max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
gitools/modules/restore_backup.py
AliRezaBeigy/Gitools
6
12784851
from ..module import Module class RestoreBackupModule(Module): def process(self): Module.restoreBackup() @staticmethod def getFlag(): return "rb" @staticmethod def getName(): return "Restore Backup" @staticmethod def getDescription(): return "" def isVisible(self): return Module.hasBackup()
2.421875
2
Lesson16/api.py
IslamRaslambekov/HomeWork
0
12784852
import requests from pprint import pprint def find_vacancies(parameters): URL = 'https://www.cbr-xml-daily.ru/daily_json.js' response = requests.get(URL).json() usd_rate = response['Valute']['USD']['Value'] euro_rate = response['Valute']['EUR']['Value'] URL_HH = 'https://api.hh.ru/vacancies' min_salary = list() max_salary = list() response = requests.get(URL_HH, params=parameters).json() pages = response['pages'] vacancies_count = response['found'] for page in range(pages + 1): params = {'text': parameters.get('text'), 'only_with_salary': parameters.get('only_with_salary'), 'per_page': parameters.get('per_page'), 'page': page} response = requests.get(URL_HH, params=params).json() for item in response['items']: salfrom = item['salary']['from'] salto = item['salary']['to'] salcurr = item['salary']['currency'] if salcurr == 'RUR': if salfrom is not None: min_salary.append(salfrom) if salto is not None: max_salary.append(salto) elif salcurr == 'USD': if salfrom is not None: min_salary.append(int(salfrom * usd_rate)) if salto is not None: max_salary.append(int(salto * usd_rate)) elif salcurr == 'EUR': if salfrom is not None: min_salary.append(int(salfrom * euro_rate)) if salto is not None: max_salary.append(int(salto * euro_rate)) data = { 'average_salary': f'{sum(min_salary) // len(min_salary)} - {sum(max_salary) // len(max_salary)}', 'vacancies_count': vacancies_count } return data
3.09375
3
homeassistant/components/flux_led/discovery.py
gptubpkCsHKzjC8fKcRXUdK6SbECPM49P5Xu46U/core
1
12784853
<filename>homeassistant/components/flux_led/discovery.py """The Flux LED/MagicLight integration discovery.""" from __future__ import annotations import asyncio import logging from flux_led.aioscanner import AIOBulbScanner from flux_led.const import ATTR_ID, ATTR_IPADDR, ATTR_MODEL, ATTR_MODEL_DESCRIPTION from flux_led.scanner import FluxLEDDiscovery from homeassistant import config_entries from homeassistant.components import network from homeassistant.core import HomeAssistant, callback from .const import DISCOVER_SCAN_TIMEOUT, DOMAIN _LOGGER = logging.getLogger(__name__) @callback def async_name_from_discovery(device: FluxLEDDiscovery) -> str: """Convert a flux_led discovery to a human readable name.""" mac_address = device[ATTR_ID] if mac_address is None: return device[ATTR_IPADDR] short_mac = mac_address[-6:] if device[ATTR_MODEL_DESCRIPTION]: return f"{device[ATTR_MODEL_DESCRIPTION]} {short_mac}" return f"{device[ATTR_MODEL]} {short_mac}" async def async_discover_devices( hass: HomeAssistant, timeout: int, address: str | None = None ) -> list[FluxLEDDiscovery]: """Discover flux led devices.""" if address: targets = [address] else: targets = [ str(address) for address in await network.async_get_ipv4_broadcast_addresses(hass) ] scanner = AIOBulbScanner() for idx, discovered in enumerate( await asyncio.gather( *[ scanner.async_scan(timeout=timeout, address=address) for address in targets ], return_exceptions=True, ) ): if isinstance(discovered, Exception): _LOGGER.debug("Scanning %s failed with error: %s", targets[idx], discovered) continue if not address: return scanner.getBulbInfo() return [ device for device in scanner.getBulbInfo() if device[ATTR_IPADDR] == address ] async def async_discover_device( hass: HomeAssistant, host: str ) -> FluxLEDDiscovery | None: """Direct discovery at a single ip instead of broadcast.""" # If we are missing the unique_id we should be able to fetch it # from the device by doing a directed discovery at the host only for device in await async_discover_devices(hass, DISCOVER_SCAN_TIMEOUT, host): if device[ATTR_IPADDR] == host: return device return None @callback def async_trigger_discovery( hass: HomeAssistant, discovered_devices: list[FluxLEDDiscovery], ) -> None: """Trigger config flows for discovered devices.""" for device in discovered_devices: hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_DISCOVERY}, data={**device}, ) )
2.21875
2
executor/meta/env_var.py
asyre/bachelor_degree
0
12784854
import os from typing import Optional def is_env_var(value: str) -> bool: return value.startswith("$") def extract_env_var(value: str) -> Optional[str]: return os.environ[value[1:]] def must_extract_env_var(value: str) -> str: env = extract_env_var(value) if env is None: raise MissingEnvVar return env def must_extract_env_var_if_present(value: str) -> str: if is_env_var(value): return must_extract_env_var(value) return value class MissingEnvVar(Exception): pass
3.078125
3
train.py
yutong-xie/Depth-Estimation-based-on-CNN
0
12784855
import os import numpy as np import torch import torch.nn as nn import torchvision import PIL from torchvision import transforms from sklearn.metrics import average_precision_score from PIL import Image, ImageDraw import matplotlib.pyplot as plt from nyu_dataloader import LoadData, NYUDataset from model import CoarseNetwork, FineNetwork from metrics import Metrics_Calculate from loss import Train_Loss %matplotlib inline %load_ext autoreload %autoreload 2 param =0.5 # 0 1 # # learning_rate = {'coarse': [0.001,0.001,0.001,0.001,0.001,0.1,0.1], 'fine':[0.01,0.1,0.01]} learning_rate = 0.001 num_epochs = {'coarse':30, 'fine':30} criterion = Train_Loss(param) optimizer = {'coarse': torch.optim.SGD(net['coarse'].parameters(), lr = 0.001, momentum=0.9, weight_decay= 5e-4), 'fine':torch.optim.SGD(net['fine'].parameters(), lr = 0.001, momentum=0.9, weight_decay= 5e-4)} # optimizer = {'coarse': torch.optim.Adam(net['coarse'].parameters(), lr = 0.001), # 'fine':torch.optim.Adam(net['fine'].parameters(), lr = 0.001)} optimizer = {} optimizer['coarse'] = torch.optim.SGD([ {'params': net['coarse'].coarse1.parameters(), 'lr': 0.001}, {'params': net['coarse'].coarse2.parameters(), 'lr': 0.001}, {'params': net['coarse'].coarse3.parameters(), 'lr': 0.001}, {'params': net['coarse'].coarse4.parameters(), 'lr': 0.001}, {'params': net['coarse'].coarse5.parameters(), 'lr': 0.001}, {'params': net['coarse'].coarse6.parameters(), 'lr': 0.1}, {'params': net['coarse'].coarse7.parameters(), 'lr': 0.1} ], lr=0.001, momentum=0.9, weight_decay= 5e-4) optimizer['fine'] = torch.optim.SGD([ {'params': net['fine'].fine1.parameters(), 'lr': 0.001}, {'params': net['fine'].fine2.parameters(), 'lr': 0.01}, {'params': net['fine'].fine3.parameters(), 'lr': 0.001} ], lr=0.001, momentum=0.9, weight_decay= 5e-4) # optimizer = {} # optimizer['coarse'] = torch.optim.Adam([ # {'params': net['coarse'].coarse1.parameters(), 'lr': 0.001}, {'params': net['coarse'].coarse2.parameters(), 'lr': 0.001}, # {'params': net['coarse'].coarse3.parameters(), 'lr': 0.001}, {'params': net['coarse'].coarse4.parameters(), 'lr': 0.001}, # {'params': net['coarse'].coarse5.parameters(), 'lr': 0.001}, {'params': net['coarse'].coarse6.parameters(), 'lr': 0.1}, # {'params': net['coarse'].coarse7.parameters(), 'lr': 0.1} # ], lr=0.001) # optimizer['fine'] = torch.optim.Adam([ # {'params': net['fine'].fine1.parameters(), 'lr': 0.001}, # {'params': net['fine'].fine2.parameters(), 'lr': 0.01}, # {'params': net['fine'].fine3.parameters(), 'lr': 0.001} # ], lr=0.001) def train(mode, net, optimizer): best_test_loss = float("inf") val_loss_list = [] train_loss_list = [] # Loop over the dataset for multiple epochs for epoch in range(num_epochs[mode]): net[mode].train() running_loss = 0.0 start_time = time.time() print('\nStarting epoch %d / %d' % (epoch + 1, num_epochs[mode])) # For each mini-batch... for inputs, labels in train_loader: inputs, labels = inputs.to(device), labels.to(device) optimizer[mode].zero_grad() if mode == 'coarse': outputs = net['coarse'](inputs) elif mode == 'fine': with torch.no_grad(): net['coarse'].eval() coarse_outputs = net['coarse'](inputs) outputs = net['fine'](inputs, coarse_outputs.detach()) loss = criterion(outputs, labels) loss.backward() optimizer[mode].step() running_loss += loss.item() running_loss /= len(train_loader) train_loss_list.append(running_loss) # save model every 5 epochs # if epoch %5 == 4 and load_network_path is not None: # torch.save(net[mode].state_dict(), load_network_path[mode]) # evaluate the network on the validation dataset with torch.no_grad(): val_loss = 0.0 net[mode].eval() for inputs, labels in val_loader: inputs, labels = inputs.to(device), labels.to(device) if mode == 'coarse': outputs = net['coarse'](inputs) elif mode == 'fine': net['coarse'].eval() coarse_outputs = net['coarse'](inputs) outputs = net['fine'](inputs, coarse_outputs) loss = criterion(outputs,labels) val_loss += loss.item() val_loss /= len(val_loader) val_loss_list.append(val_loss) # Metrics: t1, t2, t3, abs_error, squared_error, rmse_linear, rmse_log t1, t2, t3, abs_error, squared_error, rmse_linear, rmse_log = Metrics_Calculate(outputs, labels) print("epoch:", epoch + 1, ", training loss:", running_loss, "validation loss:", val_loss) if epoch % 10 == 9: print("\n------------Validation--------------") print("Threshold < 1.25:", t1) print("Threshold < 1.25^2:", t2) print("Threshold < 1.25^3:", t3) print("abs_relative_difference:", abs_error.item()) print("squared_relative_difference:", squared_error.item()) print("RMSE (linear):", rmse_linear.item()) print("RMSE (log):", rmse_log.item()) print("RMSE (log, scale inv.):", val_loss) print("---------------------------------------") # training_time = time.time() - start_time # print("Training time: %d min %d s"% (training_time//60, training_time % 60)) return net, train_loss_list, val_loss_list # Train the coarse network net, train_losses, val_losses= train('coarse', net, optimizer) plot_loss(train_losses, val_losses) # Train the fine network net, train_losses, val_losses= train('fine', net, optimizer) plot_loss(train_losses, val_losses) # Test the model and output samples test_loss = 0.0 for inputs, labels in test_loader: inputs, labels = inputs.to(device), labels.to(device) net["coarse"].eval() net["fine"].eval() with torch.no_grad(): coarse_outputs = net['coarse'](inputs) fine_outputs = net['fine'](inputs, coarse_outputs) loss = criterion(fine_outputs, labels) test_loss += loss.item() test_loss /= len(test_loader) print("Test loss: ", test_loss) t1, t2, t3, abs_error, squared_error, rmse_linear, rmse_log = Metrics_Calculate(fine_outputs, labels) print("\n------------Validation--------------") print("Threshold < 1.25:", t1) print("Threshold < 1.25^2:", t2) print("Threshold < 1.25^3:", t3) print("abs_relative_difference:", abs_error.item()) print("squared_relative_difference:", squared_error.item()) print("RMSE (linear):", rmse_linear.item()) print("RMSE (log):", rmse_log.item()) print("RMSE (log, scale inv.):", test_loss) print("---------------------------------------")
2.09375
2
job/SLURM/Opuntia.py
martintb/typyQ
0
12784856
<reponame>martintb/typyQ<filename>job/SLURM/Opuntia.py from SLURM import SLURMJob class OpuntiaJob(SLURMJob): #no specialization needed! pass
1.257813
1
ddpcr/app/urls.py
clinical-genomics-uppsala/where_my_assys_at
0
12784857
from django.urls import path from . import views urlpatterns = [ path('', views.Index.as_view(), name='index'), path('assays/', views.AssayList.as_view(), name='assays'), path('assays/create/', views.AssayCreate.as_view(), name='assay-create'), path('assays/upload/', views.AssaysCreate.as_view(), name="assays-create"), path('assays/update/<int:pk>/', views.AssayUpdate.as_view(), name='assay-update'), path("lots/", views.LotList.as_view(), name="lots"), path("lots/update/<int:pk>", views.LotUpdate.as_view(), name="lot-update"), path("lots/order/", views.LotOrderList.as_view(), name="lot-order-list"), path("lots/order/<int:pk>", views.LotOrder.as_view(), name="lot-order"), path("lots/scan/", views.LotScanList.as_view(), name="lot-scan-list"), path("lots/scan/<int:pk>", views.LotScan.as_view(), name="lot-scan"), path("lots/validate/", views.LotValidateList.as_view(), name="lot-validate-list"), path("lots/validate/<int:pk>", views.LotValidate.as_view(), name="lot-validate"), path("lots/activate/", views.LotActivateList.as_view(), name="lot-activate-list"), path("lots/activate/<int:pk>", views.LotActivate.as_view(), name="lot-activate"), path("lots/lowvol/", views.LotLowVolumeList.as_view(), name="lot-low-volume-list"), path("lots/lowvol/<int:pk>", views.LotLowVolume.as_view(), name="lot-low-volume"), path("lots/inactivate/", views.LotInactivateList.as_view(), name="lot-inactivate-list"), path("lots/inactivate/<int:pk>", views.LotInactivate.as_view(), name="lot-inactivate"), path('patients/', views.PatientList.as_view(), name='patients'), path('patients/create/', views.PatientCreate.as_view(), name='patient-create'), path('patients/upload/', views.PatientsCreate.as_view(), name="patients-create"), path('patients/update/<int:pk>/', views.PatientUpdate.as_view(), name='patient-update'), ]
1.898438
2
wards/forms.py
Naomi-sigu/awwwards
1
12784858
<filename>wards/forms.py<gh_stars>1-10 from django import forms from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from .models import Profile, Projects class UpdateUser(forms.ModelForm): email = forms.EmailField() class Meta: model = User fields = ['username','email'] class UpdateProfile(forms.ModelForm): class Meta: model = Profile fields = ['profile_pic','bio'] class ProjectsForm(forms.ModelForm): class Meta: model = Projects fields = ['title', 'image', 'project_description', 'user', 'site', 'country']
2.015625
2
dm_irods/list.py
sara-nl/surfsara-dmf-irods-client
2
12784859
<reponame>sara-nl/surfsara-dmf-irods-client import sys import atexit import json import time from argparse import ArgumentParser from .socket_server.client import Client from .socket_server.server import ReturnCode from .server import ensure_daemon_is_running from .server import DmIRodsServer from .cprint import terminal_erase from .cprint import terminal_home from .cprint import print_request_error from .table import Table from .table import get_term_size WATCH_DEALY = 2 def dm_ilist(argv=sys.argv[1:]): parser = ArgumentParser(description='List files in archive.') help_format = ('Configure columns to be displayed' + 'Examples:\n' + 'dmf,time,status,mod,file,local_file (default)\n' + 'dmf,time,status,mod,file:20,local_file:20') help_watch = 'display the list and refresh screen automatically' parser.add_argument('--format', type=str, default='dmf,time,status,mod,file,local_file', help=help_format) parser.add_argument('--limit', type=int, help='limit number of items to be listed') parser.add_argument('--watch', '-w', action='store_true', help=help_watch) parser.add_argument('--active', '-a', action='store_true', help='only active objects') args = parser.parse_args(argv) ensure_daemon_is_running() client = Client(DmIRodsServer.get_socket_file()) if args.watch: terminal_erase() if args.limit is None: (columns, lines) = get_term_size() args.limit = lines - 3 atexit.register(terminal_erase) while True: table = Table(format=args.format) for code, result in client.request_all({"list": True, "all": True, "filter": {"active": args.active}, "limit": args.limit}): if code != ReturnCode.OK: print_request_error(code, result) sys.exit(8) table.print_row(json.loads(result)) if args.watch: time.sleep(WATCH_DEALY) terminal_home() else: break if __name__ == "__main__": dm_ilist()
2.234375
2
dianping/dianping/spiders/dpBaseSpider.py
MircroCode/dpSpider
0
12784860
#!/usr/local/bin/python #-*-coding:utf8-*- __author__ = 'youjiezeng' import random from scrapy.spider import BaseSpider from scrapy.spider import Spider from scrapy.contrib.spiders import CrawlSpider from scrapy.selector import HtmlXPathSelector from scrapy.http import Request from scrapy.http import Response from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor import sys sys.path.append('../items') reload(sys) from scrapy.contrib.downloadermiddleware.useragent import UserAgentMiddleware try: from dianping.items import DianpingItem except Exception,e: print e import re from scrapy.exceptions import CloseSpider from scrapy.selector import Selector ''' this is a way to run spider in cmdline scrapy runspider my_spider.py 优化点: 1. 启动爬虫间隔 2. 启动cookie,防止被ban 3. 随机切换user-agent,防止被ban 4. 将编码任务切换到pipeline中 ''' ''' It’s a derived class of BaseSpider which has three fields and one method (all are required): name: name of your spider, which is use to launch the spider (will mention later). You can name it whatever you want. According to my taste, I will call it “nettuts”. allowed_domains: a list of domains on which the crawler crawling. Every domains which are not in this list are not available for crawling. start_urls: a list of URLs, which will be the roots of later crawls. parse(self, response): main method which is invoked by BaseSpider and contains main logic of our crawler.''' class DpSpider(BaseSpider): from scrapy.contrib.spiders import Rule from scrapy.contrib.linkextractors.lxmlhtml import LxmlParserLinkExtractor name = 'dianping' allowed_domains = ['dianping.com'] start_urls = ['http://www.dianping.com/search/category/2/20/g120r1481'] # rules = [Rule(LxmlParserLinkExtractor(['shop/\d+']), 'parse')] # rules = [Rule(SgmlLinkExtractor(allow=('/shop'),restrict_xpaths=('//@href')), callback='parse',follow=True)] def parse(self, response): shop = DianpingItem() status_code = response.status if status_code == 403: #当爬虫被禁时,关闭爬虫 raise CloseSpider('======== SPIDER WAS FORBIDDEN =========') # htmlData = HtmlXPathSelector(response) # shop_names = htmlData.select('//h1[@class="shop-name"]/text()').extract() # street_addresses = htmlData.select('//span[@itemprop="street-address"]/text()').extract() # shop_tels = htmlData.select('//span[@class="info-name" and text()="'+u"电话:"+'"]/../text()[2]').extract() # open_times = htmlData.select('//p[@class="info info-indent"]/span[text()="'+u"营业时间:"+'"]/../span[2]/text()').extract() # shop_tags = htmlData.select('//span[@class=item]/a[@rel="tag"]/text()').extract() # scripts = htmlData.select('//script/text()').extract() # urls = htmlData.select('//attribute::href').extract() htmlData = Selector(response) shop_names = htmlData.xpath('//h1[@class="shop-name"]/text()').extract() street_addresses = htmlData.xpath('//span[@itemprop="street-address"]/text()').extract() shop_tels = htmlData.xpath('//span[@class="info-name" and text()="'+u"电话:"+'"]/../text()[2]').extract() open_times = htmlData.xpath('//p[@class="info info-indent"]/span[text()="'+u"营业时间:"+'"]/../span[2]/text()').extract() shop_tags = htmlData.xpath('//span[@class=item]/a[@rel="tag"]/text()').extract() scripts = htmlData.xpath('//script/text()').extract() urls = htmlData.xpath('//attribute::href').extract() #爬取的数据中,有大量的换行符以及“号,在这里清洗掉 shop['shop_name'] = str(shop_names[0].encode('utf8')).replace("\n",' ').strip("\"").strip() if len(shop_names)>0 else '' shop['street_address'] = str(street_addresses[0].encode('utf8')).replace("\n",' ').strip("\"").strip() if len(street_addresses)>0 else '' shop['shop_tel'] = str(shop_tels[0].encode('utf8')).replace("\n",' ').strip("\"").strip() if len(shop_tels)>0 else '' shop['open_time'] = str(open_times[0].encode('utf8')).replace("\n",' ').strip("\"").strip() if len(open_times)>0 else '' shop['shop_tag'] = str(shop_tags[0].encode('utf8')).replace("\n",' ').strip("\"").strip() if len(shop_tags)>0 else '' pat = re.compile('lng:[0-9.]+,lat:[0-9.]+') latAndLngList = [pat.findall(src)[0] for src in scripts if pat.findall(src)] latAndLng = latAndLngList[0] if len(latAndLngList)>0 else '' latIdx = latAndLng.find('lat:') lat = latAndLng[latIdx+4:] lng = latAndLng[4:latIdx-1] shop['shop_lat'] = lat shop['shop_lng'] = lng if lat != '' and lng != '': yield shop currentUrl = response.url domainUrl = 'http://www.dianping.com' # urls = htmlData.select('//@href').extract() urlPattern = re.compile('shop/[0-9]+') for url in urls: if not urlPattern.findall(url): continue if str(url.encode('utf8')).startswith('http'): pass elif str(url.encode('utf8')).startswith('/'): url = domainUrl+url else: url = currentUrl + url print '------------url:',url yield Request(url,callback=self.parse)
2.671875
3
google/colab/_import_magics.py
figufema/TesteClone
1,521
12784861
<filename>google/colab/_import_magics.py # Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Allow magics to be declared without forcing an import. This module allows us to declare a magic will be available while delaying the import of the associated package. The primary purpose is to avoid importing too many packages at startup, as it complicates package installation for users. Note that importing the original module will *replace* these registrations, as magics are still being registered in their original modules. In addition, the IPython getdoc() function allows us to lazily request help on a magic -- again, requesting help on a specific magic will import the module where that magic resides. For general Python objects or functions, this might be dangerous -- however, magics are special, in that they're not represented by a Python object, so there's no danger that overwriting the name -> function mapping will cause trouble later on. The only user-visible aspect is that the source reference in the help will update from this module to the actual importing module after the first use. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys # IPython requires get_ipython to be available as a local variable wherever you # want to register a magic, in an attempt to prevent you from registering # magics before the IPython magic machinery is loaded. So we need to directly # import the symbol, instead of just the module. from IPython import get_ipython from IPython.core import magic def _load_extension(module): get_ipython().extension_manager.load_extension(module) def _get_extension_magic(name, module, magic_type, magic_module_loader): magic_module_loader(module) m = get_ipython().magics_manager.magics[magic_type][name] if m.__module__ == __name__: raise ValueError('No %s magic named "%s" found in "%s"' % (magic_type, name, module)) return m def _declare_line_magic(name, module, magic_module_loader): """Declare a line magic called name in module.""" # If the module or extension has already been imported, don't overwrite the # existing definition. if module in sys.modules or module in get_ipython().extension_manager.loaded: return def impl(line, **kwargs): return _get_extension_magic(name, module, 'line', magic_module_loader)(line, **kwargs) # pylint: disable=g-long-lambda impl.getdoc = lambda: _get_extension_magic(name, module, 'line', magic_module_loader).__doc__ magic.register_line_magic(name)(impl) def _declare_cell_magic(name, module, magic_module_loader): """Declare a cell magic called name in module.""" # If the module or extension has already been imported, don't overwrite the # existing definition. if module in sys.modules or module in get_ipython().extension_manager.loaded: return def impl(line, cell, **kwargs): return _get_extension_magic(name, module, 'cell', magic_module_loader)(line, cell, **kwargs) # pylint: disable=g-long-lambda impl.getdoc = lambda: _get_extension_magic(name, module, 'cell', magic_module_loader).__doc__ magic.register_cell_magic(name)(impl) def _declare_colabx_magics(): if get_ipython(): _declare_cell_magic('bigquery', 'google.cloud.bigquery', _load_extension)
2.109375
2
fits2png_example/primitives/simple_fits_reader.py
Keck-DataReductionPipelines/keckdrpframework
0
12784862
""" Example to read a FITS file. Created on Jul 9, 2019 Be aware that hdus.close () needs to be called to limit the number of open files at a given time. @author: skwok """ import astropy.io.fits as pf from astropy.utils.exceptions import AstropyWarning import warnings import numpy as np from keckdrpframework.models.arguments import Arguments from keckdrpframework.primitives.base_primitive import BasePrimitive def open_nowarning(filename): with warnings.catch_warnings(): warnings.simplefilter("ignore", AstropyWarning) return pf.open(filename, memmap=False) class SimpleFitsReader_LRIS(BasePrimitive): def __init__(self, action, context): """ Initializes the super class. """ BasePrimitive.__init__(self, action, context) def _perform(self): """ Expects action.args.name as fits file name Returns HDUs or (later) data model """ name = self.action.args.name self.logger.debug(f"Reading {name}") out_args = Arguments() out_args.name = name out_args.img = self.readData(name) return out_args def readData(self, name, cutout=True): """ Reads FITS file, mostly from KECK instruments. If there are multiple HDUs, the image is assembled according to the kewyrods DETSEC and DATASEC. Otherwise hdus[0].data is returned. If cutout is TRUE, then only the none-zero portion is returned. """ with open_nowarning(name) as hdus: if len(hdus) == 1: return hdus[0].data else: imgBuf = hdus[1].data for hdu in hdus[2:]: imgBuf = np.concatenate((imgBuf, hdu.data), 1) return imgBuf
3.015625
3
ax1500-poc.py
marcnewlin/ax1500-crypto-client
14
12784863
<reponame>marcnewlin/ax1500-crypto-client<gh_stars>10-100 #!/usr/bin/env python3 import base64 import binascii import hashlib import json import logging import re import requests from Crypto.Cipher import AES, PKCS1_v1_5 from Crypto.PublicKey import RSA from pprint import pprint ROUTER_HOST = "192.168.0.1" ROUTER_PASSWORD = "password" class Client(object): def __init__(self, password, sig_priv=None, enc_priv=None): # get a requests session self.session = requests.Session() # setup crypto self.password = password self.init_aes() self.init_rsa() # build the username/password hash h = hashlib.md5() h.update(b"admin%s" % self.password.encode()) # build the signature string self.sig_base = b"k=%s&i=%s&h=%s&s=" % (self.aes_key, self.aes_iv, h.hexdigest().encode()) # login self.stok = "" self.login() def decrypt_aes(self, ciphertext): cipher = AES.new(self.aes_key, AES.MODE_CBC, iv=self.aes_iv) plaintext = cipher.decrypt(ciphertext) return plaintext def encrypt_aes(self, plaintext): cipher = AES.new(self.aes_key, AES.MODE_CBC, iv=self.aes_iv) ciphertext = cipher.encrypt(plaintext) return ciphertext def get_signature(self, datalen): # plaintext signature string ss = b"%s%d" % (self.sig_base, (self.seq+datalen)) # encrypt using the 512-bit public key sig = b"" for x in range(0, len(ss), 53): chunk = ss[x:x+53] sig += self.sig_cipher.encrypt(ss[x:x+53]) sig = binascii.hexlify(sig) return sig def send_encrypted_command(self, cmd, url): # encrypt the command (AES) and then base64-encode pc = chr(16 - (len(cmd) % 16)) while len(cmd) % 16 != 0: cmd += pc.encode() cmd = self.encrypt_aes(cmd) cmd = base64.b64encode(cmd) # get the signature for the current sequence number sig = self.get_signature(len(cmd)) # build the POST data post_data = { "sign": sig, "data": cmd } # send the request res = self.session.post("http://%s/cgi-bin/luci/;stok=%s%s" % (ROUTER_HOST, self.stok, url), data=post_data) # parse and decrypt the response data = json.loads(res.content) data_raw = base64.b64decode(data["data"]) data = self.decrypt_aes(data_raw) if data[-1] < 16: data = data[:-data[-1]] data = json.loads(data) return data def login(self): # build the login command and encrypt with AES login_cmd = b"password=%s&operation=login" % binascii.hexlify(self.enc_cipher.encrypt(self.password.encode())) # send the command data = self.send_encrypted_command(login_cmd, "/login?form=login") # process the response if data["success"] != True: raise Exception("Login failure!") self.stok = data["data"]["stok"] logging.info("Logged in successfully!") def init_rsa(self, enc_priv=None, sig_priv=None): # request the signature public key and sequence number url = "http://%s/cgi-bin/luci/;stok=/login?form=auth" % ROUTER_HOST res = self.session.post(url, data={"operation":"read"}) data = json.loads(res.content) self.sig_pub = int.from_bytes(binascii.unhexlify(data["data"]["key"][0]), "big") self.seq = data["data"]["seq"] # request the data public key url = "http://%s/cgi-bin/luci/;stok=/login?form=keys" % ROUTER_HOST res = self.session.post(url, data={"operation":"read"}) data = json.loads(res.content) self.enc_pub = int.from_bytes(binascii.unhexlify(data["data"]["password"][0]), "big") # setup the data cipher self.enc_key = RSA.construct((self.enc_pub, 65537)) if enc_priv is not None: self.enc_priv = enc_priv self.enc_key = RSA.construct((self.enc_pub, 65537, self.enc_priv)) self.enc_cipher = PKCS1_v1_5.new(self.enc_key) # setup the signature cipher self.sig_key = RSA.construct((self.sig_pub, 65537)) if sig_priv is not None: self.sig_key = RSA.construct((self.sig_pub, 65537, sig_priv)) self.sig_cipher = PKCS1_v1_5.new(self.sig_key) def init_aes(self): # request tpEncrypt.js and parse out the default AES key/IV url = "http://%s/webpages/js/libs/tpEncrypt.js" % ROUTER_HOST res = self.session.get(url) self.aes_key = re.search(r"t=\"(\d{16})\"", res.content.decode()).group(1).encode() self.aes_iv = re.search(r"e=\"(\d{16})\"", res.content.decode()).group(1).encode() # setup the cipher self.aes_cipher = AES.new(self.aes_key, AES.MODE_CBC, iv=self.aes_iv) if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG, format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt="%Y-%m-%d %H:%M:%S") # instantiate a Client instance and login client = Client(ROUTER_PASSWORD) # read out the aggregate status data ep = "/admin/status?form=all" ret = client.send_encrypted_command(b"operation=read", ep) pprint(ret)
2.546875
3
Exercises.py
KA-Advocates/KATranslationCheck
1
12784864
<filename>Exercises.py #!/usr/bin/env python3 """ Utilities regarding KA exercises """ import re import os from collections import defaultdict def findFilenameToExercisesMapping(lang="de"): """ Find a map from filepath to a set of exercises. The links are extracted mainly from the tcomment section. """ linkRegex = re.compile(r"http://translate\.khanacademy\.org/translate/content/items\?exercises=([^\"#]+)") fileToExercises = defaultdict(set) for (curdir, _, files) in os.walk(lang): for f in files: #Ignore non-PO files if not f.endswith(".po") and not f.endswith(".pot"): continue #Add to list of files to process path = os.path.join(curdir, f) with open(path) as infile: for line in infile: for hit in linkRegex.findall(line): fileToExercises[path].add(hit) return fileToExercises if __name__ == "__main__": fileToExercises = findFilenameToExercisesMapping() print(fileToExercises)
2.875
3
meldnafen/retroarch.py
cecton/meldnafen
0
12784865
<reponame>cecton/meldnafen<gh_stars>0 import re from tempfile import NamedTemporaryFile def prepare(command, controls, settings): with NamedTemporaryFile('wt', prefix='retroarch-', delete=False) as fh: for player, player_controls in sorted(controls.items()): write_retroarch_controls(fh, player, player_controls) fh.write("\n") fh.write("input_autodetect_enable = false\n") fh.write("video_force_aspect = true\n") fh.write("video_scale_integer = true\n") fh.write("video_smooth = {}\n".format( "true" if settings['smooth'] else "false")) return command + ['--appendconfig', fh.name] def write_retroarch_controls(fileobj, player, controls): for k, v in controls.items(): if player == "1" and re.search(r"^(enable_hotkey|menu_toggle)", k): fileobj.write("input_{} = {}\n".format(k, v)) else: fileobj.write("input_player{}_{} = {}\n".format(player, k, v))
2.359375
2
scripts/experiment/__unfinished_gan_like_model/pytorch_stuff/models/timg_denoise.py
shantanu-gupta/spad-timg-denoise
0
12784866
""" timg_denoise.py """ import numpy as np import torch import torch.nn as nn class Timg_DenoiseNet_LinT_1Layer(nn.Module): def __init__(self): super(Timg_DenoiseNet_LinT_1Layer, self).__init__() self.C = 64 self.K = 13 self.centre = 3/255.0 self.scale = 2.0 self.conv1 = nn.Conv2d(1, self.C, self.K, padding=self.K//2) self.norm1 = nn.BatchNorm2d(self.C) self.relu1 = nn.ReLU() self.comb = nn.Conv2d(self.C, 1, 1) # just need time to be above the minimum self.fix_range_t = nn.Threshold(1/255.0, 1/255.0) # nn.init.dirac_(self.conv1.weight) def forward(self, t): t = self.scale * (t - self.centre) t = self.conv1(t) t = self.relu1(t) t = self.comb(t) t = self.fix_range_t(t) return t class Timg_DenoiseNet_LinT(nn.Module): def __init__(self, Tmin=1e-3, Tmax=1e3): super(Timg_DenoiseNet_LinT, self).__init__() self.C = 64 self.Tmin = Tmin self.Tmax = Tmax self.Tmid = 1 self.Tscale = self.Tmid - self.Tmin self.conv1 = nn.Conv2d(1, self.C, 5, padding=2) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn2 = nn.BatchNorm2d(self.C) self.relu2 = nn.ReLU() self.conv3 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn3 = nn.BatchNorm2d(self.C) self.relu3 = nn.ReLU() self.conv4 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn4 = nn.BatchNorm2d(self.C) self.relu4 = nn.ReLU() self.conv5 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn5 = nn.BatchNorm2d(self.C) self.relu5 = nn.ReLU() self.comb = nn.Conv2d(self.C, 1, 1) self.fix_range1 = nn.Hardtanh(min_val=self.Tmin, max_val=self.Tmax) self.fix_range2 = nn.Hardtanh(min_val=0, max_val=1) def forward(self, t): t = (1.0/self.Tscale) * (t - self.Tmid) t = self.conv1(t) t = self.relu1(t) t = self.conv2(t) t = self.bn2(t) t = self.relu2(t) t = self.conv3(t) t = self.bn3(t) t = self.relu3(t) t = self.conv4(t) t = self.bn4(t) t = self.relu4(t) t = self.conv5(t) t = self.bn5(t) t = self.relu5(t) t = self.comb(t) t = self.Tmid + (self.Tscale * t) t = self.fix_range1(t) y = torch.pow(t, -1) y = self.fix_range2(y) return y class Timg_DenoiseNet(nn.Module): def __init__(self, Tmin=1e-3, Tmax=1e3): super(Timg_DenoiseNet, self).__init__() self.C = 64 self.Tmin = np.log(Tmin) self.Tmax = np.log(Tmax) # self.conv1 = nn.Conv2d(1, self.C, 3, padding=1) self.conv1 = nn.Conv2d(1, self.C, 5, padding=2) # self.conv1 = nn.Conv2d(1, self.C, 7, padding=3) # self.conv1 = nn.Conv2d(1, self.C, 9, padding=4) # self.conv1 = nn.Conv2d(1, self.C, 11, padding=5) # self.conv1 = nn.Conv2d(1, self.C, 13, padding=6) # self.conv1 = nn.Conv2d(1, self.C, 15, padding=7) # self.conv1 = nn.Conv2d(1, self.C, 17, padding=8) # self.conv1 = nn.Conv2d(1, self.C, 19, padding=9) # self.conv1 = nn.Conv2d(1, self.C, 21, padding=10) self.relu1 = nn.ReLU() # self.conv2 = nn.Conv2d(self.C, self.C, 3, padding=1) self.conv2 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn2 = nn.BatchNorm2d(self.C) self.relu2 = nn.ReLU() # self.conv3 = nn.Conv2d(self.C, self.C, 3, padding=1) self.conv3 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn3 = nn.BatchNorm2d(self.C) self.relu3 = nn.ReLU() # self.conv4 = nn.Conv2d(self.C, self.C, 3, padding=1) self.conv4 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn4 = nn.BatchNorm2d(self.C) self.relu4 = nn.ReLU() # self.conv5 = nn.Conv2d(self.C, self.C, 3, padding=1) self.conv5 = nn.Conv2d(self.C, self.C, 5, padding=2) self.bn5 = nn.BatchNorm2d(self.C) self.relu5 = nn.ReLU() self.comb = nn.Conv2d(self.C, 1, 1) self.fix_range1 = nn.Hardtanh(min_val=self.Tmin, max_val=self.Tmax) self.fix_range2 = nn.Hardtanh(min_val=0, max_val=1) def forward(self, t): logt = torch.log(t) logt = self.conv1(logt) logt = self.relu1(logt) logt = self.conv2(logt) logt = self.bn2(logt) logt = self.relu2(logt) logt = self.conv3(logt) logt = self.bn3(logt) logt = self.relu3(logt) logt = self.conv4(logt) logt = self.bn4(logt) logt = self.relu4(logt) logt = self.conv5(logt) logt = self.bn5(logt) logt = self.relu5(logt) logt = self.comb(logt) logt = self.fix_range1(logt) t = torch.exp(logt) y = torch.pow(t, -1) y = self.fix_range2(y) return y
2.296875
2
netconf/nc_rpc/base/get.py
Balaji-P/voltha_docker_compose-rsk_tech_CKAD
0
12784867
#!/usr/bin/env python # # Copyright 2016 the original author or authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from lxml import etree import structlog from netconf.nc_rpc.rpc import Rpc import netconf.nc_common.error as ncerror from netconf.constants import Constants as C from netconf.utils import filter_tag_match from twisted.internet.defer import inlineCallbacks, returnValue import dicttoxml from simplejson import dumps, load log = structlog.get_logger() class Get(Rpc): def __init__(self, request, grpc_client, session): super(Get, self).__init__(request, grpc_client, session) self._validate_parameters() @inlineCallbacks def execute(self): if self.rpc_response.is_error: returnValue(self.rpc_response) log.info('get-request', session=self.session.session_id, request=self.request) rpc = self.get_voltha_rpc(self.request) if not rpc: log.info('unsupported-request', request=self.request) self.rpc_response.is_error = True self.rpc_response.node = ncerror.BadMsg(self.request) return # Invoke voltha via the grpc client res_dict = yield self.grpc_client.invoke_voltha_api(rpc) # convert dict to xml xml = dicttoxml.dicttoxml(res_dict, attr_type=True) log.info('voltha-info', res=res_dict, xml=xml) root_elem = self.get_root_element(xml) # Build the yang response self.rpc_response.node = self.rpc_response.build_yang_response( root_elem, self.request) self.rpc_response.is_error = False returnValue(self.rpc_response) def _validate_parameters(self): log.info('validate-parameters', session=self.session.session_id) # Validate the GET command if self.request: try: if self.request['command'] != 'get': self.rpc_response.is_error = True self.rpc_response.node = ncerror.BadMsg('No GET in get ' 'request') if self.request.has_key('filter'): if not self.request.has_key('class'): self.rpc_response.is_error = True self.rpc_response.node = ncerror.BadMsg( 'Missing filter sub-element') except Exception as e: self.rpc_response.is_error = True self.rpc_response.node = ncerror.BadMsg(self.request) return def get_voltha_rpc(self, request): if request.has_key('class'): rpcs = self.rpc_request_mapping.get(request['class']) if rpcs is None: return None for rpc in rpcs: if request.has_key('subclass'): # search first for subclass if rpc['subclass'] and request['subclass'] == rpc[ 'subclass']: return rpc['rpc'] # If we are here then no subclass exists. Just return the rpc # associated with theNone subclass for rpc in rpcs: if rpc['subclass'] is None: return rpc['rpc'] return None # Supported Get Methods rpc_request_mapping = { 'Voltha': [ {'subclass': None, 'rpc': 'VolthaGlobalService-GetVoltha' }], 'VolthaInstance': [ {'subclass': None, 'rpc': 'VolthaLocalService-GetVolthaInstance' }, {'subclass': 'health', 'rpc': 'VolthaLocalService-GetHealth' }, {'subclass': 'adapters', 'rpc': 'VolthaLocalService-ListAdapters' }, {'subclass': 'logical_devices', 'rpc': 'VolthaLocalService-ListLogicalDevices' }, {'subclass': 'devices', 'rpc': 'VolthaLocalService-ListDevices' }, {'subclass': 'device_types', 'rpc': 'VolthaLocalService-ListDeviceTypes' }, {'subclass': 'device_groups', 'rpc': 'VolthaLocalService-ListDeviceGroups' }, ], 'VolthaInstances': [ {'subclass': None, 'rpc': 'VolthaGlobalService-ListVolthaInstances' }], }
1.960938
2
astar.py
AP-Atul/SnakeAI
2
12784868
from queue import PriorityQueue from components import * class AStar: """ A star algorithm implementation f(n) = g(n) + h(n) """ def __init__(self): self.paths = [ KEY_RIGHT, KEY_LEFT, KEY_UP, KEY_DOWN ] self.invalid = { KEY_UP: KEY_DOWN, KEY_DOWN: KEY_UP, KEY_LEFT: KEY_RIGHT, KEY_RIGHT: KEY_LEFT } self.moves = 0 def collides(self, headPosition, snake): """ Check for body collision on the next step """ return any([body.position == headPosition for body in snake.body[: -1]]) def getDistances(self, goal, current, snake): """ Finding distance for each path """ distances = PriorityQueue() self.moves += 1 for path in self.paths: x = None y = None goal_x = goal.x goal_y = goal.y if path is KEY_UP: x = current.x y = current.y - 1 elif path is KEY_DOWN: x = current.x y = current.y + 1 elif path is KEY_RIGHT: x = current.x + 1 y = current.y elif path is KEY_LEFT: x = current.x - 1 y = current.y if self.collides((x, y), snake): continue gn = self.moves hn = abs(x - goal_x) + abs(y - goal_y) fn = gn + hn # add to queue distances.put((fn, path)) return distances def getKey(self, food, snake): """ Returns the next step """ if snake.head.x == food.x and snake.head.y: self.moves = 0 return snake.direction distances = self.getDistances(food, snake.head, snake) if distances.qsize() == 0: return snake.direction return distances.get()[1]
3.953125
4
examples/kmeans.py
7enTropy7/ravml
7
12784869
<reponame>7enTropy7/ravml from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from ravml.cluster import KMeans if __name__ == '__main__': k = KMeans() iris = load_iris() X = iris.data[:1000] y = iris.target[:1000] X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True, test_size=0.3) k.fit(X_train, 3, iter=30) k.plot()
2.484375
2
docs/new-pandas-doc/generated/pandas-DataFrame-plot-bar-3.py
maartenbreddels/datapythonista.github.io
0
12784870
<reponame>maartenbreddels/datapythonista.github.io<filename>docs/new-pandas-doc/generated/pandas-DataFrame-plot-bar-3.py<gh_stars>0 axes = df.plot.bar(rot=0, subplots=True) axes[1].legend(loc=2) # doctest: +SKIP
2.109375
2
anuvaad-etl/anuvaad-extractor/content-handler/src/db/connection_manager.py
srihari-nagaraj/anuvaad
0
12784871
from config import MONGO_CONNECTION_URL,MONGO_DB_SCHEMA from config import REDIS_SERVER_HOST,REDIS_SERVER_PORT from app import server from pymongo import MongoClient from anuvaad_auditor.loghandler import log_info, log_exception from utilities import AppContext from flask import g import redis client = MongoClient(MONGO_CONNECTION_URL) def get_db(): # log_info("Establishing connection with mongo", AppContext.getContext()) return client[MONGO_DB_SCHEMA] def get_redis(): if 'redisdb' not in g: # log_info("Establishing connection with redis store", AppContext.getContext()) g.redisdb = redis.Redis(host=REDIS_SERVER_HOST, port=REDIS_SERVER_PORT, db=4) return g.redisdb # def get_db(): # with server.app_context(): # if 'mongodb' not in g: # log_info("Establishing connection with mongo", AppContext.getContext()) # client = MongoClient(MONGO_CONNECTION_URL) # g.mongodb = client[MONGO_DB_SCHEMA] # return g.mongodb
2.265625
2
forum/models.py
hann1010/simpleforum_test
0
12784872
<filename>forum/models.py from django.db import models from django.utils import timezone from django.contrib.auth.models import User from ckeditor.fields import RichTextField class Forum_post(models.Model): title = models.CharField(max_length=100, blank=False) post_type = models.CharField(max_length=100, blank=True) origin_post_id= models.IntegerField(default=0) content = RichTextField() date_posted = models.DateTimeField(default=timezone.now) date_last_save = models.DateTimeField(auto_now=timezone.now) author = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.title + " / " + str(self.author)
2.40625
2
data_loader/data_loaders.py
lizhogn/cellpose
1
12784873
<reponame>lizhogn/cellpose from torchvision import datasets, transforms from base import BaseDataLoader from data_loader import cell_datasets class CellDataLoader(BaseDataLoader): """ Cell data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_workers=1, training=True): self.data_dir = data_dir self.dataset = cell_datasets.CellDataset(data_dir=self.data_dir, train=training) super().__init__(self.dataset, batch_size, shuffle, validation_split, num_workers)
2.828125
3
corpora/tng_scripts/tng_scripts.py
galtay/word-to-vec
1
12784874
<gh_stars>1-10 from collections import Counter import json import string import numpy as np class TngScripts: def __init__(self, file_path): with open(file_path, 'r') as fp: self._scripts = json.load(fp) def iter_sentences(self): for episode in self._scripts: for sent in episode['sentences']: yield sent def iter_target_context(self, back_window=2, front_window=2, shuffle=True): episode_indices = np.arange(len(self._scripts)) if shuffle: np.random.shuffle(episode_indices) for episode_index in episode_indices: sentences = self._scripts[episode_index]['sentences'] sentence_indices = np.arange(len(sentences)) if shuffle: np.random.shuffle(sentence_indices) for sentence_index in sentence_indices: sentence = sentences[sentence_index] for target_indx, target_word in enumerate(sentence): min_context_indx = max(0, target_indx - back_window) max_context_indx = min(len(sentence)-1, target_indx + front_window) context_indices = [ indx for indx in range(min_context_indx, max_context_indx + 1) if indx != target_indx] context_words = [sentence[indx] for indx in context_indices] yield (target_word, context_words) def iter_target_context_batch(self, back_window=2, front_window=2, batch_size=10, shuffle=True): tc_iter = self.iter_target_context( back_window=back_window, front_window=front_window, shuffle=shuffle) keep_going = True while keep_going: batch = [] for ii in range(batch_size): try: batch.append(next(tc_iter)) except StopIteration: keep_going = False pass yield batch if __name__ == '__main__': file_path = 'tng_scripts.json' corpus = TngScripts(file_path) sentences = list(corpus.iter_sentences()) # write json corpus corpus_file = 'corpus.json' with open(corpus_file, 'w') as fp: json.dump(sentences, fp) # write vocabulary word_counter = Counter([word for sent in sentences for word in sent]) vocab_file = 'vocab.json' with open(vocab_file, 'w') as fp: json.dump(word_counter.most_common(), fp)
2.515625
3
project/project_files_Sylwia/student_utils.py
SylwiaNowakowska/Patient_Selection_for_Diabetes_Drug_Testing
0
12784875
<filename>project/project_files_Sylwia/student_utils.py import pandas as pd import numpy as np import os import tensorflow as tf from sklearn.model_selection import GroupShuffleSplit import functools ####### STUDENTS FILL THIS OUT ###### #Question 3 def reduce_dimension_ndc(df, ndc_df): ''' df: pandas dataframe, input dataset ndc_df: pandas dataframe, drug code dataset used for mapping in generic names return: reduce_dim_df: pandas dataframe, output dataframe with joined generic drug name ''' reduce_dim_df = df.merge(ndc_df[['NDC_Code','Non-proprietary Name']], how='left', left_on='ndc_code', right_on='NDC_Code') reduce_dim_df.drop(columns=['NDC_Code'], inplace=True) reduce_dim_df.rename(columns={'Non-proprietary Name':'generic_drug_name'}, inplace=True) return reduce_dim_df #Question 4 def select_first_encounter(df): ''' df: pandas dataframe, dataframe with all encounters return: - first_encounter_df: pandas dataframe, dataframe with only the first encounter for a given patient ''' first_encounter_df = df.sort_values(['encounter_id'], ascending=True).groupby('patient_nbr').head(1) return first_encounter_df #Question 6 def patient_dataset_splitter(df, patient_key='patient_nbr'): ''' df: pandas dataframe, input dataset that will be split patient_key: string, column that is the patient id return: - train: pandas dataframe, - validation: pandas dataframe, - test: pandas dataframe, ''' train_inds, validation_test_inds = next(GroupShuffleSplit(test_size=0.4, n_splits=1, random_state = 16).split(df, groups=df[patient_key])) train = df.loc[train_inds,:] validation_test = df.loc[validation_test_inds,:] validation_test.reset_index(inplace=True) validation_inds, test_inds = next(GroupShuffleSplit(test_size=0.5, n_splits=1, random_state = 16).split(validation_test, groups=validation_test[patient_key])) validation = validation_test.loc[validation_inds,:] test = validation_test.loc[test_inds,:] return train, validation, test #Question 7 def create_tf_categorical_feature_cols(categorical_col_list, vocab_dir='./diabetes_vocab/'): ''' categorical_col_list: list, categorical field list that will be transformed with TF feature column vocab_dir: string, the path where the vocabulary text files are located return: output_tf_list: list of TF feature columns ''' output_tf_list = [] for c in categorical_col_list: vocab_file_path = os.path.join(vocab_dir, c + "_vocab.txt") ''' Which TF function allows you to read from a text file and create a categorical feature You can use a pattern like this below... tf_categorical_feature_column = tf.feature_column....... ''' tf_categorical_feature_column = tf.feature_column.categorical_column_with_vocabulary_file(key=c, vocabulary_file=vocab_file_path, num_oov_buckets=0) if c == 'primary_diagnosis_code': categorical_column = tf.feature_column.embedding_column(tf_categorical_feature_column, dimension=10) else: categorical_column = tf.feature_column.indicator_column(tf_categorical_feature_column) output_tf_list.append(categorical_column) return output_tf_list #Question 8 def normalize_numeric_with_zscore(col, mean, std): ''' This function can be used in conjunction with the tf feature column for normalization ''' return (col - mean)/std def create_tf_numeric_feature(col, MEAN, STD, default_value=0): ''' col: string, input numerical column name MEAN: the mean for the column in the training data STD: the standard deviation for the column in the training data default_value: the value that will be used for imputing the field return: tf_numeric_feature: tf feature column representation of the input field ''' normalizer = functools.partial(normalize_numeric_with_zscore, mean=MEAN, std=STD) tf_numeric_feature = tf.feature_column.numeric_column(key=col, default_value=default_value, dtype=tf.float64, normalizer_fn=normalizer) return tf_numeric_feature #Question 9 def get_mean_std_from_preds(diabetes_yhat): ''' diabetes_yhat: TF Probability prediction object ''' m = diabetes_yhat.mean() s = diabetes_yhat.stddev() return m, s # Question 10 def get_student_binary_prediction(df, col): ''' df: pandas dataframe prediction output dataframe col: str, probability mean prediction field return: student_binary_prediction: pandas dataframe converting input to flattened numpy array and binary labels ''' treshold = 5.0 df['binary_pred'] = df[col] >= treshold student_binary_prediction = df['binary_pred'].replace(True, 1).replace(False, 0).to_numpy() return student_binary_prediction
2.984375
3
main.py
devashishupadhyay/ml-covid-19
1
12784876
<reponame>devashishupadhyay/ml-covid-19 from core.covid import pred model = pred('Model/model.sav','covid19-features-df/covid_19_strain.pkl') print(model.predict())
1.804688
2
examples/composite_keys/testdata.py
NeolithEra/Flask-AppBuilder
3,862
12784877
import logging from app import db from app.models import Inventory, Datacenter, Rack, Item import random import string from datetime import datetime log = logging.getLogger(__name__) DC_RACK_MAX = 20 ITEM_MAX = 1000 cities = ["Lisbon", "Porto", "Madrid", "Barcelona", "Frankfurt", "London"] models = ["Server MX", "Server MY", "Server DL380", "Server x440", "Server x460"] datacenters = list() def get_random_name(names_list, size=1): return names_list[random.randrange(0, len(names_list))] def serial_generator(size=6, chars=string.ascii_uppercase + string.digits): return "".join(random.choice(chars) for _ in range(size)) for city in cities: datacenter = Datacenter() datacenter.name = "DC %s" % city datacenter.address = city datacenters.append(datacenter) db.session.add(datacenter) log.info(datacenter) try: db.session.commit() for num in range(1, DC_RACK_MAX): rack = Rack() rack.num = num rack.datacenter = datacenter db.session.add(rack) except Exception as e: log.error("Creating Datacenter: %s", e) db.session.rollback() for i in range(1, ITEM_MAX): item = Item() item.serial_number = serial_generator() item.model = get_random_name(models) db.session.add(item) log.info(item) try: db.session.commit() except Exception as e: log.error("Creating Item: %s", e) db.session.rollback()
2.65625
3
host.py
JinlongWukong/DevLab-ansible
0
12784878
from ansible_task_executor import AnsibleTaskExecutor import os class HOST(object): def __init__(self, ip, user, password, subnet=None, role=None): self.ip = ip self.user = user self.password = password self.role = role self.cpu = None self.memory = None self.disk = None self.os_type = None self.subnet = subnet self.ansible_inventory = "{} ansible_ssh_user={} ansible_ssh_pass={} role={}".format(ip, user, password, role) self.executor = AnsibleTaskExecutor() self.proxy = os.getenv('https_proxy') def install(self): if self.role == "compute": result_code, callback = self.executor.execute('install-host.yml', self.ansible_inventory, extra_vars={ "proxy_env": {'https_proxy': self.proxy}, "subnet": self.subnet }) elif self.role == "container": result_code, callback = self.executor.execute('install-container-host.yml', self.ansible_inventory, extra_vars={ 'https_proxy': self.proxy, "subnet": self.subnet }) else: raise Exception("host role not supported") if result_code: raise Exception(callback.get_all_result()) for event in callback.host_ok: if event['task'] == "Print total memory size" and event['host'] == self.ip: self.memory = event['result']['msg'] elif event['task'] == "Print total cpu count" and event['host'] == self.ip: self.cpu = event['result']['msg'] elif event['task'] == "Print os type" and event['host'] == self.ip: self.os_type = event['result']['msg'] elif event['task'] == "Print virt vol disk usage" and event['host'] == self.ip: self.disk = int(event['result']['msg']) else: pass return self.cpu, self.memory, self.disk, self.os_type def static_routes(self, routes): result_code, callback = self.executor.execute('route.yml', self.ansible_inventory, extra_vars={"routes": routes}) if result_code: raise Exception(callback.get_failed_result()) def get_info(self): """ Get host cpu/mem/disk usage :return: cpu, mem, disk, engine_status(0,1) """ result_code, callback = self.executor.execute('check-host.yml', self.ansible_inventory, extra_vars={"role": self.role}) if result_code: raise Exception(callback.get_failed_result()) for event in callback.host_ok: if event['task'] == "Print total memory avail" and event['host'] == self.ip: memory_avail = event['result']['msg'] elif event['task'] == "Print cpu load usage" and event['host'] == self.ip: cpu_load = event['result']['msg'] elif event['task'] == "Print virt vol disk usage" and event['host'] == self.ip: disk_usage = event['result']['msg'] elif event['task'] == "Check engine liveness" and event['host'] == self.ip: engine_status = event['result']['rc'] else: pass return memory_avail, cpu_load, disk_usage, engine_status def port_dnat(self, rules): """ Set iptables rules :return: none """ result_code, callback = self.executor.execute('iptables.yml', self.ansible_inventory, extra_vars={"rules": rules}) if result_code: raise Exception(callback.get_failed_result()) class MultiHOST(HOST): def __init__(self, hosts): self.ansible_inventory = "" for h in hosts: if len(h) != 4: continue self.ansible_inventory += "{} ansible_ssh_user={} ansible_ssh_pass={} role={}".format( h[0], h[1], h[2], h[3]) + "\n" self.executor = AnsibleTaskExecutor()
2.296875
2
jams/tcherkez.py
MuellerSeb/jams_python
9
12784879
#!/usr/bin/env python from __future__ import division, absolute_import, print_function import numpy as np import jams.const as const def tcherkez(Rstar, Phi=0.3, T=0.056, a2=1.0012, a3=1.0058, a4=1.0161, t1=0.9924, t2=1.0008, g=20e-3, RG=False, Rchl=False, Rcyt=False, fullmodel=True): """ Calculates the Tcherkez model of 13C-discrimiantion in the Calvin cycle. Definition ---------- def tcherkez(Rstar, Phi=0.3, T=0.056, a2=1.0012, a3=1.0058, a4=1.0161, t1=0.9924, t2=1.0008, g=20e-3 RG=False, Rchl=False, Rcyt=False, fullmodel=True): Input ----- Rstar Isotope ratio of assimilated carbon, e.g. of Farquhar et al. (1982) model Optional Input -------------- Phi Vo/Vc: ratio of carboxylateion to oxygentation of Rubisco (default: 0.3) T Relative flux of starch synthesis [mol(C6 of starch)/mol(CO2 assimilated)] (default: 0.056) a2 Inverse fractionation associated with aldolase for the C-2 position of FBP (Fructose-1,6-bisphosphate) (default: 1.0012) a3 Same for C-3 of FBP (default: 1.0058) a4 Same for C-4 of FBP (default: 1.0161) t1 Inverse fractionation associated with trankelotase for C-1 in E4P (erythrose-4-phosphate) and R5P (ribose-5-phosphate) (default: 0.9924) t2 Same for C-2 of X5P (xylulose-5-phosphate) (default: 1.0008) g Isotope discrimination of photorespiratory decarboxylation of Gly (Glycine) (default: 20e-3) RG If True, output isotope ratio of G3P (3-phosphoglyceraldehyde or glyceraldehyde-3-phosphate) (default: False) Rchl If True, output isotope ratio of chloroplastic hexoses and transitory starch (default: False) Rcyt If True, output isotope ratio of cytoplasmic hexoses (default: False) fullmodel If True, output RG, Rchl and Rcyt (default: True) Output ------ RG, Rchl, Rcyt if fullmodel=True Restrictions ------------ If at least one of RG, Rchl or Rcyt is given then fullmode=False. References ---------- <NAME>, <NAME>, <NAME> & <NAME>, Theoretical considerations about carbon isotope distribution in glucose of C3 plants, Functional Plant Biology 31, 857-877, 2004 <NAME>, <NAME>, <NAME>, <NAME> & <NAME>, Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis, Plant, Cell and Environment 31, 941-953, 2008 Examples -------- >>> a = -4.4e-3 >>> b = -27e-3 >>> ca = 353e-6 >>> ci = 0.7*ca >>> Delta = a+(b-a)*ci/ca >>> delta_a1 = -8e-3 >>> Ra1 = (delta_a1+1.)*const.R13VPDB >>> Rstar1 = (1.-Delta)*Ra1 >>> from autostring import astr >>> print(astr((np.array(tcherkez(Rstar1, Phi=0.3, T=0.056))/const.R13VPDB-1.)*1000.,3,pp=True)) ['12.764' '17.125' '12.978'] >>> delta_a2 = -7.8e-3 >>> Ra2 = (delta_a2+1.)*const.R13VPDB >>> Rstar2 = (1.-Delta)*Ra2 >>> R1 = (np.array(tcherkez([Rstar1, Rstar2], Rcyt=True))/const.R13VPDB-1.)*1000. >>> print(astr(R1,3,pp=True)) [['12.978' '13.182']] >>> R1, R2 = tcherkez([Rstar1, Rstar2], Rchl=True, Rcyt=True) >>> print(astr((R1/const.R13VPDB-1.)*1000.,3,pp=True)) ['17.125' '17.330'] >>> print(astr((R2/const.R13VPDB-1.)*1000.,3,pp=True)) ['12.978' '13.182'] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2012-2013 <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written, MC, Jan 2012 Modified, MC, Feb 2013 - ported to Python 3 """ # if (RG | Rchl | Rcyt): fullmodel = False if fullmodel: RG = True Rchl = True Rcyt = True # a2tilde = (1.+0.5*Phi-T) / ((2.*a2+1.)/3.+Phi*(2.*a2-0.5)/3.+T*(a2-2.)) a3tilde = (1.+0.5*Phi-T) / ((2.*a3+1.)/3.+Phi*(2.*a3-0.5)/3.+T*(a3-2.)) t1tilde = (1.+3.*T)/(t1+3.*T)*t1 t2tilde = (1.+3.*T)/(t2+3.*T)*t2 eps = a3*a3tilde epsdash = (t1tilde+1.5*Phi)*a3*a3tilde/(3.*(1.+0.5*Phi-(1.+t2tilde)*a2*a2tilde/3.)) iRG = np.array(Rstar) / (1.+Phi*(0.5-(1.+g)/(2.+g)*(eps+2.*a2*a2tilde*epsdash)/3.)+T*(a4-1.)) iRchl = 1./6.*(epsdash*(1.+(a2*a2tilde*t2tilde)/t2)+eps*(2.+t1tilde/t1)+a4) * iRG iRcyt = 1./6.*(2.*eps+3.*(a2+1.)/(a2+2.)*epsdash*a2tilde+3.*a3tilde/(2.+a3)*(a3+2.*a4/(1.+a4))) * iRG out = [] if RG: out += [iRG] if Rchl: out += [iRchl] if Rcyt: out += [iRcyt] return out if __name__ == '__main__': import doctest doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
1.898438
2
architectures/providers/kubernetes/controlplane.py
marinmuso/architectures
15
12784880
# Do not modify this file directly. It is auto-generated with Python. from architectures.providers import _Kubernetes class _Controlplane(_Kubernetes): _service_type = "controlplane" _icon_dir = "icons/kubernetes/controlplane" class Sched(_Controlplane): _icon = "sched.png" _default_label = "Sched" class Kubelet(_Controlplane): _icon = "kubelet.png" _default_label = "Kubelet" class CM(_Controlplane): _icon = "c-m.png" _default_label = "C M" class CCM(_Controlplane): _icon = "c-c-m.png" _default_label = "C C M" class Api(_Controlplane): _icon = "api.png" _default_label = "Api" class KProxy(_Controlplane): _icon = "k-proxy.png" _default_label = "K Proxy"
1.570313
2
glsl/glsl_translate.py
avr-aics-riken/SURFACE
10
12784881
<reponame>avr-aics-riken/SURFACE #!/usr/bin/env python # # TODO: # o Support array(swizzle) much more cleaner manner. # o and more... # import os import os.path import subprocess import sys import tempfile from string import Template from sexps import * gSlotToN = { 'x': 0, 'y': 1, 'z': 2, 'w': 3 } gNToSlot = ['x', 'y', 'z', 'w'] gIndentLevel = 0 gVarCount = 0 # Symbol table(as stack) for tempolrary variables # depth 1 = global scope # depth 2 = function scope gSymbolTable = [] # @todo { Create context to save these variables. } gUniformInputs = {} gUniformCount = 0 gVaryingInputs = {} gVaryingInputCount = 0 gVaryingOutputs = [] gStructDefs = {} def DefineStruct(struct): gStructDefs[struct['name']] = struct def FindStruct(name): if isinstance(name, list) and name[0] == 'array': # maybe array of struct # ['array', 'Sphere__0x7fdac1c11eb0', '3'] p = name[1].split('__') if len(p) > 1: sname = p[0] + '__' else: sname = p[0] if sname in gStructDefs: return gStructDefs[sname] raise elif name in gStructDefs: return gStructDefs[name] return False def GetGLTypeSize(basety, n): # 4 = sizeof(float) # 8 = sizeof(double) if basety == "vec": return 4 * n if basety == "dvec": return 8 * n elif basety == "ivec": return 4 * n elif basety == "bvec": return 1 * n # byte elif basety == "mat": return 4 * n * n # Unknown type assert 0 def AddSymbol(varname, ty, n, quals): assert len(gSymbolTable) > 0 # Add symbol to last stack of symbol table gSymbolTable[-1][varname] = {'type': (ty, n), 'quals': quals, 'name': varname} def GetSymbol(varname): assert len(gSymbolTable) > 0 # search internal scope first n = len(gSymbolTable) - 1 while n >= 0: if varname in gSymbolTable[n]: return gSymbolTable[n][varname] n = n - 1 return False def GetScopeLevel(): return len(gSymbolTable) def IsArray(s): return isinstance(s, (list, tuple)) def IsSamplerTy(tyname): samplers = [ "sampler2D", "sampler3D" ] if tyname in samplers: return True return False def ParseTy(tyname): """ Parse type into (elementType, num). sampler has special treatment example. vec4 -> ('vec' , 4) float -> ('float', 1) sampler2D -> ('sampler2D', 1) """ if IsSamplerTy(tyname): return (tyname, 1) # array type is TODO if IsArray(tyname): return (tyname, 1) p = re.compile("([a-zA-z]+)([0-9]*)") groups = p.match(tyname).groups() if len(groups) == 1: return (groups[0], 1) else: if groups[1] == '': return (groups[0], 1) else: return (groups[0], int(groups[1])) def IsBuiltinTextureFunction(fname): builtins = [ "texture2D", "texture3D" ] if fname in builtins: return True return False def IsBuiltinTraceFunction(fname): builtins = [ "trace", # LSGL ext "raydepth", # LSGL ext "rayattrib", # LSGL ext "rayoption", # LSGL ext "isectinfo", # LSGL ext "camerainfo", # LSGL ext "numIntersects", # LSGL ext "queryIntersect", # LSGL ext ] if fname in builtins: return True return False def IsBuiltinRandomFunction(fname): builtins = [ "random" # LSGL ext ] if fname in builtins: return True return False def IsBuiltinFunction(fname): builtins = [ "radians", "degrees", "sin", "cos", "tan", "asin", "acos", "atan", "atan2", "pow", "exp", "log", "exp2", "log2", "sqrt", "inversesqrt", "abs", "sign", "floor", "ceil", "fract", "mod", "min", "max", "clamp", "mix", "step", "smoothstep", "length", "distance", "dot", "cross", "normalize", "faceforward", "reflect", "refract", "matrixCompMult", "lessThan", "lessThanEqual", "greaterThan", "greaterThanEqual", "equal", "notEqual", "any", "all", "not", "texture2D", "texture3D", "trace", # LSGL ext "raydepth", # LSGL ext "rayattrib", # LSGL ext "rayoption", # LSGL ext "isectinfo", # LSGL ext "camerainfo", # LSGL ext "random", # LSGL ext "numIntersects", # LSGL ext "queryIntersect", # LSGL ext ] if fname in builtins: return True return False def GetBuiltinType(varname): builtins = { "gl_FragCoord": ("vec", 4), "gl_FrontFacing": ("bool", 1), "gl_FragColor": ("vec", 4), "gl_PointCoord": ("vec", 2), "gl_MaxVertexAttribs": ("int", 1), "gl_MaxVertexUniformVectors": ("int", 1), "gl_MaxVaryingVectors": ("int", 1), "gl_MaxVertexTextureImageUnits": ("int", 1), "gl_MaxCombinedTextureImageUnits": ("int", 1), "gl_MaxTextureImageUnits": ("int", 1), "gl_MaxFragmentUniformVectors": ("int", 1), "gl_DepthRangeParameters": ("todo", 1), "gl_DepthRange": ("todo", -1), "gl_MaxDrawBuffers": ("int", 1), "gl_FragData": ("todo", -1), } if varname in builtins: return builtins[varname] return False def IsBuiltinVariable(varname): builtins = [ "gl_FragCoord", "gl_FrontFacing", "gl_FragColor", "gl_PointCoord", "gl_MaxVertexAttribs", "gl_MaxVertexUniformVectors", "gl_MaxVaryingVectors", "gl_MaxVertexTextureImageUnits", "gl_MaxCombinedTextureImageUnits", "gl_MaxTextureImageUnits", "gl_MaxFragmentUniformVectors", "gl_DepthRangeParameters", "gl_DepthRange", "gl_MaxDrawBuffers", "gl_FragData", ] if varname in builtins: return True return False def AddUniformInput(varname, ty, n, quals): # Assign unique index(from 0) global gUniformCount gUniformInputs[varname] = { 'type': (ty, n), 'quals': quals, 'name': varname, 'index': gUniformCount} gUniformCount += 1 def IsUniform(varname): global gUniformInputs if varname in gUniformInputs: return True return False def GetUniform(varname): global gUniformInputs return gUniformInputs[varname] def IsVaryingInput(varname): global gVaryingInputs if varname in gVaryingInputs: return True return False def GetVaryingInput(varname): global gVaryingInputs return gVaryingInputs[varname] def IsTexture(varname): if IsUniform(varname): uniform = GetUniform(varname) if IsSamplerTy(uniform['type'][0]): return True return False def IsTemporary(varname): if IsTexture(varname) or IsVaryingInput(varname) or IsUniform(varname): return False # Might be temporary variable return True def AddVaryingInput(varname, ty, n, quals): # Assign unique index(from 0) global gVaryingInputCount gVaryingInputs[varname] = { 'type': (ty, n), 'quals': quals, 'name': varname, 'index': gVaryingInputCount} gVaryingInputCount += 1 def GetTypeCastString(varname): if IsVaryingInput(varname): varying = GetVaryingInput(varname) if IsVectorType(varying['type'][0]): return "(%s%d *)" % (varying['type'][0], varying['type'][1]) elif IsMatrixType(varying['type'][0]): return "(%s%d *)" % (varying['type'][0], varying['type'][1]) else: return "(%s *)" % (varying['type'][0]) elif IsUniform(varname): uniform = GetUniform(varname) if IsTexture(varname): # No typecast required return "" else: if IsVectorType(uniform['type'][0]): return "(%s%d *)" % (uniform['type'][0], uniform['type'][1]) elif IsMatrixType(uniform['type'][0]): return "(%s%d *)" % (uniform['type'][0], uniform['type'][1]) else: return "(%s *)" % (uniform['type'][0]) # No typecast required return "" def GetTypeOfSymbol(varname): if IsVaryingInput(varname): varying = GetVaryingInput(varname) return varying['type'] elif IsUniform(varname): uniform = GetUniform(varname) return uniform['type'] elif IsBuiltinVariable(varname): return GetBuiltinType(varname) elif IsTemporary(varname): temp = GetSymbol(varname) # print varname assert temp is not False return temp['type'] assert 0 # Unknown symbol def IncrementIndent(): global gIndentLevel gIndentLevel += 1 def DecrementIndent(): global gIndentLevel gIndentLevel -= 1 if gIndentLevel < 0: gIndentLevel = 0 def Indent(): global gIndentLevel s = "" for i in range(gIndentLevel): s += " " return s def NewTempVar(): global gVarCount s = "tmpvar_%d" % gVarCount gVarCount += 1 return s def IsVectorType(s): tys = ['vec', 'ivec', 'bvec', 'dvec'] if s in tys: return True return False def IsMatrixType(s): tys = ['mat'] if s in tys: return True return False def baseType(ty): if ty == "vec": return "float" elif ty == "ivec": return "int" elif ty == "bvec": return "bool" elif ty == "mat": return "float" else: return ty def parseValue(lst): (ty, n) = ParseTy(lst[0]) values = lst[1] return (ty, n, values) def renameVariable(varname): # if varname == "gl_FragColor": # return "(fragment->fragColor)" # Rewrite builtin variables if varname == "gl_FragColor": return "(__fragment->fragColor)" elif varname == "gl_FragCoord": return "(__fragment->fragCoord)" elif varname == "Normal": return "(__fragment->normal)" elif varname == "Eye": return "(@TODO:Eye)" # Rewrite uniform variables if IsUniform(varname): uniform = GetUniform(varname) if IsTexture(varname): return "(__state->textures[%d])" % uniform['index'] else: return "(__state->uniforms[%d])" % uniform['index'] # Rewrite varying variables if IsVaryingInput(varname): varying = GetVaryingInput(varname) return "(__state->varyings[%d])" % varying['index'] # Might be local variable. No rewrite required. return varname class VarDecl: def __init__(self, varname, ty, n): self.varname = varname self.ty = ty self.n = n def __str__(self): return self.varname def getDeclareString(self): s = "" if isinstance(self.ty, list) and self.ty[0] == 'array': # array def # ['array', 'Sphere__0x7fe31ac11eb0', '3'] p = self.ty[1].split('__') if len(p) > 1: sname = p[0] + '__' else: sname = p[0] s += "%s %s[%s];\n" % (sname, self.varname, self.ty[2]) elif IsVectorType(self.ty): s += "%s%d %s;\n" % (self.ty, self.n, self.varname) elif IsMatrixType(self.ty): s += "%s%d %s;\n" % (self.ty, self.n, self.varname) else: s += "%s %s;\n" % (self.ty, self.varname) return s def getIntermExprString(self): return "" def getExprString(self, slot, i): return self.varname + ("[%d]" % gSlotToN[slot]) class VarRef: def __init__(self, varname): self.varname = renameVariable(varname) self.orgname = varname def __str__(self): return self.varname def getDeclareString(self): return "" def getIntermExprString(self): return "" def getCExpr(self): prefix = "" isInput = False if IsUniform(self.orgname) or IsVaryingInput(self.orgname): # If this variable is uniform/varying variable, add a prefix. prefix = ".data" isInput = True (ty, n) = GetTypeOfSymbol(self.orgname) tycast = GetTypeCastString(self.orgname) if isInput: return "/*var_ref*/" + "(*" + tycast + "(" + self.varname + prefix + "))" else: postfix = "&" return "/*var_ref*/" + "(*" + tycast + postfix + "(" + self.varname + prefix + "))" def getExprString(self, slot, i): prefix = "" isInput = False if IsUniform(self.orgname) or IsVaryingInput(self.orgname): # If this variable is uniform variable, add a prefix. prefix = ".data" isInput = True else: # If this variable is temporary variable, add some prefix depending # on its type. var = GetSymbol(self.orgname) if var is not False: if IsVectorType(var['type'][0]): prefix = ".v" (ty, n) = GetTypeOfSymbol(self.orgname) tycast = GetTypeCastString(self.orgname) if isInput: # print (ty, n) if IsVectorType(ty): return "/*var_ref(vec)*/" + "(*" + tycast + "(" + self.varname + prefix + ")).v[%d]" % gSlotToN[slot] else: return "/*var_ref*/" + "(*" + tycast + "(" + self.varname + prefix + "))" else: postfix = "&" if IsVectorType(ty): return "/*var_ref*/" + tycast + self.varname + prefix + ("[%d]" % gSlotToN[slot]) else: return "/*var_ref*/" + "(*" + tycast + postfix + "(" + self.varname + prefix + "))" class RecordRef: def __init__(self, varname, membername): if (len(varname) == 2 and varname[0] == 'var_ref'): # should be ['var_ref', 'str'] self.var = VarRef(varname[1]) self.recordname = varname[1] self.membername = membername self.is_array = False elif (len(varname) == 3 and varname[0] == 'array_ref'): # ['array_ref', ['var_ref', 'sphere'], ['constant', 'int', ['0']]] self.var = ArrayRef(varname[1], varname[2]) self.recordname = varname[1][1] self.membername = membername self.is_array = True else: raise def __str__(self): return str(self.var) + "." + self.membername def getDeclareString(self): return "" def getIntermExprString(self): return "" def getCExpr(self): # Look up struct definition sym = GetSymbol(self.recordname) assert sym is not False (sty, sn) = sym['type'] struct = FindStruct(sty) assert struct is not False # Look up type of member variable member = struct['members'][self.membername] assert member is not False (ty, n) = ParseTy(member['ty']) return "/*record_ref*/" + "(" + str(self.var) + "." + self.membername + ")" def getExprString(self, slot, i): # Look up struct definition sym = GetSymbol(self.recordname) assert sym is not False (sty, sn) = sym['type'] # print((sty, sn)) struct = FindStruct(sty) assert struct is not False # Look up type of member variable member = struct['members'][self.membername] assert member is not False (ty, n) = ParseTy(member['ty']) # return "/*record_ref*/%s" % struct['name'] prefix = "" if IsVectorType(ty): prefix = ".v" if IsVectorType(ty): return "/*record_ref*/" + "(" + str(self.var) + "." + self.membername + ")" + prefix + ("[%d]" % gSlotToN[slot]) else: return "/*record_ref*/" + "(" + str(self.var) + "." + self.membername + ")" class ArrayRef: def __init__(self, varname, indexname): assert len(varname) == 2 # should be ['var_ref', 'str'] assert varname[0] == 'var_ref' assert len(indexname) == 3 # should be ['constant', 'int', [N]] self.var = VarRef(varname[1]) self.recordname = varname[1] self.indexname = indexname[2][0] def __str__(self): return self.recordname + "[" + self.indexname + "]" def getDeclareString(self): return "" def getIntermExprString(self): return "" def getCExpr(self): # Look up struct definition sym = GetSymbol(self.recordname) assert sym is not False #(sty, sn) = sym['type'] #structinfo = FindStruct(sty) #assert structinfo is not False (ty, n) = sym['type'] prefix = "" if IsVectorType(ty): prefix = ".v" elif IsMatrixType(ty): prefix = ".v" return "/*array_ref*/" + self.recordname + "%s[%s]" % (prefix, self.indexname) def getExprString(self, slot, i): if IsUniform(self.recordname): # Assume mat3, mat4 or elase prefix = ".data" (ty, n) = GetTypeOfSymbol(self.recordname) tycast = GetTypeCastString(self.recordname) name = renameVariable(self.recordname) if IsMatrixType(ty): return "/*array_ref*/" + "(*" + tycast + "(" + name + prefix + (")).v[%s][%d]" % (self.indexname, gSlotToN[slot])) else: print((ty, n)) raise # return "/*array_ref*/" + "(" + self.recordname + "[" + # self.indexname + "]" + ")" else: # Look up struct definition sym = GetSymbol(self.recordname) # print sym, self.recordname assert sym is not False (ty, n) = sym['type'] prefix = "" if IsVectorType(ty): prefix = ".v" elif IsMatrixType(ty): prefix = ".v" if IsVectorType(ty): return "/*array_ref*/" + "(" + self.recordname + "[" + self.indexname + "]" + prefix + ("[%d]" % gSlotToN[slot]) + ")" if IsMatrixType(ty): return "/*array_ref*/" + "(" + self.recordname + prefix + ("[%s][%d]" % (self.indexname, gSlotToN[slot])) + ")" else: return "/*array_ref*/" + "(" + self.recordname + "[" + self.indexname + "]" + ")" class Constant: def __init__(self, ty, n, values): self.ty = ty self.n = n i = 0 self.values = [] # Consider '10', 'e', '-10' case while i < len(values): if i + 2 < len(values) and (values[i + 1] == 'e' or values[i + 1] == 'E'): val = values[i] + values[i + 1] + values[i + 2] self.values.append(val) i = i + 3 else: self.values.append(values[i]) i = i + 1 def __str__(self): return "(%s, %d, %s)" % (self.ty, self.n, self.values) def getDeclareString(self): return "" def getIntermExprString(self): return "" def getCExpr(self): s = "" if (self.n == 1): s += "(" + str(self.values[0]) + ")" else: if IsVectorType(self.ty): # for const value, no swizzle required. # n = gSlotToN[slot] # s = str(self.values[i]) s += "__make_vec%d(" % self.n s += ','.join(map(str, self.values)) s += ")" elif IsMatrixType(self.ty): # for const value, no swizzle required. # n = gSlotToN[slot] # s = str(self.values[i]) s += "__make_mat%d(" % self.n s += ','.join(map(str, self.values)) s += ")" else: raise return s def getExprString(self, slot, i): s = "" if (self.n == 1): s = "(" + str(self.values[0]) + ")" else: # for const value, no swizzle required. # n = gSlotToN[slot] s = "(" + str(self.values[i]) + ")" return s class Swizzle: def __init__(self, slots, values): self.slots = slots self.values = values def __str__(self): # return "TODO(swizzle: %s, %s)" % (self.slots, str(self.values)) return "" def getDeclareString(self): s = "" s += self.values.getDeclareString() return s def getIntermExprString(self): s = "" s += self.values.getIntermExprString() # for i in range(self.n): # slot = gNToSlot[i] # s += Indent() # s += self.getExprString(slot, i) # s += " = " # s += self.lhs.getExprString(slot, i) # s += " " + self.op + " " # s += self.rhs.getExprString(slot, i) # s += ";\n" return s def getCExpr(self): s = "" s += "__swizzle(" for (n, i) in enumerate(self.slots): s += "%d" % gSlotToN[i] if n != len(self.slots): s += ", " s += self.values.getCExpr() s += ")" return s def getExprString(self, slot, i): s = "" nn = len(self.slots) if (nn == 1): s = "/*swiz*/" s += self.values.getExprString(self.slots, 0) #s += "[%d]" % gSlotToN[self.slots] assert isinstance(s, str) else: #n = gSlotToN[slot] ss = self.slots[i] s = self.values.getExprString(ss, i) assert isinstance(s, str) return s class Break: def __init__(self): pass def __str__(self): return "break" def getDeclareString(self): return "" def getIntermExprString(self): return "" def getCExpr(self): return "break" def getExprString(self, slot, i): return "break" class Assign: def __init__(self, slots, lhs, rhs): self.slots = slots self.lhs = lhs self.rhs = rhs def __str__(self): # return "TODO(swizzle: %s, %s)" % (self.slots, str(self.values)) return "" def getDeclareString(self): return "" def getIntermExprString(self): return "" #s = "" #s += self.values.getIntermExprString() # for (n, slot) in enumerate(self.slots): # #slot = gNToSlot[i] # s += Indent() + self.values.getExprString(slot, n) + ";\n" # return s def getCExpr(self): # todo return "" def getExprString(self, slot, i): s = "" nn = len(self.slots) if (nn == 1): s = str(self.values) s += "[%d]" % i assert isinstance(s, str) else: #n = gSlotToN[slot] ss = self.slots[i] s = self.values.getExprString(ss, i) assert isinstance(s, str) return s class BinaryExpression: def __init__(self, ty, n, op, lhs, rhs): self.ty = ty self.n = n self.op = op self.lhs = lhs self.rhs = rhs self.dst = NewTempVar() def __str__(self): return "TODO(expr)" def getDeclareString(self): s = "" s += self.lhs.getDeclareString() s += Indent() + self.rhs.getDeclareString() baseTy = baseType(self.ty) if self.n == 1: s += "%s %s;\n" % (baseTy, self.dst) else: s += "%s %s[%d];\n" % (baseTy, self.dst, self.n) return s def getIntermExprString(self): s = "" s += self.lhs.getIntermExprString() s += self.rhs.getIntermExprString() if self.ty == 'vec' and self.n >= 4: # mat and vec? ops = { '/': '__div', '+': '__add', '-': '__sub', '*': '__mul', '>': '__gt', '>=': '__ge', '<': '__lt', '<=': '__le', '==': '__eq', '&&': '__and', '||': '__or', '!': '__not', 'any_nequal': '__any_neq', 'all_equal': '__all_eq', } func = ops[self.op] assert func is not False s = "" s += "__assign(" + self.dst + ", " s += func + "(" s += self.lhs.getCExpr() s += ", " s += self.rhs.getCExpr() s += "));\n" else: for i in range(self.n): slot = gNToSlot[i] s += Indent() s += self.getExprString(slot, i) s += " = " s += self.lhs.getExprString(slot, i) s += " " + self.op + " " s += self.rhs.getExprString(slot, i) s += ";\n" return s def getCExpr(self): ops = { '/': '__div', '+': '__add', '-': '__sub', '*': '__mul', '>': '__gt', '>=': '__ge', '<': '__lt', '<=': '__le', '==': '__eq', '&&': '__and', '||': '__or', '!': '__not', 'any_nequal': '__any_neq', 'all_equal': '__all_eq', } func = ops[self.op] assert func is not False s = "" s += func + "(" s += self.lhs.getCExpr() s += ", " s += self.rhs.getCExpr() s += ")" return s def getExprString(self, slot, i): s = "" if self.n == 1: s = self.dst else: s = "%s[%d]" % (self.dst, gSlotToN[slot]) assert isinstance(s, str) return s def dst(self): return self.dst class UnaryExpression: def __init__(self, ty, n, op, src): self.ty = ty self.n = n self.op = op self.src = src self.dst = NewTempVar() def __str__(self): return "TODO(uexpr)" def getDeclareString(self): s = "" s += self.src.getDeclareString() baseTy = baseType(self.ty) if self.n == 1: s += "%s %s;\n" % (baseTy, self.dst) else: s += "%s %s[%d];\n" % (baseTy, self.dst, self.n) return s def getIntermExprString(self): # print "UnaryInterm\n" ops = { 'neg': '-(', 'rcp': '__rcp(', 'i2f': '(float)(', 'f2i': '(int)(', 'b2f': '(float)(', '!': '!(', } opExpr = ops[self.op] assert opExpr is not False s = "" s += self.src.getIntermExprString() for i in range(self.n): slot = gNToSlot[i] s += Indent() s += self.getExprString(slot, i) s += " = " s += ("(%s(" % opExpr) + self.src.getExprString(slot, i) + ")))" s += ";\n" return s def getCExpr(self): ops = { 'neg': '__neg', 'rcp': '__rcp', 'rsq': '__rsq', 'i2f': '__i2f', 'f2i': '__f2i', 'b2f': '__b2f', '!': '__not', } func = ops[self.op] assert func is not False s = "" s += func + "(" s += self.src.getCExpr() s += ")" return s def getExprString(self, slot, i): s = "" if self.n == 1: s = "%s" % (self.dst) else: s = "%s[%d]" % (self.dst, gSlotToN[slot]) assert isinstance(s, str) return s def dst(self): return self.dst def constructExpr(expr): name = expr[0] if name == "var_ref": return VarRef(expr[1]) elif name == "record_ref": return RecordRef(expr[1], expr[2]) elif name == "constant": (ty, n, values) = parseValue(expr[1:]) return Constant(ty, n, values) elif name == "assign": slots = expr[1] lhs = constructExpr(expr[2]) rhs = constructExpr(expr[3]) return Assign(slots, lhs, rhs) elif name == "swiz": slots = expr[1] e = constructExpr(expr[2]) return Swizzle(slots, e) elif name == "expression": (ty, n) = ParseTy(expr[1]) op = expr[2] lhs = constructExpr(expr[3]) if len(expr) > 4: rhs = constructExpr(expr[4]) return BinaryExpression(ty, n, op, lhs, rhs) else: # Unary expression return UnaryExpression(ty, n, op, lhs) elif name == "declare": quals = expr[1] ty = expr[2] offt = 3 (ty, n) = ParseTy(ty) varname = expr[offt] return VarDecl(varname, ty, n) elif name == "call": # print expr assert 0 elif expr == "break": # not a name return Break() elif name == "array_ref": return ArrayRef(expr[1], expr[2]) else: print("expr:", expr) print("name:", name) raise return None def EvalExpr(expr): ss = "" for e in expr: if isinstance(e, list): name = e[0] else: name = e if name in expTables: method = expTables[name] ss += method(e) return ss def eAssign(exp): slots = exp[1] ss = "" if len(slots) == 0: # maybe assignment of matrix or struct type. lhs = constructExpr(exp[2]) rhs = constructExpr(exp[3]) if isinstance(lhs, VarRef): (ty, n) = GetTypeOfSymbol(lhs.orgname) if IsMatrixType(ty): for j in range(n): for i in range(n): if isinstance(rhs, Constant): idx = j * n + i ss += Indent() + \ "%s.v[%d][%d] = %s;\n" % ( lhs, j, i, rhs.values[idx]) else: ss += Indent() + \ "%s.v[%d][%d] = %s.v[%d][%d];\n" % ( lhs, j, i, rhs, j, i) else: sym = GetSymbol(lhs.orgname) if sym is not None: (sty, sn) = sym['type'] if FindStruct(sty) is not None: # struct type ss += Indent() + "%s = %s;\n" % (lhs, rhs) else: print("Invalid definition:" + sym) raise else: print("Unknown or unsupported type:" + ty) raise else: print("Unknown assign op") raise else: # Don't emit code for redundant assignment # # e.g. assign to `assignment_tmp` in global scope. # (assign (xyz) (var_ref assignment_tmp) (var_ref normalize_retval) ) if GetScopeLevel() == 1: if len(exp[2]) == 2 and exp[2][0] == 'var_ref' and exp[2][1] == 'assignment_tmp': return "// killed redundant assign to 'assignment_tmp'\n" # @fixme. Supports first elem only at this time. slot = slots[0] lhs = constructExpr(exp[2]) rhs = constructExpr(exp[3]) # declare temp value if exist ss += lhs.getDeclareString() + "\n" ss += rhs.getDeclareString() + "\n" # emit intermediate expr ss += lhs.getIntermExprString() ss += rhs.getIntermExprString() # body for (i, s) in enumerate(slot): # print "lhs:" + lhs # print "rhs:" + str(rhs) ss += Indent() + lhs.getExprString(s, i) + " = " + \ rhs.getExprString(s, i) + ";\n" # print ss return ss def eExpression(exp): assert 0 # todo print(exp) def eReturn(exp): if len(exp) < 2: # no argument for 'return' ss = Indent() + "return;\n" else: retExp = constructExpr(exp[1]) ss = Indent() + "return " + retExp.getCExpr() + ";\n" return ss def eDiscard(exp): ss = Indent() + "__glsl_discard(__fragment); return;\n" return ss def eSwizzle(expr): slots = expr[1] args = expr[2] # print expr def eCall(expr): name = expr[1] if len(expr) < 4: # might be void type dst = False args = expr[2] else: dst = expr[2] args = expr[3] # print "dst:", dst # print "args:", args # print expr if dst is not False: # dst should be var_ref assert dst[0] == 'var_ref' dstExp = constructExpr(dst) isBuiltin = False isFuncPtrBuiltin = False if IsBuiltinFunction(name): isBuiltin = True prefix = "__glsl_" if IsBuiltinTraceFunction(name) or IsBuiltinRandomFunction(name) or IsBuiltinTextureFunction(name): isFuncPtrBuiltin = True else: prefix = "" s = "" # dst = func(state, a, b, c, ...) s += Indent() + "// { 'Call' : '" + str(args) + "' }\n" if dst is not False: s += Indent() + str(dstExp) + " = " + prefix + name + "(" else: s += Indent() + prefix + name + "(" if isFuncPtrBuiltin: s += "__fragment" elif isBuiltin: pass else: s += "__fragment, __state" for (count, arg) in enumerate(args): # print "arg:", arg exp = constructExpr(arg) # print "exp:", exp if isBuiltin: if isFuncPtrBuiltin: s += ", " else: s += ", " tycast = "" isInput = False isVarRef = False if isinstance(exp, VarRef): (ty, n) = GetTypeOfSymbol(exp.orgname) isVarRef = True tycast = GetTypeCastString(exp.orgname) if (IsUniform(exp.orgname) or IsVaryingInput(exp.orgname)) and not IsTexture(exp.orgname): isInput = True if isInput: if IsVectorType(ty): s += "/*input:vec*/(*(" + tycast + "(" + str(exp) + ".data)))" else: s += "/*input:scalar*/" + \ "(*(" + tycast + "(" + str(exp) + ".data)))" pass elif isVarRef: if IsBuiltinVariable(exp.orgname): (ty, n) = GetBuiltinType(exp.orgname) if IsVectorType(ty): tycast = "(%s%d *)" % (ty, n) else: tycast = "(%s *)" % (ty) s += "/*var_ref*/" + "(*(" + tycast + str(exp) + "))" else: s += "/*var_ref*/" + str(exp) else: s += exp.getCExpr() if (isBuiltin and (not isFuncPtrBuiltin)) and ((len(args) - 1) != count): s += ", " s += ");\n" return s # assert 0 def eIf(expr): # print "expr:", expr # print "cond:", expr[1] # print "then:", expr[2] condExpr = constructExpr(expr[1]) # statement = [expr] thenStmt = expr[2] if len(expr[3]) > 0: # ![] # print "else:", expr[3] elseStmt = expr[3] else: elseStmt = None # print "cond:", condExpr # print "then:", thenStmt # print "else:", elseStmt ss = "" ss = Indent() + "if (" ss += condExpr.getCExpr() ss += ") {\n" # then expr IncrementIndent() for e in expr[2]: if isinstance(e, list): name = e[0] else: name = e if name in expTables: method = expTables[name] ss += method(e) DecrementIndent() ss += "\n" + Indent() + "}" if elseStmt is not False: ss += " else {\n" IncrementIndent() for e in expr[3]: if isinstance(e, list): name = e[0] else: name = e if name in expTables: method = expTables[name] ss += method(e) DecrementIndent() ss += "\n" + Indent() + "}\n" else: ss += "\n" return ss def eLoop(expr): # print "expr:", expr declStmt = expr[1] initStmt = expr[2] condStmt = expr[3] tickStmt = expr[4] stmt = expr[5] # print "stmt:", stmt if len(declStmt) == 0 and len(initStmt) == 0 and len(condStmt) == 0 and len(tickStmt) == 0: # while loop ss = "" ss += Indent() + "while (1) {\n" IncrementIndent() ss += EvalExpr(stmt) DecrementIndent() ss += Indent() + "}\n" else: # for(i = init; i < cond; i += tick) ss = "" assert len(declStmt) == 1 assert len(initStmt) == 1 assert len(condStmt) == 1 assert len(tickStmt) == 1 declExpr = declStmt[0] assert declExpr[0] == 'declare' initExpr = initStmt[0] condExpr = condStmt[0] tickExpr = tickStmt[0] decl = parseDeclare(declExpr) ss += Indent() + "{\n" ss += Indent() + "// decl = " + str(declExpr) + "\n" ss += EvalExpr(declStmt) ss += Indent() + "// init = " + str(initExpr) + "\n" initE = constructExpr(initExpr) ss += Indent() + decl['name'] + " = " + initE.getCExpr() + ";\n" ss += Indent() + "// cond = " + str(condExpr) + "\n" condE = constructExpr(condExpr) tickE = constructExpr(tickExpr) ss += Indent() + "for (; " + decl['name'] + " < " + condE.getCExpr( ) + "; " + decl['name'] + " += " + tickE.getCExpr() + ") {\n" #ss += Indent() + decl['name'] + " += " + tickE.getCExpr() + ";\n" IncrementIndent() #ss += Indent() + "if (" + decl['name'] + " >= " + condE.getCExpr() + ") {\n" #ss += Indent() + " break;\n" #ss += Indent() + "}\n" for e in stmt: # print "e:", e if isinstance(e, list): name = e[0] else: name = e # Filter out tick expression if tickStmt: if name == "assign": # ['assign', ['x'], ['var_ref', 'i'], ['expression', 'int', '+', ['var_ref', 'i'], ['constant', 'int', ['1']]]] if e[2][1] == decl['name']: # Skip this expression continue if name in expTables: method = expTables[name] ss += method(e) #ss += Indent() + "// tick = " + str(tickExpr) + "\n" #tickE = constructExpr(tickExpr) #ss += Indent() + decl['name'] + " += " + tickE.getCExpr() + ";\n" DecrementIndent() ss += Indent() + "}\n" ss += "}\n" return ss def eBreak(expr): # print "break" return Indent() + "break;\n" def eDeclare(exp): quals = exp[1] ty = exp[2] # if IsArray(ty): # print "array", ty offt = 3 (ty, n) = ParseTy(ty) varname = exp[offt] # print exp # print "[eDeclare] ty:", (ty, n), ", var:", varname isBuiltin = False isInOut = False if ('in' in quals) or ('out' in quals) or ('uniform' in quals): isInOut = True if not IsBuiltinVariable(varname): if 'in' in quals: # ((ty, n), qual, name) AddVaryingInput(varname, ty, n, quals) elif 'uniform' in quals: # ((ty, n), qual, name) AddUniformInput(varname, ty, n, quals) else: isBuiltin = True s = "" # user defined global var or temporary variable needs var declaration. if (not isInOut) and (not isBuiltin): # skip redundant AST in global scope, generated from MESA's GLSL # compiler. if varname == "assignment_tmp" and (GetScopeLevel() == 1): s = "" else: # Add to symbol table AddSymbol(varname, ty, n, quals) decl = VarDecl(varname, ty, n) s = Indent() + decl.getDeclareString() return s def parseDeclare(exp): d = {} quals = exp[1] ty = exp[2] # if IsArray(ty): # print "array", ty offt = 3 (ty, n) = ParseTy(ty) varname = exp[offt] # print exp # print "ty:", (ty, n), ", var:", varname d['type'] = (ty, n) d['quals'] = quals d['name'] = varname return d def emitCArgs(args): # args = ['parameters', ...] if len(args) == 1: return "" s = "" for (n, arg) in enumerate(args[1:]): # skip 'parameters' tag decl = parseDeclare(arg) prefix = "" if 'out' in decl['quals']: prefix = "&" # C++ reference if IsVectorType(decl['type'][0]): s += decl['type'][0] + str(decl['type'][1]) + prefix elif IsMatrixType(decl['type'][0]): s += decl['type'][0] + str(decl['type'][1]) + prefix else: s += decl['type'][0] + prefix s += " " s += decl['name'] if n != (len(args[1:]) - 1): s += ", " return s def eFunction(exp): name = exp[1] params = exp[2] # consider struct type p = params[1].split('__') if len(p) > 1: signature = p[0] + '__' else: signature = p[0] args = params[2] statements = params[3] # push symbol table stack gSymbolTable.append(dict()) if IsBuiltinFunction(name): # No need to emit builtin function declaration. return "" isMainFunction = False s = "" if name == "main": # entry point function s += "void shader(Fragment* __fragment, FragmentState* __state)" isMainFunction = True else: # static function. argStr = emitCArgs(args) s += "// args = " + str(args) s += "\n" s += "static " s += signature # @fixme. Support compound and vector type. s += " " s += name s += " (" # __fragment and __state arg are required to access # builtin/uniform/varying variable from user-defined function s += "Fragment* __fragment, FragmentState* __state" if len(argStr) > 0: s += ", " s += argStr s += ")" # add function parameter to symbol table if len(args) > 1: # function has arguments for arg in args[1:]: # skip 'parameter' tag quals = arg[1] ty = arg[2] # if IsArray(ty): # print "array", ty offt = 3 (ty, n) = ParseTy(ty) varname = arg[offt] AddSymbol(varname, ty, n, quals) if len(statements) < 1: # Seems it has no function body. s += " {};\n\n" return s s += "\n{\n" IncrementIndent() # Call constructor in main function if isMainFunction: s += Indent() + "__shader_internal_constructor(__state);\n" for stmt in statements: expName = stmt[0] if expName in expTables: method = expTables[expName] assert method s += method(stmt) DecrementIndent() s += "}\n\n" # pop symbol table gSymbolTable.pop() return s expTables = { 'declare': eDeclare, 'function': eFunction, 'assign': eAssign, 'expression': eExpression, 'swiz': eSwizzle, 'call': eCall, 'if': eIf, 'loop': eLoop, 'break': eBreak, 'return': eReturn, 'discard': eDiscard, } def emitEntryPoint(): """ Emit C entry point function definition. """ s = "extern \"C\" {\n" s += "void shader(Fragment* __fragment, FragmentState* __state);\n" s += "int shader_info(FragmentConfig* config);\n" s += "}\n" return s def emitInitializer(): """ Emit initializer function. """ qualDic = { 'in': "GLSL_QUALIFIER_IN", 'out': "GLSL_QUALIFIER_OUT", 'uniform': "GLSL_QUALIFIER_UNIFORM", } s = "" s += "int shader_info(FragmentConfig* config)\n" s += "{\n" IncrementIndent() # Uniforms for uniform in list(gUniformInputs.values()): qualStr = "GLSL_QUALIFIER_UNIFORM" ty = uniform['type'] idx = uniform['index'] s += Indent() + "// " + str(uniform) + "\n" s += Indent() + \ "config->uniformInfos[" + \ str(idx) + "].type.name = \"" + ty[0] + "\";\n" s += Indent() + \ "config->uniformInfos[" + str(idx) + \ "].type.n = " + str(ty[1]) + ";\n" s += Indent() + \ "config->uniformInfos[" + str(idx) + "].qualifier = " + \ qualStr + ";\n" # redundant? s += Indent() + \ "config->uniformInfos[" + str(idx) + "].name = \"" + \ uniform['name'] + "\";\n" s += "\n" s += Indent() + "config->numUniforms = %d;\n" % (len(gUniformInputs)) s += "\n" # Varyings for varying in list(gVaryingInputs.values()): qualStr = "" if len(varying['quals']) == 0: qualStr += "GLSL_QUALIFIER_NONE" else: for (n, qual) in enumerate(varying['quals']): qualStr += qualDic[qual] if (n != (len(varying['quals']) - 1)): qualStr += " | " ty = varying['type'] idx = varying['index'] s += Indent() + "// " + str(varying) + "\n" s += Indent() + \ "config->varyingInfos[" + \ str(idx) + "].type.name = \"" + ty[0] + "\";\n" s += Indent() + \ "config->varyingInfos[" + str(idx) + \ "].type.n = " + str(ty[1]) + ";\n" s += Indent() + \ "config->varyingInfos[" + \ str(idx) + "].qualifier = " + qualStr + ";\n" s += Indent() + \ "config->varyingInfos[" + str(idx) + "].name = \"" + \ varying['name'] + "\";\n" s += "\n" s += Indent() + "config->numVaryings = %d;\n" % (len(gVaryingInputs)) s += "\n" s += Indent() + "return 0; // OK\n" DecrementIndent() s += "}\n" return s def ir_to_c(input_sexp_string, opts): """ Converts S-expression style IR to C/C++ code. """ ir_exp = parse_sexp(input_sexp_string) if ('-v', '') in opts: print("IR:" + str(ir_exp)) s = "" # header s = "#include \"glsl_runtime.h\"\n" # entry point s += emitEntryPoint() # # pass1.1: emit struct definition # # add global scope s += "// --> struct definition\n" # print ir_exp for e in ir_exp: if isinstance(e, list): name = e[0] else: name = e if name == 'structure': struct = {} # ['structure, ['name'], ['instance'], ['N'], [fields] # fields = [['ty'], ['name']] structname = e[1][0] + "__" struct['name'] = structname members = e[4] memberDefs = {} s += "// struct_def = " + str(e) + "\n" s += "typedef struct {\n" for member in members: ty = member[0][0] name = member[1][0] memberDefs[name] = {'ty': ty, 'name': name} s += " " + ty + " " + name + ";\n" s += "} %s;\n" % structname struct['members'] = memberDefs # Add to definition DefineStruct(struct) s += "// <-- struct definition\n" # # pass1.2: emit global variable definition # # add global scope gSymbolTable.append(dict()) s += "// --> global variables\n" for e in ir_exp: if isinstance(e, list): name = e[0] else: name = e if name == 'declare': s += eDeclare(e) s += "// <-- global variables\n" # # pass2: emit global variable initializer # IncrementIndent() s += "static void __shader_internal_constructor(FragmentState* __state) {\n" for e in ir_exp: if isinstance(e, list): name = e[0] else: name = e if name == 'assign': s += eAssign(e) DecrementIndent() s += "}\n" # # pass3: body # for e in ir_exp: if isinstance(e, list): name = e[0] else: name = e # skip decl and assign in gloal scope if name == 'declare' or name == 'assign': continue # might be member field of struct if isinstance(name, list): continue if name in expTables: method = expTables[name] s += method(e) # initializer s += emitInitializer() # for safety gSymbolTable.pop() return s
2.203125
2
lopi/descriptors/regex_validation.py
QristaLabs/LOPi
0
12784882
import re import typing as t from .typed import StringTyped class RegexDescriptor(StringTyped): def __init__(self, *args, pattern: t.Union[str, re.Pattern], **kwargs) -> None: super().__init__(*args, **kwargs) if isinstance(pattern, str): pattern = re.compile(pattern) self.pattern = pattern def __set__(self, instance: object, value: str) -> None: if not self.pattern.match(value): raise ValueError("String must match the regex pattern.") super().__set__(instance, value)
3.03125
3
Core/DivideExamples.py
rothadamg/UPSITE
1
12784883
<filename>Core/DivideExamples.py """ Pseudorandomly distributed subsets """ __version__ = "$Revision: 1.4 $" import Split import sys def getDocumentId(idString): return idString.rsplit(".",2)[0] def getIdFromLine(line): assert(line.find("#") != -1) return line.split("#")[-1].strip() def getDocumentIds(filename): documentIds = [] inputFile = open(filename, "rt") try: for line in inputFile: if len(line) == 0 or line[0] == "#": continue docId = getDocumentId(getIdFromLine(line)) if not docId in documentIds: documentIds.append(docId) finally: inputFile.close() return documentIds def getDocumentFolds(documentIds, folds): sample = Split.getFolds(len(documentIds),folds) division = {} for i in range(len(documentIds)): division[documentIds[i]] = sample[i] return division def divideExamples(filename, outputFilenames): print >> sys.stderr, "Reading document ids" documentIds = getDocumentIds(filename) print >> sys.stderr, "Dividing documents into folds" division = getDocumentFolds(documentIds, len(outputFilenames)) print >> sys.stderr, "Dividing examples" outputFiles = [] for name in outputFilenames: outputFiles.append(open(name, "wt")) inputFile = open(filename, "rt") try: for line in inputFile: if len(line) == 0 or line[0] == "#": continue docId = getDocumentId(getIdFromLine(line)) outputFiles[division[docId]].write(line) finally: inputFile.close() for outputFile in outputFiles: outputFile.close() if __name__=="__main__": from optparse import OptionParser defaultAnalysisFilename = "/usr/share/biotext/ComplexPPI/BioInferForComplexPPIVisible.xml" optparser = OptionParser(usage="%prog [options]\nCreate an html visualization for a corpus.") optparser.add_option("-i", "--input", default=defaultAnalysisFilename, dest="input", help="Corpus in analysis format", metavar="FILE") optparser.add_option("-o", "--output", default="", dest="output", help="Output directory") optparser.add_option("-f", "--folds", type="int", default=10, dest="folds", help="X-fold cross validation") (options, args) = optparser.parse_args() outputFilenames = [] for i in range(options.folds): outputFilenames.append(options.output + options.input + ".fold" + str(i)) divideExamples(options.input, outputFilenames)
2.671875
3
setup.py
mcx/deep_ope
64
12784884
<gh_stars>10-100 # Copyright 2020 Google LLC. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import find_packages from setuptools import setup setup( name='deep_ope', description=( 'Deep OPE: Benchmarks for Off-policy Evaluation and Offline Policy Selection' ), author='Google LLC', author_email='<EMAIL>', url='https://github.com/google-research/deep_ope', license='Apache 2.0', packages=find_packages(), package_data={}, install_requires=[ 'absl-py==0.10.0', 'dm-acme==0.1.8', 'dm-env==1.2', 'dm-reverb==0.1.0', 'dm-sonnet', 'dm-tree==0.1.5', 'gym==0.17.2', 'tensorflow==2.3.0', 'd4rl @ git+git://github.com/rail-berkeley/d4rl@c39eefd68d2f3277ca68e996a45ce1dd24e65625', 'jax==0.2.11', 'jaxlib==0.1.64', ])
0.976563
1
test/test_invertible_1x1_conv.py
AI-Huang/glow-pytorch
0
12784885
<filename>test/test_invertible_1x1_conv.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Date : Aug-04-21 21:43 # @Author : <NAME> (<EMAIL>) import torch import torch.nn.functional as F from models.glow.invertible_1x1_conv import Invertible_1x1_Conv def invertible_1x1_conv_test(): """ Test cases: conv1x1 = Invertible_1x1_Conv( in_channels=in_channels, out_channels=out_channels, LU_decomposed=False) """ in_channels = 3 # out_channels = 16 # in_channels and out_channels must equal out_channels = 3 conv1x1 = Invertible_1x1_Conv( in_channels=in_channels, out_channels=out_channels, LU_decomposed=False) x = torch.randn([64, in_channels, 32, 32]) print(x.shape) print(f"x.sum(): {x.sum()}") logdet_init = 0 # Forward obversely z, logdet = conv1x1(x, logdet_init) print(z.shape) print(f"z.sum(): {z.sum()}") # Forward reversely x_hat, logdet_final = conv1x1(z, logdet, reverse=True) print(x_hat.shape) print(f"x_hat.sum(): {x_hat.sum()}") print(f"F.l1_loss(x, x_hat): {F.l1_loss(x, x_hat)}") assert F.l1_loss(x, x_hat) < 1 def main(): invertible_1x1_conv_test() if __name__ == "__main__": main()
2.84375
3
moderngl_window/capture/__init__.py
sheepman4267/moderngl-window
12
12784886
<reponame>sheepman4267/moderngl-window<gh_stars>10-100 from .base import BaseVideoCapture # noqa from .ffmpeg import FFmpegCapture # noqa
0.882813
1
code/119.Pascal's-Triangle-II.py
Aden-Q/leetcode
1
12784887
<gh_stars>1-10 class Solution: def getRow(self, rowIndex: int) -> List[int]: if rowIndex == 0: return [1] cur = [1, 1] next_row = cur for i in range(1, rowIndex): next_row = [1] for j in range(i): next_row.append(cur[j] + cur[j+1]) next_row.append(1) cur = next_row return next_row
3.046875
3
mesh_transformer/layers.py
VE-FORBRYDERNE/mesh-transformer-jax
2
12784888
<filename>mesh_transformer/layers.py import haiku as hk import jax import jax.numpy as jnp import numpy as np from mesh_transformer.util import f_psum, g_psum, maybe_shard, head_print from jax.experimental import PartitionSpec as P from jax.experimental.maps import thread_resources class ReplicatedLayerNorm(hk.Module): def __init__(self, offset=True): super().__init__() self.offset = offset def __call__(self, inputs: jnp.ndarray) -> jnp.ndarray: mean = jnp.mean(inputs, axis=-1, keepdims=True) variance = jnp.var(inputs, axis=-1, keepdims=True) param_shape = inputs.shape[-1:] scale = hk.get_parameter("scale", param_shape, inputs.dtype, init=jnp.ones) scale = jax.lax.all_gather(scale, "shard")[0] offset = hk.get_parameter("offset", param_shape, inputs.dtype, init=jnp.zeros) offset = jax.lax.all_gather(offset, "shard")[0] scale = jnp.broadcast_to(scale, inputs.shape) offset = jnp.broadcast_to(offset, inputs.shape) mean = jnp.broadcast_to(mean, inputs.shape) inv = scale * jax.lax.rsqrt(variance + 1e-5) if self.offset: return inv * (inputs - mean) + offset else: return inv * (inputs - mean) class RMSNorm(hk.Module): def __init__(self, offset, elementwise): super().__init__() self.offset = offset self.elementwise = elementwise def __call__(self, x): param_shape = (x.shape[-1],) if self.elementwise else () normed = x / (jnp.linalg.norm(x, axis=-1, keepdims=True) + 1e-5) scale = hk.get_parameter('scale', param_shape, init=hk.initializers.Constant(x.shape[-1] ** 0.5)) scale = jax.lax.pmean(scale, "shard") normed = normed * scale if self.offset: offset = hk.get_parameter('offset', param_shape, init=jnp.zeros) offset = jax.lax.pmean(offset, "shard") normed = normed + offset return normed def getnorm(type): if type == "layernorm": return ReplicatedLayerNorm() if type == "layernorm-desync": return hk.LayerNorm(-1, True, True) elif type == "layernorm-nobias": return ReplicatedLayerNorm(offset=False) elif type == "rmsnorm": return RMSNorm(False, True) elif type == "scalenorm": return RMSNorm(False, False) elif type == "rmsnorm-bias": return RMSNorm(True, True) elif type == "scalenorm-bias": return RMSNorm(True, False) else: raise Exception("Not implemented") class RelativePositionEmbs(hk.Module): @staticmethod def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128): ret = 0 n = -relative_position n = np.maximum(n, 0) # now n is in the range [0, inf) max_exact = num_buckets // 2 is_small = (n < max_exact) val_if_large = max_exact + ( np.log(n.astype(np.float32) / max_exact + np.finfo(np.float32).eps) / np.log(max_distance / max_exact) * (num_buckets - max_exact)).astype(np.int32) val_if_large = np.minimum(val_if_large, num_buckets - 1) ret += np.where(is_small, n, val_if_large) return ret def __call__(self, qlen, klen, heads, num_buckets): """Produce relative position embedding attention biases. Returns: output: `(heads, q_len, k_len)` attention bias """ context_position = np.arange(qlen, dtype=jnp.int32)[:, None] memory_position = np.arange(klen, dtype=jnp.int32)[None, :] relative_position = memory_position - context_position # shape (qlen, klen) rp_bucket = self._relative_position_bucket(relative_position) relative_attention_bias = hk.get_parameter('rel_embedding', [heads, num_buckets], init=hk.initializers.TruncatedNormal(stddev=0.02)) # Instead of using a slow gather, we create a leading-dimension one-hot # array from rp_bucket and use it to perform the gather-equivalent via a # contraction, i.e.: # (num_head, num_buckets) x (num_buckets one-hot, qlen, klen). # This is equivalent to relative_attention_bias[:, rp_bucket] bcast_iota = jax.lax.broadcasted_iota(jnp.int32, (num_buckets, 1, 1), 0) rp_bucket_one_hot = jnp.array(rp_bucket[jnp.newaxis, Ellipsis] == bcast_iota).astype( relative_attention_bias.dtype) # --> shape (qlen, klen, num_heads) values = jax.lax.dot_general( relative_attention_bias, rp_bucket_one_hot, ( ((1,), (0,)), # rhs, lhs contracting dims ((), ()))) # no batched dims return values class TransposingLinear(hk.Module): def __init__(self, input_size, output_size, with_bias=True, w_init=None, b_init=None, name=None): if name is None: name = "linear" super().__init__(name=name) self.input_size = input_size self.output_size = output_size self.with_bias = with_bias self.w_init = w_init self.b_init = b_init or jnp.zeros def __call__(self, inputs: jnp.ndarray, *, precision=None, transpose_weights=False) -> jnp.ndarray: if not inputs.shape: raise ValueError("Input must not be scalar.") input_size = self.input_size output_size = self.output_size dtype = inputs.dtype w_init = self.w_init if w_init is None: stddev = 1. / np.sqrt(self.input_size) w_init = hk.initializers.TruncatedNormal(stddev=stddev) w = hk.get_parameter("w", [input_size, output_size], dtype, init=w_init) if transpose_weights: w = w.T out = jnp.dot(inputs, w, precision=precision) if self.with_bias: b = hk.get_parameter("b", [self.output_size], dtype, init=self.b_init) b = jnp.broadcast_to(b, out.shape) out = out + b return out def fixed_pos_embedding(x, seq_dim=0): dim = x.shape[-1] inv_freq = 1. / (10000 ** (np.arange(0, dim, 2) / dim)) sinusoid_inp = np.einsum('i , j -> i j', np.arange(x.shape[seq_dim]), inv_freq) return np.sin(sinusoid_inp), np.cos(sinusoid_inp) def rotate_every_two(x): x1 = x[:, :, ::2] x2 = x[:, :, 1::2] x = jnp.stack((-x2, x1), axis=-1) return x.reshape(*x.shape[:-2], -1) def apply_rotary_pos_emb(x, sincos): sin, cos = map(lambda t: t.repeat(2, axis=-1)[-x.shape[0]:, None, :], sincos) return (x * cos) + (rotate_every_two(x) * sin) def rotate_every_two_v2(x): x1 = x[:, :, :, ::2] x2 = x[:, :, :, 1::2] x = jnp.stack((-x2, x1), axis=-1) return x.reshape(*x.shape[:-2], -1) def apply_rotary_pos_emb_v2(x, sincos): sin, cos = map(lambda t: t.repeat(2, axis=-1)[-x.shape[-3]:, None, :], sincos) return (x * cos) + (rotate_every_two_v2(x) * sin) class EmbeddingShard(hk.Module): def __init__(self, config, name=None): super().__init__(name=name) in_dim = config["n_vocab"] + config.get("n_vocab_padding", 0) out_dim = config["d_model"] shards = config["cores_per_replica"] self.compat = config.get("compat", "j") assert in_dim % shards == 0 self.in_dim = in_dim self.out_dim = out_dim self.in_dim_per_shard = in_dim // shards self.out_dim_per_shard = out_dim // shards if config["pe"] == "fixed": embed_init = hk.initializers.TruncatedNormal(stddev=0.02) self.positional_embeddings = hk.get_parameter('pos_embs', [config["seq"], self.out_dim_per_shard], init=embed_init) else: self.positional_embeddings = None self.proj = TransposingLinear(self.in_dim_per_shard, self.out_dim, w_init=hk.initializers.TruncatedNormal(stddev=1 / np.sqrt(in_dim)), with_bias=self.compat != "neo") def __call__(self, x, dtype=jnp.bfloat16, pe_length=0, soft_embeddings=None): shard_start_index = jax.lax.axis_index('shard') * self.in_dim_per_shard input_onehot = jax.nn.one_hot(x - shard_start_index, self.in_dim_per_shard) proj_out = self.proj(input_onehot) mask = jnp.broadcast_to((x < self.in_dim)[:, jnp.newaxis], proj_out.shape) proj_out = jnp.where(mask, proj_out, 0) if soft_embeddings is not None: assert soft_embeddings.ndim == 2 assert soft_embeddings.shape[1] == self.out_dim soft_shard_start_index = self.in_dim + jax.lax.axis_index('shard') * soft_embeddings.shape[0] input_soft_onehot = jax.nn.one_hot(x - soft_shard_start_index, soft_embeddings.shape[0]) proj_out += jnp.dot(input_soft_onehot, soft_embeddings) proj_out = g_psum(proj_out) if self.positional_embeddings is not None: pe_length = jnp.int32(pe_length) shard_roll_index = jnp.int32(jax.lax.axis_index('shard') * self.out_dim_per_shard) pos_embed = jnp.pad(self.positional_embeddings, ((0, 0), (0, self.out_dim - self.out_dim_per_shard))) pos_embed = jnp.roll(pos_embed, shard_roll_index, axis=1) pos_embed = jnp.roll(pos_embed, -pe_length, axis=0)[-proj_out.shape[0]:] proj_out += pos_embed proj_out = g_psum(proj_out) return proj_out class EmbeddingShardV2(hk.Module): def __init__(self, config, name=None): super().__init__(name=name) in_dim = config["n_vocab"] out_dim = config["d_model"] shards = config["cores_per_replica"] assert in_dim % shards == 0 self.in_dim = in_dim self.out_dim = out_dim self.proj = hk.Linear(self.out_dim, w_init=hk.initializers.TruncatedNormal(stddev=1 / np.sqrt(in_dim))) def __call__(self, x, dtype=jnp.bfloat16): input_onehot = jax.nn.one_hot(x, self.in_dim) input_onehot = maybe_shard(input_onehot, P("dp", None, "mp")) proj_out = self.proj(input_onehot) return proj_out # We actually combine the FF and dense in one layer (i.e. compute in parallel) to minimize all reduces class TransformerLayerShard(hk.Module): def __init__(self, config, name=None, init_scale=1., attention_type="global"): super().__init__(name=name) heads = config["n_heads"] dim = config["d_model"] shards = config["cores_per_replica"] norm = getnorm(config["norm"]) self.is_rotary = config["pe"] == "rotary" self.attention_type = attention_type self.local_attention_window = config.get("local_attention_window", 256) self.compat = config.get("compat", "j") assert dim % heads == 0 assert heads % shards == 0 assert attention_type in ("global", "local") self.dim = dim self.dim_per_head = dim // heads self.heads_per_shard = heads // shards self.dim_per_shard = dim // shards self.pe_rotary_dims = config.get("pe_rotary_dims", self.dim_per_head) self.norm = norm if self.compat == "neo": self.norm_2 = getnorm(config["norm"]) self.q = hk.Linear(self.dim_per_shard, with_bias=False) self.v = hk.Linear(self.dim_per_shard, with_bias=False) self.k = hk.Linear(self.dim_per_shard, with_bias=False) self.o = hk.Linear(self.dim, with_bias=self.compat == "neo", w_init=hk.initializers.TruncatedNormal(stddev=init_scale / np.sqrt(self.dim))) self.dense_proj = hk.Linear(self.dim_per_shard * 4) self.dense_proj_o = hk.Linear(self.dim, w_init=hk.initializers.TruncatedNormal(stddev=init_scale / np.sqrt(self.dim))) def self_attn(self, q, v, k, attn_bias): if self.is_rotary: k_rot = k[:, :, :self.pe_rotary_dims] k_pass = k[:, :, self.pe_rotary_dims:] q_rot = q[:, :, :self.pe_rotary_dims] q_pass = q[:, :, self.pe_rotary_dims:] sincos = fixed_pos_embedding(k_rot) q_rot = apply_rotary_pos_emb(q_rot, sincos) k_rot = apply_rotary_pos_emb(k_rot, sincos) k = jnp.concatenate([k_rot, k_pass], axis=-1) q = jnp.concatenate([q_rot, q_pass], axis=-1) attention_logits = jnp.einsum("thd,Thd->htT", q, k) if self.compat != "neo": sqrt_key_size = np.sqrt(self.dim_per_head).astype(k.dtype) attention_logits = attention_logits / sqrt_key_size attention_logits += attn_bias attention_weights = jax.nn.softmax(attention_logits) attention_vec = jnp.einsum("htT,Thd->thd", attention_weights, v).reshape((-1, self.dim_per_shard)) return self.o(attention_vec) def ff(self, x): dense_proj = self.dense_proj(x) dense_proj = jax.nn.gelu(dense_proj) return self.dense_proj_o(dense_proj) def qvk_proj(self, x): q = self.q(x).reshape(x.shape[:-1] + (self.heads_per_shard, self.dim_per_head)) v = self.v(x).reshape(x.shape[:-1] + (self.heads_per_shard, self.dim_per_head)) k = self.k(x).reshape(x.shape[:-1] + (self.heads_per_shard, self.dim_per_head)) return q, v, k def neo_ff(self, x): x = self.norm_2(x) dense_out = self.ff(x) return g_psum(dense_out) def __call__(self, x, attn_bias): x = f_psum(x) x = self.norm(x) q, v, k = self.qvk_proj(x) seq_len = x.shape[0] causal_mask = np.tril(np.ones((seq_len, seq_len))) if self.attention_type == "local": causal_mask -= np.tril(causal_mask, -self.local_attention_window) bias = -1e10 * (1. - causal_mask) bias += attn_bias attn_out = self.self_attn(q, v, k, bias) if self.compat == "neo": out = attn_out else: dense_out = self.ff(x) out = attn_out + dense_out return g_psum(out) # iterate the decoding process by a single token def decode_once(self, decode_state, x, attn_bias): x = f_psum(x) x = self.norm(x) assert x.shape[0] == 1 q, v, k = self.qvk_proj(x) # add new kv to end v = jnp.concatenate((decode_state["v"], v), axis=0)[1:] k = jnp.concatenate((decode_state["k"], k), axis=0)[1:] tokens_decoded = decode_state["tokens_decoded"] + 1 length = v.shape[0] if self.attention_type == "local": masked_tokens = length - jnp.minimum(tokens_decoded, self.local_attention_window) else: masked_tokens = length - tokens_decoded attention_mask = jnp.arange(0, length) < masked_tokens bias = (-1e10 * attention_mask) bias += attn_bias attn_out = self.self_attn(q, v, k, bias) if self.compat == "neo": out = attn_out else: dense_out = self.ff(x) out = attn_out + dense_out return g_psum(out), { "tokens_decoded": tokens_decoded, "k": k, "v": v } # take in right aligned context tokens and generate an initial state def get_init_decode_state(self, x, given_length, attn_bias): x = f_psum(x) x = self.norm(x) q, v, k = self.qvk_proj(x) full_length = x.shape[0] masked_tokens = full_length - given_length seq_len = x.shape[0] causal_mask = np.tril(np.ones((seq_len, seq_len))) if self.attention_type == "local": causal_mask -= np.tril(causal_mask, -self.local_attention_window) bias = -1e10 * (1. - causal_mask) # regular AR masking bias -= 1e10 * (jnp.arange(0, full_length) < masked_tokens) # mask out zero tokens before context starts bias += attn_bias # finally add attn bias for rpe attn_out = self.self_attn(q, v, k, bias) if self.compat == "neo": out = attn_out else: dense_out = self.ff(x) out = attn_out + dense_out return g_psum(out), {"k": k, "v": v, "tokens_decoded": given_length.astype(jnp.uint32)} # This new class combines the input and output projection into one matmul for better efficiency class TransformerLayerShardV2(hk.Module): def __init__(self, config, name=None, init_scale=1.): super().__init__(name=name) self.dim = config["d_model"] self.n_head = config["n_heads"] self.d_head = config["d_head"] self.d_rotary = config["pe_rotary_dims"] self.mp_num = thread_resources.env.shape['mp'] self.norm = hk.LayerNorm(-1, True, True) self.input_proj = hk.Linear(self.d_head * self.n_head * 3 + self.dim * 8) self.output_proj = hk.Linear(self.dim, w_init=hk.initializers.TruncatedNormal(stddev=init_scale / jnp.sqrt(self.dim))) def self_attn(self, q, v, k, attn_bias): k_rot = k[:, :, :, :self.d_rotary] k_pass = k[:, :, :, self.d_rotary:] q_rot = q[:, :, :, :self.d_rotary] q_pass = q[:, :, :, self.d_rotary:] sincos = fixed_pos_embedding(k_rot, seq_dim=1) q_rot = apply_rotary_pos_emb_v2(q_rot, sincos) k_rot = apply_rotary_pos_emb_v2(k_rot, sincos) q_rot = maybe_shard(q_rot, P("dp", None, "mp", None)) k_rot = maybe_shard(k_rot, P("dp", None, "mp", None)) k = jnp.concatenate([k_rot, k_pass], axis=-1) q = jnp.concatenate([q_rot, q_pass], axis=-1) k = maybe_shard(k, P("dp", None, "mp", None)) q = maybe_shard(q, P("dp", None, "mp", None)) attention_logits = jnp.einsum("bthd,bThd->bhtT", q, k) attention_logits = maybe_shard(attention_logits, P("dp", "mp", None, None)) sqrt_key_size = np.sqrt(self.d_head).astype(k.dtype) attention_logits = attention_logits / sqrt_key_size attention_logits += attn_bias attention_logits = maybe_shard(attention_logits, P("dp", "mp", None, None)) attention_weights = jax.nn.softmax(attention_logits) attention_weights = maybe_shard(attention_weights, P("dp", "mp", None, None)) attention_vec = jnp.einsum("bhtT,bThd->bthd", attention_weights, v) attention_vec = maybe_shard(attention_vec, P("dp", None, "mp", None)) sharded_attn_vec = attention_vec.reshape(attention_vec.shape[:2] + (self.mp_num, self.n_head//self.mp_num, -1)) sharded_attn_vec = maybe_shard(sharded_attn_vec, P("dp", None, "mp", None, None)) attention_vec = attention_vec.reshape(sharded_attn_vec.shape[:2] + (self.mp_num, -1)) return maybe_shard(attention_vec, P("dp", None, "mp", None)) # input: [batch, seq, dim] # output: [batch, seq, n_head, d_head] def head_split(self, x): reshaped = x.reshape(x.shape[:-1] + (self.n_head//self.mp_num, self.d_head)) reshaped = reshaped.reshape(x.shape[:-2] + (-1, ) + x.shape[-1:]) # return reshaped return maybe_shard(reshaped, P("dp", None, "mp", None)) def input(self, x): # [batch, seq, dim] projected = self.input_proj(x) # [batch, seq, mp, dim//mp] projected = maybe_shard(projected, P("dp", None, "mp")) mp_split = jnp.reshape(projected, projected.shape[:-1] + (self.mp_num, -1)) mp_split = maybe_shard(mp_split, P("dp", None, "mp", None)) local_dim = self.d_head * self.n_head // self.mp_num q, v, k, ff = jnp.split(mp_split, [local_dim, local_dim * 2, local_dim * 3], axis=-1) q = self.head_split(q) v = self.head_split(v) k = self.head_split(k) return q, v, k, ff def output(self, *x): out = jnp.concatenate(x, axis=-1) out = maybe_shard(out, P("dp", None, "mp", None)) out = out.reshape(x[0].shape[:-2] + (-1,)) out_shard = maybe_shard(out, P("dp", None, "mp")) return self.output_proj(out_shard) def __call__(self, x, attn_bias): x = self.norm(x) q, v, k, ff = self.input(x) # head_print("x.shape", x.shape) # head_print("attn_bias.shape", attn_bias.shape) seq_len = x.shape[1] causal_mask = np.tril(np.ones((seq_len, seq_len)))[None, :, :] bias = -1e10 * (1. - causal_mask) # head_print("bias.shape", bias.shape) bias += attn_bias attn_out = self.self_attn(q, v, k, bias) ff_out = self.glu(ff) return self.output(attn_out, ff_out) # [batch, seq, mp, dim*2//mp] def glu(self, x): out, gate = jnp.split(x, 2, axis=-1) return out * jax.nn.gelu(gate) # iterate the decoding process by a single token def decode_once(self, decode_state, x, attn_bias): x = self.norm(x) assert x.shape[0] == 1 q, v, k, ff = self.input(x) # add new kv to end v = jnp.concatenate((decode_state["v"], v), axis=1)[1:] k = jnp.concatenate((decode_state["k"], k), axis=1)[1:] tokens_decoded = decode_state["tokens_decoded"] + 1 length = v.shape[1] masked_tokens = length - tokens_decoded attention_mask = jnp.arange(0, length) < masked_tokens bias = (-1e10 * attention_mask) bias += attn_bias attn_out = self.self_attn(q, v, k, bias) ff_out = self.glu(ff) return self.output(attn_out, ff_out), { "tokens_decoded": tokens_decoded, "k": k, "v": v } # take in right aligned context tokens and generate an initial state def get_init_decode_state(self, x, given_length, attn_bias): x = self.norm(x) q, v, k, ff = self.input(x) full_length = x.shape[1] masked_tokens = full_length - given_length causal_mask = np.tril(np.ones((full_length, full_length))) bias = -1e10 * (1. - causal_mask) # regular AR masking bias -= 1e10 * (jnp.arange(0, full_length) < masked_tokens) # mask out zero tokens before context starts bias += attn_bias # finally add attn bias for rpe attn_out = self.self_attn(q, v, k, bias) ff_out = self.glu(ff) return self.output(attn_out, ff_out), { "tokens_decoded": given_length.astype(jnp.uint32), "k": k, "v": v, } class ProjectionShard(hk.Module): def __init__(self, config, name=None, embedding_shard=None): super().__init__(name=name) self.out_dim_unpadded = config["n_vocab"] out_dim = self.out_dim_unpadded + config.get("n_vocab_padding", 0) shards = config["cores_per_replica"] norm = getnorm(config["norm"]) self.compat = config.get("compat", "j") assert out_dim % shards == 0 self.dim = out_dim self.dim_per_shard = out_dim // shards self.norm = norm if self.compat == "neo": self.proj = embedding_shard.proj else: self.proj = TransposingLinear(config["d_model"], self.dim_per_shard) def __call__(self, x): x = self.norm(x) proj = self.proj(x, transpose_weights=self.compat == "neo") all_proj = jax.lax.all_gather(proj, 'shard') return hk.Flatten()(jnp.transpose(all_proj, (1, 0, 2)))[:, :self.out_dim_unpadded] def loss(self, x, targets, z_loss=1): x = f_psum(x) x = self.norm(x) logits = self.proj(x, transpose_weights=self.compat == "neo") shard_start_index = jax.lax.axis_index('shard') * self.dim_per_shard vocab_mask = targets < self.out_dim_unpadded logit_mask = jnp.arange(self.dim_per_shard) + shard_start_index < self.out_dim_unpadded global_max = jax.lax.pmax(jax.lax.stop_gradient(logits.max(-1, keepdims=True, initial=-jnp.inf, where=logit_mask)), "shard") logits -= jax.lax.stop_gradient(global_max) gt_onehot = jax.nn.one_hot(targets - shard_start_index, self.dim_per_shard) predicted_logits = jnp.sum(jnp.multiply(gt_onehot, logits), axis=-1) predicted_logits = g_psum(predicted_logits) exp_logits = jnp.exp(logits) sum_exp_logits = exp_logits.sum(axis=-1) sum_exp_logits = g_psum(sum_exp_logits) loss = jnp.log(sum_exp_logits) - predicted_logits loss += (1e-4 * jnp.square(jnp.log(sum_exp_logits)) * z_loss).sum() / vocab_mask.sum() correct = (0.0 == predicted_logits) return vocab_mask * loss, vocab_mask * correct class Projection(hk.Module): def __init__(self, config, name=None): super().__init__(name=name) out_dim = config["n_vocab"] self.dim = out_dim self.norm = hk.LayerNorm(-1, True, True) self.proj = hk.Linear(self.dim) def __call__(self, x): x = self.norm(x) return self.proj(x) def loss(self, x, targets, z_loss=1): x = self.norm(x) logits = self.proj(x) logits -= logits.max(-1, keepdims=True) gt_onehot = jax.nn.one_hot(targets, self.dim) predicted_logits = jnp.sum(jnp.multiply(gt_onehot, logits), axis=-1) exp_logits = jnp.exp(logits) sum_exp_logits = exp_logits.sum(axis=-1) loss = jnp.log(sum_exp_logits) - predicted_logits loss += (1e-4 * jnp.square(jnp.log(sum_exp_logits)) * z_loss).mean() correct = (0.0 == predicted_logits) return loss, correct
1.84375
2
app/tasksmodule/__init__.py
sanketsaurav/personfinder
0
12784889
<filename>app/tasksmodule/__init__.py # TODO(nworden): rename this module to just "tasks" once tasks.py is emptied and # deleted.
1.4375
1
fhir/resources/DSTU2/substance.py
cstoltze/fhir.resources
144
12784890
# -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/DSTU2/substance.html Release: DSTU2 Version: 1.0.2 Revision: 7202 """ from typing import List as ListType from pydantic import Field from . import domainresource, fhirtypes from .backboneelement import BackboneElement class Substance(domainresource.DomainResource): """A homogeneous material with a definite composition A homogeneous material with a definite composition. """ resource_type = Field("Substance", const=True) identifier: ListType[fhirtypes.IdentifierType] = Field( None, alias="identifier", title="List of Unique identifier (represented as 'dict' in JSON)", description="Unique identifier for the substance", element_property=True, ) category: ListType[fhirtypes.CodeableConceptType] = Field( None, alias="category", title="List of Type `CodeableConcept` (represented as `dict` in JSON).", description="What class/type of substance this is", element_property=True, ) code: fhirtypes.CodeableConceptType = Field( None, alias="code", title="Type `CodeableConcept` (represented as `dict` in JSON).", description="What substance this is", element_property=True, ) description: fhirtypes.String = Field( None, alias="description", title="Type `String` (represented as `dict` in JSON)", description="Textual description of the substance, comments", element_property=True, ) instance: ListType[fhirtypes.SubstanceInstanceType] = Field( None, alias="instance", title="List of Type `SubstanceInstance` (represented as `dict` in JSON).", description="If this describes a specific package/container of the substance", element_property=True, ) ingredient: ListType[fhirtypes.SubstanceIngredientType] = Field( None, alias="ingredient", title="List of Type `SubstanceIngredient` (represented as `dict` in JSON).", description="Composition information about the substance", element_property=True, ) class SubstanceInstance(BackboneElement): """If this describes a specific package/container of the substance If this describes a specific package/container of the substance. """ resource_type = Field("SubstanceInstance", const=True) identifier: fhirtypes.IdentifierType = Field( None, alias="identifier", title="Identifier of the package/container", description=( "Identifier associated with the package/container" " (usually a label affixed directly)" ), element_property=True, ) expiry: fhirtypes.DateTime = Field( None, alias="expiry", title="When no longer valid to use", description=( "When the substance is no longer valid to use. " "For some substances, a single arbitrary date is used for expiry." ), element_property=True, ) quantity: fhirtypes.QuantityType = Field( None, alias="quantity", title=( "Type `Quantity` referencing `SimpleQuantity` (represented as `dict` in " "JSON)." ), description="Amount of substance in the package", element_property=True, ) class SubstanceIngredient(BackboneElement): """Composition information about the substance A substance can be composed of other substances. """ resource_type = Field("SubstanceIngredient", const=True) quantity: fhirtypes.RatioType = Field( None, alias="quantity", title="Type `Ratio` (represented as `dict` in JSON).", description="Optional amount (concentration)", element_property=True, ) substance: fhirtypes.ReferenceType = Field( None, alias="substance", title=( "`Reference` items referencing `Substance` (represented as `dict` in" " JSON)" ), description="A component of the substance", enum_reference_types=["Substance"], element_property=True, )
2.09375
2
hrs/utils/rest.py
coyotevz/hrs
0
12784891
<reponame>coyotevz/hrs<filename>hrs/utils/rest.py # -*- coding: utf-8 -*- """ utils.rest ~~~~~~~~~~~~ Provides tools for building REST interfaces. primary function built_result(). Limitations: - Only work for simple queries agains one model. Depends on: - SQLAlchemy - Flask - Marshmallow """ import copy from math import ceil from collections import namedtuple from sqlalchemy import and_ from sqlalchemy.orm import ( ColumnProperty, SynonymProperty, RelationshipProperty, object_mapper ) from sqlalchemy.orm.util import class_mapper from flask import request, current_app from marshmallow.utils import is_collection class Pagination(object): def __init__(self, iterable, page, per_page): iterable = list(iterable) self.total = len(iterable) offset = (page-1) * per_page limit = min(offset+per_page, self.total) self.items = iterable[offset:limit] self.page = page self.per_page = per_page @property def pages(self): if self.per_page == 0: pages = 0 else: pages = int(ceil(self.total / float(self.per_page))) return pages OPERATORS = { # General comparators 'eq': lambda f, a: f == a, 'neq': lambda f, a: f != a, 'gt': lambda f, a: f > a, 'gte': lambda f, a: f >= a, 'lt': lambda f, a: f < a, 'lte': lambda f, a: f <= a, # String operators 'contains': lambda f, a: f.contains(a), 'icontains': lambda f, a: f.ilike('%'+a+'%'), 'endswith': lambda f, a: f.endswith(a), 'startswith': lambda f, a: f.startswith(a), # List operators 'in': lambda f, a: f.in_(a), 'nin': lambda f, a: ~f.in_(a), } SORT_ORDER = { # Sort order 'asc': lambda f: f.asc, 'desc': lambda f: f.desc, } _default_filter = 'eq' #: Represents and "order by" in SQL query expression OrderBy = namedtuple('OrderBy', 'field direction') #: Represents a filter to apply to a SQL query Filter = namedtuple('Filter', 'field operator argument') def parse_filters(filters): retval = [] for f in filters: field, op, arg = (f.split(':') + [None, None])[:3] if op is None: # Malformed filter ignore continue if arg is None: if op in OPERATORS: # Argument missing ignore continue # Default operator 'eq' arg = op op = _default_filter retval.append(Filter(field, op, arg)) return retval def create_operation(model, fieldname, operator, argument, relation=None): """ Translate an operation described as string to a valid SQLAlchemy query parameter using a field or relation of the model. """ opfunc = OPERATORS.get(operator) field = getattr(model, relation or fieldname, None) if opfunc and field: return opfunc(field, argument) def create_filters(filters, model): "Returns a list of operations on `model`specified in the `filters` list." retfilters = [] for f in filters: fname = f.field relation = None if '.' in fname: relation, fname = fname.split('.') arg = create_operation(model, fname, f.operator, f.argument, relation) retfilters.append(arg) return list(filter(lambda x: x is not None, retfilters)) def apply_query_filters(query, model=None): filters = request.args.getlist('filter') if filters: filters = parse_filters(filters) if model is None: # Retreive model from query, FIXME: only first model retrieved model = query.column_descriptions[0]['type'] filters = create_filters(filters, model) query = query.filter(and_(*filters)) return query def select_and_omit(schema): "Fills schema.only based on 'select' and 'omit' query string parameters" select = set(','.join(request.args.getlist('select')).split(',')) omit = set(','.join(request.args.getlist('omit')).split(',')) if select or omit: schema = copy.copy(schema) if list(select)[0]: schema.only = select.intersection(schema.fields.keys()) if list(omit)[0]: only_set = set(schema.only or schema.fields.keys()) schema.only = only_set.difference(omit) if schema.only: # Always return id field schema.only.add('id') return schema def paginate(query): max_per_page = current_app.config.get('MAX_ITEMS_PER_PAGE', 100) try: page = int(request.args.get('page', 1)) per_page = min(int(request.args.get('per_page', 25)), max_per_page) except ValueError: from flask import abort abort(400, message='Invalid parameter type') if hasattr(query, 'paginate') and callable(query.paginate): return query.paginate(page, per_page) else: return Pagination(query, page, per_page) def build_result(query, schema, model=None): schema = select_and_omit(schema) if is_collection(query): query = apply_query_filters(query, model) result = paginate(query) return { 'num_results': result.total, 'page': result.page, 'num_pages': result.pages, 'objects': schema.dump(result.items, many=True).data, } else: return schema.dump(query, many=False).data
2.390625
2
src/bitcaster/middleware/i18n.py
bitcaster-io/bitcaster
4
12784892
from django.utils import translation from bitcaster.config import settings from bitcaster.utils.language import get_attr class UserLanguageMiddleware: def __init__(self, get_response): self.get_response = get_response def __call__(self, request): if request.user and request.user.is_authenticated: translation.activate(request.user.language) response = self.get_response(request) # FIXME: here user can be Application due TriggerKeyAuthentication if get_attr(request, 'user.is_authenticated') and request.user.is_authenticated: response.set_cookie(settings.LANGUAGE_COOKIE_NAME, request.user.language) return response
2.046875
2
Experiment Processing/experiment2/count_picked_songs_per_playlist.py
Austaon/GroupRecommendationThesis
0
12784893
<reponame>Austaon/GroupRecommendationThesis<filename>Experiment Processing/experiment2/count_picked_songs_per_playlist.py<gh_stars>0 import statistics import matplotlib.pyplot as plt from database.session import Session def parse_int(playlist_string): return int(''.join(filter(str.isdigit, playlist_string))) def count_picked_songs_per_playlist(): """ Finds the number of tracks that were selected by a person that were recommended to a playlist. Additionally, does a normalization on these numbers, as the chance of a person having more tracks goes down when the group has more members. The result is printed and plotted. :return: """ number_of_used_tracks = { "Probability Weighted Sum": [], "Fairness": [], "Least Misery": [] } normalized_to_group_members = { "Probability Weighted Sum": [], "Fairness": [], "Least Misery": [] } for user, session in Session.get_users_with_surveys(): user_tracks = [track["id"] for track in user.tracks] for playlist, playlist_string in user.get_playlists_from_survey(): playlist_index = parse_int(playlist_string) recommended_playlist = session.recommendations[playlist_index - 1]["tracks"] playlist_rule = playlist["rule_name"] user_tracks_vector = [ 1 if recommended_playlist[parse_int(song) - 1]["id"] in user_tracks else 0 for song, rating in playlist["like_rating_specific"].items() ] number_of_used_tracks[playlist_rule].append(sum(user_tracks_vector)) normalized_to_group_members[playlist_rule].append(sum(user_tracks_vector) / session.get_number_of_users()) result = "Result:\n" for playlist in number_of_used_tracks: playlist_data = number_of_used_tracks[playlist] result += f"{playlist}: {statistics.mean(playlist_data):.2f} (stdev: {statistics.stdev(playlist_data):.2f}), " print(result[:-2]) result = "Normalised result:\n" for playlist in normalized_to_group_members: playlist_data = normalized_to_group_members[playlist] result += f"{playlist}: {statistics.mean(playlist_data):.2f} (stdev: {statistics.stdev(playlist_data):.2f}), " print(result[:-2]) labels = ["PWS", "F", "LM"] boxplot_data = [ number_of_used_tracks["Probability Weighted Sum"], number_of_used_tracks["Fairness"], number_of_used_tracks["Least Misery"], ] fig, ax = plt.subplots() ax.boxplot(boxplot_data, labels=labels) ax.set_xticklabels(labels) fig.tight_layout() plt.show() boxplot_data = [ normalized_to_group_members["Probability Weighted Sum"], normalized_to_group_members["Fairness"], normalized_to_group_members["Least Misery"], ] fig, ax = plt.subplots() ax.boxplot(boxplot_data, labels=labels) ax.set_xticklabels(labels) fig.tight_layout() plt.show()
3.359375
3
cmr_localization/scripts/generate_db_name.py
MarvinStuede/cmr_localization
0
12784894
#!/usr/bin/env python import time import sys millis = int(round(time.time() * 1000)) sys.stdout.write("~/.ros/rtabmap_test_" + str(millis)+ '.db')
1.664063
2
strops/schemes/admin.py
ckoerber/strops
1
12784895
"""Admin pages for schemes models. On default generates list view admins for all models """ from django.contrib.admin import StackedInline, register from espressodb.base.admin import register_admins from espressodb.base.admin import ListViewAdmin as LVA from strops.schemes.models import ( ExpansionScheme, ExpansionParameter, ExpansionOrder, OperatorRelation, ) class ExpansionParameterInline(StackedInline): model = ExpansionParameter extra = 1 @register(ExpansionScheme) class ExpansionSchemeAdmin(LVA): inlines = (ExpansionParameterInline,) class ExpansionOrderInline(StackedInline): model = ExpansionOrder extra = 1 register_admins( "strops.schemes", exclude_models=["ExpansionScheme", "OperatorRelation", "ExpansionOrder"], ) @register(OperatorRelation) class OperatorRelationAdmin(LVA): inlines = (ExpansionOrderInline,) autocomplete_fields = ("source", "target")
1.804688
2
setup.py
Sage-Bionetworks/synapsemonitor
4
12784896
"""Setup""" import os from setuptools import setup, find_packages # figure out the version # about = {} # here = os.path.abspath(os.path.dirname(__file__)) # with open(os.path.join(here, "synapsemonitor", "__version__.py")) as f: # exec(f.read(), about) with open("README.md", "r") as fh: long_description = fh.read() setup(name='synapsemonitor', # version=about["__version__"], version="0.0.2", description='Synapse monitoring', url='https://github.com/Sage-Bionetworks/synapseMonitor', author='<NAME>, <NAME>', author_email='<EMAIL>', long_description=long_description, long_description_content_type="text/markdown", license='Apache', packages=find_packages(), zip_safe=False, python_requires='>=3.6, <3.9', entry_points={'console_scripts': ['synapsemonitor = synapsemonitor.__main__:main']}, install_requires=['synapseclient', 'pandas'])
1.5625
2
pipeline_prepare_db.py
TobiasKoopmann/airankings
0
12784897
import urllib.request import shutil import gzip import json import re import os from collections import defaultdict from scholarmetrics import hindex from tqdm import tqdm from app.dblp_parser import parse_dblp, parse_dblp_person, get_dblp_country from app.myfunctions import get_dblp_url URL = 'http://dblp.org/xml/' basedir = os.path.abspath(os.path.dirname(__file__)) DATA_PATH = basedir + '/data/' STATIC_PATH = basedir + '/app/static/' def download_dblp() -> None: """ Downloads the DBLP dataset and saves it into the data_path, which is usually ./data. :return: """ source_gz = URL + 'dblp.xml.gz' source_dtd = URL + 'dblp.dtd' target_gz = DATA_PATH + 'dblp.xml.gz' target_dtd = DATA_PATH + 'dblp.dtd' print(' Downloading file ' + source_gz) with urllib.request.urlopen(source_gz) as response, open(target_gz, 'wb') as fh: shutil.copyfileobj(response, fh) print(' Downloading file ' + source_dtd) with urllib.request.urlopen(source_dtd) as response, open(target_dtd, 'wb') as fh: shutil.copyfileobj(response, fh) print(' Download finish!') print() def unzip_dblp() -> None: """ Unzips the downloaded DBLP dataset. :return: """ source = DATA_PATH + 'dblp.xml.gz' target = DATA_PATH + 'dblp.xml' with gzip.open(source, 'rb') as f_in: with open(target, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) print() def extract_publications(): """ Parses the DBLP XML file to json, which can be used by this pipeline. :return: """ source = DATA_PATH + 'dblp.xml' target = DATA_PATH + 'dblp.json' parse_dblp(source, target) print() def extract_ai_publications() -> list: """ Using the venue file (`./app/static/ai_venues.json`) to extract all publications from these respective venues. :return: """ source = DATA_PATH + 'dblp.json' source_venues = STATIC_PATH + 'ai_venues.json' target_pubs = DATA_PATH + 'ai_dblp.json' authors = set() with open(source_venues, "r", encoding="utf-8") as f: tmp = json.load(f) # Create a dict for all instances venues = dict(pair for d in tmp.values() for pair in d.items()) venues_set = set() for k, v in venues.items(): venues_set.add(k) venues_set.update(v) def get_disambiguated_venue(venue_name: str): if venue_name in venues: return venue_name else: for k, v in venues.items(): if venue_name in v: return k print(' Parsing ' + source) with open(target_pubs, "w", encoding="utf-8") as out_f: with open(source, "r", encoding="utf-8") as in_f: for line in tqdm(in_f): line = json.loads(line) if line['booktitle']: curr_venue = line['booktitle'][0] elif line['journal']: curr_venue = line['journal'][0] curr_venue = re.sub(" \([0-9]+\)$", "", curr_venue) if curr_venue in venues_set: line['venue'] = get_disambiguated_venue(curr_venue) json.dump(line, out_f) out_f.write("\n") authors.update(line['author']) print(' Parse finish! File ai_dblp.json created!') print() return list(authors) def download_semantic_scholar_if_needed(semantic_scholar_path: str, default_count: int = 184, download: bool = False): """ Well, as the name says. :param semantic_scholar_path: :param default_count: :param download: :return: """ sem_url = "https://s3-us-west-2.amazonaws.com/ai2-s2-research-public/open-corpus/2020-04-10/" if not os.path.exists(semantic_scholar_path): os.mkdir(semantic_scholar_path) download = True if download: print(" Downloading semantic scholar first. ") with urllib.request.urlopen(sem_url + "manifest.txt") as response, open(semantic_scholar_path + "manifest.txt", 'wb') as fh: shutil.copyfileobj(response, fh) with open(semantic_scholar_path + "/manifest.txt", "r") as f: for line in tqdm(f, total=default_count): line = line.strip() with urllib.request.urlopen(sem_url + line) as response, open( semantic_scholar_path + line, 'wb') as fh: shutil.copyfileobj(response, fh) if "s2-corpus-" in line: with gzip.open(semantic_scholar_path + line, 'rb') as f_in: with open(semantic_scholar_path + line[:-3], 'wb') as f_out: shutil.copyfileobj(f_in, f_out) os.remove(semantic_scholar_path + line) def match_semantic_scholar(download: bool = False): """ Firstly, downloads the Semantic Scholar. Then tries to match all publications and extracts the citations. :param download: :return: """ source = DATA_PATH + 'ai_dblp.json' target = DATA_PATH + 'ai_dataset.json' source_persons = DATA_PATH + 'persons.json' semantic_scholar_path = DATA_PATH + "semantic_scholar/" download_semantic_scholar_if_needed(semantic_scholar_path, download=download) def de_list(x, parse_int: bool = False): if isinstance(x, list): if parse_int: return int(x[0]) return x[0] if parse_int: return int(x) return x def get_doi(line) -> str: """ Get doi for a given line of the data, useful for semantic_scholar matching" """ if "ee" in line: for x in de_list(line["ee"]): if "doi" in x: return x.replace("https://doi.org/", "") with open(source_persons, encoding="utf-8") as file: persons = [json.loads(line) for line in file] # Put all author names into set authors = dict() for person in persons: if isinstance(person["author"], list): for auth in person['author']: authors[auth] = person['author'][0] with open(source, "r", encoding="utf-8") as f: pubs = f.readlines() pubs = [json.loads(x) for x in pubs] for pub in pubs: tmp = pub['author'] for name in pub['author']: if name in authors: tmp.append(authors[name]) tmp.remove(name) pub['author'] = tmp removed_indices = set() titles = defaultdict(list) [titles[x['title'][0].strip(".").lower()].append(i) for i, x in enumerate(pubs)] files = [file_path for file_path in os.listdir(semantic_scholar_path) if "s2-corpus-" in file_path] counter = 1 with open(target, 'w', encoding="utf-8") as out_f: for file_path in files: print("Reading file ... (", str(counter), "/", str(len(files)), ")") with open(semantic_scholar_path + file_path, 'r', encoding="utf-8") as in_f: for line in in_f: line = json.loads(line) curr_title = de_list(line['title']).strip().lower() if curr_title in titles: index = None for i in titles[curr_title]: pub = pubs[i] doi = get_doi(pub) if doi and "doi" in line and line["doi"]: if doi == line["doi"]: index = i break elif "year" in line and de_list(pub["year"], True) == de_list(line["year"], True): if line["venue"] == "ArXiv": if pub["journal"] and de_list(pub["journal"]) == "CoRR": index = i break elif pub["journal"] and de_list(pub["journal"]) == "CoRR": continue else: index = i break if index and index not in removed_indices: if 'in_citations' not in pub: pub['inCitations'] = len(line['inCitations']) json.dump(pub, out_f) out_f.write("\n") removed_indices.add(index) counter += 1 for i, pub in enumerate(pubs): if i not in removed_indices: json.dump(pub, out_f) out_f.write("\n") print(' Parse finish! File ai_dataset.json created!') print() def extract_persons(author_list: list) -> None: """ Extracting all author information from DBLP, as affiliations etc. :param author_list: :return: """ source = DATA_PATH + 'dblp.xml' target = DATA_PATH + 'persons' print(' Parsing ' + source) parse_dblp_person(source, target, author_list) print(' Parse finish! File persons.json created!') print() def parse_countries() -> None: """ Parses country information from the DBLp into the file 'author_countries.json'. :return: The file 'author_countries.json' """ source_country = STATIC_PATH + 'countries_domain.txt' source_person = DATA_PATH + 'persons.json' target = DATA_PATH + 'author_countries.json' print(' Parsing ' + source_person) countries = get_dblp_country(source_person, source_country) with open(target, "w", encoding="utf-8") as f: for line in countries: json.dump(line, f) f.write("\n") print(' Parse finish! File author_countries.json created!') print() def pipeline_prepare_db() -> None: """ '*** Starting pipeline process to prepare PyCSRankings Database ***' Careful, it will download the semantic scholar, which is up to 240 GB large. :return: The files 'ai_dataset.json', 'persons.json' and 'author_countries.json' in the 'data' folder. """ print('**** Starting pipeline process to prepare PyCSRankings Database ****') print() print('Process 01 - Download DBLP data') download_dblp() print('Process 02 - Unzipping DBLP data') unzip_dblp() print('Process 03 - Create dblp.json') extract_publications() print('Process 04 - Create ai_article.json') author_list = extract_ai_publications() print('Process 05 - Create persons.json') extract_persons(author_list) print('Process 06 - Create author_countries.json') parse_countries() print('Process 07 - Match with Semantic Scholar') # Be warned. This will download the semantic scholar dataset, which is rather large. match_semantic_scholar() print('*** Pipeline process to prepare PyCSRankings Database Finished! ***') if __name__ == '__main__': pipeline_prepare_db()
2.765625
3
codes/data/LQGT_dataset_3d.py
LCM1999/VolumeRescaling
4
12784898
import random import numpy as np import cv2 import torch import torch.utils.data as data import logging from . import util class LQGTDataset3D(data.Dataset): ''' Read LQ (Low Quality, here is LR) and GT vti file pairs. If only GT image is provided, generate LQ vti on-the-fly. The pair is ensured by 'sorted' function, so please check the name convention. ''' logger = logging.getLogger('base') def __init__(self, opt): super(LQGTDataset3D, self).__init__() self.opt = opt self.paths_GT = None, None if opt['set_type'] == 'vtk': self.paths_GT = util.get_vtk_paths(opt['dataroot_GT']) # self.paths_LQ = util.get_vtk_paths(opt['dataroot_LQ']) elif opt['set_type'] == 'tecplot': self.paths_GT = util.get_tecplot_paths(opt['dataroot_GT']) # self.paths_LQ = util.get_tecplot_paths(opt['dataroot_LQ']) else: ex = Exception("Type '%s' is not supported" % opt['type']) raise ex assert self.paths_GT, 'Error: GT path is empty.' # if self.paths_LQ and self.paths_GT: # assert len(self.paths_LQ) == len( # self.paths_GT # ), 'GT and LQ datasets have different number of images - {}, {}.'.format( # len(self.paths_LQ), len(self.paths_GT)) self.random_scale_list = [1] def __getitem__(self, index): # cv2.setNumThreads(0) scale = self.opt['scale'] GT_size = self.opt['GT_size'] attr_id = self.opt.get('attr_id', 0) # get GT image GT_path = self.paths_GT[index] vti_GT_generator = util.getTensorGenerator(GT_path, self.opt['data_type']) vti_GT, component_GT = vti_GT_generator.get_array_by_id(attr_id) print('origin GT shape: {}'.format(vti_GT.shape)) if self.opt['phase'] != 'train': vti_GT = util.modcrop_3d(vti_GT, scale) # if self.paths_LQ: # LQ_path = self.paths_LQ[index] # vti_LQ_generator = util.getTensorGenerator(LQ_path) # vti_LQ_generator.set_type(self.opt['type']) # vti_LQ, component_LQ = vti_LQ_generator.get_array_by_id(attr_id) # else: # if self.opt['phase'] == 'train': # # random_scale = random.choice(self.random_scale_list) # # Z_s, Y_s, X_s = vti_GT.shape # # # def _mod(n, random_scale, scale, thres): # # rlt = int(n * random_scale) # # rlt = (rlt // scale) * scale # # return thres if rlt < thres else rlt # # # Z_s = _mod(Z_s, random_scale, scale, GT_size) # # Y_s = _mod(Y_s, random_scale, scale, GT_size) # # X_s = _mod(X_s, random_scale, scale, GT_size) # vti_GT = util.resize_3d(arr=np.copy(vti_GT), newsize=GT_size) # # # using matlab imresize3 # vti_LQ = util.imresize3_np(vti_GT, 1 / scale, True) # if vti_LQ.ndim != 3: # ex = Exception("Error: dims not right") # raise ex if self.opt['phase'] == 'train': Z, Y, X = vti_GT.shape if Z < GT_size or Y < GT_size or X < GT_size: vti_GT = util.resize_3d(np.copy(vti_GT), newsize=GT_size) elif Z > GT_size or Y > GT_size or X > GT_size: vti_GT = util.modcrop_3d(vti_GT, scale) # using matlab imresize3 # vti_LQ = util.imresize3_np(vti_GT, 1 / scale, True) # if vti_LQ.ndim != 2: # ex = Exception("Error: dims not right") # raise ex # Z, Y, X = vti_LQ.shape # LQ_size = GT_size // scale # # # randomly crop # rnd_Z = random.randint(0, max(0, Z - LQ_size)) # rnd_Y = random.randint(0, max(0, Y - LQ_size)) # rnd_X = random.randint(0, max(0, X - LQ_size)) # vti_LQ = vti_LQ[rnd_Z: rnd_Z + LQ_size, rnd_Y: rnd_Y + LQ_size, rnd_X: rnd_X + LQ_size] # rnd_Z_GT, rnd_Y_GT, rnd_X_GT = int(rnd_Z * scale), int(rnd_Y * scale), int(rnd_X * scale) # vti_GT = vti_GT[rnd_Z_GT: rnd_Z_GT + GT_size, rnd_Y_GT: rnd_Y_GT + GT_size, rnd_X_GT: rnd_X_GT + GT_size] # ZYX to XYZ vti_GT = torch.from_numpy(np.ascontiguousarray(vti_GT)).float().unsqueeze(0) print("vti_GT size: {}".format(vti_GT.size())) # vti_LQ = torch.from_numpy(np.ascontiguousarray(vti_LQ)).float().unsqueeze(0) # if LQ_path is None: # LQ_path = GT_path return {'GT': vti_GT, 'GT_path': GT_path} def __len__(self): return len(self.paths_GT)
2.15625
2
rl/wrench_rl.py
yifan-you-37/ScaffoldLearning
5
12784899
import multiprocessing import threading import numpy as np import os import shutil import matplotlib.pyplot as plt import sys import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.multiprocessing as mp from shared_adam import SharedAdam import math, os import cv2 import torchvision.transforms as transforms import imageio os.environ["OMP_NUM_THREADS"] = "1" device=torch.device("cuda") np.set_printoptions(precision=4,suppress=True) simulation_dir = '../simulation' sys.path.insert(0, simulation_dir) from Wrench_Manipulation_Env import RobotEnv ExName = "Wrench_Manipulation" sys.path.insert(0,'../external/bullet3.git/build_cmake/examples/pybullet') import pybullet def v_wrap(np_array,dtype=np.float32): if np_array.dtype != dtype: np_array = np_array.astype(dtype) return torch.from_numpy(np_array).to(device) def push_and_pull(opt, lnet, gnet, done, s_, bs, ba, br, bdone, gamma): if done: v_s_ = 0. else: v_s_ = lnet.forward(v_wrap(s_[None,:]))[-1].data.cpu().numpy()[0,0] buffer_v_target = [] for r, termination in zip(br[::-1], bdone[::-1]): if termination: v_s_ = 0 v_s_ = r + gamma * v_s_ buffer_v_target.append(v_s_) buffer_v_target.reverse() loss = lnet.loss_func( v_wrap(np.vstack(bs)), v_wrap(np.vstack(ba)), v_wrap(np.array(buffer_v_target)[:, None])) opt.zero_grad() loss.backward() nn.utils.clip_grad_norm(lnet.parameters(),1.0) for lp, gp in zip(lnet.parameters(), gnet.parameters()): gp._grad = lp.grad opt.step() # pull global parameters lnet.load_state_dict(gnet.state_dict()) MAX_EP = 15000 UPDATE_GLOBAL_ITER = 10 GAMMA = 0.9 ENTROPY_BETA = 0.001 def set_init(layers): for layer in layers: nn.init.normal_(layer.weight, mean=0., std=0.01) nn.init.constant_(layer.bias, 0.) class ACNet(nn.Module): def __init__(self): super(ACNet, self).__init__() self.distribution = torch.distributions.Normal self.block1 = nn.Sequential( nn.Conv2d(in_channels=3,out_channels=32,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(32), ) # 60, 80 self.block2 = nn.Sequential( nn.Conv2d(in_channels=32,out_channels=32,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(32), ) # 30, 40 self.block3 = nn.Sequential( nn.Conv2d(in_channels=32,out_channels=64,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(64), ) # 15, 20 self.block4 = nn.Sequential( nn.Conv2d(in_channels=64,out_channels=64,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(64), ) # 8, 10 self.block5 = nn.Sequential( nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(128), ) # 4, 5 self.block6 = nn.Sequential( nn.Conv2d(in_channels=128,out_channels=128,kernel_size=(3,3),stride=(2,2),padding=(1,1),bias=True), nn.ReLU(), nn.BatchNorm2d(128), ) # 2, 3 self.fc_a = nn.Sequential( nn.Linear(2 * 3 * 128, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 24), nn.ReLU() ) self.fc_s = nn.Sequential( nn.Linear(2 * 3 * 128, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 24), nn.ReLU() ) self.fc_v = nn.Sequential( nn.Linear(2 * 3 * 128, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 24), nn.ReLU() ) self.mu_layer = nn.Linear(24,6) self.sigma_layer = nn.Linear(24,6) self.v_layer = nn.Linear(24,1) set_init([self.mu_layer, self.sigma_layer, self.v_layer]) def forward(self, im): im = im.view(-1, 120, 160, 3) im = im.permute(0,3,1,2) im = self.block1(im) im = self.block2(im) im = self.block3(im) im = self.block4(im) im = self.block5(im) im = self.block6(im) im = im.reshape(-1, 2 * 3 * 128) x_a = self.fc_a(im) mu = self.mu_layer(x_a) mu = F.tanh(mu) x_s = self.fc_s(im) sigma = self.sigma_layer(x_s) sigma = F.softplus(sigma) * 0.06 + 0.005 x_v= self.fc_v(im) values = self.v_layer(x_v) return mu, sigma, values def choose_action(self, s): self.training = False mu, sigma, _ = self.forward(s) m = self.distribution(mu.view(-1,).data, sigma.view(-1,).data) return m.sample().cpu().numpy(), mu.cpu().detach().numpy(), sigma.cpu().detach().numpy() def loss_func(self, s, a, v_t): self.train() mu, sigma, values = self.forward(s) td = v_t - values c_loss = td.pow(2) m = self.distribution(mu, sigma) log_prob = m.log_prob(a) entropy = 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(m.scale) exp_v = log_prob * td.detach() + ENTROPY_BETA * entropy a_loss = -exp_v total_loss = (a_loss + c_loss).mean() return total_loss class Worker(mp.Process): def __init__(self, gnet, opt, global_ep, global_ep_r, res_queue, wid, SAVE_TOP_DIR): super(Worker, self).__init__() print("wid %d" % wid) self.wid = wid self.step = 0 self.g_ep, self.g_ep_r, self.res_queue = global_ep, global_ep_r, res_queue self.gnet, self.opt = gnet, opt self.random_seed = 42 + self.wid + int(np.log(self.wid * 100 + 1)) print("random_seed",self.random_seed,"self.wid",self.wid) np.random.seed(self.random_seed) self.lnet = ACNet().to(device) self.init_step = 0 self.SAVE_TOP_DIR = SAVE_TOP_DIR def run(self): mean=np.array([0.485, 0.456, 0.406]) std=np.array([0.229, 0.224, 0.225]) mean = np.reshape(mean,(1,1,3)) std = np.reshape(std,(1,1,3)) self.start_pos = [-0.1,-0.4,0.5] self.dt = 1./30.0 if self.wid == 0: self.p_id = pybullet.connect(pybullet.GUI) else: self.p_id = pybullet.connect(pybullet.DIRECT) action_dir = os.path.join(self.SAVE_TOP_DIR,"action.npy") fixture_action = np.zeros((3,)) self.env = RobotEnv(worker_id=self.wid,p_id=pybullet,dt=self.dt,maxSteps=20,fixture_offset=fixture_action) total_step = 1 + self.init_step suc_check = 0 reward_check = 0 episode_check = 0 sigma_check1 = 0 sigma_check2 = 0 total_episode = 0 buffer_s, buffer_a, buffer_r, buffer_done = [], [], [], [] while total_step < MAX_EP: observation = self.env.reset() observation = observation/255.0 observation = (observation - mean)/std observation = np.reshape(observation,(-1,)) while True: action, mu_r, sigma_r = self.lnet.choose_action(v_wrap(observation[None,:])) action[:3] = action[:3].clip(-0.03,0.03) action[3:] = action[3:].clip(-0.05,0.05) # # if action[2] > 0.005: #w action[2] = 0.005 observation_next, reward, done, suc = self.env.step(action) observation_next = observation_next/255.0 observation_next = (observation_next - mean)/std recordGif = False if recordGif and total_step > 10: imageio.mimsave('pokingSthSlightly.gif',self.env.obs_list) return observation_next = np.reshape(observation_next,(-1,)) buffer_s.append(observation) buffer_r.append(reward) buffer_a.append(action) buffer_done.append(done) if total_step % (UPDATE_GLOBAL_ITER + self.wid) == 0 or done: push_and_pull(self.opt, self.lnet, self.gnet, done, observation_next, buffer_s, buffer_a, buffer_r, buffer_done, GAMMA) buffer_s, buffer_a, buffer_r, buffer_done = [], [], [], [] if done: suc_check += suc episode_check += 1 total_episode += 1 observation = observation_next total_step += 1 reward_check += reward if total_step % 100 == 0: current_performance = float(suc_check)/episode_check avg_sigma1 = sigma_check1 / 100.0 avg_sigma2 = sigma_check2 / 100.0 if self.wid == 0: print(self.SAVE_TOP_DIR,"total step %d, avg suc %f, avg reward %f" % (total_step, suc_check / 100.0, reward_check / 100.0)) save_path = os.path.join(self.SAVE_TOP_DIR,str(total_step)+'model.pth.tar') if self.wid == 0 and int(total_step) % 1000 == 0: print("saving to",save_path) torch.save(self.gnet.state_dict(), save_path) suc_check = 0 episode_check = 0 sigma_check1 = 0.0 sigma_check2 = 0.0 if done: break reward_dir = os.path.join(self.SAVE_TOP_DIR,"reward.txt") np.savetxt(reward_dir,np.array([reward_check/100.0]),fmt='%f') print("finising the learning!") torch.cuda.empty_cache() print("empyting the cache!") sys.exit() os._exit(1) if __name__ == "__main__": ExName = 'optimal'#sys.argv[1] #print(ExName) SAVE_TOP_DIR = os.path.join('./wrench/',ExName) if not os.path.exists(SAVE_TOP_DIR): os.makedirs(SAVE_TOP_DIR) mp.set_start_method('spawn') gnet = ACNet() # global network ## loading Load_model_id = '2000' Load_path = os.path.join(SAVE_TOP_DIR,Load_model_id + 'model.pth.tar') #checkpoint = torch.load(Load_path) #gnet.load_state_dict(checkpoint) gnet.to(device) gnet.share_memory() opt = SharedAdam(gnet.parameters(),lr=0.0001) global_ep, global_ep_r, res_queue = mp.Value('i',0), mp.Value('d',0.), mp.Queue() workers = [Worker(gnet, opt, global_ep, global_ep_r, res_queue, i, SAVE_TOP_DIR) for i in range(1)] [w.start() for w in workers] res = [] for worker in workers: worker.init_step = 0 [w.join() for w in workers]
2.15625
2
loginsystem.py
TaylorJonesTRT/Loginsystem
0
12784900
import json import sys import hashlib user_details = {} hasher = hashlib.sha256() with open('user_credentials.json', 'r') as f: user_details = json.load(f) while True: print("Welcome to the new and sophisticated login system!") choice = input("What would you like to do? \n [1]LOGIN \n [2]REGISTER \n") while choice == "1": username_login = input("Pleaser enter your username: ") if username_login in user_details.keys(): password_login = input( "Please enter your password: ").encode('utf-8') password_login = <PASSWORD>.update(password_login) if username_login in user_details and user_details[username_login] == password_login: print("You are now loggged in! Welcome back!") print("Now exiting program") sys.exit() else: print("Sorry, that was the wrong password. Try again.") else: print("Sorry, that username does not exist. Please try again") while choice == "2": print("Please choose a username, it can be your email address or a plain username") username_registration = input("") print("Please enter a password") password_registration = input("").encode('utf-8') user_details[username_registration] = hasher.update( password_registration) with open('user_credentials.json', 'w') as fp: json.dump(user_details, fp, indent=4) print("Thank you for registering! You may now sign in!") break decision = input( "What would you like to do now? Continue or Exit?").lower() if decision == "continue": continue else: sys.exit()
3.625
4
991_cnn_godata_mobilenetv2_transfer_learning_with_data_augmentation_classifier.py
lao-tseu-is-alive/tensorflow2-tutorial
0
12784901
<reponame>lao-tseu-is-alive/tensorflow2-tutorial import pathlib import matplotlib.pyplot as plt import numpy as np import os # next line is to limit tensorflow verbose output os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential # inspired by https://www.tensorflow.org/tutorials/images/transfer_learning from my_tf_lib import images_classification as ic CONST_MODEL_PATH = 'trained_models/tf2_model_cnn_godata_mobilenetv2_transfer_learning_with_data_augmentation_classifier' CONST_CLASS_NAMES = ['correspondance', 'facturation', 'photo', 'plan', 'plan_projet', 'plan_situation'] CONST_IMAGE_SIZE = (160, 160) CONST_BATCH_SIZE = 32 base_path = '/home/cgil/PycharmProjects/tensorflow2-tutorial/godata_resized' data_dir = pathlib.Path(base_path) image_count = len(list(data_dir.glob('*/*.jpeg'))) print('Total number of images : {}'.format(image_count)) ic.show_n_images_category_from_path(CONST_CLASS_NAMES, base_path) print('# creating the tf.data.Dataset from disk') train_dataset = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=CONST_IMAGE_SIZE, batch_size=CONST_BATCH_SIZE) validation_dataset = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=CONST_IMAGE_SIZE, batch_size=CONST_BATCH_SIZE) print(""" # You can find the class names in the class_names attribute on these datasets. # These correspond to the directory names in alphabetical order. """) class_names = train_dataset.class_names print(class_names) CONST_CLASS_NAMES.sort() print(CONST_CLASS_NAMES) ic.show_n_images_from_dataset(train_dataset) print('# Configure the dataset for performance') AUTOTUNE = tf.data.AUTOTUNE train_dataset = train_dataset.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) validation_dataset = validation_dataset.cache().prefetch(buffer_size=AUTOTUNE) print(""" # When you don't have a large image dataset, it's a good practice to artificially introduce sample diversity # by applying random, yet realistic, transformations to the training images, such as rotation and horizontal flipping. # This helps expose the model to different aspects of the training data and reduce overfitting. # You can learn more about data augmentation in this tutorial: # https://www.tensorflow.org/tutorials/images/data_augmentation """) data_augmentation = tf.keras.Sequential([ tf.keras.layers.experimental.preprocessing.RandomFlip('horizontal'), tf.keras.layers.experimental.preprocessing.RandomRotation(0.2), ]) preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input # Note: Alternatively, you could rescale pixel values from [0,255] to [-1, 1] using a Rescaling layer. # normalization_layer = tf.keras.layers.experimental.preprocessing.Rescaling(1. / 127.5, offset=-1) num_classes = len(class_names) img_height, img_width = CONST_IMAGE_SIZE # Create the base model from the pre-trained model MobileNet V2 IMG_SHAPE = CONST_IMAGE_SIZE + (3,) base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, include_top=False, weights='imagenet') image_batch, label_batch = next(iter(train_dataset)) feature_batch = base_model(image_batch) print('# feature_batch.shape : {}'.format(feature_batch.shape)) base_model.trainable = False # Let's take a look at the base model architecture print('# base_model.summary :') base_model.summary() global_average_layer = tf.keras.layers.GlobalAveragePooling2D() feature_batch_average = global_average_layer(feature_batch) print('# feature_batch_average.shape : {}'.format(feature_batch_average.shape)) prediction_layer = tf.keras.layers.Dense(num_classes, activation='relu') prediction_batch = prediction_layer(feature_batch_average) print('# prediction_batch.shape : {}'.format(prediction_batch.shape)) print('# IMG_SHAPE is {} , should be (160, 160, 3)'.format(IMG_SHAPE)) inputs = tf.keras.Input(shape=(160, 160, 3)) x = data_augmentation(inputs) x = preprocess_input(x) x = base_model(x, training=False) x = global_average_layer(x) x = tf.keras.layers.Dropout(0.2)(x) outputs = prediction_layer(x) model = tf.keras.Model(inputs, outputs) # model = Sequential([ # layers.experimental.preprocessing.Rescaling(1. / 255, input_shape=(img_height, img_width, 3)), # layers.Conv2D(16, 3, padding='same', activation='relu'), # layers.MaxPooling2D(), # layers.Conv2D(32, 3, padding='same', activation='relu'), # layers.MaxPooling2D(), # layers.Conv2D(64, 3, padding='same', activation='relu'), # layers.MaxPooling2D(), # layers.Flatten(), # layers.Dense(128, activation='relu'), # layers.Dense(num_classes) # ]) base_learning_rate = 0.0001 model.compile(optimizer=tf.keras.optimizers.Adam(lr=base_learning_rate), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) print('# model.summary : {}'.format(model.summary())) print('# len(model.trainable_variables : {}'.format(len(model.trainable_variables))) initial_epochs = 10 loss0, accuracy0 = model.evaluate(validation_dataset) print("# initial loss: {:.2f}".format(loss0)) print("# initial accuracy: {:.2f}".format(accuracy0)) history = model.fit( train_dataset, validation_data=validation_dataset, epochs=initial_epochs ) # let's see how we are doing for the first round acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] plt.figure(figsize=(8, 8)) plt.subplot(2, 1, 1) plt.plot(acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.ylabel('Accuracy') plt.ylim([min(plt.ylim()), 1]) plt.title('Training and Validation Accuracy') plt.subplot(2, 1, 2) plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.ylabel('Cross Entropy') plt.ylim([0, 1.0]) plt.title('Training and Validation Loss') plt.xlabel('epoch') plt.show() print(" FINE TUNING :") base_model.trainable = True # Let's take a look to see how many layers are in the base model print("Number of layers in the base model: ", len(base_model.layers)) # Fine-tune from this layer onwards fine_tune_at = 100 # Freeze all the layers before the `fine_tune_at` layer for layer in base_model.layers[:fine_tune_at]: layer.trainable = False model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate / 10), metrics=['accuracy']) print('# model.summary : {}'.format(model.summary())) print('# len(model.trainable_variables : {}'.format(len(model.trainable_variables))) fine_tune_epochs = 10 total_epochs = initial_epochs + fine_tune_epochs history_fine = model.fit(train_dataset, epochs=total_epochs, initial_epoch=history.epoch[-1], validation_data=validation_dataset) acc += history_fine.history['accuracy'] val_acc += history_fine.history['val_accuracy'] plt.figure(figsize=(8, 8)) plt.subplot(2, 1, 1) plt.plot(acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.ylim([0.8, 1]) plt.plot([initial_epochs-1,initial_epochs-1], plt.ylim(), label='Start Fine Tuning') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(2, 1, 2) plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.ylim([0, 1.0]) plt.plot([initial_epochs-1,initial_epochs-1], plt.ylim(), label='Start Fine Tuning') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.xlabel('epoch') plt.show() loss += history_fine.history['loss'] val_loss += history_fine.history['val_loss'] print('# SAVING THE MODEL FOR LATER USE') print("### Now will save model to path : {}".format(CONST_MODEL_PATH)) tf.saved_model.save(model, CONST_MODEL_PATH)
2.9375
3
mowgli_etl/loader/_kg_edge_loader.py
tetherless-world/mowgli
4
12784902
<reponame>tetherless-world/mowgli<gh_stars>1-10 from abc import abstractmethod from mowgli_etl._loader import _Loader from mowgli_etl.model.kg_edge import KgEdge class _KgEdgeLoader(_Loader): @abstractmethod def load_kg_edge(self, edge: KgEdge): raise NotImplementedError
2.03125
2
jaxopt/_src/base.py
mblondel/jaxopt
0
12784903
<reponame>mblondel/jaxopt # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base definitions useful across the project.""" from typing import Any from typing import NamedTuple import jax import jax.numpy as jnp class OptimizeResults(NamedTuple): error: float nit: int x: Any class OptStep(NamedTuple): params: Any state: Any @jax.tree_util.register_pytree_node_class class LinearOperator(object): def __init__(self, A): self.A = jnp.array(A) def shape(self): return self.A.shape def matvec(self, x): """Computes dot(A, x).""" return jnp.dot(self.A, x) def matvec_element(self, x, idx): """Computes dot(A, x)[idx].""" return jnp.dot(self.A[idx], x) def rmatvec(self, x): """Computes dot(A.T, x).""" return jnp.dot(self.A.T, x) def rmatvec_element(self, x, idx): """Computes dot(A.T, x)[idx].""" return jnp.dot(self.A[:, idx], x) def update_matvec(self, Ax, delta, idx): """Updates dot(A, x) when x[idx] += delta.""" if len(Ax.shape) == 1: return Ax + delta * self.A[:, idx] elif len(Ax.shape) == 2: return Ax + jnp.outer(self.A[:, idx], delta) else: raise ValueError("Ax should be a vector or a matrix.") def update_rmatvec(self, ATx, delta, idx): """Updates dot(A.T, x) when x[idx] += delta.""" if len(ATx.shape) == 1: return ATx + delta * self.A[idx] elif len(ATx.shape) == 2: raise NotImplementedError else: raise ValueError("Ax should be a vector or a matrix.") def column_l2_norms(self, squared=False): ret = jnp.sum(self.A ** 2, axis=0) if not squared: ret = jnp.sqrt(ret) return ret def tree_flatten(self): return (self.A,), None @classmethod def tree_unflatten(cls, aux_data, children): del aux_data return cls(*children)
2.421875
2
tests/oldtests/dm2_download_megatest.py
ctb/pygr
2
12784904
# test via # python protest.py dm2_download_megatest.py from pygr import nlmsa_utils import pygr.Data import os, tempfile, time def rm_recursive(top): 'recursively remove top and everything in it!' for root, dirs, files in os.walk(top, topdown=False): for name in files: os.remove(os.path.join(root, name)) for name in dirs: os.rmdir(os.path.join(root, name)) os.rmdir(top) #'http://biodb.bioinformatics.ucla.edu/PYGRDATA/dm2_multiz9way.txt.gz', class NLMSADownload_Test(object): '''try to save and build via download catalog auto-constructed from biodb site''' def __init__(self,url='http://biodb.bioinformatics.ucla.edu/PYGRDATA/', testDir = tempfile.gettempdir()): self.url = url import random self.testDir = os.path.join(testDir,'test%d' % random.randint(1,99999)) self.pygrdatapath = ','.join([self.testDir, 'http://biodb2.bioinformatics.ucla.edu:5000']) def setup(self): 'create pygr.Data entries for all NLMSAs on biodb/PYGRDATA site' os.mkdir(self.testDir) pygr.Data.update(self.pygrdatapath) # set our desired path from pygr.apps.catalog_downloads import save_NLMSA_downloaders save_NLMSA_downloaders(self.url) ## def setup(self): ## 'create pygr.Data entries for building the target NLMSA' ## os.mkdir(self.testDir) ## pygrData = get_pygr_data_path(self.pygrdatapath) ## source = pygrData.SourceURL(self.url) ## source.__doc__ = 'textdump of NLMSA to test' ## pygrData.Bio.MSA.UCSC.dm2_multiz9way.txt = source ## msaref = nlmsa_utils.NLMSABuilder(source) ## msaref.__doc__ = 'NLMSA builder to test' ## pygrData.Bio.MSA.UCSC.dm2_multiz9way = msaref ## pygrData.save() def download_test(self): 'test building the NLMSA, and a simple query' os.environ['PYGRDATADOWNLOAD'] = self.testDir os.environ['PYGRDATABUILDDIR'] = self.testDir t = time.time() pygr.Data.Bio.MSA.UCSC.dm2_multiz9way() # build it! t1 = time.time() - t # 1st build time pygr.Data.clear_cache() # reload rsrc db t = time.time() msa = pygr.Data.Bio.MSA.UCSC.dm2_multiz9way() # already built t2 = time.time() - t # 2nd request time assert t2 < t1/3., 'second request took too long!' chr4 = msa.seqDict['dm2.chr4'] result = msa[chr4[:10000]] assert len(result) == 9 def teardown(self): 'clean up our temporary directory' rm_recursive(self.testDir)
2.515625
3
StockAnalysisSystem/core/interface_util.py
lifg2000/StockAnalysisSystem
0
12784905
from .AnalyzerEntry import StrategyEntry, AnalysisResult from StockAnalysisSystem.core.Utiltity.task_future import * from StockAnalysisSystem.core.DataHubEntry import DataHubEntry # For core.interface, without ui. class SasAnalysisTask(TaskFuture): def __init__(self, strategy_entry: StrategyEntry, data_hub: DataHubEntry, securities: str or [str], analyzer_list: [str], time_serial: tuple, enable_from_cache: bool): super(SasAnalysisTask, self).__init__('SasAnalysisTask') self.__data_hub = data_hub self.__strategy = strategy_entry self.__securities = securities self.__analyzer_list = analyzer_list self.__time_serial = time_serial self.__enable_from_cache = enable_from_cache def run(self): stock_list = self.select() result_list = self.analysis(stock_list) self.update_result(result_list) def identity(self) -> str: return 'SasAnalysisTask' # ----------------------------------------------------------------------------- def select(self) -> [str]: if self.__securities is None: data_utility = self.__data_hub.get_data_utility() stock_list = data_utility.get_stock_identities() elif isinstance(self.__securities, str): stock_list = [self.__securities] elif isinstance(self.__securities, (list, tuple, set)): stock_list = list(self.__securities) else: stock_list = [] return stock_list def analysis(self, securities_list: [str]) -> [AnalysisResult]: total_result = self.__strategy.analysis_advance( securities_list, self.__analyzer_list, self.__time_serial, self.get_progress_rage(), enable_from_cache=self.__enable_from_cache) return total_result
2.234375
2
string_algorithms/utils.py
mhozza/string_algorithms
6
12784906
from math import floor, log2 from operator import itemgetter def argmin(*args): if len(args) == 1: iterable = args[0] else: iterable = args return min((j, i) for i, j in enumerate(iterable))[1] def greatest_pow2(n): return 2 ** floor(log2(n)) def inverse_index(a): return {v: k for k, v in enumerate(a)} def inverse_index_array(a): ia = [None] * len(a) for i, v in enumerate(a): ia[v] = i return ia
3.234375
3
test1.py
jeffhawk/pythontraining
0
12784907
<filename>test1.py import sys if sys.version_info[0] >= 3: import PySimpleGUI as sg else: import PySimpleGUI27 as sg def MachineLearningGUI(): sg.SetOptions(text_justification='right') flags = [[sg.Checkbox('Normalize', size=(12, 1), default=True), sg.Checkbox('Verbose', size=(20, 1))], [sg.Checkbox('Cluster', size=(12, 1)), sg.Checkbox('Flush Output', size=(20, 1), default=True)], [sg.Checkbox('Write Results', size=(12, 1)), sg.Checkbox('Keep Intermediate Data', size=(20, 1))], [sg.Checkbox('Normalize', size=(12, 1), default=True), sg.Checkbox('Verbose', size=(20, 1))], [sg.Checkbox('Cluster', size=(12, 1)), sg.Checkbox('Flush Output', size=(20, 1), default=True)], [sg.Checkbox('Write Results', size=(12, 1)), sg.Checkbox('Keep Intermediate Data', size=(20, 1))],] loss_functions = [[sg.Radio('Cross-Entropy', 'loss', size=(12, 1)), sg.Radio('Logistic', 'loss', default=True, size=(12, 1))], [sg.Radio('Hinge', 'loss', size=(12, 1)), sg.Radio('Huber', 'loss', size=(12, 1))], [sg.Radio('Kullerback', 'loss', size=(12, 1)), sg.Radio('MAE(L1)', 'loss', size=(12, 1))], [sg.Radio('MSE(L2)', 'loss', size=(12, 1)), sg.Radio('MB(L0)', 'loss', size=(12, 1))],] command_line_parms = [[sg.Text('Passes', size=(8, 1)), sg.Spin(values=[i for i in range(1, 1000)], initial_value=20, size=(6, 1)), sg.Text('Steps', size=(8, 1), pad=((7,3))), sg.Spin(values=[i for i in range(1, 1000)], initial_value=20, size=(6, 1))], [sg.Text('ooa', size=(8, 1)), sg.In(default_text='6', size=(8, 1)), sg.Text('nn', size=(8, 1)), sg.In(default_text='10', size=(10, 1))], [sg.Text('q', size=(8, 1)), sg.In(default_text='ff', size=(8, 1)), sg.Text('ngram', size=(8, 1)), sg.In(default_text='5', size=(10, 1))], [sg.Text('l', size=(8, 1)), sg.In(default_text='0.4', size=(8, 1)), sg.Text('Layers', size=(8, 1)), sg.Drop(values=('BatchNorm', 'other'), auto_size_text=True)],] layout = [[sg.Frame('Command Line Parameteres', command_line_parms, title_color='green', font='Any 12')], [sg.Frame('Flags', flags, font='Any 12', title_color='blue')], [sg.Frame('Loss Functions', loss_functions, font='Any 12', title_color='red')], [sg.Submit(), sg.Cancel()]] window = sg.Window('Machine Learning Front End', font=("Helvetica", 12)).Layout(layout) button, values = window.Read() sg.SetOptions(text_justification='left') print(button, values) def CustomMeter(): # layout the form layout = [[sg.Text('A custom progress meter')], [sg.ProgressBar(1000, orientation='h', size=(20,20), key='progress')], [sg.Cancel()]] # create the form` window = sg.Window('Custom Progress Meter').Layout(layout) progress_bar = window.FindElement('progress') # loop that would normally do something useful for i in range(1000): # check to see if the cancel button was clicked and exit loop if clicked event, values = window.Read(timeout=0, timeout_key='timeout') if event == 'Cancel' or event == None: break # update bar with loop value +1 so that bar eventually reaches the maximum progress_bar.UpdateBar(i+1) # done with loop... need to destroy the window as it's still open window.CloseNonBlocking() if __name__ == '__main__': CustomMeter() MachineLearningGUI()
2.5
2
setup.py
XertroV/nvblib
3
12784908
<gh_stars>1-10 from distutils.core import setup setup( name='nvblib', version='0.0.1', packages=['nvblib', 'nvblib.instructions'], url='https://github.com/XertroV/nvblib', license='MIT', author='XertroV', author_email='<EMAIL>', description='core library for nvb objects' )
1.179688
1
venv/lib/python2.7/site-packages/lettuce/plugins/scenario_names.py
GrupoMazoGuay/final
0
12784909
# -*- coding: utf-8 -*- # <Lettuce - Behaviour Driven Development for python> # Copyright (C) <2010-2012> <NAME> <<EMAIL>> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERsteps.pyCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os from lettuce import core from lettuce.terrain import after from lettuce.terrain import before from lettuce.plugins.reporter import Reporter class NameReporter(Reporter): def print_scenario_running(self, scenario): self.wrt('%s ... ' % scenario.name) def print_scenario_ran(self, scenario): if scenario.passed: self.wrt("OK") elif scenario.failed: reason = self.scenarios_and_its_fails[scenario] if isinstance(reason.exception, AssertionError): self.wrt("FAILED") else: self.wrt("ERROR") self.wrt("\n") reporter = NameReporter() before.each_scenario(reporter.print_scenario_running) after.each_scenario(reporter.print_scenario_ran) after.each_step(reporter.store_failed_step) after.all(reporter.print_end) def print_no_features_found(where): where = core.fs.relpath(where) if not where.startswith(os.sep): where = '.%s%s' % (os.sep, where) reporter.wrt('Oops!\n') reporter.wrt('could not find features at %s\n' % where)
2.15625
2
dcp/003/solution.py
dantin/poj
0
12784910
<reponame>dantin/poj # -*- coding: utf-8 -*- class Node(): def __init__(self, val, left=None, right=None): self.val = val self.left = left self.right = right class Solution(): def deserialize(self, data): def decode(vals): val = next(vals) if val == '#': return None node = Node(val) node.left = decode(vals) node.right = decode(vals) return node vals = iter(data.split()) return decode(vals) def serialize(self, root): vals = [] def encode(node): if node: vals.append(str(node.val)) encode(node.left) encode(node.right) else: vals.append('#') encode(root) return ' '.join(vals) if __name__ == '__main__': node = Node('root', Node('left', Node('left.left')), Node('right')) solver = Solution() assert solver.deserialize(solver.serialize(node)).left.left.val == 'left.left'
3.15625
3
automation/read_config_file.py
ominocutherium/gamejam-skeleton-project
0
12784911
#!/usr/bin/env python3 # MIT License # # Copyright (c) 2021 ominocutherium # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # Part of ominocutherium's godot gamejam skeleton project. import os class ConfigFileInfo: docs_default_files = [] all_build_objects = [] additional_packages_to_build = [] default_build_info_object = None __current_build_info_object = None itch_user = "" itch_game_name = "" gut_test_dirs = [] git_primary_branch_name = "" def __handle_docs_defaults_line(self,line:str): self.docs_default_files.append(line.split()[1]) def __handle_export_exclude_line(self,line:str): if self.__current_build_info_object != None: self.__current_build_info_object.remove_globs.append(line[:-1].split(None,1)[1]) def __handle_export_include_line(self,line:str): if self.__current_build_info_object != None: self.__current_build_info_object.add_globs.append(line[:-1].split(None,1)[1]) def __handle_build_info_line(self,line:str): data = line[:-1].split() if data[3] == "assets": self.__current_build_info_object = AssetPackBuildInfo() if len(data) > 4: self.__current_build_info_object.pack_name = data[4] if len(data) > 5 and data[5] == "dlc": self.__current_build_info_object.add_to_all_platform_packs = False else: self.__current_build_info_object = PlatformBuildInfo() self.__current_build_info_object.platform_template_name = line[:-1].split(None,3)[3] self.all_build_objects.append(self.__current_build_info_object) self.__current_build_info_object.itch_channel_name = data[1] self.__current_build_info_object.build_dir = data[2] def __handle_itch_config_line(self,line:str): data = line[:-1].split() if len(data) > 2: self.itch_user = data[1] self.itch_game_name = data[2] def __handle_test_dir_line(self,line:str): self.gut_test_dirs.append(line[:-1].split()[1]) def __handle_git_primary_branch_name(self,line:str): self.git_primary_branch_name = line[:-1].split()[1] handlers_for_keys = { "docs_defaults":__handle_docs_defaults_line, "export_include":__handle_export_include_line, "export_exclude":__handle_export_exclude_line, "build_info":__handle_build_info_line, "itch_config":__handle_itch_config_line, "git_primary_branchname":__handle_git_primary_branch_name, "test_dir":__handle_test_dir_line, } def __init__(self): self.docs_default_files = [] self.additional_packages_to_build = [] self.__current_build_info_object = DefaultBuildInfo() self.default_build_info_object = self.__current_build_info_object self.all_build_objects = [self.__current_build_info_object] self.gut_test_dirs = [] def read_config(self): if os.path.exists(os.path.join('automation','config.txt')): with open(os.path.join('automation','config.txt')) as config_file: for line in config_file: line_without_newline = line[:-1] split_line = line_without_newline.split() if len(split_line) > 1 and split_line[0] in self.handlers_for_keys: self.handlers_for_keys[split_line[0]](self,line) class BuildInfo(): # have all of the state but none of the behavior of build_game.BuildInfo # in build_game, BuildInfo copies from this BuildInfo on initialization build_dir = "" build_type = "" platform_template_name = "" # only for game exports, not asset packs itch_channel_name = "" files_included : list = [] add_globs : list = [] remove_globs : list = [] def __init__(self): self.add_globs = [] self.remove_globs = [] self.files_included = [] class PlatformBuildInfo(BuildInfo): build_type = "platform" class DefaultBuildInfo(BuildInfo): build_type = "default" class AssetPackBuildInfo(BuildInfo): # have all of the state but none of the behavior of build_asset_packs.AssetPackBuildInfo # in build_asset_packs, AssetPackBuildInfo copies from this BuildInfo on initialization build_type = "asset_pack" pack_name = "" add_to_all_platform_packs : bool = True def read_config(): config_info = ConfigFileInfo() config_info.read_config() return config_info
1.742188
2
common/config_parser/config_dto.py
Softeq/PyCats
7
12784912
<filename>common/config_parser/config_dto.py from dataclasses import dataclass @dataclass class APIValidationDTO: check_status_code: bool check_headers: bool check_body: bool check_is_field_missing: bool @dataclass class WebDriverSettingsDTO: webdriver_folder: str default_wait_time: int implicit_wait_time: int selenium_server_executable: str chrome_driver_name: str firefox_driver_name: str browser: str driver_path: str stop_server: bool chrome_options: list @dataclass class MobileDriverSettingsDTO: appium_server_path: str node_executable_path: str default_wait_time: int implicit_wait_time: int platform: str ios_udid: str ipa_path: str android_udid: str android_package: str android_activity: str
1.796875
2
apps/about/models.py
glenjasper/cobija-web
0
12784913
<reponame>glenjasper/cobija-web from django.db import models from auditlog.registry import auditlog class About(models.Model): title = models.CharField(max_length = 100, verbose_name = 'Title', help_text = "It's not used, it's only referential.") description = models.TextField(verbose_name = 'Description', help_text = 'Description') status = models.BooleanField(default = True, verbose_name = 'Status') created = models.DateTimeField(auto_now_add = True, blank = True, null = True, verbose_name = 'Creation date') updated = models.DateTimeField(auto_now = True, blank = True, null = True, verbose_name = 'Modification date') class Meta: db_table = "cobija_about" verbose_name = "About" verbose_name_plural = "About" def __str__(self): return self.title auditlog.register(About)
2.125
2
mep/people/tests/test_people_commands.py
making-books-ren-today/test_eval_3_shxco
3
12784914
<reponame>making-books-ren-today/test_eval_3_shxco import datetime from io import StringIO from django.test import TestCase from mep.accounts.models import Event from mep.people.management.commands import export_members from mep.people.models import Person class TestExportMembers(TestCase): fixtures = ['sample_people'] def setUp(self): self.cmd = export_members.Command() self.cmd.stdout = StringIO() def test_get_queryset(self): # queryset should only include library members member = Person.objects.get(pk=189) # francisque gay, member author = Person.objects.get(pk=7152) # aeschylus, non-member qs = self.cmd.get_queryset() assert member in qs assert author not in qs def test_get_object_data(self): # fetch some example people from fixture & call get_object_data gay = Person.objects.get(name='<NAME>') hemingway = Person.objects.get(name='<NAME>') gay_data = self.cmd.get_object_data(gay) hemingway_data = self.cmd.get_object_data(hemingway) # check some basic data assert gay_data['name'] == '<NAME>' assert gay_data['gender'] == 'Male' assert gay_data['birth_year'] == 1885 assert hemingway_data['sort_name'] == 'Hemingway, Ernest' assert hemingway_data['death_year'] == 1961 assert 'title' not in hemingway_data # empty fields not present # fixture has no events, so no years are set assert hemingway_data['membership_years'] == [] # check nationalities assert 'France' in gay_data['nationalities'] assert 'United States' in hemingway_data['nationalities'] # check viaf & wikipedia urls assert hemingway_data['wikipedia_url'] == \ 'https://en.wikipedia.org/wiki/Ernest_Hemingway' assert gay_data['viaf_url'] == 'http://viaf.org/viaf/9857613' # check addresses & coordinates assert '3 Rue Garancière, Paris' in gay_data['addresses'] assert '48.85101, 2.33590' in gay_data['coordinates'] assert '75006' in gay_data['postal_codes'] assert 6 in gay_data['arrondissements'] assert gay_data['updated'] == gay.updated_at.isoformat() assert hemingway_data['updated'] == hemingway.updated_at.isoformat() # add events to check membership years account = gay.account_set.first() Event.objects.create( account=account, start_date=datetime.date(1920, 5, 1), end_date=datetime.date(1921, 2, 1)) Event.objects.create( account=account, start_date=datetime.date(1935, 5, 1)) gay_data = self.cmd.get_object_data(gay) assert gay_data['membership_years'] == [1920, 1921, 1935]
2.328125
2
server/swagger_server/test/test_notification_controller.py
kakwa/certascale
0
12784915
<reponame>kakwa/certascale<gh_stars>0 # coding: utf-8 from __future__ import absolute_import from flask import json from six import BytesIO from swagger_server.models.default_error import DefaultError # noqa: E501 from swagger_server.models.default_message import DefaultMessage # noqa: E501 from swagger_server.models.notification import Notification # noqa: E501 from swagger_server.models.notification_list import NotificationList # noqa: E501 from swagger_server.models.notification_update import NotificationUpdate # noqa: E501 from swagger_server.test import BaseTestCase class TestNotificationController(BaseTestCase): """NotificationController integration test stubs""" def test_notification_acknowledge(self): """Test case for notification_acknowledge """ body = NotificationUpdate() response = self.client.open( '/api/v1.0/notification/{notificationId}'.format(notificationId='notificationId_example'), method='PUT', data=json.dumps(body), content_type='application/json') self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) def test_notification_get(self): """Test case for notification_get """ response = self.client.open( '/api/v1.0/notification/{notificationId}'.format(notificationId='notificationId_example'), method='GET', content_type='application/json') self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) def test_notification_list(self): """Test case for notification_list """ query_string = [('next_id', 56)] response = self.client.open( '/api/v1.0/notification', method='GET', content_type='application/json', query_string=query_string) self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) if __name__ == '__main__': import unittest unittest.main()
1.859375
2
codeforces/1111A/solution.py
yhmin84/codeforces
0
12784916
# https://codeforces.com/problemset/problem/1111/A vowels = set(["a", "e", "i", "o", "u"]) def can_partial_transform(c1, c2): if (c1 in vowels and c2 in vowels) or (c1 not in vowels and c2 not in vowels): return True return False def can_transform(hero1, hero2): hero1_len = len(hero1) if hero1_len != len(hero2): return False for i in range(hero1_len): if not can_partial_transform(hero1[i], hero2[i]): return False return True if __name__ == "__main__": hero1 = input() hero2 = input() result = can_transform(hero1, hero2) if result: print('Yes') else: print('No')
4.03125
4
test4.py
Ticlext-Altihaf/Absen-Kamera
0
12784917
<filename>test4.py from deepface import DeepFace DeepFace.stream()
1.039063
1
development/modules/auxiliary_career_decision_data.py
tobiasraabe/respy_for_ma
0
12784918
<filename>development/modules/auxiliary_career_decision_data.py """This module contains the auxiliary function for the data transformation.""" import numpy as np import pandas as pd from respy.python.shared.shared_constants import TEST_RESOURCES_DIR def prepare_dataset(): """Convert the raw dataset to a DataFrame that can be used with Respy.""" df = load_dataset() df = minor_refactoring(df) df = truncate_military_history(df) df = add_state_variables(df) write_out(df) def load_dataset(): """This function just prepares the original submission in a data frame.""" columns = ["Identifier", "Age", "Schooling", "Choice", "Wage"] dtype = { "Identifier": np.int, "Age": np.int, "Schooling": np.int, "Choice": "category", } df = pd.DataFrame( np.genfromtxt(str(TEST_RESOURCES_DIR / "KW_97.raw")), columns=columns ).astype(dtype) df.set_index(["Identifier", "Age"], inplace=True, drop=False) # I drop the information on the NLSY identifier and set the identifier to the count. for count, idx in enumerate(df.index.levels[0]): df.loc[(slice(idx, idx), slice(None)), "Identifier"] = count df.set_index(["Identifier", "Age"], inplace=True, drop=False) # This mapping is based on direct communication with <NAME>. df["Choice"].cat.categories = ["Schooling", "Home", "White", "Blue", "Military"] return df def minor_refactoring(df): """This function performs some basic refactoring directly from existing variables.""" df["Period"] = df["Age"] - 16 df["Choice"].cat.categories = [3, 4, 1, 2, -99] df.rename(columns={"Schooling": "Years_Schooling"}, inplace=True) return df def truncate_military_history(df): """This function truncates in individual's history once assigned to the military.""" def _delete_military_service(agent): """This function deletes all observations going forward if an individual enrolls in the military.""" for index, row in agent.iterrows(): identifier, period = index if row["Choice"] == -99: return agent.loc[(slice(None, None), slice(None, period - 1)), :] return agent # pandas 23 does not allow for two index levels with the same name. # this was introduced on purpose, but currently breaks many sensible # groupby operations. This will probably be fixed in future versions # but here we introduce a workaround: # (the workaround should also work in all earlier and later versions.) df["id"] = df["Identifier"] df = df.groupby("id").apply(_delete_military_service) df.set_index(["Identifier", "Age"], inplace=True, drop=False) df.drop("id", axis=1, inplace=True) return df def add_state_variables(df): """This function adds all additional state variables.""" def _add_state_variables(agent): """This function iterates through an agent record and constructs the state variables for each point in tim. """ exp_a, exp_b = 0, 0 # We simply assume that individuals who do not have the expected number of years # of education did spend the last year at home. if agent.loc[(slice(None), slice(16, 16)), "Years_Schooling"].to_numpy() < 10: lagged_choice = 4 else: lagged_choice = 3 for index, row in agent.iterrows(): identifier, period = index agent["Lagged_Choice"].loc[:, period] = lagged_choice agent["Experience_A"].loc[:, period] = exp_a agent["Experience_B"].loc[:, period] = exp_b # Update labor market experience if row["Choice"] == 1: exp_a += 1 elif row["Choice"] == 2: exp_b += 1 else: pass # Update lagged activity: # (0) Home, (1) Education, (2) Occupation A, and (3) Occupation B. lagged_choice = row["Choice"] return agent df["Lagged_Choice"] = np.nan df["Experience_A"] = np.nan df["Experience_B"] = np.nan # pandas 23 does not allow for two index levels with the same name. # this was introduced on purpose, but currently breaks many sensible # groupby operations. This will probably be fixed in future versions # but here we introduce a workaround: # (the workaround should also work in all earlier and later versions.) df["id"] = df["Identifier"] df = df.groupby("id").apply(_add_state_variables) df.drop("id", axis=1, inplace=True) return df def write_out(df): labels = [ "Identifier", "Period", "Choice", "Wage", "Experience_A", "Experience_B", "Years_Schooling", "Lagged_Choice", ] formats = {label: np.int for label in labels} formats["Wage"] = np.float """This function writes out the relevant information to a simple text file.""" df = df[labels].astype(formats) with open("career_data.respy.dat", "w") as file_: df.to_string(file_, index=False, header=True, na_rep=".") df.set_index(["Identifier", "Period"], drop=False, inplace=True) df.to_pickle("career_data.respy.pkl")
3.09375
3
corefacility/authorizations/google/entity/authorization_token/authorization_token.py
serik1987/corefacility
0
12784919
<reponame>serik1987/corefacility from core.entity.external_authorization_token import ExternalAuthorizationToken from core.entity.entity_fields import ReadOnlyField, ManagedEntityField from .authorization_token_set import AuthorizationTokenSet from .model_provider import ModelProvider from .mock_provider import MockProvider from .refresh_token_manager import RefreshTokenManager class AuthorizationToken(ExternalAuthorizationToken): """ Defines the Google external authorization token and the ways how the token can be received, stored or retrieved Let's mention all public fields and how the ExternalAuthorizationToken works: * code - when you gave the authorization code from the user you need to fill in this field by putting the code to this field, like here: token = AuthorizationToken(code=your_authorization_code) When you call token.create() the entity will make the first request to Google to exchange the authorization code to the authorization token. Next, it make the second request to Google to receive the user's account name using the authorization token. Third, the entity will query the Account entity to find the user with particular account name. And at last the entity will save all the data received from Google and the Account entity to the database. When the entity is loaded from the local database the value of this field is None which means that you are no longer need the authorization code. The field is required when you create() an entity but the field is not required when you update() the entity. * access_token - this is a read-only field. Before creating an instance the field value is None while after its create the field value is a particular access token. * expires_in - just informative field that allows you to check whether the access token is expired * refresh_token - the token is required to refresh the access token when this is expired. To refresh the access_token just use the following: token.refresh_token.refresh(). This will request the Google for new access token and updated the newly created access token to the database. * authentication - the authentication attached to the token. In order to look the user this token belongs to use: token.authentication.user. """ _entity_set_class = AuthorizationTokenSet _entity_provider_list = [MockProvider(), ModelProvider()] _intermediate_field_description = { "access_token": ReadOnlyField(description="Access token"), "expires_in": ReadOnlyField(description="Access token expiration time"), "refresh_token": ManagedEntityField(RefreshTokenManager, description="Refresh token") }
2.921875
3
fabric_bolt/projects/migrations/0003_auto_20150911_1911.py
jooni22/fabric-bolt
219
12784920
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('hosts', '0002_sshconfig'), ('projects', '0002_auto_20140912_1509'), ] operations = [ migrations.AddField( model_name='configuration', name='value_ssh_key', field=models.ForeignKey(verbose_name=b'Value', blank=True, to='hosts.SSHConfig', null=True), ), migrations.AlterField( model_name='configuration', name='data_type', field=models.CharField(default=b'string', max_length=10, null=True, blank=True, choices=[(b'boolean', b'Boolean'), (b'number', b'Number'), (b'string', b'String'), (b'ssk_key', b'SSH Key')]), ), ]
1.71875
2
utils/download_data.py
ialifinaritra/Music_Generation
0
12784921
import urllib.request DIR_PATH = '../data/' def download_music(output_path): midiFile_l = ['cs1-2all.mid', 'cs5-1pre.mid', 'cs4-1pre.mid', 'cs3-5bou.mid', 'cs1-4sar.mid', 'cs2-5men.mid', 'cs2-3cou.mid', 'cs1-6gig.mid', 'cs6-4sar.mid', 'cs4-5bou.mid', 'cs4-3cou.mid', 'cs5-3cou.mid', 'cs6-5gav.mid', 'cs6-6gig.mid', 'cs6-2all.mid', 'cs2-1pre.mid', 'cs3-1pre.mid', 'cs3-6gig.mid', 'cs2-6gig.mid', 'cs2-4sar.mid', 'cs3-4sar.mid', 'cs1-5men.mid', 'cs1-3cou.mid', 'cs6-1pre.mid', 'cs2-2all.mid', 'cs3-2all.mid', 'cs1-1pre.mid', 'cs5-2all.mid', 'cs4-2all.mid', 'cs5-5gav.mid', 'cs4-6gig.mid', 'cs5-6gig.mid', 'cs5-4sar.mid', 'cs4-4sar.mid', 'cs6-3cou.mid', 'cs3-3cou.mid'] for midiFile in midiFile_l: urllib.request.urlretrieve("http://www.jsbach.net/midi/" + midiFile, output_path + midiFile) if __name__ == "__main__": download_music(DIR_PATH)
2.859375
3
src/stock_data_provider/cn_a/__init__.py
stonewell/learn-curve
0
12784922
#load stock data from vip data for cn_a from .vip_dataset import load_stock_data
1
1
ppgan/metric/metric_util.py
ZMpursue/PaddleGAN
4
12784923
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def reorder_image(img, input_order='HWC'): """Reorder images to 'HWC' order. If the input_order is (h, w), return (h, w, 1); If the input_order is (c, h, w), return (h, w, c); If the input_order is (h, w, c), return as it is. Args: img (ndarray): Input image. input_order (str): Whether the input order is 'HWC' or 'CHW'. If the input image shape is (h, w), input_order will not have effects. Default: 'HWC'. Returns: ndarray: reordered image. """ if input_order not in ['HWC', 'CHW']: raise ValueError( f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'") if len(img.shape) == 2: img = img[..., None] return img if input_order == 'CHW': img = img.transpose(1, 2, 0) return img def bgr2ycbcr(img, y_only=False): """Convert a BGR image to YCbCr image. The bgr version of rgb2ycbcr. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. y_only (bool): Whether to only return Y channel. Default: False. Returns: ndarray: The converted YCbCr image. The output image has the same type and range as input image. """ img_type = img.dtype #img = _convert_input_type_range(img) if y_only: out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0 else: out_img = np.matmul( img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128] #out_img = _convert_output_type_range(out_img, img_type) return out_img def to_y_channel(img): """Change to Y channel of YCbCr. Args: img (ndarray): Images with range [0, 255]. Returns: (ndarray): Images with range [0, 255] (float type) without round. """ img = img.astype(np.float32) / 255. if img.ndim == 3 and img.shape[2] == 3: img = bgr2ycbcr(img, y_only=True) img = img[..., None] return img * 255.
2.5
2
run_gps_master.py
MarieNyst/GPS
4
12784924
import time import random import os from GPS import gps from GPS import redisHelper from GPS import helper from GPS import args from GPS import postProcess # Parse the command line arguments, then, if provided, parse the arguments in # the scenario file. Then adds default values for paramaters without definitions # Finally, validates all argument definitions, checks that needed files and # directories exist, and then checks to make sure that all required arguements # received definitions. argument_parser = args.ArgumentParser() arguments, skipped_lines = argument_parser.parse_arguments() # Everything GPS does should be done from within the experiment directory # (which defaults to the current working directory) with helper.cd(arguments['experiment_dir']): # Connect to the redis database R = redisHelper.connect(host=arguments['redis_host'], port=arguments['redis_port'], dbid=arguments['redis_dbid']) # Clear all old state from the current database redisHelper.deleteDB(R) # Create a random ID for this GPS run gpsID = helper.generateID() # Make the output directory if it does not already exist helper.mkdir(arguments['output_dir']) # Now create a directory inside of that one for the files from # this particular GPS run. If this directory already exists, rename it to # something else output_dir = '{}/gps-run-{}'.format(arguments['output_dir'], gpsID) arguments['output_dir'] = output_dir moved = False if helper.isDir(output_dir): random_id = helper.generateID() os.system('mv {output_dir} {output_dir}-{random_id}' ''.format(output_dir=output_dir, random_id=random_id)) moved = True helper.mkdir(output_dir) # Get a logger logger = gps.getLogger('{}/gps.log'.format(output_dir), arguments['verbose']) # Announce the start of the run logger.info('Starting new GPS run with GPS ID {}'.format(gpsID)) # And record a warning, if needed. if moved: logger.warning('Moved old GPS log files to directory {}-{}' ''.format(output_dir, random_id)) # Issue a warning about skipped lines in the scenario file if len(skipped_lines) > 0: for line in skipped_lines: logger.warning("GPS skipped the following unrecognized line '{}' " "in the scenario file".format(line)) # Update the random seed, if needed if arguments['seed'] <= 0: arguments['seed'] = random.randrange(0,999999) # Create a new scenario file in the log location with all of GPS's parameters # instantiated to their final values. The workers will use this file to set up, # and it is useful to have for later for debugging purposes as well. scenario_file = os.path.abspath(os.path.expanduser(os.path.expandvars('{}/scenario.txt'.format(output_dir)))) argument_parser.create_scenario_file(scenario_file, arguments) R.set('scenarioFile:' + str(gpsID), scenario_file) R.set('readyCount:' + str(gpsID), 0) # Signal to the workers that the master is ready. R.set('gpsID', gpsID) try: #Wait until all of the slaves are ready ready = False logger.info('Waiting until all workers are ready...') oldReadyCount = -1 while(not ready): time.sleep(1) readyCount = redisHelper.getReadyCount(gpsID,R) if(readyCount != oldReadyCount): logger.info("There are {} out of a minimum of {} workers ready..." "".format(readyCount, arguments['minimum_workers'])) oldReadyCount = readyCount ready = readyCount >= arguments['minimum_workers'] readyCount = redisHelper.getReadyCount(gpsID,R) logger.info("There are {} out of a minimum of {} workers ready..." "".format(readyCount, arguments['minimum_workers'])) logger.info("GPS Master process is starting.") pbest, decisionSeq, incumbentTrace, cpuTime, wallTime = gps.gps(arguments, gpsID) end_master_time = time.time() R.set('incumbent:' + str(gpsID),pbest) finally: R.set('cancel:' + str(gpsID),'True') if arguments['post_process_incumbent']: logger.info('Beginning GPS post-processing of configuration runs to select as the incumbent the ' 'configuration that has the best performance on the largest number of instances. This ' 'should only take a few seconds and helps protect against mistakes made by GPS due to ' 'parameter interactions.') # Create a new post-processing selector selector = postProcess.Selector( min_instances=arguments['post_process_min_runs'], alpha=arguments['post_process_alpha'], n_permutations=arguments['post_process_n_permutations'], multiple_test_correction=arguments['post_process_multiple_test_correction'], logger=logger) # Add the data from the current scenario logger.info(arguments['output_dir']) selector.add_scenarios(arguments['output_dir']) # And select the best configuration incumbent, num_runs, estimated_runtime = selector.extract_best() logger.info("The final incumbent after post-processing all of the configuration runs was evaluated " " on {0} unique instances and has an estimated running time of {1:.2f} seconds." "".format(num_runs, estimated_runtime)) logger.info("Final Incumbent: {}".format(incumbent)) if gps.getParamString(pbest) != incumbent: incumbent_logger = gps.getLogger(arguments['output_dir'] + '/traj.csv', verbose=1, console=False, format_='%(message)s', logger_name='incumbent_logger_post_process') incumbent_logger.info('{cpu_time},{train_perf},{wall_time},{inc_id},{ac_time},{config}' ''.format(cpu_time=cpuTime, train_perf=estimated_runtime, wall_time=wallTime + time.time() - end_master_time, inc_id=-1, ac_time=-1, config=incumbent.replace(' -',',').replace(' ','=')[1:]))
2.734375
3
main.py
Deepkk-9/phdc-discord-bot
0
12784925
<reponame>Deepkk-9/phdc-discord-bot #Imports import discord import os import requests import json import random import urllib from replit import db from keep_alive import keep_alive #Variables client = discord.Client() bad_words = [ "Fuck", "fuck", "Fuck You", "Shit", "Piss off", "Fuck off", "Dick head", "Asshole", "Son of a bitch", "Bastard", "Bitch", "Wanker" ] sad_words = [ "error", "build failed", "not working", "bug", "failed", "err", "buggy" ] warning = [ ">>> ⚠ Please avoid using Swear Words it is against our server policy!", ">>> ⚠ Use of Swear Words are against our server policy!", ">>> ⚠ Bullying someone using Swear Words are against our server policy!" ] solution = [ ">>> 🤔 I think you should find something on stackoverflow !\n💡 Tip: Sharing your project link is also helpful" ] projects = [ ">>> **Live Projects** \n1. Discord Bot\n2. PDC Application\n3. PDC Website\n4. Hacktober Practice\n5. Hacktober Website\n6. API" ] core_team_1 = [ ">>> **Core Team** \n1. Lead: Random Name\n2. Co Lead: Random Name\n3. Web Lead: Random Name" ] help_data = [ ">>> **Help Commands** \n\nThese are the available commands:\n\n1. `!pdc help` - Dailogue of all commands\n2. `!pdc info` - Gives info of bot\n3. `!pdc about` - Returns server information\n4. `!pdc discord` - Provides invitation link for the discord server\n5. `!pdc github` - Provides link to the github organisation\n6. `!pdc core team` - Returns current Core Member\n7. `!pdc projects` - Returns active projects\n8. `!pdc quote`s - Returns random quote\n9. `!pdc events` - Returns upcoming events\n10. `!pdc new-event` - Add new event\n11. `!pdc delete-event` - Delete an event\n12. `!pdc list-events` - List all events\n13. `!pdc event-syntax` - List all syntax for events command\n14. `!pdc meme` - Returns random meme\n15. `!pdc joke` - Returns random joke\n\n _Our bot is Open Source_" ] event_syntax = [ "`!php new-event | <event-title> | <event_time>`\n`!php delete index_value`" ] #Setting up function for Quotes def get_quote(): response = requests.get( "https://zenquotes.io/api/random") #API uses Random Quotes json_data = json.loads(response.text) quote = json_data[0]['q'] + " - " + json_data[0]['a'] return (quote) #Setting up funcyion for adding an def new_event(event_title, event_date, event_time): new_event = event_title, event_date, event_time if "events" in db.keys(): events = db["events"] events.append(new_event) db["events"] = events else: db["events"] = [(new_event)] def remove_event(index): events = db["events"] if len(events) > index: del events[index] db["events"] = events #Function to return random meme images URL def random_meme(): url = "https://some-random-api.ml/meme" response = urllib.request.urlopen(url) data = json.loads(response.read()) path = data["image"] return path #Function to return random jokes def random_joke(): url = "https://some-random-api.ml/joke" response = urllib.request.urlopen(url) data = json.loads(response.read()) joke = data["joke"] return joke #Creating Login message @client.event async def on_ready(): print('Bot is now live as {0.user}'.format(client) + (' at PHP-DC Discord Server')) @client.event async def on_message(message): #Variables Ease msg = message.content #Condition for self texting if message.author == client.user: return #Condition help if msg.startswith('!pdc help'): await message.channel.send(''.join(help_data)) #Condition info if msg.startswith('!pdc info'): await message.channel.send('>>> PDC Bot v1.0.0') #Condition about if msg.startswith('!pdc about'): await message.channel.send( '>>> **About** \nPDC is an university based community group for students interested in computer technology. \nStudents from any undergraduate or graduate programs with an interest in growing as a developer can join. \nWe aim in growing knowledge in a peer-to-peer learning environment and build solutions for local businesses and community.' ) #Condition discord if msg.startswith('!pdc discord'): await message.channel.send('https://discord.gg/Gbanp7fYCZ') #Condition github if msg.startswith('!pdc github'): await message.channel.send('https://github.com/PH-DC') #Condition core team if msg.startswith('!pdc core team'): await message.channel.send(''.join(core_team_1)) #Condition projects if msg.startswith('!pdc projects'): await message.channel.send(''.join(projects)) #Condition requesting Quotes if msg.startswith('!pdc quote'): quote = get_quote() await message.channel.send('>>> ' + '_' + quote + '_') #Condition for using bad words if any(word in msg for word in bad_words): await message.channel.send(random.choice(warning)) #Condition for using sad words if any(word in msg for word in sad_words): await message.channel.send(''.join(solution)) #Condition for adding an event if msg.startswith("!pdc new-event"): msg_array = msg.split("|") event_title = msg_array[1] event_date = msg_array[2] event_time = msg_array[3] new_event(event_title, event_date, event_time) await message.channel.send(">>> New event added!") #Condition to view all the events currently in the database if msg.startswith("!pdc list-events"): events = db["events"].value for event_title, event_date, event_time in events: await message.channel.send(" {} | {} | {} ".format(event_title, event_date, event_time)) #Condition for deleting events if msg.startswith("!pdc delete event"): index = int(msg.split("!pdc delete event",1)[1]) remove_event(index) await message.channel.send(">>> Event Deleted") #Condition to view all event related syntax if msg.startswith("!pdc event-syntax"): await message.channel.send('>>> '.join(event_syntax)) #Condition to return random meme if msg.startswith('!pdc meme'): meme = random_meme() await message.channel.send(meme) #Condition to return random jokes if msg.startswith('!pdc joke'): joke = random_joke() await message.channel.send(">>> " + joke) #Keep Alive keep_alive() client.run(os.getenv('botTOKEN'))
2.734375
3
tests/test_helper.py
JimBoonie/hydra
28
12784926
<filename>tests/test_helper.py """ Helper methods for unit testing. """ REPEAT = 100
1.15625
1
server/demon/matching.py
jphacks/TK_1814
1
12784927
import sys sys.path.append('/home/kenta/pinky') from itertools import groupby import time from database import session from model import Motion, Promise def run_loop(): while True: filepath = '/home/kenta/pinky/demon/test.log' log_file = open(filepath,'a') matching() try: pass # log_file.write(time.ctime()+"\n") finally: log_file.close() time.sleep(5) def matching(): all_motion = session.query(Motion).all() user_motion = {} delete_motion_list = [] all_motion.sort(key=lambda tmp_motion: tmp_motion.user_id) for user_id, motions in groupby(all_motion, key=lambda tmp_motion: tmp_motion.user_id): tmp_motion_list = [] for motion in motions: tmp_motion_list.append(motion) user_motion[user_id] = tmp_motion_list user_id_list = [] print(user_motion) for user_id in user_motion: if len(user_motion[user_id]) >= 2: delete_motion_list += user_motion[user_id] user_id_list.append(user_id) print(user_id_list) print('delete_motion_list: ', delete_motion_list) matching_results = [] for i in range(len(user_id_list) - 1): firstA = user_motion[user_id_list[i]][0].created_at lastA = user_motion[user_id_list[i]][1].created_at for j in range(i + 1, len(user_id_list)): firstB = user_motion[user_id_list[j]][0].created_at lastB = user_motion[user_id_list[j]][1].created_at if abs(firstA - firstB).total_seconds() <= 5 and abs(lastA - lastB).total_seconds() <= 5: # マッチング結果 if user_motion[user_id_list[i]][0].promise_id is None: matching_results.append({'promise_id': user_motion[user_id_list[j]][0].promise_id, 'slave_user_id': user_id_list[i]}) else: matching_results.append({'promise_id': user_motion[user_id_list[i]][0].promise_id, 'slave_user_id': user_id_list[j]}) print(user_id_list[i], user_id_list[j]) print(matching_results) updates = [] for result in matching_results: promise = session.query(Promise).filter(Promise.id == result['promise_id']).one_or_none() promise.slave_user_id = result['slave_user_id'] updates.append(promise) session.bulk_save_objects(updates) for motion in delete_motion_list: print('*****************') print(motion.created_at, motion.user_id) print('*****************') session.delete(motion) session.commit() session.close() if __name__ == '__main__': run_loop()
2.34375
2
tests/snippets/type_hints.py
janczer/RustPython
0
12784928
# See also: https://github.com/RustPython/RustPython/issues/587 def curry(foo: int) -> float: return foo * 3.1415926 * 2 assert curry(2) > 10
2.28125
2
lib/gstreamer/util.py
yefengxx/vaapi-fits
0
12784929
<reponame>yefengxx/vaapi-fits ### ### Copyright (C) 2021 Intel Corporation ### ### SPDX-License-Identifier: BSD-3-Clause ### from ...lib.common import memoize, try_call @memoize def have_gst(): return try_call("which gst-launch-1.0") and try_call("which gst-inspect-1.0") @memoize def have_gst_element(element): result = try_call("gst-inspect-1.0 {}".format(element)) return result, element
1.976563
2
mudi/dispatcher.py
daturkel/mudi
0
12784930
<filename>mudi/dispatcher.py import logging from pathlib import Path import watchgod from .site import Site from .utils import rel_name from .watcher import MudiWatcher class MudiDispatcher: def __init__(self, site: Site): self.site = site def _dispatch(self, change_type: watchgod.Change, path: Path): if self.site.template_dir in path.parents: self._dispatch_template(change_type, path) elif self.site.sass_in in path.parents: self._dispatch_sass(change_type, path) elif self.site.content_dir in path.parents: if path.suffix in [".html", ".md"]: self._dispatch_page(change_type, path) else: self._dispatch_file(change_type, path) def _dispatch_template(self, change_type: watchgod.Change, path: Path): logging.info("reinitializing jinja") self.site._get_jinja_env() self.site.render_all_pages() def _dispatch_sass(self, change_type: watchgod.Change, path: Path): self.site.compile_sass() def _dispatch_page(self, change_type: watchgod.Change, path: Path): if change_type.name == "added": self.site.add_page_from_file(path) self.site.render_all_pages() elif change_type.name == "modified": self.site.remove_page_from_file(path) self.site.add_page_from_file(path) self.site.render_all_pages() elif change_type.name == "deleted": self.site.remove_page_from_file(path) self.site.render_all_pages() def _dispatch_file(self, change_type: watchgod.Change, path: Path): path = rel_name(path, self.site.content_dir) if change_type.name in ["added", "modified"]: self.site.copy_file(path) else: self.site.delete_file(path) def watch(self): for changes in watchgod.watch( ".", watcher_cls=MudiWatcher, watcher_kwargs={"site": self.site} ): for change_type, path in changes: logging.info(f"{path} {change_type.name}") path = Path(path) self._dispatch(change_type, path)
2.109375
2
ports/core/port.py
yzgyyang/portcran
1
12784931
"""Classes describing a FreeBSD Port and the various structures.""" from abc import ABCMeta, abstractmethod from io import StringIO from itertools import groupby from math import ceil, floor from pathlib import Path from typing import (Any, Callable, Dict, Generic, IO, Iterable, Iterator, List, Optional, Set, Tuple, TypeVar, Union, cast) from .dependency import Dependency from .make import MakeDict, make, make_vars from .platform import Platform from .uses import Uses from ..utilities import Orderable __all__ = ["Port", "PortError", "PortStub"] T = TypeVar("T", covariant=True) # pylint: disable=C0103 def peek(file: IO[Any], length: int) -> str: pos = file.tell() value = file.read(length) file.seek(pos) return value class PortValue(Orderable, Generic[T], metaclass=ABCMeta): # pylint: disable=E1136 def __init__(self, section: int, order: int = 1) -> None: super().__init__() self.order = order self.section = section @abstractmethod def __get__(self, instance: "Port", owner: type) -> T: raise NotImplementedError() @property def _key(self) -> Tuple[int, int]: return self.section, self.order @abstractmethod def generate(self, value: Union[str, List[str], "PortObject"]) -> Iterable[Tuple[str, Iterable[str]]]: raise NotImplementedError() @abstractmethod def load(self, obj: "Port", variables: MakeDict) -> None: raise NotImplementedError() class PortVar(PortValue[Optional[str]]): # pylint: disable=E1136 def __init__(self, section: int, order: int, name: str) -> None: super().__init__(section, order) self.name = name def __delete__(self, instance: "Port") -> None: instance.del_value(self) def __get__(self, instance: "Port", owner: type) -> Optional[str]: value = instance.uses.get_variable(self.name) if value is None: if instance.has_value(self): return cast(str, instance.get_value(self)) return None else: assert len(value) == 1 and isinstance(value[0], str) return value[0] def __set__(self, obj: "Port", value: str) -> None: obj.set_value(self, value) def generate(self, value: Union[str, List[str], "PortObject"]) -> Iterable[Tuple[str, Iterable[str]]]: assert isinstance(value, str) return (self.name, (value,)), def load(self, obj: "Port", variables: MakeDict) -> None: if self.name in variables: value = variables.pop_value(self.name, combine=True) assert value is not None self.__set__(obj, value) class PortVarList(PortValue[List[str]]): # pylint: disable=E1136 def __init__(self, section: int, order: int, name: str) -> None: super().__init__(section, order) self._setter: Callable[[Port, List[str]], List[str]] = lambda x, y: y self.name = name def __get__(self, instance: "Port", owner: type) -> List[str]: value = instance.uses.get_variable(self.name) if value is None: if not instance.has_value(self): self.__set__(instance, []) value = cast(List[str], instance.get_value(self)) assert isinstance(value, list) return value def __set__(self, obj: "Port", value: List[str]) -> None: obj.set_value(self, self._setter(obj, value)) def generate(self, value: Union[str, List[str], "PortObject"]) -> Iterable[Tuple[str, Iterable[str]]]: assert isinstance(value, list) return (self.name, value), def load(self, obj: "Port", variables: MakeDict) -> None: if self.name in variables: self.__set__(obj, variables.pop(self.name)) def setter(self, setter: Callable[["Port", List[str]], List[str]]) -> "PortVarList": self._setter = setter return self class PortObject(object, metaclass=ABCMeta): # pylint: disable=E1136 @abstractmethod def generate(self) -> Iterable[Tuple[str, Iterable[str]]]: raise NotImplementedError() @abstractmethod def load(self, variables: MakeDict) -> None: raise NotImplementedError() T2 = TypeVar("T2", bound=PortObject) class PortObj(PortValue[T2]): # pylint: disable=E1136 def __init__(self, section: int, factory: Callable[[], T2]) -> None: super().__init__(section) self.factory = factory def __get__(self, instance: "Port", owner: type) -> T2: if not instance.has_value(self): instance.set_value(self, self.factory()) return cast(T2, instance.get_value(self)) def generate(self, value: Union[str, List[str], PortObject]) -> Iterable[Tuple[str, Iterable[str]]]: # pylint: disable=no-self-use return cast(T2, value).generate() def load(self, obj: "Port", variables: MakeDict) -> None: self.__get__(obj, Port).load(variables) class PortLicense(PortObject, Iterable[str]): def __init__(self) -> None: super().__init__() self._licenses: Set[str] = set() self.combination: Optional[str] = None self.file: Optional[str] = None def __iter__(self) -> Iterator[str]: return iter(self._licenses) def add(self, license_type: str) -> "PortLicense": self._licenses.add(license_type) return self def generate(self) -> Iterable[Tuple[str, Iterable[str]]]: yield ("LICENSE", sorted(self._licenses)) if self.combination is not None: yield ("LICENSE_COMB", (self.combination,)) if self.file is not None: yield ("LICENSE_FILE", (self.file,)) def load(self, variables: MakeDict) -> None: if "LICENSE" in variables: for license_type in variables.pop("LICENSE"): self.add(license_type) self.combination = variables.pop_value("LICENSE_COMB", default=None) self.file = variables.pop_value("LICENSE_FILE", default=None) class PortDepends(PortObject): # pylint: disable=too-few-public-methods class Collection(object): def __init__(self, name: str) -> None: self.name = name self._depends: List[Dependency] = [] def __iter__(self) -> Iterator[Dependency]: return iter(self._depends) def add(self, dependency: Dependency) -> None: if dependency not in self._depends: self._depends.append(dependency) else: raise KeyError("%s: dependency '%s' already registered" % (self.name, dependency)) def __init__(self) -> None: super().__init__() self._depends: List[PortDepends.Collection] = [] self.build = self._make_depends("BUILD_DEPENDS") self.lib = self._make_depends("LIB_DEPENDS") self.run = self._make_depends("RUN_DEPENDS") self.test = self._make_depends("TEST_DEPENDS") def _make_depends(self, name: str,) -> "PortDepends.Collection": depends = PortDepends.Collection(name) self._depends.append(depends) return depends def generate(self) -> Iterable[Tuple[str, Iterable[str]]]: return ((i.name, (str(d) + "\n" for d in sorted(i))) for i in self._depends if any(i)) def load(self, variables: MakeDict) -> None: for depends in self._depends: for depend in variables.pop(depends.name, default=[]): depends.add(Dependency.create(depend)) class PortBroken(PortObject): class Category(object): def __init__(self, arch: str = None, opsys: str = None, osrel: str = None) -> None: self.arch = arch self.opsys = opsys self.osrel = osrel def __eq__(self, other: object) -> bool: if isinstance(other, PortBroken.Category): return self.arch == other.arch and self.opsys == other.opsys and self.osrel == other.osrel return False def __hash__(self) -> int: return hash(str(self)) def __str__(self) -> str: subcat: List[str] = [] if self.opsys is not None: subcat.append(self.opsys) if self.osrel is not None: subcat.append(self.osrel) if self.arch is not None: subcat.append(self.arch) elif self.arch is not None: subcat.append(self.arch) if subcat: return "BROKEN_" + "_".join(subcat) else: return "BROKEN" @staticmethod def create(makevar: str) -> "PortBroken.Category": subcat = makevar.split("_")[1:] arch = None opsys = None osrel = None if len(subcat) > 1: opsys = subcat[0] osrel = subcat[1] if len(subcat) == 3: arch = subcat[2] elif len(subcat) == 1: if subcat[0] == "FreeBSD": opsys = subcat[0] else: arch = subcat[0] return PortBroken.Category(arch, opsys, osrel) def __init__(self) -> None: super().__init__() self.reasons: Dict[PortBroken.Category, str] = {} def generate(self) -> Iterable[Tuple[str, Iterable[str]]]: broken: Dict[str, str] = {} for category, reason in self.reasons.items(): broken[str(category)] = reason for category_name in sorted(broken.keys()): yield (category_name, (broken[category_name],)) def load(self, variables: MakeDict) -> None: for variable in variables.variables: if variable.startswith("BROKEN"): self.reasons[PortBroken.Category.create(variable)] = " ".join(variables.pop(variable)) class PortUses(PortObject): def __init__(self) -> None: super().__init__() self._uses: Dict[type, Uses] = {} def __contains__(self, item: Union[type, str]) -> bool: if isinstance(item, str): item = Uses.get(item) return item in self._uses def __getitem__(self, item: Union[type, str]) -> Uses: if isinstance(item, str): item = Uses.get(item) if item not in self._uses: self._uses[item] = item() return self._uses[item] def get_variable(self, name: str) -> Optional[List[str]]: values = [v for v in (u.get_variable(name) for u in list(self._uses.values())) if v is not None] if len(values) > 1: raise PortError("PortUses: multiple uses define value for variable '%s'" % name) return values[0] if values else None def generate(self) -> Iterable[Tuple[str, Iterable[str]]]: yield ("USES", (str(u) for u in sorted(self._uses.values()))) for uses in sorted(self._uses.values()): yield from uses.generate() def load(self, variables: MakeDict) -> None: for use in variables.pop("USES", default=[]): uses_var = use.split(":") assert 1 <= len(uses_var) <= 2 name = uses_var[0] args = uses_var[1].split(",") if len(uses_var) == 2 else [] uses = self[name] for arg in args: uses.add(arg) uses.load(variables) class PortError(Exception): pass class PortStub(object): def __init__(self, category: str, name: str, portdir: Optional[Path] = None) -> None: self.category = category self.name = name self._portdir = portdir def __repr__(self) -> str: return "<Port: %s>" % self.origin @property def portdir(self) -> Path: if self._portdir is None: from ports.core.ports import Ports return Ports.dir / self.category / self.name return self._portdir @property def origin(self) -> str: return "%s/%s" % (self.category, self.name) class Port(PortStub): portname = PortVar(1, 1, "PORTNAME") portversion = PortVar(1, 2, "PORTVERSION") distversion = PortVar(1, 4, "DISTVERSION") portrevision = PortVar(1, 6, "PORTREVISION") categories = PortVarList(1, 8, "CATEGORIES") pkgnameprefix = PortVar(1, 12, "PKGNAMEPREFIX") distname = PortVar(1, 14, "DISTNAME") maintainer = PortVar(2, 1, "MAINTAINER") comment = PortVar(2, 2, "COMMENT") license = PortObj(3, PortLicense) depends = PortObj(4, PortDepends) broken = PortObj(5, PortBroken) uses = PortObj(6, PortUses) no_arch = PortVar(7, 1, "NO_ARCH") def __init__(self, category: str, name: str, portdir: Optional[Path]) -> None: self._values: Dict[PortValue, Union[str, List[str], PortObject]] = {} self.categories = [category] super().__init__(category, name, portdir) self.changelog: Dict[str, List[str]] = {} self.maintainer = Platform.address self.portname = name self.description: Optional[str] = None self.website: Optional[str] = None @property # type: ignore def category(self) -> str: # type: ignore return self.categories[0] @category.setter def category(self, value: str) -> None: # type: ignore categories = self.categories if value in categories: categories.remove(value) self.categories = [value] + categories @categories.setter def categories(self, categories: List[str]) -> List[str]: if not categories: raise PortError("Port: invalid categories, must start with: %s" % self.category) return categories @property def descr(self) -> Path: return self.portdir / "pkg-descr" @property def pkgname(self) -> str: return "%s%s" % (self.pkgnameprefix or "", self.portname) @property def version(self) -> str: if self.distversion is not None: return self.distversion assert self.portversion is not None return self.portversion @staticmethod def _gen_footer(makefile: StringIO) -> None: makefile.write("\n.include <bsd.port.mk>\n") def _gen_header(self, makefile: StringIO) -> None: port_makefile = self.portdir / "Makefile" metadata: List[str] = [] if port_makefile.exists(): with port_makefile.open("rU") as makefile_file: for line in iter(makefile_file.readline, ""): if line.startswith("# Created by") or line.startswith("# $FreeBSD"): metadata.append(line) if peek(makefile_file, 1) != "#": break else: metadata.append("# $FreeBSD$\n") makefile.writelines(metadata) def _gen_sections(self, makefile: StringIO) -> None: for _, items in groupby(sorted(list(self._values.items()), key=lambda k: k[0]), lambda k: k[0].section): values = [j for i in items for j in i[0].generate(i[1])] if not values: continue tabs = max(2, int(ceil(max(len(n[0]) for n in values) + 1.0) / Platform.tab_width)) makefile.write("\n") for name, value in values: needed_tabs = tabs - int(floor((len(name) + 1.0) / Platform.tab_width)) makefile.write("%s=%s" % (name, "\t" * needed_tabs)) width = tabs * Platform.tab_width first_line = True for i in value: next_line = i[-1] == "\n" i = i.rstrip("\n") if not first_line: if width == -1 or width + len(i) + 1 > Platform.page_width: makefile.write(" \\\n%s" % ("\t" * tabs)) width = tabs * Platform.tab_width else: makefile.write(" ") width += 1 first_line = False makefile.write(i) if next_line: width = -1 else: width += len(i) makefile.write("\n") def _gen_distinfo(self) -> None: make(self.portdir, 'makesum') def _gen_descr(self) -> None: if self.description is None: if self.descr.exists(): self.descr.unlink() else: with self.descr.open("w") as descr: width = 0 for word in self.description.split(): next_line = word[-1] == "\n" word = word.rstrip("\n") if width == -1 or width + len(word) + 1 > 79: descr.write("\n") width = 0 elif width: descr.write(" ") width += 1 descr.write(word) if next_line: width = -1 else: width += len(word) descr.write("\n") if self.website is not None: descr.write("\nWWW: %s\n" % self.website) def _gen_plist(self) -> None: raise NotImplementedError("Generic Port does not know how to create pkg-plist") def generate(self) -> None: makefile = StringIO() self._gen_header(makefile) self._gen_sections(makefile) self._gen_footer(makefile) with open(self.portdir / "Makefile", "w") as portmakefile: portmakefile.write(makefile.getvalue()) self._gen_distinfo() self._gen_descr() self._gen_plist() def load(self) -> None: variables = make_vars(self.portdir) bases = [type(self)] i = 0 while i < len(bases): bases.extend(j for j in bases[i].__bases__ if j not in bases) for var in list(vars(bases[i]).values()): if isinstance(var, PortValue): var.load(self, variables) i += 1 if not variables.all_popped: # TODO: remove once all R-cran ports have been verified print("Unloaded variables for %s:" % self.name, variables) assert variables.all_popped if self.descr.exists(): with self.descr.open() as descr: lines = descr.readlines() if lines[-1].startswith("WWW"): self.website = lines[-1].split()[1] lines.pop() if lines[-1] == "\n": lines.pop() self.description = " ".join(l.strip() for l in lines) def del_value(self, port_value: PortValue) -> None: if port_value in self._values: del self._values[port_value] def get_value(self, port_value: PortValue) -> Union[str, List[str], PortObject]: return self._values[port_value] def has_value(self, port_value: PortValue) -> bool: return port_value in self._values def set_value(self, port_value: PortValue, value: Union[str, List[str], PortObject]) -> None: self._values[port_value] = value
2.453125
2
jumpscale/tools/wireguard/__init__.py
zaibon/js-sdk
13
12784932
<reponame>zaibon/js-sdk import binascii from nacl import public from nacl.encoding import Base64Encoder from nacl.signing import VerifyKey def generate_zos_keys(node_public_key): """Generate a new set of wireguard key pair and encrypt the private side using the public key of a 0-OS node. Args: node_public_key (str): hex encoded public key of 0-OS node. This is the format you find in the explorer Returns: tuple: tuple containing 3 fields (private key, private key encrypted, public key) """ wg_private = public.PrivateKey.generate() wg_public = wg_private.public_key wg_private_base64 = wg_private.encode(Base64Encoder) wg_public_base64 = wg_public.encode(Base64Encoder) node_public_bin = binascii.unhexlify(node_public_key) node_public = VerifyKey(node_public_bin) box = public.SealedBox(node_public.to_curve25519_public_key()) wg_private_encrypted = box.encrypt(wg_private_base64) wg_private_encrypted_hex = binascii.hexlify(wg_private_encrypted) return (wg_private_base64.decode(), wg_private_encrypted_hex.decode(), wg_public_base64.decode()) def generate_key_pair(): wg_private = public.PrivateKey.generate() wg_public = wg_private.public_key wg_private_base64 = wg_private.encode(Base64Encoder) wg_public_base64 = wg_public.encode(Base64Encoder) return wg_private_base64, wg_public_base64
2.21875
2
6 kyu/Madhav array.py
mwk0408/codewars_solutions
6
12784933
def is_madhav_array(arr): if len(arr)<=1: return False low=1 high=3 increment=3 compare=arr[0] while high<=len(arr): if sum(arr[low:high])!=compare: return False low, high=high, high+increment increment+=1 return True if (high-increment+1)==len(arr) else False
3.609375
4
stacks/constructs/api.py
juliuskrahn-com/backend
0
12784934
<reponame>juliuskrahn-com/backend import aws_cdk.core import aws_cdk.aws_apigateway as apigw import aws_cdk.aws_lambda as lambda_ import aws_cdk.aws_dynamodb as dynamodb import aws_cdk.aws_secretsmanager as sm import aws_cdk.aws_logs as logs from .. import Environment from stacks.stack_utils import to_camel_case class Api(aws_cdk.core.Construct): def __init__( self, scope: aws_cdk.core.Construct, construct_id: str, environment: object = Environment.PRODUCTION): super().__init__(scope, construct_id) # Integration dependencies # have to be created before creating the RestApi # because the RestApi 'default integration' also has to be created at this time # # (applied to integrations auto., accessed by integration construct via scope) self.table_article_name = construct_id + "Article" self.table_comment_name = construct_id + "Comment" self.lambda_layers = [ lambda_.LayerVersion( self, "MiddlewareLayer", code=lambda_.Code.from_asset("build/middleware_layer"), compatible_runtimes=[lambda_.Runtime.PYTHON_3_8] ), lambda_.LayerVersion( self, "VendorLayer", code=lambda_.Code.from_asset("build/vendor_layer"), compatible_runtimes=[lambda_.Runtime.PYTHON_3_8] ) ] self.secret_admin_key = sm.Secret.from_secret_arn( # read access granted in integration construct self, "blog-backend-admin-key", "arn:aws:secretsmanager:us-east-1:473883619336:secret:blog-backend-admin-key-bctwKR" ) # (applied to integrations individually) table_article = dynamodb.Table( self, "ArticleTable", table_name=self.table_article_name, partition_key=dynamodb.Attribute(name="urlTitle", type=dynamodb.AttributeType.STRING), billing_mode=dynamodb.BillingMode.PAY_PER_REQUEST, removal_policy=aws_cdk.core.RemovalPolicy.RETAIN if environment is Environment.PRODUCTION else aws_cdk.core.RemovalPolicy.DESTROY, point_in_time_recovery=environment is Environment.PRODUCTION ) table_article.add_global_secondary_index( index_name="tagIndex", partition_key=dynamodb.Attribute(name="tag", type=dynamodb.AttributeType.STRING), sort_key=dynamodb.Attribute(name="published", type=dynamodb.AttributeType.STRING), projection_type=dynamodb.ProjectionType.INCLUDE, non_key_attributes=["urlTitle", "title", "description"] ) table_comment = dynamodb.Table( self, "CommentTable", table_name=self.table_comment_name, partition_key=dynamodb.Attribute(name="articleUrlTitle", type=dynamodb.AttributeType.STRING), sort_key=dynamodb.Attribute(name="id", type=dynamodb.AttributeType.STRING), billing_mode=dynamodb.BillingMode.PAY_PER_REQUEST, removal_policy=aws_cdk.core.RemovalPolicy.RETAIN if environment is Environment.PRODUCTION else aws_cdk.core.RemovalPolicy.DESTROY, ) # RestApi self.instance = apigw.RestApi( self, construct_id + "I", # I -> Instance default_cors_preflight_options=apigw.CorsOptions( allow_origins=apigw.Cors.ALL_ORIGINS, allow_methods=apigw.Cors.ALL_METHODS, ), default_integration=APIIntegration(self, "default"), deploy_options=apigw.StageOptions( throttling_rate_limit=256, throttling_burst_limit=64, # concurrent ), endpoint_configuration=apigw.EndpointConfiguration(types=[apigw.EndpointType.REGIONAL]), ) # Endpoints self.instance.root.add_proxy() # /article resource_article_collection = self.instance.root.add_resource(path_part="article") integration_article_get_collection = APIIntegration(self, "article_get_collection") table_article.grant_read_data(integration_article_get_collection.lambda_function) resource_article_collection.add_method("GET", integration=integration_article_get_collection) integration_article_create = APIIntegration(self, "article_create") table_article.grant_read_write_data(integration_article_create.lambda_function) resource_article_collection.add_method("POST", integration=integration_article_create) # /article/{} resource_article = resource_article_collection.add_resource(path_part="{articleUrlTitle}") integration_article_get = APIIntegration(self, "article_get") table_article.grant_read_data(integration_article_get.lambda_function) resource_article.add_method("GET", integration=integration_article_get) integration_article_update = APIIntegration(self, "article_update") table_article.grant_read_write_data(integration_article_update.lambda_function) resource_article.add_method("PATCH", integration=integration_article_update) integration_article_delete = APIIntegration(self, "article_delete") table_article.grant_read_write_data(integration_article_delete.lambda_function) resource_article.add_method("DELETE", integration=integration_article_delete) # /article/{}/comments resource_article_comment_collection = resource_article.add_resource(path_part="comments") integration_comment_get_collection = APIIntegration(self, "comment_get_collection") table_comment.grant_read_data(integration_comment_get_collection.lambda_function) resource_article_comment_collection.add_method("GET", integration=integration_comment_get_collection) integration_comment_create = APIIntegration(self, "comment_create") table_comment.grant_read_write_data(integration_comment_create.lambda_function) resource_article_comment_collection.add_method("POST", integration=integration_comment_create) # /article/{}/comments/{} resource_article_comment = resource_article_comment_collection.add_resource(path_part="{commentId}") integration_comment_delete = APIIntegration(self, "comment_delete") table_comment.grant_read_write_data(integration_comment_delete.lambda_function) resource_article_comment.add_method("DELETE", integration=integration_comment_delete) # /article/{}/comments/{}/resps resource_article_comment_resp_collection = resource_article_comment.add_resource(path_part="resps") integration_resp_create = APIIntegration(self, "resp_create") table_comment.grant_read_write_data(integration_resp_create.lambda_function) resource_article_comment_resp_collection.add_method("POST", integration=integration_resp_create) # /article/{}/comments/{}/resps/{} resource_article_comment_resp = resource_article_comment_resp_collection.add_resource(path_part="{respId}") integration_resp_delete = APIIntegration(self, "resp_delete") table_comment.grant_read_write_data(integration_resp_delete.lambda_function) resource_article_comment_resp.add_method("DELETE", integration=integration_resp_delete) # /tag resource_tag_collection = self.instance.root.add_resource(path_part="tag") integration_tag_get_collection = APIIntegration(self, "tag_get_collection") table_article.grant_read_data(integration_tag_get_collection.lambda_function) resource_tag_collection.add_method("GET", integration=integration_tag_get_collection) # /tag/{} resource_tag = resource_tag_collection.add_resource(path_part="{tagName}") integration_tag_get_article_collection = APIIntegration(self, "tag_get_article_collection") table_article.grant_read_data(integration_tag_get_article_collection.lambda_function) resource_tag.add_method("GET", integration_tag_get_article_collection) # /admin-login resource_admin_login = self.instance.root.add_resource(path_part="admin-login") integration_admin_login = APIIntegration(self, "admin_login") resource_admin_login.add_method("POST", integration=integration_admin_login) class APIIntegration(apigw.LambdaIntegration): def __init__(self, scope: Api, name: str): self.lambda_function = lambda_.Function( scope, f"{to_camel_case(name)}Fn", runtime=lambda_.Runtime.PYTHON_3_8, handler=f"lambda_function.handler", code=lambda_.Code.from_asset(f"backend/lambda_functions/{name}"), environment={ "ArticleTableName": scope.table_article_name, "CommentTableName": scope.table_comment_name }, memory_size=256, log_retention=logs.RetentionDays.FIVE_DAYS, layers=scope.lambda_layers ) super().__init__( handler=self.lambda_function ) scope.secret_admin_key.grant_read(self.lambda_function)
1.851563
2
webapp/main/migrations/0009_auto_20140321_1349.py
joepetrini/bike-counter
5
12784935
<filename>webapp/main/migrations/0009_auto_20140321_1349.py # encoding: utf8 from django.db import models, migrations import django.utils.timezone import model_utils.fields class Migration(migrations.Migration): dependencies = [ ('main', '0008_survey_value'), ] operations = [ migrations.CreateModel( name='SurveyValue', fields=[ (u'id', models.AutoField(verbose_name=u'ID', serialize=False, auto_created=True, primary_key=True)), ('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, verbose_name=u'created', editable=False)), ('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, verbose_name=u'modified', editable=False)), ('survey', models.ForeignKey(to='main.Survey', to_field=u'id')), ('metric', models.ForeignKey(to='main.Metric', to_field=u'id')), ('value', models.ForeignKey(to='main.Value', to_field=u'id')), ], options={ u'unique_together': set([('survey', 'metric')]), u'db_table': 'survey_value', }, bases=(models.Model,), ), migrations.AddField( model_name='location', name='type', field=models.CharField(default='intersection', max_length=20, choices=[('intersection', 'Intersection'), ('trail', 'Trail'), ('bridge', 'Bridge')]), preserve_default=True, ), ]
1.710938
2
tests/test_extractor.py
Edinburgh-Genome-Foundry/easy_dna
6
12784936
import os import pytest import numpy as np import easy_dna as dna def test_extract_from_input(tmpdir): parts = [] for i in range(10): part_id = "part_%s" % ("ABCDEFGHAB"[i]) # id is nonunique on purpose alias = "part_%d" % i # alias is unique part_length = np.random.randint(1000, 1500) sequence = dna.random_dna_sequence(part_length) record = dna.sequence_to_biopython_record(sequence, id=part_id) record.name = part_id dna.annotate_record(record, label=part_id, alias=alias) parts.append(record) constructs = [] for position_of_last_part in [8, 10]: # 8: parts A-H; 10: parts A--H and A, B again construct_record = sum(parts[1:position_of_last_part], parts[0]) construct_record.id = "construct_%02d" % (position_of_last_part) construct_record.name = construct_record.id constructs.append(construct_record) target_dir = os.path.join(str(tmpdir), "test_dir") records_dict = dna.extract_from_input( construct_list=constructs, output_path=target_dir ) assert records_dict["processed_report"]["shared_with"].count() == 16 with pytest.raises(TypeError): dna.extract_from_input(output_path=target_dir)
2.1875
2
backend/apps/workOrder/migrations/0006_auto_20211130_0131.py
jorgejimenez98/auditorio-django-react
0
12784937
# Generated by Django 3.2.7 on 2021-11-30 00:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('workOrder', '0005_remove_workorder_forg'), ] operations = [ migrations.AddField( model_name='workorder', name='FORG', field=models.BooleanField(default=False), ), migrations.AddField( model_name='workorder', name='auditType', field=models.CharField(default='', max_length=256), ), ]
1.53125
2
benchmarks/query_benchmarks/query_delete_related/benchmark.py
deepakdinesh1123/actions
0
12784938
from ...utils import bench_setup from .models import Artist, Song class QueryDeleteRel: def setup(self): bench_setup(migrate=True) self.a1 = Artist.objects.create(name="abc") self.a2 = Artist.objects.create(name="abc") self.a3 = Artist.objects.create(name="abc") self.a4 = Artist.objects.create(name="abc") self.a5 = Artist.objects.create(name="abc") self.a6 = Artist.objects.create(name="abc") self.a7 = Artist.objects.create(name="abc") self.a8 = Artist.objects.create(name="abc") self.a9 = Artist.objects.create(name="abc") self.a10 = Artist.objects.create(name="abc") for i in range(10): Song.objects.create(artist=self.a1, name=f"song{i}") Song.objects.create(artist=self.a2, name=f"song{i}") Song.objects.create(artist=self.a3, name=f"song{i}") Song.objects.create(artist=self.a4, name=f"song{i}") Song.objects.create(artist=self.a5, name=f"song{i}") Song.objects.create(artist=self.a6, name=f"song{i}") Song.objects.create(artist=self.a7, name=f"song{i}") Song.objects.create(artist=self.a8, name=f"song{i}") Song.objects.create(artist=self.a9, name=f"song{i}") Song.objects.create(artist=self.a10, name=f"song{i}") def time_query_del_rel(self): Artist.objects.all().delete()
2.515625
3
src/posts/migrations/0003_auto_20170327_1306.py
ChrisMunene/Blog
0
12784939
<filename>src/posts/migrations/0003_auto_20170327_1306.py # -*- coding: utf-8 -*- # Generated by Django 1.9 on 2017-03-27 10:06 from __future__ import unicode_literals import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('posts', '0002_auto_20170326_1643'), ] operations = [ migrations.AlterField( model_name='post', name='publish', field=models.DateField(default=datetime.datetime(2017, 3, 27, 10, 6, 44, 221000, tzinfo=utc)), ), ]
1.539063
2
__init__.py
daqbroker/daqbrokerServer
0
12784940
from daqbrokerServer.daqbroker import Server
1.054688
1
examples/text_scroll.py
paddywwoof/python-sense-hat
104
12784941
<reponame>paddywwoof/python-sense-hat<gh_stars>100-1000 #!/usr/bin/python from sense_hat import SenseHat sense = SenseHat() sense.set_rotation(180) red = (255, 0, 0) sense.show_message("One small step for Pi!", text_colour=red)
1.992188
2
python/athena/__init__.py
sj1104/Het
2
12784942
<gh_stars>1-10 from __future__ import absolute_import from .gpu_links import * from .gpu_ops import * from .stream import *
1.078125
1
blog/admin.py
abhishekBhartiProjects/learnLanguageDjango
0
12784943
from django.contrib import admin # Register your models here. from blog.models import Post admin.site.register(Post)
1.289063
1
pyresourcepool/pyresourcepool.py
bensonrodney/pyresourcepool
0
12784944
#!/usr/bin/env python3 """ Basic python object resource pool. """ import copy import time import traceback from threading import RLock, Thread from contextlib import contextmanager # Callback attribute name when adding a return callback to an object CALLBACK_ATTRIBUTE = 'resource_pool_return_callback' class AllResourcesRemoved(Exception): """ Raised when all recources in the pool have been removed. """ class ObjectAlreadyInPool(Exception): """ Raised when adding an object that is already in the pool. """ class ObjectNotInPool(Exception): """ Raise when operations are performed for an object that is not part of the resource pool. """ class ResourcePool(object): def __init__(self, objects, return_callback=None): """ Instantiate with a list of objects you want in the resource pool. 'return_callback' is a function or method that can be used to perform some action on an object before it is returned to the pool but without making the process that returned the object needing to wait for that function to be run. This is useful for performing a time consumeing "factory reset" (or similar) on an object before it is returned to the pool but without holding up the process that used the resource. The callback function, if specified should just take the object as an argument and success is measured by no exceptions being raised. If an exception is raised by the callback then the object will be removed from the pool rather than being returned as an available resource. """ # used to track the original pool of resources, not used yet self._objects = objects self._removed = {} for o in self._objects: self._removed[id(o)] = False # create another list with the same object references: # copy.copy() only copies the references so the two lists are # separate lists that point to the same objects self._available = copy.copy(objects) self._lock = RLock() self._return_callback = return_callback def all_removed(self): return all(self._removed[id(o)] for o in self._objects) def _get_active(self): """ returns the list of objects that haven't been removed """ return [o for o in self._objects if not self._removed[id(o)]] active = property(_get_active) def _get_active_size(self): return len(self.active) active_size = property(_get_active_size) def add(self, obj): """ Adds new objects to the pool, 'obj' can be a single object or a list of objects and new objects are added to the end of the available resources. """ if type(obj) is not list: obj = [obj] with self._lock: for o in obj: if o in self._objects: raise ObjectAlreadyInPool("Object is already in the pool.") self._objects.append(o) self._available.append(o) self._removed[id(o)] = False def remove(self, obj): """ Removes an object from the pool so that it can't be handed out as an available resource again. If the object passed in is not in the pool an ObjectNotInPool exception is raised. """ with self._lock: if obj not in self._objects: raise ObjectNotInPool("Object is not in the list of pool objects.") # mark the resource as deleted self._removed[id(obj)] = True # if it is currently in the available set, remove it self._available = [o for o in self._available if o is not obj] if self.all_removed(): raise AllResourcesRemoved( "All resources have been removed. " "Further use of the resource pool is void.") def get_resource_unmanaged(self, block=True): """ Gets a resource from the pool but in an "unmanaged" fashion. It is up to you to return the resource to the pool by calling return_resource(). Return value is an object from the pool but see the note below. NOTE: You should consider using get_resource() instead in a 'with' statement as this will handle returning the resource automatically. eg: with pool.get_resrouce() as r: do_stuff(r) The resource will be automatically returned upon exiting the 'with' block. """ # if the pool is empty, wait for an object to be returned to the # pool obj = None while True: with self._lock: if self.all_removed(): raise AllResourcesRemoved( "All resources have been removed. Further use of " "the resource pool is void unless new resources are" "added.") if self._available: obj = self._available.pop(0) if obj or (not block): break time.sleep(0.1) return obj def return_resource(self, obj, force=False): """ Returns a resource to the pool but if: - obj has a property named 'resource_pool_return_callback' and it is not None OR - self._return_callback is not None then start a thread that calls that callback before returning the resource to the pool. This allows the calling process to not have to wait for that pre-return-to-pool operation (eg. factory reset of a device that is being tested). NOTE: the callback added as a property to the object gets precedence over the one specified for the pool. NOTE: the callback property is stripped from the obj during the return process. """ if (not obj) or (obj not in self._objects): raise ObjectNotInPool("Object {} not a member of the pool".format(str(obj))) if not force: callback = None if hasattr(obj, CALLBACK_ATTRIBUTE) and \ getattr(obj, CALLBACK_ATTRIBUTE) is not None: callback = getattr(obj, CALLBACK_ATTRIBUTE) # strip the callback attribute from the object delattr(obj, CALLBACK_ATTRIBUTE) elif self._return_callback: callback = self._return_callback if callback: thread = Thread(target=self._run_return_callback, args=(obj, callback)) thread.setName("return_obj_{}".format(id(obj))) thread.start() return with self._lock: if not self._removed[id(obj)]: self._available.append(obj) def _run_return_callback(self, obj, callback): """ This should only really be called by self.return_resource() and is intended to be run in a thread to perform some pre-returnn-to-pool process without the process that used the resource having to wait for that operation to occur. If running the callback raises an exception the resource will be removed from the pool. """ try: callback(obj) self.return_resource(obj, force=True) except Exception: traceback.print_exc() self.remove(obj) @contextmanager def get_resource(self, block=True): """ Intended to be used in a 'with' statement or a contextlib.ExitStack. Returns an object from the pool and waits if necessary. If 'block' is False, then None is returned if the pool has been depleted. Example useage: with get_resrouce() as r: do_stuff(r) # at this point, outside the with block, the resource has # been returned to the pool. """ obj = None try: obj = self.get_resource_unmanaged(block=block) yield obj finally: if obj: self.return_resource(obj)
3.625
4
src/scripts/rPi/main.py
MarkintoshZ/Self-Driving-Pi
2
12784945
<filename>src/scripts/rPi/main.py import numpy as np from PIL import Image import os from os import system as sys from keras.models import load_model import keras from replay import ExperienceReplay import random import time import cv2 import drive # Get a reference to webcam #0 (the default one) video_capture = cv2.VideoCapture(0) steering_angle = 0 steering_angles = [-0.45, 0.45] encoder = load_model('../models/80-2 Encoder') exp_replay = ExperienceReplay() new_model = False batch_size = 64 skip_learn = 1 if new_model: epsilon = 0.5 epsilon_decrease = 0.1 model = keras.Sequential() model.add(keras.layers.Dense(2, activation='selu', input_dim=2)) model.add(keras.layers.Dense(8, activation='selu')) model.add(keras.layers.Dense(2)) model.compile('adam', loss='mse', metrics=['mse']) else: epsilon = 0 epsilon_decrease = 0 print("Loading model") model = keras.models.load_model('../Models/new.h5') model.compile('adam', loss='mse', metrics=['mse']) def get_new_state(): # Grab a single frame of video ret, frame = video_capture.read() # print(frame.shape) # while size(frame[0][0]) == 0: # print('No camera data check connection') frame = frame[200:, 160: 480] image = cv2.resize(frame, (10, 8), Image.ANTIALIAS) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) data = np.asarray(image).ravel() data = data / 255 data = encoder.predict(data.reshape(1, -1)) input_t = data.reshape((-1)) reward = 0 game_over = False start = True return input_t, reward, game_over, start if __name__ == '__main__': e = 0 # connected to unity try: while True: e += 1 print("running") start = False game_over = False loss = 0. counter = 0 # get initial input while not start: input_t, reward, game_over, start = get_new_state() time.sleep(0.05) continue print('Starting New Session') while not game_over: counter += 1 input_tm1 = input_t # get next action if np.random.rand() <= epsilon: action = random.randint(0, 1) else: q_value = model.predict(np.expand_dims(input_tm1, 0)) if q_value[0][0] == np.nan: print("nan in model output") break action = np.argmax(q_value[0]) print(action) # apply action, get rewards and new state print(action) # send_msg(str(steering_angles[action])) if action: drive.right() else: drive.left() input_t, reward, game_over, start = get_new_state() # store experience exp_replay.remember([input_tm1, action, reward, input_t], game_over) # if counter % skip_learn == 0: # print('training') # inputs, targets = exp_replay.get_batch(model, batch_size) # loss = np.array(model.train_on_batch(inputs, targets)).sum() print('training') for _ in range(25): inputs, targets = exp_replay.get_batch(model, batch_size) loss = np.array(model.train_on_batch(inputs, targets)).sum() print("Epoch {:03d} | Loss {:.4f} | Epsilon {:.3f}".format(e, loss, epsilon)) epsilon -= epsilon_decrease except KeyboardInterrupt: name = input("\nenter file name") if name != 'no': model.save(name)
2.65625
3
tests/ibllib/test_atlas.py
SebastianBruijns/ibllib
0
12784946
<reponame>SebastianBruijns/ibllib import unittest import numpy as np from ibllib.atlas import BrainCoordinates, sph2cart, cart2sph, Trajectory, Insertion class TestInsertion(unittest.TestCase): def test_init(self): d = { 'label': 'probe00', 'x': 544.0, 'y': 1285.0, 'z': 0.0, 'phi': 0.0, 'theta': 5.0, 'depth': 4501.0, 'beta': 0.0} ins = Insertion.from_dict(d) # eval the entry point, should be super close dxyz = ins.trajectory.eval_x(d['x'] / 1e6) - np.array((d['x'], d['y'], d['z'])) / 1e6 self.assertTrue(np.all(np.isclose(dxyz, 0))) # test methods tip/entry/xyz dd = np.sum(np.sqrt(np.diff(ins.xyz, axis=0) ** 2)) - d['depth'] / 1e6 self.assertLess(abs(dd), 0.01) class TestTrajectory(unittest.TestCase): def test_eval_trajectory(self): line = Trajectory.fit(np.array([[0.3, 0.3, 0.4], [0, 0, 1]])) # test integer self.assertTrue(np.all(np.isclose(line.eval_y(0), np.array([0, 0, 1])))) # test float self.assertTrue(np.all(np.isclose(line.eval_y(0.0), np.array([0, 0, 1])))) # test list self.assertTrue(np.all(np.isclose(line.eval_y([0.0, 0.0]), np.array([0, 0, 1])))) # test array arr = np.array([0.0, 0.0])[..., np.newaxis] self.assertTrue(np.all(np.isclose(line.eval_y(arr), np.array([0, 0, 1])))) # test void direction vertical = Trajectory.fit(np.array([[0, 0, 0], [0, 0, 1]])) self.assertTrue(np.all(np.isnan(vertical.eval_x(5)))) def test_trajectory(self): np.random.seed(42) xyz = np.zeros([120, 3]) xyz[:, 0] = np.linspace(1, 9, 120) xyz[:, 1] = np.linspace(2, 4, 120) xyz[:, 2] = np.linspace(-2, 3, 120) xyz += np.random.normal(size=xyz.shape) * 0.4 traj = Trajectory.fit(xyz) # import matplotlib.pyplot as plt # import mpl_toolkits.mplot3d as m3d # ax = m3d.Axes3D(plt.figure()) # ax.scatter3D(*xyz.T) # ax.plot3D(*insertion.eval_x(np.array([0, 10])).T) # ax.plot3D(*insertion.eval_y(xyz[:, 1]).T, 'r') d = xyz[:, 0] - traj.eval_y(xyz[:, 1])[:, 0] self.assertTrue(np.abs(np.mean(d)) < 0.001) d = xyz[:, 0] - traj.eval_y(xyz[:, 1])[:, 0] self.assertTrue(np.abs(np.mean(d)) < 0.001) d = xyz[:, 1] - traj.eval_z(xyz[:, 2])[:, 1] self.assertTrue(np.abs(np.mean(d)) < 0.001) def test_exit_volume(self): bc = BrainCoordinates((11, 13, 15), xyz0=(-5, -6, -7)) # test arbitrary line line = Trajectory.fit(np.array([[0.1, 0.1, 0], [0, 0, 1]])) epoints = Trajectory.exit_points(line, bc) self.assertTrue(np.all(np.isclose(epoints, np.array([[0.8, 0.8, -7.], [-0.6, -0.6, 7.]])))) # test apline hline = Trajectory.fit(np.array([[0, 0, 0], [0, 1, 0]])) epoints = Trajectory.exit_points(hline, bc) self.assertTrue(np.all(np.isclose(epoints, np.array([[0, -6, 0], [0, 6, 0]])))) # test mlline hline = Trajectory.fit(np.array([[0, 0, 0], [1, 0, 0]])) epoints = Trajectory.exit_points(hline, bc) self.assertTrue(np.all(np.isclose(epoints, np.array([[-5, 0, 0], [5, 0, 0]])))) # test vertical line vline = Trajectory.fit(np.array([[0, 0, 0], [0, 0, 1]])) epoints = Trajectory.exit_points(vline, bc) self.assertTrue(np.all(np.isclose(epoints, np.array([[0, 0, -7.], [0, 0, 7.]])))) class TestsCoordinatesSimples(unittest.TestCase): def test_brain_coordinates(self): vshape = (6, 7, 8) bc = BrainCoordinates(vshape) self.assertTrue(bc.i2x(0) == 0) self.assertTrue(bc.i2x(6) == 6) self.assertTrue(bc.nx == 6) self.assertTrue(bc.ny == 7) self.assertTrue(bc.nz == 8) # test array functions in_out = [([6, 7, 8], np.array([6, 7, 8])), (np.array([6, 7, 8]), np.array([6, 7, 8])), (np.array([[6, 7, 8], [6, 7, 8]]), np.array([[6, 7, 8], [6, 7, 8]])), ] for io in in_out: self.assertTrue(np.all(bc.xyz2i(io[0]) == io[1])) self.assertTrue(np.all(bc.i2xyz(io[1]) == io[0])) def test_reverse_directions(self): bc = BrainCoordinates(nxyz=(6, 7, 8), xyz0=[50, 60, 70], dxyz=[-10, -10, -10]) self.assertTrue(bc.i2x(0) == 50 and bc.i2x(bc.nx - 1) == 0) self.assertTrue(bc.i2y(0) == 60 and bc.i2y(bc.ny - 1) == 0) self.assertTrue(np.all(bc.i2z(np.array([0, 1])) == np.array([70, 60]))) bc = BrainCoordinates(nxyz=(6, 7, 8), xyz0=[50, 60, 70], dxyz=-10) self.assertTrue(bc.dx == bc.dy == bc.dz == -10) def test_sph2cart_and_back(self): dv = np.array([0, -1, 1, 0, 0, 0, 0, 0, 0]) # z ml = np.array([0, 0, 0, 0, -1, 1, 0, 0, 0]) # x ap = np.array([0, 0, 0, 0, 0, 0, 0, -1, 1]) # y phi = np.array([0., 0., 0., 0., 180., 0., 0., -90., 90.]) theta = np.array([0., 180., 0., 0., 90., 90., 0., 90., 90.]) r = np.array([0., 1, 1, 0., 1, 1, 0., 1, 1]) r_, t_, p_ = cart2sph(ml, ap, dv) assert np.all(np.isclose(r, r_)) assert np.all(np.isclose(phi, p_)) assert np.all(np.isclose(theta, t_)) x_, y_, z_ = sph2cart(r, theta, phi) assert np.all(np.isclose(ml, x_)) assert np.all(np.isclose(ap, y_)) assert np.all(np.isclose(dv, z_)) if __name__ == "__main__": unittest.main(exit=False)
2.65625
3
train.py
pandeydeep9/Attentive-Neural-Process
0
12784947
<gh_stars>0 from tqdm import tqdm from network import LatentModel from tensorboardX import SummaryWriter import torchvision import torch as t from torch.utils.data import DataLoader from preprocess import collate_fn import os def adjust_learning_rate(optimizer, step_num, warmup_step=4000): lr = 0.001 * warmup_step**0.5 * min(step_num * warmup_step**-1.5, step_num**-0.5) for param_group in optimizer.param_groups: param_group['lr'] = lr def main(): train_dataset = torchvision.datasets.MNIST('./data', train=True, download=True,) epochs = 50 model = LatentModel(128).cuda() model.train() optim = t.optim.Adam(model.parameters(), lr=1e-4) writer = SummaryWriter() global_step = 0 for epoch in range(epochs): dloader = DataLoader(train_dataset, batch_size=8, collate_fn=collate_fn, shuffle=True, num_workers=4) pbar = tqdm(dloader) for i, data in enumerate(pbar): global_step += 1 adjust_learning_rate(optim, global_step) context_x, context_y, target_x, target_y = data context_x = context_x.cuda() context_y = context_y.cuda() target_x = target_x.cuda() target_y = target_y.cuda() # pass through the latent model y_pred, kl, loss = model(context_x, context_y, target_x, target_y) # Training step optim.zero_grad() loss.backward(retain_graph=False) optim.step() model.zero_grad() # Logging writer.add_scalars('training_loss',{ 'loss':loss, 'kl':kl.mean(), }, global_step) # save model by each epoch t.save({'model':model.state_dict(), 'optimizer':optim.state_dict()},'May27checkpoint_%d.pth.tar' % (epoch+1)) if __name__ == '__main__': main()
2.171875
2
examples/jsonrpc_server/jsonrpc_server.py
podhmo/toybox
3
12784948
# -*- coding:utf-8 -*- import logging from toybox.simpleapi import run from pyramid_rpc.jsonrpc import jsonrpc_method # please: pip install pyramid_rpc # see also: http://docs.pylonsproject.org/projects/pyramid_rpc/en/latest/jsonrpc.html """ python ./jsonrpc_server.py $ echo '{"id": "1", "params": {"name": "foo"}, "method": "say_hello", "jsonrpc": "2.0"}' | http POST :8080/api { "id": "1", "jsonrpc": "2.0", "result": "hello, foo" } """ @jsonrpc_method(endpoint='api') def say_hello(request, name): return 'hello, {}'.format(name) def includeme(config): config.include('pyramid_rpc.jsonrpc') config.add_jsonrpc_endpoint('api', '/api') if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) run.include(includeme) run(port=8080)
2.5
2
fake_count/templatetags/fake_count_tmpl.py
iterweb/django_fake_counter
1
12784949
<filename>fake_count/templatetags/fake_count_tmpl.py from django.template import Library from random import randint from datetime import datetime from fake_count.app_settings import DAY, NIGHT register = Library() night = 235922861933 morning = 100129385257 current_time = str(datetime.now().time()).replace(':', '').replace('.', '') @register.inclusion_tag('_count.html') def fake_counter(): time = randint(4, 9) if morning < int(current_time): random_num = randint(1, (DAY / 100 * 5)) res = DAY - random_num return { 'counter': str(res), 'time': time, } elif night > int(current_time): random_num = randint(1, (NIGHT / 100 * 5)) res = NIGHT - random_num return { 'counter': str(res), 'time': time, }
2.5
2
Examen/pandas_example - copia.py
jansforte/Inteligencia-Artificial
0
12784950
<filename>Examen/pandas_example - copia.py import pandas as pd Datos = pd.DataFrame({"hora": ["0.29 [0.15-0.48]", "6.586 [0.15-0.48]", "9800 [10-200]", "3 [10-200]", "6.586 [0.15-0.48]"]}) Datos["hora"] = Datos["hora"].str.extract(r"(.*\d\s)") print(Datos)
3.578125
4