the test_memoize_hook fails more regularly. We've seen it fail before, but now it's almost 90%. Therefore we disabled coverage in CI for now. If we want to enable it again, 172cdefeabd88f166d451873ea4582589a4cbb9b might give a clue. This fails about 50% of the time on my osx laptop. ``` $ py.test --cov=solara tests/unit/cache_test.py ```
open
2023-05-31T21:25:06Z
2023-06-01T06:43:48Z
https://github.com/widgetti/solara/issues/131
[ "help wanted" ]
maartenbreddels
1
Kludex/mangum
asyncio
151
Slash at end of endpoint
I've been updated to version `0.10.0` and suddenly all my endpoints on custom domain doesn't work more. I had to add `/` at end of url to back to work. Is it a normal or a bug?
closed
2020-12-04T21:43:35Z
2022-12-28T13:07:37Z
https://github.com/Kludex/mangum/issues/151
[ "more info needed" ]
sergiors
3
aiortc/aioquic
asyncio
6
Understanding packet header construction
Hi, I am working on a project, which requires modifying packet headers, especially for the ack packets. Can you please help me understand the code flow via which I can modify the headers and add custom key values. Thanks.
closed
2019-05-28T11:30:06Z
2019-06-01T02:02:53Z
https://github.com/aiortc/aioquic/issues/6
[]
massvoice
2
openapi-generators/openapi-python-client
fastapi
1,203
Read-only `src_dict` dictionary in `from_dict` methods should be typed as `Mapping[str, Any]`
**Describe the bug** Generated classmethod `from_dict` https://github.com/openapi-generators/openapi-python-client/blob/5cfe4e1d594951725844ea470fc9d61f40c08093/openapi_python_client/templates/model.py.jinja#L131-L132 should probably be annotated as ```python @classmethod def from_dict(cls: type[T], src_dict: Mapping[str, Any]) -> T: ``` i.e. using `typing.Mapping`. This marks the input dictionary as immutable and thus mypy is OK if you pass it a `TypedDict`. Otherwise, it correctly complains about type-incompatibility because the method _could_ be removing or adding keys from the dictionary. **OpenAPI Spec File** NA. **Additional context** - https://github.com/python/mypy/issues/13122#issuecomment-1184828983
closed
2025-02-08T21:21:44Z
2025-03-15T19:00:56Z
https://github.com/openapi-generators/openapi-python-client/issues/1203
[]
edgarrmondragon
0
proplot-dev/proplot
data-visualization
288
Manually specify `title` and `abc` coordinate positions
<!-- Thanks for helping us make proplot a better package! If this is a bug report, please use the template provided below. If this is a feature request, you can delete the template text (just try to be descriptive with your request). --> ### Description Hi, is it possible to make the abc labels slightly offset to the left from the axis? This would probably be a negative position. <img width="306" alt="image" src="https://user-images.githubusercontent.com/8291800/134991597-a6722340-8aab-4878-a345-928175343d40.png"> I was hoping to have the (b) moved slightly left so that I can center the title without the two texts crashing into each other. I tried the following after having all of my "imshow" and other formatting code run: ```python ax = axes[2] aobj = ax._title_dict['abc'] print(aobj.get_position()) # prints (0, 1.0) # no effect aobj.set_x(-.25) # no effect abc = ax.get_children()[1] abc.set_position((-.25, 1.0)) ``` I couldn't figure out what was running to overwrite these positions, but I assume it's something internal to proplot to make the layout nice and orderly. ### Proplot version ``` >>> import matplotlib; print(matplotlib.__version__); import proplot; print(proplot.version) 3.3.0 0.9.1 ```
open
2021-09-27T22:08:14Z
2022-07-08T15:54:21Z
https://github.com/proplot-dev/proplot/issues/288
[ "feature" ]
scottstanie
6
pinry/pinry
django
156
problem uploading image
I tried to set up pinry myself using apache and mod_wsgi and I got the server running but could post any pins - kept getting an error 'proplem saving image'. Looking at the requests I could see that any call to /api/v2/... was returning a 403 error. Thinking that maybe it was my lack of knowledge of django and how to set it up I blew everything away, re-cloned it and then used the docker image. I still get the same issue - 'problem saving image'. As with the original instance all requests to /api/v2/... are returning a 403 forbidden error code.
closed
2019-10-03T04:03:16Z
2019-12-08T19:19:30Z
https://github.com/pinry/pinry/issues/156
[]
t1v0
2
sinaptik-ai/pandas-ai
data-visualization
1,291
LLM Call response of JudgeAgent not always returning <Yes> or <No>
### System Info macos = 14.5 python = 3.10.13 pandasai = 2.2.12 ### 🐛 Describe the bug Using AzureOpenAI agent in combination with JudgeAgent. ``` llm = AzureOpenAI(...) judge = JudgeAgent(config={"llm": llm, "verbose": True}) agent = Agent("filepath", config={"llm": llm, "verbose": True}, judge=judge) ``` The logs show that the following is added to the prompt by the JudgeAgent: ``` Reason step by step and at the end answer: 1. Explain what the code does 2. Explain what the user query asks for 3. Strictly compare the query with the code that is generated Always return <Yes> or <No> if exactly meets the requirements ``` But, the actual answers of the LLM responses do not contain `<Yes>` or `<No>` and only answers the questions 1, 2 and 3, so https://github.com/Sinaptik-AI/pandas-ai/blob/e011e8ffdc8a2cd88db07c4440f331540a175648/pandasai/ee/agents/judge_agent/pipeline/llm_call.py#L44-L50 throws a `pandasai.exceptions.InvalidOutputValueMismatch: Invalid response of LLM Call`
closed
2024-07-24T13:18:52Z
2024-11-04T16:08:30Z
https://github.com/sinaptik-ai/pandas-ai/issues/1291
[ "bug" ]
sschrijver-pon
2
FlareSolverr/FlareSolverr
api
1,141
[yggtorrent] (updating) The cookies provided by FlareSolverr are not valid
### Have you checked our README? - [X] I have checked the README ### Have you followed our Troubleshooting? - [X] I have followed your Troubleshooting ### Is there already an issue for your problem? - [X] I have checked older issues, open and closed ### Have you checked the discussions? - [X] I have read the Discussions ### Environment ```markdown - FlareSolverr version: 3.3.16 - Last working FlareSolverr version: - Operating system: - Are you using Docker: [yes/no] no - FlareSolverr User-Agent (see log traces or / endpoint):Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36 - Are you using a VPN: [yes/no] no - Are you using a Proxy: [yes/no] no - Are you using Captcha Solver: [yes/no] no - If using captcha solver, which one: - URL to test this issue: ``` ### Description This happens whenever i tried resolving a captcha on jackett ### Logged Error Messages ```text An error occurred while updating this indexer The cookies provided by FlareSolverr are not valid ``` ### Screenshots _No response_
closed
2024-04-02T18:37:42Z
2024-04-02T19:14:35Z
https://github.com/FlareSolverr/FlareSolverr/issues/1141
[ "more information needed" ]
daniwalter001
2
ray-project/ray
machine-learning
50,827
CI test linux://python/ray/data:test_transform_pyarrow is flaky
CI test **linux://python/ray/data:test_transform_pyarrow** is flaky. Recent failures: - https://buildkite.com/ray-project/postmerge/builds/8496#01952c44-0d09-4aa4-b1f3-e432b7ebfca1 - https://buildkite.com/ray-project/postmerge/builds/8495#01952b30-22c6-4a0f-9857-59a7988f67d8 - https://buildkite.com/ray-project/postmerge/builds/8491#01952b00-e020-4d4e-b46a-209c0b3dbf5b - https://buildkite.com/ray-project/postmerge/builds/8491#01952ad9-1225-449b-84d0-29cfcc6a048c DataCaseName-linux://python/ray/data:test_transform_pyarrow-END Managed by OSS Test Policy
closed
2025-02-22T06:46:30Z
2025-03-04T09:29:49Z
https://github.com/ray-project/ray/issues/50827
[ "bug", "triage", "data", "flaky-tracker", "ray-test-bot", "ci-test", "weekly-release-blocker", "stability" ]
can-anyscale
31
pywinauto/pywinauto
automation
680
Updating table cell with pywinauto
Hello all, I am currently using pywinauto to step through a tree and print the contents of the table in each children. I would like to know if i can use pywinauto to push in a text file which would go and update the changed cells. ![capture](https://user-images.githubusercontent.com/48127350/53668324-901ef700-3c41-11e9-805e-58f78bbf38fd.PNG) I attached a screenshot of what the output look like. I was wondering how i can change the "Yes" to a "No" for example and push that back in to update the table.
open
2019-03-01T21:48:41Z
2019-03-24T12:43:37Z
https://github.com/pywinauto/pywinauto/issues/680
[ "question" ]
ab3linc
4
fastapi/sqlmodel
fastapi
130
How to preload relationship attributes to access outside of session?
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python # Data base set up. Copied from: # https://sqlmodel.tiangolo.com/tutorial/relationship-attributes/back-populates/ from typing import List, Optional from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select class Team(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str headquarters: str heroes: List["Hero"] = Relationship(back_populates="team") class Hero(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str secret_name: str age: Optional[int] = None team_id: Optional[int] = Field(default=None, foreign_key="team.id") team: Optional[Team] = Relationship(back_populates="heroes") sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=False) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def create_heroes(): with Session(engine) as session: team_preventers = Team(name="Preventers", headquarters="Sharp Tower") team_z_force = Team(name="Z-Force", headquarters="Sister Margaret’s Bar") hero_deadpond = Hero( name="Deadpond", secret_name="Dive Wilson", team=team_z_force ) hero_rusty_man = Hero( name="Rusty-Man", secret_name="Tommy Sharp", age=48, team=team_preventers ) hero_spider_boy = Hero(name="Spider-Boy", secret_name="Pedro Parqueador") session.add(hero_deadpond) session.add(hero_rusty_man) session.add(hero_spider_boy) session.commit() session.refresh(hero_deadpond) session.refresh(hero_rusty_man) session.refresh(hero_spider_boy) hero_spider_boy.team = team_preventers session.add(hero_spider_boy) session.commit() session.refresh(hero_spider_boy) hero_black_lion = Hero(name="Black Lion", secret_name="Trevor Challa", age=35) hero_sure_e = Hero(name="Princess Sure-E", secret_name="Sure-E") team_wakaland = Team( name="Wakaland", headquarters="Wakaland Capital City", heroes=[hero_black_lion, hero_sure_e], ) session.add(team_wakaland) session.commit() session.refresh(team_wakaland) hero_tarantula = Hero(name="Tarantula", secret_name="Natalia Roman-on", age=32) hero_dr_weird = Hero(name="Dr. Weird", secret_name="Steve Weird", age=36) hero_cap = Hero( name="Captain North America", secret_name="Esteban Rogelios", age=93 ) team_preventers.heroes.append(hero_tarantula) team_preventers.heroes.append(hero_dr_weird) team_preventers.heroes.append(hero_cap) session.add(team_preventers) session.commit() session.refresh(hero_tarantula) session.refresh(hero_dr_weird) session.refresh(hero_cap) def main(): create_db_and_tables() create_heroes() main() # Within session I can access heroes. with Session(engine) as session: team = session.exec(select(Team)).first() print(team.heroes) # [Hero(id=1, age=None, name='Deadpond', secret_name='Dive Wilson', team_id=1)] # Outside of session I cannot. with Session(engine) as session: team = session.exec(select(Team)).first() print(team.heroes) # --------------------------------------------------------------------------- # DetachedInstanceError Traceback (most recent call last) # /var/folders/38/ccm_21tj43v1ntn9ks9vyy740000gn/T/ipykernel_7846/3037874887.py in <module> # 3 team = session.exec(select(Team)).first() # 4 # ----> 5 print(team.heroes) # # ~/Library/Caches/pypoetry/virtualenvs/flask-webapp-VRI2aZnU-py3.9/lib/python3.9/site-packages/sqlalchemy/orm/attributes.py in __get__(self, instance, owner) # 479 replace_context=err, # 480 ) # --> 481 return self.impl.get(state, dict_) # 482 # 483 # # ~/Library/Caches/pypoetry/virtualenvs/flask-webapp-VRI2aZnU-py3.9/lib/python3.9/site-packages/sqlalchemy/orm/attributes.py in get(self, state, dict_, passive) # 924 return PASSIVE_NO_RESULT # 925 # --> 926 value = self._fire_loader_callables(state, key, passive) # 927 # 928 if value is PASSIVE_NO_RESULT or value is NO_VALUE: # # ~/Library/Caches/pypoetry/virtualenvs/flask-webapp-VRI2aZnU-py3.9/lib/python3.9/site-packages/sqlalchemy/orm/attributes.py in _fire_loader_callables(self, state, key, # passive) # 960 return callable_(state, passive) # 961 elif self.callable_: # --> 962 return self.callable_(state, passive) # 963 else: # 964 return ATTR_EMPTY # # ~/Library/Caches/pypoetry/virtualenvs/flask-webapp-VRI2aZnU-py3.9/lib/python3.9/site-packages/sqlalchemy/orm/strategies.py in _load_for_state(self, state, passive, loadopt, # extra_criteria) # 841 return attributes.PASSIVE_NO_RESULT # 842 # --> 843 raise orm_exc.DetachedInstanceError( # 844 "Parent instance %s is not bound to a Session; " # 845 "lazy load operation of attribute '%s' cannot proceed" # # DetachedInstanceError: Parent instance <Team at 0x1162a8400> is not bound to a Session; lazy load operation of attribute 'heroes' cannot proceed (Background on this error at: https://sqlalche.me/e/14/bhk3) ``` ### Description I am using sqlmodel with flask. I would like to pre-load the relationship attributes for a given object before passing that object into a jinja2 template. The challenge is I can't figure out how to pre-load the attributes. In my example code, how can I get the last line to execute without throwing an error? ```python # Outside of session I cannot. with Session(engine) as session: team = session.exec(select(Team)).first() print(team.heroes) ``` ### Operating System macOS ### Operating System Details macOS Big Sur 11.3.1 ### SQLModel Version 0.0.4 ### Python Version 3.9.4 ### Additional Context In reference to my tweet :) https://twitter.com/TheReaLSamlam/status/1447779469221974016
closed
2021-10-12T21:53:45Z
2022-05-29T02:29:24Z
https://github.com/fastapi/sqlmodel/issues/130
[ "question" ]
SamEdwardes
7
vitalik/django-ninja
pydantic
666
Router does not support auth inheritance
**Describe the bug** When you try adding a new router to an existing router, the leaf router doesn't inherit the top-level auth. Consider the below example: ```py from ninja import NinjaAPI, Router from ninja.security import APIKeyQuery api = NinjaAPI() r1 = Router() r2 = Router() r3 = Router() class Auth(APIKeyQuery): def __init__(self, secret): self.secret = secret super().__init__() def authenticate(self, request, key): if key == self.secret: return key api.add_router("/r1", r1, auth=Auth("r1_auth")) r1.add_router("/r2", r2) r2.add_router("/r3", r3) @r1.get("/") def op1(request): return request.auth @r2.get("/") def op2(request): return request.auth @r3.get("/") def op3(request): return request.auth ``` So the auth provided for router `r1` won't be present for any operations in routers `r2` and `r3` even though it comes under it. This is only for routers though. If we add auth when we initialize `NinjaApi()` it propagates down to all routers and endpoints even if we provide the auth when initializing router r1 as `r1 = Router(auth=Auth("r1_auth"))`. Screenshot of the above code is shown below. <img width="1453" alt="Screen Shot 2023-01-28 at 9 44 00 AM" src="https://user-images.githubusercontent.com/38973423/215273256-f2b43a14-153a-4e5b-9111-2aa779fc6a0c.png"> I think it's super helpful to include this in the documentation if we don't plan to support it as a dev can easily misinterpret it and in turn, pose a security threat to the app they are building. **Versions (please complete the following information):** - Python version: 3.9.12 - Django version: 4.1.5 - Django-Ninja version: 0.20.0 - Pydantic version: 1.10.4
closed
2023-01-28T15:06:38Z
2023-02-07T09:22:53Z
https://github.com/vitalik/django-ninja/issues/666
[]
aasiffaizal
1
deezer/spleeter
deep-learning
812
[Discussion] Does Spleeter tech powers Apple Music Sing?
Can we confirm yet if Apple Music's newest exciting Karaoke feature called "Apple Music Sing" is **_powered by Spleeter's tech?_** ![Apple-Music-Sing-hero_big jpg large_2x](https://user-images.githubusercontent.com/20938829/206855019-b056c92d-d553-4823-866a-8b780b86f988.jpg) > Ever since the launch of the [Live Lyrics feature](https://youtu.be/Y7zfExL8Yes) back in 2019, I knew damn well Apple Music just created the best Karaoke UI implementation yet. > > And the first time [The Verge wrote about Spleeter](https://www.theverge.com/2019/11/5/20949338/vocal-isolation-ai-machine-learning-deezer-spleeter-automated-open-source-tensorflow) back in 2019, I knew damn well after reading that article and playing with the open source tech on my own, that this two will be a match in heaven as a product feature. Anyone testing out Beta versions of tvOS, iOS or iPadOS, can we investigate and confirm this? Because I really wanted to open up a discussion, if it is really justified for Apple to bar this amazing party feature to their newest [Apple TV 4K box only.](https://9to5mac.com/2022/12/08/apple-music-sing-karaoke-compatible-devices/) I've run your tech on my M1 Macbook Air and I'd say it's not that too hardware demanding. So I really wanna understand, if it is really that hardware demanding to run this in _real time music?_
open
2022-12-10T12:39:45Z
2022-12-12T17:32:09Z
https://github.com/deezer/spleeter/issues/812
[ "question" ]
Mancerrss
1
deepfakes/faceswap
machine-learning
715
I got some UnicodeEncodeError issues. How can I slove it?
File "C:\Users\jho60\AppData\Local\Programs\Python\Python36\lib\configparser.py", line 931, in _write_section fp.write("{}{}\n".format(key, value)) **UnicodeEncodeError: 'cp949' codec can't encode character '\u2013' in position 159: illegal multibyte sequence** File "C:\faceswap\lib\logger.py", line 155, in crash_log outfile.writelines(freeze_log) **UnicodeEncodeError: 'cp949' codec can't encode character '\u2013' in position 339: illegal multibyte sequence** First issue, I can fix it with modifying code as 'open(file_name, 'w', -1, "utf-8")' But in second issue, I don't know where can I fix it.
closed
2019-04-28T12:19:37Z
2019-04-29T05:52:08Z
https://github.com/deepfakes/faceswap/issues/715
[]
ghost
4
gradio-app/gradio
deep-learning
10,783
Gradio: predict() got an unexpected keyword argument 'message'
### Describe the bug Trying to connect my telegram-bot(webhook) via API with my public Gradio space on Huggingface. Via terminal - all works OK. But via telegram-bot always got the same issue: Error in connection Gradio: predict() got an unexpected keyword argument 'message'. What should i use to work it properly? HF: Gradio sdk_version: 5.20.1 Requirements.txt - gradio==5.20.1 - fastapi>=0.112.2 - gradio-client>=1.3.0 - urllib3~=2.0 - requests>=2.28.2 - httpx>=0.24.1 - aiohttp>=3.8.5 - async-timeout==4.0.2 - huggingface-hub>=0.19.3 ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import gradio as gr # Gradio API async def send_request_to_gradio(query: str, chat_history: list = None) -> str: try: client = Client(HF_SPACE_NAME, hf_token=HF_TOKEN) logging.info(f"Отправляем запрос в Gradio: query={query}, chat_history={chat_history}") result = client.predict( message=query, chat_history=chat_history or None, api_name="/chat" ) logging.info(f"Reply from Gradio: {result}") # Обработка результата if isinstance(result, list) and result: response = result[0]["content"] if isinstance(result[0], dict) and "content" in result[0] else "Не найдено" return response else: logging.warning("Empty or error Gradio API.") return "Не удалось получить ответ." except Exception as e: logging.error(f"Error in connection Gradio: {e}") return "Error. Try again" ``` ### Screenshot _No response_ ### Logs ```shell ===== Application Startup at 2025-03-11 11:37:38 ===== tokenizer_config.json: 0%| | 0.00/453 [00:00<?, ?B/s] tokenizer_config.json: 100%|██████████| 453/453 [00:00<00:00, 3.02MB/s] tokenizer.json: 0%| | 0.00/16.3M [00:00<?, ?B/s] tokenizer.json: 100%|██████████| 16.3M/16.3M [00:00<00:00, 125MB/s] added_tokens.json: 0%| | 0.00/23.0 [00:00<?, ?B/s] added_tokens.json: 100%|██████████| 23.0/23.0 [00:00<00:00, 149kB/s] special_tokens_map.json: 0%| | 0.00/173 [00:00<?, ?B/s] special_tokens_map.json: 100%|██████████| 173/173 [00:00<00:00, 1.05MB/s] config.json: 0%| | 0.00/879 [00:00<?, ?B/s] config.json: 100%|██████████| 879/879 [00:00<00:00, 4.49MB/s] model.safetensors: 0%| | 0.00/1.11G [00:00<?, ?B/s] model.safetensors: 3%|▎ | 31.5M/1.11G [00:01<00:39, 27.1MB/s] model.safetensors: 6%|▌ | 62.9M/1.11G [00:02<00:37, 28.0MB/s] model.safetensors: 68%|██████▊ | 756M/1.11G [00:03<00:01, 313MB/s] model.safetensors: 100%|█████████▉| 1.11G/1.11G [00:03<00:00, 300MB/s] /usr/local/lib/python3.10/site-packages/gradio/chat_interface.py:334: UserWarning: The 'tuples' format for chatbot messages is deprecated and will be removed in a future version of Gradio. Please set type='messages' instead, which uses openai-style 'role' and 'content' keys. self.chatbot = Chatbot( * Running on local URL: http://0.0.0.0:7860, with SSR ⚡ (experimental, to disable set `ssr=False` in `launch()`) To create a public link, set `share=True` in `launch()`. ``` ### System Info ```shell title: Nika Prop emoji: 💬 colorFrom: yellow colorTo: purple sdk: gradio sdk_version: 5.20.1 app_file: app.py pinned: false short_description: Nika real estate ``` ### Severity Blocking usage of gradio
closed
2025-03-11T12:12:43Z
2025-03-18T10:28:21Z
https://github.com/gradio-app/gradio/issues/10783
[ "bug", "needs repro" ]
brokerelcom
11
Evil0ctal/Douyin_TikTok_Download_API
fastapi
229
[BUG] issue with TikTok video download
Hello! First, I want to thank the author for such a wonderful project, but in the process of getting to know him, I had an error related to uploading a video I am running project in docker desktop When i insert TikTok video link in WebAPP interface and go to the parsing results page, after clicking on the Video Download-No-Watermark button, I am transferred to the (https://api.douyin.wtf/download?url=https://vt.tiktok.com/ZSL9yE7jq/&prefix=true&watermark=false), where i can see this information: status | "endpoint closed" -- | -- message | "此端点已关闭请在配置文件中开启/This endpoint is closed, please enable it in the configuration file" I am very new with docker so I would appreciate any help [Thanks!](url) ![Screenshot 2023-07-27 203135](https://github.com/Evil0ctal/Douyin_TikTok_Download_API/assets/131010015/27639661-caff-4742-a754-429c06f55eb2) ![Screenshot 2023-07-27 203115](https://github.com/Evil0ctal/Douyin_TikTok_Download_API/assets/131010015/aa6a7083-0590-45c7-a9f6-0494d0117e7e) ![Screenshot 2023-07-27 203101](https://github.com/Evil0ctal/Douyin_TikTok_Download_API/assets/131010015/c7bcdf05-47cd-4007-a913-ca1e29ac3992)
closed
2023-07-27T13:50:54Z
2023-08-04T09:31:15Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/229
[ "BUG", "enhancement" ]
spac3orange
1
ultralytics/ultralytics
pytorch
19,357
Train and val losses became "NaN" but metrics do not update accordingly.
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question This seems that this is slightly related to #18521 During training several models (yolov8, v9, v10, 11) for a custom dataset with different configurations, the train and val losses became NaN for several of the possible combinations. However, that is not the problem here, but how the monitoring and early stopping works with it. All training configurations have `optimizer=Adam`, `epochs=300`, `patience=30` and `AMP=True`. I'm using a single V100-SXM2-32GB for training. There are two different cases that I've observed: Case 1: Losses become NaN, the best metrics are acquired just before the losses became NaN. The validation metrics do not change at all and are considered to be improving all the time. In this case, the training continues until the number of `epochs` are acquired and early stopping doesn't trigger. Both resulting `best.pt` and `last.pt` are useless as they are full of NaN. Case 2: Losses become NaN, the best metrics are acquired earlier. In this case, the training continues until the `patience` triggers. The resulting `best.pt` is useful, `last.pt` is not. What should happen in both cases: When the losses are NaN, the validation metrics should update to NaN, zero or something like that so early stopping would trigger and at least the `best.pt` is an usable model. I assume that the issue is related to how metrics are updated. Models with NaN losses do not predict anything so the resulting metrics have nothing to update. Environment: ultralytics 8.3.74, Python-3.12.8 ![Image](https://github.com/user-attachments/assets/1df8e362-8735-47ee-97bf-97c0d390d3c3) ### Additional _No response_
closed
2025-02-21T08:40:28Z
2025-02-25T14:19:57Z
https://github.com/ultralytics/ultralytics/issues/19357
[ "enhancement", "question", "fixed", "detect" ]
mayrajeo
13
WeblateOrg/weblate
django
14,279
Batch Automatic Translation on Component and Project
### Describe the problem Currently, automatic translation can only be performed in the language page, then if we have many languages, when we add some new text on template language, we need to go to each language page and click Automatic Translation, so if we have Batch Automatic Translation button on component tools, it will become very easy. ### Describe the solution you would like Add Batch Automatic Translation button on component tools ### Describe alternatives you have considered _No response_ ### Screenshots _No response_ ### Additional context _No response_
open
2025-03-20T03:50:05Z
2025-03-20T09:42:28Z
https://github.com/WeblateOrg/weblate/issues/14279
[ "enhancement", "hacktoberfest", "help wanted", "good first issue", "Area: Automated translation" ]
kingshuaishuai
2
rthalley/dnspython
asyncio
601
How to start
closed
2020-11-06T10:00:19Z
2020-11-07T22:58:57Z
https://github.com/rthalley/dnspython/issues/601
[]
DarkLand-Chen
1
aiogram/aiogram
asyncio
700
Refactor exceptions
closed
2021-09-21T21:35:25Z
2021-09-21T21:53:00Z
https://github.com/aiogram/aiogram/issues/700
[ "enhancement", "breaking", "3.x" ]
JrooTJunior
0
google-research/bert
tensorflow
716
How to run prediction on text classification task on GPU
I used the fine-tuned model to predict txt, but I seems like to run on CPU, for it takes 5s on each txt(which have nearly 2000 words). and I see log like this below, is there something wrong I do. Instructions for updating: Use keras.layers.dense instead. 2019-06-25 10:27:33.731101: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2019-06-25 10:27:33.866396: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x5626e7cf6f70 executing computations on platform CUDA. Devices: 2019-06-25 10:27:33.866448: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): Quadro P5000, Compute Capability 6.1 2019-06-25 10:27:33.870521: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2793620000 Hz 2019-06-25 10:27:33.871123: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x5626e7d600f0 executing computations on platform Host. Devices: 2019-06-25 10:27:33.871162: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined> 2019-06-25 10:27:33.871906: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties: name: Quadro P5000 major: 6 minor: 1 memoryClockRate(GHz): 1.7335 pciBusID: 0000:03:00.0 totalMemory: 15.90GiB freeMemory: 15.78GiB 2019-06-25 10:27:33.871942: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0 2019-06-25 10:27:33.873527: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-06-25 10:27:33.873560: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0 2019-06-25 10:27:33.873572: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N 2019-06-25 10:27:33.874258: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15349 MB memory) -> physical GPU (device: 0, name: Quadro P5000, pci bus id: 0000:03:00.0, compute capability: 6.1) 2019-06-25 10:27:35.508488: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally
closed
2019-06-25T02:46:52Z
2019-07-10T01:09:05Z
https://github.com/google-research/bert/issues/716
[]
Biaocsu
2
rougier/scientific-visualization-book
matplotlib
80
BUG: showcase textspiral, assignment destination is read-only
I try to replicate `shocase/text-spiral.py` in my laptop. I tried to run the following code. ```python import mpmath mpmath.mp.dps = 15000 text = str(mpmath.pi) path = TextPath((0, 0), text, size=6, ) #, prop=FontProperties(family="Source Serif Pro")) #path.vertices.setflags(write=1) Vx, Vy = path.vertices[:, 0], path.vertices[:, 1] X = np.interp(Vx, L, T[:, 0]) + Vy * np.interp(Vx, L, O[:, 0]) Y = np.interp(Vx, L, T[:, 1]) + Vy * np.interp(Vx, L, O[:, 1]) Vx[...] = X Vy[...] = Y ``` Then I encountered `ValueError: assignment destination is read-only`. If I add the line `path.vertices.setflags(write=1)` right after `path` object is created, I can reproduce the showcase. I used matplotlib 3.6.3, which might be different behaviour for a default object editing permission (can be checked by `path.vertices.flags`) . Hope this comment will help improve reproducibility.
open
2023-01-20T12:03:59Z
2023-02-02T12:47:50Z
https://github.com/rougier/scientific-visualization-book/issues/80
[]
toshiakiasakura
1
ethanopp/fitly
dash
20
Rolling window of strava activities?
Hi, Curious if there's a way to configure a "rolling window" of strava activities, like optionally only keeping the past 13 months, as an example. Thanks!
open
2021-03-14T03:30:57Z
2021-03-14T03:30:57Z
https://github.com/ethanopp/fitly/issues/20
[]
spawn-github
0
kymatio/kymatio
numpy
309
Ill-conditioning in `scattering3d_qm7.py`
When running this, I get ``` ... Ridge regression, alpha: 1.0, MAE: 5.897314548492432, RMSE: 8.19788932800293 /mnt/xfs1/home/janden/local/anaconda3/envs/kymatio_cuda90/lib/python3.7/site-packages/sklearn/linear_model/ridge.py:125: LinAlgWarning: scipy.linalg.solve Ill-conditioned matrix detected. Result is not guaranteed to be accurate. Reciprocal condition number1.719067e-08 overwrite_a=True).T /mnt/xfs1/home/janden/local/anaconda3/envs/kymatio_cuda90/lib/python3.7/site-packages/sklearn/linear_model/ridge.py:125: LinAlgWarning: scipy.linalg.solve Ill-conditioned matrix detected. Result is not guaranteed to be accurate. Reciprocal condition number1.847256e-08 overwrite_a=True).T /mnt/xfs1/home/janden/local/anaconda3/envs/kymatio_cuda90/lib/python3.7/site-packages/sklearn/linear_model/ridge.py:125: LinAlgWarning: scipy.linalg.solve Ill-conditioned matrix detected. Result is not guaranteed to be accurate. Reciprocal condition number1.704315e-08 overwrite_a=True).T /mnt/xfs1/home/janden/local/anaconda3/envs/kymatio_cuda90/lib/python3.7/site-packages/sklearn/linear_model/ridge.py:125: LinAlgWarning: scipy.linalg.solve Ill-conditioned matrix detected. Result is not guaranteed to be accurate. Reciprocal condition number1.990118e-08 overwrite_a=True).T /mnt/xfs1/home/janden/local/anaconda3/envs/kymatio_cuda90/lib/python3.7/site-packages/sklearn/linear_model/ridge.py:125: LinAlgWarning: scipy.linalg.solve Ill-conditioned matrix detected. Result is not guaranteed to be accurate. Reciprocal condition number1.824673e-08 overwrite_a=True).T ... ``` Seems like `alpha = 1.0` is a bad idea? Why do we have this in here?
closed
2019-01-17T15:10:46Z
2020-02-19T07:25:30Z
https://github.com/kymatio/kymatio/issues/309
[ "3D" ]
janden
4
remsky/Kokoro-FastAPI
fastapi
116
docker compose fails because of `entrypoint.sh` EOL sequence
**Describe the bug** As the title says, when running `docker compose --up build` on a Windows host, the command fails towards the end. **Screenshots or console output** ``` kokoro-tts-1 | /opt/nvidia/nvidia_entrypoint.sh: /app/docker/scripts/entrypoint.sh: /bin/sh^M: bad interpreter: No such file or directory kokoro-tts-1 | /opt/nvidia/nvidia_entrypoint.sh: line 67: /app/docker/scripts/entrypoint.sh: Success kokoro-tts-1 exited with code 126 ``` **Branch / Deployment used** latest master commit (e5b79fc27135e4c054eeb7608da26c86ac7f3344) **Operating System** Windows / NVIDIA GPU **Additional context** Changing the EOL sequence from `CRLF` to `LF` fixed the issue for me.
closed
2025-02-03T16:44:23Z
2025-02-17T09:33:13Z
https://github.com/remsky/Kokoro-FastAPI/issues/116
[]
Puncia
2
lepture/authlib
django
567
The expires_in function needs to have a timedelta to avoid tokenExpiry errors for milliseconds
**Describe the bug** I am using the OAuth2session object ``` client = OAuth2Session(client_id=client_id, client_secret=client_secret, token_endpoint=token_url, grant_type='client_credentials') client.fetch_token(token_url) client.get(<MY_PROTECTED_URL>) ``` Here, the library behavior is that the token gets automatically refreshed if that has expired. Refer https://github.com/lepture/authlib/blob/master/authlib/oauth2/client.py#L257 However, the function which checks the token expiry https://github.com/lepture/authlib/blob/master/authlib/oauth2/rfc6749/wrappers.py#L13 , simply checks the expiry time with the current time . Because of this we are missing some corner cases, where the token is about to expire in few milliseconds/seconds and when the API call to the protected url is made, it gives error in authentication. `JWT expired at 2023-06-20T13:16:42Z. Current time: 2023-06-20T13:16:42Z, a difference of 105 milliseconds. Allowed clock skew: 0 milliseconds." ` **Error Stacks** `JWT expired at 2023-06-20T13:16:42Z. Current time: 2023-06-20T13:16:42Z, a difference of 105 milliseconds. Allowed clock skew: 0 milliseconds." ` **To Reproduce** A minimal example to reproduce the behavior: While the exact replication is not possible here as the request is failing by few milliseconds. ``` client = OAuth2Session(client_id=<client_id>, client_secret=<client_secret>, token_endpoint=<token_url>, grant_type='client_credentials') client.fetch_token(<token_ur>l) client.get(<MY_PROTECTED_URL>) ``` **A clear and concise description of what you expected to happen.** Even if the token got expired by few milliseconds, the library should be able to handle such cases by obtaining a new token. Instead of https://github.com/lepture/authlib/blob/master/authlib/oauth2/rfc6749/wrappers.py#L17 , we should be adding a small timedelta . For eg - even if the token is going to expire in next 60 seconds, refresh that still. **Environment:** - OS: Linux - Python Version: 3.6 - Authlib Version: 1.1.0 **Additional context** There should be some timedelta introduced in the function , so that we can avoid facing issues where API requests fail by few milliseconds. Here, we can add logic to show that token has expired , let's say 30-60 seconds prior to its actual expiry.
closed
2023-07-24T08:47:18Z
2024-04-08T16:58:45Z
https://github.com/lepture/authlib/issues/567
[ "bug", "good first issue" ]
pghole
2
noirbizarre/flask-restplus
api
428
flask request RequestParser bundle error=True is not working as expected
``` from flask import Flask from flask_restplus import Api, Resource, reqparse app = Flask(name) api = Api(app) parser = reqparse.RequestParser(bundle_errors=False) parser.add_argument('username', type=list, required=True, help="Missing Username", location="json") parser.add_argument('password', type=list, required=True, help="Missing Password", location="json") @api.route('/user') class User(Resource): def post(self): args = parser.parse_args() return {"ID":"1", "Username": args['username'], "Password": args['password']}, 201 if name == 'main': app.run(host="0.0.0.0", debug=True) ``` 1- When bundle_errors=False and I send a request with missing parameters ``` curl -X POST http://localhost:5051/user -H 'content-type: application/json' -d '{}' I get the following response { "errors": { "username": "Missing Username" }, "message": "Input payload validation failed" } ``` Which is fine except that is showed only one missing field. 2- When I used bundle_errors=True (as mentioned in the documentation), I got the following result ``` { "Username": "Missing required parameter in the JSON body", "Password": "Missing required parameter in the JSON body", "ID": "1" } ``` Which means that RequestParser didn't throw any error and returned this string "Missing required parameter in the JSON body" as the actual input Am I doing something wrong?
open
2018-05-04T05:44:29Z
2021-10-12T11:18:44Z
https://github.com/noirbizarre/flask-restplus/issues/428
[]
vimox-shah
8
allenai/allennlp
data-science
4,775
Ask for further integration with Optuna
Hello, I'm a member of Optuna dev and the author of the allennlp-guide chapter on hyperparameter optimization. Recently, I created [allennlp-optuna](https://github.com/himkt/allennlp-optuna), a prototype of a wrapper for Optuna to enable users to optimize hyperparameter of AllenNLP model. It provides a way to use Optuna by `allennlp` subcommands. For explaining `allennlp-optuna`, I made the quick tutorial of `allennlp-optuna` in [readthedocs](https://allennlp-optuna.readthedocs.io/en/latest/tutorial/index.html). With `allennlp-optuna`, users can run multi-node distributed optimization by simply executing the same command on multiple machines. I put a simple example on [README](https://github.com/himkt/allennlp-optuna#5-hyperparameter-optimization-at-scale). And recently, I also wrote [the post](https://techlife.cookpad.com/entry/2020/11/06/110000) (sorry in Japanese...) about the NER system using AllenNLP+Optuna. Can we have an opportunity to add `allennlp-optuna` to default plugins of AllenNLP? If it helps the decision, I'm willing to transfer `allennlp-optuna` to AllenAI. I'm really happy if it helps NLP practitioners to tune the hyperparameter of their model with ease. Thank you, as always.
closed
2020-11-07T13:25:21Z
2020-11-11T00:12:06Z
https://github.com/allenai/allennlp/issues/4775
[ "question" ]
himkt
2
django-import-export/django-import-export
django
1,020
Prevent new items. Update only.
Is there any setting that will allow me to ignore any new items. I would only want to import to update. But let's say that there is a new ID that does not currently exists in the database, I would want to ignore that.
closed
2019-10-21T20:56:38Z
2019-11-19T18:16:42Z
https://github.com/django-import-export/django-import-export/issues/1020
[]
jangeador
2
Zeyi-Lin/HivisionIDPhotos
machine-learning
98
HivisionIDPhotos Api调用问题
INFO: [127.0.0.1:52124](http://127.0.0.1:52124/) - "POST /add_background HTTP/1.1" 500 Internal Server Error ERROR: Exception in ASGI application Traceback (most recent call last): File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\uvicorn\protocols\http\httptools_impl.py", line 435, in run_asgi result = await app( # type: ignore[func-returns-value] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\uvicorn\middleware\proxy_headers.py", line 78, in __call__ return await [self.app](http://self.app/)(scope, receive, send) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\fastapi\applications.py", line 1054, in __call__ await super().__call__(scope, receive, send) File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\applications.py", line 123, in __call__ await self.middleware_stack(scope, receive, send) File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\middleware\errors.py", line 186, in __call__ raise exc File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\middleware\errors.py", line 164, in __call__ await [self.app](http://self.app/)(scope, receive, _send) File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\middleware\exceptions.py", line 65, in __call__ await wrap_app_handling_exceptions([self.app](http://self.app/), conn)(scope, receive, send) File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\_exception_handler.py", line 64, in wrapped_app raise exc File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\_exception_handler.py", line 53, in wrapped_app await app(scope, receive, sender) File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\routing.py", line 754, in __call__ await self.middleware_stack(scope, receive, send) File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\routing.py", line 774, in app await route.handle(scope, receive, send) File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\routing.py", line 295, in handle await [self.app](http://self.app/)(scope, receive, send) File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\routing.py", line 77, in app await wrap_app_handling_exceptions(app, request)(scope, receive, send) File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\_exception_handler.py", line 64, in wrapped_app raise exc File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\_exception_handler.py", line 53, in wrapped_app await app(scope, receive, sender) File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\starlette\routing.py", line 74, in app response = await f(request) ^^^^^^^^^^^^^^^^ File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\fastapi\routing.py", line 297, in app raw_response = await run_endpoint_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\zdy\AppData\Local\anaconda3\Lib\site-packages\fastapi\routing.py", line 210, in run_endpoint_function return await dependant.call(**values) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "G:\home\项目\HivisionIDPhotos-1.2.1\deploy_api.py", line 116, in photo_add_background result_image = add_background( ^^^^^^^^^^^^^^^ File "G:\home\项目\HivisionIDPhotos-1.2.1\hivision\utils.py", line 259, in add_background b, g, r, a = cv2.split(input_image) ^^^^^^^^^^ 请问调用api add_background 这个接口后报ASGI这个错误 是什么原因
closed
2024-09-11T03:04:28Z
2024-09-11T06:06:44Z
https://github.com/Zeyi-Lin/HivisionIDPhotos/issues/98
[]
OuTaMan
9
man-group/arctic
pandas
830
Have a restore_version api that supports operations with uncompressed chunks
Currently in restore_version we read and write the entire data to a new version. There was a more efficient implementation of this but that was reverted as it might cause corruptions. What we want is to have a version that just reads and writes uncompressed chunks to save up on memory blowing up due to the new bytearray + collecting uncompressed data chunks which we ran into.
open
2019-12-02T11:59:58Z
2019-12-02T12:10:58Z
https://github.com/man-group/arctic/issues/830
[ "VersionStore" ]
shashank88
1
saleor/saleor
graphql
16,872
Bug: Saleor apps installed using django command do not show up in the Saleor Dashboard
### What are you trying to achieve? Saleor apps installed using the Django command `manage.py install_app --activate <manifest_url>` do not show up in the Saleor Dashboard under Apps / Installed Apps, even if the installation using the Django command completed successfully. ### Steps to reproduce the problem 1. install Saleor app using Django command `manage.py install_app --activate <manifest_url>` 2. check new row was successfully added into `SELECT * FROM public.app_app` 3. open Saleor Dashboard / Apps 4. and section Installed Apps will be empty ### What did you expect to happen? This is due to App.is_installed being False Apps installed from Saleor dashboard end up handled in celery task install_app_task(), where this boolean gets set to True https://github.com/saleor/saleor/blob/main/saleor/app/tasks.py#L34 ### Logs ![image](https://github.com/user-attachments/assets/eff5fdf7-1e15-4703-a46b-b3a5216a086d) ### Environment Saleor version: 3.20.37, git head
closed
2024-10-11T12:40:54Z
2024-10-14T08:16:33Z
https://github.com/saleor/saleor/issues/16872
[ "bug", "triage" ]
ceresnam
2
pytest-dev/pytest-mock
pytest
245
Since 3.3.0 github is missing releases confusing users
When you visit https://github.com/pytest-dev/pytest-mock you only see version 3.3.0 as latest. Even if you click releases page you still see the same. While after while you may be lucky to discover that tags for newer versions exists, that does not provide the best experience. Ideally github releases should be created for any releases, so they are displayed correctly. If, for some reason, the project maintainers do not want to make releases using github, at least it should remove the releases tab from the project as it is really confusing. I personally use github releases to make releases and never push tags, but I think it may be possible to use an action that creates a release when a tag is pushed, i just never did it. Somehow I find the web interface better for performing releases,.
closed
2021-05-18T08:16:35Z
2021-05-18T11:56:29Z
https://github.com/pytest-dev/pytest-mock/issues/245
[]
ssbarnea
1
huggingface/pytorch-image-models
pytorch
1,482
[BUG] Wrong Repo Id
This is regarding the new models (vit CLIP) the URL for their weights is wrong ``` Repository Not Found for url: https://huggingface.co/CLIP-ViT-g-14-laion2B-s12B-b42K/resolve/main/open_clip_pytorch_model.bin. Please make sure you specified the correct `repo_id` and `repo_type`. If the repo is private, make sure you are authenticated. ``` it should be changed to `https://huggingface.co/laion/CLIP-ViT-g-14-laion2B-s12B-b42K/blob/main/open_clip_pytorch_model.bin`
closed
2022-10-05T14:23:34Z
2022-10-05T16:00:23Z
https://github.com/huggingface/pytorch-image-models/issues/1482
[ "bug" ]
MohamedAliRashad
1
nteract/testbook
pytest
59
More examples documentation
We could use more examples for how to use testbook in different scenarios. This would have a strong lasting effect for adoption and resuse of the project over other efforts.
open
2020-08-18T17:01:56Z
2021-05-20T09:49:46Z
https://github.com/nteract/testbook/issues/59
[ "documentation", "sprint-friendly" ]
MSeal
1
litestar-org/polyfactory
pydantic
566
Bug: RecursionError With constrained 0 length lists
### Description When constraining a list to be empty (max_length=0): ```python from pydantic import BaseModel, Field from polyfactory.factories.pydantic_factory import ModelFactory class TestModel(BaseModel): empty_list_field: list = Field(default=[], max_length=0) class TestModelFactory(ModelFactory): __model__ = TestModel TestModelFactory.build() ``` a recursion error occurs. The problem seems to be in https://github.com/litestar-org/polyfactory/blob/67c57208de5ce993bdb2c7888864ac4e71964511/polyfactory/value_generators/constrained_collections.py#L49 where a default length of 1 is used if the randomly picked length (always 0) is falsy. @Goldziher do you remember why this default exists? ### URL to code causing the issue _No response_ ### MCVE ```python from pydantic import BaseModel, Field from polyfactory.factories.pydantic_factory import ModelFactory class TestModel(BaseModel): empty_list_field: list = Field(default=[], max_length=0) class TestModelFactory(ModelFactory): __model__ = TestModel TestModelFactory.build() ``` ### Steps to reproduce ```bash 1. Install polyfactory & pydantic (v2) 2. Run example code ``` ### Screenshots _No response_ ### Logs _No response_ ### Release Version v2.16.2 ### Platform - [x] Linux - [x] Mac - [x] Windows - [ ] Other (Please specify in the description above)
closed
2024-07-16T09:30:48Z
2025-03-20T15:53:18Z
https://github.com/litestar-org/polyfactory/issues/566
[ "bug" ]
tom300z
1
Lightning-AI/pytorch-lightning
deep-learning
19,772
Sanitize object params before they get logged from argument-free classes
### Description & Motivation The motivation for this proposal is as follows: when you store classes (not-yet instantiated, but from the main file) in a module's hyperparameters to instantiate them later, the related entries in the dictionary are not sanitized. ### Pitch For example, let's say my configuration is this: ```python class Stepper(): def __init__(self): self.scale = 3 def step(self): return self.scale config = { "stepper": Stepper } ``` Then I want the hyperparameters that will be logged to look like this: ```python config = { "criterion": "Stepper" } ``` And not like this: ```python config = { "criterion": "<__main__.Stepper object at 0x352255190>" } ``` ### Alternatives When a module has at least one `__init__` argument, this problem doesn't exist: ```python class Stepper: def __init__(self, scale): self.scale = scale def forward(self, x): return self.scale * x config = { "stepper": Stepper, "config": {"scale": 0.0001} } ``` Results in a logged configuration dictionary of form: ```python config = { "criterion": "Stepper", "config": {"scale": 0.0001} } ``` ### Additional context _No response_ cc @borda
closed
2024-04-12T20:16:34Z
2024-06-06T18:51:56Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19772
[ "feature" ]
V0XNIHILI
0
PaddlePaddle/PaddleHub
nlp
1,555
ace2p分割模型GPU推理时发生错误
``` 代码: module = hub.Module(name='ace2p', version='1.0.0') while flag: input_dict = {'image': [path_jpg_in]} _ = module.segmentation(data=input_dict, use_gpu=True, output_dir=masked_path, batch_size=7) **问题1**: batch_size大于等于8时就出错。 -------------------------------------- C++ Traceback (most recent call last): -------------------------------------- 0 paddle::framework::SignalHandle(char const*, int) 1 paddle::platform::GetCurrentTraceBackString[abi:cxx11]() ---------------------- Error Message Summary: ---------------------- FatalError: `Segmentation fault` is detected by the operating system. [TimeInfo: *** Aborted at 1627438146 (unix time) try "date -d @1627438146" if you are using GNU date ***] [SignalInfo: *** SIGSEGV (@0x0) received by PID 35851 (TID 0x7f3769525700) from PID 0 ***] Segmentation fault (core dumped) **问题2**: 循环推理多次之后会出现以下错误,但是显存还有很多空间。3616M/11019M Traceback (most recent call last): File "run_batch3.py", line 214, in <module> ps.get_origin_mask() File "run_batch3.py", line 209, in main # print('{:.3f}s {}'.format(t1 - t0, image_name)) File "run_batch3.py", line 84, in get_origin_mask batch_size=len(image_list)) File "/gfs_brick03/zhanghong/miniconda3/envs/paddle_cu101_v2/lib/python3.6/site-packages/paddlehub/compat/paddle_utils.py", line 220, in runner return func(*args, **kwargs) File "/gfs_brick03/zhanghong/miniconda3/envs/paddle_cu101_v2/lib/python3.6/site-packages/paddlehub/compat/module/module_v1.py", line 201, in __call__ result += self.processor.postprocess(sign_name, data_out, sub_data, **kwargs) File "./ace2p/python/356ef3563a66791ef656737189a222ec.py", line 202, in postprocess for index, data in enumerate(data_out[0]): MemoryError: (ResourceExhausted) Fail to alloc memory of 524288000 size, error code is 12. [Hint: Expected error == 0, but received error:12 != 0:0.] (at /paddle/paddle/fluid/memory/detail/system_allocator.cc:62) ```
open
2021-07-28T02:18:21Z
2021-08-10T12:58:31Z
https://github.com/PaddlePaddle/PaddleHub/issues/1555
[ "cv" ]
justzhanghong
1
ipython/ipython
jupyter
14,120
IPython file error
``` Traceback (most recent call last): File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/traitlets/traitlets.py", line 656, in get value = obj._trait_values[self.name] ~~~~~~~~~~~~~~~~~^^^^^^^^^^^ KeyError: 'ipython_dir' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/me_user/aoc/main.py", line 28, in <module> script, input_path = check_required_files_exists(year=year, day=day, sample=sample) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/me_user/aoc/src/common/util.py", line 89, in check_required_files_exists import ipdb; ipdb.set_trace() ^^^^^^^^^^^^^^^^ File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/ipdb/__main__.py", line 77, in set_trace p = _init_pdb(context).set_trace(frame) ^^^^^^^^^^^^^^^^^^ File "/home/vhij/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/ipdb/__main__.py", line 54, in _init_pdb debugger_cls = _get_debugger_cls() ^^^^^^^^^^^^^^^^^^^ File "/home/vhij/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/ipdb/__main__.py", line 34, in _get_debugger_cls ipapp.initialize(["--no-term-title"]) File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/traitlets/config/application.py", line 113, in inner return method(app, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/IPython/terminal/ipapp.py", line 270, in initialize super(TerminalIPythonApp, self).initialize(argv) File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/traitlets/config/application.py", line 113, in inner return method(app, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/IPython/core/application.py", line 484, in initialize self.init_profile_dir() File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/IPython/core/application.py", line 388, in init_profile_dir p = ProfileDir.find_profile_dir_by_name(self.ipython_dir, self.profile, self.config) ^^^^^^^^^^^^^^^^ File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/traitlets/traitlets.py", line 703, in __get__ return self.get(obj, cls) ^^^^^^^^^^^^^^^^^^ File "/home/vhme_userij/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/traitlets/traitlets.py", line 659, in get default = obj.trait_defaults(self.name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/traitlets/traitlets.py", line 1872, in trait_defaults return self._get_trait_default_generator(names[0])(self) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/vhij/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/traitlets/traitlets.py", line 1233, in __call__ return self.func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/IPython/core/application.py", line 207, in _ipython_dir_default d = get_ipython_dir() ^^^^^^^^^^^^^^^^^ File "/home/me_user/.cache/pypoetry/virtualenvs/advent-of-code-XSxK3i_Q-py3.11/lib/python3.11/site-packages/IPython/paths.py", line 73, in get_ipython_dir os.makedirs(ipdir, exist_ok=True) File "<frozen os>", line 225, in makedirs FileExistsError: [Errno 17] File exists: '/home/vhij/.ipython' If you suspect this is an IPython 8.14.0 bug, please report it at: https://github.com/ipython/ipython/issues or send an email to the mailing list at ipython-dev@python.org You can print a more detailed traceback right now with "%tb", or use "%debug" to interactively debug it. Extra-detailed tracebacks for bug-reporting purposes can be enabled via: c.Application.verbose_crash=True ```
open
2023-07-24T11:03:15Z
2023-07-24T11:08:19Z
https://github.com/ipython/ipython/issues/14120
[]
Vasile-Hij
0
Buuntu/fastapi-react
sqlalchemy
28
Add React login page
closed
2020-05-25T02:19:46Z
2020-05-25T15:18:52Z
https://github.com/Buuntu/fastapi-react/issues/28
[ "enhancement" ]
Buuntu
0
plotly/dash
plotly
2,852
[BUG] set_props called multiple times only keep the last props.
For regular callbacks, when multiple call of `set_props` to the same component id, only the last call is saved. Example: ``` from dash import Dash, Input, html, set_props app = Dash() app.layout = [ html.Button("start", id="start"), html.Div("initial", id="output"), ] @app.callback( Input("start", "n_clicks"), ) def on_click(_): set_props("output", {"children": "changed"}) set_props("output", {"style": {"background": "red"}}) if __name__ == "__main__": app.run(debug=True) ``` Clicking on the start button only set the background red, the text stays at "initial". The props should be merged and both updated.
closed
2024-05-07T16:35:57Z
2024-05-15T19:22:04Z
https://github.com/plotly/dash/issues/2852
[ "bug", "sev-1" ]
T4rk1n
0
proplot-dev/proplot
data-visualization
105
More issues with "thin" fonts
@bradyrx In your example (#103) it looks like matplotlib may be picking up [a "thin" font again](https://github.com/lukelbd/proplot/issues/94) :/. Could you run the following: ```python from matplotlib.font_manager import findfont, FontProperties print(findfont(FontProperties(['sans-serif']))) ``` and post the result? Also which proplot version are you using?
closed
2020-01-09T05:54:48Z
2020-01-09T09:30:29Z
https://github.com/proplot-dev/proplot/issues/105
[ "bug" ]
lukelbd
1
yuka-friends/Windrecorder
streamlit
57
feat: 为托盘的更新提示添加“更新日志”入口
https://github.com/yuka-friends/Windrecorder/pull/46 在程序有可用更新时,在更新选项下添加一个“查看更新日志(what's new)”的选项,点击后浏览器打开 GitHub 上的 CHANGELOG 文件(和浏览器访问 localhost:xxxx 进入页面那个选项一致)
closed
2023-12-04T14:42:12Z
2024-02-09T11:18:33Z
https://github.com/yuka-friends/Windrecorder/issues/57
[ "enhancement", "P0" ]
Antonoko
0
simple-login/app
flask
1,982
Remove sensitive words
I will make a PR
closed
2023-12-29T19:54:47Z
2024-01-02T11:33:28Z
https://github.com/simple-login/app/issues/1982
[]
ghost
1