max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
src/CassandraLibrary/cassandra_connection_manager.py
SensationS/Robotframework-CassandraLibrary
0
12784651
<filename>src/CassandraLibrary/cassandra_connection_manager.py<gh_stars>0 from cassandra.cluster import Cluster class CassandraConnection(object): """ Connection Manager handles the connection & disconnection to the database. """ def __init__(self): """ Initializes cluster and session to None. """ self.cluster = None self.session = None def connect_to_cassandra(self, keyspaceName, hostslist=''): """ Connect to Cassandra host For example: | Connect To Casssandra | # connect to the cassandra | """ hosts = hostslist.replace(' ', '').split(',') # print hosts self.cluster = Cluster(hosts) self.session = self.cluster.connect(keyspaceName) def disconnect_from_cassandra(self): """ Disconnects from the database. For example: | Disconnect From Cassandra | # disconnects from current connection to the database | """ self.cluster.shutdown()
3.296875
3
tower_cli/cli/action.py
kedark3/tower-cli
363
12784652
<filename>tower_cli/cli/action.py<gh_stars>100-1000 # Copyright 2017, Ansible by Red Hat # <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import click from click.formatting import join_options from tower_cli.conf import SETTINGS_PARMS class ActionSubcommand(click.Command): """A Command subclass that adds support for the concept that invocation without arguments assumes `--help`. This code is adapted by taking code from click.MultiCommand and placing it here, to get just the --help functionality and nothing else. """ def __init__(self, name=None, no_args_is_help=True, **kwargs): self.no_args_is_help = no_args_is_help super(ActionSubcommand, self).__init__(name=name, **kwargs) def parse_args(self, ctx, args): """Parse arguments sent to this command. The code for this method is taken from MultiCommand: https://github.com/mitsuhiko/click/blob/master/click/core.py It is Copyright (c) 2014 by <NAME>. See the license: https://github.com/mitsuhiko/click/blob/master/LICENSE """ if not args and self.no_args_is_help and not ctx.resilient_parsing: click.echo(ctx.get_help()) ctx.exit() return super(ActionSubcommand, self).parse_args(ctx, args) def format_options(self, ctx, formatter): """Monkey-patch click's format_options method to support option categorization. """ field_opts = [] global_opts = [] local_opts = [] other_opts = [] for param in self.params: if param.name in SETTINGS_PARMS: opts = global_opts elif getattr(param, 'help', None) and param.help.startswith('[FIELD]'): opts = field_opts param.help = param.help[len('[FIELD]'):] else: opts = local_opts rv = param.get_help_record(ctx) if rv is None: continue else: opts.append(rv) if self.add_help_option: help_options = self.get_help_option_names(ctx) if help_options: other_opts.append([join_options(help_options)[0], 'Show this message and exit.']) if field_opts: with formatter.section('Field Options'): formatter.write_dl(field_opts) if local_opts: with formatter.section('Local Options'): formatter.write_dl(local_opts) if global_opts: with formatter.section('Global Options'): formatter.write_dl(global_opts) if other_opts: with formatter.section('Other Options'): formatter.write_dl(other_opts)
2.296875
2
hooks/pre_find_module_path/hook-distutils.py
sbneto/s3conf
2
12784653
import distutils import os from PyInstaller.utils.hooks import logger # https://github.com/pyinstaller/pyinstaller/issues/4064 # https://pythonhosted.org/PyInstaller/hooks.html#the-pre-find-module-path-pfmp-api-method def pre_find_module_path(api): # Absolute path of the system-wide "distutils" package when run from within # a venv or None otherwise. distutils_dir = getattr(distutils, 'distutils_path', None) if distutils_dir is not None: # workaround for https://github.com/pyinstaller/pyinstaller/issues/4064 if distutils_dir.endswith('__init__.py'): distutils_dir = os.path.dirname(distutils_dir) # Find this package in its parent directory. api.search_dirs = [os.path.dirname(distutils_dir)] logger.info('>>>>>>> CUSTOM >>>>>>>>> distutils: retargeting to non-venv dir %r' % distutils_dir)
1.898438
2
triggered_ec2_ssm_iam_role_attachment/triggered_ec2_ssm_iam_role_attachment.py
affinitywaterltd/terraform-aws-lambda
0
12784654
<gh_stars>0 import boto3 import os ROLE_NAME = os.environ['role_name'] ec2client = boto3.client('ec2') stsclient = boto3.client('sts') account_id = stsclient.get_caller_identity()['Account'] iam_role_arn = "arn:aws:iam::{}:instance-profile/{}".format(account_id, ROLE_NAME) def lambda_handler(event, context): ec2 = boto3.resource('ec2') instanceid = event['detail']['instance-id'] instance = ec2.Instance(id=instanceid) print ("Waiting for EC2 to become running - {}".format(instanceid)) instance.wait_until_running() print ("EC2 is now running - {}".format(instanceid)) iam_role = instance.iam_instance_profile print ('{} - Current IAM Role - {}'.format(instanceid, iam_role)) if iam_role == None: print ('{} - Updating IAM Role to - {}'.format(instanceid, iam_role_arn)) # Set instance IAM Role ec2client.associate_iam_instance_profile( IamInstanceProfile={ 'Arn': iam_role_arn, 'Name': ROLE_NAME }, InstanceId=instanceid ) print ('{} - Successfully Updated IAM Role to - {}'.format(instanceid, iam_role_arn)) return 0 else: print ('{} - IAM Role already assigned - {}'.format(instanceid, iam_role)) return 0 #End Function
2.375
2
Serial/sender_serial.py
nikisalli/esp32-screen-mirroring
0
12784655
<filename>Serial/sender_serial.py from mss import mss import time from PIL import Image import serial import io import sys width = 3240 # monitor width heigth = 2160 # monitor height offx = 0 # window horizontal offset offy = 0 # window vertical offset s = serial.Serial('/dev/ttyUSB0', 921600) #insert your serial port here bounding_box = {'top': offx, 'left': offy, 'width': width, 'height': heigth} sct = mss() while True: sct_img = sct.grab(bounding_box) img = Image.frombytes("RGB", sct_img.size, sct_img.bgra, "raw", "BGRX") img.thumbnail([96,64]) b = io.BytesIO() img.save(b, format='JPEG') jpg = b.getvalue() size = len(jpg) for _ in range(10): s.write(b'U') s.write(((size >> 8) & 0xff).to_bytes(1, 'big')) s.write((size & 0xff).to_bytes(1, 'big')) s.write(jpg) time.sleep(0.04) string = b'' while(s.in_waiting > 0): string += s.read() print(string)
2.578125
3
tests/test_plbvfu1.py
cuihantao/Andes
16
12784656
<filename>tests/test_plbvfu1.py """ Test PLBVFU1 model. """ import unittest import andes class TestPLBVFU1(unittest.TestCase): """ Class for testing PLBVFU1. """ def test_PLBVFU1(self): """ Test PLVBFU1 model. """ ss = andes.run(andes.get_case("ieee14/ieee14_plbvfu1.xlsx"), default_config=True, no_output=True, ) ss.TDS.config.tf = 3.0 ss.TDS.config.criteria = 0 ss.TDS.run() self.assertEqual(ss.exit_code, 0)
2.625
3
rm_imgs_without_labels.py
sgavela/annotations-and-mAP-sripts
0
12784657
import argparse import os from pathlib import Path import logging def missing_image(image_path: Path, label_path: Path): """ This function removes the images from the train folder if the correspining labels are not found in the .txt file. NOTE - Make sure you perform the conversion from the label to txt. The code performs the following function, - Takes the input dataset folder path, searches if the images with label information are present. - If not found, removes the image. :params image_path - The directory where the training images are present label_path - The directory where .txt file correspinding to each image is present. """ for image in image_path.iterdir(): if image.suffix == ".jpg": # Corresponding label file name label = label_path / (image.stem + ".txt") if not label.is_file(): logging.warning("Label not found: {}".format(label)) logging.warning("Deleting file: {}".format(image)) os.remove(image) def main(): ap = argparse.ArgumentParser() ap.add_argument("-l", "--label_path", help="path to the label dir") ap.add_argument("-d", "--image_path", help="directory with images") args = ap.parse_args() image_path = Path(args.image_path).absolute() label_path = Path(args.label_path).absolute() assert image_path.is_dir(), "Image directory needs to exist" assert label_path.is_dir(), "Label directory needs to exist" missing_image(image_path, label_path) if __name__ == "__main__": main()
3.796875
4
km3pipe/utils/triggermap.py
KM3NeT/km3pipe
1
12784658
<gh_stars>1-10 #!/usr/bin/env python # Filename: triggermap.py # vim: ts=4 sw=4 et """ This script creates histogram which shows the trigger contribution for events. Usage: triggermap [options] -d DET_ID_OR_DETX FILENAMES... triggermap --version Option: FILENAMES Name of the input file(s). --offline Read offline events instead. -u DU Only plot for the given DU. -d DET_ID_OR_DETX Detector ID or DETX file. -p PLOT_FILENAME The filename of the plot [default: trigger_map.png]. -s SUBTITLE Optional subtitle for the plot instead of the filename. -h --help Show this screen. """ __author__ = "<NAME>" __copyright__ = "Copyright 2016, <NAME> and the KM3NeT collaboration." __credits__ = [] __license__ = "MIT" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" from docopt import docopt import matplotlib # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") # noqa import matplotlib.pyplot as plt from matplotlib.colors import LogNorm import numpy as np import km3pipe as kp from km3modules.common import StatusBar import km3modules as km import km3pipe.style km3pipe.style.use("km3pipe") class TriggerMap(kp.Module): """Creates a plot to show the number of triggered hits for each DOM.""" def configure(self): self.det = self.require("detector") self.plot_filename = self.require("plot_filename") self.subtitle = self.get("subtitle", default="") self.du = self.get("du") if self.du is not None: self.n_dus = 1 self.n_doms = 18 self.dus = [self.du] else: self.n_dus = self.det.n_dus self.n_doms = int(self.det.n_doms / self.n_dus) self.dus = sorted(self.det.dus) self.n_rows = self.n_dus * self.n_doms self.hit_counts = [] def process(self, blob): hits = blob["Hits"] hits = hits[hits.triggered.astype(bool)] dom_ids = np.unique(hits.dom_id) hit_counts = np.zeros(self.n_dus * self.n_doms) for dom_id in dom_ids: n_hits = np.sum(hits.dom_id == dom_id) du, floor, _ = self.det.doms[dom_id] if self.du is not None and du != self.du: continue hit_counts[(self.dus.index(du) - 1) * self.n_doms + floor - 1] += n_hits self.hit_counts.append(hit_counts) return blob def finish(self): self.create_plot() def create_plot(self): title_du = " - DU {}".format(self.du) if self.du else "" title = "Trigger Map{}\n{}".format(title_du, self.subtitle) fig, ax = plt.subplots(figsize=(16, 8)) ax.grid(True) ax.set_axisbelow(True) hit_mat = np.array([np.array(x) for x in self.hit_counts]).transpose() im = ax.matshow( hit_mat, interpolation="nearest", filternorm=None, cmap="plasma", aspect="auto", origin="lower", zorder=3, norm=LogNorm(vmin=1, vmax=np.amax(hit_mat)), ) yticks = np.arange(self.n_rows) floors_to_label = range(self.n_doms) if self.n_dus == 1 else [1, 6, 12] ytick_labels = [ "DU{}-DOM{}".format(du, floor) if floor in floors_to_label else "" for (du, floor, _) in self.det.doms.values() ] ax.set_yticks(yticks) ax.set_yticklabels(ytick_labels) ax.tick_params(labelbottom=True) ax.tick_params(labeltop=True) ax.set_xlabel("event id") ax.set_title(title) cb = fig.colorbar(im, pad=0.05) cb.set_label("number of triggered hits") fig.tight_layout() plt.savefig(self.plot_filename, dpi=120, bbox_inches="tight") def main(): args = docopt(__doc__, version=kp.version) du = int(args["-u"]) if args["-u"] else None try: det_id = int(args["-d"]) det = kp.hardware.Detector(det_id=det_id) except ValueError: detx = args["-d"] det = kp.hardware.Detector(filename=detx) if args["-s"] is not None: subtitle = args["-s"] else: subtitle = ", ".join(args["FILENAMES"]) pipe = kp.Pipeline() if args["--offline"]: pipe.attach( km.common.MultiFilePump, pump=kp.io.OfflinePump, filenames=args["FILENAMES"] ) pipe.attach(km.io.HitsTabulator, kind="offline") else: pipe.attach( km.common.MultiFilePump, pump=kp.io.online.EventPump, filenames=args["FILENAMES"], ) pipe.attach(StatusBar, every=2500) pipe.attach( TriggerMap, detector=det, du=du, plot_filename=args["-p"], subtitle=subtitle, ) pipe.drain() if __name__ == "__main__": main()
2.296875
2
specs/steps/calculator_with_regexes.py
hltbra/pycukes
1
12784659
from pycukes import * @When('I sum $left and $right') def sum_two_numbers(context, left, right): context._sum = int(left) + int(right) #Then I have 2 as result
2.859375
3
axes/signals.py
tabdon/django-axes
1
12784660
from django.dispatch import Signal, receiver from django.contrib.auth.signals import user_logged_out from django.core.exceptions import ObjectDoesNotExist from axes.models import AccessLog # django 1.4 has a new timezone aware now() use if available. try: from django.utils.timezone import now except ImportError: # fall back to none timezone aware now() from datetime import datetime now = datetime.now user_locked_out = Signal(providing_args=['request', 'username', 'ip_address']) @receiver(user_logged_out) def log_user_lockout(sender, request, user, signal, *args, **kwargs): """ When a user logs out, update the access log""" if not user: return access_log = None access_logs = AccessLog.objects.filter(username=user.username, logout_time__isnull=True).order_by("-attempt_time") if len(access_logs) > 0: access_log = access_logs[0] if access_log: access_log.logout_time = now() access_log.save()
2.171875
2
cafe/plugins/http/tests/engine/http/test_behaviors.py
melissa-kam/opencafe
0
12784661
# Copyright 2015 Rackspace # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import unittest from cafe.engine.http.behaviors import get_range_data class TestHttpFunctions(unittest.TestCase): def test_get_range_data(self): data = '0123456789' data_subset = get_range_data(data, '0-4') self.assertEqual('01234', data_subset) data_subset = get_range_data(data, '5-9') self.assertEqual('56789', data_subset) def test_get_range_data_with_first_byte_pos(self): data = '0123456789' data_subset = get_range_data(data, '7-') self.assertEqual('789', data_subset) def test_get_range_data_with_last_byte_pos(self): data = '0123456789' data_subset = get_range_data(data, '-3') self.assertEqual('789', data_subset) if __name__ == '__main__': unittest.main()
2.171875
2
tusc/graph/distance.py
lucasmccabe/combinatorial-zoo
0
12784662
<reponame>lucasmccabe/combinatorial-zoo<gh_stars>0 import networkx as nx import numpy as np def shortest_path(G, u, v, method = "Dijkstra"): """ Calculates the shortest path between nodes u and v in G. Parameters ---------- G : networkx graph source graph u : int or str - whatever type the labels of the graph are source node v : int or str - whatever type the labels of the graph are destination node method : str the shortest path method you want to use. Currently implemented: - "Dijkstra" Raises ------ NotImplementedError : if selected method is not Dijkstra's algorithm """ if method.lower() == "dijkstra": distances = single_source_shortest_paths(G, u, method = "Dijkstra") return distances[v] else: raise NotImplementedError def single_source_shortest_paths(G, u, method = "Dijkstra"): """ Calculates all shortest paths from node u and v in G. Parameters ---------- G : networkx graph source graph u : int or str - whatever type the labels of the graph are source node method : str the shortest path method you want to use. Currently implemented: - "Dijkstra" """ if method.lower() == "dijkstra": return _single_source_shortest_paths_dijkstra(G, u) else: raise NotImplementedError def _single_source_shortest_paths_dijkstra(G, u): """ Implements Dijkstra's algorithm for single-source shortest paths from u in G. Parameters ---------- G : networkx graph source graph u : int or str - whatever type the labels of the graph are source node Notes ----- [1] West, <NAME>. “Trees and Distance.” In Introduction to Graph Theory, 97–97. United States: Pearson, 2018. """ G_old, u_old = G, u G = nx.convert_node_labels_to_integers(G_old) u = list(G_old.nodes).index(u) A = nx.adjacency_matrix(G) S = {u:0} T = {} for i in [j for j in G.nodes if j not in S]: if i not in G.neighbors(u): T[i] = np.inf else: T[i] = A[u, i] while len(S) < len(G): v = min(T, key = T.get) S[v] = T[v] T.pop(v) for i in [j for j in G.neighbors(v) if j not in S]: T[i] = min(T[i], S[v] + A[v, i]) distances = {} for i in S: distances[list(G_old.nodes)[i]] = S[i] return distances
3.890625
4
Step09_Metric_Learn.py
LMSE/PathwayLenPred
0
12784663
#!/usr/bin/env python # coding: utf-8 #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# # Microsoft VS header #--------------------------------------------------# import os import sys import os.path from sys import platform from pathlib import Path #--------------------------------------------------# if os.name == 'nt' or platform == 'win32': print("Running on Windows") if 'ptvsd' in sys.modules: print("Running in Visual Studio") try: os.chdir(os.path.dirname(__file__)) print('CurrentDir: ', os.getcwd()) except: pass #--------------------------------------------------# else: print("Running outside Visual Studio") try: if not 'workbookDir' in globals(): workbookDir = os.getcwd() print('workbookDir: ' + workbookDir) os.chdir(workbookDir) except: pass #--------------------------------------------------# from rdkit import Chem from rdkit import DataStructs from rdkit.Chem import AllChem from rdkit.Chem import MACCSkeys from rdkit.Chem.AtomPairs import Pairs from rdkit.Chem.AtomPairs import Torsions from rdkit.Chem.Fingerprints import FingerprintMols #--------------------------------------------------# import ast import copy import pickle import scipy.io import subprocess import numpy as np import pandas as pd from numpy import * from tqdm import tqdm from pathlib import Path from random import shuffle #--------------------------------------------------# import seaborn as sns import matplotlib.mlab as mlab import matplotlib.pyplot as plt #--------------------------------------------------# from scipy import stats from matplotlib import pylab as pl #--------------------------------------------------# from AP_RDKIT_FP import * from Step07_NetworkToDistance import * #--------------------------------------------------# ############################################################################################################## ############################################################################################################## loading_folder = Path("MNX_data/") saving_folder = Path("MNX_ECFP_savings/") ############################################################################################################## ############################################################################################################## # all_cmpds : list( ["X","X",...] ) # list # all_ecfps : set ( ["ecfp", "ecfp", ...] ) # set # all_pairs : [{{},{}}, {{},{}}, {{},{}},... ] # all_info : [ [ { fr{}, fr{} }, d ], [ { fr{}, fr{} }, d ], [ { fr{}, fr{} }, d ], .... ] ############################################################################################################## ############################################################################################################## # Args # Select ECFP encodings #------------------- 0 1 2 3 4 5 6 ECFP_encodings_list = ["ECFP2", "ECFP4", "ECFP6", "JTVAE", "MorganFP", "ECFP8", "ECFPX"] ECFP_encodings = ECFP_encodings_list[1] ECFP_type = ECFP_encodings[-1] if ECFP_encodings in ["ECFP2", "ECFP4", "ECFP6"] else "6" # 2, 4, 6 #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# def list_smiles_to_ecfp_through_dict(smiles_list, all_cmpds_ecfps_dict): ecfp_list=[] for one_smiles in smiles_list: ecfp_list=ecfp_list+all_cmpds_ecfps_dict[one_smiles] return ecfp_list #====================================================================================================# def parse_one_pair_info(one_pair_info, all_ecfps, all_cmpds_ecfps_dict): dimension=len(all_ecfps) X1i=[0]*dimension X2i=[0]*dimension X1i_ecfp_list=list_smiles_to_ecfp_through_dict(list(list(one_pair_info[0])[0]),all_cmpds_ecfps_dict) X2i_ecfp_list=list_smiles_to_ecfp_through_dict(list(list(one_pair_info[0])[1]),all_cmpds_ecfps_dict) distance=one_pair_info[1] for one_ecfp in X1i_ecfp_list: X1i[all_ecfps.index(one_ecfp)]=X1i_ecfp_list.count(one_ecfp) for one_ecfp in X2i_ecfp_list: X2i[all_ecfps.index(one_ecfp)]=X2i_ecfp_list.count(one_ecfp) Yi=distance return (X1i,X2i,Yi) #====================================================================================================# def list_subtract(list_a,list_b): list_out=[] for i in range(len(list_a)): list_out.append(list_a[i]-list_b[i]) return list_out #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# def Step09_main(loading_folder, saving_folder, ECFP_encodings): #====================================================================================================# pickle_in1=open(saving_folder / "Step07_paired_cmpds_list","rb") paired_smiles_list=pickle.load(pickle_in1) pickle_in1.close() pickle_in2=open(saving_folder / "Step07_all_pairs_list","rb") all_pairs_list=pickle.load(pickle_in2) pickle_in2.close() #====================================================================================================# pickle_in1=open(saving_folder / ("Step08_all_cmpds_"+ECFP_encodings),"rb") all_smiles=pickle.load(pickle_in1) pickle_in1.close() pickle_in2=open(saving_folder / ("Step08_all_ecfps_"+ECFP_encodings),"rb") all_ecfps=pickle.load(pickle_in2) pickle_in2.close() pickle_in3=open(saving_folder / ("Step08_all_cmpds_ecfps_dict_"+ECFP_encodings),"rb") all_smiles_ecfps_dict=pickle.load(pickle_in3) pickle_in3.close() #====================================================================================================# for one_pair_info in paired_smiles_list: if len(one_pair_info[0])!=2: print (one_pair_info[0]) print ("wtf?") paired_smiles_list.remove(one_pair_info) print ("screened!") #====================================================================================================# all_ecfps=list(all_ecfps) X_Diff=[] Y_Distance=[] for one_pair_info in tqdm(paired_smiles_list): (X1i, X2i, Yi)=parse_one_pair_info(one_pair_info,all_ecfps,all_smiles_ecfps_dict) X_Diff.append(list_subtract(X1i, X2i)) Y_Distance.append(Yi) Step09_processed_data_dict = {"X_data": X_Diff, "y_data": Y_Distance} #====================================================================================================# pickle_out1=open(saving_folder / "Step09_processed_data_"+ ECFP_encodings,"wb") pickle.dump(Step09_processed_data_dict, pickle_out1) pickle_out1.close() print("Step09_main Done!") return #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# if __name__ == '__main__': Step09_main(loading_folder, saving_folder, ECFP_encodings) #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$# #$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$#
2.34375
2
codegen_sources/test_generation/test_runners/python_test_runner.py
AlexShypula/CodeGen
241
12784664
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import subprocess import sys import uuid from pathlib import Path, PosixPath from subprocess import Popen from .evosuite_test_runners import ( EvosuiteTestRunner, TestRuntimeError, CompilationError, InvalidTest, clean_firejail, FIREJAIL_PROFILE, ) from ...model.src.utils import ( TREE_SITTER_ROOT, limit_virtual_memory, MAX_VIRTUAL_MEMORY, ) from ...preprocessing.lang_processors.lang_processor import LangProcessor sys.path.append(str(Path(__file__).parents[3])) print("adding to path", str(Path(__file__).parents[3])) python_processor = LangProcessor.processors["python"](root_folder=TREE_SITTER_ROOT) class PythonTestRunner(EvosuiteTestRunner): def __init__( self, tmp_folder=Path( Path.home().joinpath("data/CodeGen/automatic_tests/tmp_tests_folder/python") ), timeout=15, ): super().__init__(tmp_folder=tmp_folder, timeout=timeout) def _run_tests( self, function: str, test: str, tmp_path: PosixPath, classname: str = None, scaffolding: str = None, ): assert ( scaffolding is None ), f"Scaffolding should be None for python tests, was {scaffolding}" if "#TOFILL" not in test: raise InvalidTest("Missing #TOFILL") try: f_name = python_processor.get_function_name(function) except (ValueError, IndexError): raise CompilationError("No function definition") function = python_processor.detokenize_code( function.replace(f" {f_name.strip()} ", " f_filled ") ) filled_test = test.replace("#TOFILL", function) test_path = self.write_test(filled_test, classname, tmp_path) assert test_path.is_file() test_cmd = f"{limit_virtual_memory(MAX_VIRTUAL_MEMORY)}; firejail --profile={FIREJAIL_PROFILE} python {test_path}" test_proc = Popen( test_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, executable="/bin/bash", preexec_fn=os.setsid, ) return test_proc, tmp_path def _eval_proc_state(self, out, err): stderr = err.decode("utf-8", errors="replace") stderr = clean_firejail(stderr) res_line = stderr.splitlines() if len(res_line) <= 2 or not ( res_line[-1].startswith("OK") or res_line[-1].startswith("FAILED") ): raise TestRuntimeError(stderr) assert res_line[-3].startswith("Ran ") number_of_tests = int(res_line[-3].replace("Ran ", "").split(" ")[0]) res_line = res_line[-1] if res_line.startswith("OK"): return "success", number_of_tests, 0 else: assert res_line.startswith("FAILED (errors=") or res_line.startswith( "FAILED (failures=" ) number_failures = int(res_line.split("=")[-1].replace(")", "")) return "failure", number_of_tests, number_failures @staticmethod def write_test(test, classname, out_folder): if classname is None: classname = "a" test_path = out_folder.joinpath(f"python_test_{classname}.py") with open(test_path, "w", encoding="utf-8") as o: o.write(test) return test_path
1.898438
2
toutiao-backend/toutiao/main.py
MarioKarting/Flask_toutiao
5
12784665
<gh_stars>1-10 import sys import os #BASE_DIR -->toutiao-backend BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) #python解释器查找一个包的路径 sys.path.insert(0, os.path.join(BASE_DIR, 'common')) sys.path.insert(0, os.path.join(BASE_DIR)) from flask import jsonify from . import create_app from settings.default import DefaultConfig #工厂函数,按需定制 app = create_app(DefaultConfig, enable_config_file=True) @app.route('/') def route_map(): """ 主视图,返回所有视图网址 """ rules_iterator = app.url_map.iter_rules() return jsonify( {rule.endpoint: rule.rule for rule in rules_iterator if rule.endpoint not in ('route_map', 'static')})
2.328125
2
movies/urls.py
Kaushiksekar/movie_base
0
12784666
from django.urls import path from .views import call_json_to_db, get_all_movies, add_movie, edit_movie, remove_movie urlpatterns = [ path('load-db/', call_json_to_db, name='load_db'), path('list/', get_all_movies, name='all_movies'), path('add/', add_movie, name='add_movie'), path('edit/', edit_movie, name='edit_movie'), path('remove/', remove_movie, name='remove_movie'), ]
1.75
2
octicons16px/check_circle_fill.py
andrewp-as-is/octicons16px.py
1
12784667
OCTICON_CHECK_CIRCLE_FILL = """ <svg class="octicon octicon-circle-fill" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16" width="16" height="16"><path fill-rule="evenodd" d="M8 16A8 8 0 108 0a8 8 0 000 16zm3.78-9.72a.75.75 0 00-1.06-1.06L6.75 9.19 5.28 7.72a.75.75 0 00-1.06 1.06l2 2a.75.75 0 001.06 0l4.5-4.5z"></path></svg> """
1.382813
1
torch_tools/data/datasets/util/dataset_to_h5.py
gregunz/TorchTools
0
12784668
from itertools import tee from pathlib import Path from typing import Union, List, Tuple import h5py import torch from torch.utils.data import Dataset, DataLoader from tqdm.auto import tqdm T = List[Tuple[torch.Tensor, torch.Tensor]] def dataset_to_h5_file(dataset: Union[Dataset, T], filepath: Union[str, Path], inputs_type=None, targets_type=None, inputs_name: str = 'inputs', targets_name: str = 'targets'): n = len(dataset) x, y = next(tee(iter(dataset))[1]) assert isinstance(x, torch.Tensor), f'input should be a torch tensor, not {type(x)}' assert isinstance(y, torch.Tensor), f'target should be a torch tensor, not {type(x)}' inputs_shape = (n,) + x.size() targets_shape = (n,) + y.size() if inputs_type is None: inputs_type = x.numpy().dtype if targets_type is None: targets_type = y.numpy().dtype with h5py.File(name=filepath, mode='w', libver='latest', swmr=True) as h5_file: inputs = h5_file.create_dataset(inputs_name, shape=inputs_shape, dtype=inputs_type, fillvalue=0) targets = h5_file.create_dataset(targets_name, shape=targets_shape, dtype=targets_type, fillvalue=0) dloader = DataLoader(dataset, batch_size=1, num_workers=8) for i, (x, y) in enumerate(tqdm(dloader, desc=str(filepath))): inputs[i] = x targets[i] = y assert i == n - 1
2.140625
2
tests/test_similarity_matrix_filters.py
jo-mueller/biapol-utilities
4
12784669
# -*- coding: utf-8 -*- import biapol_utilities as biau import numpy as np def test_suppression(): a = np.random.rand(100).reshape(10, -1) threshold = 0.5 a_sup = biau.label.suppressed_similarity(a, threshold=threshold) assert(all(a_sup[a < threshold].ravel() == 0)) if __name__ == "__main__": test_suppression()
2.640625
3
nPYc/reports/_generateBasicPCAReport.py
ghaggart/nPYc-Toolbox
14
12784670
<reponame>ghaggart/nPYc-Toolbox import os import re from collections import OrderedDict from ..plotting import plotScores, plotLoadings from pyChemometrics.ChemometricsPCA import ChemometricsPCA def generateBasicPCAReport(pcaModel, dataset, figureCounter=1, destinationPath=None, fileNamePrefix=''): """ Visualise a PCA model by plotting scores plots coloured by sample type, loadings plots, :param ChemometricsPCA pcaModel: ChemometricsPCA model of **dataset** :param Dataset dataset: Dataset object :param int figureCounter: Start numbering figures from this value :param destinationPath: If not ``None`` save to the path specified :type destinationPath: None or str :param str fileNamePrefix: Additional prefix to add to filenames if saving :returns: Dictionary of paths figures where saved to if destinationPath was not ``None`` :rtype: dict """ if not isinstance(pcaModel, ChemometricsPCA): raise TypeError('pcaModel must be a ChemometricsPCA object') returnDict = dict() figuresQCscores = OrderedDict() if destinationPath is not None: if not os.path.exists(destinationPath): os.makedirs(destinationPath) if not os.path.exists(os.path.join(destinationPath, 'graphics')): os.makedirs(os.path.join(destinationPath, 'graphics')) graphicsPath = os.path.join(destinationPath, 'graphics', 'report_finalSummary') if not os.path.exists(graphicsPath): os.makedirs(graphicsPath) else: graphicsPath = None ## # Scores Plot ## if destinationPath: saveAs = os.path.join(graphicsPath, dataset.name + '_PCAscoresPlot_') else: print('Figure %i: PCA scores plots coloured by sample type.' % (figureCounter)) saveAs = None figuresQCscores = plotScores(pcaModel, classes=dataset.sampleMetadata['Plot Sample Type'], classType='Plot Sample Type', title='Sample Type', savePath=saveAs, figures=figuresQCscores, figureFormat=dataset.Attributes['figureFormat'], dpi=dataset.Attributes['dpi'], figureSize=dataset.Attributes['figureSize']) for keyS in figuresQCscores: if 'graphics' in str(graphicsPath): # expect graphics to have been already passed in the previous path figuresQCscores[keyS] = re.sub('.*graphics', 'graphics', figuresQCscores[keyS]) returnDict['QCscores'] = figuresQCscores returnDict['PCAcount'] = figureCounter figuresLoadings = OrderedDict() ## # Loadings plot ## if destinationPath: saveAs = os.path.join(graphicsPath, dataset.name + '_PCAloadingsPlot_') else: print('\n\nFigure %i: PCA loadings plots.' % (figureCounter + 1)) saveAs = None figuresLoadings = plotLoadings(pcaModel, dataset, title='', figures=figuresLoadings, savePath=saveAs, figureFormat=dataset.Attributes['figureFormat'], dpi=dataset.Attributes['dpi'], figureSize=dataset.Attributes['figureSize']) for keyL in figuresLoadings: if 'graphics' in str(graphicsPath): figuresLoadings[keyL] = re.sub('.*graphics', 'graphics', figuresLoadings[keyL]) returnDict['loadings'] = figuresLoadings if destinationPath: return returnDict else: return None
2.1875
2
bin/generate_sitemap.py
gaybro8777/CiteSeerX
108
12784671
#!/usr/bin/python # Script to generate sitemaps # <NAME> # Requires mysql-python import MySQLdb import argparse import logging import os import sys import subprocess from config import db logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument("sitemapdir") args = parser.parse_args() try: sitemapdir = args.sitemapdir except: logging.error("sitemap dir not set. run python generate_sitemap.py -h") sys.exit(0) # clear sitemapdir if it is there already if os.path.exists(sitemapdir): subprocess.call(['rm','-rfv',sitemapdir+"/*"]) else: os.makedirs(sitemapdir) MAX_PER_FILE = 49999 db = MySQLdb.connect(host=db["dbhost"], user=db["dbuser"], passwd=db["dbpass"], db="citeseerx") cur = db.cursor() i = 0 file = 1 header = '<?xml version="1.0" encoding="UTF-8"?>\n<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">\n' cur.execute("SELECT id FROM papers WHERE public = 1") for row in cur.fetchall(): if i == 0: f = open(os.path.join(sitemapdir,"sitemap%d.xml" % file), 'w+') f.write(header) f.write('<url>\n\t<loc>http://citeseerx.ist.psu.edu/viewdoc/download?doi=%s&amp;rep=rep1&amp;type=pdf</loc>\n</url>\n' % row[0]) i = i + 1 if i == MAX_PER_FILE: file = file + 1 i = 0 f.write('</urlset>') f.close() logging.info("sitemap generated: {}".format(f.name)) if not f.closed: f.write('</urlset>') f.close() logging.info("sitemap generated: {}".format(f.name)) f = open(os.path.join(sitemapdir,'sitemap_index.xml'), 'w+') f.write('<?xml version="1.0" encoding="UTF-8"?>\n<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">\n') for i in range(1, file+1): f.write('<sitemap>\n\t<loc>http://citeseerx.ist.psu.edu/sitemap%d.xml</loc>\n</sitemap>\n' % i) f.write('</sitemapindex>'); f.close() logging.info("sitemap index file: {}".format(f.name))
2.71875
3
tests/test_upload_download_local.py
anand870/aiocloudstorage
2
12784672
<reponame>anand870/aiocloudstorage<filename>tests/test_upload_download_local.py import os import pytest import io from aiocloudstorage.drivers.local import LocalDriver from tests.settings import * from tests.helpers import random_container_name, uri_validator,binary_iostreams from aiocloudstorage.exceptions import CloudStorageError,NotFoundError,InvalidFileURLError from aiocloudstorage import configure,upload,bulk_upload,download,bulk_download from aiocloudstorage.helpers import file_checksum,parse_file_url @pytest.fixture() async def storage(): storage = LocalDriver( LOCAL_ENDPOINT, LOCAL_SECRET ) yield storage async for container in storage.get_containers(): if container.name.startswith(CONTAINER_PREFIX): async for blob in container.get_blobs(): await blob.delete() await container.delete() @pytest.fixture() async def container(request,storage,store_config): param = None if not hasattr(request,'param') else request.param print(param) if param == 'nds': #no default store store_config.pop('DEFAULT_STORE') elif param == 'ndc': #no default container store_config.pop('DEFAULT_CONTAINER') elif param=='nd': #no default store_config.pop('DEFAULT_CONTAINER') store_config.pop('DEFAULT_STORE') elif param == 'sd': #store disabled store_config['STORAGE_ENABLED']=False conf = await configure(store_config) container_name = store_config.get('DEFAULT_CONTAINER',random_container_name()) container = await storage.create_container(container_name) return container @pytest.mark.asyncio async def test_upload_path(container,text_filename): blob = await upload(text_filename,'auto') assert blob.checksum == TEXT_MD5_CHECKSUM assert blob.name == TEXT_FILENAME assert blob.file_url == FILE_URL%(LOCAL_NAME,container.name,TEXT_FILENAME) @pytest.mark.asyncio async def test_upload_nested_path(container,text_filename): blob = await upload(text_filename,'auto',destpath=TEXT_NESTED_UPLOAD_PATH) assert blob.checksum == TEXT_MD5_CHECKSUM assert blob.name == TEXT_NESTED_UPLOAD_NAME @pytest.mark.asyncio async def test_upload_auto_name(container,text_filename): blob = await upload(text_filename,'auto') assert blob.checksum == TEXT_MD5_CHECKSUM assert blob.name == TEXT_FILENAME assert blob.file_url == FILE_URL%(LOCAL_NAME,container.name,TEXT_FILENAME) @pytest.mark.asyncio async def test_upload_random_name(container,text_filename): blob = await upload(text_filename,'random') assert blob.checksum == TEXT_MD5_CHECKSUM assert blob.name != TEXT_FILENAME assert blob.file_url == FILE_URL%(LOCAL_NAME,container.name,blob.name) @pytest.mark.asyncio async def test_upload_specified_name(container,text_filename): name = random_container_name()+TEXT_FILENAME blob = await upload(text_filename,name) assert blob.checksum == TEXT_MD5_CHECKSUM assert blob.name == name assert blob.file_url == FILE_URL%(LOCAL_NAME,container.name,name) @pytest.mark.asyncio async def test_upload_stream(container,binary_stream): blob = await upload(binary_stream,destfilename=BINARY_STREAM_FILENAME) assert blob.name == BINARY_STREAM_FILENAME assert blob.checksum == BINARY_MD5_CHECKSUM @pytest.mark.asyncio @pytest.mark.parametrize('container',['sd'],indirect=True) async def test_upload_store_disabled(container,text_filename): with pytest.raises(CloudStorageError) as err: blob = await upload(text_filename,store_name=LOCAL_NAME,container_name=container.name) @pytest.mark.asyncio async def test_upload_container_invalid(container,text_filename): with pytest.raises(NotFoundError) as err: blob = await upload(text_filename,container_name=random_container_name()) @pytest.mark.asyncio @pytest.mark.parametrize('container',['nd','nds','ndc','sd'],indirect=True) async def test_upload_no_default(container,text_filename): with pytest.raises(CloudStorageError) as err: blob = await upload(text_filename) @pytest.mark.asyncio @pytest.mark.parametrize('container',['ndc'],indirect=True) async def test_upload_no_default_container(container,text_filename): blob = await upload(text_filename,container_name=container.name) assert blob.checksum == TEXT_MD5_CHECKSUM assert blob.file_url == FILE_URL%(LOCAL_NAME,container.name,blob.name) @pytest.mark.asyncio async def test_bulk_upload_no_file(container): files = await bulk_upload({}) assert files== {} @pytest.mark.asyncio async def test_bulk_upload(container): filecount = 10 iostreams = binary_iostreams(filecount) destpath = random_container_name() files = await bulk_upload(iostreams,destpath='/'+destpath) assert isinstance(files,dict) assert len(files) == filecount hash_type = container.driver.hash_type for key,fileurl in files.items(): iostreams[key].seek(0) download_hash = file_checksum(iostreams[key],hash_type=hash_type) blob = await container.get_blob(fileurl) assert blob.name.startswith(destpath) assert blob.checksum == download_hash.hexdigest() @pytest.mark.asyncio async def test_bulk_upload_with_one_invalid(container): filecount = 10 iostreams = binary_iostreams(filecount) iostreams[filecount+1] = io.BytesIO(b'') destpath = random_container_name() files = await bulk_upload(iostreams,destpath='/'+destpath) assert isinstance(files,dict) assert len(files) == filecount+1 hash_type = container.driver.hash_type for key,fileurl in files.items(): if key==(filecount+1): assert isinstance(fileurl,Exception) continue iostreams[key].seek(0) download_hash = file_checksum(iostreams[key],hash_type=hash_type) blob = await container.get_blob(fileurl) assert blob.name.startswith(destpath) assert blob.checksum == download_hash.hexdigest() @pytest.mark.asyncio async def test_download_invalid_file_url(): with pytest.raises(InvalidFileURLError) as err: filepath = await download('http://www.google.com/myfile.json') @pytest.mark.asyncio @pytest.mark.parametrize('container',['sd'],indirect=True) async def test_download_storage_disabled(binary_blob): with pytest.raises(CloudStorageError) as err: filepath = await download(binary_blob.file_url) @pytest.mark.asyncio async def test_download_container_in_url_invalid(binary_blob): with pytest.raises(NotFoundError) as err: parsed = parse_file_url(binary_blob.file_url) invalid_url = "%s://%s/%s"%(parsed['store'],random_container_name(),parsed['blob']) filepath = await download(invalid_url) @pytest.mark.asyncio async def test_download_no_destpath_auto(binary_blob,random_filepath): try: filepath = await download(binary_blob.file_url,destfilename=random_filepath) except: pytest.fail("Should have treated destfilename as relative or absolute path") @pytest.mark.asyncio async def test_download_destpath_not_exist(binary_blob,random_dirpath): try: filepath = await download(binary_blob.file_url,destpath=random_dirpath) except: pytest.fail("Should auto create destination if not exist") assert os.path.isdir(random_dirpath) @pytest.mark.asyncio async def test_download_file_path(binary_blob,temp_file): filepath = await download(binary_blob.file_url,destfilename=temp_file) hash_type = binary_blob.driver.hash_type download_hash = file_checksum(filepath, hash_type=hash_type) assert download_hash.hexdigest() == binary_blob.checksum @pytest.mark.asyncio async def test_download_stream(binary_blob,temp_file): with open(temp_file,'wb') as download_file: await download(binary_blob.file_url,download_file) hash_type = binary_blob.driver.hash_type download_hash = file_checksum(temp_file, hash_type=hash_type) assert download_hash.hexdigest() == binary_blob.checksum @pytest.mark.asyncio async def test_download_without_destination(binary_blob): download_file = await download(binary_blob.file_url) hash_type = binary_blob.driver.hash_type download_hash = file_checksum(download_file, hash_type=hash_type) assert download_hash.hexdigest() == binary_blob.checksum @pytest.mark.asyncio async def test_bulk_download_no_file(container): path_dict = await bulk_download({}) assert path_dict == {} @pytest.mark.asyncio async def test_bulk_download(binary_blob_list): blobs_dict = {k:v for k,v in enumerate(binary_blob_list)} fileurls_dict = {k:v.file_url for k,v in enumerate(binary_blob_list)} count = len(blobs_dict) path_dict = await bulk_download(fileurls_dict) assert len(path_dict) == count for key,blob in blobs_dict.items(): hash_type = blob.driver.hash_type assert os.path.isfile(path_dict[key]) download_hash = file_checksum(path_dict[key], hash_type=hash_type) assert download_hash.hexdigest() == blob.checksum @pytest.mark.asyncio async def test_bulk_download_multi_container(random_blob_list): blobs_dict = {k:v for k,v in enumerate(random_blob_list)} fileurls_dict = {k:v.file_url for k,v in enumerate(random_blob_list)} count = len(blobs_dict) path_dict = await bulk_download(fileurls_dict) assert len(path_dict) == count for key,blob in blobs_dict.items(): hash_type = blob.driver.hash_type assert os.path.isfile(path_dict[key]) download_hash = file_checksum(path_dict[key], hash_type=hash_type) assert download_hash.hexdigest() == blob.checksum
2.09375
2
test/controllers/test_delete_debt_by_id_route.py
JVGC/MyFinancesPython
0
12784673
<reponame>JVGC/MyFinancesPython<gh_stars>0 import unittest from uuid import uuid4 from domain.entities import Date, Debt from infra.controllers.contracts.http import HttpRequest from infra.controllers.errors import NotFoundError from infra.controllers.operators.debt import DeleteDebtByIdOperator from infra.repositories import DebtRepositoryMongo from pymongo import response class TestDeleteDebtByIdRoute(unittest.TestCase): def test_success(self): debt_repository_mongo = DebtRepositoryMongo() delete_debt_by_id_operator = DeleteDebtByIdOperator( debt_repository_mongo) _id = str(uuid4()) debt_or_err = Debt.create(_id, 'testando', 10.5, 5, Date.create(year=2020, month=10).ok(), 8) new_debt = debt_or_err.ok() _ = debt_repository_mongo.add(new_debt.id, new_debt.description, new_debt.part_value, new_debt.total_parts, new_debt.start_date.to_dict(), new_debt.total_value, new_debt.paid_parts, new_debt.remaining_parts, new_debt.remaining_value) request = HttpRequest(params={'debt_id': _id}) http_response = delete_debt_by_id_operator.operate(request) self.assertEqual(http_response.status_code, 200) self.assertEqual(http_response.body['debt_id'], _id) def test_debt_not_found(self): debt_repository_mongo = DebtRepositoryMongo() delete_debt_by_id_operator = DeleteDebtByIdOperator( debt_repository_mongo) request = HttpRequest(params={'debt_id': '123'}) http_response = delete_debt_by_id_operator.operate(request) self.assertEqual(http_response.status_code, 404) self.assertIsInstance(http_response, NotFoundError)
2.390625
2
fHDHR/versions/__init__.py
deathbybandaid/fHDHR
0
12784674
import os import sys import platform from fHDHR import fHDHR_VERSION from fHDHR.tools import is_docker class Versions(): """ fHDHR versioning management system. """ def __init__(self, settings, fHDHR_web, logger, web, db, scheduler): self.fHDHR_web = fHDHR_web self.logger = logger self.web = web self.db = db self.scheduler = scheduler self.github_org_list_url = "https://api.github.com/orgs/fHDHR/repos?type=all" self.github_fhdhr_core_info_url = "https://raw.githubusercontent.com/fHDHR/fHDHR/main/version.json" self.dict = {} self.official_plugins = self.db.get_fhdhr_value("versions", "dict") or {} self.register_fhdhr() self.register_env() self.get_online_versions() self.update_url = "/api/versions?method=check" def sched_init(self, fhdhr): """ The Scheduled update method. """ self.api = fhdhr.api self.scheduler.every(2).to(3).hours.do(self.sched_update) def sched_update(self): """ Use an API thread to update Versions listing. """ self.api.threadget(self.update_url) def get_online_versions(self): """ Update Onling versions listing. """ self.logger.debug("Checking for Online Plugin Information") official_plugins = {} try: github_org_json = self.web.session.get(self.github_org_list_url).json() except self.web.exceptions.ReadTimeout as err: self.logger.error("Online Plugin Information Check Failed: %s" % err) return online_plugin_names = [x["name"] for x in github_org_json if x["name"].startswith("fHDHR_plugin_")] for plugin_name in online_plugin_names: plugin_version_check_success = 0 for branch in ["main", "master", "dev"]: if not plugin_version_check_success: self.logger.debug("Attempting Online Plugin Information for %s %s branch" % (plugin_name, branch)) plugin_json_url = "https://raw.githubusercontent.com/fHDHR/%s/%s/plugin.json" % (plugin_name, branch) try: plugin_json = self.web.session.get(plugin_json_url) if plugin_json.status_code == 200: plugin_json = plugin_json.json() official_plugins[plugin_name] = plugin_json plugin_version_check_success = 1 except self.web.exceptions.ReadTimeout as err: self.logger.error("Online Plugin Information Check Failed for %s %s branch: %s" % (plugin_name, branch, err)) self.official_plugins = official_plugins core_json = self.web.session.get(self.github_fhdhr_core_info_url).json() for key in list(core_json.keys()): self.official_plugins[key] = {"name": key, "version": core_json[key], "type": "core"} self.db.set_fhdhr_value("versions", "dict", official_plugins) def register_version(self, item_name, item_version, item_type): """ Register a version item. """ self.logger.debug("Registering %s item: %s %s" % (item_type, item_name, item_version)) self.dict[item_name] = { "name": item_name, "version": item_version, "type": item_type } def register_fhdhr(self): """ Register core version items. """ self.register_version("fHDHR", fHDHR_VERSION, "fHDHR") self.register_version("fHDHR_web", self.fHDHR_web.fHDHR_web_VERSION, "fHDHR") def register_env(self): """ Register env version items. """ self.register_version("Python", sys.version, "env") if sys.version_info.major == 2 or sys.version_info < (3, 7): self.logger.error('Error: fHDHR requires python 3.7+. Do NOT expect support for older versions of python.') opersystem = platform.system() self.register_version("Operating System", opersystem, "env") if opersystem in ["Linux", "Darwin"]: # Linux/Mac if os.getuid() == 0 or os.geteuid() == 0: self.logger.warning('Do not run fHDHR with root privileges.') elif opersystem in ["Windows"]: # Windows if os.environ.get("USERNAME") == "Administrator": self.logger.warning('Do not run fHDHR as Administrator.') else: self.logger.warning("Uncommon Operating System, use at your own risk.") cpu_type = platform.machine() self.register_version("CPU Type", cpu_type, "env") isdocker = is_docker() self.register_version("Docker", isdocker, "env") def register_plugins(self, plugins): """ Register plugin version items. """ self.logger.info("Scanning Plugins for Version Information.") self.plugins = plugins plugin_names = [] for plugin in list(self.plugins.plugins.keys()): if self.plugins.plugins[plugin].plugin_name not in plugin_names: plugin_names.append(self.plugins.plugins[plugin].plugin_name) self.register_version(self.plugins.plugins[plugin].plugin_name, self.plugins.plugins[plugin].manifest["version"], "plugin")
2.359375
2
saved_scores/mwob/pop_dir.py
nathanShepherd/Intelligent-Interface
3
12784675
click_games = ['BisectAngle', 'ChaseCircle', 'ChooseDate', 'ChooseList', 'CircleCenter', 'ClickButton', 'ClickButtonSequence', 'ClickCheckboxes', 'ClickCollapsible', 'ClickCollapsible2', 'ClickColor', 'ClickDialog', 'ClickDialog2', 'ClickLink', 'ClickMenu2', 'ClickOption', 'ClickPie', 'ClickShades', 'ClickShape', 'ClickTab', 'ClickTab2', 'ClickTest', 'ClickTest2', 'ClickWidget', 'CountShape', 'CountSides', 'FindMidpoint', 'FocusText', 'FocusText2', 'GridCoordinate', 'GuessNumber', 'IdentifyShape', 'NavigateTree', 'NumberCheckboxes', 'RightAngle', 'SimonSays', 'TicTacToe', 'UseColorwheel', 'UseColorwheel2', 'UseSlider', 'UseSlider2', 'UseSpinner', ] for env_name in click_games: f = open(env_name+'/README.txt','w') f.write( str(env_name) ) f.close()
2.1875
2
OpenDataCatalog/contest/views.py
runonthespot/Open-Data-Catalog
105
12784676
from django.shortcuts import render_to_response, redirect from django.template import RequestContext from django.template.loader import render_to_string from django.core.mail import send_mail, mail_managers, EmailMessage from django.contrib.auth.decorators import login_required from django.contrib import messages from OpenDataCatalog.contest.models import * from datetime import datetime def get_entries(request, contest_id=1): contest = Contest.objects.get(pk=contest_id) entries = Entry.objects.filter(contest=contest, is_visible=True) if not request.GET.__contains__('sort'): entries = entries.order_by('-vote_count') return render_to_response('contest/entries.html', {'contest': contest, 'entries': entries}, context_instance=RequestContext(request)) def get_entries_table(request, contest_id=1): contest = Contest.objects.get(pk=contest_id) entries = Entry.objects.filter(contest=contest) if not request.GET.__contains__('sort'): entries = entries.order_by('-vote_count') return render_to_response('contest/entry_table.html', {'contest': contest, 'entries': entries}, context_instance=RequestContext(request)) def get_winners(request, contest_id=1): contest = Contest.objects.get(pk=contest_id) entries = Entry.objects.filter(contest=contest, is_visible=True).order_by('-vote_count') return render_to_response('contest/winners.html', {'contest': contest, 'entries': entries}, context_instance=RequestContext(request)) def get_rules(request, contest_id=1): contest = Contest.objects.get(pk=contest_id) return render_to_response('contest/rules.html', {'contest': contest}, context_instance=RequestContext(request)) def get_entry(request, entry_id): entry = Entry.objects.get(pk=entry_id) return render_to_response('contest/entry.html', {'contest': entry.contest, 'entry': entry}, context_instance=RequestContext(request)) #@login_required def add_entry(request, contest_id=1): contest = Contest.objects.get(pk=contest_id) if request.method == 'POST': form = EntryForm(request.POST) form.contest = contest_id if form.is_valid(): data = { #"submitter": request.user.username, "submit_date": datetime.now(), "org_name": form.cleaned_data.get("org_name"), "org_url": form.cleaned_data.get("org_url"), "contact_person": form.cleaned_data.get("contact_person"), "contact_phone": form.cleaned_data.get("contact_phone"), "contact_email": form.cleaned_data.get("contact_email"), "data_set": form.cleaned_data.get("data_set"), "data_use": form.cleaned_data.get("data_use"), "data_mission": form.cleaned_data.get("data_mission") } subject = 'OpenDataPhilly - Contest Submission' user_email = form.cleaned_data.get("contact_email") text_content = render_to_string('contest/submit_email.txt', data) text_content_copy = render_to_string('contest/submit_email_copy.txt', data) mail_managers(subject, text_content) msg = EmailMessage(subject, text_content_copy, to=[user_email]) msg.send() return render_to_response('contest/thanks.html', {'contest': contest}, context_instance=RequestContext(request)) else: form = EntryForm() return render_to_response('contest/submit_entry.html', {'contest': contest, 'form': form}, context_instance=RequestContext(request)) @login_required def add_vote(request, entry_id): entry = Entry.objects.get(pk=entry_id) contest = entry.contest user = User.objects.get(username=request.user) if contest.user_can_vote(user): new_vote = Vote(user=user, entry=entry) new_vote.save() entry.vote_count = entry.vote_set.count() entry.save() next_vote_date = contest.get_next_vote_date(user) if next_vote_date > contest.end_date: messages.success(request, '<div style="font-weight:bold;">Your vote has been recorded.</div>Thank you for your vote! You will not be able to vote again before the end of the contest. <br><br>Please encourage others to visit <a href="/">OpenDataPhilly</a> and to join the race toward more open data!') else: messages.success(request, '<div style="font-weight:bold;">Your vote has been recorded.</div>You may vote once per week, so come back and visit us again on ' + next_vote_date.strftime('%A, %b %d %Y, %I:%M%p') + '. <br><br>Until then, encourage others to visit <a href="/">OpenDataPhilly</a> and to join the race toward more open data!') else: next_vote_date = contest.get_next_vote_date(user) if next_vote_date > contest.end_date: messages.error(request, '<div style="font-weight:bold;">You have already voted.</div>You will not be able to vote again before the end of the contest. <br><br>Please encourage others to visit <a href="/">OpenDataPhilly</a> and to join the race toward more open data!') else: messages.error(request, '<div style="font-weight:bold;">You have already voted.</div>You may vote once per week, so come back and visit us again on ' + next_vote_date.strftime('%A, %b %d %Y, %I:%M%p') + '. <br><br>Until then, encourage others to visit <a href="/">OpenDataPhilly</a> and to join the race toward more open data!') return redirect('/contest/?sort=vote_count')
1.945313
2
result/migrations/mig/0027_auto_20190626_0838.py
0Jihad/uqhs
0
12784677
<reponame>0Jihad/uqhs<filename>result/migrations/mig/0027_auto_20190626_0838.py # Generated by Django 2.1.3 on 2019-06-25 19:38 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('result', '0026_auto_20190626_0835'), ] operations = [ migrations.RenameField( model_name='all_subject', old_name='Agg', new_name='agr', ), ]
1.507813
2
LogisticRegression_Firth.py
LukeLB/LogisticRegression_Firth
1
12784678
# -*- coding: utf-8 -*- """ Created on Tue Apr 6 09:59:14 2021 @author: ll17354 """ from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.linear_model._logistic import LogisticRegression from sklearn.utils.validation import check_X_y, check_array, check_is_fitted import sys import warnings import math import statsmodels import numpy as np from scipy import stats import statsmodels.api as smf def firth_likelihood(beta, logit): return -(logit.loglike(beta) + 0.5*np.log(np.linalg.det(-logit.hessian(beta)))) def null_fit_firth(y, X, start_vec = None, step_limit=1000, convergence_limit=0.0001): """ Computes the null model in the likelihood ratio test Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. Make sure X has an intercept term (column of ones). y : array-like of shape (n_samples,) Target vector relative to X. Please note this function only currently works for binomial regression so output values of {0, 1} will work while {0, 1, 2} will not. start_vec : int or None, optional starting vector The default is None. step_limit : TYPE, optional Max number of steps before MLE termination. The default is 1000. convergence_limit : TYPE, optional Minimum difference between MLE's. The default is 0.0001. Returns ------- return_fit : intercept: Intercept coeffcient beta: list of beta coeffcients bse: coeffcient standard errors fitll: fit log-likelihood """ logit_model = smf.Logit(y, X) if start_vec is None: start_vec = np.zeros(X.shape[1]) beta_iterations = [] beta_iterations.append(start_vec) for i in range(0, step_limit): pi = logit_model.predict(beta_iterations[i]) W = np.diagflat(np.multiply(pi, 1-pi)) var_covar_mat = np.linalg.pinv(-logit_model.hessian(beta_iterations[i])) # build hat matrix rootW = np.sqrt(W) H = np.dot(np.transpose(X), np.transpose(rootW)) H = np.matmul(var_covar_mat, H) H = np.matmul(np.dot(rootW, X), H) # penalised score U = np.matmul(np.transpose(X), y - pi + np.multiply(np.diagonal(H), 0.5 - pi)) new_beta = beta_iterations[i] + np.matmul(var_covar_mat, U) # step halving j = 0 while firth_likelihood(new_beta, logit_model) > firth_likelihood(beta_iterations[i], logit_model): new_beta = beta_iterations[i] + 0.5*(new_beta - beta_iterations[i]) j = j + 1 if (j > step_limit): sys.stderr.write('Firth regression failed. Try increasing step limit.\n') return None beta_iterations.append(new_beta) if i > 0 and (np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) < convergence_limit): break return_fit = None if np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) >= convergence_limit: sys.stderr.write('Firth regression failed to converge.\n') else: # Calculate stats fitll = -firth_likelihood(beta_iterations[-1], logit_model) intercept = beta_iterations[-1][0] beta = beta_iterations[-1][1:].tolist() bse = np.sqrt(np.diagonal(np.linalg.pinv(-logit_model.hessian(beta_iterations[-1])))) return_fit = intercept, beta, bse, fitll return return_fit class Firth_LogisticRegression(LogisticRegression, ClassifierMixin, BaseEstimator): """ This class represents a rewriting Firth regression originally implemented by John Lees (https://gist.github.com/johnlees/3e06380965f367e4894ea20fbae2b90d) into a class which can interact with the sci-kit learn ecosystem. To use the fit function make sure X has an intercept term (column of ones). When using validation functions make sure to not include this 'dummy' column of ones. Please note: This estimator class does not currently pass the check_estimator test in sklearn. This is because it cannot perform the multinomial classification task that check_estimator attempts to pass it. Parameters ---------- start_vec : ndarray of shape (n_features, 1). Default set to None in which case the zero vector is used. step_limit : int. convergence_limit : float. multi_class : string. Default is set to 'ovr' to let this function intgerate with the logistic_regression parent class and pass the _check_multi_class function. A bit hacky but works. Antributes ---------- classes_ : ndarray of shape (n_classes, ) A list of class labels known to the classifier. coef_ : ndarray of shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. `coef_` is of shape (1, n_features) when the given problem is binary. In particular, when `multi_class='multinomial'`, `coef_` corresponds to outcome 1 (True) and `-coef_` corresponds to outcome 0 (False). beta_ : list of size n_features. This is used in the wald and likelihood ratio test functions. intercept_ : ndarray of shape (1,) or (n_classes,) Intercept (a.k.a. bias) added to the decision function. """ def __init__(self, start_vec = None, step_limit = 1000, convergence_limit = 0.0001, multi_class = 'ovr'): self.start_vec = start_vec self.step_limit = step_limit self.convergence_limit = convergence_limit self.multi_class = multi_class # multiclass should not be changed from 'ovr' def fit(self, X = None, y = None): """ Fits the model accoridng to given training data. This fit function which has been changed to work inaccordance with the sklearn estimator documentation. Major changes are, rather than returning specific variables fit() return an instance of itself allowing other functions to be run from it. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. Make sure X has an intercept term (column of ones). y : array-like of shape (n_samples,) Target vector relative to X. Please note this function only currently works for binomial regression so output values of {0, 1} will work while {0, 1, 2} will not. Returns ------- self Fitted estimator. self.fitll_ : fit log-likelihood self.intercept_ : intercept self.coef_ : coeffcients not including intercept (used in all other sklearn classes ) self.beta_ : coeffcients including intercept (used in wald and LR tests) self.bse_ : standard errors """ X, y = check_X_y(X, y) self.n_features_in = X.shape[1]-1 self.classes_ = np.unique(y) logit_model = smf.Logit(y, X) if self.start_vec is None: start_vec = np.zeros(X.shape[1]) beta_iterations = [] beta_iterations.append(start_vec) for i in range(0, self.step_limit): pi = logit_model.predict(beta_iterations[i]) W = np.diagflat(np.multiply(pi, 1-pi)) var_covar_mat = np.linalg.pinv(-logit_model.hessian(beta_iterations[i])) # build hat matrix rootW = np.sqrt(W) H = np.dot(np.transpose(X), np.transpose(rootW)) H = np.matmul(var_covar_mat, H) H = np.matmul(np.dot(rootW, X), H) # penalised score U = np.matmul(np.transpose(X), y - pi + np.multiply(np.diagonal(H), 0.5 - pi)) new_beta = beta_iterations[i] + np.matmul(var_covar_mat, U) # step halving j = 0 while firth_likelihood(new_beta, logit_model) > firth_likelihood(beta_iterations[i], logit_model): new_beta = beta_iterations[i] + 0.5*(new_beta - beta_iterations[i]) j = j + 1 if (j > self.step_limit): sys.stderr.write('Firth regression failed. Try increasing step limit.\n') return None beta_iterations.append(new_beta) if i > 0 and (np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) < self.convergence_limit): break if np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) >= self.convergence_limit: sys.stderr.write('Firth regression failed to converge\n') else: # Calculate stats self.fitll_ = -firth_likelihood(beta_iterations[-1], logit_model) self.intercept_ = beta_iterations[-1][0] self.coef_ = np.array(beta_iterations[-1][1:].tolist()).reshape((1, self.n_features_in)) #for other sklearn functions self.beta_ = [self.intercept_] + beta_iterations[-1][1:].tolist() #used by Wald and LR test self.bse_ = np.sqrt(np.diagonal(np.linalg.pinv(-logit_model.hessian(beta_iterations[-1])))) return self def test_wald(self): ''' Implemnatation of the wald test Returns ------- waldp : list A list p-values from the Wald test. ''' check_is_fitted(self) waldp = [] for beta_val, bse_val in zip(self.beta_, self.bse_): waldp.append(2 * (1 - stats.norm.cdf(abs(beta_val/bse_val)))) return waldp def test_likelihoodratio(self, X, y, start_vec = None, step_limit=1000, convergence_limit=0.0001): """ Implementation of the likelihood ratio test. An external function, null_fit_firth(), is used to refit the null-estimator. Parameters ---------- X : {array-like} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. Make sure to include the dummy column of ones. y : array-like of shape (n_samples,) Target vector relative to X. Returns ------- lrtp : List List of p-values from the likelihood ratio test. """ check_is_fitted(self) X_np = X.values lrtp = [] for beta_idx, (beta_val, bse_val) in enumerate(zip(self.beta_, self.bse_)): null_X = np.delete(X_np, beta_idx, axis=1) (null_intercept, null_beta, null_bse, null_fitll) = null_fit_firth(y, null_X, start_vec, step_limit, convergence_limit) lrstat = -2*(null_fitll - self.fitll_) lrt_pvalue = 1 if lrstat > 0: # non-convergence lrt_pvalue = stats.chi2.sf(lrstat, 1) lrtp.append(lrt_pvalue) return lrtp
2.96875
3
tests/query/test_base_query.py
m-housh/flask_open_directory
0
12784679
import pytest from flask_open_directory import BaseQuery, User from flask_open_directory.query.base_query import _quote_if_str import ldap3 @pytest.fixture def base_query(open_directory): return BaseQuery(open_directory=open_directory) @pytest.fixture def connection(): return ldap3.Connection(ldap3.Server('localhost')) @pytest.fixture def custom_model(): class CustomModel(object): @classmethod def ldap_attribute_map(cls): pass @classmethod def attribute_name_for(cls, key): pass @classmethod def query_cn(cls): return 'cn=custom' @classmethod def from_entry(cls, entry): pass @classmethod def ldap_keys(cls): pass return CustomModel def test_quote_if_str(): assert _quote_if_str('a') == "'a'" assert _quote_if_str(None) is None obj = object() assert _quote_if_str(obj) == obj def test_BaseQuery_model(base_query): base_query.model = User assert base_query.model == User base_query.model = User() assert base_query.model == User with pytest.raises(TypeError): base_query.model = object def test_BaseQuery_open_directory(base_query): assert base_query.open_directory is not None with pytest.raises(TypeError): base_query.open_directory = object() def test_BaseQuery_search_base(base_query, open_directory, custom_model): assert base_query.search_base == open_directory.base_dn base_query.model = User assert base_query.search_base == 'cn=users,' + open_directory.base_dn no_open_directory = BaseQuery() assert no_open_directory.search_base is None explicit = BaseQuery(search_base='dc=example,dc=com') assert explicit.search_base == 'dc=example,dc=com' custom = BaseQuery(open_directory=open_directory, model=custom_model) assert custom.model is not None assert custom.search_base == 'cn=custom,{}'.format(open_directory.base_dn) def test_BaseQuery_search_filter(base_query): assert base_query.search_filter == base_query._default_search_filter q = BaseQuery(search_filter='(objectClass=apple-user)') assert q.search_filter == '(objectClass=apple-user)' def test_BaseQuery_ldap_attributes(base_query): assert base_query.ldap_attributes is None base_query.ldap_attributes = ['a', 'b', object()] assert base_query.ldap_attributes == ('a', 'b') base_query.ldap_attributes = 'c' assert base_query.ldap_attributes == ('c', ) def test_BaseQuery_connection(base_query, connection): assert base_query.connection is None base_query.connection = connection assert base_query.connection == connection with pytest.raises(TypeError): base_query.connection = object() def test_BaseQuery_connection_ctx(base_query, connection): with base_query.connection_ctx() as ctx: assert isinstance(ctx, ldap3.Connection) assert ctx != connection base_query.connection = connection with base_query.connection_ctx() as ctx: assert ctx == connection no_ctx = BaseQuery() with no_ctx.connection_ctx() as ctx: assert ctx is None def test_BaseQuery_first(base_query, open_directory): base_query.model = User user = base_query.first() assert isinstance(user, User) entry = base_query.first(convert=False) assert isinstance(entry, ldap3.Entry) with base_query.connection_ctx() as conn: user = base_query.first(conn) assert isinstance(user, User) invalid = BaseQuery() item = invalid.first() assert item is None def test_BaseQuery_all(base_query): base_query.model = User users = base_query.all() assert isinstance(users, tuple) for u in users: assert isinstance(u, User) entries = base_query.all(convert=False) for e in entries: assert isinstance(e, ldap3.Entry) with base_query.connection_ctx() as conn: users = base_query.all(conn) assert len(users) > 0 invalid = BaseQuery() items = invalid.all() assert isinstance(items, tuple) assert len(items) == 0 def test_BaseQuery_repr(base_query, open_directory): r = repr(base_query) assert "model=None" in r assert "search_base='{}'".format(open_directory.base_dn) in r assert "search_filter='(objectClass=*)'" in r assert "open_directory={}".format(repr(open_directory)) in r assert "connection={}".format(base_query.connection) in r assert "ldap_attributes=None" in r assert "BaseQuery(" in r assert ")" in r
2.109375
2
avgn/custom_parsing/mobysound_humpback.py
xingjeffrey/avgn_paper
0
12784680
from avgn.utils.audio import get_samplerate from avgn.utils.json import NoIndent, NoIndentEncoder import numpy as np from avgn.utils.paths import DATA_DIR import librosa from datetime import datetime import pandas as pd import avgn import json DATASET_ID = 'mobysound_humpback_whale' def load_labs(labels): all_labels = [] for label_file in labels: label_df = pd.DataFrame( [line.split() for line in open(label_file, "r")], columns=["start_time", "end_time", "low_freq", "high_freq", "SNR"], ) label_df['file'] = label_file.stem all_labels.append(label_df) all_labels = pd.concat(all_labels).reset_index() for lab in ['start_time', 'end_time', 'low_freq', 'high_freq', 'SNR']: all_labels[lab] = all_labels[lab].values.astype('float32') return all_labels def find_longest_nonvocal_stretch(file_df, wav_duration): """ An ugly function to find the longest stretch of nonvocal behavior in a syllable dataframe """ ## find the longest stretch of non-vocal behavior in this wav max_break = np.argmax(file_df.start_time.values[1:] - file_df.end_time.values[:-1]) noise_end_time = file_df.start_time.values[1:][max_break] noise_start_time = file_df.end_time.values[:-1][max_break] start_noise = file_df.start_time.values[0] end_noise = wav_duration - file_df.end_time.values[-1] noise_lens = np.array([noise_end_time - noise_start_time, start_noise, end_noise]) noise_start_ends = np.array( [ [noise_start_time, noise_end_time], [0, start_noise], [file_df.end_time.values[-1], wav_duration], ] ) noise_start, noise_end = noise_start_ends[np.argmax(noise_lens)] return noise_start, noise_end def generate_noise_and_json(bout_number, fn, DT_ID, wavloc, file_df): # location of wav #wavloc = np.array(wavs)[np.array([i.stem for i in wavs]) == fn][0] # wav time wavdate = datetime.strptime(fn, "%y%m%d-%H%M") wav_date = wavdate.strftime("%Y-%m-%d_%H-%M-%S") # wav samplerate and duration sr = get_samplerate(wavloc.as_posix()) wav_duration = librosa.get_duration(filename=wavloc) # df of syllables in file #file_df = label_df[label_df.file == fn].sort_values(by="start_time") ## find the longest stretch of non-vocal behavior in this wav noise_start, noise_end = find_longest_nonvocal_stretch(file_df, wav_duration) bout_start_string = avgn.utils.general.seconds_to_str(noise_start) # determine save locations noise_out = ( DATA_DIR / "processed" / DATASET_ID / DT_ID / "NOISE" / (fn + "__" + bout_start_string + ".WAV") ) json_out = DATA_DIR / "processed" / DATASET_ID / DT_ID / "JSON" / (fn + ".JSON") # wav general information json_dict = {} json_dict["bout_number"] = bout_number json_dict["species"] = "Megaptera novaengliae" json_dict["common_name"] = "Humpback whale" json_dict["datetime"] = wav_date json_dict["samplerate_hz"] = sr json_dict["length_s"] = wav_duration json_dict["wav_loc"] = wavloc.as_posix() json_dict["noise_loc"] = noise_out.as_posix() json_dict["indvs"] = { "UNK": { "syllables": { "start_times": NoIndent( list(file_df.start_time.values.astype("float")) ), "end_times": NoIndent(list(file_df.end_time.astype("float"))), "high_freq": NoIndent(list(file_df.high_freq.astype("float"))), "low_freq": NoIndent(list(file_df.low_freq.astype("float"))), "SNR": NoIndent(list(file_df.SNR.astype("float"))), } } } json_txt = json.dumps(json_dict, cls=NoIndentEncoder, indent=2) # save wav file noise_wav, sr = librosa.load( wavloc, sr=None, mono=True, offset=noise_start, duration=noise_end - noise_start ) avgn.utils.paths.ensure_dir(noise_out) librosa.output.write_wav(noise_out, y=noise_wav, sr=sr, norm=True) # save json avgn.utils.paths.ensure_dir(json_out.as_posix()) print(json_txt, file=open(json_out.as_posix(), "w"))
2.53125
3
federatedml/ftl/test/functional_test/hetero_ftl_plain_guest_test.py
chenlongzhen/FATE-0.1
1
12784681
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import unittest from federatedml.ftl.plain_ftl import PlainFTLHostModel from federatedml.ftl.hetero_ftl.hetero_ftl_guest import HeteroPlainFTLGuest, HeteroFTLGuest from federatedml.ftl.plain_ftl import PlainFTLGuestModel from federatedml.feature.instance import Instance from federatedml.ftl.common.data_util import create_table from federatedml.ftl.test.fake_models import FakeAutoencoder, FakeDiffConverge from federatedml.param.param import FTLModelParam from federatedml.util.transfer_variable import HeteroFTLTransferVariable from arch.api.eggroll import init class TestHeteroFTLGuest(HeteroPlainFTLGuest): def __init__(self, guest, model_param, transfer_variable): super(TestHeteroFTLGuest, self).__init__(guest, model_param, transfer_variable) U_B = np.array([[4, 2, 3, 1, 2], [6, 5, 1, 4, 5], [7, 4, 1, 9, 10], [6, 5, 1, 4, 5]]) overlap_indexes = [1, 2] Wh = np.ones((5, U_B.shape[1])) bh = np.zeros(U_B.shape[1]) autoencoderB = FakeAutoencoder(1) autoencoderB.build(U_B.shape[1], Wh, bh) self.host = PlainFTLHostModel(autoencoderB, self.model_param) self.host.set_batch(U_B, overlap_indexes) def _do_remote(self, value=None, name=None, tag=None, role=None, idx=None): print("@_do_remote", value, name, tag, role, idx) def _do_get(self, name=None, tag=None, idx=None): print("@_do_get", name, tag, idx) if tag == "HeteroFTLTransferVariable.host_sample_indexes.0": return [np.array([1, 2, 4, 5])] elif tag == "HeteroFTLTransferVariable.host_component_list.0.0": return self.host.send_components() return None class TestCreateGuestHostEggrollTable(unittest.TestCase): def test_hetero_plain_guest_prepare_table(self): U_A = np.array([[1, 2, 3, 4, 5], [4, 5, 6, 7, 8], [7, 8, 9, 10, 11], [4, 5, 6, 7, 8]]) y = np.array([[1], [-1], [1], [-1]]) Wh = np.ones((5, U_A.shape[1])) bh = np.zeros(U_A.shape[1]) model_param = FTLModelParam(alpha=1, max_iteration=1) autoencoderA = FakeAutoencoder(0) autoencoderA.build(U_A.shape[1], Wh, bh) guest = PlainFTLGuestModel(autoencoderA, model_param) converge_func = FakeDiffConverge(None) ftl_guest = TestHeteroFTLGuest(guest, model_param, HeteroFTLTransferVariable()) ftl_guest.set_converge_function(converge_func) guest_sample_indexes = np.array([0, 1, 2, 3]) guest_x_dict = {} guest_label_dict = {} instance_dict = {} instance_list = [] np.random.seed(100) for i, feature, label, in zip(guest_sample_indexes, U_A, y): instance = Instance(inst_id=i, features=feature, label=label[0]) guest_x_dict[i] = feature guest_label_dict[i] = label[0] instance_dict[i] = instance instance_list.append(instance) guest_x = create_table(instance_list, indexes=guest_sample_indexes) guest_x, overlap_indexes, non_overlap_indexes, guest_y = ftl_guest.prepare_data(guest_x) print("guest_x", guest_x) print("overlap_indexes", overlap_indexes) print("non_overlap_indexes", non_overlap_indexes) print("guest_y", guest_y) if __name__ == '__main__': init() unittest.main()
1.851563
2
evap/evaluation/migrations/0125_use_lists_for_ordering.py
felixrindt/EvaP
29
12784682
<gh_stars>10-100 # Generated by Django 3.1.8 on 2021-07-24 17:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('evaluation', '0124_add_html_content'), ] operations = [ migrations.AlterModelOptions( name='logentry', options={'ordering': ['-datetime', '-id']}, ), migrations.AlterModelOptions( name='questionnaire', options={'ordering': ['type', 'order', 'pk'], 'verbose_name': 'questionnaire', 'verbose_name_plural': 'questionnaires'}, ), migrations.AlterModelOptions( name='semester', options={'ordering': ['-created_at', 'pk'], 'verbose_name': 'semester', 'verbose_name_plural': 'semesters'}, ), migrations.AlterModelOptions( name='userprofile', options={'ordering': ['last_name', 'first_name', 'email'], 'verbose_name': 'user', 'verbose_name_plural': 'users'}, ), ]
1.710938
2
server/mlabns/db/nagios_config_wrapper.py
mtlynch/m-lab.ns
10
12784683
import logging from google.appengine.api import memcache from mlabns.db import model from mlabns.util import constants def get_nagios_config(): """Retrieves nagios config info. First checks memcache, then datastore. Returns: Nagios model instance """ nagios = memcache.get(constants.DEFAULT_NAGIOS_ENTRY) if not nagios: nagios = model.Nagios.get_by_key_name(constants.DEFAULT_NAGIOS_ENTRY) if nagios: memcache.set(constants.DEFAULT_NAGIOS_ENTRY, nagios) else: logging.error('Datastore does not have the Nagios credentials.') return nagios
2.359375
2
l5kit/l5kit/tests/planning/common_test.py
cdicle-motional/l5kit
1
12784684
<reponame>cdicle-motional/l5kit import torch def mock_vectorizer_data(batch_size: int, num_steps: int, num_history: int, num_agents: int, num_lanes: int, num_crosswalks: int, num_points_per_element: int, TYPE_MAX: int) -> dict: return { "extent": torch.rand(batch_size, 3), "type": torch.randint(0, TYPE_MAX, (batch_size,)), "world_to_image": torch.rand(batch_size, 3, 3), "raster_from_agent": torch.rand(batch_size, 3, 3), "raster_from_world": torch.rand(batch_size, 3, 3), "agent_from_world": torch.rand(batch_size, 3, 3), "world_from_agent": torch.rand(batch_size, 3, 3), "target_positions": torch.rand(batch_size, num_steps, 2), "target_yaws": torch.rand(batch_size, num_steps, 1), "target_extents": torch.rand(batch_size, num_steps, 2), "target_availabilities": torch.rand(batch_size, num_steps) > 0.5, "history_positions": torch.rand(batch_size, num_history + 1, 2), "history_yaws": torch.rand(batch_size, num_history + 1, 1), "history_extents": torch.rand(batch_size, num_history + 1, 2), "history_availabilities": torch.rand(batch_size, num_history + 1) > 0.5, "centroid": torch.rand(batch_size, 2), "yaw": torch.rand(batch_size), "speed": torch.rand(batch_size), "all_other_agents_history_positions": torch.rand(batch_size, num_agents, num_history + 1, 2), "all_other_agents_history_yaws": torch.rand(batch_size, num_agents, num_history + 1, 1), "all_other_agents_history_extents": torch.rand(batch_size, num_agents, num_history + 1, 2), "all_other_agents_history_availability": torch.rand(batch_size, num_agents, num_history + 1) > 0.5, "all_other_agents_future_positions": torch.rand(batch_size, num_agents, num_steps, 2), "all_other_agents_future_yaws": torch.rand(batch_size, num_agents, num_steps, 1), "all_other_agents_future_availability": torch.rand(batch_size, num_agents, num_steps) > 0.5, "all_other_agents_types": torch.randint(0, TYPE_MAX, (batch_size, num_agents)), "agent_trajectory_polyline": torch.rand(batch_size, num_history + 1, 3), "agent_polyline_availability": torch.rand(batch_size, num_history + 1) > 0.5, "other_agents_polyline": torch.rand(batch_size, num_agents, num_history + 1, 3), "other_agents_polyline_availability": torch.rand(batch_size, num_agents, num_history + 1) > 0.5, "lanes": torch.rand(batch_size, num_lanes, num_points_per_element, 3), "lanes_availability": torch.rand(batch_size, num_lanes, num_points_per_element) > 0.5, "lanes_mid": torch.rand(batch_size, num_lanes, num_points_per_element, 3), "lanes_mid_availabilities": torch.rand(batch_size, num_lanes, num_points_per_element) > 0.5, "crosswalks": torch.rand(batch_size, num_crosswalks, num_points_per_element, 3), "crosswalks_availabilities": torch.rand(batch_size, num_crosswalks, num_points_per_element) > 0.5, "scene_index": torch.rand(batch_size), "host_id": torch.rand(batch_size, 70), "timestamp": torch.rand(batch_size), "track_id": torch.rand(batch_size), }
2.125
2
gs15_py/signature_RSA.py
Jajajzhh/Blockchain_EncryptionKasumi
0
12784685
<gh_stars>0 from Crypto.PublicKey import RSA import errno from Crypto.Hash import SHA256 from Crypto.PublicKey import RSA from hashlib import sha512 from os import mkdir from os import _exists #RSA signature class Sign_hash: def __init__(self, usernum): #Using Crypto Library to generate, export and import key pair instead of using the generated key in #3 dirpriv = 'key/' + usernum +'/privkey.pem' dirpub = 'key/' + usernum +'/pubkey.pem' try: with open(dirpriv, 'r') as f: self.keyPair = RSA.importKey(f.read()) except IOError as e: if e.errno != errno.ENOENT: raise # No private key, generate a new one. This can take a few seconds. if not _exists('key/elgamal/' + usernum + '/'): mkdir('key/' + usernum + '/') self.keyPair = RSA.generate(bits=1024) with open(dirpriv, 'wb') as f: f.write(self.keyPair.exportKey('PEM')) with open(dirpub, 'wb') as f: f.write(self.keyPair.publickey().exportKey('PEM')) def sign(self, message): #keyPair = RSA.generate(bits=1024) print(f"Public key: (n={hex(self.keyPair.n)}, e={hex(self.keyPair.e)})") print(f"Private key: (n={hex(self.keyPair.n)}, d={hex(self.keyPair.d)})") # RSA sign the message msg = message from hashlib import sha512 hash = int.from_bytes(sha512(msg).digest(), byteorder='big') signature = pow(hash, self.keyPair.d, self.keyPair.n) print("Signature:", hex(signature)) return signature def verify(self, message, signature): #message in bytes msg = message hash = int.from_bytes(sha512(msg).digest(), byteorder='big') hashFromSignature = pow(signature, self.keyPair.e, self.keyPair.n) print('Hash1:', hex(hash)) print('Hash2:', hex(hashFromSignature)) print("Signature valid:", hash == hashFromSignature) if(hash == hashFromSignature): return True else: return False ################## #################### if __name__ == '__main__': signature = Sign_hash('1') signed = signature.sign(b'A message for sign') verify = signature.verify(b'A message for sign',signed) print(hex(signed)) #keyPair = RSA.generate(bits=1024) #print(f"Public key: (n={hex(keyPair.n)}, e={hex(keyPair.e)})") #print(f"Private key: (n={hex(keyPair.n)}, d={hex(keyPair.d)})") # RSA sign the message #msg = b'A message for signing' #from hashlib import sha512 #hash = int.from_bytes(sha512(msg).digest(), byteorder='big') #signature = pow(hash, keyPair.d, keyPair.n) #print("Signature:", hex(signature)) # RSA verify signature #msg = b'A message for signing' #hash = int.from_bytes(sha512(msg).digest(), byteorder='big') ##hashFromSignature = pow(signature, keyPair.e, keyPair.n) #print("Signature valid:", hash == hashFromSignature) # RSA verify signature (tampered msg) #msg = b'A message for signing (tampered)' #hash = int.from_bytes(sha512(msg).digest(), byteorder='big') #hashFromSignature = pow(signature, keyPair.e, keyPair.n) #print("Signature valid (tampered):", hash == hashFromSignature)
2.828125
3
game/entities/voxel.py
eivaremir/TheLearningDoors
2
12784686
from ursina import * from ..textures import textures class Voxel(Button): def __init__(self, position = (0,0,0), texture = textures["grass"]): super().__init__( parent = scene, position = position, model = 'assets/block', origin_y = .5, texture =texture, color = color.color(0,0,random.uniform(.9,1)), scale = .5 )
2.46875
2
d17.py
theShmoo/adventofcode2019
0
12784687
import intcode import utils class Droid(object): def __init__(self): super(Droid, self).__init__() self.grid = [] self.current_line = [] self.width = 0 self.height = 0 self.neighborhoods = ((1, 0), (0, 1), (-1, 0), (0, -1)) def printGrid(self): s = "" for line in self.grid: s += str(''.join(line)) + "\n" print(s) def getNumNeighbors(self, x, y): num = 0 if self.grid[y][x] != '#': return 0 for n in self.neighborhoods: check_x = x + n[0] check_y = y + n[1] if check_x > 0 and check_x < self.width: if check_y > 0 and check_y < self.height: if self.grid[check_y][check_x] == '#': num += 1 return num def setOutput(self, v): if v > 127: print(f"{v} dust collected") if v == 10: self.grid.append(self.current_line) if len(self.current_line) > 0: self.width = len(self.current_line) self.height += 1 self.current_line = [] else: self.current_line.append(chr(v)) def getInput(self): return 0 data = [int(x) for x in utils.get_input(2019, 17).split(',')] data[0] = 2 droid = Droid() pc = intcode.Intcode(data, droid.getInput, droid.setOutput) pc.run() droid.printGrid() intersections = [] for x in range(droid.width): for y in range(droid.height): if droid.getNumNeighbors(x, y) > 2: intersections.append((x, y)) print(intersections) s = [i[0] * i[1] for i in intersections] print(sum(s))
3.09375
3
terrascript/kubernetes/__init__.py
amlodzianowski/python-terrascript
0
12784688
<reponame>amlodzianowski/python-terrascript<filename>terrascript/kubernetes/__init__.py # terrascript/kubernetes/__init__.py import terrascript class kubernetes(terrascript.Provider): pass
1.296875
1
vote.py
evan82/dash-voter
1
12784689
<gh_stars>1-10 #!/usr/bin/env python """ Dash-Voter ---- Mass vote on a proposal semi-anonymously """ import subprocess import argparse import json from config import dashd_path, datadir, masternodes from random import randint, shuffle from time import sleep from sys import exit, argv print dashd_path, datadir if len(argv) == 2: print "proposal yes|no required" exit() #vote yes somewhere between 70 and 100% of the time. This will average 85% the direction you want. p = randint(700, 1000) #sleep multiple, sleep between 10 and 30 seconds per proposal s = randint(1, 3) # Called when a client sends a message def vote(proposal, yes_no, masternode): """ ./dash-cli --datadir=/Users/evan/.dash mnbudget vote-alias 1e477007d555f9f8919ecbe3b4c457b6f269184924771c0117fbb48751bf23d6 no flare_024 """ r = randint(0, 1000) a, b = "yes", "no" if yes_no == "no": a, b = b, a a = yes_no b = yes_no print proposal, (a if r<p else b) print dashd_path + " --datadir=" + datadir + " mnbudget vote-alias " + proposal + " " + (a if r<p else b) + " " + masternode subprocess.call(dashd_path + " --datadir=" + datadir + " mnbudget vote-alias " + proposal + " " + (a if r<p else b) + " " + masternode, shell=True) #vote anonymously shuffle(masternodes) for masternode in masternodes: vote(argv[1], argv[2], masternode) sleep(randint(1, 10)*s)
2.5625
3
mllogger.py
ok1zjf/LBAE
15
12784690
__author__ = '<NAME>' __email__ = '<EMAIL>' __version__= '1.8' __status__ = "Research" __date__ = "2/1/2020" __license__= "MIT License" import os import sys import numpy as np import time import glob from torchvision.utils import make_grid from tensorboardX import SummaryWriter import imageio import skimage from parameters import Params from sys_utils import tohms from image_utils import save_image #======================================================================================== class TeePipe(object): #source: https://stackoverflow.com/q/616645 def __init__(self, filename="Red.Wood", mode="a", buff=0): self.stdout = sys.stdout # self.file = open(filename, mode, buff) self.file = open(filename, mode) sys.stdout = self def __del__(self): self.close() def __enter__(self): pass def __exit__(self, *args): self.close() def write(self, message): self.stdout.write(message) self.file.write(message) def flush(self): self.stdout.flush() self.file.flush() os.fsync(self.file.fileno()) def close(self): if self.stdout != None: sys.stdout = self.stdout self.stdout = None if self.file != None: self.file.close() self.file = None # ======================================================================================== class MLLogger(): def __init__(self, hps): self.hps = hps self.logf = None self.im_size = hps.img_size self.epoch_num = hps.epochs_max # Total number of epochs self.iter_num = {} # Iterations per epoch # self.iter_epoch = 0 self.batch_size = hps.batch_size self.data = [] self.dkeys_id=['ts', 'epoch', 'iter', 'stage'] # Key lookup by ID self.dkeys = {} # ID lookup by key self.m_first = {} # stage_name -> position of first record self.m_last = {} # stage_name -> position of last record self.start_time = None # blobal start timestamp self.iter_global = 0 # Total iteration since the begining of the training self.print_header = True self.data_format_changed = True self.last_report_pos={} # stage_name -> Position in self.data of the last report # Tensorboard self.writer = None self.log_id = None return def load_config(self): logdir = self.exp_path+'/log/' cfg_filename = os.path.join(logdir, 'cfg-'+str(self.log_id-1)+'-*.json') cfg_files = glob.glob(cfg_filename) cfg_files.sort(reverse=True) if len(cfg_files) == 0 or not os.path.isfile(cfg_files[0]): return None p = Params() if not p.load(cfg_files[0]): return None return p def save_config(self, epoch=None): logdir = self.exp_path+'/log/' cfg_filename = os.path.join(logdir, 'cfg-'+str(self.log_id)+'-'+str(epoch)+'.json') self.hps.save(cfg_filename) return def open_experiment(self, experiment_name='m1'): """ Creates sub-directory structure - Creates new log file - """ self.experiment_name = experiment_name self.exp_path = os.path.join(experiment_name) os.makedirs(self.exp_path, exist_ok=True) if not self.hps.eval and self.experiment_name != '.': # Backup source code & configs os.system('cp *.py ' + self.exp_path+ '/') logdir = self.exp_path+'/tblog/' os.makedirs(logdir, exist_ok=True) self.writer = SummaryWriter(logdir) logdir = self.exp_path+'/log/' os.makedirs(logdir, exist_ok=True) self.model_path =os.path.join(self.exp_path, 'models') os.makedirs(self.model_path, exist_ok=True) # Create new log files prefix = 'eval-' if self.hps.eval else 'train-' log_id = 0 while True: log_filename = prefix+'log-'+str(log_id)+'.txt' log_path = os.path.join(logdir, log_filename) if not os.path.isfile(log_path): break log_id += 1 if self.hps.log_stdout: stdout_log_filename = prefix+'stdout-'+str(log_id)+'.txt' stdout_log_filename = os.path.join(logdir, stdout_log_filename) self.stdout_logger = TeePipe(stdout_log_filename) print("Creating new log file:",log_path) self.logf = open(log_path, 'wt') self.log_id = log_id return def set_samples_num(self, stage_name, samples_num): self.iter_num[stage_name] = self.hps.batch_size * int(np.floor(samples_num / self.hps.batch_size)) def start_epoch(self, stage_name, epoch): """ Creates a null record with a current timestamp """ if self.start_time is None: self.start_time = time.time() # Stored the position of the first epoch record # There can be one start per stage self.m_first[stage_name] = len(self.data) self.m_last[stage_name] = len(self.data) self.last_report_pos[stage_name] = len(self.data) rec = [0]*len(self.dkeys_id) rec[0] = time.time() - self.start_time rec[1] = epoch rec[2] = self.iter_global rec[3] = stage_name self.data.append(rec) self.print_header = True return def log_loss(self, epoch, iter, losses, stage_name): """ Args: epoch (int): current epoch starting from 0 iter (int): sample iteration within the epoch stage_name (str): 'train', 'val', 'test' losses (dict): dictionary of loss_name->loss_val """ if iter is not None: self.iter_global = iter # Collect new value keys for key, val in losses.items(): if key not in self.dkeys_id: # Add new key=val self.dkeys_id.append(key) self.data_format_changed = True # Update the key-index lookup table if self.data_format_changed: self.dkeys = {} for i, key in enumerate(self.dkeys_id): self.dkeys[key] = i # Store new data rec = [0]*len(self.dkeys_id) rec[0] = time.time() - self.start_time rec[1] = epoch rec[2] = self.iter_global # Global iteration rec[3] = stage_name # Generate tensorboar record tboard_losses = {} for key, val in losses.items(): id = self.dkeys[key] rec[id] = val key = stage_name+'_'+key tboard_losses[key] = val self.data.append(rec) # Append log to the file if self.logf is not None: if self.data_format_changed: # Insert data format header header_str = [str(v) for v in self.dkeys_id] self.logf.write('\n'+' '.join(header_str)+'\n') line = [str(v) for v in rec] self.logf.write(' '.join(line)+'\n') self.logf.flush() # Update tensorboard # {'d_loss': d_loss, 'grad_penalty': grad_penalty} self.writer.add_scalars('losses', tboard_losses, self.iter_global) self.m_last[stage_name] = len(self.data)-1 self.data_format_changed= False return def print_table(self, name, data, header=None): """ max_iter = self.iter_num*self.epoch_num epoch_str = str(rec[-1][1])+" ("+str(int(done))+"%)" header = ['T', 'e('+str(self.epoch_num)+')', 'iter('+str(max_iter//1000)+'k)', 'batch (ms)'] data = [[rec[-1][3], epoch_str, str(last_iter), batch_took_avg*1000.0]] """ # Print table table_width = 0 if header is not None: self.col_width = [] line = "" for i, hv in enumerate(header): line += '{:<{c0}}'.format(hv, c0=len(hv)) self.col_width.append(len(hv)) print('') if name is not None: print(name) print(line) head_len = len(line) print('-'*head_len ) table_width = head_len # Print data for r, rv in enumerate(data): line = "" for c, cv in enumerate(rv): line += '{:<{c0}}'.format(cv, c0=self.col_width[c]) print(line, flush=True) if len(line) > table_width: table_width = len(line) return table_width def get_avg(self, begin, end, cols=[]): rec = self.data[begin:end] # Get the max number of stored value in this run mx = 0 for val in rec: if len(val)>mx: mx = len(val) # Create numpy vector for the averages rec = np.asarray([x+[0]*(mx-len(x)) for x in rec], dtype=np.object ) # Get only the records with loss values rec_avg = rec.copy() rec_avg[:,:4] = 0 rec_avg = rec_avg.astype(np.float) rec_avg = rec_avg.mean(0) return rec_avg def print_batch_stat(self, stage_name='t'): last_epoch_pos = self.m_last.get(stage_name, 0) last_report_pos = self.last_report_pos.get(stage_name, 0) if last_report_pos == last_epoch_pos: # Already reported return # Get averages since the last report rec_avg = self.get_avg(last_report_pos+1, last_epoch_pos+1) rec_last = self.data[last_epoch_pos] time_now, last_epoch, last_iter, last_stage_name = rec_last[:4] iter = last_iter - self.data[self.m_first[stage_name]][2] done = round(100*iter/self.iter_num.get(stage_name), 2) if stage_name in self.iter_num else 0 batch_took_avg = float(time_now) - float(self.data[last_report_pos+1][0]) if self.batch_size is not None: batch_took_avg /= self.batch_size self.last_report_pos[stage_name] = last_epoch_pos # Print table header = None if self.print_header: max_iter = self.iter_num.get(stage_name, 0)*self.epoch_num header = ['Time ', 'E('+str(self.epoch_num)+') ', 'Iter('+str(max_iter//1000)+'k) ', 'Batch (ms) '] for key in self.dkeys_id[4:]: header.append(key+' '*(15-len(key))) self.print_header=False data = [tohms(time_now), str(last_epoch)+' ('+str(done)+'%)', str(last_iter), round(batch_took_avg*1000.0, 3)] for key in self.dkeys_id[4:]: data.append(round(rec_avg[self.dkeys[key]], 4)) table_width = self.print_table(last_stage_name, [data], header) return def print_epoch_stat(self, stage_name, **kwargs): """ Batch train log format Epoch train log format Test log format """ first_epoch_pos = self.m_first.get(stage_name, 0) last_epoch_pos = self.m_last.get(stage_name, 0) rec_avg = self.get_avg(first_epoch_pos+1, last_epoch_pos+1) rec_last = self.data[last_epoch_pos] time_now, last_epoch, last_iter, last_stage_name = rec_last[:4] epoch_took = tohms(time_now - self.data[first_epoch_pos][0]) # Print table max_iter = self.iter_num*self.epoch_num header = ['Time ', 'E('+str(self.epoch_num)+') ', 'Iter('+str(max_iter//1000)+'k) ', 'Epoch (H:M:S) '] for key in self.dkeys_id[4:]: header.append(key) data = [tohms(time_now), str(last_epoch), str(last_iter), epoch_took] for key in self.dkeys_id[4:]: data.append(round(rec_avg[self.dkeys[key]], 4)) table_width = self.print_table(last_stage_name, [data], header) print("-"*table_width) return def log_images(self, x, epoch, name_suffix, name, channels=3, nrow=8): img_path = os.path.join(self.experiment_name, name) os.makedirs(img_path, exist_ok=True) img_size = self.im_size if img_size < 1: img_size2 = x.nelement() / x.size(0) / channels img_size = int(np.sqrt(img_size2)) x = x.view(-1, channels, img_size, img_size) # * 0.5 + 0.5 grid = save_image(x, img_path+'/sample_' + str(epoch) + "_" + str(name_suffix) + '.jpg', nrow = nrow, normalize=True, scale_each=True) img_grid = make_grid(x, normalize=True, scale_each=True, nrow=nrow) self.writer.add_image(name, img_grid , self.iter_global) return def _merge(self, images, size, labels=[], strike=[]): h, w = images.shape[1], images.shape[2] resize_factor=1.0 h_ = int(h * resize_factor) w_ = int(w * resize_factor) img = np.zeros((h_ * size[0], w_ * size[1])) for idx, image in enumerate(images): i = int(idx % size[1]) j = int(idx / size[1]) image_ = skimage.transform.resize(image, output_shape=(w_, h_)) img[j * h_:j * h_ + h_, i * w_:i * w_ + w_] = image_ if len(labels) == len(images): if labels[idx] == 1: img[j * h_:j * h_ + 2, i * w_:i * w_ + w_-4] = np.ones((2, w_-4)) if len(strike) == len(images): if strike[idx] == 1: img[j * h_+h_//2:j * h_ + h_//2+1, i * w_:i * w_ + w_-4] = np.ones((1, w_-4)) return img def save_images(self, images, img_size=(28,28), labels=[], strike=[], name='result.jpg'): n_img_y = 16 n_img_x = 32 images = images.reshape(n_img_x * n_img_y, img_size[0], img_size[1]) imageio.imsave(name, self._merge(images, [n_img_y, n_img_x], labels, strike)) #================================================================================= if __name__ == "__main__": print("NOT AN EXECUTABLE!")
2.171875
2
core/app/utils/tests/test_date.py
EmixMaxime/mx-home-security
2
12784691
from datetime import timedelta from unittest import TestCase from django.utils import timezone from freezegun import freeze_time from utils.date import is_time_newer_than class UtilsDateTestCase(TestCase): def setUp(self) -> None: pass @freeze_time("2020-12-21 03:21:00") def test_is_less_old_than(self): t = timezone.now() - timedelta(seconds=60) self.assertFalse(is_time_newer_than(t, 50)) t = timezone.now() - timedelta(seconds=40) self.assertTrue(is_time_newer_than(t, 50))
2.828125
3
Frozen/script.py
killua4564/2021-Crypto-CTF
0
12784692
from pwn import remote from gmpy2 import next_prime from Crypto.Util.number import * conn = remote("03.cr.yp.toc.tf", "25010") def get_params(): conn.recvuntil("[Q]uit") conn.sendline("s") conn.recvuntil(" = ") p = int(conn.recvuntil("\n").decode()) conn.recvuntil(" = ") r = int(conn.recvuntil("\n").decode()) return (p, r) def get_public(): conn.recvuntil("[Q]uit") conn.sendline("p") conn.recvuntil("[") return list(map(int, conn.recvuntil("]").decode().strip("]").split(", "))) def get_example(): conn.recvuntil("[Q]uit") conn.sendline("e") conn.recvuntil("\"") randstr = conn.recvuntil("\"").decode().strip("\"") conn.recvuntil("[") return randstr, list(map(int, conn.recvuntil("]").decode().strip("]").split(", "))) p, r = get_params() pubkey = get_public() randstr, sign = get_example() M = [ bytes_to_long(randstr[4*i:4*(i+1)].encode()) for i in range(len(randstr) // 4) ] q = int(next_prime(max(M))) privkey = [sig * inverse(m, q) % q for m, sig in zip(M, sign)] inv_r = inverse(r, p) s_list = ( (pubkey[0] + privkey[0]) * inv_r % p, (pubkey[0] + privkey[0] + q) * inv_r % p ) key = True for idx in range(1, len(privkey)): ts = (pubkey[idx] + privkey[idx]) * pow(inv_r, idx+1, p) % p if ts not in s_list: privkey[idx] += q elif key: key = False if ts == s_list[1]: privkey[0] += q conn.recvuntil("[Q]uit") conn.sendline("f") conn.recvuntil(": ") randmsg = conn.recvuntil("\n").decode().strip("\n") MM = [ bytes_to_long(randmsg[4*i:4*(i+1)].encode()) for i in range(len(randmsg) // 4) ] qq = int(next_prime(max(MM))) conn.sendline(",".join( map(str, (mm * priv % qq for mm, priv in zip(MM, privkey))) )) conn.recvuntil("'") print(conn.recvuntil("'").decode().strip("'"))
2.25
2
tools/ops.py
imatge-upc/unsupervised-2017-cvprw
25
12784693
<gh_stars>10-100 import math import numpy as np import tensorflow as tf from tensorflow.python.framework import ops def _variable_with_weight_decay(name, shape, wd=1e-3): with tf.device("/cpu:0"): # store all weights in CPU to optimize weights sharing among GPUs var = tf.get_variable(name, shape, initializer=tf.contrib.layers.xavier_initializer()) if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def max_pool3d(input_, k, name='max_pool3d'): return tf.nn.max_pool3d(input_, ksize=[1, k, 2, 2, 1], strides=[1, k, 2, 2, 1], padding='SAME', name=name) def conv2d(input_, output_dim, k_h=3, k_w=3, d_h=1, d_w=1, padding='SAME', name="conv2d"): with tf.variable_scope(name): w = _variable_with_weight_decay('w', [k_h, k_w, input_.get_shape()[-1], output_dim]) conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding=padding) b = _variable_with_weight_decay('b', [output_dim]) return tf.nn.bias_add(conv, b) def cross_conv2d(input_, kernel, d_h=1, d_w=1, padding='SAME', name="cross_conv2d"): with tf.variable_scope(name): output_dim = kernel.get_shape()[4] batch_size = input_.get_shape().as_list()[0] b = _variable_with_weight_decay('b', [output_dim]) output = [] input_list = tf.unstack(input_) kernel_list = tf.unstack(kernel) for i in range(batch_size): conv = tf.nn.conv2d(tf.expand_dims(input_list[i],0), kernel_list[i], strides=[1, d_h, d_w, 1], padding=padding) conv = tf.nn.bias_add(conv, b) output.append(conv) return tf.concat(output, 0) def conv3d(input_, output_dim, k_t=3, k_h=3, k_w=3, d_t=1, d_h=1, d_w=1, padding='SAME', name="conv3d"): with tf.variable_scope(name): w = _variable_with_weight_decay('w', [k_t, k_h, k_w, input_.get_shape()[-1], output_dim]) conv = tf.nn.conv3d(input_, w, strides=[1, d_t, d_h, d_w, 1], padding=padding) b = _variable_with_weight_decay('b', [output_dim]) return tf.nn.bias_add(conv, b) def relu(x): return tf.nn.relu(x) def fc(input_, output_dim, name='fc'): with tf.variable_scope(name): w = _variable_with_weight_decay('w', [input_.get_shape()[-1], output_dim]) b = _variable_with_weight_decay('b', [output_dim]) return tf.matmul(input_, w) + b def deconv2d(input_, output_shape, k_h=3, k_w=3, d_h=1, d_w=1, padding='SAME', name="deconv2d"): with tf.variable_scope(name): # filter : [height, width, output_channels, in_channels] w = _variable_with_weight_decay('w', [k_h, k_h, output_shape[-1], input_.get_shape()[-1]]) deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape, strides=[1, d_h, d_w, 1], padding=padding) b = _variable_with_weight_decay('b', [output_shape[-1]]) return tf.nn.bias_add(deconv, b) def deconv3d(input_, output_shape, k_t=3, k_h=3, k_w=3, d_t=1, d_h=1, d_w=1, padding='SAME', name="deconv3d"): with tf.variable_scope(name): # filter : [depth, height, width, output_channels, in_channels] w = _variable_with_weight_decay('w', [k_t, k_h, k_h, output_shape[-1], input_.get_shape()[-1]]) deconv = tf.nn.conv3d_transpose(input_, w, output_shape=output_shape, strides=[1, d_t, d_h, d_w, 1], padding=padding) b = _variable_with_weight_decay('b', [output_shape[-1]]) return tf.nn.bias_add(deconv, b)
2.53125
3
fsutil/test/write_with_config.py
wenbobuaa/pykit
13
12784694
import os import sys from pykit import fsutil fn = sys.argv[1] fsutil.write_file(fn, 'boo') stat = os.stat(fn) os.write(1, '{uid},{gid}'.format(uid=stat.st_uid, gid=stat.st_gid))
2.34375
2
config/__init__.py
haoyu-x/robot-learning
1
12784695
""" Define parameters for algorithms. """ import argparse def str2bool(v): return v.lower() == "true" def str2intlist(value): if not value: return value else: return [int(num) for num in value.split(",")] def str2list(value): if not value: return value else: return [num for num in value.split(",")] def create_parser(): """ Creates the argparser. Use this to add additional arguments to the parser later. """ parser = argparse.ArgumentParser( "Robot Learning Algorithms", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # environment parser.add_argument( "--env", type=str, default="Hopper-v2", help="environment name", ) parser.add_argument("--seed", type=int, default=123) add_method_arguments(parser) return parser def add_method_arguments(parser): # algorithm parser.add_argument( "--algo", type=str, default="sac", choices=[ "sac", "ppo", "ddpg", "td3", "bc", "gail", "dac", ], ) # training parser.add_argument("--is_train", type=str2bool, default=True) parser.add_argument("--resume", type=str2bool, default=True) parser.add_argument("--init_ckpt_path", type=str, default=None) parser.add_argument("--gpu", type=int, default=None) # evaluation parser.add_argument("--ckpt_num", type=int, default=None) parser.add_argument("--num_eval", type=int, default=1, help="number of episodes for evaluation" ) # environment try: parser.add_argument("--screen_width", type=int, default=480) parser.add_argument("--screen_height", type=int, default=480) except: pass parser.add_argument("--action_repeat", type=int, default=1) # misc parser.add_argument("--run_prefix", type=str, default=None) parser.add_argument("--notes", type=str, default="") # log parser.add_argument("--log_interval", type=int, default=1) parser.add_argument("--evaluate_interval", type=int, default=10) parser.add_argument("--ckpt_interval", type=int, default=200) parser.add_argument("--log_root_dir", type=str, default="log") parser.add_argument( "--wandb", type=str2bool, default=False, help="set it True if you want to use wandb", ) parser.add_argument("--wandb_entity", type=str, default="clvr") parser.add_argument("--wandb_project", type=str, default="robot-learning") parser.add_argument("--record_video", type=str2bool, default=True) parser.add_argument("--record_video_caption", type=str2bool, default=True) try: parser.add_argument("--record_demo", type=str2bool, default=False) except: pass # observation normalization parser.add_argument("--ob_norm", type=str2bool, default=False) parser.add_argument("--max_ob_norm_step", type=int, default=int(1e6)) parser.add_argument( "--clip_obs", type=float, default=200, help="the clip range of observation" ) parser.add_argument( "--clip_range", type=float, default=5, help="the clip range after normalization of observation", ) parser.add_argument("--max_global_step", type=int, default=int(1e6)) parser.add_argument( "--batch_size", type=int, default=128, help="the sample batch size" ) add_policy_arguments(parser) # arguments specific to algorithms args, unparsed = parser.parse_known_args() if args.algo == "sac": add_sac_arguments(parser) elif args.algo == "ddpg": add_ddpg_arguments(parser) elif args.algo == "td3": add_td3_arguments(parser) elif args.algo == "ppo": add_ppo_arguments(parser) elif args.algo == "bc": add_il_arguments(parser) add_bc_arguments(parser) elif args.algo in ["gail", "gaifo", "gaifo-s"]: add_il_arguments(parser) add_ppo_arguments(parser) add_gail_arguments(parser) elif args.algo in ["dac"]: add_il_arguments(parser) add_gail_arguments(parser) add_dac_arguments(parser) return parser def add_policy_arguments(parser): # network parser.add_argument("--policy_mlp_dim", type=str2intlist, default=[256, 256]) parser.add_argument("--critic_mlp_dim", type=str2intlist, default=[256, 256]) parser.add_argument("--critic_ensemble", type=int, default=1) parser.add_argument( "--policy_activation", type=str, default="relu", choices=["relu", "elu", "tanh"] ) parser.add_argument("--tanh_policy", type=str2bool, default=True) parser.add_argument("--gaussian_policy", type=str2bool, default=True) # encoder parser.add_argument( "--encoder_type", type=str, default="mlp", choices=["mlp", "cnn"] ) parser.add_argument("--encoder_image_size", type=int, default=84) parser.add_argument("--encoder_conv_dim", type=int, default=32) parser.add_argument("--encoder_kernel_size", type=str2intlist, default=[3, 3, 3, 3]) parser.add_argument("--encoder_stride", type=str2intlist, default=[2, 1, 1, 1]) parser.add_argument("--encoder_conv_output_dim", type=int, default=50) parser.add_argument("--encoder_soft_update_weight", type=float, default=0.95) args, unparsed = parser.parse_known_args() if args.encoder_type == "cnn": parser.set_defaults(screen_width=100, screen_height=100) parser.set_defaults(policy_mlp_dim=[1024, 1024]) parser.set_defaults(critic_mlp_dim=[1024, 1024]) # actor-critic parser.add_argument( "--actor_lr", type=float, default=3e-4, help="the learning rate of the actor" ) parser.add_argument( "--critic_lr", type=float, default=3e-4, help="the learning rate of the critic" ) parser.add_argument( "--critic_soft_update_weight", type=float, default=0.995, help="the average coefficient" ) # absorbing state parser.add_argument("--absorbing_state", type=str2bool, default=False) def add_rl_arguments(parser): parser.add_argument( "--rl_discount_factor", type=float, default=0.99, help="the discount factor" ) parser.add_argument("--warm_up_steps", type=int, default=0) def add_on_policy_arguments(parser): parser.add_argument("--rollout_length", type=int, default=2000) parser.add_argument("--gae_lambda", type=float, default=0.95) def add_off_policy_arguments(parser): parser.add_argument( "--buffer_size", type=int, default=int(1e6), help="the size of the buffer" ) parser.set_defaults(warm_up_steps=1000) def add_sac_arguments(parser): add_rl_arguments(parser) add_off_policy_arguments(parser) parser.add_argument("--reward_scale", type=float, default=1.0, help="reward scale") parser.add_argument("--actor_update_freq", type=int, default=2) parser.add_argument("--critic_target_update_freq", type=int, default=2) parser.add_argument("--alpha_init_temperature", type=float, default=0.1) parser.add_argument( "--alpha_lr", type=float, default=1e-4, help="the learning rate of the actor" ) parser.set_defaults(actor_lr=1e-3) parser.set_defaults(critic_lr=1e-3) parser.set_defaults(evaluate_interval=5000) parser.set_defaults(ckpt_interval=10000) parser.set_defaults(log_interval=500) parser.set_defaults(critic_soft_update_weight=0.99) parser.set_defaults(buffer_size=100000) parser.set_defaults(critic_ensemble=2) def add_ppo_arguments(parser): add_rl_arguments(parser) add_on_policy_arguments(parser) parser.add_argument("--ppo_clip", type=float, default=0.2) parser.add_argument("--value_loss_coeff", type=float, default=0.5) parser.add_argument("--action_loss_coeff", type=float, default=1.0) parser.add_argument("--entropy_loss_coeff", type=float, default=1e-4) parser.add_argument("--ppo_epoch", type=int, default=5) parser.add_argument("--max_grad_norm", type=float, default=100) parser.set_defaults(critic_soft_update_weight=0.995) parser.set_defaults(evaluate_interval=20) parser.set_defaults(ckpt_interval=20) def add_ddpg_arguments(parser): add_rl_arguments(parser) add_off_policy_arguments(parser) parser.add_argument("--actor_update_delay", type=int, default=2000) parser.add_argument("--actor_update_freq", type=int, default=2) parser.add_argument("--actor_target_update_freq", type=int, default=2) parser.add_argument("--critic_target_update_freq", type=int, default=2) parser.add_argument( "--actor_soft_update_weight", type=float, default=0.995, help="the average coefficient" ) parser.set_defaults(critic_soft_update_weight=0.995) # epsilon greedy parser.add_argument("--epsilon_greedy", type=str2bool, default=False) parser.add_argument("--epsilon_greedy_eps", type=float, default=0.3) parser.add_argument("--policy_exploration_noise", type=float, default=0.1) parser.set_defaults(gaussian_policy=False) parser.set_defaults(evaluate_interval=10000) parser.set_defaults(ckpt_interval=50000) parser.set_defaults(log_interval=1000) def add_td3_arguments(parser): add_ddpg_arguments(parser) parser.set_defaults(critic_ensemble=2) parser.add_argument("--policy_noise", type=float, default=0.2) parser.add_argument("--policy_noise_clip", type=float, default=0.5) def add_il_arguments(parser): parser.add_argument("--demo_path", type=str, default=None, help="path to demos") parser.add_argument( "--demo_subsample_interval", type=int, default=1, # default=20, # used in GAIL help="subsample interval of expert transitions", ) def add_bc_arguments(parser): parser.set_defaults(gaussian_policy=False) parser.set_defaults(max_global_step=100) parser.add_argument( "--bc_lr", type=float, default=1e-3, help="learning rate for bc" ) parser.add_argument( "--val_split", type=float, default=0, help="how much of dataset to leave for validation set" ) def add_gail_arguments(parser): parser.add_argument("--gail_entropy_loss_coeff", type=float, default=0.0) parser.add_argument("--gail_vanilla_reward", type=str2bool, default=True) parser.add_argument("--discriminator_lr", type=float, default=1e-4) parser.add_argument("--discriminator_mlp_dim", type=str2intlist, default=[256, 256]) parser.add_argument( "--discriminator_activation", type=str, default="tanh", choices=["relu", "elu", "tanh"] ) parser.add_argument("--discriminator_update_freq", type=int, default=4) parser.add_argument("--gail_no_action", type=str2bool, default=False) parser.add_argument("--gail_env_reward", type=float, default=0.0) def add_dac_arguments(parser): parser.add_argument("--dac_rl_algo", type=str, default="td3", choices=["sac", "td3"]) args, unparsed = parser.parse_known_args() if args.dac_rl_algo == "sac": add_sac_arguments(parser) elif args.dac_rl_algo == "td3": add_td3_arguments(parser) def argparser(): """ Directly parses the arguments. """ parser = create_parser() args, unparsed = parser.parse_known_args() return args, unparsed
3.484375
3
tools/python/boutiques/__version__.py
glatard/boutiques
2
12784696
VERSION = "0.5.23"
1.117188
1
python/test/test_feature_extraction.py
spongezhang/vlb
11
12784697
<reponame>spongezhang/vlb #!/usr/bin/python # -*- coding: utf-8 -*- # =========================================================== # File Name: test_feature_extraction.py # Author: <NAME>, Columbia University # Creation Date: 01-25-2019 # Last Modified: Sat Feb 9 11:13:09 2019 # # Usage: python test_feature_extraction.py # Description: Test feature extraction # # Copyright (C) 2018 <NAME> # All rights reserved. # # This file is made available under # the terms of the BSD license (see the COPYING file). # =========================================================== import sys sys.path.insert(0, '/Users/Xu/program/Image_Genealogy/code/vlb/python/dset/') sys.path.insert( 0, '/Users/Xu/program/Image_Genealogy/code/vlb/python/features/') import feature_utils import vlsift_matlab import vlsift import vgg_dataset if __name__ == "__main__": a = vgg_dataset.vggh_Dataset() image = a.get_image('graf', '1') #vlsift_all = vlsift.vlsift() vlsift_all = vlsift_matlab.vlsift_matlab() feature, descriptor = vlsift_all.extract_all(image) print(feature.shape, descriptor.shape)
1.984375
2
tests/conftest.py
paulperegud/small-1toN-transactions
0
12784698
import os import pytest from ethereum import utils from ethereum.tools import tester from ethereum.abi import ContractTranslator from ethereum.config import config_metropolis from solc_simple import Builder GAS_LIMIT = 8000000 START_GAS = GAS_LIMIT - 1000000 config_metropolis['BLOCK_GAS_LIMIT'] = GAS_LIMIT # Compile contracts before testing OWN_DIR = os.path.dirname(os.path.realpath(__file__)) CONTRACTS_DIR = os.path.abspath(os.path.realpath(os.path.join(OWN_DIR, '../contracts'))) OUTPUT_DIR = os.path.abspath(os.path.realpath(os.path.join(OWN_DIR, '../build'))) builder = Builder(CONTRACTS_DIR, OUTPUT_DIR) builder.compile_all() @pytest.fixture def ethtester(): tester.chain = tester.Chain() return tester @pytest.fixture def ethutils(): return utils @pytest.fixture def get_contract(ethtester, ethutils): def create_contract(path, args=(), sender=ethtester.k0): abi, hexcode = builder.get_contract_data(path) bytecode = ethutils.decode_hex(hexcode) encoded_args = (ContractTranslator(abi).encode_constructor_arguments(args) if args else b'') code = bytecode + encoded_args address = ethtester.chain.tx(sender=sender, to=b'', startgas=START_GAS, data=code) return ethtester.ABIContract(ethtester.chain, abi, address) return create_contract @pytest.fixture def tree(ethtester, get_contract): contract = get_contract('PercentTrees') ethtester.chain.mine() return contract @pytest.fixture def dummy(ethtester, get_contract): contract = get_contract('Dummy') ethtester.chain.mine() return contract @pytest.fixture def p2pk(ethtester, get_contract): contract = get_contract('P2PK') ethtester.chain.mine() return contract @pytest.fixture def treetest(ethtester, get_contract): contract = get_contract('TreeTest') ethtester.chain.mine() return contract
1.921875
2
src/NER.py
HaritzPuerto/Entity_Extractor
2
12784699
<reponame>HaritzPuerto/Entity_Extractor import spacy from tqdm import tqdm class Entity_model(): def __init__(self, spacy_model='en_core_web_sm'): self.nlp = spacy.load(spacy_model) def __clean_input(self, s): ''' Remove duplicated whitespaces. There are several instances in SQuAD with double spaces that makes tricky the allignment in the tokenization. ''' return " ".join(s.split()) def get_entities(self, list_sentences): ''' Input: - list_sentences Output: - dict_sent_idx2entities: dictionary that maps each sentence idx to a list of entities ''' dict_sent_idx2entities = dict() # this will be the final output # for each sentence for sent_idx, sent in enumerate(tqdm(list_sentences)): sent = self.__clean_input(sent) # initialize the list of entities for the current sentence dict_sent_idx2entities[sent_idx] = [] # use spacy processor on the question | context sentence spacy_sent = self.nlp(sent) # get the entities of the two sentences concatenated (query and context) for e in spacy_sent.ents: # create the dictionary to store the metadata of the entity dict_ent = {'char_idx': (e.start_char, e.end_char), # eg: (0,3) 'word_idx': (e.start, e.end), # eg: (0,1) 'ent_type': e.label_, # eg: "PERSON" 'text': e.text, # eg: "John" } dict_sent_idx2entities[sent_idx].append(dict_ent) return dict_sent_idx2entities def get_entities_from_sentence(self, sent): list_entities = [] sent = self.__clean_input(sent) spacy_sent = self.nlp(sent) # get the entities of the two sentences concatenated (query and context) for e in spacy_sent.ents: # create the dictionary to store the metadata of the entity dict_ent = {'char_idx': (e.start_char, e.end_char), # eg: (0,3) 'word_idx': (e.start, e.end), # eg: (0,1) 'ent_type': e.label_, # eg: "PERSON" 'text': e.text, # eg: "John" } list_entities.append(dict_ent) return list_entities, spacy_sent
2.8125
3
src/userservice/tests/test_db.py
Budget-Web-App/budget-web-app
0
12784700
<reponame>Budget-Web-App/budget-web-app """ Tests for db module """ import unittest from unittest.mock import patch from sqlalchemy.exc import IntegrityError from db import UserDb from tests.constants import EXAMPLE_USER class TestDb(unittest.TestCase): """ Test cases for db module """ def setUp(self): """Init db and create table before each test""" # init SQLAlchemy with sqllite in mem self.db = UserDb('sqlite:///:memory:') # create users table in mem self.db.users_table.create(self.db.engine) def test_add_user_returns_none_no_exception(self): """test if a user can be added""" user = EXAMPLE_USER.copy() # create a user with username foo user['username'] = 'foo' user['userid'] = '1' # add user to db self.db.add_user(user) def test_add_same_user_raises_exception(self): """test if one user can be added twice""" user = EXAMPLE_USER.copy() # create a user with username bar user['username'] = 'bar' user['userid'] = '2' # add bar_user to db self.db.add_user(user) # try to add same user again self.assertRaises(IntegrityError, self.db.add_user, user) def test_get_user_returns_existing_user(self): """test getting a user""" user = EXAMPLE_USER.copy() # create a user with username baz user['username'] = 'baz' user['userid'] = '3' # add baz_user to db self.db.add_user(user) # get baz_user from db db_user = self.db.get_user(user['username']) # assert both user objects are equal self.assertEqual(user, db_user) def test_get_non_existent_user_returns_none(self): """test getting a user that does not exist""" # assert None when user does not exist self.assertIsNone(self.db.get_user('user1')) # mock random.randint to produce 4,5,6 on each invocation @patch('random.randint', side_effect=[4, 5, 6]) def test_generate_account_id_ignores_existing_id_generates_new_id(self, mock_rand): """test generating account id""" user = EXAMPLE_USER.copy() # create a user with username qux user['username'] = 'qux' user['userid'] = '4' # add qux_user to db # generate_account_id should return 5 now as 4 exists self.db.add_user(user) self.assertEqual('5', self.db.generate_userid()) # mock_rand was called twice, first generating 4, then 5 self.assertEqual(2, mock_rand.call_count)
3.078125
3
src/manager/om/script/gspylib/inspection/items/network/CheckMTU.py
wotchin/openGauss-server
1
12784701
<reponame>wotchin/openGauss-server<filename>src/manager/om/script/gspylib/inspection/items/network/CheckMTU.py # -*- coding:utf-8 -*- # Copyright (c) 2020 Huawei Technologies Co.,Ltd. # # openGauss is licensed under Mulan PSL v2. # You can use this software according to the terms # and conditions of the Mulan PSL v2. # You may obtain a copy of Mulan PSL v2 at: # # http://license.coscl.org.cn/MulanPSL2 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OF ANY KIND, # EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, # MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. # See the Mulan PSL v2 for more details. # ---------------------------------------------------------------------------- import subprocess from gspylib.inspection.common import SharedFuncs from gspylib.inspection.common.CheckItem import BaseItem from gspylib.inspection.common.CheckResult import ResultStatus from gspylib.common.ErrorCode import ErrorCode from gspylib.os.gsnetwork import g_network networkCardNum = "" class CheckMTU(BaseItem): def __init__(self): super(CheckMTU, self).__init__(self.__class__.__name__) self.expectMTU1 = None self.expectMTU2 = None def preCheck(self): # check current node contains cn instances if not raise exception super(CheckMTU, self).preCheck() # check the threshold was set correctly if (not self.threshold.__contains__('expectMTU1')): raise Exception(ErrorCode.GAUSS_530["GAUSS_53013"] % "threshold expectMTU1") self.expectMTU1 = self.threshold['expectMTU1'] if (not self.threshold.__contains__('expectMTU2')): raise Exception(ErrorCode.GAUSS_530["GAUSS_53013"] % "threshold expectMTU2") self.expectMTU2 = self.threshold['expectMTU2'] def doCheck(self): global networkCardNum if self.cluster: # Get node information LocalNodeInfo = self.cluster.getDbNodeByName(self.host) # Get the IP address backIP = LocalNodeInfo.backIps[0] else: backIP = SharedFuncs.getIpByHostName(self.host) # Get the network card number networkCards = g_network.getAllNetworkInfo() for network in networkCards: if network.ipAddress == backIP: networkCardNum = network.NICNum networkMTU = network.MTUValue break if not networkCardNum or not networkMTU: raise Exception(ErrorCode.GAUSS_506["GAUSS_50619"]) # Check the mtu value obtained is not a number if not str(networkMTU).isdigit(): raise Exception(ErrorCode.GAUSS_506["GAUSS_50612"] % (networkCardNum + " " + "MTU")) self.result.val = str(networkMTU) # Compare the acquired MTU with the threshold if (int(networkMTU) != int(self.expectMTU1) and int( networkMTU) != int(self.expectMTU2)): self.result.rst = ResultStatus.WARNING self.result.raw = "Warning MTU value[%s]: RealValue '%s' " \ "ExpectedValue '%s' or '%s'.\n" \ % (networkCardNum, int(networkMTU), self.expectMTU1, self.expectMTU2) else: self.result.rst = ResultStatus.OK self.result.raw = "[%s]MTU: %s" \ % (networkCardNum, str(networkMTU)) def doSet(self): resultStr = "" (THPFile, initFile) = SharedFuncs.getTHPandOSInitFile() cmd = "ifconfig %s mtu 1500;" % networkCardNum cmd += "echo ifconfig %s mtu 1500 >> %s" % (networkCardNum, initFile) (status, output) = subprocess.getstatusoutput(cmd) if (status != 0): resultStr += "Set MTU Failed.Error : %s." % output resultStr += "The cmd is %s " % cmd if (len(resultStr) > 0): self.result.val = resultStr else: self.result.val = "Set MTU successfully."
2.03125
2
Q7.py
devasheeshG/Project-file-XII_21-22
0
12784702
<filename>Q7.py # Q7. Write a programs to find the sum of the following series : a)1/x + 1/x2+ 1/x3+................. 1/xn b)1 + 1/2! + 1/3! +.......................1/n! c)1 –2 + 3 –4 + 5 -...................... n
2.703125
3
lab-taxi/main.py
aopina1/DRLND-Course
0
12784703
from agent import Agent from monitor import interact import gym import numpy as np env = gym.make('Taxi-v3') agent = Agent() avg_rewards, best_avg_reward = interact(env, agent)
1.773438
2
scripts/twint2json.py
code2k13/nlppipe
9
12784704
#!/usr/bin/env python3 import sys import json for line in sys.stdin: s = line.split(" ") obj = {} obj['id'] = s[0] obj['date'] = s[1] + " " + s[2] + " " + s[3] obj['user'] = s[4] obj['text'] = " ".join(s[5:]) print(json.dumps(obj,ensure_ascii=False))
2.65625
3
tests/test_console_script.py
MapleCCC/importall
0
12784705
from runpy import run_module import pytest from .subtest import _test_stdlib_symbols_in_namespace # TODO do some research about how to test an interactive CLI application @pytest.mark.xfail def test_console_script() -> None: _test_stdlib_symbols_in_namespace(run_module("importall"))
1.476563
1
test/config_test.py
jamesbeyond/mbed-fastmodel-agent-1
0
12784706
from unittest import TestCase from fm_agent.fm_config import FastmodelConfig from fm_agent.utils import SimulatorError class TestFastmodelConfig(TestCase): def test_Setting_File(self): self.assertTrue(FastmodelConfig.SETTINGS_FILE,"settings.json") def test_parse_params_file_failed(self): c=FastmodelConfig() try: c.parse_params_file("FILE_NOT_EXIST") except SimulatorError as e: pass else: self.fail("failed to catch the exception") def test_parse_params_file(self): c=FastmodelConfig() try: c.parse_params_file("DEFAULT.conf") except SimulatorError as e: self.fail("caught an SimulatorError exception") def test_get_configs_none(self): c=FastmodelConfig() self.assertIsNone(c.get_configs("NOT_A_MODEL")) def test_get_configs(self): c=FastmodelConfig() self.assertIsNotNone(c.get_configs("FVP_MPS2_M3")) def test_get_all_configs(self): c=FastmodelConfig() self.assertIsNotNone(c.get_all_configs())
2.59375
3
vuakhter/base/requests_log.py
best-doctor/vuakhter
0
12784707
<reponame>best-doctor/vuakhter<filename>vuakhter/base/requests_log.py from __future__ import annotations import typing from vuakhter.base.base_log import BaseLog if typing.TYPE_CHECKING: from vuakhter.utils.types import RequestEntry, TimestampRange class RequestsLog(BaseLog): def get_records(self, ts_range: TimestampRange = None, **kwargs: typing.Any) -> typing.Iterator[RequestEntry]: raise NotImplementedError()
2.046875
2
test/test_filters.py
ecometrica/grandfatherson
15
12784708
from datetime import datetime, date import unittest from grandfatherson import (FRIDAY, SATURDAY, SUNDAY) from grandfatherson.filters import (Seconds, Minutes, Hours, Days, Weeks, Months, Years, UTC) def utcdatetime(*args): return datetime(*args, tzinfo=UTC()) class TestSeconds(unittest.TestCase): def setUp(self): self.now = datetime(2000, 1, 1, 0, 0, 1, 1) self.datetimes = [ datetime(2000, 1, 1, 0, 0, 1, 0), datetime(2000, 1, 1, 0, 0, 0, 1), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(1999, 12, 31, 23, 59, 57, 0), ] def test_mask(self): self.assertEqual( Seconds.mask(datetime(1999, 12, 31, 23, 59, 59, 999999)), datetime(1999, 12, 31, 23, 59, 59, 0) ) def test_future(self): datetimes = [datetime(2010, 1, 15, 0, 0, 0, 0)] # Wikipedia self.assertEqual(Seconds.filter(datetimes, number=0, now=self.now), set(datetimes)) self.assertEqual(Seconds.filter(datetimes, number=1, now=self.now), set(datetimes)) def test_invalid_number(self): self.assertRaises(ValueError, Seconds.filter, [], number=-1, now=self.now) self.assertRaises(ValueError, Seconds.filter, [], number=0.1, now=self.now) self.assertRaises(ValueError, Seconds.filter, [], number='1', now=self.now) def test_no_input(self): self.assertEqual(Seconds.filter([], number=1, now=self.now), set()) def test_no_results(self): self.assertEqual(Seconds.filter([self.now], number=0, now=self.now), set()) self.assertEqual(Seconds.filter(self.datetimes, number=0, now=self.now), set()) def test_current(self): self.assertEqual(Seconds.filter(self.datetimes, number=1, now=self.now), set([datetime(2000, 1, 1, 0, 0, 1, 0)])) def test_duplicates(self): # Ensure we get the oldest per-second datetime when there are # duplicates: i.e. not datetime(2000, 1, 1, 0, 0, 0, 1) self.assertEqual(Seconds.filter(self.datetimes, number=2, now=self.now), set([datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 1, 0)])) def test_microseconds(self): self.assertEqual(Seconds.filter(self.datetimes, number=3, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 1, 0)])) def test_before_start(self): # datetime(1999, 12, 31, 23, 59, 57, 0) is too old to show up # in the results self.assertEqual(Seconds.filter(self.datetimes, number=4, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 1, 0)])) def test_all_input(self): self.assertEqual(Seconds.filter(self.datetimes, number=5, now=self.now), set([datetime(1999, 12, 31, 23, 59, 57, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 1, 0)])) self.assertEqual(Seconds.filter(self.datetimes, number=6, now=self.now), set([datetime(1999, 12, 31, 23, 59, 57, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 1, 0)])) def test_with_tzinfo(self): utcnow = utcdatetime(2000, 1, 1, 0, 0, 1, 1) tzinfo_datetimes = [ utcdatetime(2000, 1, 1, 0, 0, 1, 0), utcdatetime(2000, 1, 1, 0, 0, 0, 1), utcdatetime(2000, 1, 1, 0, 0, 0, 0), utcdatetime(1999, 12, 31, 23, 59, 59, 999999), utcdatetime(1999, 12, 31, 23, 59, 57, 0), ] self.assertEqual(Seconds.filter(tzinfo_datetimes, number=5, now=utcnow), set([utcdatetime(1999, 12, 31, 23, 59, 57, 0), utcdatetime(1999, 12, 31, 23, 59, 59, 999999), utcdatetime(2000, 1, 1, 0, 0, 0, 0), utcdatetime(2000, 1, 1, 0, 0, 1, 0)])) self.assertEqual(Seconds.filter(tzinfo_datetimes, number=6, now=utcnow), set([utcdatetime(1999, 12, 31, 23, 59, 57, 0), utcdatetime(1999, 12, 31, 23, 59, 59, 999999), utcdatetime(2000, 1, 1, 0, 0, 0, 0), utcdatetime(2000, 1, 1, 0, 0, 1, 0)])) class TestMinutes(unittest.TestCase): def setUp(self): self.now = datetime(2000, 1, 1, 0, 1, 1, 1) self.datetimes = [ datetime(2000, 1, 1, 0, 1, 0, 0), datetime(2000, 1, 1, 0, 0, 1, 0), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(1999, 12, 31, 23, 57, 0, 0), ] def test_mask(self): self.assertEqual( Minutes.mask(datetime(1999, 12, 31, 23, 59, 59, 999999)), datetime(1999, 12, 31, 23, 59, 0, 0) ) def test_future(self): datetimes = [datetime(2010, 1, 15, 0, 0, 0, 0)] # Wikipedia self.assertEqual(Minutes.filter(datetimes, number=0, now=self.now), set(datetimes)) self.assertEqual(Minutes.filter(datetimes, number=1, now=self.now), set(datetimes)) def test_invalid_number(self): self.assertRaises(ValueError, Minutes.filter, [], number=-1, now=self.now) self.assertRaises(ValueError, Minutes.filter, [], number=0.1, now=self.now) self.assertRaises(ValueError, Minutes.filter, [], number='1', now=self.now) def test_no_input(self): self.assertEqual(Minutes.filter([], number=1, now=self.now), set()) def test_no_results(self): self.assertEqual(Minutes.filter([self.now], number=0, now=self.now), set()) self.assertEqual(Minutes.filter(self.datetimes, number=0, now=self.now), set()) def test_current(self): self.assertEqual(Minutes.filter(self.datetimes, number=1, now=self.now), set([datetime(2000, 1, 1, 0, 1, 0, 0)])) def test_duplicates(self): # Ensure we get the oldest per-minute datetime when there are # duplicates: i.e. not datetime(2000, 1, 1, 0, 0, 1, 0) self.assertEqual(Minutes.filter(self.datetimes, number=2, now=self.now), set([datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 1, 0, 0)])) def test_microseconds(self): self.assertEqual(Minutes.filter(self.datetimes, number=3, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 1, 0, 0)])) def test_before_start(self): # datetime(1999, 12, 31, 23, 57, 0, 0) is too old to show up # in the results self.assertEqual(Minutes.filter(self.datetimes, number=4, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 1, 0, 0)])) def test_all_input(self): self.assertEqual(Minutes.filter(self.datetimes, number=5, now=self.now), set([datetime(1999, 12, 31, 23, 57, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 1, 0, 0)])) self.assertEqual(Minutes.filter(self.datetimes, number=6, now=self.now), set([datetime(1999, 12, 31, 23, 57, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 1, 0, 0)])) class TestHours(unittest.TestCase): def setUp(self): self.now = datetime(2000, 1, 1, 1, 1, 1, 1) self.datetimes = [ datetime(2000, 1, 1, 1, 0, 0, 0), datetime(2000, 1, 1, 0, 1, 0, 0), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(1999, 12, 31, 21, 0, 0, 0), ] def test_mask(self): self.assertEqual( Hours.mask(datetime(1999, 12, 31, 23, 59, 59, 999999)), datetime(1999, 12, 31, 23, 0, 0, 0) ) def test_future(self): datetimes = [datetime(2010, 1, 15, 0, 0, 0, 0)] # Wikipedia self.assertEqual(Hours.filter(datetimes, number=0, now=self.now), set(datetimes)) self.assertEqual(Hours.filter(datetimes, number=1, now=self.now), set(datetimes)) def test_invalid_number(self): self.assertRaises(ValueError, Hours.filter, [], number=-1, now=self.now) self.assertRaises(ValueError, Hours.filter, [], number=0.1, now=self.now) self.assertRaises(ValueError, Hours.filter, [], number='1', now=self.now) def test_no_input(self): self.assertEqual(Hours.filter([], number=1, now=self.now), set()) def test_no_results(self): self.assertEqual(Hours.filter([self.now], number=0, now=self.now), set()) self.assertEqual(Hours.filter(self.datetimes, number=0, now=self.now), set()) def test_current(self): self.assertEqual(Hours.filter(self.datetimes, number=1, now=self.now), set([datetime(2000, 1, 1, 1, 0, 0, 0)])) def test_duplicates(self): # Ensure we get the oldest per-hour datetime when there are # duplicates: i.e. not datetime(2000, 1, 1, 0, 1, 0, 0) self.assertEqual(Hours.filter(self.datetimes, number=2, now=self.now), set([datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 1, 0, 0, 0)])) def test_microseconds(self): self.assertEqual(Hours.filter(self.datetimes, number=3, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 1, 0, 0, 0)])) def test_before_start(self): # datetime(1999, 12, 31, 21, 0, 0, 0) is too old to show up # in the results self.assertEqual(Hours.filter(self.datetimes, number=4, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 1, 0, 0, 0)])) def test_all_input(self): self.assertEqual(Hours.filter(self.datetimes, number=5, now=self.now), set([datetime(1999, 12, 31, 21, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 1, 0, 0, 0)])) self.assertEqual(Hours.filter(self.datetimes, number=6, now=self.now), set([datetime(1999, 12, 31, 21, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 1, 0, 0, 0)])) class TestDays(unittest.TestCase): def setUp(self): self.now = datetime(2000, 1, 1, 1, 1, 1, 1) self.datetimes = [ datetime(2000, 1, 1, 1, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(1999, 12, 30, 0, 0, 0, 0), datetime(1999, 12, 28, 0, 0, 0, 0), ] def test_mask(self): self.assertEqual( Days.mask(datetime(1999, 12, 31, 23, 59, 59, 999999)), datetime(1999, 12, 31, 0, 0, 0, 0) ) def test_future(self): datetimes = [datetime(2010, 1, 15, 0, 0, 0, 0)] # Wikipedia self.assertEqual(Days.filter(datetimes, number=0, now=self.now), set(datetimes)) self.assertEqual(Days.filter(datetimes, number=1, now=self.now), set(datetimes)) def test_invalid_number(self): self.assertRaises(ValueError, Days.filter, [], number=-1, now=self.now) self.assertRaises(ValueError, Days.filter, [], number=0.1, now=self.now) self.assertRaises(ValueError, Days.filter, [], number='1', now=self.now) def test_no_input(self): self.assertEqual(Days.filter([], number=1, now=self.now), set()) def test_no_results(self): self.assertEqual(Days.filter([self.now], number=0, now=self.now), set()) self.assertEqual(Days.filter(self.datetimes, number=0, now=self.now), set()) def test_current(self): self.assertEqual(Days.filter(self.datetimes, number=1, now=self.now), set([datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_duplicates(self): # Ensure we get the oldest per-day datetime when there are # duplicates: i.e. not datetime(2000, 1, 1, 1, 0, 0, 0) self.assertEqual(Days.filter(self.datetimes, number=2, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_before_start(self): # datetime(1999, 12, 28, 0, 0, 0, 0) is too old to show up # in the results self.assertEqual(Days.filter(self.datetimes, number=4, now=self.now), set([datetime(1999, 12, 30, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_all_input(self): self.assertEqual(Days.filter(self.datetimes, number=5, now=self.now), set([datetime(1999, 12, 28, 0, 0, 0, 0), datetime(1999, 12, 30, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) self.assertEqual(Days.filter(self.datetimes, number=6, now=self.now), set([datetime(1999, 12, 28, 0, 0, 0, 0), datetime(1999, 12, 30, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_leap_year(self): # 2004 is a leap year, because it is divisible by 4 now = datetime(2004, 3, 1, 0, 0, 0, 0) datetimes_2004 = [ datetime(2004, 3, 1, 0, 0, 0, 0), datetime(2004, 2, 29, 0, 0, 0, 0), datetime(2004, 2, 28, 0, 0, 0, 0), datetime(2004, 2, 27, 0, 0, 0, 0), ] self.assertEqual(Days.filter(datetimes_2004, number=1, now=now), set([datetime(2004, 3, 1, 0, 0, 0, 0)])) self.assertEqual(Days.filter(datetimes_2004, number=2, now=now), set([datetime(2004, 2, 29, 0, 0, 0, 0), datetime(2004, 3, 1, 0, 0, 0, 0)])) self.assertEqual(Days.filter(datetimes_2004, number=3, now=now), set([datetime(2004, 2, 28, 0, 0, 0, 0), datetime(2004, 2, 29, 0, 0, 0, 0), datetime(2004, 3, 1, 0, 0, 0, 0)])) def test_not_leap_year(self): # 1900 was not a leap year, because it is divisible by 400 now = datetime(1900, 3, 1, 0, 0, 0, 0) datetimes_1900 = [ datetime(1900, 3, 1, 0, 0, 0, 0), datetime(1900, 2, 28, 0, 0, 0, 0), datetime(1900, 2, 27, 0, 0, 0, 0), ] self.assertEqual(Days.filter(datetimes_1900, number=1, now=now), set([datetime(1900, 3, 1, 0, 0, 0, 0)])) self.assertEqual(Days.filter(datetimes_1900, number=2, now=now), set([datetime(1900, 2, 28, 0, 0, 0, 0), datetime(1900, 3, 1, 0, 0, 0, 0)])) self.assertEqual(Days.filter(datetimes_1900, number=3, now=now), set([datetime(1900, 2, 27, 0, 0, 0, 0), datetime(1900, 2, 28, 0, 0, 0, 0), datetime(1900, 3, 1, 0, 0, 0, 0)])) def test_with_tzinfo_and_date(self): tzinfo_datetimes = [ utcdatetime(2000, 1, 1, 1, 0, 0, 0), utcdatetime(2000, 1, 1, 0, 0, 0, 0), utcdatetime(1999, 12, 31, 23, 59, 59, 999999), utcdatetime(1999, 12, 30, 0, 0, 0, 0), utcdatetime(1999, 12, 28, 0, 0, 0, 0), ] today = date(2000, 1, 1) self.assertEqual(Days.filter(tzinfo_datetimes, number=5, now=today), set([utcdatetime(1999, 12, 28, 0, 0, 0, 0), utcdatetime(1999, 12, 30, 0, 0, 0, 0), utcdatetime(1999, 12, 31, 23, 59, 59, 999999), utcdatetime(2000, 1, 1, 0, 0, 0, 0)])) def test_with_date(self): today = date(2000, 1, 1) self.assertEqual(Days.filter(self.datetimes, number=5, now=today), set([datetime(1999, 12, 28, 0, 0, 0, 0), datetime(1999, 12, 30, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) class TestWeeks(unittest.TestCase): def setUp(self): # 1 January 2000 is a Saturday self.now = datetime(2000, 1, 1, 1, 1, 1, 1) self.datetimes = [ datetime(2000, 1, 1, 1, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(1999, 12, 18, 0, 0, 0, 0), datetime(1999, 12, 4, 0, 0, 0, 0), ] def test_mask(self): # 31 December 1999 is a Friday. dt = datetime(1999, 12, 31, 23, 59, 59, 999999) self.assertEqual(dt.weekday(), FRIDAY) # Default firstweekday is Saturday self.assertEqual(Weeks.mask(dt), Weeks.mask(dt, firstweekday=SATURDAY)) self.assertEqual(Weeks.mask(dt), datetime(1999, 12, 25, 0, 0, 0, 0)) # Sunday self.assertEqual(Weeks.mask(dt, firstweekday=SUNDAY), datetime(1999, 12, 26, 0, 0, 0, 0)) # If firstweekday is the same as dt.weekday, then it should return # the same day. self.assertEqual(Weeks.mask(dt, firstweekday=dt.weekday()), Days.mask(dt)) def test_future(self): datetimes = [datetime(2010, 1, 15, 0, 0, 0, 0)] # Wikipedia self.assertEqual(Weeks.filter(datetimes, number=0, now=self.now), set(datetimes)) self.assertEqual(Weeks.filter(datetimes, number=1, now=self.now), set(datetimes)) def test_invalid_number(self): self.assertRaises(ValueError, Weeks.filter, [], number=-1, now=self.now) self.assertRaises(ValueError, Weeks.filter, [], number=0.1, now=self.now) self.assertRaises(ValueError, Weeks.filter, [], number='1', now=self.now) def test_no_input(self): self.assertEqual(Weeks.filter([], number=1, now=self.now), set()) def test_no_results(self): self.assertEqual(Weeks.filter([self.now], number=0, now=self.now), set()) self.assertEqual(Weeks.filter(self.datetimes, number=0, now=self.now), set()) def test_current(self): self.assertEqual(Weeks.filter(self.datetimes, number=1, now=self.now), set([datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_duplicates(self): # Ensure we get the oldest per-day datetime when there are # duplicates: i.e. not datetime(2000, 1, 1, 1, 0, 0, 0) self.assertEqual(Weeks.filter(self.datetimes, number=2, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_before_start(self): # datetime(1999, 12, 4, 0, 0, 0, 0) is too old to show up # in the results self.assertEqual(Weeks.filter(self.datetimes, number=4, now=self.now), set([datetime(1999, 12, 18, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_all_input(self): self.assertEqual(Weeks.filter(self.datetimes, number=5, now=self.now), set([datetime(1999, 12, 4, 0, 0, 0, 0), datetime(1999, 12, 18, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) self.assertEqual(Weeks.filter(self.datetimes, number=6, now=self.now), set([datetime(1999, 12, 4, 0, 0, 0, 0), datetime(1999, 12, 18, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_different_firstweekday(self): self.assertEqual( Weeks.filter( self.datetimes, number=3, firstweekday=3, now=self.now ), set([datetime(1999, 12, 18, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999)]) ) filtered = Weeks.filter( self.datetimes, number=5, firstweekday=3, now=self.now ) self.assertEqual( Weeks.filter( self.datetimes, number=5, firstweekday=3, now=self.now ), set([datetime(1999, 12, 18, 0, 0, 0, 0), datetime(1999, 12, 4, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999)]) ) class TestMonths(unittest.TestCase): def setUp(self): self.now = datetime(2000, 2, 1, 1, 1, 1, 1) self.datetimes = [ datetime(2000, 2, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 1, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(1999, 10, 1, 0, 0, 0, 0), ] def test_mask(self): self.assertEqual( Months.mask(datetime(1999, 12, 31, 23, 59, 59, 999999)), datetime(1999, 12, 1, 0, 0, 0, 0) ) def test_future(self): datetimes = [datetime(2010, 1, 15, 0, 0, 0, 0)] # Wikipedia self.assertEqual(Months.filter(datetimes, number=0, now=self.now), set(datetimes)) self.assertEqual(Months.filter(datetimes, number=1, now=self.now), set(datetimes)) def test_invalid_number(self): self.assertRaises(ValueError, Months.filter, [], number=-1, now=self.now) self.assertRaises(ValueError, Months.filter, [], number=0.1, now=self.now) self.assertRaises(ValueError, Months.filter, [], number='1', now=self.now) def test_no_input(self): self.assertEqual(Months.filter([], number=1, now=self.now), set()) def test_no_results(self): self.assertEqual(Months.filter([self.now], number=0, now=self.now), set()) self.assertEqual(Months.filter(self.datetimes, number=0, now=self.now), set()) def test_current(self): self.assertEqual(Months.filter(self.datetimes, number=1, now=self.now), set([datetime(2000, 2, 1, 0, 0, 0, 0)])) def test_duplicates(self): # Ensure we get the oldest per-month datetime when there are # duplicates: i.e. not datetime(2000, 1, 1, 1, 0, 0, 0) self.assertEqual(Months.filter(self.datetimes, number=2, now=self.now), set([datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 2, 1, 0, 0, 0, 0)])) def test_new_year(self): self.assertEqual(Months.filter(self.datetimes, number=3, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 2, 1, 0, 0, 0, 0)])) def test_before_start(self): # datetime(1999, 10, 1, 0, 0, 0, 0) is too old to show up # in the results self.assertEqual(Months.filter(self.datetimes, number=4, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 2, 1, 0, 0, 0, 0)])) def test_all_input(self): self.assertEqual(Months.filter(self.datetimes, number=5, now=self.now), set([datetime(1999, 10, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 2, 1, 0, 0, 0, 0)])) self.assertEqual(Months.filter(self.datetimes, number=6, now=self.now), set([datetime(1999, 10, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(2000, 2, 1, 0, 0, 0, 0)])) def test_multiple_years(self): now = datetime(2000, 1, 1, 0, 0, 0, 0) datetimes = [ datetime(2000, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 1, 0, 0, 0, 0), datetime(1999, 1, 1, 0, 0, 0, 0), datetime(1998, 12, 1, 0, 0, 0, 0), datetime(1997, 12, 1, 0, 0, 0, 0), ] # 12 months back ignores datetime(1999, 1, 1, 0, 0, 0, 0) self.assertEqual(Months.filter(datetimes, number=12, now=now), set([datetime(1999, 12, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 0, 0)])) # But 13 months back gets it self.assertEqual(Months.filter(datetimes, number=13, now=now), set([datetime(1999, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 0, 0)])) # But 14 months back gets datetime(1998, 12, 1, 0, 0, 0, 0) self.assertEqual(Months.filter(datetimes, number=14, now=now), set([datetime(1998, 12, 1, 0, 0, 0, 0), datetime(1999, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 0, 0)])) # As does 24 months back self.assertEqual(Months.filter(datetimes, number=24, now=now), set([datetime(1998, 12, 1, 0, 0, 0, 0), datetime(1999, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 0, 0)])) # 36 months back should get datetime(1997, 12, 1, 0, 0, 0, 0) self.assertEqual(Months.filter(datetimes, number=36, now=now), set([datetime(1997, 12, 1, 0, 0, 0, 0), datetime(1998, 12, 1, 0, 0, 0, 0), datetime(1999, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 1, 0, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 0, 0)])) class TestYears(unittest.TestCase): def setUp(self): self.now = datetime(2000, 1, 1, 1, 1, 1, 1) self.datetimes = [ datetime(2000, 1, 1, 1, 0, 0, 0), datetime(2000, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(1998, 1, 1, 0, 0, 0, 0), datetime(1996, 1, 1, 0, 0, 0, 0), ] def test_mask(self): self.assertEqual( Years.mask(datetime(1999, 12, 31, 23, 59, 59, 999999)), datetime(1999, 1, 1, 0, 0, 0, 0) ) def test_future(self): datetimes = [datetime(2010, 1, 15, 0, 0, 0, 0)] # Wikipedia self.assertEqual(Years.filter(datetimes, number=0, now=self.now), set(datetimes)) self.assertEqual(Years.filter(datetimes, number=1, now=self.now), set(datetimes)) def test_invalid_number(self): self.assertRaises(ValueError, Years.filter, [], number=-1, now=self.now) self.assertRaises(ValueError, Years.filter, [], number=0.1, now=self.now) self.assertRaises(ValueError, Years.filter, [], number='1', now=self.now) def test_no_input(self): self.assertEqual(Years.filter([], number=1, now=self.now), set()) def test_no_results(self): self.assertEqual(Years.filter([self.now], number=0, now=self.now), set()) self.assertEqual(Years.filter(self.datetimes, number=0, now=self.now), set()) def test_current(self): self.assertEqual(Years.filter(self.datetimes, number=1, now=self.now), set([datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_duplicates(self): # Ensure we get the oldest per-month datetime when there are # duplicates: i.e. not datetime(2000, 1, 1, 1, 0, 0, 0) self.assertEqual(Years.filter(self.datetimes, number=2, now=self.now), set([datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_before_start(self): # datetime(1996, 1, 1, 0, 0, 0, 0) is too old to show up # in the results self.assertEqual(Years.filter(self.datetimes, number=4, now=self.now), set([datetime(1998, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) def test_all_input(self): self.assertEqual(Years.filter(self.datetimes, number=5, now=self.now), set([datetime(1996, 1, 1, 0, 0, 0, 0), datetime(1998, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)])) self.assertEqual(Years.filter(self.datetimes, number=6, now=self.now), set([datetime(1996, 1, 1, 0, 0, 0, 0), datetime(1998, 1, 1, 0, 0, 0, 0), datetime(1999, 12, 31, 23, 59, 59, 999999), datetime(2000, 1, 1, 0, 0, 0, 0)]))
3.125
3
mugicli/pytail.py
mugiseyebrows/mugi-cli
0
12784709
from . import head_tail_main, T_TAIL def main(): head_tail_main(T_TAIL) if __name__ == "__main__": main()
1.4375
1
plugins/helpers/table_dictionaries.py
rmmoreira/udacity-dend-capstone
1
12784710
""" Dictionary file for tables """ staging_tables = { 'immigration': 'immigration_table', 'temperature': 'temperature_table', 'airport': 'airport_table', 'demographics': 'demographics_table' } fact_dimension_tables = { 'city_data': 'fact_city_data_table', 'demographic': 'dim_demographic_table', 'airport': 'dim_airport_table', 'visitor': 'dim_visitor_table' } fact_dimension_insert = { 'city_data': 'fact_city_table_insert', 'demographic': 'dim_demographic_table_insert', 'airport': 'dim_airport_table_insert', 'visitor': 'dim_visitor_table_insert' }
2.140625
2
players.py
aroxby-kinnek/machine-learning
0
12784711
""" Players! """ import random from readchar import readchar class Player(object): """ Base player object """ def next_move(self, game): """ Retrieve the next move for this player in this game """ raise NotImplementedError class HumanPlayer(Player): """ Human player input """ def next_move(self, game): return readchar().upper() class BotPlayer(Player): """ Base bot player """ def reproduce(self, allowed_moves, min_mutations, max_mutations): """ Create a new bot based on this bot """ raise NotImplementedError class PlannedBot(BotPlayer): """ Bot is "born" with a fixed set of moves """ def __init__(self, moves=None): self.moves = moves or [] self.games = {} def next_move(self, game): idx = self.games.get(game, 0) self.games[game] = idx + 1 if idx < len(self.moves): return self.moves[idx] # HACK return 'Q' def reproduce(self, allowed_moves, min_mutations, max_mutations): """ Create a new bot based on this bot """ mutations = random.randint(min_mutations, max_mutations) new_moves = self.moves[:] for _ in xrange(mutations): new_moves.append(random.choice(allowed_moves)) return self.__class__(new_moves) class NeatBot(BotPlayer): network_factory = GameNetwork() def __init__(self, network): self.games = {} self.network = network or self.network_factory() def next_move(self, game): moves = self.network.eval_game(game) # HACK preference = 'wasd' for move in preference: if move in moves: return move # HACK return 'Q' def reproduce(self, allowed_moves, min_mutations, max_mutations): mutations = random.randint(min_mutations, max_mutations) new_network = self.network.deep_copy() mutators = [ # FIXME: Add weights new_network.add_random_neuron, new_network.add_random_connection ] for _ in xrange(mutations): mutator = random.choice(mutators) mutator() return self.__class__(new_network)
3.59375
4
temperature/temperature.py
Harry-Lees/TemperaturePy
1
12784712
from __future__ import annotations from numbers import Real ABSOLUTE_ZERO: float = 0.0 # in Kelvin ABSOLUTE_HOT: float = 1.416785e32 # in Kelvin class Temperature: ''' Simple Temperature class for converting between different units of temperature. Default temperature unit is Kelvin. ''' def __init__(self, temp: Real) -> None: if not isinstance(temp, Real): raise TypeError('Temperature must be a Real number') if temp < ABSOLUTE_ZERO: raise ValueError('Temperature cannot be below Absolute Zero') elif temp > ABSOLUTE_HOT: # type: ignore raise ValueError('Temperature cannot be above Absolute Hot') self._t: Real = temp def __repr__(self) -> str: return f'Temperature(kelvin={round(self.kelvin, 2)}, celsius={round(self.celsius, 2)}, farenheit={round(self.farenheit, 2)}, rankine={round(self.rankine, 2)})' def __eq__(self, other: object) -> bool: if not isinstance(other, Temperature): return NotImplemented return self._t == other._t def __lt__(self, other: Temperature) -> bool: return self._t < other._t def __add__(self, other: Temperature) -> Temperature: return Temperature(self._t + other._t) def __sub__(self, other: Temperature) -> Temperature: return Temperature(self._t - other._t) def __mul__(self, other: Temperature) -> Temperature: return Temperature(self._t * other._t) @classmethod def fromfarenheit(cls, temp: Real) -> Temperature: return cls(Temperature.ftok(temp)) @classmethod def fromcelsius(cls, temp: Real) -> Temperature: return cls(Temperature.ctok(temp)) @classmethod def fromrankine(cls, temp: Real) -> Temperature: return cls(Temperature.rtok(temp)) @property def kelvin(self) -> Real: '''Return the temperature in Kelvin''' return self._t @kelvin.setter def kelvin(self, temp: Real) -> None: if temp < ABSOLUTE_ZERO: raise ValueError('Temperature cannot be below Absolute Zero') elif temp > ABSOLUTE_HOT: # type: ignore raise ValueError('Temperature cannot be above Absolute Hot') self._t = temp @property def celsius(self) -> Real: '''temperature in celsius''' return self.ktoc(self.kelvin) @celsius.setter def celsius(self, temp: Real) -> None: self.kelvin = self.ctok(temp) @property def farenheit(self) -> Real: '''temperature in farenheit''' return self.ktof(self.kelvin) @farenheit.setter def farenheit(self, temp: Real) -> None: self.kelvin = self.ftok(temp) @property def rankine(self) -> Real: '''temperature in Rankine''' return self.ktor(self.kelvin) @rankine.setter def rankine(self, temp) -> None: self.kelvin = self.rtok(temp) @staticmethod def ctok(c: Real) -> Real: '''convert Celsius to Kelvin''' return c + 273.15 @staticmethod def ktoc(k: Real) -> Real: '''convert Kelvin to Celsius''' return k - 273.15 @staticmethod def ktof(k: Real) -> Real: '''convert Kelvin to Farenheit''' return (k - 273.15) * 9/5 + 32 @staticmethod def ftok(f: Real) -> Real: '''convert Farenheit to Kelvin''' return (f - 32) * 5/9 + 273.15 @staticmethod def ktor(k: Real) -> Real: '''convert Kelvin to Rakine''' return k * 1.8 @staticmethod def rtok(r: Real) -> Real: '''convert Rakine to Kelvin''' return r * 5/9 @staticmethod def ftoc(f: Real) -> Real: '''convert Farenheit to Celsius''' return (f - 32) / 1.8 @staticmethod def ctof(c: Real) -> Real: '''convert Celsius to Farenheit''' return 1.8 * c + 32 @staticmethod def ctor(c: Real) -> Real: '''convert Celsius to Rankine''' return c * 9/5 + 491.67 @staticmethod def rtoc(r: Real) -> Real: '''convert Rankine to Celsius''' return (r - 491.67) * 5/9
3.609375
4
ticket.py
qhgongzi/xilinTicketV2
5
12784713
__author__ = 'Administrator' import requests import xlstr import time class Ticket: #车票信息 train_no = '' station_train_code = '' #车次编号,例如K540 from_station_telecode = '' from_station_name = '' to_station_telecode = '' to_station_name = '' yp_info = '' #未知信息 location_code = '' secret_str = '' start_train_date = '' #乘车日期,例如20140127 #乘车信息 train_date = '' train_date_utc='' seat_type = '' def __init__(self, ticket_obj, buy_type): self.train_no = ticket_obj['queryLeftNewDTO']['train_no'] self.from_station_telecode = ticket_obj['queryLeftNewDTO']['from_station_telecode'] self.from_station_name = ticket_obj['queryLeftNewDTO']['from_station_name'] self.to_station_telecode = ticket_obj['queryLeftNewDTO']['to_station_telecode'] self.to_station_name = ticket_obj['queryLeftNewDTO']['to_station_name'] self.yp_info = ticket_obj['queryLeftNewDTO']['yp_info'] self.start_train_date = ticket_obj['queryLeftNewDTO']['start_train_date'] self.location_code = ticket_obj['queryLeftNewDTO']['location_code'] self.secret_str = ticket_obj['secretStr'] self.station_train_code = ticket_obj['queryLeftNewDTO']['station_train_code'] trainTime = time.strptime(self.start_train_date, '%Y%m%d') self.train_date = time.strftime('%Y-%m-%d', trainTime) self.train_date_utc=time.strftime('%a %b %d %H:%M:%S UTC+0800 %Y',trainTime) self.seat_type = buy_type SeatType={'M':'一等座','O':'二等座','4':'软卧','3':'硬卧','1':'硬座'}
2.5
2
tests/unit/config/api/test_settings.py
antonku/ncssl_api_client
8
12784714
import mock from unittest import TestCase from ncssl_api_client.config.api import settings try: reload # Python 2.7 except NameError: try: from importlib import reload # Python 3.4+ except ImportError: from imp import reload # Python 3.0 - 3.3 try: __import__('__builtin__') open_reference = "__builtin__.open" # Python 2.7 except ImportError: open_reference = "builtins.open" # Python 3.x DATA = 'API_SETTINGS_TEST: TEST' class ApiSettingsLoadingTest(TestCase): @mock.patch(open_reference, mock.mock_open(read_data=DATA)) def test_update_locals(self): reload(settings) self.assertEqual(settings.API_SETTINGS_TEST, 'TEST')
2.375
2
core/preprocessing/voice.py
ArnolFokam/dna-gate-backend
0
12784715
import noisereduce as nr def remove_noise(data, rate): return nr.reduce_noise(y=data, sr=rate, thresh_n_mult_nonstationary=2, stationary=False)
2.46875
2
validator/sawtooth_validator/journal/chain_commit_state.py
askmish/sawtooth-core
0
12784716
# Copyright 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ from sawtooth_validator.journal.block_wrapper import NULL_BLOCK_IDENTIFIER from sawtooth_validator.protobuf.block_pb2 import BlockHeader from sawtooth_validator.protobuf.transaction_pb2 import TransactionHeader class MissingDependency(Exception): def __init__(self, txn_id): super().__init__("Missing dependency: {}".format(txn_id)) self.transaction_id = txn_id class DuplicateTransaction(Exception): def __init__(self, txn_id): super().__init__("Duplicate transaction: {}".format(txn_id)) self.transaction_id = txn_id class DuplicateBatch(Exception): def __init__(self, batch_id): super().__init__("Duplicate batch: {}".format(batch_id)) self.batch_id = batch_id class BlockStoreUpdated(Exception): pass class ChainCommitState: """Checking to see if a batch or transaction in a block has already been committed is somewhat difficult because of the presence of forks. While the block store is the definitive source for all batches and transactions that have been committed on the current chain, validation of blocks on another fork requires determing what blocks would actually be in the chain if that block were to be committed and only checking the batches and transactions contained within. ChainCommitState abstracts this process. """ def __init__(self, head_id, block_manager, block_store): """The constructor should be passed the previous block id of the block being validated.""" uncommitted_block_ids = list() uncommitted_batch_ids = set() uncommitted_txn_ids = set() # Find the most recent ancestor of this block that is in the block # store. Batches and transactions that are in a block that is in the # block store and that has a greater block number than this block must # be ignored. if head_id != NULL_BLOCK_IDENTIFIER: head = next(block_manager.get([head_id])) ancestor = head while ancestor.header_signature not in block_store: # For every block not in the block store, we need to track all # its batch ids and transaction ids separately to ensure there # are no duplicates. for batch in ancestor.batches: uncommitted_batch_ids.add(batch.header_signature) for txn in batch.transactions: uncommitted_txn_ids.add(txn.header_signature) uncommitted_block_ids.append(ancestor.header_signature) ancestor_header = BlockHeader() ancestor_header.ParseFromString(ancestor.header) previous_block_id = ancestor_header.previous_block_id if previous_block_id == NULL_BLOCK_IDENTIFIER: break ancestor = next(block_manager.get([previous_block_id])) else: ancestor = None self.block_store = block_store ancestor_header = None if ancestor: ancestor_header = BlockHeader() ancestor_header.ParseFromString(ancestor.header) self.common_ancestor = ancestor_header self.uncommitted_block_ids = uncommitted_block_ids self.uncommitted_batch_ids = uncommitted_batch_ids self.uncommitted_txn_ids = uncommitted_txn_ids def _block_in_chain(self, block): if self.common_ancestor is not None: return block.block_num <= self.common_ancestor.block_num return False @staticmethod def _check_for_duplicates_within(key_fn, items): """Checks that for any two items in `items`, calling `key_fn` on both does not return equal values.""" for i, item_i in enumerate(items): for item_j in items[i + 1:]: if key_fn(item_i) == key_fn(item_j): return key_fn(item_i) return None def check_for_duplicate_transactions(self, transactions): """Check that none of the transactions passed in have already been committed in the chain. Also checks that the list of transactions passed contains no duplicates.""" # Same as for batches duplicate = self._check_for_duplicates_within( lambda txn: txn.header_signature, transactions) if duplicate is not None: raise DuplicateTransaction(duplicate) for txn in transactions: txn_id = txn.header_signature if txn_id in self.uncommitted_txn_ids: raise DuplicateTransaction(txn_id) if self.block_store.has_transaction(txn_id): try: committed_block =\ self.block_store.get_block_by_transaction_id(txn_id) except ValueError: raise BlockStoreUpdated( "The BlockStore updated while checking for duplicate" " transactions." ) if self._block_in_chain(committed_block): raise DuplicateTransaction(txn_id) def check_for_duplicate_batches(self, batches): """Check that none of the batches passed in have already been committed in the chain. Also checks that the list of batches passed contains no duplicates.""" # Check for duplicates within the given list duplicate = self._check_for_duplicates_within( lambda batch: batch.header_signature, batches) if duplicate is not None: raise DuplicateBatch(duplicate) for batch in batches: batch_id = batch.header_signature # Make sure the batch isn't in one of the uncommitted block if batch_id in self.uncommitted_batch_ids: raise DuplicateBatch(batch_id) # Check if the batch is in one of the committed blocks if self.block_store.has_batch(batch_id): try: committed_block =\ self.block_store.get_block_by_batch_id(batch_id) except ValueError: raise BlockStoreUpdated( "The BlockStore updated while checking for duplicate" " transactions." ) # This is only a duplicate batch if the batch is in a block # that would stay committed if this block were committed. This # is equivalent to asking if the number of the block that this # batch is in is less than or equal to the number of the common # ancestor block. if self._block_in_chain(committed_block): raise DuplicateBatch(batch_id) def check_for_transaction_dependencies(self, transactions): """Check that all explicit dependencies in all transactions passed have been satisfied.""" dependencies = [] txn_ids = [] for txn in transactions: txn_ids.append(txn.header_signature) txn_hdr = TransactionHeader() txn_hdr.ParseFromString(txn.header) dependencies.extend(txn_hdr.dependencies) for dep in dependencies: # Check for dependency within the given block's batches if dep in txn_ids: continue # Check for dependency in the uncommitted blocks if dep in self.uncommitted_txn_ids: continue # Check for dependency in the committe blocks if self.block_store.has_transaction(dep): committed_block =\ self.block_store.get_block_by_transaction_id(dep) # Make sure the block wouldn't be uncomitted if the given block # were uncommitted if self._block_in_chain(committed_block): continue raise MissingDependency(dep) class _CommitCache: """Tracks the commit status of a set of identifiers and these identifiers are either explicitly committed, or explicitly uncommitted. If they fall in to neither of these cases then the fallback is to look in the BlockStore to see if they are there. Explicit committed ids take priority over uncommitted since one of the common use cases we have is to simulate the committed state at a previous state of the BlockStore and we allow for the identifiers to be re-committed. """ def __init__(self, block_store_check): self.block_store_check = block_store_check self._committed = set() # the set of items # committed by this chain self._uncommitted = set() # the set of items # uncommitted by the current chain when it is rolled back. def add(self, identifier): self._committed.add(identifier) def remove(self, identifier): self._committed.discard(identifier) def uncommit(self, identifier): self._uncommitted.add(identifier) def __contains__(self, identifier): if identifier in self._committed: return True if identifier in self._uncommitted: return False return self.block_store_check(identifier) class TransactionCommitCache(_CommitCache): """Tracks the set of Transactions that are committed to a hypothetical blockchain. This is used to detect duplicate transactions or missing dependencies when building a block. """ def __init__(self, block_store): super(TransactionCommitCache, self).__init__( block_store.has_transaction) def add_batch(self, batch): for txn in batch.transactions: self._committed.add(txn.header_signature) def remove_batch(self, batch): for txn in batch.transactions: self._committed.discard(txn.header_signature)
2.078125
2
sip/tango_control/tango_interactive_client/check_tango_host.py
SKA-ScienceDataProcessor/integration-prototype
3
12784717
# coding: utf-8 """.""" from tango import Database # Get reference to tango database DB = Database() print('=' * 80) print('Database info:') print('=' * 80) print(DB.get_info()) print('=' * 80) print('Server list:') print('=' * 80) print(DB.get_server_list().value_string) print('')
2.0625
2
tests/test_validator.py
ens-lgil/gwas-sumstats-validator
0
12784718
import unittest import shutil import os import sys import tests.prep_tests as prep import validate.validator as v from validate.common_constants import * import tests.test_values as test_arrays class BasicTestCase(unittest.TestCase): def setUp(self): self.test_storepath = "./tests/data" os.makedirs(self.test_storepath, exist_ok=True) def tearDown(self): shutil.rmtree(self.test_storepath) def test_validate_good_file_extension(self): test_filepath = os.path.join(self.test_storepath, "test_file.tsv.gz") validator = v.Validator(test_filepath, "pgs-upload", logfile=test_filepath + ".LOG") valid_ext = validator.validate_file_extension() self.assertTrue(valid_ext) # alternative test_filepath = os.path.join(self.test_storepath, "test_file.csv.gz") validator = v.Validator(test_filepath, "pgs-upload", logfile=test_filepath + ".LOG") valid_ext = validator.validate_file_extension() self.assertTrue(valid_ext) def test_validate_bad_file_extension(self): test_filepath = os.path.join(self.test_storepath, "test_file.zip") validator = v.Validator(test_filepath, "pgs-upload", logfile=test_filepath + ".LOG") valid_ext = validator.validate_file_extension() self.assertFalse(valid_ext) def test_validate_good_file_headers(self): test_filepath = os.path.join(self.test_storepath, "test_file.tsv") setup_file = prep.SSTestFile() setup_file.prep_test_file() validator = v.Validator(test_filepath, "pgs-upload", logfile=test_filepath + ".LOG") valid_headers = validator.validate_headers() self.assertTrue(valid_headers) def test_validate_file_headers_missing_snp(self): test_filepath = os.path.join(self.test_storepath, "test_file.tsv") setup_file = prep.SSTestFile() setup_file.set_test_data_dict() setup_file.test_data_dict.pop(SNP_DSET) # remove a snp field setup_file.prep_test_file() validator = v.Validator(test_filepath, "pgs-upload", logfile=test_filepath + ".LOG") valid_headers = validator.validate_headers() self.assertTrue(valid_headers) def test_validate_file_headers_missing_pos(self): test_filepath = os.path.join(self.test_storepath, "test_file.tsv") setup_file = prep.SSTestFile() setup_file.set_test_data_dict() setup_file.test_data_dict.pop(CHR_DSET) # remove the chr field setup_file.test_data_dict.pop(BP_DSET) # remove the pos field setup_file.prep_test_file() validator = v.Validator(test_filepath, "pgs-upload", logfile=test_filepath + ".LOG") valid_headers = validator.validate_headers() self.assertTrue(valid_headers) def test_validate_file_headers_missing_snp_and_pos(self): test_filepath = os.path.join(self.test_storepath, "test_file.tsv") setup_file = prep.SSTestFile() setup_file.set_test_data_dict() setup_file.test_data_dict.pop(SNP_DSET) # remove a snp field setup_file.test_data_dict.pop(CHR_DSET) # remove the chr field setup_file.test_data_dict.pop(BP_DSET) # remove the pos field setup_file.prep_test_file() validator = v.Validator(test_filepath, "pgs-upload", logfile=test_filepath + ".LOG") valid_headers = validator.validate_headers() self.assertFalse(valid_headers) def test_validate_bad_file_headers(self): test_filepath = os.path.join(self.test_storepath, "test_file.tsv") setup_file = prep.SSTestFile() setup_file.set_test_data_dict() setup_file.test_data_dict.pop(EFFECT_DSET) # remove a mandatory field setup_file.prep_test_file() validator = v.Validator(test_filepath, "pgs-upload", logfile=test_filepath + ".LOG") valid_headers = validator.validate_headers() self.assertFalse(valid_headers) def test_validate_bad_file_headers_missing_effect(self): test_filepath = os.path.join(self.test_storepath, "test_file.tsv") setup_file = prep.SSTestFile() setup_file.set_test_data_dict() setup_file.test_data_dict.pop(EFFECT_WEIGHT_DSET) # remove effect_weight field setup_file.test_data_dict.pop(OR_DSET) # remove odds ratio field setup_file.test_data_dict.pop(HR_DSET) # remove hazard ratio field setup_file.prep_test_file() validator = v.Validator(test_filepath, "pgs-upload", logfile=test_filepath + ".LOG") valid_headers = validator.validate_headers() self.assertFalse(valid_headers) def test_validate_good_file_data(self): test_filepath = os.path.join(self.test_storepath, "test_file.tsv") logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile() setup_file.prep_test_file() validator = v.Validator(test_filepath, "pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertTrue(valid_data) def test_validate_bad_snp_file_data(self): test_filename = "bad_snp.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[SNP_DSET] = ["invalid", 123, "1_1234_A_G", "ss151232"] # set bad snps setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 4) self.assertFalse(valid_data) def test_validate_bad_snp_and_no_pos_file_data(self): test_filename = "bad_snp_no_pos.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[SNP_DSET] = ["invalid", "rs123", "1_1234_A_G", "ss151232"] # set bad snps setup_file.test_data_dict[BP_DSET] = [None, 123, "NA", None] # only one good row setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 3) self.assertFalse(valid_data) def test_validate_bad_chr_file_data(self): test_filename = "bad_chr.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[CHR_DSET] = [1, 123, "CHR1", "X"] # set 2 bad chrs setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 2) self.assertFalse(valid_data) def test_validate_bad_chr_and_no_snp_file_data(self): test_filename = "bad_chr_no_snp.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[CHR_DSET] = [1, 123, "CHR1", "X"] # set 2 bad chrs setup_file.test_data_dict[SNP_DSET] = ["invalid", 123, "rs1234", "rs151"] # set only one good row setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 3) self.assertFalse(valid_data) def test_validate_bad_bp_file_data(self): test_filename = "bad_bp.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[BP_DSET] = [1, 1234567890, "CHR1_122334", 123245] # set 2 bad bps setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 2) self.assertFalse(valid_data) def test_validate_bad_bp_and_no_snp_file_data(self): test_filename = "bad_bp_no_snp.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[BP_DSET] = [1, 1234567890, "CHR1_122334", 123245] # set 2 bad bps setup_file.test_data_dict[SNP_DSET] = ["invalid", 123, None, "rs1234"] # set so only one good row setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 3) self.assertFalse(valid_data) def test_validate_bad_optional_effect_weight_file_data(self): test_filename = "bad_weight.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[EFFECT_WEIGHT_DSET] = [1.1232e-23, "invalid", 0.123, .3245] # set 1 bad bps setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 1) self.assertFalse(valid_data) def test_validate_bad_optional_odds_ratio_file_data(self): test_filename = "bad_odds.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[OR_DSET] = [1.1232e-23, "invalid", 0.123, .3245] # set 1 bad bps setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 1) self.assertFalse(valid_data) def test_validate_bad_optional_hazard_ratio_file_data(self): test_filename = "bad_hazard.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[HR_DSET] = [1.1232e-23, "invalid", 0.123, .3245] # set 1 bad bps setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 1) self.assertFalse(valid_data) def test_validate_bad_effect_allele_file_data(self): test_filename = "bad_effect.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[EFFECT_DSET] = ['A', 'AGG', 'INS:T', 'd'] # set 2 bad alleles setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 2) self.assertFalse(valid_data) def test_validate_empty_snp_file_data(self): test_filename = "empty_snp.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[SNP_DSET] = ["NA", None, None, None] # set bad snps setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 4) self.assertFalse(valid_data) def test_validate_empty_snp_no_pos_file_data(self): test_filename = "empty_snp_no_pos.tsv" test_filepath = os.path.join(self.test_storepath, test_filename) logfile=test_filepath.replace('tsv', 'LOG') setup_file = prep.SSTestFile(filename=test_filename) setup_file.set_test_data_dict() setup_file.test_data_dict[SNP_DSET] = ["NA", None, "1234", "rs1"] # set bad snps setup_file.test_data_dict[BP_DSET] = [None, 123, "NA", None] # only one good bp setup_file.prep_test_file() validator = v.Validator(file=test_filepath, filetype="pgs-upload", logfile=logfile) valid_data = validator.validate_data() self.assertEqual(len(validator.bad_rows), 4) self.assertFalse(valid_data) if __name__ == '__main__': unittest.main()
2.546875
3
utils/resource_path.py
MAPL-UFU/palms-ftp
0
12784719
# You need to use this script every time you want to rebuild pyinstaller under the pyQ5 MainWindow.py #------------------------------------------------------------- import os import sys def resource_path(relative_path): if hasattr(sys, '_MEIPASS'): return os.path.join(sys._MEIPASS, relative_path) return os.path.join(os.path.abspath("."), relative_path) #--------------------------------------------------------------------
2.109375
2
presets/keywords.py
monotony113/feedly-link-aggregator
5
12784720
PRIORITIZED_KEYWORDS = { 10: ['cats', 'kitties'], 5: ['dogs', 'puppies'], -5: ['goldfish'], -float('inf'): ['rat'], }
1.46875
1
app/lab/handle/handleMaterial.py
jerry0chu/Experiment
0
12784721
from app.models import Material from app import db import json def handleGetMaterials(page,per_page): materials = Material.query.paginate(page=page, per_page=per_page, error_out=False) res = db.engine.execute("select count(*) from material") count = [r[0] for r in res][0] materialInfo = { 'materials': [a.to_json() for a in materials.items], 'count': count } return json.dumps(materialInfo) def handleSubmitMaterialEditForm(material): mater = Material.query.filter_by(mid=material['mid']).first() if mater: mater.name=material['name'] mater.purity=material['purity'] mater.manufacturer=material['manufacturer'] mater.note=material['note'] db.session.commit() return "success" else: return "failure" def HnadleSubmitMaterialAddForm(material): mater = Material(name=material["name"], purity=material["purity"], manufacturer=material["manufacturer"], note=material["note"]) db.session.add(mater) db.session.commit() return "success" def handleRemoveMaterial(mid): material = Material.query.filter_by(mid=mid).first() if material: db.session.delete(material) db.session.commit() return "success" else: return "failure" def handleMaterialBatchDelete(midList): for mid in midList: material = Material.query.filter_by(mid=mid).first() if material: db.session.delete(material) db.session.commit() return "success" def handleMaterialQueryContent(selectType,content,page,per_page): countQuery = "db.session.query(Material).filter(Material." + selectType + ".like('%" + content + "%')).count()" count = eval(countQuery) result = "db.session.query(Material).filter(Material." + selectType + ".like('%" + content + "%')).paginate(page=" + page + ", per_page=" + per_page + ", error_out=False)" materials = eval(result) materialInfo = { 'materials': [a.to_json() for a in materials.items], 'count': count } return json.dumps(materialInfo)
2.40625
2
catalyst/utils/scripts.py
162/catalyst
0
12784722
<reponame>162/catalyst import os import sys import shutil import pathlib from importlib.util import spec_from_file_location, module_from_spec def import_module(expdir: pathlib.Path): # @TODO: better PYTHONPATH handling if not isinstance(expdir, pathlib.Path): expdir = pathlib.Path(expdir) sys.path.insert(0, str(expdir.absolute())) sys.path.insert(0, os.path.dirname(str(expdir.absolute()))) s = spec_from_file_location( expdir.name, str(expdir.absolute() / "__init__.py"), submodule_search_locations=[expdir.absolute()] ) m = module_from_spec(s) s.loader.exec_module(m) sys.modules[expdir.name] = m return m def _tricky_dir_copy(dir_from, dir_to): os.makedirs(dir_to, exist_ok=True) shutil.rmtree(dir_to) shutil.copytree(dir_from, dir_to) def dump_code(expdir, logdir): expdir = expdir[:-1] if expdir.endswith("/") else expdir new_src_dir = f"code" # @TODO: hardcoded old_pro_dir = os.path.dirname(os.path.abspath(__file__)) + "/../" new_pro_dir = os.path.join(logdir, new_src_dir, "catalyst") _tricky_dir_copy(old_pro_dir, new_pro_dir) old_expdir = os.path.abspath(expdir) expdir_ = os.path.basename(os.path.dirname(expdir)) new_expdir = os.path.join(logdir, new_src_dir, expdir_) _tricky_dir_copy(old_expdir, new_expdir) __all__ = ["import_module", "dump_code"]
2.0625
2
protocol_scripts/Test_custom_labware.py
Microbiaki-Lab/Opentrons
0
12784723
<gh_stars>0 #!/usr/bin/env python #test custom pcr plates, move water from first row to second from opentrons import protocol_api metadata = {'apiLevel': '2.11'} def run(protocol: protocol_api.ProtocolContext): protocol.home() plate = protocol.load_labware('tethystestrun2', 1) #our_well_plate tiprack_multi = protocol.load_labware('opentrons_96_tiprack_300ul', 2) pipette_multi = protocol.load_instrument('p300_multi', mount = 'right', tip_racks=[tiprack_multi]) #This loads a Well Plate in slot 1 and an Opentrons 300 µL Tiprack in slot 2 #and uses a P300 Multi pipette. can modify to add more pipettes/tips etc. #basic_transfer with multichannel pipette. #moves first row 100ul to second row pipette_multi.transfer(100, plate.wells_by_name()['A1'], plate.wells_by_name()['A2'])
2.390625
2
client_script.py
Cr0wTom/Block-SSL-Smart-Contract
1
12784724
<filename>client_script.py #!/usr/bin/python import sys import string import hashlib import os import random import struct import getpass import datetime import json import requests #pip install requests import traceback import subprocess from datetime import timedelta from Crypto.Cipher import AES from pybitcoin import BitcoinPrivateKey from OpenSSL import crypto, SSL from ecdsa import SigningKey #For pybitcoin download and install from: #https://github.com/blockstack/pybitcoin.git art = r''' ____ _ _ _____ _____ _ | _ \| | | | / ____/ ____| |Smart | |_) | | ___ ___| | _______| (___| (___ | |Contract | _ <| |/ _ \ / __| |/ /______\___ \\___ \| |Client script | |_) | | (_) | (__| < ____) |___) | |v0.1 |____/|_|\___/ \___|_|\_\ |_____/_____/|______| Block-SSL - SSL/TLS Certificate Authority Replacement through the Ethereum Smart Contracts Thesis Project - Aristotle University of Thessaloniki By Cr0wTom ------------------------------------------------------ ''' def clientscript(): # create a key pair print "Creating a new key pair:" print "Warning: This is a pseudo-random generation.\n" k = crypto.PKey() k.generate_key(crypto.TYPE_RSA, 4096) priv = raw_input("Which is your private key? (in hexadecimal format)\n") #Private Key of the owner priv = BitcoinPrivateKey(priv) pub = priv.get_verifying_key() pub = pub.to_string() keccak.update(pub) address = keccak.hexdigest()[24:] open("Address.txt", "w").write(address) # create a self-signed cert cert = crypto.X509() createCert(k, cert) open("certificate.crt", "wt").write(crypto.dump_certificate(crypto.FILETYPE_PEM, cert)) open("keys.key", "wt").write(crypto.dump_privatekey(crypto.FILETYPE_PEM, k)) print "\nCertificate created in file: certificate.crt" print "\nKeys saved in file: keys.key\n" #Hashing of the certificate f = open("certificate.crt", "rb") #read file in binary mode fr = f.read() cert_hash = hashlib.sha256() #use the SHA256 hashing algorithm cert_hash.update(fr) data = cert_hash.hexdigest() print "\nYour Certificate hash is: ", data subprocess.Popen(["geth"]) os.system("BZZKEY=" + address) subprocess.Popen(["$GOPATH/bin/swarm --bzzaccount $BZZKEY"]) os.system("curl -H \"Content-Type: text/plain\" --data-binary \"some-data\" http://localhost:8500/bzz:/") #todo: find swarm gateways #todo: print Certificate expiration date #todo: print the expiration date and the days that left print "Please open the BlockSSL Smart Contract and paste this info in the required fields." sys.exit() def createCert(k, cert): # create a self-signed cert country = raw_input("Country Name (2 letter code): ") cert.get_subject().C = country state = raw_input("State or Province Name (full name): ") cert.get_subject().ST = state local = raw_input("Locality Name (eg, city): ") cert.get_subject().L = local org = raw_input("Organization Name (eg, company): ") cert.get_subject().O = org orgu = raw_input("Organizational Unit Name (eg, section): ") cert.get_subject().OU = orgu cn = raw_input("Common Name (eg, fully qualified host name): ") cert.get_subject().CN = cn email = raw_input("email Address: ") cert.get_subject().emailAddress = email cert.set_serial_number(1000) #Actual serial number added in the contract cert.gmtime_adj_notBefore(0) now = datetime.datetime.now() #setting the time right now tr = 0 while tr == 0: an = int(raw_input("For how long do you need to update the certificate in days? (maximum: 365)\n")) if an < 366 and an > 0: cert.gmtime_adj_notAfter(60*60*24*an) tr += 1 else: print "Please give a number smaller than 366.\n" tr = 0 diff = datetime.timedelta(an) future = now + diff print future.strftime("\nYour certificate expires on %m/%d/%Y") #print the expiration date print "\nAdding the GE and RV signatures to the issuer field..." message_gen = open("Address.txt", "rb").read() message_gen = message_gen.strip('\n') m1 = hashlib.sha256() m1.update(message_gen) m1 = m1.hexdigest() cert.get_issuer().CN = m1 #Ethereum address at the CN issuer field cert.set_pubkey(k) cert.sign(k, 'sha256') return cert def checkforSwarn(): name = "$GOPATH/bin/swarm" try: #check if swarn exists devnull = open(os.devnull) subprocess.Popen([name], stdout=devnull, stderr=devnull).communicate() print "\tSwarn exists.\n" except OSError as e: #install swarn - os specific if e.errno == os.errno.ENOENT: if sys.platform == "linux" or sys.platform == "linux2": print "Installing Swarn: \n" os.system("sudo apt install golang git") os.system("mkdir ~/go") os.system("export GOPATH=\"$HOME/go\"") os.system("echo \'export GOPATH=\"$HOME/go\"\' >> ~/.profile") os.system("mkdir -p $GOPATH/src/github.com/ethereum | cd $GOPATH/src/github.com/ethereum | git clone https://github.com/ethereum/go-ethereum | cd go-ethereum | git checkout master | go get github.com/ethereum/go-ethereum") os.system("go install -v ./cmd/geth") os.system("go install -v ./cmd/swarm") os.system("$GOPATH/bin/swarm version") elif sys.platform == "win32": #all Windows versions print "Swarn is not supported on Windows, please use Linux or Mac.\n" elif sys.platform == "darwin": #all OSX versions print "Installing Swarn: \n" os.system("brew install go git") os.system("mkdir ~/go") os.system("export GOPATH=\"$HOME/go\"") os.system("echo \'export GOPATH=\"$HOME/go\"\' >> ~/.profile") os.system("mkdir -p $GOPATH/src/github.com/ethereum | cd $GOPATH/src/github.com/ethereum | git clone https://github.com/ethereum/go-ethereum | cd go-ethereum | git checkout master | go get github.com/ethereum/go-ethereum") os.system("go install -v ./cmd/geth") os.system("go install -v ./cmd/swarm") os.system("$GOPATH/bin/swarm version") def main(argu): try: if argu[1] == "--help" or argu[1] == "-h": #Option to helo with the usage of the script print art print "Usage: \"client_script.py -c\"" print "\n" elif argu[1] == "-c": print art clientscript() except IndexError: print art print "Usage: \"client_script.py -c\"" print "\nFor help use the --help or -h option." print "\n" if __name__ == "__main__": main(sys.argv)
2.546875
3
9-dars-uyishi.py
thejorabek/python
1
12784725
<filename>9-dars-uyishi.py #%% 1 class Hayvon(): def __init__(self,nomi): self.name=nomi class Yirtqich(Hayvon): def ovlash(self): print(self.name,"yashash uchun ovlaydi") def yugurish(self): print(self.name,"o'ljaga yetib olish uchun yuguradi") def uxlash(self): print(self.name,"kuch yig'ish uchun uxlaydi") class Otxor(Hayvon): def yugurish(self): print(self.name,"yirtqichdan qochish uchun yuguradi") def avlodQoldirish(self): print(self.name,"qirilib ketmaslik uchun avlod qoldiradi") def eshitish(self): print(self.name,"yirtqichlarni eshitadi") sher=Yirtqich("Alex") sher.ovlash() sher.uxlash() sher.yugurish() kiyik=Otxor("Bambi") kiyik.avlodQoldirish() kiyik.eshitish() kiyik.yugurish() #%% 2 class Shape(): def __init__(self,name): self.name=name class Line(Shape): def show(self): print("* "*10) class Triangle(Shape): def show(self): n=int(input("n=")) for i in range(n): for j in range(i): if i==0 or i==n-1 or j==i-1 or j==0: print("* ",end="") else: print(end=" ") print() class Rectangle(Shape): def show(self): n=int(input("n=")) for i in range(n): for j in range(n): if i==0 or i==n-1 or j==n-1 or j==0: print("* ",end="") else: print(end=" ") print() class NullShape(Shape): def show(self): print("Bo'sh shakl") ob=Line("Chiziq") ob.show() ob1=Triangle("Uchburchak") ob1.show() ob2=Rectangle("To'rtburchak") ob2.show() ob3=NullShape("NullShape") ob3.show() lst=[ob,ob1,ob2] k=0 nomi=input("Shakl nomini kiriting: ") for i in lst: if i.name==nomi: i.show() k=0 break else: k=1 if k==1: ob3.show() #%% new=[] class Int(): def __init__(self): new.append(int(input("Butun sonni kiriting: "))) class Float(Int): def __init__(self): print("1-int yoki float 2-bool") a=int(input("a=")) if a==1: super().__init__() if a==2: new.append(float(input("Haqiqiy sonni kiriting: "))) class Float(Int): def __init__(self): print("1-int 2-float") a=int(input("a=")) if a==1: super().__init__() if a==2: new.append(float(input("Haqiqiy sonni kiriting: "))) else:
3.5625
4
model/create_landscape.py
FelixNoessler/Buffers-or-corridors-for-great-crested-newts
0
12784726
import scipy.spatial as sci_spatial import skimage.draw as ski_draw import shapely.geometry as shapely_geom import numpy as np import os, sys def create_landscape(no_of_circles, radius): # create the middle points of the ponds (the ponds should not overlap) x,y = np.random.randint(0,400), np.random.randint(0,400) list_of_points = [(x + 400, y + 400), (x + 400, y), (x + 800, y + 400), (x + 400, y + 800), (x, y + 400)] for i in range(no_of_circles-1): new_point_found = False trials = 0 while not new_point_found and trials < 500: x,y = np.random.randint(0,400), np.random.randint(0,400) new_point = shapely_geom.Point((x + 400, y + 400)) trials += 1 if not new_point.buffer(radius * 2 + 50).intersects(shapely_geom.MultiPoint(list_of_points)): new_point_found = True list_of_points.append((x + 400, y + 400)) list_of_points.append((x + 400, y)) list_of_points.append((x + 800, y + 400)) list_of_points.append((x + 400, y + 800)) list_of_points.append((x, y + 400)) # landscape with ponds ponds_img = np.full((1200 + 2*radius, 1200 + 2*radius), 55) # draw the ponds for point_i in list_of_points: rr, cc = ski_draw.disk(point_i, radius) ponds_img[rr + radius, cc + radius] = 105 ponds_img = ponds_img[400+radius : 800+radius, 400+radius : 800+radius] # pond-id ponds_id_img = np.full((1200 + 2*radius, 1200 + 2*radius), -999) # draw the ponds id_i = 0 for point_i, id_i in zip(list_of_points, np.repeat(np.arange(len(list_of_points)/5), 5)): rr, cc = ski_draw.disk(point_i, radius) ponds_id_img[rr + radius, cc + radius] = id_i ponds_id_img = ponds_id_img[400+radius : 800+radius, 400+radius : 800+radius] # create an raster image with the middle points marked is_center_img = np.zeros_like(ponds_img) boundary = shapely_geom.Polygon([(399, 399), (799, 399), (799, 799), (399, 799)]) selection = [shapely_geom.Point(point_i).intersects(boundary) for point_i in list_of_points] x,y = np.array(list_of_points)[selection].T x -= 400 y -= 400 is_center_img[x, y] = 1 return is_center_img, ponds_img, ponds_id_img def make_corridors(is_center, ponds): without_boundaries = np.zeros((400*3, 400*3)) without_boundaries[0:400, 400:800] = is_center without_boundaries[400:800, 0:400] = is_center without_boundaries[400:800, 400:800] = is_center without_boundaries[800:1200, 400:800] = is_center without_boundaries[400:800, 800:1200] = is_center loc = np.where(without_boundaries == 1) center_points = np.swapaxes(loc, 0, 1) result = sci_spatial.distance.cdist(center_points, center_points) new_img = np.full_like(without_boundaries, 55) # 55 --> green in netlogo points_with_corridors = np.where(np.logical_and( result != 0, result < 170)) #mean(result[result != 0]) * 0.3 for i in np.arange(0, np.shape(points_with_corridors)[1]): index_from = points_with_corridors[0][i] index_to = points_with_corridors[1][i] x = [loc[1][index_from], loc[1][index_to]] y = [loc[0][index_from], loc[0][index_to]] x_corr, y_corr = shapely_geom.LineString([(x[0], y[0]), (x[1], y[1])]).buffer(4.5).exterior.coords.xy rr, cc = ski_draw.polygon(y_corr, x_corr, without_boundaries.shape) new_img[rr, cc] = 35 # 35 --> brown in netlogo final_img = new_img[400:800, 400:800] final_img[np.where(ponds == 105)] = 105 # 105 --> blue in netlogo return final_img def make_buffers(corridor_img, is_center_img): radius = 15 corridor_area = np.sum(corridor_img == 35) no_of_ponds = np.sum(is_center_img) buffer_radius = np.sqrt( ( (corridor_area / no_of_ponds) + np.pi *radius **2) / np.pi ) without_boundaries = np.zeros((400*3, 400*3)) without_boundaries[0:400, 400:800] = is_center_img without_boundaries[400:800, 0:400] = is_center_img without_boundaries[400:800, 400:800] = is_center_img without_boundaries[800:1200, 400:800] = is_center_img without_boundaries[400:800, 800:1200] = is_center_img x,y = np.where(without_boundaries == 1) new_img = np.full_like(without_boundaries, 55) # 55 --> green in netlogo # make buffers for x_i, y_i in zip(x,y): rr, cc = ski_draw.disk((x_i, y_i), buffer_radius) filter_1 = (rr >= 0) & (rr <= 1199) filter_2 = (cc >= 0) & (cc <= 1199) rr = rr[filter_1 & filter_2] cc = cc[filter_1 & filter_2] new_img[rr, cc] = 35 # make ponds for x_i, y_i in zip(x,y): rr, cc = ski_draw.disk((x_i, y_i), radius) filter_1 = (rr >= 0) & (rr <= 1199) filter_2 = (cc >= 0) & (cc <= 1199) rr = rr[filter_1 & filter_2] cc = cc[filter_1 & filter_2] new_img[rr, cc] = 105 return new_img[400:800, 400:800] if __name__ == "__main__": #print('Scenario-Number:', sys.argv[1]) os.makedirs('gis_output/' + sys.argv[1]) os.chdir('gis_output/' + sys.argv[1]) is_center_of_pond, pond, pond_id = create_landscape(no_of_circles=int(sys.argv[2]), radius=int(sys.argv[3])) corridors = make_corridors(is_center_of_pond, pond) buffers = make_buffers(corridors, is_center_of_pond) with open("../pcolor.asc") as myfile: head = [next(myfile) for x in range(6)] np.savetxt('corridors.asc',corridors, fmt='%i', newline='\n', header=''.join(head)[:-1], comments='') np.savetxt('buffers.asc',buffers, fmt='%i', newline='\n', header=''.join(head)[:-1], comments='') np.savetxt('center.asc',is_center_of_pond, fmt='%i', newline='\n', header=''.join(head)[:-1], comments='') np.savetxt('id.asc',pond_id, fmt='%i', newline='\n', header=''.join(head)[:-1], comments='')
2.859375
3
pdip/integrator/integration/types/base/integration_adapter.py
ahmetcagriakca/pdip
2
12784727
from abc import ABC, abstractmethod from ...domain.base import IntegrationBase from ....operation.domain.operation import OperationIntegrationBase from ....pubsub.base import ChannelQueue class IntegrationAdapter(ABC): @abstractmethod def execute( self, operation_integration: OperationIntegrationBase, channel: ChannelQueue ): pass @abstractmethod def get_start_message(self, integration: IntegrationBase): pass @abstractmethod def get_finish_message(self, integration: IntegrationBase, data_count: int): pass @abstractmethod def get_error_message(self, integration: IntegrationBase): pass
2.390625
2
student/urls.py
ashkantaravati/TDRRS
2
12784728
<filename>student/urls.py from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.get_dashboard, name='dashboard'), url(r'^dashboard',views.get_dashboard,name='dashboard'), url(r'^login',views.do_login, name='login'), url(r'^defense-times',views.defense_times, name='defense_times'), url(r'^logout$',views.do_logout, name='logout'), url(r'^change-password',views.do_change_password, name='change_password'), url(r'^cancel-reservation',views.do_submit_cancellation, name='cancel_reservation'), url(r'^denied',views.denied,name='denied') ]
1.929688
2
barrel_reaktor/search/models.py
txtr/barrel-reaktor
0
12784729
from barrel import Store, Field, FloatField, EmbeddedStoreField from barrel.rpc import RpcMixin from barrel_reaktor.document.models import Document from . import get_search_sources class Stat(Store): """The reaktor always passes in `name` as the value to use for the search facet. Since it's a value, let's rename it. Some fields also provide a label, which we keep untouched. """ count = Field(target="count") value = Field(target="name") label = Field(target="label") class CategoryStat(Store): """Category searching facet is inconsistent with other facets. This model is there as an attempt to normalize that. """ count = Field(target="count") value = Field(target="id") label = Field(target="name") class DocumentResult(Store): """Search result object wrapping search itemsalongside search info like pagination information. """ class DocumentItem(Store): """Search result item wrapping a document alongside search info like item relevance. """ document = EmbeddedStoreField(target="searchResult", store_class=Document) relevance = FloatField(target="relevance") class Stats(Store): """Represents stats about a search result, e.g. how many books for this language, how many books available as pdf, ... """ category = EmbeddedStoreField(target="category", store_class=CategoryStat, is_array=True) collection_title = EmbeddedStoreField(target="collectionTitle", store_class=Stat, is_array=True) drm = EmbeddedStoreField(target="drmType", store_class=Stat, is_array=True) format = EmbeddedStoreField(target="format", store_class=Stat, is_array=True) language = EmbeddedStoreField(target="language", store_class=Stat, is_array=True) price = EmbeddedStoreField(target="price", store_class=Stat, is_array=True) pub_date = EmbeddedStoreField(target="publication_date", store_class=Stat, is_array=True) rating = EmbeddedStoreField(target="rating", store_class=Stat, is_array=True) source = EmbeddedStoreField(target="source", store_class=Stat, is_array=True) tag = EmbeddedStoreField(target="tag", store_class=Stat, is_array=True) # Without blocking search, other fields don't make sense anymore so there # they are just ignored. count = Field(target="numberOfResults") has_less = Field(target="hasLess") has_more = Field(target="hasMore") items = EmbeddedStoreField(target='results', store_class=DocumentItem, is_array=True) offset = Field(target="offset") stats = EmbeddedStoreField(target='relatedObjects', store_class=Stats) total_count = Field(target="totalNumberOfResults") class Search(RpcMixin): """Interface to various API search endpoints. Beware that this one is not a `Store`, which means that when calling its class methods, expect different types. """ interface = 'WSSearchDocument' @classmethod def documents(cls, token, search_string, offset, number_of_results, sort=None, direction=None, include_search_fields=None, source=None, related=None, options=None): """Returns documents for a given string.""" invert = direction == 'desc' if not options: options = {'resultType': 'Object'} if source: sources = get_search_sources(source) return cls.signature(method='searchDocuments', data_converter=DocumentResult, args=[token, search_string, sources, offset, number_of_results, sort, invert, related, include_search_fields, options]) @classmethod def suggestions(cls, token, search_string, number_of_results, sources=None, highlight=None): """Returns document suggestions for a given string.""" args = [token, search_string, sources, number_of_results] method = 'getSuggestionObjects' if highlight: method = 'getSuggestionObjectsWithHighlights' args.append(highlight) return cls.signature(method=method, data_converter=Document, args=args)
2.421875
2
NumberTheoryAssigment3.py
esraagamal23/RSA-CryptoSystem-
0
12784730
import math from random import randint from numpy import sqrt def GCD(a, b): if b == 0: return a return GCD(b, a % b) ####################################### def ExtendedEuclid(a, b): if b == 0: return (1, 0) (x, y) = ExtendedEuclid(b, a % b) k = a // b return (y, x - k * y) def InvertModulo(a, n): (b, x) = ExtendedEuclid(a, n) if b < 0: b = (b % n + n) % n # we don’t want −ve integers return b ################################## def PowMod(a, n, mod): if n == 0: return 1 % mod elif n == 1: return a % mod else: b = PowMod(a, n // 2, mod) b = b * b % mod if n % 2 == 0: return b else: return b * a % mod def ConvertToInt( message_str): res = 0 for i in range(len(message_str)): res = res * 256 + ord(message_str[i]) return res ##################################### def ConvertToStr(n): res = "" while n > 0: res += chr(n % 256) n //= 256 return res[::-1] #question1 def Encrypt(m, n, e): m=ConvertToInt(m) c=PowMod(m,e,n) return c ############################# def Decrypt(c, p, q, e): euler=(p-1)*(q-1) d=InvertModulo(e,euler) n=p*q m=PowMod(c,d,n) m=ConvertToStr(m) return m chiper_message=Encrypt("attack", 1000000007*1000000009,23917) print(Decrypt(chiper_message, 1000000007,1000000009,23917)) #question2 def DecipherSimple(c, n, e, potential_messages): decipheredtext='' for i in potential_messages: if Encrypt(i,n,e)==c: decipheredtext=i return decipheredtext modulo = 101 exponent = 12 ciphertext = Encrypt("attack", modulo, exponent) print(DecipherSimple(ciphertext, modulo, exponent, ["attack", "don't attack", "wait"])) # get a missing prime number def get_prime_number(i,j,n): for i in range(i,j): if(n%i==0): return i return 0 ##question3 def DecipherSmallPrime(c, n, e): p=get_prime_number(2,1000000,n) decipheredtext=Decrypt(c,p,n//p,e) return decipheredtext modulo = 101 *18298970732541109011012304219376080251334480295537316123696052970419466495220522723330315111017831737980079504337868198011077274303193766040393009648852841770668239779097280026631944319501437547002412556176186750790476901358334138818777298389724049250700606462316428106882097210008142941838672676714188593227684360287806974345181893018133710957167334490627178666071809992955566020058374505477745993383434501768887090900283569055646901291270870833498474402084748161755197005050874785474707550376333429671113753137201128897550014524209754619355308207537703754006699795711188492048286436285518105948050401762394690148387 exponent = 239 ciphertext = Encrypt("attack", modulo, exponent) print(DecipherSmallPrime(ciphertext, modulo, exponent)) #question4 def DecipherSmallDiff(c, n, e): p=get_prime_number(int(sqrt(n)-5000),int(sqrt(n)),n) decipheredtext=Decrypt(c,p,n//p,e) return decipheredtext p = 1000000007 q = 1000000009 n = p * q e = 239 ciphertext = Encrypt("attack", n, e) message = DecipherSmallDiff(ciphertext, n, e) print(message) #question5 def DecipherCommonDivisor(c1, n1, e1, c2, n2, e2): p=GCD(n1,n2) first_decipheredtext= Decrypt(c1,p,n1//p,e1) second_decipheredtext=Decrypt(c2,p,n2//p,e2) return first_decipheredtext, second_decipheredtext p = 101 q1 = 18298970732541109011012304219376080251334480295537316123696052970419466495220522723330315111017831737980079504337868198011077274303193766040393009648852841770668239779097280026631944319501437547002412556176186750790476901358334138818777298389724049250700606462316428106882097210008142941838672676714188593227684360287806974345181893018133710957167334490627178666071809992955566020058374505477745993383434501768887090900283569055646901291270870833498474402084748161755197005050874785474707550376333429671113753137201128897550014524209754619355308207537703754006699795711188492048286436285518105948050401762394690148387 q2 = 1000000007 first_modulo = p * q1 second_modulo = p * q2 first_exponent = 239 second_exponent = 17 first_ciphertext = Encrypt("attack", first_modulo, first_exponent) second_ciphertext = Encrypt("wait", second_modulo, second_exponent) print(DecipherCommonDivisor(first_ciphertext, first_modulo, first_exponent, second_ciphertext, second_modulo, second_exponent)) #question6 def DecipherHastad(c1, n1, c2, n2, e): N1=(n1*n2)//n1 N2=(n1*n2)//n2 x1=InvertModulo(N1,n1) x2=InvertModulo(N2,n2) c_square=(c1*N1*x1+c2*N2*x2)%(n1*n2) c=int(round(sqrt(float(c_square)))) broadcast_message=ConvertToStr(c) # m1= int(round(sqrt(float(c1)))) #m2= int(round(sqrt(float(c2)))) #if(m1==m2): # broadcast_message=ConvertToStr(m1) return broadcast_message p1 = 790383132652258876190399065097 q1 = 662503581792812531719955475509 p2 = 656917682542437675078478868539 q2 = 1263581691331332127259083713503 n1 = p1 * q1 n2 = p2 * q2 e = 2 ciphertext1 = Encrypt("attack", n1, e) ciphertext2 = Encrypt("attack", n2, e) message = DecipherHastad(ciphertext1, n1, ciphertext2, n2, e) print(message)
3.40625
3
Finance/jpy2ntd.1m.py
wwwins/MyBitbarPlugins
0
12784731
#!/Users/isobar/.virtualenvs/py3/bin/python # -*- coding: utf-8 -*- # <bitbar.title>JPY to NTD</bitbar.title> # <bitbar.version>1.0</bitbar.version> # <bitbar.author>wwwins</bitbar.author> # <bitbar.author.github>wwwins</bitbar.author.github> # <bitbar.desc>Japanese Yen to Taiwan New Dollar Rate</bitbar.desc> # <bitbar.image></bitbar.image> import time import requests from lxml import html # Setting your currency buying/selling rate BUY_RATE = 0.270 color = "cadetblue" if (int(time.strftime("%H")) > 17): print ('🈚️') exit() if (int(time.strftime("%H")) < 9): print ('🈚️') exit() r = requests.get("https://rate.bot.com.tw/xrt?Lang=zh-TW") doc = html.fromstring(r.text) content = doc.cssselect("td.rate-content-cash") jpy = content[15].text if (float(jpy) < BUY_RATE): color = "red" print ('JPY:'+jpy+'| color='+color)
2.640625
3
dingtalk/python/alibabacloud_dingtalk/trade_1_0/models.py
aliyun/dingtalk-sdk
15
12784732
<filename>dingtalk/python/alibabacloud_dingtalk/trade_1_0/models.py # -*- coding: utf-8 -*- # This file is auto-generated, don't edit it. Thanks. from Tea.model import TeaModel from typing import Dict class QueryTradeOrderHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class QueryTradeOrderRequest(TeaModel): def __init__( self, outer_order_id: str = None, order_id: int = None, ding_isv_org_id: int = None, ding_suite_key: str = None, ): # 外部订单号 self.outer_order_id = outer_order_id # 内部订单号 self.order_id = order_id self.ding_isv_org_id = ding_isv_org_id self.ding_suite_key = ding_suite_key def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.outer_order_id is not None: result['outerOrderId'] = self.outer_order_id if self.order_id is not None: result['orderId'] = self.order_id if self.ding_isv_org_id is not None: result['dingIsvOrgId'] = self.ding_isv_org_id if self.ding_suite_key is not None: result['dingSuiteKey'] = self.ding_suite_key return result def from_map(self, m: dict = None): m = m or dict() if m.get('outerOrderId') is not None: self.outer_order_id = m.get('outerOrderId') if m.get('orderId') is not None: self.order_id = m.get('orderId') if m.get('dingIsvOrgId') is not None: self.ding_isv_org_id = m.get('dingIsvOrgId') if m.get('dingSuiteKey') is not None: self.ding_suite_key = m.get('dingSuiteKey') return self class QueryTradeOrderResponseBody(TeaModel): def __init__( self, isv_crop_id: str = None, article_name: str = None, article_code: str = None, article_item_name: str = None, article_item_code: str = None, quantity: int = None, outer_order_id: str = None, order_id: int = None, fee: int = None, pay_fee: int = None, create_time: int = None, refund_time: int = None, close_time: int = None, pay_time: int = None, status: int = None, ): # ISV的组织ID self.isv_crop_id = isv_crop_id # 商品名称 self.article_name = article_name # 商品编码 self.article_code = article_code # 规格名称 self.article_item_name = article_item_name # 规格编码 self.article_item_code = article_item_code # 商品数量 self.quantity = quantity # 外部订单号 self.outer_order_id = outer_order_id # 内部订单号 self.order_id = order_id # 原价(单位:分) self.fee = fee # 实际支付的价格(单位:分) self.pay_fee = pay_fee # 订单创建时间(单位:ms) self.create_time = create_time # 订单退款时间(单位:ms) self.refund_time = refund_time # 订单关闭时间(单位:ms) self.close_time = close_time # 订单支付时间(单位:ms) self.pay_time = pay_time # 订单状态:-1表示已关闭、0表示未支付、1表示已支付、2表示已退款 self.status = status def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.isv_crop_id is not None: result['isvCropId'] = self.isv_crop_id if self.article_name is not None: result['articleName'] = self.article_name if self.article_code is not None: result['articleCode'] = self.article_code if self.article_item_name is not None: result['articleItemName'] = self.article_item_name if self.article_item_code is not None: result['articleItemCode'] = self.article_item_code if self.quantity is not None: result['quantity'] = self.quantity if self.outer_order_id is not None: result['outerOrderId'] = self.outer_order_id if self.order_id is not None: result['orderId'] = self.order_id if self.fee is not None: result['fee'] = self.fee if self.pay_fee is not None: result['payFee'] = self.pay_fee if self.create_time is not None: result['createTime'] = self.create_time if self.refund_time is not None: result['refundTime'] = self.refund_time if self.close_time is not None: result['closeTime'] = self.close_time if self.pay_time is not None: result['payTime'] = self.pay_time if self.status is not None: result['status'] = self.status return result def from_map(self, m: dict = None): m = m or dict() if m.get('isvCropId') is not None: self.isv_crop_id = m.get('isvCropId') if m.get('articleName') is not None: self.article_name = m.get('articleName') if m.get('articleCode') is not None: self.article_code = m.get('articleCode') if m.get('articleItemName') is not None: self.article_item_name = m.get('articleItemName') if m.get('articleItemCode') is not None: self.article_item_code = m.get('articleItemCode') if m.get('quantity') is not None: self.quantity = m.get('quantity') if m.get('outerOrderId') is not None: self.outer_order_id = m.get('outerOrderId') if m.get('orderId') is not None: self.order_id = m.get('orderId') if m.get('fee') is not None: self.fee = m.get('fee') if m.get('payFee') is not None: self.pay_fee = m.get('payFee') if m.get('createTime') is not None: self.create_time = m.get('createTime') if m.get('refundTime') is not None: self.refund_time = m.get('refundTime') if m.get('closeTime') is not None: self.close_time = m.get('closeTime') if m.get('payTime') is not None: self.pay_time = m.get('payTime') if m.get('status') is not None: self.status = m.get('status') return self class QueryTradeOrderResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: QueryTradeOrderResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = QueryTradeOrderResponseBody() self.body = temp_model.from_map(m['body']) return self class CreateOpportunityHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class CreateOpportunityRequest(TeaModel): def __init__( self, corp_id: str = None, belong_to_phone_num: str = None, contact_phone_num: str = None, dept_id: int = None, market_code: str = None, ding_isv_org_id: int = None, ): # 企业CorpId self.corp_id = corp_id # 归属人电话号码 self.belong_to_phone_num = belong_to_phone_num # 联系人电话 self.contact_phone_num = contact_phone_num # 部门Id self.dept_id = dept_id # 商品码 self.market_code = market_code self.ding_isv_org_id = ding_isv_org_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.corp_id is not None: result['corpId'] = self.corp_id if self.belong_to_phone_num is not None: result['belongToPhoneNum'] = self.belong_to_phone_num if self.contact_phone_num is not None: result['contactPhoneNum'] = self.contact_phone_num if self.dept_id is not None: result['deptId'] = self.dept_id if self.market_code is not None: result['marketCode'] = self.market_code if self.ding_isv_org_id is not None: result['dingIsvOrgId'] = self.ding_isv_org_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('corpId') is not None: self.corp_id = m.get('corpId') if m.get('belongToPhoneNum') is not None: self.belong_to_phone_num = m.get('belongToPhoneNum') if m.get('contactPhoneNum') is not None: self.contact_phone_num = m.get('contactPhoneNum') if m.get('deptId') is not None: self.dept_id = m.get('deptId') if m.get('marketCode') is not None: self.market_code = m.get('marketCode') if m.get('dingIsvOrgId') is not None: self.ding_isv_org_id = m.get('dingIsvOrgId') return self class CreateOpportunityResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, ): self.headers = headers def validate(self): self.validate_required(self.headers, 'headers') def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') return self class CheckOpportunityResultHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class CheckOpportunityResultRequest(TeaModel): def __init__( self, corp_id: str = None, belong_to_phone_num: str = None, contact_phone_num: str = None, dept_id: int = None, market_code: str = None, ): # corpId self.corp_id = corp_id # belongToPhoneNum self.belong_to_phone_num = belong_to_phone_num # contactPhoneNum self.contact_phone_num = contact_phone_num # deptId self.dept_id = dept_id # marketCode self.market_code = market_code def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.corp_id is not None: result['corpId'] = self.corp_id if self.belong_to_phone_num is not None: result['belongToPhoneNum'] = self.belong_to_phone_num if self.contact_phone_num is not None: result['contactPhoneNum'] = self.contact_phone_num if self.dept_id is not None: result['deptId'] = self.dept_id if self.market_code is not None: result['marketCode'] = self.market_code return result def from_map(self, m: dict = None): m = m or dict() if m.get('corpId') is not None: self.corp_id = m.get('corpId') if m.get('belongToPhoneNum') is not None: self.belong_to_phone_num = m.get('belongToPhoneNum') if m.get('contactPhoneNum') is not None: self.contact_phone_num = m.get('contactPhoneNum') if m.get('deptId') is not None: self.dept_id = m.get('deptId') if m.get('marketCode') is not None: self.market_code = m.get('marketCode') return self class CheckOpportunityResultResponseBody(TeaModel): def __init__( self, biz_success: bool = None, ): # success self.biz_success = biz_success def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.biz_success is not None: result['bizSuccess'] = self.biz_success return result def from_map(self, m: dict = None): m = m or dict() if m.get('bizSuccess') is not None: self.biz_success = m.get('bizSuccess') return self class CheckOpportunityResultResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, body: CheckOpportunityResultResponseBody = None, ): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = CheckOpportunityResultResponseBody() self.body = temp_model.from_map(m['body']) return self
2.265625
2
gitdir/testsave.py
guyKN/voiceswap
1
12784733
import tensorflow as tf import os X = tf.placeholder(tf.float32,[None,1]) W = tf.Variable(tf.zeros([1,1])) B = tf.Variable(tf.zeros([1])) y = tf.matmul(X,W) + B y_ = tf.placeholder(tf.float32,[None,1]) cost = tf.reduce_mean(tf.square(y-y_)) opt = tf.train.AdagradOptimizer(1).minimize(cost) feed = {X:[[1],[4]], y_:[[3],[1]]} init = tf.initialize_all_variables() saver = tf.train.Saver() with tf.Session() as sess: #sess.run(init) saver.restore(sess,"testDir/model.ckpt-97") for i in range(100): _, cost_ = sess.run([opt,cost], feed_dict=feed) print cost_ saver.save(sess, os.path.join("testDir", 'model.ckpt'), global_step=i)
2.4375
2
laboratorios/1-recursion/E/problem.py
MatiwsxD/ayed-2019-1
0
12784734
import json def supe(digit): digit = str(digit) if len(digit)==1: return digit else: cont = 0 for i in range(len(digit)): cont+= int(digit[i]) return supe(cont) # TODO Complete! def super_digit(n, k): digit = str(str(n)*k) return int(supe(digit)) if __name__ == '__main__': with open('./data.json') as f: tests = json.load(f) for i, test in enumerate(tests): n = test["n"] k = test["k"] actual = super_digit(n, k) expected = test['result'] assert actual == expected, f'Test {i} | n: {n} | k: {k} | expected: {expected}, actual: {actual}' print('OK!')
3.578125
4
mtbf_driver/MtbfTestCase.py
Mozilla-GitHub-Standards/0c166c201f85d9bdef4d4ad1ce985515176672819d41406b9977f54b7ac091dc
0
12784735
<filename>mtbf_driver/MtbfTestCase.py # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import time from gaiatest import GaiaTestCase from gaiatest.apps.homescreen.app import Homescreen from marionette_driver.by import By class GaiaMtbfTestCase(GaiaTestCase): def launch_by_touch(self, app): # Parameter: GaiaApp Homescreen(self.marionette).launch() icon = self.marionette.find_element(By.CSS_SELECTOR, 'gaia-app-icon[data-identifier="' + app.manifest_url + '"]') self.marionette.execute_script("arguments[0].scrollIntoView(false);", [icon]) # Sleep because homescreen protect touch event when scrolling time.sleep(1) icon.tap() time.sleep(3) self.apps.switch_to_displayed_app() def cleanup_storage(self): pass def cleanup_gaia(self, full_reset=True): # Turn on screen if not self.device.is_screen_enabled: self.device.turn_screen_on() # unlock if self.data_layer.get_setting('lockscreen.enabled'): self.device.unlock() # kill FTU if possible if self.apps.displayed_app.name.upper() == "FTU": self.apps.kill(self.apps.displayed_app) if full_reset: # disable passcode self.data_layer.set_setting('lockscreen.passcode-lock.code', '1111') self.data_layer.set_setting('lockscreen.passcode-lock.enabled', False) # change language back to english self.data_layer.set_setting("language.current", "en-US") # reset keyboard to default values self.data_layer.set_setting("keyboard.enabled-layouts", "{'app://keyboard.gaiamobile.org/manifest.webapp': {'en': True, 'number': True}}") # reset do not track self.data_layer.set_setting('privacy.donottrackheader.value', '-1') # don't change status of airplane mode # if self.data_layer.get_setting('airplaneMode.enabled'): # # enable the device radio, disable airplane mode # self.data_layer.set_setting('airplaneMode.enabled', False) # Re-set edge gestures pref to False self.data_layer.set_setting('edgesgesture.enabled', False) # disable carrier data connection if self.device.has_mobile_connection: self.data_layer.disable_cell_data() self.data_layer.disable_cell_roaming() ## TODO: Disable wifi operation since Bug 1064800 # if self.device.has_wifi: # # Bug 908553 - B2G Emulator: support wifi emulation # if not self.device.is_emulator: # self.data_layer.enable_wifi() # self.data_layer.forget_all_networks() # self.data_layer.disable_wifi() # don't remove contact data # self.data_layer.remove_all_contacts() # reset to home screen self.device.touch_home_button() # disable sound completely self.data_layer.set_volume(0) # disable auto-correction of keyboard self.data_layer.set_setting('keyboard.autocorrect', False) # restore settings from testvars [self.data_layer.set_setting(name, value) for name, value in self.testvars.get('settings', {}).items()] # restore prefs from testvars for name, value in self.testvars.get('prefs', {}).items(): if type(value) is int: self.data_layer.set_int_pref(name, value) elif type(value) is bool: self.data_layer.set_bool_pref(name, value) else: self.data_layer.set_char_pref(name, value) def tearDown(self): time.sleep(1) self.device.touch_home_button() time.sleep(1) GaiaTestCase.tearDown(self)
2.21875
2
spec2scl/transformers/perl.py
pombredanne/bitbucket.org-bkabrda-spec2scl
0
12784736
from spec2scl import settings from spec2scl import transformer from spec2scl.decorators import matches @transformer.Transformer.register_transformer class PerlTransformer(transformer.Transformer): def __init__(self, options={}): super(PerlTransformer, self).__init__(options) @matches(r'^[^\n]*%{__perl}\s+', one_line=False, sections=settings.RUNTIME_SECTIONS) @matches(r'^\s*perl\s+', one_line=False, sections=settings.RUNTIME_SECTIONS) # carefully here, "perl" will occur often in the specfile @matches(r'./Build', one_line=False) def handle_perl_specific_commands(self, original_spec, pattern, text): return self.sclize_all_commands(pattern, text)
2.359375
2
autogalaxy/analysis/aggregator/aggregator.py
jonathanfrawley/PyAutoGalaxy
0
12784737
<reponame>jonathanfrawley/PyAutoGalaxy from autofit.database.model.fit import Fit import autogalaxy as ag from typing import Optional from functools import partial def plane_gen_from(aggregator): """ Returns a generator of `Plane` objects from an input aggregator, which generates a list of the `Plane` objects for every set of results loaded in the aggregator. This is performed by mapping the `plane_from_agg_obj` with the aggregator, which sets up each plane using only generators ensuring that manipulating the planes of large sets of results is done in a memory efficient way. Parameters ---------- aggregator : af.Aggregator A PyAutoFit aggregator object containing the results of PyAutoGalaxy model-fits.""" return aggregator.map(func=plane_via_database_from) def plane_via_database_from(fit: Fit): """ Returns a `Plane` object from an aggregator's `SearchOutput` class, which we call an 'agg_obj' to describe that it acts as the aggregator object for one result in the `Aggregator`. This uses the aggregator's generator outputs such that the function can use the `Aggregator`'s map function to to create a `Plane` generator. The `Plane` is created following the same method as the PyAutoGalaxy `Search` classes using an instance of the maximum log likelihood model's galaxies. These galaxies have their hyper-images added (if they were used in the fit) and passed into a Plane object. Parameters ---------- fit : af.SearchOutput A PyAutoFit aggregator's SearchOutput object containing the generators of the results of PyAutoGalaxy model-fits. """ galaxies = fit.instance.galaxies hyper_model_image = fit.value(name="hyper_model_image") hyper_galaxy_image_path_dict = fit.value(name="hyper_galaxy_image_path_dict") if hyper_galaxy_image_path_dict is not None: for (galaxy_path, galaxy) in fit.instance.path_instance_tuples_for_class( ag.Galaxy ): if galaxy_path in hyper_galaxy_image_path_dict: galaxy.hyper_model_image = hyper_model_image galaxy.hyper_galaxy_image = hyper_galaxy_image_path_dict[galaxy_path] return ag.Plane(galaxies=galaxies) def imaging_gen_from(aggregator, settings_imaging: Optional[ag.SettingsImaging] = None): """ Returns a generator of `Imaging` objects from an input aggregator, which generates a list of the `Imaging` objects for every set of results loaded in the aggregator. This is performed by mapping the `imaging_from_agg_obj` with the aggregator, which sets up each imaging using only generators ensuring that manipulating the imaging of large sets of results is done in a memory efficient way. Parameters ---------- aggregator : af.Aggregator A PyAutoFit aggregator object containing the results of PyAutoGalaxy model-fits.""" func = partial(imaging_via_database_from, settings_imaging=settings_imaging) return aggregator.map(func=func) def imaging_via_database_from( fit: Fit, settings_imaging: Optional[ag.SettingsImaging] = None ): """ Returns a `Imaging` object from an aggregator's `SearchOutput` class, which we call an 'agg_obj' to describe that it acts as the aggregator object for one result in the `Aggregator`. This uses the aggregator's generator outputs such that the function can use the `Aggregator`'s map function to to create a `Imaging` generator. The `Imaging` is created following the same method as the PyAutoGalaxy `Search` classes, including using the `SettingsImaging` instance output by the Search to load inputs of the `Imaging` (e.g. psf_shape_2d). Parameters ---------- fit : af.SearchOutput A PyAutoFit aggregator's SearchOutput object containing the generators of the results of PyAutoGalaxy model-fits. """ data = fit.value(name="data") noise_map = fit.value(name="noise_map") psf = fit.value(name="psf") settings_imaging = settings_imaging or fit.value(name="settings_dataset") imaging = ag.Imaging( image=data, noise_map=noise_map, psf=psf, settings=settings_imaging, setup_convolver=True, ) imaging.apply_settings(settings=settings_imaging) return imaging def fit_imaging_gen_from( aggregator, settings_imaging: Optional[ag.SettingsImaging] = None, settings_pixelization: Optional[ag.SettingsPixelization] = None, settings_inversion: Optional[ag.SettingsInversion] = None, ): """ Returns a generator of `FitImaging` objects from an input aggregator, which generates a list of the `FitImaging` objects for every set of results loaded in the aggregator. This is performed by mapping the `fit_imaging_from_agg_obj` with the aggregator, which sets up each fit using only generators ensuring that manipulating the fits of large sets of results is done in a memory efficient way. Parameters ---------- aggregator : af.Aggregator A PyAutoFit aggregator object containing the results of PyAutoGalaxy model-fits.""" func = partial( fit_imaging_via_database_from, settings_imaging=settings_imaging, settings_pixelization=settings_pixelization, settings_inversion=settings_inversion, ) return aggregator.map(func=func) def fit_imaging_via_database_from( fit: Fit, settings_imaging: Optional[ag.SettingsImaging] = None, settings_pixelization: Optional[ag.SettingsPixelization] = None, settings_inversion: Optional[ag.SettingsInversion] = None, ): """ Returns a `FitImaging` object from an aggregator's `SearchOutput` class, which we call an 'agg_obj' to describe that it acts as the aggregator object for one result in the `Aggregator`. This uses the aggregator's generator outputs such that the function can use the `Aggregator`'s map function to to create a `FitImaging` generator. The `FitImaging` is created following the same method as the PyAutoGalaxy `Search` classes. Parameters ---------- fit : af.SearchOutput A PyAutoFit aggregator's SearchOutput object containing the generators of the results of PyAutoGalaxy model-fits. """ imaging = imaging_via_database_from(fit=fit, settings_imaging=settings_imaging) plane = plane_via_database_from(fit=fit) settings_pixelization = settings_pixelization or fit.value( name="settings_pixelization" ) settings_inversion = settings_inversion or fit.value(name="settings_inversion") return ag.FitImaging( imaging=imaging, plane=plane, settings_pixelization=settings_pixelization, settings_inversion=settings_inversion, ) def interferometer_gen_from( aggregator, real_space_mask: Optional[ag.Mask2D] = None, settings_interferometer: Optional[ag.SettingsInterferometer] = None, ): """ Returns a generator of `Interferometer` objects from an input aggregator, which generates a list of the `Interferometer` objects for every set of results loaded in the aggregator. This is performed by mapping the `interferometer_from_agg_obj` with the aggregator, which sets up each interferometer object using only generators ensuring that manipulating the interferometer objects of large sets of results is done in a memory efficient way. Parameters ---------- aggregator : af.Aggregator A PyAutoFit aggregator object containing the results of PyAutoGalaxy model-fits.""" func = partial( interferometer_via_database_from, real_space_mask=real_space_mask, settings_interferometer=settings_interferometer, ) return aggregator.map(func=func) def interferometer_via_database_from( fit: Fit, real_space_mask: Optional[ag.Mask2D] = None, settings_interferometer: Optional[ag.SettingsInterferometer] = None, ): """ Returns a `Interferometer` object from an aggregator's `SearchOutput` class, which we call an 'agg_obj' to describe that it acts as the aggregator object for one result in the `Aggregator`. This uses the aggregator's generator outputs such that the function can use the `Aggregator`'s map function to to create a `Interferometer` generator. The `Interferometer` is created following the same method as the PyAutoGalaxy `Search` classes, including using the `SettingsInterferometer` instance output by the Search to load inputs of the `Interferometer` (e.g. psf_shape_2d). Parameters ---------- fit : af.SearchOutput A PyAutoFit aggregator's SearchOutput object containing the generators of the results of PyAutoGalaxy model-fits. """ data = fit.value(name="data") noise_map = fit.value(name="noise_map") uv_wavelengths = fit.value(name="uv_wavelengths") real_space_mask = real_space_mask or fit.value(name="real_space_mask") settings_interferometer = settings_interferometer or fit.value( name="settings_dataset" ) interferometer = ag.Interferometer( visibilities=data, noise_map=noise_map, uv_wavelengths=uv_wavelengths, real_space_mask=real_space_mask, ) interferometer = interferometer.apply_settings(settings=settings_interferometer) return interferometer def fit_interferometer_gen_from( aggregator, real_space_mask: Optional[ag.Mask2D] = None, settings_interferometer: Optional[ag.SettingsInterferometer] = None, settings_pixelization: Optional[ag.SettingsPixelization] = None, settings_inversion: Optional[ag.SettingsInversion] = None, ): """ Returns a `FitInterferometer` object from an aggregator's `SearchOutput` class, which we call an 'agg_obj' to describe that it acts as the aggregator object for one result in the `Aggregator`. This uses the aggregator's generator outputs such that the function can use the `Aggregator`'s map function to to create a `FitInterferometer` generator. The `FitInterferometer` is created following the same method as the PyAutoGalaxy `Search` classes. Parameters ---------- agg_obj : af.SearchOutput A PyAutoFit aggregator's SearchOutput object containing the generators of the results of PyAutoGalaxy model-fits. """ func = partial( fit_interferometer_via_database_from, real_space_mask=real_space_mask, settings_interferometer=settings_interferometer, settings_pixelization=settings_pixelization, settings_inversion=settings_inversion, ) return aggregator.map(func=func) def fit_interferometer_via_database_from( fit: Fit, real_space_mask: Optional[ag.Mask2D] = None, settings_interferometer: Optional[ag.SettingsInterferometer] = None, settings_pixelization: Optional[ag.SettingsPixelization] = None, settings_inversion: Optional[ag.SettingsInversion] = None, ): """ Returns a generator of `FitInterferometer` objects from an input aggregator, which generates a list of the `FitInterferometer` objects for every set of results loaded in the aggregator. This is performed by mapping the `fit_interferometer_from_agg_obj` with the aggregator, which sets up each fit using only generators ensuring that manipulating the fits of large sets of results is done in a memory efficient way. Parameters ---------- aggregator : af.Aggregator A PyAutoFit aggregator object containing the results of PyAutoGalaxy model-fits. """ settings_pixelization = settings_pixelization or fit.value( name="settings_pixelization" ) settings_inversion = settings_inversion or fit.value(name="settings_inversion") interferometer = interferometer_via_database_from( fit=fit, real_space_mask=real_space_mask, settings_interferometer=settings_interferometer, ) plane = plane_via_database_from(fit=fit) return ag.FitInterferometer( interferometer=interferometer, plane=plane, settings_pixelization=settings_pixelization, settings_inversion=settings_inversion, )
3.015625
3
send_email.py
PoojaJain30/Daily-HackerNews-Email
0
12784738
import smtplib from email.message import EmailMessage # function to send email to listed email address def send_email(info,news): email = EmailMessage() email['From'] = '< Sender Name >' email['To'] = info[1] email['Subject'] = 'Hello '+info[0] email.set_content(news,'html') with smtplib.SMTP(host='smtp.gmail.com', port=587) as smtp: smtp.ehlo() smtp.starttls() smtp.login('<Sender Email>','<Sender Password>') smtp.send_message(email) smtp.quit()
3.40625
3
drlnd/core/common/path.py
yycho0108/DRLND_Core
0
12784739
#!/usr/bin/env python3 from pathlib import Path def get_project_root() -> Path: """ Get project root directory with assumed structure as: ${PACKAGE_ROOT}/core/common/path.py """ return Path(__file__).resolve().parent.parent.parent def get_config_file() -> Path: """ Get default config file. """ return get_project_root()/'data/config/config.yaml' def main(): print(get_project_root()) if __name__ == '__main__': main()
2.84375
3
riscof/utils.py
haseebazaz-10xe/riscof
0
12784740
# See LICENSE.incore for details import pathlib import logging import argparse import os import sys import subprocess import operator import shlex import ruamel from ruamel.yaml import YAML #from riscof.log import logger yaml = YAML(typ="rt") yaml.default_flow_style = False yaml.allow_unicode = True logger = logging.getLogger(__name__) def dump_yaml(foo, outfile): yaml.dump(foo, outfile) def load_yaml(foo): try: with open(foo, "r") as file: return dict(yaml.load(file)) except ruamel.yaml.constructor.DuplicateKeyError as msg: logger = logging.getLogger(__name__) error = "\n".join(str(msg).split("\n")[2:-7]) logger.error(error) raise SystemExit def absolute_path(config_dir, entry_path): """ Create an absolute path based on the config's file directory location and a path value from a configuration entry. """ # Allow entries relative to user home. entry_path = os.path.expanduser(entry_path) if os.path.exists(entry_path): # If the entry is already a valid path, return the absolute value of it. logger.debug("Path entry found: " + str(entry_path)) abs_entry_path = os.path.abspath(entry_path) else: # Assume that the entry is relative to the location of the config file. logger.debug("Path entry '{}' not found. Combine it with config file "\ "location '{}'.".format(entry_path, config_dir)) abs_entry_path = os.path.abspath(os.path.join(config_dir, entry_path)) logger.debug("Using the path: " +str(abs_entry_path)) return abs_entry_path class makeUtil(): """ Utility for ease of use of make commands like `make` and `pmake`. Supports automatic addition and execution of targets. Uses the class :py:class:`shellCommand` to execute commands. """ def __init__(self,makeCommand='make',makefilePath="./Makefile"): """ Constructor. :param makeCommand: The variant of make to be used with optional arguments. Ex - `pmake -j 8` :type makeCommand: str :param makefilePath: The path to the makefile to be used. :type makefilePath: str """ self.makeCommand=makeCommand self.makefilePath = makefilePath self.targets = [] def add_target(self,command,tname=""): """ Function to add a target to the makefile. :param command: The command to be executed when the target is run. :type command: str :param tname: The name of the target to be used. If not specified, TARGET<num> is used as the name. :type tname: str """ if tname == "": tname = "TARGET"+str(len(self.targets)) with open(self.makefilePath,"a") as makefile: makefile.write("\n\n.PHONY : " + tname + "\n" + tname + " :\n\t"+command.replace("\n","\n\t")) self.targets.append(tname) def execute_target(self,tname,cwd="./"): """ Function to execute a particular target only. :param tname: Name of the target to execute. :type tname: str :param cwd: The working directory to be set while executing the make command. :type cwd: str :raise AssertionError: If target name is not present in the list of defined targets. """ assert tname in self.targets, "Target does not exist." return shellCommand(self.makeCommand+" -f "+self.makefilePath+" "+tname).run(cwd=cwd) def execute_all(self,cwd): """ Function to execute all the defined targets. :param cwd: The working directory to be set while executing the make command. :type cwd: str """ return shellCommand(self.makeCommand+" -f "+self.makefilePath+" "+" ".join(self.targets)).run(cwd=cwd) class Command(): """ Class for command build which is supported by :py:mod:`suprocess` module. Supports automatic conversion of :py:class:`pathlib.Path` instances to valid format for :py:mod:`subprocess` functions. """ def __init__(self, *args, pathstyle='auto', ensure_absolute_paths=False): """Constructor. :param pathstyle: Determine the path style when adding instance of :py:class:`pathlib.Path`. Path style determines the slash type which separates the path components. If pathstyle is `auto`, then on Windows backslashes are used and on Linux forward slashes are used. When backslashes should be prevented on all systems, the pathstyle should be `posix`. No other values are allowed. :param ensure_absolute_paths: If true, then any passed path will be converted to absolute path. :param args: Initial command. :type pathstyle: str :type ensure_absolute_paths: bool """ self.ensure_absolute_paths = ensure_absolute_paths self.pathstyle = pathstyle self.args = [] for arg in args: self.append(arg) def append(self, arg): """Add new argument to command. :param arg: Argument to be added. It may be list, tuple, :py:class:`Command` instance or any instance which supports :py:func:`str`. """ to_add = [] if type(arg) is list: to_add = arg elif type(arg) is tuple: to_add = list(arg) elif isinstance(arg, type(self)): to_add = arg.args elif isinstance(arg, str) and not self._is_shell_command(): to_add = shlex.split(arg) else: # any object which will be converted into str. to_add.append(arg) # Convert all arguments to its string representation. # pathlib.Path instances to_add = [ self._path2str(el) if isinstance(el, pathlib.Path) else str(el) for el in to_add ] self.args.extend(to_add) def clear(self): """Clear arguments.""" self.args = [] def run(self, **kwargs): """Execute the current command. Uses :py:class:`subprocess.Popen` to execute the command. :return: The return code of the process . :raise subprocess.CalledProcessError: If `check` is set to true in `kwargs` and the process returns non-zero value. """ kwargs.setdefault('shell', self._is_shell_command()) cwd = self._path2str(kwargs.get( 'cwd')) if not kwargs.get('cwd') is None else self._path2str( os.getcwd()) kwargs.update({'cwd': cwd}) logger.debug(cwd) # When running as shell command, subprocess expects # The arguments to be string. logger.debug(str(self)) cmd = str(self) if kwargs['shell'] else self x = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, **kwargs) out, err = x.communicate() out = out.rstrip() err = err.rstrip() if x.returncode != 0: if out: logger.error(out.decode("ascii")) if err: logger.error(err.decode("ascii")) else: if out: logger.warning(out.decode("ascii")) if err: logger.warning(err.decode("ascii")) return x.returncode def _is_shell_command(self): """ Return true if current command is supposed to be executed as shell script otherwise false. """ return any('|' in arg for arg in self.args) def _path2str(self, path): """Convert :py:class:`pathlib.Path` to string. The final form of the string is determined by the configuration of `Command` instance. :param path: Path-like object which will be converted into string. :return: String representation of `path` """ path = pathlib.Path(path) if self.ensure_absolute_paths and not path.is_absolute(): path = path.resolve() if self.pathstyle == 'posix': return path.as_posix() elif self.pathstyle == 'auto': return str(path) else: raise ValueError(f"Invalid pathstyle {self.pathstyle}") def __add__(self, other): cmd = Command(self, pathstyle=self.pathstyle, ensure_absolute_paths=self.ensure_absolute_paths) cmd += other return cmd def __iadd__(self, other): self.append(other) return self def __iter__(self): """ Support iteration so functions from :py:mod:`subprocess` module support `Command` instance. """ return iter(self.args) def __repr__(self): return f'<{self.__class__.__name__} args={self.args}>' def __str__(self): return ' '.join(self.args) class shellCommand(Command): """ Sub Class of the command class which always executes commands as shell commands. """ def __init__(self, *args, pathstyle='auto', ensure_absolute_paths=False): """ :param pathstyle: Determine the path style when adding instance of :py:class:`pathlib.Path`. Path style determines the slash type which separates the path components. If pathstyle is `auto`, then on Windows backslashes are used and on Linux forward slashes are used. When backslashes should be prevented on all systems, the pathstyle should be `posix`. No other values are allowed. :param ensure_absolute_paths: If true, then any passed path will be converted to absolute path. :param args: Initial command. :type pathstyle: str :type ensure_absolute_paths: bool """ return super().__init__(*args, pathstyle=pathstyle, ensure_absolute_paths=ensure_absolute_paths) def _is_shell_command(self): return True class ColoredFormatter(logging.Formatter): """ Class to create a log output which is colored based on level. """ def __init__(self, *args, **kwargs): super(ColoredFormatter, self).__init__(*args, **kwargs) self.colors = { 'DEBUG': '\033[94m', 'INFO': '\033[92m', 'WARNING': '\033[93m', 'ERROR': '\033[91m', } self.reset = '\033[0m' def format(self, record): msg = str(record.msg) level_name = str(record.levelname) name = str(record.name) color_prefix = self.colors[level_name] return '{0}{1:>9s} | [--{2}--]: {3}{4}'.format(color_prefix, level_name, name, msg, self.reset) def setup_logging(log_level): """Setup logging Verbosity decided on user input :param log_level: User defined log level :type log_level: str """ numeric_level = getattr(logging, log_level.upper(), None) if not isinstance(numeric_level, int): print( "\033[91mInvalid log level passed. Please select from debug | info | warning | error\033[0m" ) raise ValueError("{}-Invalid log level.".format(log_level)) logging.basicConfig(level=numeric_level) class SortingHelpFormatter(argparse.HelpFormatter): def add_arguments(self, actions): actions = sorted(actions, key=operator.attrgetter('option_strings')) super(SortingHelpFormatter, self).add_arguments(actions) class MyParser(argparse.ArgumentParser): def error(self, message): sys.stderr.write('error: %s\n' % message) self.print_help() raise SystemExit def format_help(self): formatter = self._get_formatter() # usage formatter.add_usage(self.usage, self._actions, self._mutually_exclusive_groups) # description formatter.add_text(self.description) # positionals, optionals and user-defined groups for action_group in self._action_groups: formatter.start_section(action_group.title) formatter.add_text(action_group.description) formatter.add_arguments(action_group._group_actions) formatter.end_section() # epilog formatter.add_text(self.epilog) # determine help from format above return formatter.format_help() def print_help(self,file=None): if file is None: file = sys.stdout self._print_message(self.format_help(), file) subparsers_actions = [ action for action in self._actions if isinstance(action, argparse._SubParsersAction)] for subparsers_action in subparsers_actions: for choice, subparser in subparsers_action.choices.items(): self._print_message("Action '{}'\n\n".format(choice),file) self._print_message("\t"+(subparser.format_help()).replace("\n","\n\t")+"\n",file) class CustomAction(argparse.Action): def __init__(self, option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None): argparse.Action.__init__(self, option_strings=option_strings, dest=dest, nargs=nargs, const=const, default=default, type=type, choices=choices, required=required, help=help, metavar=metavar, ) return def __call__(self, parser, namespace, values, option_string=None): if isinstance(values, list): values = [ str(pathlib.Path(v).absolute()) for v in values ] else: values = [str(pathlib.Path(values).absolute())] existing_val = getattr(namespace, self.dest, None) if existing_val: setattr(namespace, self.dest, existing_val + values) else: setattr(namespace, self.dest, values) def riscof_cmdline_args(): parser = MyParser( formatter_class=SortingHelpFormatter, prog="riscof", description="RISCOF is a framework used to run the Architectural Tests on a DUT and check compatibility with the RISC-V ISA") parser.add_argument('--version','-v', help='Print version of RISCOF being used', action='store_true') parser.add_argument('--verbose', action='store', default='info', choices = ['debug','info','warning','error'], help='[Default=info]', metavar="") subparsers = parser.add_subparsers(dest='command',title="Action",description="The action to be performed by riscof.",help="List of actions supported by riscof.") coverage = subparsers.add_parser('coverage',help='Generate Coverage Report for the given YAML spec.',formatter_class=SortingHelpFormatter) coverage.add_argument('--config', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the config file. [Default=./config.ini]', metavar= 'PATH', default=str(pathlib.Path('./config.ini').absolute()) ) coverage.add_argument('--cgf', action=CustomAction, # required=True, help='The Path to the cgf file(s). Multiple allowed', metavar= 'PATH') coverage.add_argument('--suite', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the custom suite directory.', metavar= 'PATH') coverage.add_argument('--env', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the custom env directory.', metavar= 'PATH') coverage.add_argument('--work-dir', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the work-dir.', metavar= 'PATH', default=str(pathlib.Path('./riscof_work').absolute()) ) coverage.add_argument('--no-browser',action='store_true', help="Do not open the browser for showing the test report.") generatedb = subparsers.add_parser('gendb',help='Generate Database for the standard suite.',formatter_class=SortingHelpFormatter) generatedb.add_argument('--suite', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the custom suite directory.', metavar= 'PATH') generatedb.add_argument('--env', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the custom env directory.', metavar= 'PATH') generatedb.add_argument('--work-dir', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the work-dir.', metavar= 'PATH', default=str(pathlib.Path('./riscof_work').absolute()) ) setup = subparsers.add_parser('setup',help='Initiate setup for riscof.',formatter_class=SortingHelpFormatter) setup.add_argument('--dutname', action='store', help='Name of DUT plugin. [Default=spike]', default='spike', metavar= 'NAME') setup.add_argument('--refname', action='store', help='Name of Reference plugin. [Default=sail_cSim]', default='sail_cSim', metavar= 'NAME') setup.add_argument('--work-dir', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the work-dir.', metavar= 'PATH', default=str(pathlib.Path('./riscof_work').absolute()) ) validate = subparsers.add_parser('validateyaml', help='Validate the Input YAMLs using riscv-config.',formatter_class=SortingHelpFormatter) validate.add_argument('--config', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the config file. [Default=./config.ini]', metavar= 'PATH', default=str(pathlib.Path('./config.ini').absolute()) ) validate.add_argument('--work-dir', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the work-dir.', metavar= 'PATH', default=str(pathlib.Path('./riscof_work').absolute()) ) run = subparsers.add_parser('run', help='Run the tests on DUT and reference and compare signatures.',formatter_class=SortingHelpFormatter) run.add_argument('--config', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the config file. [Default=./config.ini]', metavar= 'PATH', default=str(pathlib.Path('./config.ini').absolute()) ) run.add_argument('--suite', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the custom suite directory.', metavar= 'PATH') run.add_argument('--env', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the custom env directory.', metavar= 'PATH') run.add_argument('--no-browser',action='store_true', help="Do not open the browser for showing the test report.") run.add_argument('--work-dir', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the work-dir.', metavar= 'PATH', default=str(pathlib.Path('./riscof_work').absolute()) ) testlist = subparsers.add_parser('testlist', help='Generate the test list for the given DUT and suite.',formatter_class=SortingHelpFormatter) testlist.add_argument('--work-dir', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the work-dir.', metavar= 'PATH', default=str(pathlib.Path('./riscof_work').absolute()) ) testlist.add_argument('--config', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the config file. [Default=./config.ini]', metavar= 'PATH', default=str(pathlib.Path('./config.ini').absolute()) ) testlist.add_argument('--suite', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the custom suite directory.', metavar= 'PATH') testlist.add_argument('--env', type= lambda p: str(pathlib.Path(p).absolute()), action='store', help='The Path to the custom env directory.', metavar= 'PATH') return parser
2.375
2
release/stubs.min/Tekla/Structures/ModelInternal_parts/dotBooleanPart_t.py
htlcnn/ironpython-stubs
182
12784741
<filename>release/stubs.min/Tekla/Structures/ModelInternal_parts/dotBooleanPart_t.py class dotBooleanPart_t(object): # no doc Boolean=None OperativePart=None Type=None
1.359375
1
tests/unit/test_index_class.py
griggheo/cheesecake
12
12784742
""" Prepare enviornment. >>> import _path_cheesecake >>> from cheesecake.cheesecake_index import Index >>> from _helper_cheesecake import Glutton ***** Default maximum value for an index should be 0. >>> index = Index() >>> index.max_value 0 To learn a class name, ask for its representation. >>> Index <Index class: unnamed> >>> class NamedIndex(Index): ... pass >>> NamedIndex <Index class: NamedIndex> ***** Create two indices. >>> big_index = Index() >>> index = Index() >>> index.name = 'small_index' Add one index to another. >>> big_index.add_subindex(index) >>> index in big_index.subindices True Try to add non-Index object as a subindex. >>> big_index.add_subindex(42) Traceback (most recent call last): ... ValueError: subindex has to be instance of Index Now remove subindex. >>> big_index.remove_subindex('small_index') >>> index in big_index.subindices False ***** Test passing subindices to index constructor. >>> def create_index(name): ... idx = Index() ... idx.name = name ... return idx >>> index_one = create_index('one') >>> index_two = create_index('two') >>> index_three = create_index('three') >>> index = Index(index_one, index_two, index_three) >>> def get_names(indices): ... return map(lambda idx: idx.name, indices) >>> get_names(index.subindices) ['one', 'two', 'three'] >>> index.remove_subindex('one') >>> get_names(index.subindices) ['two', 'three'] ***** Test requirements. >>> class NewIndex(Index): ... def compute(self, one, two, three): ... pass >>> new = NewIndex() >>> new.requirements ['one', 'two', 'three'] Now create other index and add it to the NewIndex. >>> class OtherIndex(Index): ... def compute(self, four): ... pass >>> other = OtherIndex() >>> other.requirements ['four'] >>> new.add_subindex(other) >>> new.requirements ['one', 'two', 'three', 'four'] ***** Index which throws an Exception during computation will get removed from the list of subindices. >>> class BadIndex(Index): ... max_value = 10 ... def compute(self): ... raise Exception("No reason.") >>> bad_index = BadIndex() >>> index = Index(bad_index) >>> bad_index in index.subindices True >>> index.compute_with(Glutton()) 0 >>> bad_index in index.subindices False >>> index.max_value 0 """
3.34375
3
nlplingo/nn/extraction_model.py
BBN-E/nlplingo
3
12784743
from __future__ import absolute_import from __future__ import division from __future__ import with_statement import abc import json import logging import numpy as np import os import keras from keras.optimizers import Adadelta, SGD, RMSprop, Adam from nlplingo.nn.constants import supported_pytorch_models from nlplingo.nn.keras_models.common import keras_custom_objects import time from datetime import datetime from shutil import copyfile import random import math from nlplingo.nn.framework.sentence_re import SentenceRETrain logger = logging.getLogger(__name__) class ExtractionModel(abc.ABC): verbosity = 0 def __init__(self, params, extractor_params, event_domain, embeddings, hyper_params, features): """ :type event_domain: nlplingo.tasks.event_domain.EventDomain :type embeddings: dict[str : nlplingo.embeddings.word_embeddings.WordEmbedding] :type model_name: str :type features: object containing a 'feature_strings' attribute """ self.hyper_params = hyper_params self.params = params self.extractor_params = extractor_params self.event_domain = event_domain self.num_event_types = len(event_domain.event_types) self.num_role_types = len(event_domain.event_roles) self.num_ne_types = len(event_domain.entity_types) self.num_ne_bio_types = None self.num_entity_relation_types = len(event_domain.entity_relation_types) self.num_eer_types = len(event_domain.eer_types) self.word_vec_length = 1 # because we use word vector index self.embeddings_vector_size = None if 'embeddings' in extractor_params: self.embeddings_vector_size = extractor_params['embeddings']['vector_size'] self.word_embeddings = None if embeddings is not None and 'word_embeddings' in embeddings: self.word_embeddings = embeddings['word_embeddings'].word_vec """:type: numpy.ndarray""" self.model_type = extractor_params['model_type'] self.optimizer = self._configure_optimizer(extractor_params) self.model_file = extractor_params['model_file'] self.data_keys = [] self.num_output = None self.model_dir = None self.model = None self.id2label = dict([(v, k) for k, v in self.event_domain.event_roles.items()]) self.trained_model = None self.features = features if 'engine' in extractor_params and (extractor_params['engine'] == 'pytorch'): import torch import random torch.manual_seed(extractor_params['seed']) np.random.seed(extractor_params['seed']) random.seed(1234) self.extractor_params['cuda'] = torch.cuda.is_available() if extractor_params.get('cpu', False): self.extractor_params['cuda'] = False elif extractor_params.get('cuda', False): torch.cuda.manual_seed(extractor_params['seed']) self.layers = None def _get_framework_class(self): if self.model_type in supported_pytorch_models: return SentenceRETrain else: raise Exception('model type ' + self.model_type + ' is not supported') def fit_txt(self, train_path, dev_path, test_path): # uses framework (with distinct initialization args) framework_class = self._get_framework_class() framework = framework_class(self.model, train_path, dev_path, test_path, self.extractor_params, self.hyper_params, self.features, self.event_domain) framework.train_model() def fit_model(self, train_data_list, train_label, test_data_list, test_label): # uses framework if self.extractor_params.get('engine') == 'pytorch': framework_class = self._get_framework_class() framework = framework_class(self.model, train_data_list, train_label, test_data_list, test_label, self.extractor_params, self.hyper_params, self.features, self.event_domain) framework.train_model() elif 'engine' not in self.extractor_params or (('engine' in self.extractor_params) and (self.extractor_params['engine'] == 'keras')): raise IOError( "Extractor engine in {'keras', None} but KerasExtractionModel " "should have implemented its own fit method overriding " "ExtractionModel.fit_model. This error should no longer exist " "once KerasExtractionModel is part of framework_class system.") else: raise Exception('Only Keras or PyTorch engines are supported.') def _configure_optimizer(self, params): optimizer_params = params.get('optimizer', dict()) tunable_params = {} if 'engine' not in self.extractor_params or (('engine' in self.extractor_params) and (self.extractor_params['engine'] == 'keras')): if optimizer_params.get('name') == 'SGD': tunable_params = { 'name': 'SGD', 'lr': optimizer_params.get('lr', 0.01), 'momentum': optimizer_params.get('momentum', 0.0), 'decay': optimizer_params.get('decay', 0.0), 'nesterov': optimizer_params.get('nesterov', False) } optimizer = SGD( lr=tunable_params['lr'], momentum=tunable_params['momentum'], decay=tunable_params['decay'], nesterov=tunable_params['nesterov'] ) elif optimizer_params.get('name') == 'RMSprop': tunable_params = { 'name': 'RMSprop', 'lr': optimizer_params.get('lr', 0.001), 'rho': optimizer_params.get('rho', 0.9), 'epsilon': optimizer_params.get('epsilon', None), 'decay': optimizer_params.get('decay', 0.0) } optimizer = RMSprop( lr=tunable_params['lr'], rho=tunable_params['rho'], epsilon=tunable_params['epsilon'], decay=tunable_params['decay'] ) elif optimizer_params.get('name') == 'Adam': tunable_params = { 'name': 'Adam', 'lr': optimizer_params.get('lr', 0.001) } optimizer = Adam( lr=tunable_params['lr'] ) else: tunable_params = { 'name': 'Adadelta', 'lr': optimizer_params.get('lr', 0.1), 'rho': optimizer_params.get('rho', 0.95), 'epsilon': optimizer_params.get('epsilon', 1e-6), 'decay': optimizer_params.get('decay', 0.0) } # Default Adadelta optimizer = Adadelta( lr=tunable_params['lr'], rho=tunable_params['rho'], epsilon=tunable_params['epsilon'] ) print('=== Optimization parameters ===') print(json.dumps(tunable_params, sort_keys=True, indent=4)) print('=== Optimization parameters ===') return optimizer elif self.extractor_params['engine'] == 'pytorch': # TODO: make optimizer more configurable optimizer_params['name'] = optimizer_params.get('name', 'sgd') optimizer_params['lr'] = optimizer_params.get('lr', 0.3) optimizer_params['lr_decay'] = optimizer_params.get('lr_decay', 0.9) optimizer_params['decay_epoch'] = optimizer_params.get('decay_epoch', 5) return optimizer_params elif self.extractor_params['engine'] == 'transformers': pass else: raise Exception('Only Keras or PyTorch engines are supported.') def create_model(self): pass def __getstate__(self): u"""Defines what is to be pickled. Keras models cannot be pickled. Should call save_keras_model() and load_keras_model() separately. The sequence is : obj.save_keras_model('kerasFilename') pickle.dump(obj, fileHandle) ... obj = pickle.load(fileHandle) obj.load_keras_model()""" # Create state without self.keras_model state = dict(self.__dict__) #state.pop(u'keras_model') # probably not needed anymore, now that we've made keras_model global return state def __setstate__(self, state): # Reload state for unpickling self.__dict__ = state def load_keras_model(self, filename=None): self.model = keras.models.load_model(filename, keras_custom_objects) def save_keras_model(self, filename): self.model.save(filename) print(self.model.summary()) def predict(self, test_data_list): if 'engine' not in self.extractor_params or (('engine' in self.extractor_params) and (self.extractor_params['engine'] == 'keras')): return self.model.predict(test_data_list) elif self.extractor_params['engine'] == 'pytorch': from data.loader import DataLoader as BatchDataLoader print("Evaluating on test set...") predictions = [] test_batch = BatchDataLoader(test_data_list, self.features.feature_strings, None, self.hyper_params.dict['batch_size'], self.hyper_params.dict, self.event_domain.event_roles, evaluation=True, test_mode=True) for i, batch in enumerate(test_batch): preds, _ = self.trained_model.predict(batch, compute_loss=False, compute_logits=True) predictions.append(preds) return np.vstack(predictions) else: raise Exception('Only Keras or PyTorch engines are supported.')
2.140625
2
netdev/vendors/cisco/cisco_asa.py
maliciousgroup/netdev
199
12784744
<reponame>maliciousgroup/netdev """Subclass specific to Cisco ASA""" import re from netdev.logger import logger from netdev.vendors.ios_like import IOSLikeDevice class CiscoASA(IOSLikeDevice): """Class for working with Cisco ASA""" def __init__(self, *args, **kwargs): """ Initialize class for asynchronous working with network devices :param str host: device hostname or ip address for connection :param str username: username for logging to device :param str password: <PASSWORD> for logging to device :param str secret: secret password for privilege mode :param int port: ssh port for connection. Default is 22 :param str device_type: network device type :param known_hosts: file with known hosts. Default is None (no policy). With () it will use default file :param str local_addr: local address for binding source of tcp connection :param client_keys: path for client keys. Default in None. With () it will use default file in OS :param str passphrase: password for encrypted client keys :param float timeout: timeout in second for getting information from channel :param loop: asyncio loop object """ super().__init__(*args, **kwargs) self._multiple_mode = False _disable_paging_command = "terminal pager 0" @property def multiple_mode(self): """ Returning Bool True if ASA in multiple mode""" return self._multiple_mode async def connect(self): """ Async Connection method Using 5 functions: * _establish_connection() for connecting to device * _set_base_prompt() for finding and setting device prompt * _enable() for getting privilege exec mode * _disable_paging() for non interact output in commands * _check_multiple_mode() for checking multiple mode in ASA """ logger.info("Host {}: trying to connect to the device".format(self._host)) await self._establish_connection() await self._set_base_prompt() await self.enable_mode() await self._disable_paging() await self._check_multiple_mode() logger.info("Host {}: Has connected to the device".format(self._host)) async def _set_base_prompt(self): """ Setting two important vars for ASA base_prompt - textual prompt in CLI (usually hostname) base_pattern - regexp for finding the end of command. IT's platform specific parameter For ASA devices base_pattern is "prompt([\/\w]+)?(\(.*?\))?[#|>] """ logger.info("Host {}: Setting base prompt".format(self._host)) prompt = await self._find_prompt() # Cut off prompt from "prompt/context/other" if it exists # If not we get all prompt prompt = prompt[:-1].split("/") prompt = prompt[0] self._base_prompt = prompt delimiters = map(re.escape, type(self)._delimiter_list) delimiters = r"|".join(delimiters) base_prompt = re.escape(self._base_prompt[:12]) pattern = type(self)._pattern self._base_pattern = pattern.format(prompt=base_prompt, delimiters=delimiters) logger.debug("Host {}: Base Prompt: {}".format(self._host, self._base_prompt)) logger.debug("Host {}: Base Pattern: {}".format(self._host, self._base_pattern)) return self._base_prompt async def _check_multiple_mode(self): """Check mode multiple. If mode is multiple we adding info about contexts""" logger.info("Host {}:Checking multiple mode".format(self._host)) out = await self.send_command("show mode") if "multiple" in out: self._multiple_mode = True logger.debug( "Host {}: Multiple mode: {}".format(self._host, self._multiple_mode) )
2.4375
2
jumpscale/packages/threebot_deployer/models/user_solutions.py
zaibon/js-sdk
0
12784745
from jumpscale.core.base import Base, fields from enum import Enum import hashlib class ThreebotState(Enum): RUNNING = "RUNNING" # the workloads are deployed and running DELETED = "DELETED" # workloads and backups deleted STOPPED = "STOPPED" # expired or manually stoped (delete workloads only) class UserThreebot(Base): # instance name is the f"threebot_{solution uuid}" solution_uuid = fields.String() identity_tid = fields.Integer() name = fields.String() owner_tname = fields.String() # owner's tname in Threefold Connect after cleaning farm_name = fields.String() state = fields.Enum(ThreebotState) continent = fields.String() explorer_url = fields.String() threebot_container_wid = fields.Integer() trc_container_wid = fields.Integer() reverse_proxy_wid = fields.Integer() subdomain_wid = fields.Integer() secret_hash = fields.String() def verify_secret(self, secret): if not self.secret_hash: return True return self.secret_hash == hashlib.md5(secret.encode()).hexdigest() def hash_secret(self, secret): self.secret_hash = hashlib.md5(secret.encode()).hexdigest()
2.296875
2
clean_architecture_helper_gql_extension/connections.py
HerlanAssis/django-clean-architecture-helper-gql-extension
0
12784746
import graphene from graphene import Int class TotalItemsConnection(graphene.relay.Connection): class Meta: abstract = True total = Int() def resolve_total(self, info, **kwargs): return len(self.iterable) class BaseConnectionField(graphene.relay.ConnectionField): def __init__(self, type, *args, **kwargs): filters = type._meta.node._meta.filter_class if filters is not None: for key, value in vars(filters()).items(): kwargs.setdefault(key, value) super(BaseConnectionField, self).__init__(type, *args, **kwargs)
2.296875
2
three/lights.py
jzitelli/three.py
12
12784747
<reponame>jzitelli/three.py from . import * class Light(Object3D): def __init__(self, color=0xffffff, intensity=None, distance=None, shadowCameraNear=None, shadowCameraFar=None, shadowCameraFov=None, **kwargs): Object3D.__init__(self, **kwargs) self.color = color self.intensity = intensity self.distance = distance self.shadowCameraNear = shadowCameraNear self.shadowCameraFar = shadowCameraFar self.shadowCameraFov = shadowCameraFov class AmbientLight(Light): pass class PointLight(Light): pass class DirectionalLight(Light): # TODO: specifying direction def __init__(self, target=None, **kwargs): Light.__init__(self, **kwargs) self.target = target class SpotLight(Light): # TODO: set target (ObjectLoader does not support) def __init__(self, angle=None, exponent=None, decay=None, target=None, **kwargs): Light.__init__(self, **kwargs) self.angle = angle self.exponent = exponent self.decay = decay self.target = target
2.75
3
options/base_options.py
csqiangwen/Deep-Unsupervised-Pixelization
42
12784748
<gh_stars>10-100 import argparse import os import torch class BaseOptions(): def __init__(self): self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) self.initialized = False def initialize(self): self.parser.add_argument('--dataroot', required=True, help='path to images (should have subfolders trainA, trainB, etc)') self.parser.add_argument('--batchSize', type=int, default=1, help='input batch size') self.parser.add_argument('--loadSize', type=int, default=256, help='input resolution') self.parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer') self.parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer') self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints_pixelization', help='models are saved here') self.parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator') self.parser.add_argument('--resize_or_crop', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]') self.initialized = True def parse(self): if not self.initialized: self.initialize() self.opt = self.parser.parse_args() self.opt.isTrain = self.isTrain # train or test str_ids = self.opt.gpu_ids.split(',') self.opt.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: self.opt.gpu_ids.append(id) # set gpu ids if len(self.opt.gpu_ids) > 0: torch.cuda.set_device(self.opt.gpu_ids[0]) args = vars(self.opt) print('------------ Options -------------') for k, v in sorted(args.items()): print('%s: %s' % (str(k), str(v))) print('-------------- End ----------------') # save to the disk self.mkdirs(self.opt.checkpoints_dir) file_name = os.path.join(self.opt.checkpoints_dir, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('------------ Options -------------\n') for k, v in sorted(args.items()): opt_file.write('%s: %s\n' % (str(k), str(v))) opt_file.write('-------------- End ----------------\n') return self.opt def mkdir(self, path): if not os.path.exists(path): os.makedirs(path) def mkdirs(self, paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: self.mkdir(path) else: self.mkdir(paths)
2.21875
2
FileSize/Non_newline_file_size.py
JennyChi/Script-helper
0
12784749
import sys f = file('100MB.log', 'r') content = f.read() totalbytes = 0 for line in content.split("\n"): totalbytes = len(line.rstrip("\n")) + totalbytes ''' method 2: using count the character != \n for counter in content: if counter != "\n": totalbytes = totalbytes + 1 ''' print "Non-newline bytes:", totalbytes
2.8125
3
server/swagger_server/models/preferences.py
fabric-testbed/UserInformationService
0
12784750
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from swagger_server.models.base_model_ import Model from swagger_server import util class Preferences(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, settings: object=None, permissions: object=None, interests: object=None): # noqa: E501 """Preferences - a model defined in Swagger :param settings: The settings of this Preferences. # noqa: E501 :type settings: object :param permissions: The permissions of this Preferences. # noqa: E501 :type permissions: object :param interests: The interests of this Preferences. # noqa: E501 :type interests: object """ self.swagger_types = { 'settings': object, 'permissions': object, 'interests': object } self.attribute_map = { 'settings': 'settings', 'permissions': 'permissions', 'interests': 'interests' } self._settings = settings self._permissions = permissions self._interests = interests @classmethod def from_dict(cls, dikt) -> 'Preferences': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The Preferences of this Preferences. # noqa: E501 :rtype: Preferences """ return util.deserialize_model(dikt, cls) @property def settings(self) -> object: """Gets the settings of this Preferences. :return: The settings of this Preferences. :rtype: object """ return self._settings @settings.setter def settings(self, settings: object): """Sets the settings of this Preferences. :param settings: The settings of this Preferences. :type settings: object """ self._settings = settings @property def permissions(self) -> object: """Gets the permissions of this Preferences. :return: The permissions of this Preferences. :rtype: object """ return self._permissions @permissions.setter def permissions(self, permissions: object): """Sets the permissions of this Preferences. :param permissions: The permissions of this Preferences. :type permissions: object """ self._permissions = permissions @property def interests(self) -> object: """Gets the interests of this Preferences. :return: The interests of this Preferences. :rtype: object """ return self._interests @interests.setter def interests(self, interests: object): """Sets the interests of this Preferences. :param interests: The interests of this Preferences. :type interests: object """ self._interests = interests
2.203125
2