max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
setup.py
UMCollab/ODM
2
12784451
<filename>setup.py import os from setuptools import setup from subprocess import check_output version = check_output(['bash', os.path.join(os.path.dirname(__file__), 'version.sh')]).decode('utf-8') setup( version=version, )
1.609375
2
pyrate/algorithms/muondet/AverageBinEnergy.py
fscutti/pyrate
0
12784452
<filename>pyrate/algorithms/muondet/AverageBinEnergy.py """ Compute average energy in input bins. """ import sys from copy import copy from pyrate.core.Algorithm import Algorithm class AverageBinEnergy(Algorithm): __slots__ = () def __init__(self, name, store, logger): super().__init__(name, store, logger) def execute(self, config): e = self.store.get("EVENT:nT:edepScint") self.store.put(config["name"], e) # EOF
2.515625
3
src/inference_dataset.py
cmstroe/LM-BFF
0
12784453
<filename>src/inference_dataset.py import csv import pandas as pd from ast import literal_eval import random initial_df = pd.read_csv("data/original/company_sentences_euro.csv") inference_df = pd.DataFrame(columns = ['sentence']) uplimit = 11000 local_uplimit = 100 for index, row in initial_df.iterrows(): if len(inference_df) < uplimit: rand = random.randint(0, 1) j = 0 if rand == 1: for sent in literal_eval(row.sentences): if j < local_uplimit and j < len(literal_eval(row.sentences)): inference_df = inference_df.append({'sentence' : sent}, ignore_index = True) j+=1 else: break else: break inference_df.to_csv("inference_data.csv", index = False)
2.921875
3
seekr2/modules/common_analyze.py
astokely/seekr2
0
12784454
<reponame>astokely/seekr2<filename>seekr2/modules/common_analyze.py """ common_analyze.py Classes, functions and other objects used for analyzing SEEKR2 simulation outputs common to MMVT and Elber calculation types. """ import os import glob import xml.etree.ElementTree as ET import subprocess import random from collections import defaultdict import numpy as np from scipy import linalg as la from scipy.stats import gamma import seekr2.modules.common_base as base # The power to raise a matrix to when computing stationary probabilities MATRIX_EXPONENTIAL = 9999999 GAS_CONSTANT = 0.0019872 # in kcal/mol*K DEFAULT_IMAGE_DIR = "images_and_plots/" class MissingStatisticsError(Exception): """Catch a very specific type of error in analysis stage.""" pass def solve_rate_matrix(Q_hat, max_iter=100, ETOL=1e-10): """ Use an infinite series combined with a divide-and-conquer method to solve the Q-matrix since the numpy/scipy solver tends to have numerical instabilities. """ K_hat = Q_to_K(Q_hat) sum_of_series = np.identity(K_hat.shape[0], dtype=np.longdouble) for i in range(max_iter): n = 2**i K_pow_n = np.linalg.matrix_power(K_hat, n) section = K_pow_n @ sum_of_series sum_of_series += section error = np.linalg.norm(section) if error < ETOL: break T = np.zeros(Q_hat.shape, dtype=np.longdouble) t_vector = np.zeros((Q_hat.shape[0], 1), dtype=np.longdouble) for i in range(Q_hat.shape[0]): T[i,i] = -1.0 / Q_hat[i,i] t_vector[i,0] = T[i,i] one_vector = np.ones((Q_hat.shape[0]), dtype=np.longdouble) times = sum_of_series @ T @ one_vector return times def Q_to_K(Q): """Given a rate matrix Q, compute probability transition matrix K.""" K = np.zeros(Q.shape, dtype=np.longdouble) for i in range(Q.shape[0]): for j in range(Q.shape[0]): if i == j: K[i,j] = 0.0 else: K[i,j] = -Q[i,j] / Q[i,i] return K #def make_elber_K_matrix(oldK): # """Make a K matrix that is compatible with Elber milestoning.""" # old_shape = oldK.shape # print("oldK:", oldK) # exit() # K_hat def quadriture(err1, err2): """Add two errors in quadriture.""" return float(np.sqrt(err1**2 + err2**2)) def minor1d(array1d, i): """Accept 1D array and return a new array with element i removed.""" range1 = list(range(i)) + list(range(i+1, array1d.shape[0])) return array1d[np.array(range1)] def minor2d(array2d, i, j): """ Accept matrix array2d and return a new matrix with row i and column j removed. """ range1 = list(range(i)) + list(range(i+1, array2d.shape[0])) range2 = list(range(j)) + list(range(j+1,array2d.shape[1])) return array2d[np.array(range1)[:,np.newaxis], np.array(range2)] def pretty_string_value_error(value, error, error_digits=2, use_unicode=True): """ Returns a value/error combination of numbers in a scientifically 'pretty' format. Scientific quantities often come as a *value* (the actual quantity) and the *error* (the uncertainty in the value). Given two floats, value and error, return the two in a 'pretty' formatted string: where the value and error are truncated at the correct precision. Parameters ---------- value : float The quantity in question error : float The uncertainty of the quantity error_digits : int, default 2 How many significant figures the error has. Scientific convention holds that errors have 1 or (at most) 2 significant figures. The larger number of digits is chosen here by default. Returns ------- new_string : str A new list of strings sorted numerically Examples -------- >>> pretty_string_value_error(1.23456789e8, 4.5678e5, error_digits=2) "1.2346 +/- 0.0046 * 10^+08" >>> pretty_string_value_error(5.6e-2, 2.0e-3, error_digits=1) "5.6 +/- 0.2 * 10^-02" """ if value is None: return "None" if error is None or not np.isfinite(error): if use_unicode: new_string = "{:.6E} \u00B1 UNKNOWN ERROR MARGIN".format(value) else: new_string = "{:.6E} +/- UNKNOWN ERROR MARGIN".format(value) else: if not np.isfinite(value): return str(value) assert "e" in "{:e}".format(value), "Cannot convert into scientific "\ "notation: {1}".format(value) value_mantissa_str, value_exponent_str = \ "{:e}".format(value).strip().split('e') value_mantissa = float(value_mantissa_str) value_exponent = int(value_exponent_str) error_mantissa_str, error_exponent_str = \ "{:e}".format(error).strip().split('e') error_mantissa = float(error_mantissa_str) error_exponent = int(error_exponent_str) padding = value_exponent - error_exponent + error_digits - 1 if padding < 1: padding = 1 exp_diff = error_exponent - value_exponent string_for_formatting = "{:.%df}" % padding new_value_mantissa = string_for_formatting.format(value_mantissa) new_error_mantissa = string_for_formatting.format( error_mantissa*10**exp_diff) if use_unicode: new_string = "%s \u00B1 %s * 10^%s" % ( new_value_mantissa, new_error_mantissa, value_exponent_str) else: new_string = "%s +/- %s * 10^%s" % ( new_value_mantissa, new_error_mantissa, value_exponent_str) return new_string def browndye_run_compute_rate_constant(compute_rate_constant_program, results_filename_list, sample_error_from_normal=False): """ run the BrownDye program compute_rate_constant to find k_ons and the value k(b). Parameters: ----------- compute_rate_constant_program : str The exact command to use to run the Browndye compute_rate_constant program. results_filename_list : list A list of string paths to the results XML file, which is an output from running the BrownDye program. sample_error_from_normal : bool, default False Add a fluctuation to the k-on value(s) sampled from a normal distribution with a standard deviation equal to the k-on's error. This is used by the error estimators to incorporate the error in the k_b value obtained from BrownDye. Results: -------- k_ons : defaultdict dictionary whose keys are various milestoning states and whose values are the k-ons to those states. k_on_errors : defaultdict dictionary whose keys are various milestoning states and whose values are the errors in the k-ons to those states. reaction_probabilities : defaultdict dictionary whose keys are various milestoning states and whose values are the probabilities of reaching those states from the b-surface. reaction_probability_errors : defaultdict dictionary whose keys are various milestoning states and whose values are the errors in the probabilities of reaching those states from the b-surface. transition_counts : defaultdict dictionary whose keys are the various milestone states and also the "escaped" and "stuck" states. The values are the counts of crossings of these various states. """ k_ons = defaultdict(float) k_on_errors = defaultdict(float) reaction_probabilities = defaultdict(float) reaction_probability_errors = defaultdict(float) transition_counts = defaultdict(int) k_b = None total_n_trajectories = 0 for results_filename in results_filename_list: cmd = "%s < %s" % (compute_rate_constant_program, results_filename) output_string = subprocess.check_output(cmd, shell=True) root = ET.fromstring(output_string) # first, obtain counts directly from the results file results_root = ET.parse(results_filename) reactions = results_root.find("reactions") n_trajectories = int(reactions.find("n_trajectories").text.strip()) total_n_trajectories += n_trajectories stuck = int(reactions.find("stuck").text.strip()) escaped = int(reactions.find("escaped").text.strip()) for completed in reactions.iter("completed"): name = int(completed.find("name").text.strip()) n = int(completed.find("n").text.strip()) transition_counts[name] += n transition_counts["escaped"] += escaped transition_counts["stuck"] += stuck # now obtain probabilities and rates for rate in root.iter("rate"): name = int(rate.find("name").text.strip()) rate_constant = rate.find("rate_constant") k_on_tag = rate_constant.find("mean") k_on_tag_high = rate_constant.find("high") assert k_on_tag is not None assert k_on_tag_high is not None k_on = float(k_on_tag.text) k_on_error = 0.5*(float(k_on_tag_high.text) - k_on) reaction_probability = rate.find("reaction_probability") beta_tag = reaction_probability.find("mean") beta_tag_high = reaction_probability.find("high") assert beta_tag is not None assert beta_tag_high is not None beta = float(beta_tag.text) beta_error = 0.5*(float(beta_tag_high.text) - beta) if beta != 0.0: k_b = k_on / beta if sample_error_from_normal: k_on = np.random.normal(loc=k_on, scale=k_on_error) assert k_b is not None, "No BD reactions from the b-surface " \ "successfully reached any of the milestone surfaces." for key in transition_counts: reaction_probabilities[key] \ = transition_counts[key] / total_n_trajectories k_ons[key] = k_b * reaction_probabilities[key] if transition_counts[key] > 1: reaction_probability_errors[key] = reaction_probabilities[key] \ / np.sqrt(transition_counts[key]-1) k_on_errors[key] = k_b * reaction_probability_errors[key] else: reaction_probability_errors[key] = 1e99 k_on_errors[key] = 1e99 if sample_error_from_normal: k_ons[key] = np.random.normal(loc=k_ons[key], scale=k_on_errors[key]) assert k_ons.keys() == transition_counts.keys() return k_ons, k_on_errors, reaction_probabilities, \ reaction_probability_errors, transition_counts def browndye_parse_bd_milestone_results(results_filename_list, sample_error_from_normal=False): # common """ Read and extract transition probabilities for a BD milestone. Parameters: ----------- results_filename_list : list A list of paths to the results XML files for a BD milestone, which is an output from running the BrownDye program. sample_error_from_normal : bool, default False Add a fluctuation to the probabilities sampled from a normal distribution with a standard deviation equal to 1/sqrt(n-1). This is used by the error estimators to incorporate the error in the probabilities. Results: -------- transition_probabilities : defaultdict The probabilities of transitions. transition_counts : defaultdict The counts of transitions to all visited states. """ transition_counts = defaultdict(int) transition_probabilities = defaultdict(float) completed_prob = 0.0 completed_count = 0 for results_filename in results_filename_list: assert os.path.exists(results_filename), "You must perform successful "\ "extractions and runs of all BD milestones if k-on settings are "\ "provided in the model XML. Missing file: " \ + results_filename root = ET.parse(results_filename) reactions = root.find("reactions") n_trajectories = int(reactions.find("n_trajectories").text.strip()) stuck = int(reactions.find("stuck").text.strip()) escaped = int(reactions.find("escaped").text.strip()) for completed in reactions.iter("completed"): name = int(completed.find("name").text.strip()) n = int(completed.find("n").text.strip()) transition_counts[name] += n completed_count += n transition_counts["escaped"] += escaped transition_counts["stuck"] += stuck for key in transition_counts: n = transition_counts[key] avg = n / (completed_count + escaped) if sample_error_from_normal: assert n > 1, "Too few transitions to compute error." std_dev = avg / np.sqrt(n-1) transition_probabilities[key] = np.random.normal( loc=avg, scale=std_dev) else: transition_probabilities[key] = avg completed_prob += transition_probabilities[key] transition_probabilities["escaped"] = 1.0 - completed_prob return transition_probabilities, transition_counts def combine_fhpd_results(bd_milestone, fhpd_directories, combined_results_filename): """ Read all results files in the first-hitting-point-distribution (FHPD) directories and combine them into a single results file to be placed in the bd_milestone directory. """ reaction_dict = defaultdict(float) number_escaped = 0 number_stuck = 0 number_total = 0 number_total_check = 0 results_filename_list = [] if len(fhpd_directories) == 0: return for fhpd_directory in fhpd_directories: results_glob = os.path.join(fhpd_directory, "results*.xml") results_filename_list += glob.glob(results_glob) if len(results_filename_list) == 0: print("No BD output files found.") return for results_filename in results_filename_list: tree = ET.parse(results_filename) root = tree.getroot() reactions_XML = root.find("reactions") number_total += int(reactions_XML.find("n_trajectories").text.strip()) number_stuck += int(reactions_XML.find("stuck").text.strip()) number_escaped += int(reactions_XML.find("escaped").text.strip()) for completed_XML in reactions_XML.iter("completed"): name = completed_XML.find("name").text.strip() n = int(completed_XML.find("n").text.strip()) reaction_dict[name] += n number_total_check += n assert number_total == number_total_check + number_stuck + number_escaped for completed_XML in reactions_XML.iter("completed"): reactions_XML.remove(completed_XML) reactions_XML.find("n_trajectories").text = str(number_total) reactions_XML.find("stuck").text = str(number_stuck) reactions_XML.find("escaped").text = str(number_escaped) for key in reaction_dict: completed_XML = ET.SubElement(reactions_XML, "completed") completed_XML.text = "\n " completed_XML.tail = "\n " name_XML = ET.SubElement(completed_XML, "name") name_XML.text = key name_XML.tail = "\n " n_XML = ET.SubElement(completed_XML, "n") n_XML.text = str(int(reaction_dict[key])) n_XML.tail = "\n " xmlstr = ET.tostring(root).decode("utf-8") with open(combined_results_filename, 'w') as f: f.write(xmlstr) return class Data_sample(): """ Represent a set of data needed to compute kinetic or thermodynamic quantities of interest using the SEEKR method. The Data_sample may be constructed directly from average times and rates, or may be generated from a random distribution. Attributes: ----------- model : Model() The model contains all the settings, parameters, directories, and file names used to perform a SEEKR2 simulation. N_ij : numpy.array() 2-dimensional array of transition counts from milestone i to milestone j. R_i : numpy.array() 1-dimensional array of incubation times for each milestone i. Q : numpy.array() The rate matrix constructed from transition counts and times. No sink state is defined - probability is conserved for thermodynamics calculations. Q_hat : numpy.array() Same as attribute Q, but one or more sink states are defined - probability is not conserved, allowing kinetics calculations. K : numpy.array() The probability transition matrix made only from transition counts - it is equivalent to a Markov transition matrix. Probability is conserved for thermodynamics calculations. K_hat : numpy.array() Same as attribute Q, except one or more sink states are defined and probability is not conserved, allowing kinetics calculations. p_i : numpy.array() Stationary probability distribution along the milestones, which can be used to compute other thermodynamic quantities, such as the attribute free_energy_profile. free_energy_profile : numpy.array() The stationary free energy profile along the milestones. MFPTs : dict A dictionary whose keys are 2-tuples of milestone indices (source milestone, destination milestone) and whose values are mean first passage times (MFPTs) between these states. States can be added to this dictionary by being either end states or the bulk state. k_off : float The off-rate constant from a stationary distribution across all the milestones to the bulk state. k_on : dict A dictionary whose keys are milestone indices (which are end states) and whose values represent the 2nd-order on-rate constant. bd_transition_counts : dict Keep track of transition counts for each BD state. This is a dictionary of dictionaries, with keys of "b_surface" or integers representing BD milestones. The values are dictionaries whose keys are states such as milestone indices or the string "escaped", "stuck", and whose values are counts of transitions. This attribute is primarily used for convergence estimates. """ def __init__(self, model): self.model = model self.N_ij = None self.R_i = None self.Q = None self.Q_hat = None self.K = None self.K_hat = None self.p_i = None #self.p_i_hat = None self.free_energy_profile = None self.MFPTs = None self.k_off = None self.k_ons = {} self.bd_transition_counts = {} def compute_rate_matrix(self): """ Compute Q and K from N_ij and R_i. """ self.Q = np.zeros((self.model.num_milestones, self.model.num_milestones), dtype=np.longdouble) for i in range(self.model.num_milestones): for j in range(self.model.num_milestones): if self.R_i[i] == 0.0: self.Q[i,j] = 0.0 else: self.Q[i,j] = self.N_ij[i,j] / self.R_i[i] assert self.Q[i,j] >= 0.0, "self.Q[i,j]: {}".format(self.Q[i,j]) for i in range(self.model.num_milestones): row_sum = np.sum(self.Q[i]) if row_sum == 0: new_row_sum = 0.0 for j in range(self.model.num_milestones): self.Q[i,j] = self.Q[j,i] new_row_sum += self.Q[j,i] self.Q[i,i] = -new_row_sum else: self.Q[i,i] = -row_sum self.K = Q_to_K(self.Q) return def calculate_thermodynamics(self): """ Use this data sample's statistics to construct the thermodynamic quantities. """ eigvals, eigvecs = la.eig(self.K.T) closest_eigval = -1e9 closest_eigvec = None for i, eigval, in enumerate(eigvals): if (eigval - 1.0)**2 < (closest_eigval - 1.0)**2: closest_eigval = eigval closest_eigvec = eigvecs[:,i] K = abs(self.K) q_i = np.real(closest_eigvec / np.sum(closest_eigvec)) q_i = q_i @ np.linalg.matrix_power(K, MATRIX_EXPONENTIAL) q_i = q_i / np.sum(q_i) incubation_times = np.zeros(self.model.num_milestones) p_i = np.zeros(self.model.num_milestones) for i in range(self.model.num_milestones): N_i = 0 for j in range(self.model.num_milestones): N_i += self.N_ij[i,j] if N_i == 0: incubation_times[i] = -1.0/self.Q[i,i] else: incubation_times[i] = self.R_i[i] / N_i for i, q_i_val in enumerate(q_i): p_i[i] = abs(q_i_val * incubation_times[i]) sum_p_i = np.sum(p_i) for i in range(self.model.num_milestones): p_i[i] /= sum_p_i self.q_i = q_i self.p_i = p_i self.free_energy_profile = np.zeros(self.p_i.shape) highest_p_i = max(self.p_i) for i, p_i_val in enumerate(self.p_i): free_energy = -GAS_CONSTANT*self.model.temperature*np.log( p_i_val / highest_p_i) self.free_energy_profile[i] = free_energy return def calculate_kinetics(self, pre_equilibrium_approx=False, bd_sample_from_normal=False): """ Once the rate matrix Q is computed, determine the timescales and probabilities of transfers between different states. Fill out all kinetics quantities. Parameters: ----------- pre_equilibrium_approx : bool, default False Whether to use the pre-equilibrium approximation for computing kinetics. bd_sample_from_normal : bool, default False If set to True, then k-on quantities will have a random fluctuation introduced in a magnitude proportional to k-on errors. This is used only for error estimations. """ end_milestones = [] bulk_milestones = [] MFPTs = {} k_off = 0.0 k_ons = {} for alpha, anchor in enumerate(self.model.anchors): if anchor.endstate: for milestone_id in anchor.get_ids(): if self.model.get_type() == "elber": if anchor.alias_from_id(milestone_id) == 3: # TODO: hacky continue end_milestones.append(milestone_id) if anchor.bulkstate: for milestone_id in anchor.get_ids(): bulk_milestones.append(milestone_id) # first, make the bulk state the sink state to compute k_offs Q_hat = self.Q[:,:] p_i_hat = self.p_i[:] #if self.model.k_on_info: # K_hat = self.K[:,:] n = len(self.Q) for bulk_milestone in sorted(bulk_milestones, reverse=True): Q_hat = minor2d(Q_hat, bulk_milestone, bulk_milestone) p_i_hat = minor1d(p_i_hat, bulk_milestone) Q_hat = Q_hat.astype(dtype=np.longdouble) if pre_equilibrium_approx: lowest_p_i = np.min(self.p_i) lowest_i = np.argmin(self.p_i) assert lowest_p_i >= 0.0, \ "Negative stationary probability detected." if lowest_i == n-1: k_off = lowest_p_i * Q_hat[lowest_i-1,lowest_i] else: k_off = lowest_p_i * Q_hat[lowest_i,lowest_i+1] bulk_times = np.ones(p_i_hat.shape) / k_off else: #negative_unity = np.zeros((len(Q_hat)), dtype=np.longdouble) #negative_unity[:] = -1.0 #bulk_times = la.solve(Q_hat, negative_unity) bulk_times = solve_rate_matrix(Q_hat) for end_milestone in end_milestones: if end_milestone in bulk_milestones: continue # must account for the removal of bulk state to matrix indices no_bulk_index = end_milestone for bulk_milestone in bulk_milestones: if end_milestone > bulk_milestone: no_bulk_index -= 1 mfpt = bulk_times[no_bulk_index] MFPTs[(end_milestone, "bulk")] = mfpt MFPT_to_bulk = 0 assert bulk_times.shape == p_i_hat.shape for i, bulk_time in enumerate(bulk_times): MFPT_to_bulk += bulk_time * p_i_hat[i] # convert to 1/s k_off = 1.0e12 / MFPT_to_bulk # Next, compute the MFPTs between different states for end_milestone_dest in end_milestones: if end_milestone_dest in bulk_milestones: continue Q_hat = minor2d(self.Q[:], end_milestone_dest, end_milestone_dest) #I = np.zeros((len(Q_hat)), dtype = float) #I[:] = 1.0 #end_state_times = la.solve(Q_hat, -I) end_state_times = solve_rate_matrix(Q_hat) for end_milestone_src in end_milestones: if end_milestone_dest == end_milestone_src: # don't get the MFPT from a milestone to itself continue if end_milestone_src in bulk_milestones: # a bulk milestone will never be a source continue mfpt = end_state_times[end_milestone_src] MFPTs[(end_milestone_src, end_milestone_dest)] = mfpt if self.model.k_on_info: #if self.model.get_type() == "elber": # K_hat = make_elber_K_matrix(self.K) # for end_milestone in end_milestones: # K_hat[end_milestone, :] = 0.0 # K_hat[end_milestone, end_milestone] = 1.0 #else: # K_hat = self.K[:,:] # for end_milestone in end_milestones: # K_hat[end_milestone, :] = 0.0 # K_hat[end_milestone, end_milestone] = 1.0 K_hat = self.K[:,:] for end_milestone in end_milestones: K_hat[end_milestone, :] = 0.0 K_hat[end_milestone, end_milestone] = 1.0 p_i_hat = self.p_i[:] n = K_hat.shape[0] source_vec = np.zeros((n,1)) output_file_glob = os.path.join( self.model.anchor_rootdir, self.model.k_on_info.b_surface_directory, self.model.k_on_info.bd_output_glob) output_file_list = glob.glob(output_file_glob) output_file_list = base.order_files_numerically(output_file_list) if len(output_file_list) > 0: if self.model.browndye_settings is not None: k_ons_src, k_on_errors_src, reaction_probabilities, \ reaction_probability_errors, transition_counts = \ browndye_run_compute_rate_constant(os.path.join( self.model.browndye_settings.browndye_bin_dir, "compute_rate_constant"), output_file_list, sample_error_from_normal=bd_sample_from_normal) self.bd_transition_counts["b_surface"] = transition_counts else: raise Exception("No valid BD program settings provided.") if len(bulk_milestones) > 0: bulk_milestone = bulk_milestones[0] for bd_milestone in self.model.k_on_info.bd_milestones: bd_results_file = os.path.join( self.model.anchor_rootdir, bd_milestone.directory, "results.xml") if not os.path.exists(bd_results_file): bd_directory_list_glob = os.path.join( self.model.anchor_rootdir, bd_milestone.directory, "first_hitting_point_distribution", "lig*/") bd_directory_list = glob.glob( bd_directory_list_glob) if len(bd_directory_list) == 0: continue combine_fhpd_results(bd_milestone, bd_directory_list, bd_results_file) source_index = bd_milestone.outer_milestone.index source_vec[source_index] = k_ons_src[source_index] results_filename_list = [bd_results_file] transition_probabilities, transition_counts = \ browndye_parse_bd_milestone_results( results_filename_list) self.bd_transition_counts[bd_milestone.index] \ = transition_counts #src_index = bd_milestone.outer_milestone.index K_hat[source_index, :] = 0.0 for key in transition_probabilities: value = transition_probabilities[key] if key in ["escaped", "stuck"]: pass else: K_hat[source_index, key] = value K_hat_inf = np.linalg.matrix_power(K_hat, MATRIX_EXPONENTIAL) end_k_ons = np.dot(K_hat_inf.T, source_vec) for end_milestone in end_milestones: k_ons[end_milestone] = end_k_ons[end_milestone] self.K_hat = K_hat self.k_ons = k_ons self.Q_hat = Q_hat #self.p_i_hat = p_i_hat # TODO: remove after successful CI test self.MFPTs = MFPTs self.k_off = k_off return def monte_carlo_milestoning_error(self, num=1000, skip=100, stride=1, verbose=False, pre_equilibrium_approx=False): """ Calculates an error estimate by sampling a distribution of rate matrices assumming a Poisson (gamma) distribution with parameters Nij and Ri using Markov chain Monte Carlo. Enforces detailed Balance-- using a modified version of Algorithm 4 from Noe 2008 for rate matrices.-- Distribution is: p(Q|N) = p(Q)p(N|Q)/p(N) = p(Q) PI(q_ij**N_ij * exp(-q_ij * Ri)) Parameters ---------- num : int, default 1000 number of rate matrix (Q) samples to be generated skip : int, default 100 number of inital rate matrix samples to skip for "burn in" stride : int, default 1 frequency at which rate matrix samples are recorded- larger frequency reduces correlation between samples verbose : bool, default False allow additional verbosity/printing pre_equilibrium_approx : bool, default False Whether to use the pre-equilibrium approximation for computing kinetics. """ N = self.N_ij R = self.R_i Q = self.Q[:] m = Q.shape[0] #get size of count matrix Q_mats = [] MFPTs_list = defaultdict(list) MFPTs_error = defaultdict(float) k_off_list = [] k_ons_list = defaultdict(list) k_ons_error = defaultdict(float) p_i_list = [] free_energy_profile_list = [] Qnew = Q[:,:] if verbose: print("collecting ", num, " MCMC samples from ", num*(stride) + skip, " total moves") for counter in range(num * (stride) + skip): #if verbose: print("MCMC stepnum: ", counter) Qnew = Q[:,:] for i in range(m): # rows for j in range(m): # columns if i == j: continue if Qnew[i,j] == 0.0: continue if Qnew[j,j] == 0.0: continue if N[i,j] == 0: continue if R[i] == 0: continue Q_gamma = 0 delta = Qnew[i,j] while ((delta) >= (Qnew[i,j])): Q_gamma = gamma.rvs(a=N[i,j], scale = 1/R[i],) delta = Qnew[i,j] - Q_gamma log_p_Q_old = N[i,j] * np.log(Qnew[i,j]) - Qnew[i,j] * R[i] log_p_Q_new = N[i,j] * np.log(Qnew[i,j] - delta) - \ (Qnew[i,j] - delta) * R[i] if verbose: print("log P(Q_new)", log_p_Q_new) if verbose: print("log P(Q_old)", log_p_Q_old) r2 = random.random() p_acc = log_p_Q_new - log_p_Q_old if verbose: print("p_acc", p_acc, "r", np.log(r2)) if np.log(r2) <= p_acc: #log(r) can be directly compared to # log-likelihood acceptance, p_acc if verbose: print("performing non-reversible element "\ "shift...") Qnew[i,i] = (Qnew[i,i]) + delta Qnew[i,j] = Qnew[i,j] - delta if verbose: print(Qnew) if counter > skip and counter % stride == 0: self.Q = Qnew self.K = Q_to_K(self.Q) self.calculate_thermodynamics() self.calculate_kinetics(pre_equilibrium_approx, bd_sample_from_normal=True) p_i_list.append(self.p_i) free_energy_profile_list.append(self.free_energy_profile) for key in self.MFPTs: MFPTs_list[key].append(self.MFPTs[key]) k_off_list.append(self.k_off) if self.model.k_on_info: for key in self.k_ons: k_ons_list[key].append(self.k_ons[key]) Q = Qnew if verbose: print("final MCMC matrix", Q) p_i_error = np.zeros(self.p_i.shape) free_energy_profile_err = np.zeros(self.free_energy_profile.shape) for i in range(p_i_error.shape[0]): p_i_val_list = [] for j in range(len(p_i_list)): p_i_val_list.append(p_i_list[j][i]) p_i_error[i] = np.std(p_i_val_list) for i in range(free_energy_profile_err.shape[0]): free_energy_profile_val_list = [] for j in range(len(free_energy_profile_list)): free_energy_profile_val_list.append(free_energy_profile_list[j][i]) free_energy_profile_err[i] = np.std(free_energy_profile_val_list) for key in self.MFPTs: MFPTs_error[key] = np.std(MFPTs_list[key]) k_off_error = np.std(k_off_list) if self.model.k_on_info: for key in self.k_ons: k_ons_error[key] = np.std(k_ons_list[key]) return p_i_error, free_energy_profile_err, MFPTs_error, k_off_error, \ k_ons_error
2.234375
2
authors/apps/stats/tests/base_test.py
deferral/ah-django
1
12784455
from authors.apps.reactions.tests.base_test import BaseTestCase class ReaderStatsBaseTestCase(BaseTestCase): """ Holds mock data and test helpers for the reader stats """ def get_article_slug(self, data={}, rel_path='/read', created=False): """ Returns a url path to post an articles reaction """ self.create_article(data=self.article_mock) if created: return self.articles_path + \ 'funny-things-on-the-keyboard_GoodCow' + rel_path
2.46875
2
tests/unittests/durable_functions/orchestration_trigger/main.py
vrdmr/azure-functions-python-worker
0
12784456
# import azure.durable_functions as df def generator_function(context): final_result = yield context.call_activity('activity_trigger', 'foobar') return final_result def main(context): # orchestrate = df.Orchestrator.create(generator_function) # result = orchestrate(context) # return result return f'{context} :)'
2.21875
2
data/check_donors.py
jacobdeasy/flexible-ehr
12
12784457
"""Check the maximum length of stay of donors in MIMIC-III. If it is <48 it does not affect our study.""" import os import pandas as pd df = pd.read_csv('ADMISSIONS.csv') df = df.loc[(df['DIAGNOSIS'].str.lower() == 'organ donor') | (df['DIAGNOSIS'].str.lower() == 'organ donor account')] files = os.listdir('root') ods = list(df['SUBJECT_ID']) los_list = [] for od in ods: try: df_tmp = pd.read_csv(os.path.join('root', str(od), 'stays.csv')) los_list += list(df_tmp['LOS'].values) except: pass print(max(los_list)) """ Result: 37.2832 """
2.578125
3
CraftMasterWeb/emails/views.py
Athelios/CraftMaster
8
12784458
from django.shortcuts import render, HttpResponse from datetime import date from .models import Email import json # Create your views here. def getEmail(request): if request.method=="POST": email = request.POST.get('email') Email.objects.create( email = email, register_date = date.today(), ) res = {'ret':0, 'msg':'ok'} return HttpResponse(json.dumps(res),content_type='application/json') return render(request,'index.html')
2.109375
2
algo/util/data_processor.py
HHansi/TED-S
0
12784459
# Created by Hansi at 12/22/2021 import re import demoji from nltk import TweetTokenizer from sklearn.model_selection import StratifiedShuffleSplit puncts = [',', '.', '"', ':', ')', '(', '-', '!', '?', '|', ';', "'", '$', '&', '/', '[', ']', '>', '%', '=', '#', '*', '+', '\\', '•', '~', '@', '£', '·', '_', '{', '}', '©', '^', '®', '`', '<', '→', '°', '€', '™', '›', '♥', '←', '×', '§', '″', '′', 'Â', '█', '½', 'à', '…', '“', '★', '”', '–', '●', 'â', '►', '−', '¢', '²', '¬', '░', '¶', '↑', '±', '¿', '▾', '═', '¦', '║', '―', '¥', '▓', '—', '‹', '─', '▒', ':', '¼', '⊕', '▼', '▪', '†', '■', '’', '▀', '¨', '▄', '♫', '☆', 'é', '¯', '♦', '¤', '▲', 'è', '¸', '¾', 'Ã', '⋅', '‘', '∞', '∙', ')', '↓', '、', '│', '(', '»', ',', '♪', '╩', '╚', '³', '・', '╦', '╣', '╔', '╗', '▬', '❤', 'ï', 'Ø', '¹', '≤', '‡', '√', '..', '...', '…'] def remove_links(sentence, substitute=''): """ Method to remove links in the given text parameters ----------- :param sentence: str :param substitute: str which to replace link :return: str String without links """ sentence = re.sub('https?:\/\/\S+', substitute, sentence, flags=re.MULTILINE) return sentence.strip() def remove_repeating_characters(sentence): """ remove non alphaneumeric characters which repeat more than 3 times by its 3 occurrence (e.g. ----- to ---) :param sentence: :return: """ sentence = re.sub('(\W)\\1{3,}', '\\1', sentence) return sentence.strip() def remove_retweet_notations(sentence): """ Method to remove retweet notations in the given text parameters ----------- :param sentence: str :return: str String without retweet notations """ updated_sentence = re.sub(r'RT @[a-zA-Z0-9_/-]*:', '', sentence) return updated_sentence.strip() def add_emoji_text(x): """ Covert emoji to text :param x: str :return: str String where emojis are replaced by text """ emoji_text = demoji.findall(x) for em in emoji_text.keys(): x = x.replace(em, ' ' + emoji_text[em] + ' ') x = ' '.join(x.split()) return x def preprocess_data(text, preserve_case=False, emoji_to_text=False): """ A Pipeline to preprocess data :param text: str :param preserve_case: boolean, optional :param emoji_to_text: boolean, optional :return: str """ text = text.replace("\n", " ") text = remove_links(text, substitute='') text = remove_retweet_notations(text) text = remove_repeating_characters(text) if emoji_to_text: text = add_emoji_text(text) # tokenize and lower case tknzr = TweetTokenizer(preserve_case=preserve_case, reduce_len=True, strip_handles=False) tokens = tknzr.tokenize(text) text = " ".join(tokens) # text.replace(symbol, "#") # remove # in hash tags # remove white spaces at the beginning and end of the text text = text.strip() # remove extra whitespace, newline, tab text = ' '.join(text.split()) return text def split_data(df, seed, label_column='label', test_size=0.1): """ StratifiedShuffleSplit the given DataFrame :param df: DataFrame :param seed: int :param label_column: str :param test_size: float :return: DataFrame, DataFrame train and test """ y = df[label_column] sss = StratifiedShuffleSplit(n_splits=1, test_size=test_size, random_state=seed) train_index, test_index = next(sss.split(df, y)) train = df.iloc[train_index] test = df.iloc[test_index] return train, test
2.625
3
servicebox/services/tests/test_models.py
FlxPeters/servicebox
0
12784460
from django.test import TestCase from services.models import ( Service, ServiceStatusChoices, ServiceRelation, ServiceRealtionChoice, Link, LinkTypeChoice, ) from tenancy.models import Tenant from platforms.models import Platform class ServiceModelTest(TestCase): def setUp(self): self.tenant_owner = Tenant.objects.create(name="Acme Corp.") self.tenant_operator = Tenant.objects.create(name="Operator Incl.") self.platform = Platform.objects.create( name="Road Runner Cloud", tenant=self.tenant_owner ) def test_slug_is_generated_on_save(self): service = Service( name="Prometheus", operator=self.tenant_operator, owner=self.tenant_owner, platform=self.platform, ) self.assertEquals("", service.slug) service.save() self.assertEquals("prometheus", service.slug) def test_service_is_active_by_default(self): service = Service( name="Prometheus", operator=self.tenant_operator, owner=self.tenant_owner, platform=self.platform, ) self.assertEquals(ServiceStatusChoices.ACTIVE, service.status) def test_service_has_related_services(self): source = Service.objects.create( name="Source", operator=self.tenant_operator, owner=self.tenant_owner, platform=self.platform, ) dest = Service.objects.create( name="Dest", operator=self.tenant_operator, owner=self.tenant_owner, platform=self.platform, ) ServiceRelation.objects.create( source=source, relation=ServiceRealtionChoice.RELATED, dest=dest, comment="test", ) inbound_list = dest.get_inbound_relations() self.assertEqual(1, len(inbound_list)) self.assertEqual("test", inbound_list.first().comment) self.assertEqual("Source", inbound_list.first().source.name) outbound_list = source.get_outbound_relations() self.assertEqual(1, len(outbound_list)) self.assertEqual("test", outbound_list.first().comment) self.assertEqual("Dest", outbound_list.first().dest.name) def test_service_has_link(self): svc = Service.objects.create( name="Service", operator=self.tenant_operator, owner=self.tenant_owner, platform=self.platform, ) link = Link.objects.create( link_type=LinkTypeChoice.WEBSITE, url="http://example.com", description="My fancy Website", service=svc, ) self.assertEqual(svc.links.first().url, "http://example.com") self.assertEqual(svc.links.first().link_type, LinkTypeChoice.WEBSITE) self.assertEqual(svc.links.first().description, "My fancy Website")
2.28125
2
utils/error_log.py
Farazist/farazist-raspberrypi-app
10
12784461
import os.path import datetime class ErrorLog(): @staticmethod def writeToFile(log): time = datetime.datetime.now() f = open('error_log.txt', 'a', encoding='utf8') f.write(time.strftime("%Y-%m-%d %H:%M:%S ") + log + '\n') f.close() #test = LogFile.checkExistsFile() #LogFile.writeToFile('test1')
2.953125
3
common/utils/dir_utils.py
jiahaoLjh/HDNet
18
12784462
<reponame>jiahaoLjh/HDNet<filename>common/utils/dir_utils.py import os import sys def make_folder(folder_name): if not os.path.isdir(folder_name): os.makedirs(folder_name) def add_pypath(path): if path not in sys.path: sys.path.insert(0, path)
2.46875
2
fast_trainer/concepts.py
MITIBMxGraph/SALIENT_artifact
6
12784463
from typing import Any, Optional, Callable, List import torch from .samplers import PreparedBatch from .transferers import DeviceIterator TrainCore = Callable[[torch.nn.Module, PreparedBatch], Any] TrainCallback = Callable[[List[PreparedBatch], List[Any]], None] TrainImpl = Callable[[torch.nn.Module, TrainCore, DeviceIterator, torch.optim.Optimizer, Optional[TrainCallback]], None] TestCallback = Callable[[PreparedBatch], None] # should not return anything
1.960938
2
util/tweet_download.py
jayelm/TwitterSA
0
12784464
""" NOTE: This is no longer used in the actual web app, since I grab automatically labeled tweets from Sentiment140. But, I keep it around for convenience. A script to download tweets in a .tsv of the form Status ID User ID Sentiment ==================================== used mainly to get tweets from the SemEval Twitter sentiment corpus. We use plain old HTML parsing to avoid API rate limits. Inspired from aritter/twitter_download <NAME> """ import requests from bs4 import BeautifulSoup import csv import pickle # Standard pickle for unicode support import sys def scrape_tweets(files, quiet=False): """ Scrape tweets from a list of .tsv files with the aforementioned format. Returns an association list of tweets and their sentiments. Only grabs tweets labeled as "positive" or "negative" for usage in a binary classifier. """ tweets = [] total_tweets = 0 for filename in files: with open(filename, 'r') as f: reader = csv.reader(f, delimiter='\t') rows = list(reader) if not quiet: print "{}: {} tweets".format(filename, len(rows)) for sid, uid, sentiment in rows: total_tweets += 1 print total_tweets if not (sentiment == 'positive' or sentiment == 'negative'): if not quiet: print ( "Skipping neutral tweet with uid {} and sid {}".format( uid, sid ) ) continue url = 'https://twitter.com/{}/status/{}'.format(uid, sid) r = requests.get(url) soup = BeautifulSoup(r.text) tweet_text_paragraphs = soup.find_all('p', {'class': 'tweet-text'}) if len(tweet_text_paragraphs) > 1: original_tweet_div = soup.find( 'div', {'class': 'js-original-tweet'} ) tweet_text_paragraphs = original_tweet_div.find_all( 'p', {'class': 'tweet-text'} ) if not tweet_text_paragraphs: if not quiet: print "Can't find tweet with uid {} and sid {}".format( uid, sid ) continue tweet_text = tweet_text_paragraphs[0].text tweets.append([tweet_text, sentiment]) print "Got {} tweets out of {}".format(len(tweets), total_tweets) return tweets def serialize(filename, tweets, quiet=False): """Output tweet lists to a file with pickle.""" if filename == '-' or not filename: if not quiet: # Not sure why someone would specify verbose for stdout print "Writing to stdout" pickle.dump(tweets, sys.stdout) else: if not quiet: print "Writing to {}".format(filename) with open(filename, 'w') as fout: pickle.dump(tweets, fout) def handle_filename(filename): """Prepare the filename - if directory specified, add default name""" if filename[-1] == '/': filename += 'noslang.pickle' return filename if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument( 'files', nargs='+', help=".tsv files containing status id, user id, and sentiment" ) parser.add_argument( '-o', '--output', nargs="?", const='lib/tweets.pickle', default='-', help="specify output file (defaults to lib/tweets.pickle " "if specified without file or stdout if not specified)" ) parser.add_argument( # Quiet is used here because default behavior should be to output # information about missed tweets '-q', '--quiet', action='store_true', help='be quiet' ) args = parser.parse_args() filename = handle_filename(args.output) tweets = scrape_tweets(args.files, args.quiet) serialize(filename, tweets, args.quiet)
3.15625
3
src/ghaudit/config.py
DistantThunder/ghaudit
1
12784465
from __future__ import annotations from functools import reduce from os import environ from pathlib import Path from typing import Collection, List, Optional, Set from typing_extensions import TypedDict Team = TypedDict( "Team", {"name": str, "members": List[str], "children": List[str]} ) Organisation = TypedDict( "Organisation", {"name": str, "owners": List[str], "teams": List[Team]} ) Config = TypedDict("Config", {"organisation": Organisation}) def get_teams(config: Config) -> Collection[Team]: return config["organisation"]["teams"] def get_team(config: Config, name: str) -> Optional[Team]: elems = [x for x in get_teams(config) if x["name"] == name] assert len(elems) <= 1 # nosec: testing only if elems: return elems[0] return None def _get_team_exists(config: Config, name: str) -> Team: team = get_team(config, name) if not team: raise RuntimeError("team {} not found".format(name)) return team def team_name(team: Team) -> str: return team["name"] # direct members of a team, not taking members of descendants teams into # account def team_direct_members(team: Team) -> Collection[str]: if team["members"]: return team["members"] return [] # effective members of a team (direct members + members of descendants teams) def team_effective_members(config: Config, team: Team) -> Set[str]: return reduce( lambda acc, child: acc | set(team_direct_members(child)), [_get_team_exists(config, x) for x in team_descendants(config, team)], set(team_direct_members(team)), ) def team_children(team: Team) -> Collection[str]: if "children" in team: return team["children"] return [] def team_descendants(config: Config, team: Team) -> Set[str]: def reduce_function(acc: Set[str], child_name: str) -> Set[str]: child_team = _get_team_exists(config, child_name) return acc | team_descendants(config, child_team) | {child_name} if "children" in team: return reduce(reduce_function, set(team_children(team)), set()) return set() def team_parents(config: Config, team: Team) -> Collection[Team]: def is_parent(entry: Team, team: Team) -> bool: return team_name(team) in team_children(entry) return [x for x in get_teams(config) if is_parent(x, team)] def team_parent(config: Config, team: Team) -> Optional[Team]: elems = team_parents(config, team) assert len(elems) <= 1 # nosec: testing only if elems: return next(iter(elems)) return None def team_ancestors(config: Config, team: Team) -> Set[str]: ancestors = set() parents = team_parents(config, team) for parent in parents: ancestors.update(team_ancestors(config, parent)) ancestors.update(map(team_name, parents)) return ancestors def user_teams(config: Config, email: str) -> Collection[Team]: return [x for x in get_teams(config) if email in team_direct_members(x)] def is_owner(config: Config, email: str) -> bool: return email in config["organisation"]["owners"] def default_dir() -> Path: def parent_dir() -> Path: xdg_home = environ.get("XDG_CONFIG_HOME") if xdg_home: return Path(xdg_home) home = environ.get("HOME") if home: return Path(home) / ".config" return Path("/") return parent_dir() / "ghaudit"
2.640625
3
cnn_model.py
kennethyu2017/vin_tf
0
12784466
""" implement a CNN network as mentioned in VIN paper. Author: <NAME> """ import tensorflow as tf from tensorflow.contrib.layers import conv2d, fully_connected, max_pool2d, dropout ''' normal structure for each conv layer:conv -> elu -> bn -> pooling. conv-1: 3x3 s:1, 50 channels .no padding . max pooling: 2x2 conv-2: 3x3,s:1, 50 channels. no padding . conv-3: 3x3,s:1. 100 channels. no padding . max pooling: 2x2 conv-4: 3x3 s:1, 100 channels. no padding. conv-5: 3x3 s:1, 100 channels. no padding. fc-1:200-units. followed by elu. fc-2: 4-units. output is logits. output: unscaled logits of each actions: up left right down === state space: s_image of grid map s_goal s_curr_pos of current state ''' TRAINING_CFG = tf.app.flags.FLAGS # alias class CNNModel: def __init__(self, cnn_model_cfg,optimizer,is_training, scope="cnn_model"): self.cnn_model_cfg = cnn_model_cfg self.optimizer = optimizer self.scope = scope self.is_training = is_training def create_net(self, state_inputs, labels, global_step_tensor): """ :param labels: :param global_step_tensor: :param state_inputs: :return: """ prev_layer = state_inputs conv_layers = [] fc_layers = [] with tf.variable_scope(self.scope): # conv layers # TODO add batch_norm to input process. for (n_maps, kernel_size, stride, padding, activation, initializer, normalizer, norm_param, regularizer, pooling_kernel_size, pooling_stride, keep_prob) in \ zip( self.cnn_model_cfg.conv_n_feature_maps, self.cnn_model_cfg.conv_kernel_sizes, self.cnn_model_cfg.conv_strides, self.cnn_model_cfg.conv_paddings, self.cnn_model_cfg.conv_activations, self.cnn_model_cfg.conv_initializers, self.cnn_model_cfg.conv_normalizers, self.cnn_model_cfg.conv_norm_params, self.cnn_model_cfg.conv_regularizers, self.cnn_model_cfg.pooling_kernel_sizes, self.cnn_model_cfg.pooling_strides, self.cnn_model_cfg.conv_dropout_keep_probs): prev_layer = conv2d(prev_layer, num_outputs=n_maps, kernel_size=kernel_size, stride=stride, padding=padding, activation_fn=activation, data_format='NHWC', normalizer_fn=normalizer, normalizer_params=norm_param, weights_initializer=initializer, weights_regularizer=regularizer, trainable=True) if pooling_kernel_size: # max pooling only prev_layer = max_pool2d(prev_layer, pooling_kernel_size, pooling_stride, padding='VALID', data_format='NHWC') if keep_prob < 1: prev_layer = dropout(prev_layer, keep_prob,is_training=self.is_training) conv_layers.append(prev_layer) ##fc layers.inc output layer. # flatten the output of last conv layer to (batch_size, n_fc_in) prev_layer = tf.reshape(conv_layers[-1], shape=[-1,conv_layers[-1].shape[1] * conv_layers[-1].shape[2] * conv_layers[-1].shape[3]]) for n_unit, activation, initializer, normalizer, norm_param, regularizer,keep_prob \ in zip( self.cnn_model_cfg.n_fc_units, self.cnn_model_cfg.fc_activations, self.cnn_model_cfg.fc_initializers, self.cnn_model_cfg.fc_normalizers, self.cnn_model_cfg.fc_norm_params, self.cnn_model_cfg.fc_regularizers, self.cnn_model_cfg.fc_dropout_keep_probs): prev_layer = fully_connected(prev_layer, num_outputs=n_unit, activation_fn=activation, weights_initializer=initializer, normalizer_fn=normalizer, normalizer_params=norm_param, weights_regularizer=regularizer, trainable=True) if keep_prob < 1: prev_layer = dropout(prev_layer, keep_prob, is_training=self.is_training) fc_layers.append(prev_layer) # logits should be [batch_size, num_action] logits = prev_layer reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) cross_entropy_loss = tf.losses.sparse_softmax_cross_entropy(labels, logits) predicted_classes = tf.argmax(logits, axis=1) total_loss = tf.add_n(reg_loss + [cross_entropy_loss], name='total_loss') train_op = self.optimizer.minimize(total_loss, global_step_tensor) total_loss_mean = tf.reduce_mean(total_loss) with tf.name_scope('loss'): tf.summary.scalar(name='total_loss', tensor=total_loss_mean, collections=[TRAINING_CFG.summary_keys]) # with tf.name_scope('d_policy_loss_da_grads'): # d_policy_loss_da_grads=tf.gradients(ys=policy_loss,xs=actor.action_bounded_tensors) # for i in range(len(dq_da_grads)): # tf.summary.scalar(name='d_policy_loss_da_grads_'+str(i)+'norm',tensor=tf.norm(d_policy_loss_da_grads[i]), # collections=[self.cnn_model_cfg.actor_summary_keys]) # == end with variable_scope() == return train_op, total_loss, predicted_classes
3.1875
3
ryu/ryu/app/Ryuretic/Ryuretic_Intf.py
Ryuretic/RAP
2
12784467
<reponame>Ryuretic/RAP<gh_stars>1-10 ##################################################################### # Ryuretic: A Modular Framework for RYU # # !/ryu/ryu/app/Ryuretic/Ryuretic_Intf.py # # Authors: # # <NAME> (<EMAIL>) # # <NAME> (<EMAIL>) # # Ryuretic_Intf.py # # date 28 April 2016 # ##################################################################### # Copyright (C) 2016 <NAME> - All Rights Reserved # # You may use, distribute and modify this code under the # # terms of the Ryuretic license, provided this work is cited # # in the work for which it is used. # # For latest updates, please visit: # # https://github.com/Ryuretic/RAP # ##################################################################### """How To Run This Program 1) Ensure you have Ryu installed. 2) Save the following files to /home/ubuntu/ryu/ryu/app/Ryuretic directory a) Ryuretic_Intf.py b) Ryuretic.py c) Pkt_Parse13.py d) switch_mod13.py 3) In your controller terminal type: cd ryu 4) Enter PYTHONPATH=. ./bin/ryu-manager ryu/app/Ryuretic/Ryuretic_Intf.py """ ######################################################################### from Ryuretic import coupler #################1 Import Needed Libraries 1###################### #[1] Import needed libraries here # ######################################################################### import string, random class Ryuretic_coupler(coupler): def __init__(self, *args, **kwargs): super(Ryuretic_coupler, self).__init__(*args, **kwargs) ############## 2 Add User Variables 2 ################### #[2] Add new global variables here. # # Ex. ICMP_ECHO_REQUEST = 8, self.netView = {} # ################################################################# self.validNAT = 'aa:aa:aa:aa:aa:aa' self.port_mac_map = {} self.port_AV = {} self.tta = {} self.ttaAV = {} self.check = False self.count = 0 self.tcpConnCount = 0 self.stage = 0 self.cntrl ={'mac': 'ca:ca:ca:ad:ad:ad','ip':'192.168.0.40', 'port':None} self.policyTbl = {} self.keyID = 101 self.t_agent = {} ICMP_ECHO_REPLY = 0 ICMP_ECHO_REQUEST = 8 ################ 3 Proactive Rule Sets 3 ################### #[3] Insert proactive rules defined below. Follow format below # # Options include drop or redirect, fwd is the default. # ##################################################################### def get_proactive_rules(self, dp, parser, ofproto): return None, None #fields, ops = self.honeypot(dp, parser, ofproto) #return fields, ops ################# 4 Reactive Rule Sets 4 ##################### #[4] use below handles to direct packets to reactive user modules # # defined in location #[5]. If no rule is added, then # # the default self.default_Fields_Ops(pkt) must be used # ##################################################################### # Determine highest priority fields and ops pair, if needed # # xfields = [fields0, fields1, fields2] # # xops = [ops0, ops1, ops2] # # fields,ops = self._build_FldOps(xfields,xops) # ##################################################################### def handle_eth(self,pkt): #print "handle eth" fields, ops = self.default_Field_Ops(pkt) self.install_field_ops(pkt,fields,ops) def handle_arp(self,pkt): print "handle ARP" #fields, ops = self.default_Field_Ops(pkt) #fields, ops = self.respond_to_arp(pkt) fields, ops = self.Arp_Poison(pkt) if pkt['srcip']=='1172.16.17.32' \ else self.respond_to_arp(pkt) #fields, ops = self.arp_persist(pkt) self.install_field_ops(pkt,fields,ops) def handle_ip(self,pkt): print "handle IP" #fields, ops = self.TTL_Check(pkt) #Lab 9 fields, ops = self.default_Field_Ops(pkt) self.install_field_ops(pkt,fields,ops) def handle_icmp(self,pkt): print "Handle ICMP" #fields, ops = self.TTL_Check(pkt) #fields, ops = self.default_Field_Ops(pkt) #fields, ops = self.respond_to_ping(pkt) fields, ops = self.Icmp_Redirect(pkt) if pkt['srcip']=='192.168.0.22' \ else self.respond_to_ping(pkt) self.install_field_ops(pkt, fields, ops) def handle_tcp(self,pkt): #print "handle TCP" ## fields, ops = self.TTL_Check(pkt) ## if ops['op'] == 'fwd': ## fields, ops = self.Multi_MAC_Checker(pkt) #fields, ops = self.default_Field_Ops(pkt) #fields, ops = self.displayTCPFields(pkt) #fields, ops = self.displayTCP(pkt) fields, ops = self.Tcp_Redirect(pkt) if pkt['srcip']=='192.168.0.22'\ else self.displayTCP(pkt) self.install_field_ops(pkt, fields, ops) def handle_udp(self,pkt): #fields, ops = self.TTL_Check(pkt) fields, ops = self.default_Field_Ops(pkt) self.install_field_ops(pkt, fields, ops) # All packets not defined above are handled here. def handle_unk(self,pkt): fields, ops = self.default_Field_Ops(pkt) self.install_field_ops(pkt, fields, ops) ##################################################################### # The following are from the old NFG file. def default_Field_Ops(self,pkt): def _loadFields(pkt): #keys specifies match fields for action. Default is #inport and srcmac. ptype used for craft icmp, udp, etc. fields = {'keys':['inport','srcmac'],'ptype':[], 'dp':pkt['dp'], 'ofproto':pkt['ofproto'], 'msg':pkt['msg'], 'inport':pkt['inport'], 'srcmac':pkt['srcmac'], 'ethtype':pkt['ethtype'], 'dstmac':None, 'srcip':None, 'proto':None, 'dstip':None, 'srcport':None, 'dstport':None, 'com':None, 'id':0} return fields def _loadOps(): #print "Loading ops" #Specifies the timeouts, priority, operation and outport #options for op: 'fwd','drop', 'mir', 'redir', 'craft' ops = {'hard_t':None, 'idle_t':None, 'priority':10, \ 'op':'fwd', 'newport':None} return ops #print "default Field_Ops called" fields = _loadFields(pkt) ops = _loadOps() return fields, ops ##################################################################### ############ 5 Ryuretic Network Application Modules 5 ############## #[5] Add user created methods below. Examples are provided to assist # # the user with basic python, dictionary, list, and function calls # ###################################################################### # Confirm mac has been seen before and no issues are recorded def TTL_Check(self, pkt): #initialize fields and ops with default settings fields, ops = self.default_Field_Ops(pkt) if pkt['srcmac'] != self.validNAT: if pkt['ttl']==63 or pkt['ttl']==127: print 'TTL Decrement Detected on ', pkt['srcmac'], ' TTL is :', pkt['ttl'] fields, ops = self.add_drop_params(pkt,fields,ops) else: ops['idle_t'] = 5 print "Packet TTL: ", pkt['ttl'], ' ', pkt['srcip'],' ', \ pkt['inport'],' ', pkt['srcmac'] else: ops['idle_t'] = 20 priority = 10 return fields, ops def Multi_MAC_Checker(self, pkt): fields, ops = self.default_Field_Ops(pkt) print "*** Checking MAC ***" #self.port_mac_map = {} if self.port_mac_map.has_key(pkt['inport']): if pkt['srcmac'] != self.port_mac_map[pkt['inport']]: print " Multi-mac port detected " fields, ops = self.add_drop_params(pkt,fields,ops) else: fields, ops = self.fwd_persist(pkt,fields,ops) else: self.port_mac_map[pkt['inport']] = pkt['srcmac'] return fields, ops #change name to monitor_TCP for RAP def displayTCP(self,pkt): fields, ops = self.default_Field_Ops(pkt) bits = pkt['bits'] dst, dstip, dstport = pkt['dstmac'], pkt['dstip'], pkt['dstport'] src, srcip, srcport = pkt['srcmac'], pkt['srcip'], pkt['srcport'] inport = pkt['inport'] send = (src,srcip,srcport,dstip) arrive = (dst,dstip,dstport,srcip) t_in = pkt['t_in'] #print "******\n"+self.tta+"/n********/n"+self.port_AV+"/n*********" if bits == 20: if self.tta.has_key(send): self.tta[send]['stage'] = 0 else: self.tta[arrive]['stage'] = 0 return fields, ops if bits == 2: if self.tta.has_key(send): self.tta[send].update({'inport':inport,'stage':1}) else: self.tta.update({send:{'inport':inport,'stage':1}}) return fields, ops if bits == 18: if self.tta.has_key(arrive): if self.tta[arrive]['stage']==1: self.tta[arrive].update({'syn':t_in,'stage':2}) return fields,ops if bits == 16: if self.tta.has_key(send): if self.tta[send]['stage']==2: tta = t_in - self.tta[send]['syn'] self.tta[send].update({'stage':3, 'ack':t_in, 'tta':tta}) print '** Calc TTA :', tta if self.port_AV.has_key(self.tta[send]['inport']): portAV = ((self.port_AV[self.tta[send]['inport']] * \ 9) + tta)/10 self.port_AV[self.tta[send]['inport']] = portAV else: portAV = ((0.001*9)+tta)/10 self.port_AV.update({self.tta[send]['inport']:portAV}) print "****" print "Port and TTA: ", inport, self.tta[send]['tta'] print '\nPort Averages: ', self.port_AV print "****" del self.tta[send] return fields, ops print "Persist" fields, ops = self.tcp_persist(pkt,fields,ops) return fields, ops if bits == 24: print "HTTP Push" return fields, ops if bits == 17: print 'Port Averages: ', self.port_AV if self.tta.has_key(send): del self.tta[send] elif self.tta.has_key(arrive): del self.tta[arrive] return fields, ops print "Packet not addressed", bits, inport, src, dstip return fields, ops # Call to temporarily install drop parameter for a packet to switch def add_drop_params(self, pkt, fields, ops): #may need to include priority fields['keys'] = ['inport'] fields['inport'] = pkt['inport'] ops['priority'] = 100 ops['idle_t'] = 60 ops['op']='drop' return fields, ops # Call to temporarily install TCP flow connection on switch def tcp_persist(self, pkt,fields,ops): fields['keys'] = ['inport', 'srcmac', 'srcip', 'ethtype', 'srcport'] fields['srcport'] = pkt['srcport'] fields['srcip'] = pkt['srcip'] ops['idle_t'] = 5 ops['priority'] = 10 return fields, ops def fwd_persist(self, pkt,fields,ops): ops['idle_t'] = 3 ops['priority'] = 10 return fields, ops def arp_persist(self, pkt): fields, ops = self.default_Field_Ops(pkt) fields['keys'] = ['inport','srcmac','ethtype'] ops['idle_t'] = 10 ops['priority'] = 2 return fields, ops ##################################################################### """ The following code is implemented to allow our trusted agent to comm with the controller and vice versa. """ ##################################################################### #Receive and respond to arp def respond_to_arp(self,pkt): #print 'Respond to Arp Called' fields, ops = self.default_Field_Ops(pkt) if pkt['dstip'] == self.cntrl['ip']: print "Message to Controller" fields['keys']=['srcmac', 'srcip', 'ethtype', 'inport'] fields['ptype'] = 'arp' fields['dstip'] = pkt['srcip'] fields['srcip'] = self.cntrl['ip'] fields['dstmac'] = pkt['srcmac'] fields['srcmac'] = self.cntrl['mac'] fields['ethtype'] = 0x0806 ops['op'] = 'craft' ops['newport'] = pkt['inport'] #print "INPORT: ", pkt['inport'] return fields, ops #Respond to ping. Forward or respond if to cntrl from trusted agent. def respond_to_ping(self,pkt): fields, ops = self.default_Field_Ops(pkt) print "\n\nRespond to Ping" print pkt['dstip'], self.cntrl['ip'], pkt['srcip'] if pkt['dstip'] == self.cntrl['ip'] and pkt['srcip'] == '192.168.0.1': #print'respond to ping' rcvData = pkt['data'].data #Possible actions {i-init, d-delete, v-verify, action, keyID = rcvData.split(',') keyID = keyID.rstrip(' \t\r\n\0') print len(keyID) keyID = int(keyID) print "Action is ", action print "KeyID is ", keyID, ', ', type(keyID) print "\n\n\n*********" ######################################## if action == 'i': self.t_agent = {'ip':pkt['srcip'],'mac':pkt['srcmac'], 'port':pkt['inport'],'msg':pkt['msg'], 'ofproto':pkt['ofproto'], 'dp':pkt['dp']} elif action == 'd': #Deleting flagged host policy print "Deleting Policy Table" print self.policyTbl.has_key(keyID) print self.policyTbl.keys() if self.policyTbl.has_key(keyID): srcmac = self.policyTbl[keyID]['srcmac'] inport = self.policyTbl[keyID]['inport'] print srcmac, ', ', inport if self.net_MacTbl.has_key(srcmac): print "Found MAC" self.net_MacTbl.pop(srcmac) if self.net_PortTbl.has_key(inport): print "Found Port" self.net_PortTbl.pop(inport) self.policyTbl.pop(keyID) elif action is 'u': #This is more complicated it requires data not being stored #may need to add fields to policyTable. Maybe not. pass elif action is 'a': #Acknowledge receipt pass else: print "No match" fields['dstip'] = pkt['srcip'] fields['srcip'] = self.cntrl['ip'] fields['dstmac'] = pkt['srcmac'] fields['srcmac'] = self.cntrl['mac'] fields['ptype'] = 'icmp' fields['ethtype'] = 0x0800 fields['proto'] = 1 fields['com'] = 'a,'+rcvData ops['op'] = 'craft' ops['newport'] = pkt['inport'] return fields, ops #Builds notification information for trusted agent and sends if via # self.update_TA (may want to combine these two definitions def notify_TA(self, pkt,status): keyID = self.keyID self.keyID += 1 print "Adding Violation, passkey, and updating keyID" violation = status # 's' or 't' #create passkey passkey =''.join(random.choice(string.ascii_letters) for x in range(8)) #update policy table self.policyTbl[keyID]={'inport':pkt['inport'], 'srcmac':pkt['srcmac'], 'passkey':passkey, 'violation':violation} #Notify trusted agent of newly flagged client self.update_TA(pkt, keyID, status) return keyID #Crafts tailored ICMP message for trusted agent def update_TA(self,pkt, keyID, status): table = self.policyTbl[keyID] #print "Updating Trusted Agent" fields, ops = {},{} fields['keys'] = ['inport', 'srcip'] fields['dstip'] = self.t_agent['ip'] fields['srcip'] = self.cntrl['ip'] fields['dstmac'] = self.t_agent['mac'] fields['srcmac'] = self.cntrl['mac'] fields['dp'] = self.t_agent['dp'] fields['msg'] = self.t_agent['msg'] fields['inport'] = self.t_agent['port'] fields['ofproto']=self.t_agent['ofproto'] fields['ptype'] = 'icmp' fields['ethtype'] = 0x0800 fields['proto'] = 1 fields['id'] = 0 fields['com'] = table['srcmac']+','+str(table['inport'])+\ ','+str(table['passkey'])+','+table['violation']+\ ','+str(keyID) ops = {'hard_t':None, 'idle_t':None, 'priority':0, \ 'op':'fwd', 'newport':None} ops['op'] = 'craft' ops['newport'] = self.t_agent['port'] self.install_field_ops(pkt, fields, ops) #Respond to ping. Forward or respond if to cntrl from trusted agent. def respond_to_ping(self,pkt): fields, ops = self.default_Field_Ops(pkt) #print "\n\nRespond to Ping" print pkt['dstip'], self.cntrl['ip'], pkt['srcip'] if pkt['dstip'] == self.cntrl['ip'] and pkt['srcip'] == '192.168.0.1': #print'respond to ping' rcvData = pkt['data'].data #Possible actions {i-init, d-delete, v-verify, action, keyID = rcvData.split(',') keyID = keyID.rstrip(' \t\r\n\0') print len(keyID) keyID = int(keyID) print "Action is ", action print "KeyID is ", keyID, ', ', type(keyID) print "\n\n\n*********" ######################################## if action == 'i': self.t_agent = {'ip':pkt['srcip'],'mac':pkt['srcmac'], 'port':pkt['inport'],'msg':pkt['msg'], 'ofproto':pkt['ofproto'], 'dp':pkt['dp']} elif action == 'd': #Deleting flagged host policy print "Deleting Policy Table" print self.policyTbl.has_key(keyID) print self.policyTbl.keys() if self.policyTbl.has_key(keyID): srcmac = self.policyTbl[keyID]['srcmac'] inport = self.policyTbl[keyID]['inport'] print srcmac, ', ', inport if self.net_MacTbl.has_key(srcmac): print "Found MAC" self.net_MacTbl.pop(srcmac) if self.net_PortTbl.has_key(inport): print "Found Port" self.net_PortTbl.pop(inport) self.policyTbl.pop(keyID) elif action is 'u': #This is more complicated it requires data not being stored #may need to add fields to policyTable. Maybe not. pass elif action is 'a': #Acknowledge receipt pass else: print "No match" fields['dstip'] = pkt['srcip'] fields['srcip'] = self.cntrl['ip'] fields['dstmac'] = pkt['srcmac'] fields['srcmac'] = self.cntrl['mac'] fields['ptype'] = 'icmp' fields['ethtype'] = 0x0800 fields['proto'] = 1 fields['com'] = 'a,'+rcvData ops['op'] = 'craft' ops['newport'] = pkt['inport'] return fields, ops ######################################################################### """ The following code controls the redirection of packets from their intended destination to our trusted agent. This occurs when a port is flagged. """ ######################################################################### #Create a method to inject a redirect anytime the sta4 IP address is #Check status of port and mac. def check_net_tbl(self,mac,port=0): if mac in self.macTbl.keys(): print mac, " found in table." return self.macTbl[mac]['stat'] elif port in self.portTbl.keys(): print "Port ", port, " found in table." return self.portTbl[port]['stat'] else: return None def addToNetView(self,pkt,status='noStat',passkey='noPass'): keyID = self.keyID self.netView[keyID]={'srcmac':pkt['srcmac'], 'inport':pkt['inport'], 'srcip':pkt['srcip'], 'stat':status, 'passkey':passkey} self.macTbl[pkt['srcmac']]= keyID if self.portTble.has_key(pkt['inport']): print "Port already assigned" else: self.portTbl[pkt['inport']]= keyID self.keyID += keyID def flagInNetView(self,pkt,status): if self.macTbl.has_key(pkt['srcmac']): keyID = self.MacTbl[pkt['srcmac']] if self.netView.has_key(keyID): tbl = self.netView[keyID] tbl['stat']=status tbl['passkey']= ''.join(random.choice(string.ascii_letters) for x in range(8)) self.notify_TA(pkt,status) else: print "This MAC has yet to be added to the netView Table" def arp_tester(self,pkt): #Determin if mac or port has a status pkt_status = self.check_net_tbl(pkt['srcmac'],pkt['inport']) if pkt_status =='test': fields,ops = self.Arp_Poison(pkt) elif pkt_status == 'drop': field,ops == self.drop_ARP(pkt) elif pkt_status == None: self.addToNetVeiw(pkt) fields, ops = self.respond_to_arp(pkt) else: fields, ops = self.respond_to_arp(pkt) return fields, ops def Arp_Poison(self,pkt): print "Building Arp poison" fields, ops = self.default_Field_Ops(pkt) if pkt['opcode'] != 2: fields['keys']=['srcmac', 'srcip', 'ethtype', 'inport'] fields['ptype'] = 'arp' fields['ethtype'] = 0x0806 #pkt['ethtype'] print "Ethernet Type is : ", pkt['ethtype'], type(pkt['ethtype']) fields['srcmac'] = self.t_agent['mac'] fields['dstmac'] = pkt['srcmac'] fields['srcip'] = pkt['dstip'] #self.t_agent['ip'] fields['dstip'] = pkt['srcip'] ops = {'hard_t':None, 'idle_t':None, 'priority':100, \ 'op':'craft', 'newport':pkt['inport']} return fields,ops def drop_ARP(self, pkt): if pkt['dstip'] != self.t_agent['ip']: fields, ops = self.default_Field_Ops(pkt) fields['keys'] = ['inport', 'ethtype', 'proto'] fields['inport'] = pkt['inport'] fields['ethtype'] = pkt['ethtype'] fields['proto'] = pkt['proto'] ops['priority'] = 100 ops['op']='drop' ops['idle_t'] = 120 print "(319) Droping ARP. Fields are: ", fields return fields, ops #Use this to flag during a TCP connection. def flag_Sta4(self,pkt): policyFlag = False if pkt['srcip']=='192.168.0.22': #change mac or port status in netView self.flagInNetView(pkt,'test') policyFlag = True return policyFlag def tcp_tester(self,pkt): pkt_status = self.check_net_tbl(pkt['srcmac'], pkt['inport']) if pkt_status =='test': fields,ops = self.Tcp_Redirect(pkt) elif pkt_status == 'noStat': fields, ops = self.default_Field_Ops(pkt) flag = self.flag_Sta4(pkt) if flag: self.flagInNetView(pkt,'test') #field,ops = self.drop_TCP(pkt) fields['keys'] = ['inport'] fields['inport'] = pkt['inport'] ops['priority'] = 100 #ops['idle_t'] = 5 ops['op']='drop' else: fields, ops = self.default_Field_Ops(pkt) return fields, ops #Redirect ICMP packets to trusted agent def Icmp_Redirect(self,pkt): print "Redirecting ICMP" fields, ops = self.default_Field_Ops(pkt) fields['keys'] = ['inport', 'ethtype'] fields['dstmac'] = self.t_agent['mac'] fields['dstip'] = self.t_agent['ip'] fields['ethtype'] = pkt['ethtype'] ops['op'] = 'redir' ops['newport'] = self.t_agent['port'] ops['priority'] = 100 ops['idle_t'] = 180 #ops['hard_t'] = 180 return fields, ops def Tcp_Redirect(self,pkt): print "*\n*\nRedirecting TCP" print pkt fields, ops = self.default_Field_Ops(pkt) fields['keys'] = ['inport', 'ethtype'] fields['dstmac'] = self.t_agent['mac'] fields['dstip'] = pkt['dstip'] #self.t_agent['ip'] fields['ethtype'] = pkt['ethtype'] ops['op'] = 'redir' ops['newport'] = self.t_agent['port'] ops['priority'] = 100 ops['idle_t'] = 180 #ops['hard_t'] = 180 return fields, ops ############################################################################# ############################################################################# def Simple_FW(self,pkt): fields, ops = self.default_Field_Ops(pkt) #blocking w3cschools and facebook if pkt['dstip'] in ['192.168.127.12', '172.16.31.10']: print "W3Cschools or Facebook is not allowed" #tell controller to drop pkts destined for dstip fields['keys'],fields['dstip'] = ['dstip'],pkt['dstip'] ops['priority'] = 100 ops['op']= 'drop' ops['idle_t']=60 return fields, ops def Stateful_FW(self,pkt): fields, ops = self.default_Field_Ops(pkt) if pkt['input'] in [1,2,3,4,5,6,7,8]: if self.stat_Fw_tbl.has_key(pkt['srcip']): if len(self.stat_Fw_tbl[pkt['srcip']]['dstip']) > 4: self.stat_Fw_tbl[pkt['srcip']]['dstip'].pop(3) self.self.stat_Fw_tbl[pkt['srcip']]['dstip'].append(pkt['dstip']) else: self.stat_Fw_tbl[pkt['srcip']]={'dstip':[pkt['dstip']]} return fields, ops else: if self.stat_Fw_tbl.has_key(pkt['dstip']): if pkt['srcip'] in stat_Fw_tbl[pkt['dstip']]['dstip']: return fields, ops else: fields['keys'] = ['srcip','dstip'] fields['srcip'] = pkt['srcip'] fields['dstip'] = pkt['dstip'] ops['priority'] = 100 ops['op']='drop' #ops['hard_t'] = 20 ops['idle_t'] = 4 return fields, ops def honeypot(self, dp, parser, ofproto): # This should install proactive rules that mirrors data from a # honeypot system fields, ops = {}, {} fields['ethtype'] = 0x0800 fields['keys'] = ['srcip'] fields['srcip'] = '10.0.0.42' ops['priority'] = 100 ops['op'] = 'mir' ops['newport'] = 2 #could make this multicast as well [1,2,3] return fields, ops def displayTCP2(self,pkt): fields, ops = self.default_Field_Ops(pkt) bits = pkt['bits'] dst = pkt['dstmac'] src = pkt['srcmac'] inport = pkt['inport'] print '*******', inport, src, bits, self.stage #, self.check if bits in [2,16,18]: print '**SEQ: ', pkt['seq'], '\tACK ', pkt['ack'], ' **' if bits == 2: self.tta[src]= {} self.tta[src]['inport'] = pkt['inport'] #self.check=True self.stage=1 #Somehow this is not always sent(need to resolve error that ocurs here #So far, AP stands out, but not the NAT (comparable to NAT) elif bits == 18 and self.stage==1: self.tta[dst]['syn'] = pkt['t_in'] self.stage = 2 elif bits == 16 and self.stage == 2: #self.check==True: self.stage=3 self.tta[src]['ack'] = pkt['t_in'] tta = pkt['t_in'] - self.tta[src]['syn'] if self.ttaAV.has_key(inport): self.ttaAV[inport]= (self.ttaAV[inport] + tta)/2 else: self.ttaAV[inport]= tta print self.ttaAV[inport] print '\n**** Port: ',inport,' TTA = ', tta, ' ********\n' self.count = self.count + 1 fields, ops = self.fwd_persist(pkt,fields,ops) #self.check = False else: self.stage=0 fields, ops = self.fwd_persist(pkt,fields,ops) else: fields, ops = self.fwd_persist(pkt,fields,ops) print self.ttaAV return fields, ops
1.898438
2
factory/tools/lib/gWftLogParser.py
ddbox/glideinwms
0
12784468
# SPDX-FileCopyrightText: 2009 Fermi Research Alliance, LLC # SPDX-License-Identifier: Apache-2.0 # # Project: # glideinWMS # # File Version: # # Description: # factory/tool specific condorLogs helper # import binascii import gzip import io import mmap import os.path import re import time from glideinwms.factory import glideFactoryLogParser from glideinwms.lib import condorLogParser from glideinwms.lib.defaults import BINARY_ENCODING, force_bytes # get the list of jobs that were active at a certain time def get_glideins(log_dir_name, date_arr, time_arr): glidein_list = [] cldata = glideFactoryLogParser.dirSummaryTimingsOutFull(log_dir_name, cache_dir=None) cldata.load(active_only=False) glidein_data = cldata.data["Completed"] # I am interested only in the completed ones ref_ctime = time.mktime(date_arr + time_arr + (0, 0, -1)) for glidein_el in glidein_data: glidein_id, fistTimeStr, runningStartTimeStr, lastTimeStr = glidein_el runningStartTime = condorLogParser.rawTime2cTimeLastYear(runningStartTimeStr) if runningStartTime > ref_ctime: continue # not one of them, started after lastTime = condorLogParser.rawTime2cTimeLastYear(lastTimeStr) if lastTime < ref_ctime: continue # not one of them, ended before glidein_list.append(glidein_id) return glidein_list # get the list of log files for an entry that were active at a certain time def get_glidein_logs_entry(factory_dir, entry, date_arr, time_arr, ext="err"): log_list = [] log_dir_name = os.path.join(factory_dir, "entry_%s/log" % entry) glidein_list = get_glideins(log_dir_name, date_arr, time_arr) for glidein_id in glidein_list: glidein_log_file = "job.%i.%i." % condorLogParser.rawJobId2Nr(glidein_id) glidein_log_file += ext glidein_log_filepath = os.path.join(log_dir_name, glidein_log_file) if os.path.exists(glidein_log_filepath): log_list.append(glidein_log_filepath) return log_list # get the list of log files for an entry that were active at a certain time def get_glidein_logs(factory_dir, entries, date_arr, time_arr, ext="err"): log_list = [] for entry in entries: entry_log_list = get_glidein_logs_entry(factory_dir, entry, date_arr, time_arr, ext) log_list += entry_log_list return log_list # extract the blob from a glidein log file starting from position def get_Compressed_raw(log_fname, start_str, start_pos=0): SL_START_RE = re.compile(b"%s\nbegin-base64 644 -\n" % force_bytes(start_str, BINARY_ENCODING), re.M | re.DOTALL) size = os.path.getsize(log_fname) if size == 0: return "" # mmap would fail... and I know I will not find anything anyhow with open(log_fname) as fd: buf = mmap.mmap(fd.fileno(), size, access=mmap.ACCESS_READ) try: # first find the header that delimits the log in the file start_re = SL_START_RE.search(buf, 0) if start_re is None: return "" # no StartLog section log_start_idx = start_re.end() # find where it ends log_end_idx = buf.find(b"\n====", log_start_idx) if log_end_idx < 0: # up to the end of the file return buf[log_start_idx:].decode(BINARY_ENCODING) else: return buf[log_start_idx:log_end_idx].decode(BINARY_ENCODING) finally: buf.close() # extract the blob from a glidein log file def get_Compressed(log_fname, start_str): raw_data = get_Compressed_raw(log_fname, start_str) if raw_data != "": gzip_data = binascii.a2b_base64(raw_data) del raw_data data_fd = gzip.GzipFile(fileobj=io.BytesIO(gzip_data)) data = data_fd.read().decode(BINARY_ENCODING) else: data = raw_data return data # extract the blob from a glidein log file def get_Simple(log_fname, start_str, end_str): SL_START_RE = re.compile(force_bytes(start_str, BINARY_ENCODING) + b"\n", re.M | re.DOTALL) SL_END_RE = re.compile(end_str, re.M | re.DOTALL) size = os.path.getsize(log_fname) if size == 0: return "" # mmap would fail... and I know I will not find anything anyhow with open(log_fname) as fd: buf = mmap.mmap(fd.fileno(), size, access=mmap.ACCESS_READ) try: # first find the header that delimits the log in the file start_re = SL_START_RE.search(buf, 0) if start_re is None: return "" # no StartLog section log_start_idx = start_re.end() # find where it ends log_end_idx = SL_END_RE.search(buf, log_start_idx) if log_end_idx is None: # up to the end of the file return buf[log_start_idx:].decode(BINARY_ENCODING) else: return buf[log_start_idx : log_end_idx.start()].decode(BINARY_ENCODING) finally: buf.close() # extract the Condor Log from a glidein log file # condor_log_id should be something like "StartdLog" def get_CondorLog(log_fname, condor_log_id): start_str = "^%s\n======== gzip . uuencode =============" % condor_log_id return get_Compressed(log_fname, start_str) # extract the XML Result from a glidein log file def get_XMLResult(log_fname): start_str = "^=== Encoded XML description of glidein activity ===" s = get_Compressed(log_fname, start_str) if s != "": return s # not found, try the uncompressed version start_str = "^=== XML description of glidein activity ===" end_str = "^=== End XML description of glidein activity ===" return get_Simple(log_fname, start_str, end_str) # extract slot names def get_StarterSlotNames(log_fname, condor_log_id="(StarterLog.slot[0-9]*[_]*[0-9]*)"): start_str = "^%s\n======== gzip . uuencode =============" % condor_log_id SL_START_RE = re.compile(b"%s\nbegin-base64 644 -\n" % force_bytes(start_str, BINARY_ENCODING), re.M | re.DOTALL) size = os.path.getsize(log_fname) if size == 0: return "" # mmap would fail... and I know I will not find anything anyhow with open(log_fname) as fd: buf = mmap.mmap(fd.fileno(), size, access=mmap.ACCESS_READ) try: strings = [s.decode(BINARY_ENCODING) for s in SL_START_RE.findall(buf, 0)] return strings finally: buf.close()
2.21875
2
sim2net/speed/normal.py
harikuts/dsr_optimization
12
12784469
#!/usr/bin/env python # -*- coding: utf-8 -*- # (c) 2012 <NAME> <mkalewski at cs.put.poznan.pl> # # This file is a part of the Simple Network Simulator (sim2net) project. # USE, MODIFICATION, COPYING AND DISTRIBUTION OF THIS SOFTWARE IS SUBJECT TO # THE TERMS AND CONDITIONS OF THE MIT LICENSE. YOU SHOULD HAVE RECEIVED A COPY # OF THE MIT LICENSE ALONG WITH THIS SOFTWARE; IF NOT, YOU CAN DOWNLOAD A COPY # FROM HTTP://WWW.OPENSOURCE.ORG/. # # For bug reports, feature and support requests please visit # <https://github.com/mkalewski/sim2net/issues>. """ Provides an implementation of the normal speed distribution. In this case a speed of a node is assigned at random with the normal, i.e. Gaussian, probability distribution. """ from sim2net.speed._speed import Speed from sim2net.utility.validation import check_argument_type __docformat__ = 'reStructuredText' class Normal(Speed): """ This class implements the normal speed distribution that assigns node's speeds with the Gaussian probability distribution. """ def __init__(self, mean=0.0, standard_deviation=0.2): """ (Defaults to **standard normal distribution**.) *Parameters*: - **mean** (`float`): a value of the expectation (default: `0.0`); - **standard_deviation** (`float`): a value of the standard deviation (default: `0.2`). """ super(Normal, self).__init__(Normal.__name__) check_argument_type(Normal.__name__, 'mean', float, mean, self.logger) self.__mean = float(mean) check_argument_type(Normal.__name__, 'standard_deviation', float, standard_deviation, self.logger) self.__standard_deviation = float(standard_deviation) self.__current_speed = None self.get_new() @property def mean(self): """ (*Property*) A value of the expectation of type `float`. """ return self.__mean @property def current(self): """ (*Property*) A value of the current speed of type `float` (or `None` if the value has yet not been assigned). """ return self.__current_speed def get_new(self): """ Assigns a new speed value. .. warning:: Depending on distribution parameters, negative values may be randomly selected. *Returns*: (`float`) the absolute value of a new speed. """ self.__current_speed = \ self.random_generator.normal(self.__mean, self.__standard_deviation) return self.__current_speed
3.671875
4
pysaintcoinach/xiv/shop_listing_item.py
icykoneko/saintcoinach-py
7
12784470
<reponame>icykoneko/saintcoinach-py<filename>pysaintcoinach/xiv/shop_listing_item.py from .interfaces import IShopListing, IShopListingItem class ShopListingItem(IShopListingItem): """ General-purpose class for items to use in IShopListing. """ def __init__(self, shop_item: IShopListing, item: 'Item', count: int, is_hq: bool, collectability_rating: int): """ Initializes a new instance of the ShopListingItem class. :param shop_item: The IShopListing the entry is for. :param item: The item of the entry. :param count: The count for the entry. :param is_hq: A value indicating whether the `item` is high-quality. :param collectability_rating: The collectability rating of the entry. """ self.__shop_item = shop_item self.__item = item self.__count = count self.__is_hq = is_hq self.__collectability_rating = collectability_rating @property def shop_item(self) -> IShopListing: return self.__shop_item @property def item(self) -> 'Item': return self.__item @property def count(self) -> int: return self.__count @property def is_hq(self) -> bool: return self.__is_hq @property def collectability_rating(self) -> int: return self.__collectability_rating def __str__(self): result = '' if self.count > 1: result += '{0} '.format(self.count) result += str(self.item) if self.is_hq: result += ' (HQ)' return result def __repr__(self): return str(self)
2.59375
3
setup.py
cumason123/eve_echoes
0
12784471
<reponame>cumason123/eve_echoes<filename>setup.py from setuptools import setup, find_packages import pathlib here = pathlib.Path(__file__).parent.resolve() long_description = (here / "README.md").read_text(encoding="utf-8") setup( name="eve_echoes", summary="Eve Echoes Utility Functions", long_description_content_type="text/markdown", long_description=long_description, author="<NAME>", author_email="<EMAIL>", classifiers=[ "Intended Audience :: Information Technology", "Intended Audience :: System Administrators", "Operating System :: POSIX :: Linux", "Programming Language :: Python :: 3.8", ], packages=find_packages(exclude=["eve_echoes.tests"]), version="0.1.0", install_requires=["numpy>1.19,<2.0"], )
1.382813
1
armstrong/core/arm_content/mixins/__init__.py
cirlabs/armstrong.core.arm_content
0
12784472
import pkg_resources pkg_resources.declare_namespace(__name__) from .authors import AuthorsMixin from .images import * from .publication import PublicationMixin from .video import EmbeddedVideoMixin
1.039063
1
tests/conftest.py
daveisadork/PyDevNS
7
12784473
import functools import logging import os import pytest import tempfile import devns import devns.cli from mock import MagicMock @pytest.fixture def config(): return devns.Config() @pytest.yield_fixture def resolver_dir(config): resolvers = [] config.resolver_dir = os.path.join( tempfile.gettempdir(), "{0}-{1}".format(tempfile.gettempprefix(), "resolver") ) resolvers.append(config.resolver_dir) yield config.resolver_dir resolvers.append(config.resolver_dir) for resolver in filter(None, set(resolvers)): if os.path.isdir(resolver): os.rmdir(resolver) @pytest.fixture def logger(request): return logging.getLogger(request.node.nodeid) @pytest.fixture def parse_args(config): return functools.partial(devns.cli.parse_args, config=config) @pytest.yield_fixture def server(config, resolver_dir): yield devns.server.DevNS(config) @pytest.fixture def Connection(): class Connection(object): settimeout = MagicMock() bind = MagicMock() sendto = MagicMock() def __init__(self, responses, expected): self.responses = responses self.expected = expected def getsockname(self): return "0.0.0.0", 53535 def recvfrom(self, length): response = self.responses.pop() if isinstance(response, tuple): return response raise response() return Connection
2.046875
2
tests/test_all.py
awensaunders/Proxy-Tools
3
12784474
<reponame>awensaunders/Proxy-Tools #!/usr/bin/env python3 import pytest import subprocess import sys from modules import ssh from modules import socks from modules import configurator import ProxyWidget class TestSOCKS: @pytest.fixture def SOCKS_setup(self): return socks.ProxyTools('Wi-Fi') def test_SOCKS_exists(self, SOCKS_setup): assert hasattr(SOCKS_setup, 'is_proxy_on') def test_SOCKS_is_proxy_on(self, SOCKS_setup): pass #not implemented class TestSSH: @pytest.fixture def ssh_setup(self): return ssh.Tunnel() def test_ssh_exists(self): assert subprocess.call(['ssh'], stdout = subprocess.DEVNULL, stderr = subprocess.DEVNULL) == 255 def test_ssh_arguments(self, ssh_setup): with pytest.raises(TypeError): ssh_setup.start_tunnel("asdfljkl") class TestYAML: def test_out_equals_in(self, tmpdir): f = str(tmpdir.join('config.yml')) c = configurator.ConfigFile(f) c.write_config({'name': '<NAME>', 'race': 'Human'}) print(c.read_config()) assert c.read_config() == {'name': '<NAME>', 'race': 'Human'} def test_append_works(self, tmpdir): f = str(tmpdir.join('config.yml')) c = configurator.ConfigFile(f) c.write_config({'name': '<NAME>', 'race': 'Human'}) c.append_config({'color': 'blue'}) assert c.read_config() == {'name': '<NAME>', 'race': 'Human', 'color': 'blue'} , "append_config failed to write the file" c.write_config({'name': '<NAME>', 'race': 'Human'}) assert c.read_config() == {'name': '<NAME>', 'race': 'Human'} , "write_config failed to overwrite the appended file"
2.15625
2
src/ostorlab/agent/message/proto/v2/report/status_pb2.py
bbhunter/ostorlab
113
12784475
<reponame>bbhunter/ostorlab<gh_stars>100-1000 # Generated by the protocol buffer compiler. DO NOT EDIT! # source: v2/report/status.proto import sys _b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='v2/report/status.proto', package='', serialized_pb=_b( '\n\x16v2/report/status.proto\"i\n\x06status\x12\x0f\n\x07scan_id\x18\x01 \x02(\x05\x12%\n\nattributes\x18\x02 \x03(\x0b\x32\x11.status.attribute\x1a\'\n\tattribute\x12\x0b\n\x03key\x18\x01 \x02(\t\x12\r\n\x05value\x18\x02 \x02(\t') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _STATUS_ATTRIBUTE = _descriptor.Descriptor( name='attribute', full_name='status.attribute', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='status.attribute.key', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='status.attribute.value', index=1, number=2, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=92, serialized_end=131, ) _STATUS = _descriptor.Descriptor( name='status', full_name='status', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='scan_id', full_name='status.scan_id', index=0, number=1, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='attributes', full_name='status.attributes', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_STATUS_ATTRIBUTE, ], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=26, serialized_end=131, ) _STATUS_ATTRIBUTE.containing_type = _STATUS _STATUS.fields_by_name['attributes'].message_type = _STATUS_ATTRIBUTE DESCRIPTOR.message_types_by_name['status'] = _STATUS status = _reflection.GeneratedProtocolMessageType('status', (_message.Message,), dict( attribute=_reflection.GeneratedProtocolMessageType('attribute', (_message.Message,), dict( DESCRIPTOR=_STATUS_ATTRIBUTE, __module__='v2.report.status_pb2' # @@protoc_insertion_point(class_scope:status.attribute) )) , DESCRIPTOR=_STATUS, __module__='v2.report.status_pb2' # @@protoc_insertion_point(class_scope:status) )) _sym_db.RegisterMessage(status) _sym_db.RegisterMessage(status.attribute) # @@protoc_insertion_point(module_scope)
1.304688
1
01_bayes_filter/ex2_1.py
sanket-pixel/robotics
0
12784476
<reponame>sanket-pixel/robotics<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def plot_belief(belief): plt.figure() ax = plt.subplot(2,1,1) ax.matshow(belief.reshape(1, belief.shape[0])) ax.set_xticks(np.arange(0, belief.shape[0],1)) ax.xaxis.set_ticks_position("bottom") ax.set_yticks([]) ax.title.set_text("Grid") ax = plt.subplot(2, 1, 2) ax.bar(np.arange(0, belief.shape[0]), belief) ax.set_xticks(np.arange(0, belief.shape[0], 1)) ax.set_ylim([0, 1.05]) ax.title.set_text("Histogram") def motion_model(action, belief): motion_probabiity = np.array([[0.7, 0.2, 0.1]]) shifted_belief = np.stack([np.roll(np.pad(belief,1), 1)[1:16], belief, np.roll(np.pad(belief,1), -1)[1:16]]) if action == 1 : return np.dot(motion_probabiity, shifted_belief)[0] elif action == -1 : return np.dot(np.fliplr(motion_probabiity), shifted_belief)[0] def sensor_model(observation, belief, world): white_probability = np.array([0.1, 0.7]) black_probability = np.array([0.9, 0.3]) if observation == 0: map_probability = np.where(world == 0, black_probability[0], black_probability[1]) elif observation == 1: map_probability = np.where(world == 1, white_probability[1], white_probability[0]) corrected_belief = map_probability*belief return corrected_belief/np.sum(corrected_belief) def recursive_bayes_filter(actions, observations, belief, world): for index in range(len(actions)): current_observation = observations[index+1] current_action = actions[index] predicted_belief = motion_model(current_action, belief) belief = sensor_model(current_observation, predicted_belief, world) plot_belief(belief) return belief
2.734375
3
PhenDisco/ReleaseV1.0/information-retrieval/Query_All_HTMLVer1.py
DBMI/iSeeDELVE
0
12784477
<filename>PhenDisco/ReleaseV1.0/information-retrieval/Query_All_HTMLVer1.py # $Id$ # Query module for information retrieval # This is a part if PFINDR project implemented at DBMI, UCSD # This program is to write into format such as HTML, JSON in order to diplaying and exporting data # Written by <NAME>, Aug 2012 import os,sys import getopt import html2text import json from whoosh.index import create_in from whoosh import index, store, fields from whoosh.fields import * from whoosh.qparser import QueryParser from whoosh.filedb.filestore import FileStorage from whoosh.qparser import MultifieldParser from whoosh import highlight from whoosh import scoring from whoosh import sorting from whoosh import analysis from whoosh.query import FuzzyTerm import MySQLdb from DB import Table from TextMap import * import textwrap import re ################## # Replace MySQL username and password below MySQLname = "" MySQLpassword = "" # Path of indexing storage StoragePATH = "./PhD" ################## def checkBool(str1): if str1.lower()=='(and' or str1.lower() =='and)' or str1.lower()=='and': return True if str1.lower()=='(or' or str1.lower()=='or)' or str1.lower()=='or': return True if str1.lower()=='(not' or str1.lower() =='not)' or str1.lower()=='not': return True return False def HighlightX(terms1,docText): docText=docText.decode('utf-8') for value in terms1: # Method 2 docText = re.sub(re.escape(value), ur'<strong class="match term0">\g<0></strong>', docText, flags=re.IGNORECASE | re.UNICODE) return docText def AddQuote(Query): Temp1 = Query.strip('"').split() Temp2 = '' + '"' for item in Temp1: if checkBool(item)==False: Temp2 = Temp2 + ' ' + item.strip('"') else: Temp2 = Temp2 + '" ' + item.strip('"') + ' "' Temp2 = Temp2 + '"' return Temp2 def QueryAnalys(query,concept): ''' This function return query analysis with concept or not query default is free text concept default is False ''' # Process query # uppercase in case matched 'and','or','not' if query.find(' and ')>0: query = query.replace(' and ', ' AND ') if query.find(' or ')>0: query = query.replace(' or ', ' OR ') if query.find(' not ')>0: query = query.replace(' not ', ' NOT ') if query.find(' And ')>0: query = query.replace(' And ', ' AND ') if query.find(' Or ')>0: query = query.replace(' Or ', ' OR ') if query.find(' Not ')>0: query = query.replace(' Not ', ' NOT ') if query.find('\%93')>=0: query = query.replace('\%93', '"') if query.find('\%94')>=0: query = query.replace('\%94', '"') # Add double quotes into keyword search # Query reformulation substudies1 = ["phs000568.v1.p1", "phs000487.v1.p1", "phs000544.v1.p6", "phs000534.v1.p1", "phs000533.v1.p1", "phs000532.v1.p1", "phs000531.v1.p1", "phs000530.v1.p1", "phs000529.v1.p1", "phs000528.v1.p1", "phs000527.v1.p1", "phs000515.v2.p1", "phs000503.v2.p2", "phs000499.v1.p1", "phs000498.v1.p1", "phs000489.v2.p6", "phs000471.v3.p1", "phs000470.v3.p1", "phs000469.v3.p1", "phs000468.v3.p1", "phs000467.v3.p1", "phs000466.v3.p1", "phs000465.v3.p1", "phs000464.v3.p1", "phs000463.v3.p1", "phs000441.V2.P6", "phs000429.v1.p1", "phs000420.v3.p2", "phs000386.v4.p2", "phs000377.v1.p1", "phs000363.v5.p7", "phs000342.v6.p7", "phs000315.v4.p2", "phs000307.v3.p7", "phs000301.v1.p1", "phs000296.v1.p2", "phs000283.v4.p2", "phs000282.v7.p7", "phs000281.v4.p2", "phs000246.v1.p1", "phs000227.v1.p2", "phs000184.v1.p1", "phs000123.v1.p1"] substudies = ["phs000568", "phs000487", "phs000544", "phs000534", "phs000533", "phs000532", "phs000531", "phs000530", "phs000529", "phs000528", "phs000527", "phs000515", "phs000503", "phs000499", "phs000498", "phs000489", "phs000471", "phs000470", "phs000469", "phs000468", "phs000467", "phs000466", "phs000465", "phs000464", "phs000463", "phs000441", "phs000429", "phs000420", "phs000386", "phs000377", "phs000363", "phs000342", "phs000315", "phs000307", "phs000301", "phs000296", "phs000283", "phs000282", "phs000281", "phs000246", "phs000227", "phs000184", "phs000272", "phs000123"] q1='' for sub in substudies: q1 += ' NOT ' + sub # Browse top-level studies if query=='top': q2 = 'phs* OR egas* ' + q1 return unicode(q2) if concept==True: if query.find('phs')>=0 or query.find('egas')>=0: return unicode(query) if query !='top': if query.lower().find(' and ')>=0 or query.lower().find(' or ')>=0 or query.lower().find(' not ')>=0: # Add double quotes into query before running MetaMap # query like this # s = "heart attack" and ("lung cancer" or copd) # Must add quotes before parsing queryQuote = AddQuote(query) #print queryQuote #QueryParse1 = QueryParse(query) QueryParse1 = QueryParse(queryQuote) QueryParseStr = QueryParse1.Parse() return unicode(QueryParseStr) else: ExtendedQ = QueryMap(query) MetaMap = ExtendedQ.wrapper() # Show the query extension try: MetaMapOut = ExtendedQ.getMapping(MetaMap) except: MetaMapOut = query if len(MetaMapOut.strip())>0: return unicode(MetaMapOut) else: return unicode(query) else: return unicode(query) ''' Reformat text so that it fits the cell ''' def ReformatTitle(TextInput): # Display title with maxium n words, n=5 Text1 = textwrap.wrap(TextInput,34) TextInput1 = '<br>'.join(Text1[0:]) return TextInput1 ''' Reformat text so that it fits the cell ''' def ReformatOther(TextInput): TextInput1 = TextInput.replace(',',' <br> ') return TextInput1 ''' Reformat text so that it fits the cell ''' def ReformatOther1(TextInput): TextInput1 = TextInput.replace(';',' <br> ') return TextInput1 ''' Reformat text so that it fits the cell ''' def ReformatWidth(TextInput,size): Text1 = textwrap.wrap(TextInput,size) TextInput1 = '<br>'.join(Text1[0:]) return TextInput1 def usage(): print '''Usage: This program is for retrieval of relevant studies from dbGaP python Query_All_HTML.py -i <input query> -p <page number> [-f] [-c] [-d] [-l] -h, --help: This function -i, --input <Query> : Input query -p, --page <Page> : Page number -f, --format: Output format, defaul as HTML, otherwise is JSON format -c, --concept: Use concept extension or not. Default False -d, --debug: True or False. Default False -l, --limit: Limitation search, can be Study, StudyDesc, StudyTitle, StudyID, Variable, VariableID, VariableDesc Examples: python Query_All.py -i "lung cancer" -p 1 -c ''' def AddSubstudy(StudyIDx): # Add mother and sub-studies information on Apr 2013. Substudies = {} Substudies['phs000185'] = ['phs000123;Genome-Wide Association Study of Serum YKL-40 Levels','phs000184;Genome-Wide Association Study of Plasma Lp(a) Levels Identifies Multiple Genes on Chromosome 6q'] Substudies['phs000200'] = ['phs000227;PAGE: Women\'s Health Initiative (WHI)','phs000281;NHLBI GO-ESP: Women\'s Health Initiative Exome Sequencing Project (WHI) - WHISP','phs000315;WHI GARNET','phs000386;NHLBI WHI SHARe','phs000503;Women\'s Health Initiative Sight Examination (WHISE)'] Substudies['phs000182'] = ['phs000246;Fuchs\' Corneal Dystrophy: A Secondary Genome Wide Association Study'] Substudies['phs000007'] = ['phs000282;NHLBI Framingham Candidate Gene Association Resource (CARe)','phs000307;NHLBI Framingham Heart Study Allelic Spectrum Project','phs000342;NHLBI Framingham SNP Health Association Resource (SHARe)','phs000363;NHLBI Framingham SABRe CVD','phs000401;NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (FHS)'] Substudies['phs000209'] = ['phs000283;NHLBI MESA Candidate Gene Association Resource (CARe)','phs000420;NHLBI MESA SHARe','phs000403;NHLBI GO-ESP: Heart Cohorts Component of the Exome Sequencing Project (MESA)'] Substudies['phs000179'] = ['phs000296;NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (COPDGene)'] Substudies['phs000287'] = ['phs000301;PAGE: CALiCo: Cardiovascular Health Study (CHS)','phs000377;NHLBI Cardiovascular Health Study (CHS) Candidate Gene Association Resource (CARe)','phs000226;STAMPEED: Cardiovascular Health Study (CHS)','phs000400;NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (CHS)'] Substudies['phs000001'] = ['phs000429;NEI Age-Related Eye Disease Study (AREDS)'] Substudies['phs000178'] = ['phs000441;Integrated Genomic Analyses of Ovarian Carcinoma (OV)','phs000489;Comprehensive Genomic Characterization Defines Human Glioblastoma Genes and Core Pathways','phs000544;Molecular Characterization of Human Colorectal Cancer (CRC)','phs000570;Comprehensive Genomic Characterization of Squamous Cell Lung Cancers (LUSC)','phs000569;Comprehensive Molecular Portraits of Human Breast Tumors (BRCA)'] Substudies['phs000218'] = ['phs000463;TARGET: Acute Lymphoblastic Leukemia (ALL) Pilot Phase 1','phs000464;TARGET: Acute Lymphoblastic Leukemia (ALL) Expansion Phase 2','phs000465;TARGET: Acute Myeloid Leukemia (AML)','phs000466;TARGET: Kidney, Clear Cell Sarcoma of the Kidney (CCSK)','phs000467;TARGET: Neuroblastoma (NBL)','phs000468;TARGET: Osteosarcoma (OS)','phs000469;TARGET: Cell Lines and Xenografts (PPTP)','phs000470;TARGET: Kidney, Rhabdoid Tumor (RT)','phs000471;TARGET: Kidney, Wilms Tumor (WT)','phs000515;TARGET: Acute Myeloid Leukemia (AML), Induction Failure Subproject'] Substudies['phs000286'] = ['phs000498;Jackson Heart Study Allelic Spectrum Project','phs000499;NHLBI Jackson Heart Study Candidate Gene Association Resource (CARe)'] Substudies['phs000235'] = ['phs000527;CGCI: Burkitt Lymphoma Genome Sequencing Project (BLGSP)','phs000528;CGCI: HIV+ Tumor Molecular Characterization Project - Cervical Cancer (HTMCP - CC)','phs000529;CGCI: HIV+ Tumor Molecular Characterization Project - Diffuse Large B-Cell Lymphoma (HTMCP - DLBCL)','phs000530;CGCI: HIV+ Tumor Molecular Characterization Project - Lung Cancer (HTMCP - LC)','phs000531;CGCI: Medulloblastoma','phs000532;CGCI: Non-Hodgkin Lymphoma - Diffuse Large B-Cell Lymphoma (NHL - DLBCL)','phs000533;CGCI: Non-Hodgkin Lymphoma - Follicular Lymphoma (NHL - FL)','phs000534;CGCI: Office of Cancer Genomics (OCG) Grants - RC1 Human Lung Carcinogenesis'] if Substudies.has_key(StudyIDx): print """ <div class='node mother'> <div class="node-info" style="DISPLAY:none">""" print ';'.join(Substudies[StudyIDx][0:]) print """ </div> </div> """ else: pass ## ======= End added def Retrieval(Qinput,Page,concept,debug,format1,limit,PhenTab,pagePhen): page = int(Page) # Retrieve the storage index schema = Schema(IDName=TEXT(stored=True),path=ID(stored=True), title=TEXT(stored=True), desc=TEXT(stored=True), Type=TEXT(stored=True), cohort=NUMERIC(stored=True), inexclude=TEXT(stored=True), platform=TEXT(stored=True), MESHterm=TEXT(stored=True), history=TEXT(stored=True), attributes=TEXT(stored=True), topic=TEXT(stored=True),disease=TEXT(stored=True),measurement=TEXT(stored=True),demographics=TEXT(stored=True),geography=TEXT(stored=True),age=TEXT(stored=True),gender=TEXT(stored=True),category=TEXT(stored=True),IRB=TEXT(stored=True),ConsentType=TEXT(stored=True),phen=TEXT(stored=True),phenID=TEXT(stored=True),phenDesc=TEXT(stored=True),phenName=TEXT(stored=True),phenCUI=TEXT(stored=True),phenMap=TEXT(stored=True), AgeMin=NUMERIC(stored=True), AgeMax=NUMERIC(stored=True), MaleNum=NUMERIC(stored=True), FemaleNum=NUMERIC(stored=True), OtherGenderNum=NUMERIC(stored=True), UnknownGenderNum=NUMERIC(stored=True), Demographics=TEXT(stored=True), phenType=TEXT(stored=True)) storage = FileStorage(StoragePATH) ix = storage.open_index() # limit is Default as all fields mparser = MultifieldParser(["IDName","path","title","desc","Type","cohort","platform","topic","disease","measurement","demographics","geography","age","gender","category","phenID","phenName","phenDesc","phenCUI","phenMap","Demographics","phenType"], schema=ix.schema) # ============= SPECIAL CASES for query ============= # If type nothing then Qinput will show the top studies if len(Qinput.strip())==0 or Qinput.find('*')==0: Qinput='top' # set up if Qinput=='top' if Qinput=='top': limit='StudyID' # set up if Qinput=='Search e.g. ...' if Qinput.find('Search e.g.')==0: try: Qinput = Qinput.split('Search e.g.')[1].strip() except: Qinput = '' # set up if Qinput=='Search ...' if Qinput.find('Search ')==0: try: Qinput = Qinput.split('Search ')[1].strip() except: Qinput = '' # set up if Qinput=='search ...' if Qinput.find('search ')==0: try: Qinput = Qinput.split('search ')[1].strip() except: Qinput = '' if debug==True: print Qinput # =================================================== # Limitation search if limit == 'Attribution': mparser = MultifieldParser(["attributes"], schema=ix.schema) elif limit == 'ConsentType': mparser = MultifieldParser(["ConsentType"], schema=ix.schema) elif limit == 'DataSet': mparser = MultifieldParser(["phen"], schema=ix.schema) elif limit == 'DataSetID': mparser = MultifieldParser(["phen"], schema=ix.schema) elif limit == 'DataSetName': mparser = MultifieldParser(["phen"], schema=ix.schema) elif limit == 'TopicDisease': mparser = MultifieldParser(["disease","topic"], schema=ix.schema) elif limit == 'Platform': mparser = MultifieldParser(["platform"], schema=ix.schema) elif limit == 'Geography': mparser = MultifieldParser(["demographics"], schema=ix.schema) elif limit == 'IRB': mparser = MultifieldParser(["IRB"], schema=ix.schema) elif limit == 'TopicDisease': mparser = MultifieldParser(["topic","disease"],schema=ix.schema) elif limit == 'Study': mparser = MultifieldParser(["title","IDName","desc"], schema=ix.schema) elif limit == 'Study Name': mparser = MultifieldParser(["title"], schema=ix.schema) elif limit == 'Study ID': mparser = MultifieldParser(["IDName"], schema=ix.schema) elif limit == 'Variable': mparser = MultifieldParser(["phen"], schema=ix.schema) elif limit == 'Variable ID': mparser = MultifieldParser(["phenID"], schema=ix.schema) elif limit == 'Variable Name': mparser = MultifieldParser(["phenName"], schema=ix.schema) elif limit == 'Variable Description': mparser = MultifieldParser(["phenDesc"], schema=ix.schema) # ------- SORT BY RELEVANCE BMF25 algorithm --- with ix.searcher() as searcher: # ==================================================================== # Retrieve the first page to show in the interface if Qinput.strip()[0]=='(' and Qinput.strip()[-1]==')': query_text = QueryAnalys(Qinput, False) elif Qinput[0]=='"' and Qinput[1]=='(' and Qinput[len(Qinput)-2]==')' and Qinput[len(Qinput)-1]=='"': query_text = QueryAnalys(Qinput, False) elif Qinput.find(':')>=0: query_text = QueryAnalys(Qinput, False) else: query_text = QueryAnalys(Qinput, concept) if Qinput!='top': if query_text.find(':')==-1 and query_text.find('"')==-1: query_text = '"' + query_text.strip() + '"' query = mparser.parse(query_text) if debug==True: print query results = searcher.search_page(query,page,pagelen=25,terms=True) # Added on May 2013, note that work only for concept-search if concept==True: hl1=query_text.split('"') hl2 = [hl1[item].strip() for item in xrange(1,len(hl1),2)] if len(hl1)==1: hl2=hl1 else: hl_temp = query_text.replace('AND',':::') hl_temp = hl_temp.replace('OR',':::') hl2 = [item.strip() for item in hl_temp.split(':::')] if query_text.find(':')>0: hl_temp = query_text.replace('AND',':::') hl_temp = hl_temp.replace('OR',':::') hl2 = [item.strip() for item in hl_temp.split(':::')] # ===================================================================== #### CHECK CONCEPT-BASED SEARCH IS OK, IF NOT THEN SKIP # Check if MetaMap are errors, default is concept-based if results.total==0: query_text = QueryAnalys(Qinput, False) query = mparser.parse(query_text) results = searcher.search_page(query,page,pagelen=25,terms=True) # ====================================================================== # Get all Study ID AllStudy={} resultALL = searcher.search(query,limit=None) for hit in resultALL: AllStudy[hit['path']]=1 # ---------- SET UP RESULTS FRAGMENTS ----------------- results.fragmenter = highlight.SentenceFragmenter(charlimit=100000000) pagecount = results.pagecount if len(results) >= 0: if format1 =='html': print """<html> <head> <title>PhenDisco - Search Results</title> <link rel="icon" type="image/ico" href="./images/favicon.ico" /> <link href="./css/styles.css" rel="stylesheet" type="text/css"> <script src="./js/jquery-1.8.2.min.js" language="JavaScript" type="text/javascript"></script> <script src="./js/utility.js" language="JavaScript" type="text/javascript"></script> <script src="./js/variableDefinitions.js" language="JavaScript" type="text/javascript"></script> <script type="text/javascript" src="./lib/jquery.autocomplete.js"></script> <script type="text/javascript" src="./lib/localdata.js"></script> <meta name="robots" content="index, folow"/> <link rel="stylesheet" type="text/css" href="./lib/jquery.autocomplete.css" /> <script type="text/javascript"> $().ready(function() { $("#search-bar").focus().autocomplete(keywords); }); (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-15356450-11', 'ucsd.edu'); ga('send', 'pageview'); </script> </head> <body> <!-- Front page main container --> <div id='main-container'> <div id="help-tooltip" class='rounded shadow border'></div> <!-- main page header --> <div id='main-header' class='rounded shadow border'> <div class='top'> <a href='./index.php'><h1 class='alignleft'>Phenotype Discoverer</h1></a> <div style="clear: both;"></div> </div> <div class='body'> <a href='./'><img src="PhenDisco_Logo.jpg" alt="logo" height="87" width="80" style='float:left;'></a> <div> <form method="get" action="./query.php" autocomplete="off">""" if Qinput!='top': print '<input id="search-bar" type="text" size="50" name="Fname" value=\'%s\'>' % query_text else: print '<input id="search-bar" type="text" size="50" name="Fname" value=\'%s\'>' % Qinput print """<input type="hidden" name="Page" value="1"> <input type="hidden" name="PhenTab" value="0"> <input type="hidden" name="phenPage" value="1"> <button type="submit" class="search">Search</button> <input type="checkbox" name="search-checkbox" """ if concept==True: print 'checked' print """ >Concept-based</br> </div> <div> <a href='./AdvanceSearchPage.html'><button type='button' id='advanced-button' >Advanced Search</button></a><button type='button' id='limit-button' >Limits</button> </div> </div> <div class='bottom'> <div class='container'> <img id='search-bar-help' class='alignright' src="./images/help.png" alt="help" height="24" width="24" border="0"> </div> <div style="clear: both;"></div> </div> </div> <div id='limit-container' class='hide rounded shadow border'> <div class='top'> <h3 class ='alignleft'>Limits</h3> </div> <div class="body"> <div class='container'> <label for="LimitsField">Field:</label> <select name="LimitField" size="1"> <option selected="selected" value="AllFields">All Fields</option> <option value="Attribution">Attribution</option> <option value="ConsentType">Consent Type</option> <option value="Dataset">Dataset</option> <option value="DatasetID">Dataset ID</option> <option value="DatasetName">Dataset Name</option> <option value="TopicDisease">Disease</option> <option value="Platform">Genotype Platform</option> <option value="Geography">Geography</option> <option value="IRB">IRB</option> <option value="Study">Study</option> <option value="Study ID">Study ID</option> <option value="Study Name">Study Name</option> <option value="Variable">Variable</option> <option value="Variable Description">Variable Description</option> <option value="Variable ID">Variable ID</option> <option value="Variable Name">Variable Name</option> </select> </div> </div> <div class='bottom'> """ print """ <button type='button' class='alignright' id='limit-reset-button'>Reset</button> <div style="clear: both;"></div> </div> </form> </div> <!-- Results Body content --> <div id='results-body' class='rounded shadow border'> <!-- Meta Data Options --> <!-- Navigation --> <div id='results-body-right-container'> <!-- Navigation START --> <!-- Getting Started --> <div class='container'> <div class='top'> <h2>Getting Started</h2> </div> <div class='body'> <ul> <li><a href="./">PhenDisco</a></li> <li><a href="./query.php?Fname=top&Page=1&PhenTab=1&phenPage=1&LimitField=StudyID&search-checkbox=on">Browse Top Level Studies</a></li> <li><a href="http://pfindr-data.ucsd.edu/_PhDVer1/Manual.pdf">Download Manual</a></li> <li><a href="http://pfindr-data.ucsd.edu/_PhDVer1/LDAM.png">Download PhenDisco domain model</a></li> <li><a href="http://pfindr-data.ucsd.edu/_PhDVer1/sdGapMR_3.25.13.owl">Download PhenDisco ontology</a></li> </ul> </div> </div> <hr> <!-- Important Links --> <div class='container'> </div> <!-- Navigation ENDS --> </div> <!-- Results --> <div id='results-body-left-container'> <div class='top'> <h2>Results</h2> </div> <div class='body'>""" startNum = 25*(page-1)+1 if results.total > startNum + 25: endNum = startNum + 24 else: endNum = results.total if Qinput.find('"')>=0: Qinput = Qinput.replace('"','%22') Qinput = Qinput.replace(' ','+') if concept==True: check1 = 'on' else: check1='off' print """ <div class='container alignright spaced '> <button id="resultsDisplayButton">Display All</button> <button id="resultsCheckButton">Check All</button> <form style="display:inline" action="check-form.php" method="post"> <button type="submit">Export Selections</button> </div> """ print """ </div> <div style="clear: both;"></div> <div class='body'> <div id="tooltip" class='rounded shadow border'></div> <div id="nodeToolTip" class="rounded shadow border"></div> <div> <ul id="tabs">""" if PhenTab==0: print """ <li class="target" id="tabs-1">Studies</li> <li id="tabs-2">Variables</li>""" else: print """ <li id="tabs-1">Studies</li> <li class="target" id="tabs-2">Variables</li>""" print """ </ul> </div> <div class="wrapper1"> <div class="div1"> </div> </div>""" if PhenTab==0: print """ <div id="tabs-1" class="wrapper2"> """ else: print """ <div id="tabs-1" class="wrapper2 hide"> """ if startNum <= endNum: print 'Displaying: ' + str(startNum) + ' - '+str(endNum) +' of '+str(results.total) + ' studies.' if page<=1: print '<p class="alignright spaced"><a href="query.php?Fname=%s&Page=%s&PhenTab=0&phenPage=1&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_stop_left.png" alt="help" height="16" width="16" border="0"></a> <a href="query.php?Fname=%s&Page=%s&PhenTab=0&phenPage=1&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_left.png" alt="help" height="16" width="16" border="0"></a>' %(Qinput,1,limit,check1,Qinput,1,limit,check1) else: print '<p class="alignright spaced"><a href="query.php?Fname=%s&Page=%s&PhenTab=0&phenPage=1&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_stop_left.png" alt="help" height="16" width="16" border="0"></a> <a href="query.php?Fname=%s&Page=%s&PhenTab=0&phenPage=1&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_left.png" alt="help" height="16" width="16" border="0"></a>' %(Qinput,1,limit,check1,Qinput,page-1,limit,check1) print " Page " + str(Page) +" of " + str(pagecount) if page<=pagecount-1: print '<a href="query.php?Fname=%s&submit=Search&Page=%s&PhenTab=0&phenPage=1&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_right.png" alt="help" height="16" width="16" border="0"></a> <a href="query.php?Fname=%s&submit=Search&Page=%s&PhenTab=0&phenPage=1&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_stop_right.png" alt="help" height="16" width="16" border="0"></a></p>' %(Qinput,page+1,limit,check1,Qinput,pagecount,limit,check1) else: print '<a href="query.php?Fname=%s&submit=Search&Page=%s&PhenTab=0&phenPage=1&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_right.png" alt="help" height="16" width="16" border="0"></a> <a href="query.php?Fname=%s&submit=Search&Page=%s&PhenTab=0&phenPage=1&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_stop_right.png" alt="help" height="16" width="16" border="0"></a></p>' %(Qinput,pagecount,limit,check1,Qinput,pagecount,limit,check1) # Added on June 1, 2013 print """ <!-- Meta Data Options --> <div class='container alignleft'> <div class='top'> <h2>Study Display Options</h2> </div> <div class='body'> <div id="display-options-help-tooltip" class='rounded shadow border'></div> <table id='filters'> <tr> <td><input type="checkbox" checked="true" class='filter' id="title" >Title</td> <td><input type="checkbox" checked="true" class='filter' id="embargoRelease" >Embargo Release</td> <td><input type="checkbox" class='filter' id="links" >Links</td> <td><input type="checkbox" class='filter' id="geography" >Geography</td> </tr> <tr> <td><input type="checkbox" checked="true" class='filter' id="studyType" >Study Type</td> <td><input type="checkbox" checked="true" class='filter' id="platform" >Platform</td> <td><input type="checkbox" class='filter' id="consentType" >Consent Type</td> <td><input type="checkbox" class='filter' id="irb" >IRB</td> </tr> <tr> <td><input type="checkbox" checked="true" class='filter' id="sampleSize" >Sample Size</td> <td><input type="checkbox" checked="true" class='filter' id="details" >Details</td> <td><input type="checkbox" class='filter' id="topicDisease" >Topic Disease</td> </tr> </table> </div> </div> <div style="clear: both;"></div> <div class='bottom'> <div class='container alignleft'> <button type=button id='filter_apply' >Apply</button> <button type=reset id='filter_defaults' >Restore Defaults</button> </div> <div class='container alignright'> <img src="./images/help.png" id='display-options-help' alt="help" height="24" width="24" border="0"> </div> </div> <div style="clear: both;"></div> <hr> """ # SHOWING THE RESULTS OF STUDIES if results.total==0: print "Your search returned 0 studies" else: # Print header table first print """ <table id='results_table' class='results' > <thead> <th></th> <th class='title'>Title</th> <th class='embargoRelease'>Embargo Release</th> <th class='details'>Details</th> <th class='sampleSize'>Participants</th> <th class='studyType'>Type of Study</th> <th class='platform'>Platform</th> <th class='links'>Links</th> <th class='geography'>Geography</th> <th class='irb'>IRB</th> <th class='consentType'>Consent Type</th> <th class='topicDisease'>Topic Disease</th> </thead> <tbody> """ ## DISPLAYING THE RESULTS # =========================================================== # Display studies # =========================================================== PhenOut = {} # Connect to the database # Relace MySQL username and password below db = MySQLdb.connect("localhost", MySQLusername, MySQLpassword, "<PASSWORD>") #records = Table(db, "Phenotypes") records = Table(db, "Phenotypes") Release1 = Table(db, "Release1") Study1 = Table(db, "Study") Abstraction1 = Table(db, "AbstractionNew") URL = 'http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=' rank = 0 num = 25*(page-1) for hit in results: # DEBUGGING if debug==True: print hit.matched_terms() MAXRANK = resultALL.score(0) scoreRank = results.score(rank) Rate = int(5*scoreRank/MAXRANK) if Rate == 0: Rate = 1 rank = rank + 1 PhenOut[num]=[] # ----- Print rank score ------ URL1 = URL + hit["path"].split('.')[0] # If title not contain search keywords if len(hit.highlights("title"))==0: if format1=='html': try: print "<tr id='results_tablerow_" + str(num) + "'>" print "<td><input id='results_tablerow_" + str(num) + "'" + ' type="checkbox"' + ' name="tags[]"' + ' value="' + hit["path"] +'"/>' # Added on Apr 29, 2013 id_temp1=hit["path"].strip().split('.')[0] AddSubstudy(id_temp1) print '</td>' # End Added print '<td class="title"> <a href="'+ URL1 +'" target="_blank">'+ hit["path"] +'<br>'+ html2text.html2text(hit["title"]) + '</a>' if Qinput!='top': print ' </td>' temp1 = html2text.html2text(hit.highlights("desc")).lower().replace('*','') found =any(item in temp1 for item in hl2) if len(hit.highlights("desc"))>0 and found==True: print '<td class="highlight1" style="DISPLAY:none">' + HighlightX(hl2,temp1) + '</td>' else: print '<td class="highlight1" style="DISPLAY:none">' + ' '.join(hit["desc"].split()[:30]) + '</td>' except: print "<tr id='results_tablerow_" + str(num) + "'>" print "<td><input id='results_tablerow_" + str(num) + "'" + ' type="checkbox"' + ' name="tags[]"' + ' value="' + hit["path"] +'"/>' # Added on Apr 29, 2013 id_temp1=hit["path"].strip().split('.')[0] AddSubstudy(id_temp1) print '</td>' # End added print '<td class="title"> <a href="' + URL1 + '" target="_blank">'+ hit["path"] +'<br>' + hit["title"] + '</a>' if Qinput!='top': print ' </td>' temp1 = html2text.html2text(hit.highlights("desc")).lower().replace('*','') found =any(item in temp1 for item in hl2) if len(hit.highlights("desc"))>0 and found==True: print '<td class="highlight1" style="DISPLAY:none">' + HighlightX(hl2,temp1) + '</td>' else: print '<td class="highlight1" style="DISPLAY:none">' + ' '.join(hit["desc"].split()[:30]) + '</td>' pass else: # If title contain terms then highlight title terms = [text for fieldname, text in query.existing_terms(ix.reader(), phrases=True, expand=True) if fieldname == "title"] if format1=='html': #pass try: print "<tr id='results_tablerow_" + str(num) + "'>" print "<td><input id='results_tablerow_" + str(num) + "'" + ' type="checkbox"' + ' name="tags[]"' + ' value="' + hit["path"] +'"/>' # Added on Apr 29, 2013 id_temp1=hit["path"].strip().split('.')[0] AddSubstudy(id_temp1) print '</td>' # End added # Note: Convert HTML into text then match into terms temp1 = html2text.html2text(hit.highlights("title")).lower().replace('*','') found =any(item in temp1 for item in hl2) if found==True: print '<td class="title"> <a href="' + URL1 + '" target="_blank">' + hit["path"] +'<br>'+ HighlightX(hl2,hit["title"]) +'</a>' else: print '<td class="title"> <a href="' + URL1 + '" target="_blank">' + hit["path"] +'<br>'+ hit["title"] +'</a>' if Qinput!='top': print ' </td>' temp1 = html2text.html2text(hit.highlights("desc")).lower().replace('*','') found =any(item in temp1 for item in hl2) if len(hit.highlights("desc"))>0 and found==True: print '<td class="highlight1" style="DISPLAY:none">' + HighlightX(hl2,temp1) + '</td>' else: print '<td class="highlight1" style="DISPLAY:none">' + ' '.join(hit["desc"].split()[:30]) + '</td>' except: print "<tr id='results_tablerow_" + str(num) + "'>" print "<td><input id='results_tablerow_" + str(num) + "'" + ' type="checkbox"' + ' name="tags[]"' + ' value="' + hit["path"] +'"/>' # Added on Apr 29, 2013 id_temp1=hit["path"].strip().split('.')[0] AddSubstudy(id_temp1) print '</td>' # End added print '<td class="title"> <a href="' + URL1 + '" target="_blank">'+ hit["path"] +'<br>' + hit["title"] + '</a>' if Qinput!='top': #print '<div class="rating"> <div class="rank' + str(Rate) + '"> </div></div>' print ' </td>' #print len(hit.highlights("desc")) temp1 = html2text.html2text(hit.highlights("desc")).lower().replace('*','') found =any(item in temp1 for item in hl2) if len(hit.highlights("desc"))>0 and found==True: #print '<td class="highlight1" style="DISPLAY:none">' + hit.highlights("desc") + '</td>' print '<td class="highlight1" style="DISPLAY:none">' + HighlightX(hl2,temp1) + '</td>' else: print '<td class="highlight1" style="DISPLAY:none">' + ' '.join(hit["desc"].split()[:30]) + '</td>' pass if format1=='html': # Print HTML Table here # Print Embargo Release studyid1 = hit["path"].split('.')[0] print "<td class=\"embargoRelease\">" print ReformatOther(Release1.getitem(studyid1)[0][1]) print "</td>" # Print VDAS print """<td class='details'> <div class='detailsImg v on alignleft'> </div> <div class='detailsImg d off alignleft'> </div> <div class='detailsImg a off alignleft'> </div> <div class='detailsImg s off alignleft'> </div> <div style="clear: both;"></div>""" print '<td class="PhenNum" style="DISPLAY:none">' + str(records.phencount(hit["path"].split('.')[0])) + '</td>' print""" </td>""" # Print sample size print "<td class=\"sampleSize\">" print hit["cohort"] print "</td>" # Print Study type print "<td class=\"studyType\">" print ReformatOther(hit["Type"]) print "</td>" # Print Platform platform = Study1.getPlatform(studyid1) print "<td class=\"platform\">" print platform print "</td>" # Print Links print "<td class=\"links\">" print "n/a" print "</td>" # Print Geography print "<td class=\"geography\">" studyid1 = hit["path"].split('.')[0] geo = Abstraction1.getGeoNew(studyid1) print geo.upper() print "</td>" # Print IRB print " <td class='irb'>" IRBStr = Abstraction1.getIRBNew(studyid1) print IRBStr print "</td>" # Print Consent Type print " <td class='consentType'>" ConsentText = Abstraction1.getConsentNew(studyid1) print ConsentText print "</td>" # Print Topic Disease print " <td class='topicDisease'>" Disease1 = Abstraction1.getDiseaseNew(studyid1) print ReformatOther1(Disease1) print "</td>" print "</tr>" PhenOut[num].append((hit["path"],hit["title"],URL1,hit["desc"],records.phencount(hit["path"].split('.')[0]),records.datasetcount(hit["path"]), hit["Type"],hit["cohort"])) num = num + 1 # ======================================================== # ============= PRINT PHENOTYPE VARIABLES ================ # ======================================================== # Print header print """ </tbody> </table> </div>""" if PhenTab==0: print """ <div id="tabs-2" class='wrapper2 hide'> """ else: print """ <div id="tabs-2" class='wrapper2'> """ print """ <div id="definitionTooltip" class='rounded shadow border'></div>""" # ======================================================== # Find all ID variables #print AllStudy IDListQuery = ' ' for key in AllStudy: IDListQuery+=key.split('.')[0] + '|' IDListQuery = IDListQuery.strip('|').strip('"').strip() PhenQuery="'" + '|'.join(hl2[0:]).replace('(','').replace(')','').replace('"','') + "'" records = Table(db, "Phenotypes1") try: # Work with extended search - concept search PhenNum1 = records.countPhenLimit(PhenQuery,IDListQuery) PhenOutS1 = records.getPhenLimit(PhenQuery,IDListQuery,pagePhen) except: PhenNum1=0 PhenOutS1 = '' if Qinput=='top': PhenNum1 = records.countPhenAll() PhenOutS1 = records.getPhenAll(pagePhen) # =============================================================================== # SHOWING THE PHENOTYPE RESULTS # =============================================================================== if PhenNum1==0: print "Your search return 0 variables" else: print """ <table id='variables_table' class='variables' > <thead> <th></th> <th class='study'>Study</th> <th class='name'>Variable ID/Name</th> <th class='description'>Description</th> <th class='category'>Category</th> </thead> <tbody> """ pagePhenMax = PhenNum1/25 + 1 startNum1 = 25*(pagePhen-1)+1 if PhenNum1 > startNum1 + 25: endNum1 = startNum1 + 24 else: endNum1 = PhenNum1 if PhenNum1>0: print 'Displaying: ' + str(startNum1) + ' - ' +str(endNum1) +' of '+str(PhenNum1) + ' variables.' if pagePhen<=1: print '<p class="alignright spaced"><a href="query.php?Fname=%s&Page=%s&PhenTab=1&phenPage=%s&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_stop_left.png" alt="help" height="16" width="16" border="0"></a> <a href="query.php?Fname=%s&Page=%s&PhenTab=1&phenPage=%s&LimitField=%s&search-checkbox=%s&PhenTab=1"><img src="./images/arrow_left.png" alt="help" height="16" width="16" border="0"></a>' %(Qinput,1,1,limit,check1,Qinput,1,1,limit,check1) else: print '<p class="alignright spaced"><a href="query.php?Fname=%s&Page=%s&PhenTab=1&phenPage=%s&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_stop_left.png" alt="help" height="16" width="16" border="0"></a> <a href="query.php?Fname=%s&Page=%s&PhenTab=1&phenPage=%s&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_left.png" alt="help" height="16" width="16" border="0"></a>' %(Qinput,1,1,limit,check1,Qinput,1,pagePhen-1,limit,check1) print " Page " + str(pagePhen) +" of " + str(pagePhenMax) if pagePhen<=pagePhenMax-1: print '<a href="query.php?Fname=%s&submit=Search&Page=%s&PhenTab=1&phenPage=%s&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_right.png" alt="help" height="16" width="16" border="0"></a> <a href="query.php?Fname=%s&submit=Search&Page=%s&PhenTab=1&phenPage=%s&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_stop_right.png" alt="help" height="16" width="16" border="0"></a></p>' %(Qinput,1,pagePhen+1,limit,check1,Qinput,1,pagePhenMax,limit,check1) else: print '<a href="query.php?Fname=%s&submit=Search&Page=%s&PhenTab=1&phenPage=%d&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_right.png" alt="help" height="16" width="16" border="0"></a> <a href="query.php?Fname=%s&submit=Search&Page=%s&PhenTab=1&phenPage=%s&LimitField=%s&search-checkbox=%s"><img src="./images/arrow_stop_right.png" alt="help" height="16" width="16" border="0"></a></p>' %(Qinput,1,pagePhenMax,limit,check1,Qinput,1,pagePhenMax,limit,check1) # =============================================================================== numPhen = 0 num1 = 0 # Print out the Table if only the number of PhenNum1>0 if PhenNum1>0: # Print variables while num1<=min(24,len(PhenOutS1)-1): print "<tr id='variables_tablerow_" + str(num1) + "'>" StudyID1 = PhenOutS1[num1][1] # Print out for checked form temp1p = '","'.join(PhenOutS1[num1][0:]).replace('>',' ') print '<td><input id="variables_tablerow_' + str(num1) + '" type="checkbox" name="tags[]" value=\'"' + temp1p + '"\'/></td>' URL1 = 'http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=' # Print study name and title print '<td class="study"> <a href="' + URL1 + StudyID1.split('.')[0] + '" target="_blank" >' print StudyID1 print '<br>' print Study1.getTitle(StudyID1) print "</a></td>" # Print Variable ID print "<td class='name'> <div class='id'>" VarLink='http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/variable.cgi?study_id=' + StudyID1 + '&phv=' + str(int(PhenOutS1[num1][0].split('.')[0].split('phv')[1])) print '<a href="' + VarLink + '">' + PhenOutS1[num1][0] + '</a>' print "</div>" # Print Variable Name print "<div class='var_name'>" print PhenOutS1[num1][4] print "</div>" PhenInfo='' for PhenX in PhenOutS1[num1]: PhenX = PhenX.replace(';',' | ') + ';' PhenInfo+=PhenX print '<td class="highlight2" style="DISPLAY:none">' + PhenInfo + '</td>' # Print Description print "<td class='description'>" print HighlightX(hl2,unicode(PhenOutS1[num1][5])) print "</td>" # Print Category print "<td class='category'>" phenCat1 = PhenOutS1[num1][-1].split(';') if len(phenCat1)>0: for phen1 in phenCat1: print '<span>' + phen1 + '</span><br><br>' print "</td></tr>" num1+=1 # End form for checkbox print '<noscript><input type="submit"></noscript> ' print '</form>' # =============================================== # Print Footer # =============================================== print """ </tbody> </table> </div> </div> </div> <div style="clear: both;"></div> </div> <div id='main-footer' class='rounded shadow border'> <h4 id="dbv">Database Version: Last update July 1, 2013. Next update September 1, 2013&nbsp;</h4> <br> <h5 style="font-size:x-small;font-weight:normal"> PhenDisco is based on a mix of computer- and human-curated data. For this reason, it is not 100% accurate. There may be cases in which relevant studies are missed, as well as cases in which irrelevant studies are ranked highly. We encourage users to contact us at email <EMAIL> when they encounter these kinds of problems. This work was funded by grant UH2HL108785 from NHLBI, NIH. </h5> <div style="clear: both;"></div> </div> </div> </body> </html> """ # In case using JSON format if format1=='json': ToJSON = json.dumps(PhenOut) print ToJSON # Disconnect database db.close() def main(): version = '1.0' debug = False Qinput = '' Page = 1 concept = False format1 = 'html' limit = '' # PhenTab: False-0, True-1. True then display Phen Tab PhenTab = 0 pagePhen = 1 try: options, remainder = getopt.getopt(sys.argv[1:], 'i:p:z:l:t:fhdcvt', ['input=','page=','pagePhen=','limit=','tab=','format','help','debug','concept','version']) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in options: if opt in ('-h', '--help'): usage() sys.exit() elif opt in ('-i', '--input'): Qinput = arg elif opt in ('-p', '--page'): Page = arg elif opt in ('-p', '--page'): Page = arg elif opt in ('-z', '--pagePhen'): pagePhen = int(arg) elif opt in ('-c', '--concept'): #print "Search with concept extension" concept = True elif opt in ('-f', '--format'): format1 = 'json' elif opt in ('-d', '--debug'): debug = True elif opt in ('-v', '--version'): version = '1.0' elif opt in ('-l', '--limit'): limit = arg elif opt in ('-t', '--tab'): PhenTab = int(arg) Retrieval(Qinput,Page,concept,debug,format1,limit,PhenTab,pagePhen) if __name__=="__main__": main()
2.578125
3
GamesRL/pirate-passage/grid.py
Zhuravld/Portfolio
0
12784478
<filename>GamesRL/pirate-passage/grid.py<gh_stars>0 from utils import PointIndexed, Field Point = tuple([int, int]) class Pirate: """Enemy. Occupies a single Field, travels along a route. at: current location (field ref or point coords) id: identifier route: list of waypoints """ _count = 0 def __init__(self, route_waypoints: list, id=None): self.route = [tuple(wp) for wp in route_waypoints] self.i = 0 Pirate._count += 1 if id is None: id = Pirate._count self.id = id def execute_move(self): self.i = (self.i + 1) % len(self.route) def _next(self): return self.route[(self.i + 1) % len(self.route)] @property def at(self): return self.route[self.i] class Grid: """Gridworld. Handles interaction of pirate and player objects on a `PointIndexed` collection of `Field`s. Agents on the grid communicate an intended move by passing the `Grid` obj as parameter. """ # TODO: Test Grid class def __init__(self, spec: dict): shape, start, goal, inaccessible, pirate_routes = map( lambda k: spec[k], ["shape", "start", "goal", "inaccessible", "pirate_routes"], ) self.fields = self._initialize_fields(shape) self._mark_inaccessible_fields(inaccessible) self._set_start_and_goal_fields(start, goal) self.pirates = self._initialize_pirates(pirate_routes) @property def shape(self) -> tuple([int, int]): return self.fields.shape def _initialize_fields(self, shape): """Generate grid of Fields from `shape` (2-tuple)""" nrows, ncols = shape return PointIndexed( [ # 2D collection of Fields, indexed by (r,c) [Field((row_idx, col_idx)) for row_idx in range(nrows)] for col_idx in range(ncols) ] ) def _mark_inaccessible_fields(self, inaccessible: list(Point)): """Modify `self.grid` inplace to mark inaccessible fields.""" self.inaccessible = inaccessible for point in inaccessible: self.fields[point].player_can_access = False def _set_start_and_goal_fields(self, start_point: Point, goal_point: Point): """Init references to start and goal fields.""" self.start_field = self.fields[start_point] self.goal_field = self.fields[goal_point] def _initialize_pirates(self, pirate_routes: dict) -> list([Pirate]): pirates = [Pirate(route, id=i) for i, route in pirate_routes.items()] return pirates def step(self, player_action: tuple([Point, Point])) -> list: """Increment grid state given `player_action`. Return IDs of all collided pirates""" in_transit_collisions = self.check_in_transit_collisions(player_action) endpoint_collisions = self.check_endpoint_collisions(player_action) if in_transit_collisions: self._message( f"Collided with pirates in transit: {', '.join(in_transit_collisions)}" ) elif endpoint_collisions: self._message( f"Collided with pirates at endpoint: {', '.join(endpoint_collisions)}" ) self._execute_movements() if in_transit_collisions: return in_transit_collisions else: return endpoint_collisions def get_pirate_moves(self) -> dict: return {p.id: (p.at, p._next()) for p in self.pirates} def _execute_movements(self): # self._message("Sending all movements commands") for p in self.pirates: p.execute_move() def _message(self, msg): """Placeholder for sending data to the UI""" print(msg) def check_in_transit_collisions(self, player_action: tuple([Point, Point])) -> list: player_from, player_to = player_action pirates_collided = [] for pirate_id, from_to in self.get_pirate_moves().items(): pirate_from, pirate_to = from_to if (pirate_from == player_to) and (pirate_to == player_from): pirates_collided.append(pirate_id) return pirates_collided def check_endpoint_collisions(self, player_action: tuple([Point, Point])) -> list: _, player_to = player_action pirates_collided = [] for pirate_id, (pirate_from, pirate_to) in self.get_pirate_moves().items(): if pirate_to == player_to: pirates_collided.append(pirate_id) return pirates_collided
3.078125
3
LeetCode/Medium/partition_labels.py
shrey199325/LeetCodeSolution
0
12784479
""" A string S of lowercase English letters is given. We want to partition this string into as many parts as possible so that each letter appears in at most one part, and return a list of integers representing the size of these parts. Example 1: Input: S = "ababcbacadefegdehijhklij" Output: [9,7,8] Explanation: The partition is "ababcbaca", "defegde", "hijhklij". This is a partition so that each letter appears in at most one part. A partition like "ababcbacadefegde", "hijhklij" is incorrect, because it splits S into less parts. Note: S will have length in range [1, 500]. S will consist of lowercase English letters ('a' to 'z') only. """ from typing import List class Solution: def partitionLabels(self, S: str) -> List[int]: last_occurance = {c: i for i, c in enumerate(S)} j = anchor = 0 ans = [] for index, c in enumerate(S): j = max(j, last_occurance[c]) if index == j: ans.append(index - anchor + 1) anchor = index + 1 return ans
4.25
4
src/Nodes/Graph.py
CelineDknp/SemiParsingCFG
0
12784480
from .Node import Node from .FusedNode import FusedNode from .SimpleBranchConditionNode import SimpleBranchConditionNode from .MultipleBranchConditionNode import MultipleBranchConditionNode from .ControlLoopNode import ControlLoopNode from .LabelLoopNode import LabelLoopNode from .LoopNode import LoopNode from .MultipleLabelLoopNode import MultipleLabelLoopNode from Utils.config import * from Utils.utils import clean_regex import graphviz class Graph: def __init__(self, start_node): self.start_node = start_node self.last_node = start_node self.open_ifs = [] self.open_loops = {} self.open_control_loops = [] self.all_labels = {} self.all_nodes = [start_node] def get_last_node(self): return self.all_nodes[-1] def match_if(self, branch_node): res = None # print(f"Searching corr node for: {branch_node}") for cond_node in self.open_ifs: # print(f"Looking at {cond_node} at depth {cond_node.get_depth()}") # print(f"{cond_node.get_regex()} VS {branch_node.get_regex()}") if cond_node.get_depth() == branch_node.get_depth() and ( cond_node.get_regex() == branch_node.get_regex() or branch_node.get_type() == NODE_COND_END_ANY): # print("match !") res = cond_node return res def match_loops(self, node): to_remove = [] # print(f"IN MATCH LOOPS {node}") # print(self.open_loops) if node.get_label() in self.open_loops.keys(): for loop in self.open_loops[node.get_label()]: # print("MATCH") loop.add_child(node) if loop.is_complete(): to_remove.append(loop) for n in to_remove: self.open_loops[node.get_label()].remove(n) def match_control_node(self, control_node, child): to_remove = [] found = False for n in self.open_control_loops: if isinstance(n, ControlLoopNode) and control_node.get_type() == n.get_control(): n.add_child(child, match=True) found = True to_remove.append(n) for n in to_remove: self.open_control_loops.remove(n) return found def match_labels(self, loop_node): if isinstance(loop_node, ControlLoopNode): return True # print(f"IN MATCH LABELS {loop_node}") # print(self.all_labels) if isinstance(loop_node, MultipleLabelLoopNode): for l in loop_node.get_label(): if l in self.all_labels.keys(): # print("MATCH") loop_node.add_child(self.all_labels[l]) if len(loop_node.get_childs()) == len(loop_node.get_label())+1: return False elif isinstance(loop_node, LabelLoopNode): if loop_node.get_label() in self.all_labels.keys(): # print("MATCH") loop_node.add_child(self.all_labels[loop_node.get_label()]) return False return True def update_open_loops(self, node): if node.is_control(): self.open_control_loops.append(node) elif self.match_labels(node): if node.is_multiple_labels(): for l in node.get_label(): if l in self.open_loops.keys(): self.open_loops[l].append(node) else: self.open_loops[l] = [node] else: if node.get_label() in self.open_loops.keys(): self.open_loops[node.get_label()].append(node) else: self.open_loops[node.get_label()] = [node] def add_single_node(self, node): if self.last_node is not None: self.last_node.add_child(node) self.last_node = node self.all_nodes.append(node) def add_node(self, node): # print(f"Adding node {node}") if node.get_type() == NODE_COND_START: # print(">>> In IF") self.add_single_node(node) self.open_ifs.append(node) elif node.get_type() == NODE_SQL: self.add_single_node(node) elif node.get_type() == NODE_LABEL: # print(">>> In EXEC") self.add_single_node(node) self.all_labels[node.get_label()] = node self.match_loops(node) elif node.get_type() == NODE_LOOP: self.add_single_node(node) #print(f"Loop node {node}") if not node.is_goback_node(): #If we don't need to go back to this node, don't print("Node was a GOTO, cancel last node") self.last_node = None self.update_open_loops(node) elif node.get_type() == NODE_COND_BRANCH: # print(">>> In ELSE") corr_if = self.match_if(node) if corr_if is None: print(f"Was looking for node to match {node} in array {self.open_ifs}, but found none") raise Exception('Missmatched condition branch') temp = Node(corr_if.get_depth(), NODE_CONTROL) if isinstance(node, MultipleBranchConditionNode): # We have a multiple condition, grab the condition corr_if.add_branch_condition(node, temp) corr_if.close_branch() # If we found an else, we should close the previous branch corr_if.add_child(temp) self.all_nodes.append(temp) self.last_node = temp elif node.get_type() == NODE_COND_END or node.get_type() == NODE_COND_END_ANY: # print(">>> In END-IF") corr_if = self.match_if(node) temp = Node(0, NODE_CONTROL) if corr_if is None else Node(corr_if.get_depth(), NODE_CONTROL) f = False if node.get_type() == NODE_COND_END_ANY: f = self.match_control_node(node, temp) if corr_if is None and not f: print(f"Was looking for node to match {node} in array {self.open_ifs} or {self.open_control_loops}, but found none") raise Exception('Missmatched condition end') # print(f"Found matching if: {corr_if}", flush=True) if corr_if is not None: corr_if.close(temp) self.open_ifs.remove(corr_if) elif self.last_node is not None: self.last_node.add_child(temp) self.last_node = temp self.all_nodes.append(temp) elif node.get_type() == "END": # Adding the end_node self.add_single_node(node) # print("Added the last_node") else: print(f"Issue during adding node {node}") def get_start_node(self): return self.start_node def get_size(self): return len(self.all_nodes) def get_all_nodes(self): return self.all_nodes def replace_child(self, target, old_child, new_child): if isinstance(target, SimpleBranchConditionNode): if target.true_child == old_child: target.remove_child(old_child) target.add_child(new_child, end=True, branch=True) if target.false_child == old_child: target.remove_child(old_child) target.add_child(new_child, end=True, branch=False) elif isinstance(target, LoopNode): target.remove_child(old_child) target.add_child(new_child, match=True) else: target.remove_child(old_child) target.add_child(new_child) for grand_child in old_child.get_childs(): grand_child.remove_parent(old_child) grand_child.add_parent(target) if old_child in self.all_nodes: self.all_nodes.remove(old_child) def cleanup_triangle(self, current_node, new_child): self.replace_child(current_node.get_parent()[0], current_node, new_child) def one_parent(self, node): if len(node.get_parent()) == 0: return False if len(node.get_parent()) == 1: # Easy case, only one parent return True first = node.get_parent()[0] for elem in node.get_parent(): if elem != node: # Dirty if elem != first: return False return True def cleanup(self, label_clean=False): #for o in self.open_loops: # if self.open_loops[o] != []: # print(f"Found open loop: {o}, {self.open_loops[o]}") cleaned = True while cleaned == True: visited = [] cleaned = False start_node = self.all_nodes.copy() while len(start_node) != 0: current_node = start_node[0] visited.append(current_node) if current_node.get_type() == NODE_CONTROL: children = current_node.get_childs() # print(f">>> Found control node ! len children: {len(children)} len grand_children: {len(children[0].get_childs())}") if len(children) == 2: if children[0] == children[1]: # Two links pointing the same direction current_node.remove_child(children[0]) cleaned = True # We are dealing with a triangle (V1) elif children[1] == children[0].get_childs()[0]: self.cleanup_triangle(current_node, children[1]) cleaned = True # We are dealing with a triangle (V2) elif children[0] == children[1].get_childs()[0]: self.cleanup_triangle(current_node, children[0]) cleaned = True elif len(children) == 1: # We are in a control node having a single child of a control node parent_node = current_node.get_parent().copy() for p in parent_node: self.replace_child(p, current_node, children[0]) cleaned = True elif current_node.get_type() == NODE_LABEL and label_clean: parents = current_node.get_parent() if len(parents) == 1 and parents[0].get_type() != NODE_LOOP: # A single parent that is not a GOTO child_node = current_node.get_childs().copy() for c in child_node: self.replace_child(parents[0], current_node, c) cleaned = True for child in current_node.get_childs().copy(): # Look at a node's childrens if child.get_type() == NODE_CONTROL: # When we find a control node if len(child.get_childs()) == 1 and self.one_parent(child): # Only one parent and one child self.replace_child(current_node, child, child.get_childs()[0]) cleaned = True start_node.remove(current_node) def fuse(self, node_up, node_down): if node_down.get_type() == NODE_FUSED: node_down.fuse_node(node_up, up=True) self.all_nodes.remove(node_up) return node_down elif node_up.get_type() == NODE_FUSED: node_up.fuse_node(node_down, down=True) self.all_nodes.remove(node_down) else: node = FusedNode(node_up.get_depth(), NODE_FUSED) self.all_nodes.append(node) node.fuse_node(node_up, up=True) self.all_nodes.remove(node_up) node.fuse_node(node_down, down=True) self.all_nodes.remove(node_down) return node def squish(self): squished = True while squished: squished = False start_node = self.all_nodes.copy() all_nodes = [] while len(start_node) != 0: current_node = start_node[0] all_nodes.append(current_node) if ( current_node.get_type() == NODE_COND_START or current_node.get_type() == NODE_FUSED) and current_node.point_to_one(): # We are in a if node that points to a single node # print(f"Found a node that points to one: {current_node} with childs: {current_node.get_childs()}") child = current_node.get_childs()[0] if child.get_type() != "END" and child.get_type() != NODE_SQL: merge = True for c in child.get_childs(): if c.get_type() == NODE_SQL: merge = False if merge: # print("Decided to merge !") res = self.fuse(current_node, child) squished = True break elif current_node.get_type() == NODE_FUSED and any( child.get_type() == NODE_FUSED for child in current_node.get_childs()): # print("Found a fused node having fused child") # We found a fused node having a FUSED child to_fuse = None for child in current_node.get_childs(): if child.get_type() == NODE_FUSED: to_fuse = child if to_fuse != None: # print("Decided to fuse the fuse") res = self.fuse(current_node, to_fuse) squished = True start_node.remove(current_node) def save_as_file(self, filename, output_dir='doctest-output'): dot = graphviz.Digraph(filename) for current_node in self.all_nodes: if current_node.get_type() == NODE_COND_START: dot.attr('node', shape='ellipse') dot.node(str(current_node.id), clean_regex(current_node) + " " + current_node.condition) elif current_node.get_type() == NODE_LOOP: dot.attr('node', shape='ellipse') if isinstance(current_node, ControlLoopNode): dot.node(str(current_node.id), clean_regex(current_node)) elif isinstance(current_node, MultipleLabelLoopNode): dot.node(str(current_node.id), "PERFORM " + current_node.get_label()[0]+" THRU "+ current_node.get_label()[1]) elif isinstance(current_node, LabelLoopNode): dot.node(str(current_node.id), clean_regex(current_node)+" " + current_node.get_label()) elif current_node.get_type() == NODE_SQL: dot.attr('node', shape='box') dot.node(str(current_node.id), current_node.parsable) elif current_node.get_type() == NODE_LABEL: dot.attr('node', shape='note') dot.node(str(current_node.id), current_node.label) elif current_node.get_type() == NODE_CONTROL: dot.node(str(current_node.id), str(current_node.id)) elif current_node.get_type() == "START": dot.attr('node', shape='diamond') dot.node(str(current_node.id), 'START') elif current_node.get_type() == "END": dot.attr('node', shape='diamond') dot.node(str(current_node.id), 'END') elif current_node.get_type() == NODE_FUSED: dot.attr('node', shape='circle') dot.node(str(current_node.id), str(current_node.amount_contained())) for n in self.all_nodes: if n.get_type() == NODE_COND_START and isinstance(n, SimpleBranchConditionNode): dot.edge(str(n.id), str(n.true_child.id), label='True') dot.edge(str(n.id), str(n.false_child.id), label='False') elif n.get_type() == NODE_COND_START and isinstance(n, MultipleBranchConditionNode): for condition in n.get_branch_childs().keys(): # print(condition) dot.edge(str(n.id), str(n.get_branch_child(condition).id), label=condition) elif n.get_type() == NODE_LOOP and n.is_goback_node(): # print(f"Doing node {n}") for link in n.get_childs(): dot.edge(str(n.id), str(link.id)) if link.get_type() == NODE_LABEL and link.get_label() == n.go_back_label(): dot.edge(str(link.id), str(n.id), label="Go back") else: for link in n.get_childs(): dot.edge(str(n.id), str(link.id)) dot.render(directory=output_dir, view=False) def add_node_to_list(self, node): self.all_nodes.append(node) def __str__(self): result = "Nodes in graph:\n" for n in self.all_nodes: # print(n.id) result += n.__repr__() + "\n" return result
2.296875
2
abc/abc048/abc048c.py
c-yan/atcoder
1
12784481
<reponame>c-yan/atcoder N, x = map(int, input().split()) a = list(map(int, input().split())) result = 0 # a[0] が x 以下でないと、a[1] を空にしても条件を満たせない t = a[0] - x if t > 0: result += t a[0] -= t for i in range(1, N): # 箱に入っているキャンディの数が食べれる上限 t = min(a[i - 1] + a[i] - x, a[i]) if t > 0: result += t a[i] -= t print(result)
2.453125
2
handlers/storing_passwords_handl.py
bbt-t/bot-pet-project
0
12784482
<reponame>bbt-t/bot-pet-project from datetime import timedelta from hashlib import scrypt as hashlib_scrypt from hmac import compare_digest as hmac_compare_digest from pickle import dumps as pickle_dumps from pickletools import optimize as pickletools_optimize from aiogram.dispatcher import FSMContext from aiogram.dispatcher.filters.builtin import Command from aiogram.types import Message, CallbackQuery, ChatActions from aiogram.utils.markdown import hspoiler from sqlalchemy.exc import IntegrityError, NoResultFound from sqlalchemy.exc import SQLAlchemyError from pgpy import PGPMessage from config import bot_config from handlers.states_in_handlers import PasswordStates from loader import dp, logger_guru, scheduler from middlewares.throttling import rate_limit from utils.database_manage.sql.sql_commands import DB_USERS from utils.keyboards.pass_settings_bk import pass_choice_kb from utils.misc.other_funcs import delete_marked_message, get_time_now @logger_guru.catch() def convert_password_to_enc_object(user_id: int, name_pass: str, password: str) -> bytes: """ Encrypts password and serializes for storage :param user_id: ID who wrote :param name_pass: given password name :param password: password :return: pickle object """ very_useful_thing: str = hashlib_scrypt( name_pass.encode(), salt=f'{user_id}'.encode(), n=8, r=512, p=4, dklen=16 ).hex() encrypt_password = PGPMessage.new(password.encode()).encrypt(very_useful_thing) serialized_object: bytes = pickletools_optimize(pickle_dumps(encrypt_password)) return serialized_object @rate_limit(2, key='pass') @dp.message_handler(Command('pass')) async def accept_settings_for_remembering_password(message: Message, state: FSMContext) -> None: match lang := await DB_USERS.select_bot_language(telegram_id=(user_id := message.from_user.id)): case 'ru': text_msg: str = 'Привет, я могу запонить 🔐 твои пароли, для этого мне нужно знать твоё кодовое слово...' case _: text_msg: str = 'Hello, I can remember 🔐 your passwords, for this I need to know your codeword...' await message.delete() await message.answer(text_msg) await PasswordStates.first() async with state.proxy() as data: data['user_id'], data['lang'] = user_id, lang @dp.message_handler(state=PasswordStates.check_personal_code) async def accept_settings_for_remembering_password(message: Message, state: FSMContext) -> None: async with state.proxy() as data: user_id, lang = data.values() skin = await DB_USERS.select_skin(telegram_id=user_id) msg: str = hashlib_scrypt(message.text.encode(), salt=f'{user_id}'.encode(), n=8, r=512, p=4, dklen=32).hex() try: if check_pass := await DB_USERS.check_personal_pass(telegram_id=user_id): if hmac_compare_digest(check_pass, msg): await message.answer_sticker(skin.order_accepted.value, disable_notification=True) await message.answer('ПРИНЯТО!' if lang == 'ru' else 'ACCEPTED!') await PasswordStates.next() async with state.proxy() as data: data['lang'] = lang tex_msg: str = 'Что ты конкретно хочешь?' if lang == 'ru' else 'What do you specifically want?' await message.answer(tex_msg, reply_markup=pass_choice_kb) else: match lang: case 'ru': await message.answer('НЕВЕРНО! попробуй ещё раз :С\n\n' 'п.с: если твой пароль потерялся, то нашиши в саппорт!\n\n' '<i>подсказка: /support</i>') case _: await message.answer('WRONG! try again :С\n\n' 'п.с: If your codeword is lost, then write to support!\n\n' '<i>prompt: /support</i>') await state.finish() else: await DB_USERS.update_personal_pass(telegram_id=user_id, personal_pass=msg) await message.answer( 'Добавила :)\nнапиши его ещё раз.' if lang == 'ru' else "Didn't find it on the list, added it:)\nwrite it again." ) await message.delete() except SQLAlchemyError as err: logger_guru.exception(f'{repr(err)} : in check_personal_code handler!') await state.finish() @dp.callback_query_handler(text='new_pass', state=PasswordStates.successful_auth_for_pass) async def accept_personal_key(call: CallbackQuery, state: FSMContext) -> None: async with state.proxy() as data: lang: str = data.get('lang') await call.message.answer( 'Задай имя сохраняемого пароля ...\n (можешь сразу и сам пароль)' if lang == 'ru' else 'Set the name of the password to be saved ...\n (you can also use the password itself)' ) await call.message.delete_reply_markup() @dp.message_handler(state=PasswordStates.successful_auth_for_pass) async def set_name_and_write_pass(message: Message, state: FSMContext) -> None: async with state.proxy() as data: user_id, lang, name_pass = data.get('user_id'), data.get('lang'), data.get('name') msg: str = message.text match msg.replace(',', ' ').split(): case name_pass, password: await message.delete() enc_pass: bytes = convert_password_to_enc_object(user_id, name_pass, password) try: await DB_USERS.add_other_info(telegram_id=user_id, name=name_pass, info_for_save=enc_pass) except IntegrityError: await DB_USERS.update_pass(telegram_id=user_id, name_pass=name_pass, info_for_save=enc_pass) await message.answer('Отлично! Записано.' if lang == 'ru' else 'Fine!') await state.finish() case _: if not name_pass: async with state.proxy() as data: data['name'] = msg await message.delete() await message.answer('А теперь пароль :)' if lang == 'ru' else 'And now the password :)') else: enc_pass: bytes = convert_password_to_enc_object(user_id, name_pass, msg) try: await DB_USERS.add_other_info(telegram_id=user_id, name=name_pass, info_for_save=enc_pass) except IntegrityError: await DB_USERS.update_pass(telegram_id=user_id, name_pass=<PASSWORD>, info_for_save=enc_pass) await message.delete() await message.answer('Пoлучено, записано!' if lang == 'ru' else 'Received and recorded!') await state.finish() @dp.callback_query_handler(text='receive_pass', state=PasswordStates.successful_auth_for_pass) async def get_existing_pass(call: CallbackQuery, state: FSMContext) -> None: async with state.proxy() as data: lang: str = data['lang'] await call.message.answer('Какое "имя" пароля?' if lang == 'ru' else 'What is the "name" of the password?') await call.message.delete_reply_markup() await PasswordStates.last() @dp.message_handler(state=PasswordStates.set_name_pass) async def get_name_of_the_requested_password(message: Message, state: FSMContext) -> None: async with state.proxy() as data: user_id, lang = data.values() msg: str = message.text.replace(' ', '') try: if decrypt_password := await DB_USERS.select_pass(name=msg, telegram_id=user_id): very_useful_thing: str = hashlib_scrypt(msg.encode(), salt=f'{user_id}'.encode(), n=8, r=512, p=4, dklen=16).hex() password: str = decrypt_password.decrypt(very_useful_thing).message text_msg: str = ( f'НАШЛА! вот пароль с именем <b><code>{msg}</code></b> :\n\n' f'{hspoiler(password)}\<PASSWORD>' f'у тебя 10 секунд чтобы его скопировать !' if lang == 'ru' else f'FOUND! here is the password with the name <b><code>{msg}</code></b> :\n\n' f'{hspoiler(password)}\<PASSWORD>' f'after 10 seconds it will be deleted !' ) removing_msg: Message = await message.answer(text_msg) delete_time: str = (get_time_now(bot_config.time_zone) + timedelta(seconds=10)).strftime('%Y-%m-%d %H:%M:%S') scheduler.add_job( delete_marked_message, id=f'del_msg_{user_id}', args=(removing_msg.message_id, message.chat.id), trigger='date', replace_existing=True, run_date=delete_time, timezone="Europe/Moscow" ) await message.delete() except NoResultFound: logger_guru.warning(f'{user_id=} entering an invalid password name!') await message.delete() await message.answer_chat_action(ChatActions.TYPING) await message.answer( f'Не найден пароль с именем {hspoiler(message.text)} 😕' if lang == 'ru' else f"Couldn't find a password with {hspoiler(message.text)} 😕" ) finally: await state.finish()
1.945313
2
werecool/main.py
Zsailer/interns2020demo
0
12784483
def main(): print("Hello, World from Jess!") print("Isn't this great?") if __name__ == "__main__": main()
2.3125
2
soccerpy/modules/Fundamentals/links/fixture_links.py
SlapBot/soccerpy
0
12784484
from soccerpy.modules.Fundamentals.links.base_links import BaseLinks class FixtureLinks(BaseLinks): def __init__(self, request): super(FixtureLinks, self).__init__(request) pass
2.046875
2
fbz_filer.py
jfarrimo/lol-logwatcher
1
12784485
<gh_stars>1-10 """ Copyright (c) 2012 Lolapps, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY LOLAPPS, INC. ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LOLAPPS, INC. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of Lolapps, Inc.. -------------------------------------------------------------------------------------------- Wraps all our Fogbugz functionality. Stubbs out if Fogbugz not enabled. The API docs are not the greatest, but there are some available at: http://support.fogcreek.com/help/topics/advanced/API.html This relies on Fogbugz's python library. Luckily this is in pypi: $ pip install fogbugz==0.9.4 """ import sys import util from settings import * if ENABLE_FBZ: import fogbugz class FbzDisabled(Exception): pass def ensure_enabled(fn): def wrapped(): if not ENABLE_FBZ: raise FbzDisabled() return fn() return wrapped class FBZ(object): def __init__ (self, user=FBZ_USER, passwd=<PASSWORD>, url=FBZ_URL): if ENABLE_FBZ: self.fb = fogbugz.FogBugz(url) self.fb.logon(user, passwd) else: self.fb = None def close_connection(self): if self.fb: self.fb.logoff() def file_case(self, product, bug_title, bug_text): if not ENABLE_FBZ: return FBZ_FAKE_CASE, FBZ_FAKE_PRIORITY bug_desc = bug_title bug_msg = bug_title tags = [] priority = 6 projectid = PROJECT_IDS.get(product, PROJECT_DEFAULT) sarea = PROJECT_AREAS.get(product, PROJECT_AREA_DEFAULT) # we've gotten bugs where the number of occurrences is in # the thousands. When that is the case, we don't really # need additional text added to the bug, just that the bug # has occurred again. This next section attempts to # see if we've encountered this bug before. If so, if we've # gotten more than 3 occurrences, reset the bug_text # as it's most likely redundant existing_case = self.search_by_scout_desc(bug_desc) if existing_case != 0: util.write_log('Found existing bug : %s' % existing_case) case_dict = self.get_case_info(existing_case) priority = give_priority(case_dict['ixpriority'], case_dict['c']) projectid = case_dict['ixproject'] ixarea = case_dict['ixarea'] else: ixarea = None # The cols section is around getting certain status info # ixBug is the bug number # fOpen tells us if the bug is either open or closed # ixStatus is to tell us if the bug is still open, then # what state of open is it (resolved is still considered "open") if ixarea: resp = self.fb.new(sTags=','.join(tags or []), sTitle=bug_title, ixProject=projectid, ixArea=ixarea, ixPriority=priority, sScoutDescription=bug_desc, sScoutMessage=bug_msg, sEvent=bug_text, cols='ixBug,fOpen,ixStatus') else: resp = self.fb.new(sTags=','.join(tags or []), sTitle=bug_title, ixProject=projectid, sArea=sarea, ixPriority=priority, sScoutDescription=bug_desc, sScoutMessage=bug_msg, sEvent=bug_text, cols='ixBug,fOpen,ixStatus') if not resp.ixbug or not resp.fopen or not resp.ixstatus: raise fogbugz.FogBugzAPIError("Response is missing ixbug, fopen, or ixstatus: %r" % resp) case = int(resp.ixbug.string) case_open = resp.fopen.string case_status = int(resp.ixstatus.string) if case_open == 'false' or case_status not in STATUS_IDS.values(): # check if the bug is closed or else if the status is # anything except open and active self._reopen_case(case) return case, priority def _reopen_case(self, case): case_dict = self.get_case_info(case) ixpersonresolvedby = case_dict['ixpersonresolvedby'] try: resp = self.fb.reopen(ixBug=case) except: resp = self.fb.reactivate(ixBug=case) self.fb.edit(ixBug=case, ixPersonAssignedTo=ixpersonresolvedby) return resp def _search_by_scout_desc(self, title): """ attempt to search fogbugz for a certain scoutdescription. This, in theory, is how we can see if a bug has been automatically filed before. If the bug has been filed before, return the bug number. Otherwise, return 0 """ resp = self.fb.listScoutCase(sScoutDescription=title) try: ixbug = int(resp.ixbug.string) except AttributeError: ixbug = 0 return ixbug @ensure_enabled def resolve_case(self, case): self.fb.resolve(ixBug=case) @ensure_enabled def close_case(self, case): self.fb.close(ixBug=case) @ensure_enabled def check_case_status(self, case): resp = self.fb.search(q = case, cols = 'fOpen,ixStatus,c') status = resp.fopen.string return status @ensure_enabled def get_case_info(self, case): resp = self.fb.search(q = case, cols = 'fOpen,ixStatus,c,ixPersonAssignedTo,ixProject,ixArea,ixPersonResolvedBy,ixPriority,sStatus,sPersonAssignedTo') case_dict = { 'fopen' : resp.fopen.string, 'ixarea' : int(resp.ixarea.string), 'ixstatus' : int(resp.ixstatus.string), 'c' : int(resp.c.string), 'ixpersonassignedto' : int(resp.ixpersonassignedto.string), 'ixproject' : int(resp.ixproject.string), 'ixpersonresolvedby' : int(resp.ixpersonresolvedby.string), 'ixpriority' : int(resp.ixpriority.string), 'sstatus' : resp.sstatus.string, 'spersonassignedto' : resp.spersonassignedto.string } return case_dict @ensure_enabled def get_case_list(self, search_criteria, max_count=None): if max_count is not None: resp = self.fb.search(q = search_criteria, cols = 'ixBug,sTitle', max = max_count) else: resp = self.fb.search(q = search_criteria, cols = 'ixBug,sTitle') resp = [{'ixBug': case.ixbug.string, 'sTitle': case.stitle.string} for case in resp.cases] return resp @ensure_enabled def get_occurrence_count(self, case): """ give it a case number, and this should tell you how many times that bug has been hit. """ resp = self.fb.search(q = case, cols = 'c') count = int(resp.c.string) return count def give_priority(currentpriority, occurrences=0): if occurrences >= 25: newpriority = 2 elif occurrences >= 10: newpriority = 3 elif occurrences >= 5: newpriority = 4 elif occurrences >= 3: newpriority = 5 else: newpriority = 6 if newpriority < currentpriority: util.write_log('increasing priority to %s' % newpriority) return newpriority else: return currentpriority
1.070313
1
test2.py
mahendra1904/pythod-programs
0
12784486
#"ereht era ynam ysad" x = "there are many days" length=len(x) l1=x.split() str='' for x in l1: str=str+x[::-1]+ ' ' print(str)
3.546875
4
loss/__init__.py
Axrid/cv_template
69
12784487
import torch.nn as nn from loss.gradient import grad_loss from loss.tvloss import tv_loss from loss.vggloss import vgg_loss from loss.ssim import ssim_loss as criterionSSIM from options import opt criterionCAE = nn.L1Loss() criterionL1 = criterionCAE criterionBCE = nn.BCELoss() criterionMSE = nn.MSELoss() def get_default_loss(recovered, y, avg_meters): ssim = - criterionSSIM(recovered, y) ssim_loss = ssim * opt.weight_ssim # Compute L1 loss (not used) l1_loss = criterionL1(recovered, y) l1_loss = l1_loss * opt.weight_l1 loss = ssim_loss + l1_loss # record losses avg_meters.update({'ssim': -ssim.item(), 'L1': l1_loss.item()}) if opt.weight_grad: loss_grad = grad_loss(recovered, y) * opt.weight_grad loss += loss_grad avg_meters.update({'gradient': loss_grad.item()}) if opt.weight_vgg: content_loss = vgg_loss(recovered, y) * opt.weight_vgg loss += content_loss avg_meters.update({'vgg': content_loss.item()}) return loss
2.1875
2
xmlmapping/log.py
YAmikep/django-xmlmapping
2
12784488
# Internal from .settings import ( LOGGER_NAME, LOG_FILE, LOG_SIZE, LOGGER_FORMAT, LOG_LEVEL ) from .utils.loggers import DefaultLogger default_logger = DefaultLogger( logger_name=LOGGER_NAME, level=LOG_LEVEL, log_file=LOG_FILE, log_size=LOG_SIZE, logger_format=LOGGER_FORMAT )
1.578125
2
tests/test_gpsampler.py
tupui/batman
0
12784489
<filename>tests/test_gpsampler.py # coding: utf8 import os from mock import patch import pytest import numpy as np import numpy.testing as npt from batman.space.gp_sampler import GpSampler import sys # a simple class with a write method class WritableObject: def __init__(self): self.content = [] def write(self, string): self.content.append(string) @patch("matplotlib.pyplot.show") def test_GpSampler1D(mock_show, tmp): n_nodes = 100 reference = {'indices': [[x / float(n_nodes)] for x in range(n_nodes)], 'values': [0 for _ in range(n_nodes)]} sampler = GpSampler(reference) print(sampler) # Plot of the modes of the Karhunen Loeve Decomposition sampler.plot_modes(os.path.join(tmp, 'gp_modes.pdf')) # Sample of the Gp and plot the instances size = 5 Y = sampler(size) sampler.plot_sample(Y, os.path.join(tmp, 'gp_instances.pdf')) # Build a Gp instance and plot the instances coeff = [[0.2, 0.7, -0.4, 1.6, 0.2, 0.8]] Y = sampler(coeff=coeff) sampler.plot_sample(Y) @patch("matplotlib.pyplot.show") def test_GpSampler2D(mock_show, tmp): n_nodes_by_dim = 10 n_nodes = n_nodes_by_dim**2 reference = {'indices': [[x / float(n_nodes_by_dim), y / float(n_nodes_by_dim)] for x in range(n_nodes_by_dim) for y in range(n_nodes_by_dim)], 'values': [0. for x in range(n_nodes)]} sampler = GpSampler(reference, "Matern([0.5, 0.5], nu=0.5)") print(sampler) # Plot of the modes of the Karhunen Loeve Decomposition sampler.plot_modes(os.path.join(tmp, 'gp_modes.pdf')) # Sample of the Gp and plot the instances size = 5 Y = sampler(size) sampler.plot_sample(Y, os.path.join(tmp, 'gp_instance.pdf')) # Build a Gp instance and plot the instances coeff = [[0.2, 0.7, -0.4, 1.6, 0.2, 0.8]] Y = sampler(coeff=coeff) sampler.plot_sample(Y, os.path.join(tmp, 'gp_instance.pdf')) @patch("matplotlib.pyplot.show") def test_GpSampler3D(mock_show, tmp): n_nodes_by_dim = 10 n_nodes = n_nodes_by_dim**3 reference = {'indices': [[x / float(n_nodes_by_dim), y / float(n_nodes_by_dim), z / float(n_nodes_by_dim)] for x in range(n_nodes_by_dim) for y in range(n_nodes_by_dim) for z in range(n_nodes_by_dim)], 'values': [0. for x in range(n_nodes)]} sampler = GpSampler(reference, "Matern([0.5, 0.5, 0.5], nu=0.5)") print(sampler) # Sample of the Gp and plot the instances size = 5 Y = sampler(size) # Build a Gp instance and plot the instances coeff = [[0.2, 0.7, -0.4, 1.6, 0.2, 0.8]] Y = sampler(coeff=coeff) def sampler1D_from_file(tmp): n_nodes = 3 reference = {'indices': [[x / float(n_nodes)] for x in range(n_nodes)], 'values': [0. for _ in range(n_nodes)]} reference_filename = os.path.join(tmp, 'reference_file.npy') np.save(reference_filename, reference) sampler = GpSampler(reference_filename) printOutput = WritableObject() old = sys.stdout sys.stdout = printOutput print(sampler) sys.stdout = old sol = ['Gp sampler summary:\n' '- Dimension = 1\n' '- Kernel = Matern(0.5, nu=0.5)\n' '- Standard deviation = 1.0\n' '- Mesh size = 3\n' '- Threshold for the KLd = 0.01\n' '- Number of modes = 3', '\n'] npt.assert_array_equal(printOutput.content, sol) @pytest.fixture(scope="function", params=[1, 2, 3]) def sampler(request, seed): if request.param == 1: n_nodes = 3 reference = {'indices': [[x / float(n_nodes)] for x in range(n_nodes)], 'values': [0. for _ in range(n_nodes)]} gpsampler = GpSampler(reference) elif request.param == 2: n_nodes_by_dim = 2 n_nodes = n_nodes_by_dim**2 reference = {'indices': [[x / float(n_nodes_by_dim), y / float(n_nodes_by_dim)] for x in range(n_nodes_by_dim) for y in range(n_nodes_by_dim)], 'values': [0. for x in range(n_nodes)]} gpsampler = GpSampler(reference, "Matern([0.5, 0.5], nu=0.5)") elif request.param == 3: n_nodes_by_dim = 2 n_nodes = n_nodes_by_dim**3 reference = {'indices': [[x / float(n_nodes_by_dim), y / float(n_nodes_by_dim), z / float(n_nodes_by_dim)] for x in range(n_nodes_by_dim) for y in range(n_nodes_by_dim) for z in range(n_nodes_by_dim)], 'values': [0. for x in range(n_nodes)]} gpsampler = GpSampler(reference, "Matern([0.5, 0.5, 0.5], nu=0.5)") return gpsampler def test_GpSampler_print(sampler): printOutput = WritableObject() old = sys.stdout sys.stdout = printOutput print(sampler) sys.stdout = old if sampler.n_dim == 1: sol = ['Gp sampler summary:\n' '- Dimension = 1\n' '- Kernel = Matern(0.5, nu=0.5)\n' '- Standard deviation = 1.0\n' '- Mesh size = 3\n' '- Threshold for the KLd = 0.01\n' '- Number of modes = 3', '\n'] elif sampler.n_dim == 2: sol = ['Gp sampler summary:\n' '- Dimension = 2\n' '- Kernel = Matern([0.5, 0.5], nu=0.5)\n' '- Standard deviation = 1.0\n' '- Mesh size = 4\n' '- Threshold for the KLd = 0.01\n' '- Number of modes = 4', '\n'] elif sampler.n_dim == 3: sol = ['Gp sampler summary:\n' '- Dimension = 3\n' '- Kernel = Matern([0.5, 0.5, 0.5], nu=0.5)\n' '- Standard deviation = 1.0\n' '- Mesh size = 8\n' '- Threshold for the KLd = 0.01\n' '- Number of modes = 8', '\n'] npt.assert_array_equal(printOutput.content, sol) def test_GpSampler_std(sampler): if sampler.n_dim == 1: sol = np.array([0.788, 0.497, 0.363]) elif sampler.n_dim == 2: sol = np.array([0.699, 0.439, 0.433, 0.356]) elif sampler.n_dim == 3: sol = np.array([0.609, 0.35, 0.344, 0.339, 0.266, 0.266, 0.264, 0.237]) npt.assert_almost_equal(sampler.standard_deviation, sol, decimal=2) def test_GpSampler_modes(sampler): if sampler.n_dim == 1: sol = np.array([[-0.548, -0.639, -0.54], [0.708, -0.011, -0.706], [-0.445, 0.769, -0.459]]) elif sampler.n_dim == 2: sol = np.array([[-0.505, -0.496, -0.496, -0.503], [-0.037, 0.705, -0.707, 0.038], [-0.723, -0.018, 0.057, 0.688], [0.47, -0.506, -0.501, 0.522]]) elif sampler.n_dim == 3: sol = np.array([[-0.35, -0.365, -0.359, -0.361, -0.354, -0.353, -0.336, -0.349], [0.253, 0.516, 0.111, 0.392, -0.386, -0.169, -0.508, -0.261], [0.544, -0.097, 0.306, -0.342, 0.317, -0.295, 0.107, -0.534], [-0.134, -0.334, 0.505, 0.351, -0.32, -0.519, 0.313, 0.148], [-0.527, 0.458, -0.047, 0.104, 0.117, -0.069, 0.469, -0.511], [-0.294, -0.208, 0.613, -0.073, -0.091, 0.577, -0.255, -0.288], [-0.173, -0.294, -0.096, 0.539, 0.644, -0.148, -0.362, -0.132], [0.325, -0.374, -0.35, 0.412, -0.294, 0.362, 0.321, -0.376]]) npt.assert_almost_equal(sampler.modes, sol, decimal=2) def test_GpSampler_sample_values_sobol(sampler): size = 2 Y = sampler(size, kind="sobol") if sampler.n_dim == 1: sol = np.array([[0., 0., 0.], [-0.638, -0.148, -0.163]]) elif sampler.n_dim == 2: sol = np.array([[0., 0., 0., 0.], [-0.551, -0.327, 0.112, -0.173]]) elif sampler.n_dim == 3: sol = np.array([[0., 0., 0., 0., 0., 0., 0., 0.], [-0.171, -0.09, -0.298, -0.339, 0.292, -0.255, -0.05, -0.243]]) npt.assert_almost_equal(Y['Values'], sol, decimal=2) def test_GpSampler_sample_coeff_sobol(sampler): size = 2 Y = sampler(size, kind="sobol") if sampler.n_dim == 1: sol = np.array([[0., 0., 0.], [0.674, -0.674, 0.674]]) elif sampler.n_dim == 2: sol = np.array([[0., 0., 0., 0.], [0.674, -0.674, 0.674, -0.674]]) elif sampler.n_dim == 3: sol = np.array([[0., 0., 0., 0., 0., 0., 0., 0.], [0.674, -0.674, 0.674, -0.674, 0.674, -0.674, 0.674, -0.674]]) npt.assert_almost_equal(Y['Coefficients'], sol, decimal=2) def test_GpSampler_sample_values(sampler, seed): size = 2 Y = sampler(size) if sampler.n_dim == 1: sol = np.array([[-0.48, 0.16, 0.59], [0.29, -0.31, -0.43]]) elif sampler.n_dim == 2: sol = np.array([[-0.51, -0.09, -0.05, -0.21], [0.13, 0.65, 0.89, 0.25]]) elif sampler.n_dim == 3: sol = np.array([[-0.37, -0.62, -0.36, -0.54, -0.19, 0.2, 0.17, 0.22], [-0.2, 0.34, 0.76, 0.42, 0.21, 0.01, 0.15, 0.54]]) npt.assert_almost_equal(Y['Values'], sol, decimal=2) def test_GpSampler_sample_coeff(sampler, seed): size = 2 Y = sampler(size) if sampler.n_dim == 1: sol = np.array([[-0.2, -1.53, 0.18], [0.34, 1.03, -0.47]]) elif sampler.n_dim == 2: sol = np.array([[0.62, -0.05, 0.51, -0.77], [-1.37, -0.38, 0.28, -1.65]]) elif sampler.n_dim == 3: sol = np.array([[0.89, -2.21, -0.83, -0.2, -0.72, 0.33, -0.97, 0.48], [-1.3, 0.2, -0.76, 1.48, 0.32, 0.8, 0.35, -2.09]]) npt.assert_almost_equal(Y['Coefficients'], sol, decimal=2) def test_GpSampler_build_values(sampler): coeff = [[0.2, 0.7, -0.4, 1.6, 0.2, 0.8]] Y = sampler(coeff=coeff) if sampler.n_dim == 1: sol = np.array([[0.225, -0.216, -0.264]]) elif sampler.n_dim == 2: sol = np.array([[0.311, -0.138, -0.582, 0.119]]) elif sampler.n_dim == 3: sol = np.array([[-0.22, -0.11, 0.34, 0.28, -0.37, -0.21, -0.04, -0.04]]) npt.assert_almost_equal(Y['Values'], sol, decimal=2) def test_GpSampler_build_coeff(sampler): coeff = [[0.2, 0.7, -0.4, 1.6, 0.2, 0.8]] Y = sampler(coeff=coeff) if sampler.n_dim == 1: sol = np.array([[0.2, 0.7, -0.4]]) elif sampler.n_dim == 2: sol = np.array([[0.2, 0.7, -0.4, 1.6]]) elif sampler.n_dim == 3: sol = np.array([[0.2, 0.7, -0.4, 1.6, 0.2, 0.8, 0., 0.]]) npt.assert_almost_equal(Y['Coefficients'], sol, decimal=2)
2.40625
2
setup.py
muirawachanga/network_billing_management
1
12784490
from __future__ import unicode_literals from setuptools import setup, find_packages with open("requirements.txt") as f: install_requires = f.read().strip().split("\n") # get version from __version__ variable in network_billing_system/__init__.py from network_billing_system import __version__ as version setup( name="network_billing_system", version=version, description="A complete billing system integrated with pfsense", author="stephen", author_email="<EMAIL>", packages=find_packages(), zip_safe=False, include_package_data=True, install_requires=install_requires, )
1.601563
2
Dataset/Leetcode/train/6/163.py
kkcookies99/UAST
0
12784491
<filename>Dataset/Leetcode/train/6/163.py<gh_stars>0 class Solution: def XXX(self, s, numRows) : if numRows==1:return s l=[""]*numRows z=numRows*2-2 #2行2个一组,3行4个一组,4行6个一组 for j in range(len(s)): y=j%z #余数 if y<numRows: l[y]=l[y]+s[j] else: l[z-y]=l[z-y]+s[j] return "".join(l)
2.921875
3
apps/books/views.py
RGero215/Demo
1
12784492
from django.shortcuts import render, HttpResponse, redirect from django.contrib import messages from .models import Review, Author, Book from ..login_registration.models import User # Create your views here. def books(request): if 'login' not in request.session or request.session['login'] == False: return redirect('/') else: context = { 'recent': Review.objects.recent_and_not()[0], 'more': Review.objects.recent_and_not()[1] } return render(request, 'books/index.html', context) def add(request): if 'login' not in request.session or request.session['login'] == False: return redirect('/') else: context = { 'authors': Author.objects.all() } return render(request, 'books/edit.html', context) def create(request): if 'login' not in request.session or request.session['login'] == False: return redirect('/') else: errs = Review.objects.validate_review(request.POST) if errs: for e in errs: messages.error(request, e) else: book_id = Review.objects.create_review(request.POST, request.session['user_id']).book.id return redirect('/books/{}'.format(book_id)) def create_additional(request, book_id): if 'login' not in request.session or request.session['login'] == False: return redirect('/') else: the_book = Book.objects.get(id=book_id) new_book_data = { 'title': the_book.title, 'author': the_book.author.id, 'rating': request.POST['rating'], 'review': request.POST['review'], 'new_author': '' } errs = Review.objects.validate_review(new_book_data) if errs: for e in errs: messages.error(request, e) else: Review.objects.create_review(new_book_data, request.session['user_id']) return redirect('/books/' + book_id) def show(request, book_id): if 'login' not in request.session or request.session['login'] == False: return redirect('/') else: context = { 'book': Book.objects.get(id=book_id) } return render(request, 'books/review.html', context) def profile(request, user_id): if 'login' not in request.session or request.session['login'] == False: return redirect('/') else: user = User.objects.get(id=user_id) unique_ids = user.reviews_left.all().values('book').distinct() unique_books = [] for book in unique_ids: unique_books.append(Book.objects.get(id=book['book'])) context = { 'user': user, 'unique_book_reviews': unique_books } return render(request, 'books/profile.html', context) def delete(request, review_id): if 'login' not in request.session or request.session['login'] == False: return redirect('/') else: book = Book.objects.get(reviews= review_id).id Review.objects.get(id=review_id).delete() return redirect('/books/'+ str(book))
2.125
2
test.py
racerxdl/PyMAX30100
0
12784493
#!/usr/bin/env python import time from max30100.oxymeter import Oxymeter from max30100.constants import * x = Oxymeter(1) lastReport = time.time() * 1000 if not x.begin(): print "Error initializing" exit(1) x.setIRLedCurrent(MAX30100_LED_CURR_7_6MA) # Works best with me print "Running loop" while True: x.update() if time.time() * 1000 - lastReport > 1000: print("Heart Rate: %s bpm - SpO2: %s%%" %(x.getHeartRate(), x.getSpO2())) lastReport = time.time() * 1000
2.5
2
radynpy/utils/RadynMovie.py
grahamkerr/radynpy
1
12784494
import pandas as pd import plotly.express as px import plotly.graph_objects as go import numpy as np def rmovie_basicvar(cdf, var = 'tg1', Mm = False, km = False, savefig = False, figname = 'radynvar.html', color = 'steelblue'): ''' A function to produce an animated figure of RADYN variables. This version is pre-constructed and lets you just input the variable you want to plot. Other variables (such as populations) will require more input, and are separate functions. Turns the output into a pandas dataframe, which is then passed to plotly express to create the animated figure Parameters __________ cdf : The radyn cdf object var : str The variable to plot (default = 'tg1') Mm : Boolean Plot height in Mm (default = False) km : Boolean Plot height in km (default = False) savefig : Boolean Save the figure (html file) figname : str Filename, if saving the output NOTES : So far, allowed variables are tg1 - temperature ne1 - electron density bheat1 - beam heating rate d1 - mass density vz1 - velocity np - proton density <NAME>, March 2021 ''' ######################################################################## # Some preliminary set up ######################################################################## if Mm == True: xtitle = 'Height [Mm]' height = cdf.z1/1e8 elif km == True: xtitle = 'Height [km]' height = cdf.z1/1e5 else: xtitle = 'Height [cm]' height = cdf.z1 if var == 'tg1': rvar = cdf.tg1 ytitle = 'Temperature [K]' ylog = True xlog = False elif var == 'ne1': rvar = cdf.ne1 ytitle = 'Electron Density [cm<sup>-3</sup>]' ylog = True xlog = False elif var == 'bheat1': rvar = cdf.bheat1 ytitle = 'Q<sub>beam</sub> [erg cm<sup>-3</sup> s<sup>-1</sup>]' ylog = False xlog = False elif var == 'd1': rvar = cdf.d1 ytitle = 'Mass Density [g cm<sup>-3</sup>]' ylog = True xlog = False elif var == 'vz1': rvar = cdf.vz1/1e5 ytitle = 'Velocity [km s<sup>-1</sup>]' ylog = False xlog = False elif var == 'np': rvar = cdf.n1[:,:,5,0] ytitle = 'Proton Density [cm<sup>-3</sup>]' ylog = True xlog = False template = dict( layout = go.Layout(font = dict(family = "Rockwell", size = 16), title_font = dict(family = "Rockwell", size = 20), plot_bgcolor = 'white', paper_bgcolor = 'white', xaxis = dict( showexponent = 'all', exponentformat = 'e', tickangle = 0, linewidth = 3, showgrid = True, ), yaxis = dict( showexponent = 'all', exponentformat = 'e', linewidth = 3, showgrid = True, anchor = 'free', position = 0, domain = [0.0,1] ), coloraxis_colorbar = dict( thickness = 15, tickformat = '0.2f', ticks = 'outside', titleside = 'right' ) )) ######################################################################## # Build the dataframe ######################################################################## col1 = ytitle col2 = xtitle time = 'Time [s]' timeind = 'Time index' df_list = [] for i in range(len(cdf.time)): data = {col1:rvar[i,:], col2:height[i,:], time: cdf.time[i], timeind: i } df_list.append(pd.DataFrame(data)) df = pd.concat(df_list) ######################################################################## # Plot the variable ######################################################################## h1 = 700 w1 = 700 fig1 = px.line(df, x = df.columns[1], y = df.columns[0], # animation_group = 'Time [s]', animation_frame = 'Time [s]', log_x = xlog, log_y = ylog, template = template, color_discrete_sequence = [color]) fig1.show() if savefig == True: fig1.write_html(figname) return df def rmovie(var1, var2, time = [-10.0], savefig = False, figname = 'radynvar.html', xtitle = 'Var 1', ytitle = 'Var 2', title = ' ', color = 'steelblue', xlog = False, ylog = False): ''' A function to produce an animated figure of RADYN variables. This version is 'dumb' and just plots col1 vs col2 without any axes labels, unless passed through the function fall. Variables must be input as [time, dim1] Turns the output into a pandas dataframe, which is then passed to plotly express to create the animated figure Parameters __________ var1 : float The variable to plot on the x-axis [time, dim1] var2 : float The variable to plot on the y-axis [time, dim1] xtitle : str The xaxis label (default "Var 1") ytitle : str The xaxis label (default "Var 2") title : str A plot title (default " ") savefig : Boolean Save the figure (html file) figname : str Filename, if saving the output xlog : boolean Default is false. Set to True to have log x-axis ylog : boolean Default is false. Set to True to have log y-axis NOTES : <NAME>, March 2021 ''' ######################################################################## # Some preliminary set up ######################################################################## if time[0] == -10: time = np.arange(0,var1.shape[0]) col3 = 'Time [index]' else: col3 = 'Time [s]' template = dict( layout = go.Layout(font = dict(family = "Rockwell", size = 16), title_font = dict(family = "Rockwell", size = 20), plot_bgcolor = 'white', paper_bgcolor = 'white', xaxis = dict( showexponent = 'all', exponentformat = 'e', tickangle = 0, linewidth = 3, showgrid = True, ), yaxis = dict( showexponent = 'all', exponentformat = 'e', linewidth = 3, showgrid = True, anchor = 'free', position = 0, domain = [0.0,1] ), coloraxis_colorbar = dict( thickness = 15, tickformat = '0.2f', ticks = 'outside', titleside = 'right' ) )) ######################################################################## # Build the dataframe ######################################################################## col1 = xtitle col2 = ytitle df_list = [] for i in range(len(time)): data = {col1:var1[i,:], col2:var2[i,:], col3: time[i], } df_list.append(pd.DataFrame(data)) df = pd.concat(df_list) ######################################################################## # Plot the variable ######################################################################## h1 = 700 w1 = 700 fig1 = px.line(df, x = df.columns[0], y = df.columns[1], # animation_group = 'Time [s]', animation_frame = df.columns[2], log_x = xlog, log_y = ylog, title = title, color_discrete_sequence = [color], template = template) fig1.show() if savefig == True: fig1.write_html(figname) return df
3.53125
4
HLTrigger/Configuration/python/HLT_75e33/modules/particleFlowRecHitHBHE_cfi.py
PKUfudawei/cmssw
1
12784495
import FWCore.ParameterSet.Config as cms particleFlowRecHitHBHE = cms.EDProducer("PFRecHitProducer", navigator = cms.PSet( hcalEnums = cms.vint32(1, 2), name = cms.string('PFRecHitHCALDenseIdNavigator') ), producers = cms.VPSet(cms.PSet( name = cms.string('PFHBHERecHitCreator'), qualityTests = cms.VPSet( cms.PSet( cuts = cms.VPSet( cms.PSet( depth = cms.vint32(1, 2, 3, 4), detectorEnum = cms.int32(1), threshold = cms.vdouble(0.8, 1.2, 1.2, 1.2) ), cms.PSet( depth = cms.vint32( 1, 2, 3, 4, 5, 6, 7 ), detectorEnum = cms.int32(2), threshold = cms.vdouble( 0.1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 ) ) ), name = cms.string('PFRecHitQTestHCALThresholdVsDepth') ), cms.PSet( cleaningThresholds = cms.vdouble(0.0), flags = cms.vstring('Standard'), maxSeverities = cms.vint32(11), name = cms.string('PFRecHitQTestHCALChannel') ) ), src = cms.InputTag("hbhereco") )) )
1.304688
1
tests/test_backend.py
seeq12/seeq-udf-ui
0
12784496
from seeq import spy import pytest import time @pytest.mark.system class TestCreate: def test_create_package_and_function(self, instantiate_ui_create_function_and_package): ui = instantiate_ui_create_function_and_package('testPackage', 'testFunction') assert 'testPackage' in ui.backend.fetch_udf_packages() assert 'testPackage' in ui.app.search_display.package_list assert 'testFunction' in [func_name.name for func_name in ui.backend.selected_package.package.functions] assert 'testFunction' + '($Signal, $Signal)' in ui.app.search_display.function_list def test_create_function_same_name(self, instantiate_ui_create_function_and_package): ui = instantiate_ui_create_function_and_package('testPackage', 'testFunction') ui.app.function_parameters_display.params_and_types = [{'name': 'a', 'type': 'Signal'}, {'name': 'b', 'type': 'Signal'}, {'name': 'c', 'type': 'Scalar'}] ui.app.function_parameters_display.formula = '$a + $b * $c' ui.app.function_documentation.func_description = '<p>Test function with the same name</p>' ui.app.function_documentation.examples_and_descriptions = [ {'description': 'Example 1', 'formula': '$a + $b * $c'}, {'description': 'Example 2', 'formula': '$c + $d * $e'}] ui.app.summary_page.vue_on_review(data='') ui.app.summary_page.vue_on_submit(data='') assert 'testFunction' + '($Signal, $Signal)' in ui.app.search_display.function_list assert 'testFunction' + '($Signal, $Signal, $Scalar)' in ui.app.search_display.function_list @pytest.mark.system class TestModify: def test_modify_formula(self, instantiate_ui_create_function_and_package): ui = instantiate_ui_create_function_and_package('testPackage', 'testFunction') ui.app.function_parameters_display.params_and_types = [{'name': 'a', 'type': 'Signal'}, {'name': 'newParam', 'type': 'Scalar'}] ui.app.function_parameters_display.formula = '$a * $newParam' ui.app.summary_page.vue_on_review(data='') ui.app.summary_page.vue_on_submit(data='') ui.app.search_display.vue_update_package_object(data='testPackage') ui.app.search_display.vue_update_function(data='testFunction' + '($Signal, $Scalar)') assert '$newParam' in ui.app.function_parameters_display.formula assert '$newParam' in ui.backend.selected_function.formula def test_func_description(self, instantiate_ui_create_function_and_package): ui = instantiate_ui_create_function_and_package('testPackage', 'testFunction') ui.app.function_documentation.func_description_markdown = '## Test Function Description' ui.app.function_documentation.vue_update_func_desc_html(data='') # The markdown-to-html converter has a delay time.sleep(0.5) assert '<h2>Test Function Description</h2>' in ui.app.function_documentation.func_description_html ui.app.summary_page.vue_on_review(data='') ui.app.summary_page.vue_on_submit(data='') ui.app.search_display.vue_update_package_object(data='testPackage') ui.app.search_display.vue_update_function(data='testFunction($Signal, $Signal)') assert '<h2>Test Function Description</h2>' in ui.backend.selected_function.description def test_package_description(self, instantiate_ui_create_function_and_package): ui = instantiate_ui_create_function_and_package('testPackage', 'testFunction') ui.app.function_documentation.package_description_markdown = '## Test Package Description' ui.app.function_documentation.vue_update_package_desc_html(data='') # The markdown-to-html converter has a delay time.sleep(0.5) assert '<h2>Test Package Description</h2>' in ui.app.function_documentation.package_description_html ui.app.summary_page.vue_on_review(data='') ui.app.summary_page.vue_on_submit(data='') ui.app.search_display.vue_update_package_object(data='testPackage') ui.app.search_display.vue_update_function(data='testFunction($Signal, $Signal)') assert '<h2>Test Package Description</h2>' in ui.backend.selected_package.description def test_add_examples(self, instantiate_ui_create_function_and_package): ui = instantiate_ui_create_function_and_package('testPackage', 'testFunction') examples = [{'description': 'Example 1', 'formula': '$a + $b'}, {'description': 'Example 2', 'formula': '$c + $d'}] ui.app.function_documentation.examples_and_descriptions = examples ui.app.summary_page.vue_on_review(data='') ui.app.summary_page.vue_on_submit(data='') ui.app.search_display.vue_update_package_object(data='testPackage') ui.app.search_display.vue_update_function(data='testFunction($Signal, $Signal)') assert ui.backend.selected_function.examples_and_descriptions == examples assert ui.app.function_documentation.examples_and_descriptions == examples def test_access_control(self, instantiate_ui_create_function_and_package): ui = instantiate_ui_create_function_and_package('testPackageAccessControl', 'testFunction') ui.app.function_parameters_display.params_and_types = [{'name': 'a', 'type': 'Signal'}, {'name': 'b', 'type': 'Signal'}] ui.app.function_parameters_display.formula = '$a + $b' ui.app.function_documentation.func_description = '<p>Test function</p>' access_input = [{'name': spy.user.name, 'username': spy.user.username, 'type': 'User', 'read': True, 'write': True, 'manage': True}, {'name': 'Everyone', 'username': None, 'type': 'UserGroup', 'read': True, 'write': True, 'manage': True} ] ui.app.access_management.selected_users_dict = access_input ui.app.summary_page.vue_on_review(data='') ui.app.summary_page.vue_on_submit(data='') ui.app.search_display.vue_update_package_object(data='testPackageAccessControl') assert access_input[0] in ui.backend.selected_package.permissions assert access_input[1] in ui.backend.selected_package.permissions @pytest.mark.system class TestDelete: def test_archive_function(self, instantiate_ui_create_function_and_package): ui = instantiate_ui_create_function_and_package('testPackage', 'testFunction') ui.app.search_display.vue_update_package_object(data='testPackage') ui.app.search_display.vue_update_function(data='testFunction($Signal, $Signal)') ui.app.summary_page.selected_for_delete = 'Function: testFunction' ui.app.summary_page.vue_on_delete(data='') ui.app.search_display.vue_update_package_object(data='testPackage') assert 'testFunction' + '($Signal, $Signal)' not in ui.app.search_display.function_list assert 'testFunction' not in ui.app.search_display.function_list def test_archive_package(self, instantiate_ui_create_function_and_package): ui = instantiate_ui_create_function_and_package('testPackage', 'testFunction') ui.app.summary_page.selected_for_delete = 'Package: testPackage' ui.app.summary_page.vue_on_delete(data='') ui.app.search_display.vue_update_package_object(data='testPackage') assert 'testPackage' not in ui.app.search_display.package_list
2.203125
2
moai/nn/residual/bottleneck.py
tzole1155/moai
10
12784497
<reponame>tzole1155/moai import moai.nn.convolution as mic import moai.nn.activation as mia import torch __all__ = [ "Bottleneck", "PreResBottleneck", "PreActivBottleneck", ] ''' Bottleneck versions with 3 convolutions (2 projections, 1 bottleneck) ''' class Bottleneck(torch.nn.Module): def __init__(self, convolution_type: str, activation_type: str, in_features: int, out_features: int, bottleneck_features: int, convolution_params: dict, activation_params: dict, strided: bool, ): super(Bottleneck, self).__init__() self.W1 = mic.make_conv_1x1( convolution_type=convolution_type, in_channels=in_features, out_channels=bottleneck_features, stride=2 if strided else 1, **convolution_params ) self.A1 = mia.make_activation( features=bottleneck_features, activation_type=activation_type, **activation_params ) self.W2 = mic.make_conv_3x3( convolution_type=convolution_type, in_channels=bottleneck_features, out_channels=bottleneck_features, **convolution_params ) self.A2 = mia.make_activation( features=bottleneck_features, activation_type=activation_type, **activation_params ) self.W3 = mic.make_conv_1x1( convolution_type=convolution_type, in_channels=bottleneck_features, out_channels=out_features, **convolution_params ) self.A3 = mia.make_activation( features=out_features, activation_type=activation_type, **activation_params ) self.S = torch.nn.Identity() if in_features == out_features\ else mic.make_conv_1x1( convolution_type=convolution_type, in_channels=in_features, out_channels=out_features, **convolution_params, # using a 3x3 conv for shortcut downscaling instead of a 1x1 (used in detectron2 for example) ) if not strided else mic.make_conv_3x3( convolution_type=convolution_type, in_channels=in_features, out_channels=out_features, stride=2, **convolution_params, ) def forward(self, x: torch.Tensor) -> torch.Tensor: y = self.W3(self.A2(self.W2(self.A1(self.W1(x))))) # y = W3 * A2(W2 * A1(W1 * x)) return self.A3(self.S(x) + y) # out = A3(S(x) + y) class PreResBottleneck(Bottleneck): def __init__(self, convolution_type: str, activation_type: str, in_features: int, out_features: int, bottleneck_features: int, convolution_params: dict, activation_params: dict, strided: bool, ): super(PreResBottleneck, self).__init__( convolution_type=convolution_type, activation_type=activation_type, in_features=in_features, out_features=out_features, bottleneck_features=bottleneck_features, convolution_params=convolution_params, activation_params=activation_params, strided=strided ) def forward(self, x: torch.Tensor) -> torch.Tensor: y = self.A3(self.W3(self.A2(self.W2(self.A1(self.W1(x)))))) # y = A3(W3 * A2(W2 * A1(W1 * x))) return self.S(x) + y # out = S(x) + y class PreActivBottleneck(torch.nn.Module): def __init__(self, convolution_type: str, activation_type: str, in_features: int, out_features: int, bottleneck_features: int, convolution_params: dict, activation_params: dict, strided: bool, ): super(PreActivBottleneck, self).__init__() self.A1 = mia.make_activation( features=in_features, activation_type=activation_type, **activation_params ) self.W1 = mic.make_conv_1x1( convolution_type=convolution_type, in_channels=in_features, out_channels=bottleneck_features, stride=2 if strided else 1, **convolution_params ) self.A2 = mia.make_activation( features=bottleneck_features, activation_type=activation_type, **activation_params ) self.W2 = mic.make_conv_3x3( convolution_type=convolution_type, in_channels=bottleneck_features, out_channels=bottleneck_features, **convolution_params ) self.A3 = mia.make_activation( features=bottleneck_features, activation_type=activation_type, **activation_params ) self.W3 = mic.make_conv_1x1( convolution_type=convolution_type, in_channels=bottleneck_features, out_channels=out_features, **convolution_params ) self.S = torch.nn.Identity() if in_features == out_features\ else mic.make_conv_1x1( convolution_type=convolution_type, in_channels=in_features, out_channels=out_features, **convolution_params, # using a 3x3 conv for shortcut downscaling instead of a 1x1 (used in detectron2 for example) ) if not strided else mic.make_conv_3x3( convolution_type=convolution_type, in_channels=in_features, out_channels=out_features, stride=2, **convolution_params, ) def forward(self, x: torch.Tensor) -> torch.Tensor: y = self.W3(self.A3(self.W2(self.A2(self.W1(self.A1(x)))))) # y = W3 * A3(W2 * A2(W1 * A1(x))) return self.S(x) + y # out = x + y
2.265625
2
test.py
Pokoai/Andrew-NG-Meachine-Learning
1
12784498
x1, x2 = find_decision_boundary(svc, 0, 5, 1.5, 5, 2 * 10**-3) fig. ax = plt.subplots(figsize=(10, 8)) ax.scatter(x1, x2, s=10, c='r', label='Boundary') plot_init_pic(data, fig, ax) ax.set_title('SVM(C=1) Decition Boundary') ax.set_xlabel('X1') ax.set_ylabel('X2') ax.legend() plt.show()
2.890625
3
anton/lights/audio/audioprocess.py
sunnstix/dancyPi-audio-reactive-led
0
12784499
from asyncio import streams import time import numpy as np import pyaudio import anton.lights.config as config class AudioProcess(): def __init__(self): self.audio = pyaudio.PyAudio() self.frames_per_buffer = int(config.MIC_RATE / config.FPS) self.overflows = 0 self.prev_ovf_time = time.time() self.running = False def start_stream(self,callback): self.stream = self.audio.open(format=pyaudio.paInt16, channels=1, rate=config.MIC_RATE, input=True, frames_per_buffer=self.frames_per_buffer) self.running = True self.overflows = 0 while self.running: try: y = np.fromstring(self.stream.read(self.frames_per_buffer, exception_on_overflow=False), dtype=np.int16) y = y.astype(np.float32) self.stream.read(self.stream.get_read_available(), exception_on_overflow=False) callback(y) except IOError: self.overflows += 1 if time.time() > self.prev_ovf_time + 1: self.prev_ovf_time = time.time() print('Audio buffer has overflowed {} times'.format(self.overflows)) def kill_stream(self): self.running = False def stop_stream(self): self.stream.stop_stream() self.stream.close()
2.8125
3
main.py
mario21ic/swarm-status
0
12784500
<gh_stars>0 #!/usr/bin/env python3 # Usage: python main.py action # Example: python main.py nodes|stacks|services|tasks import time import platform import logging import os import sys import boto3 import docker docker_client = docker.from_env() docker_api = docker.APIClient(base_url='unix://var/run/docker.sock') logging.basicConfig(level=logging.INFO, format="%(asctime)s " + platform.node() + ": %(message)s") def main(action=""): logging.info("========================") if action == "nodes": logging.info("### Nodes ###") nodes = docker_client.nodes.list(filters={'role': 'manager'}) logging.info("#### Managers: %s" % (len(nodes))) logging.info("ID\t\t\t\tHOSTNAME\tIP\tSTATUS\tAVAILABILITY\tMANAGER\tREACHABILITY\tCREATED") for node in nodes: # logging.info("attrs: " + str(node.attrs)) logging.info("%s\t%s\t%s\t%s\t%s\t\t%s\t%s\t%s" % ( node.attrs['ID'], node.attrs['Description']['Hostname'], node.attrs['Status']['Addr'], node.attrs['Status']['State'], node.attrs['Spec']['Availability'], node.attrs['ManagerStatus']['Leader'], node.attrs['ManagerStatus']['Reachability'], node.attrs['CreatedAt'] )) nodes = docker_client.nodes.list(filters={'role': 'worker'}) logging.info("#### Managers: %s" % (len(nodes))) logging.info("ID\t\t\t\tHOSTNAME\tIP\tSTATUS\tAVAILABILITY\tCREATED") for node in nodes: # logging.info("attrs: " + str(node.attrs)) logging.info("%s\t%s\t%s\t%s\t%s\t\t%s" % ( node.attrs['ID'], node.attrs['Description']['Hostname'], node.attrs['Status']['Addr'], node.attrs['Status']['State'], node.attrs['Spec']['Availability'], node.attrs['CreatedAt'] )) return if action == "services": logging.info("###### Services ######") services = docker_client.services.list() logging.info("ID\t\t\t\tNAME\t\tMODE\tREPLICAS-TASKS\tIMAGE\tPORTS\tCREATED") for service in services: # logging.info("Service attrs: " + str(service.attrs)) mode = "" for mod in service.attrs['Spec']['Mode'].keys(): mode = mod replicas = 0 if mode == "Replicated": replicas = service.attrs['Spec']['Mode']['Replicated']['Replicas'] ports = [] if "Ports" in service.attrs['Endpoint']: for ingress in service.attrs['Endpoint']['Ports']: ports.append( ingress['Protocol'] + "/" + str(ingress['PublishedPort']) + ":" + str(ingress['TargetPort'])) logging.info("%s\t%s\t\t%s\t%s-%s\t%s\t%s\t%s" % ( service.attrs['ID'], service.name[:7], mode[:6], replicas, len(service.tasks()), service.attrs['Spec']['TaskTemplate']['ContainerSpec']['Image'].split("@")[0], ",".join(ports), service.attrs['CreatedAt'] )) return if action == "tasks": logging.info("###### Tasks ######") services = docker_client.services.list() logging.info("ID\t\t\t\tNAME\t\tIMAGE\t\t\tNODE\tDESIRED\tCURRENT\tERROR\tPORTS\tCREATED") for service in services: for task in service.tasks(): # logging.info("Tasks attrs: " + str(task)) node = docker_api.inspect_node(task['NodeID']) logging.info("%s\t%s\t\t%s\t\t%s\t%s\t%s\t%s\t%s\t%s" % ( task['ID'], "", task['Spec']['ContainerSpec']['Image'].split("@")[0], node['Description']['Hostname'], task['DesiredState'], task['Status']['State'], "", "", task['CreatedAt'] )) return if __name__ == "__main__": main(sys.argv[1])
2.125
2
graphapi/schema.py
johnseekins/openstates.org
51
12784501
import graphene from .legislative import LegislativeQuery from .core import CoreQuery class Query(LegislativeQuery, CoreQuery, graphene.ObjectType): pass schema = graphene.Schema(query=Query)
1.46875
1
objects/enemy.py
elgrandt/ShooterInc
0
12784502
import OGL import pywavefront from OpenGL.GL import * class BasicEnemy(OGL.Cube): def __init__(self,x,y,z): OGL.Cube.__init__(self,3,8,2,x,y,z) self.model = pywavefront.Wavefront("Handgun_obj.obj","models/") self.model.onload = self.onload #self.model = OGL.OBJ("Man.obj",Fse,10) #self.width = self.model.widthal #self.height = self.model.height #self.depth = self.model.depth def onload(self): trigger = self.model.get_mesh("Cube.005_Cube.000") trigger.pos[0] = -.3 def blit(self): self.model.draw()
2.875
3
playbooks/files/autoscaling/cpu_load.py
opentelekomcloud-infra/csm-sandbox
2
12784503
<gh_stars>1-10 """ A tool for generating a set of subsequent CPU utilization levels.""" import logging import subprocess import sys import time from argparse import ArgumentParser LOGGER = logging.getLogger(__name__) LOGGER.setLevel(logging.DEBUG) def process(interval, utilization_list, ncpus): for utilization in utilization_list: print(f"\nSwitching to {utilization}%") proc = subprocess.Popen(["lookbusy", "--ncpus", str(ncpus), "--cpu-util", utilization]) time.sleep(interval) proc.terminate() def _parse_args(): agp = ArgumentParser( prog="cpu load generator ", description="Generates a set of subsequent CPU utilization levels read from a file.") agp.add_argument("--interval", help="interval between subsequent CPU utilization levels in seconds", default=60, type=int) agp.add_argument("--source", help="source file containing a new line separated list of CPU" "utilization levels specified as numbers in the [0, 100] range") agp.add_argument("--ncpus", help="number of CPU cores to utilize [default: 1]", default=1) args, _ = agp.parse_known_args() try: int(args.interval) except ValueError: LOGGER.error("interval must be an integer >= 0") sys.exit(1) if args.interval <= 0: LOGGER.error("interval must be >= 0") sys.exit(1) return args def _parse_config(source: str): utilization = [] with open(source, 'r') as file: levels = file.read().splitlines() for line in levels: if not line.isdigit(): continue if 0 <= int(line) <= 100: utilization.append(line) else: LOGGER.error("the source file must only contain new line separated" "numbers in the [0, 100] range") return utilization def main(): args = _parse_args() utilization = _parse_config(args.source) while True: try: process(args.interval, utilization, args.ncpus) except KeyboardInterrupt: LOGGER.info("Script Stopped") sys.exit(0) if __name__ == '__main__': main()
3.125
3
memory/memory_object.py
nbanmp/seninja
109
12784504
<gh_stars>100-1000 from ..expr import BV, BVArray, Bool, ITE class MemoryObj(object): def __init__(self, name, bits=64, bvarray=None): self.bvarray = BVArray( "MEMOBJ_" + name, bits, 8 ) if bvarray is None else bvarray self.name = name self.bits = bits def __str__(self): return "<MemoryObj{bits} {name}>".format( bits=self.bits, name=self.name ) def __repr__(self): return self.__str__() def load(self, index: BV): return self.bvarray.Select(index) def store(self, index: BV, value: BV, condition: Bool = None): if condition is None: self.bvarray.Store(index, value) else: # this can be inefficient self.bvarray.ConditionalStore(index, value, condition) def copy(self): return MemoryObj(self.name, self.bits, self.bvarray.copy()) def merge(self, other, merge_condition: Bool): self.bvarray = self.bvarray.merge(other.bvarray, merge_condition)
2.78125
3
models/dino.py
guilhermesurek/3D-ResNets-PyTorch
0
12784505
<reponame>guilhermesurek/3D-ResNets-PyTorch<filename>models/dino.py<gh_stars>0 import torch import torch.nn as nn import torch.nn.functional as F class Head(nn.Module): def __init__(self, n_classes, n_inputs=None, dropout=None): super().__init__() self.n_inputs = n_inputs self.n_classes = n_classes self.n_layers = 2 # Consolidate temporal features # self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(7,256), stride=1) # self.bn1 = nn.BatchNorm2d(self.conv1.out_channels) # self.conv2 = nn.Conv2d(in_channels=self.conv1.out_channels, out_channels=32, kernel_size=(6,512), stride=1) # self.bn2 = nn.BatchNorm2d(self.conv2.out_channels) # self.conv3 = nn.Conv2d(in_channels=self.conv2.out_channels, out_channels=32, kernel_size=(5,1024), stride=1) # self.bn3 = nn.BatchNorm2d(self.conv3.out_channels) # self.relu = nn.ReLU(inplace=True) # #self.fc1 = nn.Linear(self.conv3.out_channels,self.conv3.out_channels) # self.fc = nn.Linear(self.conv3.out_channels,n_classes) # self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1)) # conf2 # self.conv1 = nn.Conv2d(in_channels=1, out_channels=2, kernel_size=(7,7), stride=1) # self.bn1 = nn.BatchNorm2d(self.conv1.out_channels) # self.conv2 = nn.Conv2d(in_channels=self.conv1.out_channels, out_channels=2, kernel_size=(6,7), stride=1) # self.bn2 = nn.BatchNorm2d(self.conv2.out_channels) # self.conv3 = nn.Conv2d(in_channels=self.conv2.out_channels, out_channels=4, kernel_size=(5,5), stride=1) # self.bn3 = nn.BatchNorm2d(self.conv3.out_channels) # self.relu = nn.ReLU(inplace=True) # #self.fc1 = nn.Linear(8128,8128) #conv3.out_channels,conv3.out_channels) # self.fc = nn.Linear(8128,n_classes) # conf3 # self.conv1 = nn.Conv2d(in_channels=1, out_channels=4, kernel_size=(9,75), stride=(1,3)) # self.bn1 = nn.BatchNorm2d(self.conv1.out_channels) # self.conv2 = nn.Conv2d(in_channels=self.conv1.out_channels, out_channels=8, kernel_size=(8,75), stride=(1,3)) # self.bn2 = nn.BatchNorm2d(self.conv2.out_channels) # self.relu = nn.ReLU(inplace=True) # #self.fc1 = nn.Linear(1560,1560) # self.fc = nn.Linear(1560,n_classes) # conf4 # self.conv1 = nn.Conv2d(in_channels=1, out_channels=4, kernel_size=(16,155), stride=(1,3)) # self.bn1 = nn.BatchNorm2d(self.conv1.out_channels) # self.relu = nn.ReLU(inplace=True) # #self.fc1 = nn.Linear(2528,2528) # self.fc = nn.Linear(2528,n_classes) # conf5 # self.fc1 = nn.Linear(16*2048,2048) # self.fc = nn.Linear(2048,n_classes) # conf6 #self.fc = nn.Linear(16*2048,n_classes) # ViT #1 #self.fc = nn.Linear(n_inputs, n_classes) # ViT #2 self.lstm = nn.LSTM(input_size=self.n_inputs, hidden_size=self.n_inputs, num_layers=self.n_layers, dropout=dropout, batch_first=True) #lstm self.fc = nn.Linear(self.n_inputs, self.n_classes) def forward(self, x): ## Conf1 # x = self.conv1(x) # x = self.bn1(x) # x = self.relu(x) # x = self.conv2(x) # x = self.bn2(x) # x = self.relu(x) # x = self.conv3(x) # x = self.bn3(x) # x = self.relu(x) # x = self.avgpool(x) # x = torch.flatten(x, 1) # #x = self.fc1(x) # x = self.fc(x) ## Conf2 # x = self.conv1(x) # x = self.bn1(x) # x = self.relu(x) # x = self.conv2(x) # x = self.bn2(x) # x = self.relu(x) # x = self.conv3(x) # x = self.bn3(x) # x = self.relu(x) # x = torch.flatten(x, 1) # #x = self.fc1(x) # x = self.fc(x) ## Conf3 # x = self.conv1(x) # x = self.bn1(x) # x = self.relu(x) # x = self.conv2(x) # x = self.bn2(x) # x = self.relu(x) # x = torch.flatten(x, 1) # #x = self.fc1(x) # x = self.fc(x) ## Conf4 # x = self.conv1(x) # x = self.bn1(x) # x = self.relu(x) # x = torch.flatten(x, 1) # #x = self.fc1(x) # x = self.fc(x) ## Conf5 # x = torch.flatten(x, 1) # x = self.fc1(x) # x = self.fc(x) ## ViT #1 #x = torch.flatten(x, 1) #x = self.fc(x) ## ViT #2 # Don't need to initialize hidden state because the states are not connected between iterations x, _ = self.lstm(x) x = x[:, -1, :] x = self.fc(x) return x class Dino_ResNet(nn.Module): def __init__(self, #block, #layers, #block_inplanes, #n_input_channels=3, #conv1_t_size=7, #conv1_t_stride=1, #no_max_pool=False, #shortcut_type='B', #widen_factor=1.0, n_classes=400):#, #dropout_factor=0.5): super().__init__() # Extract Features self.dino = torch.hub.load('facebookresearch/dino:main', 'dino_resnet50') for param in self.dino.parameters(): param.requires_grad = False self.head = Head(n_classes=n_classes) # Consolidate temporal features # self.conv1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=(7,256), stride=1) # self.bn1 = nn.BatchNorm2d(self.conv1.out_channels) # self.conv2 = nn.Conv2d(in_channels=self.conv1.out_channels, out_channels=128, kernel_size=(6,512), stride=1) # self.bn2 = nn.BatchNorm2d(self.conv2.out_channels) # self.conv3 = nn.Conv2d(in_channels=self.conv2.out_channels, out_channels=256, kernel_size=(5,1024), stride=1) # self.bn3 = nn.BatchNorm2d(self.conv3.out_channels) # self.relu = nn.ReLU(inplace=True) # #self.fc1 = nn.Linear(self.conv3.out_channels,self.conv3.out_channels) # self.fc = nn.Linear(self.conv3.out_channels,n_classes) # self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1)) def forward(self, x): #import ipdb; ipdb.set_trace() x = x.permute(0, 2, 1, 3, 4) #x1 = [self.dino(x_in) for x_in in x] #x1 = [] c=0 for x_in in x: out = self.dino(x_in) out = torch.stack((out,), 0) if c==0: x1 = out c=+1 else: x1 = torch.cat((x1,out),0) #x1 = torch.stack(x1, 0) # Fro LSTM comment below x = torch.stack((x1,), 0).permute(1, 0, 2, 3) #x = x1 x = self.head(x) # x = self.conv1(x) # x = self.bn1(x) # x = self.relu(x) # x = self.conv2(x) # x = self.bn2(x) # x = self.relu(x) # x = self.conv3(x) # x = self.bn3(x) # x = self.relu(x) # x = self.avgpool(x) # x = torch.flatten(x, 1) # #x = self.fc1(x) # x = self.fc(x) return x class Dino_ViT(nn.Module): def __init__(self, #block, #layers, #block_inplanes, #n_input_channels=3, #conv1_t_size=7, #conv1_t_stride=1, #no_max_pool=False, #shortcut_type='B', #widen_factor=1.0, n_classes=400, dropout_factor=0.5): super().__init__() # Extract Features self.dino = torch.hub.load('facebookresearch/dino:main', 'dino_vits16') for param in self.dino.parameters(): param.requires_grad = False self.head = Head(n_classes=n_classes, n_inputs=384, dropout=dropout_factor) def forward(self, x): #import ipdb; ipdb.set_trace() x = x.permute(0, 2, 1, 3, 4) c=0 for x_in in x: out = self.dino(x_in) out = torch.stack((out,), 0) if c==0: x1 = out c=+1 else: x1 = torch.cat((x1,out),0) # Fro LSTM comment below #x = torch.stack((x1,), 0).permute(1, 0, 2, 3) x = x1 x = self.head(x) return x def generate_model(model_arch, **kwargs): if model_arch == 'dino_resnet': model = Dino_ResNet(**kwargs) elif model_arch == 'dino_vit': model = Dino_ViT(**kwargs) return model
2.109375
2
python/planck/settings_planck_2018.py
sfu-cosmo/MagCosmoMC
0
12784506
<reponame>sfu-cosmo/MagCosmoMC import copy import re from paramgrid import batchjob # plik foregrounds have to be calculated a posteriori as before (before zre6p5 filter). ini_dir = 'batch3/' cov_dir = 'planck_covmats/' defaults = ['common.ini'] getdist_options = {'ignore_rows': 0.3, 'marker[nrun]': 0, 'marker[w]': -1} importanceDefaults = ['importance_sampling.ini'] # ranges for parameters when they are varied params = dict() params['w'] = '-0.99 -3. 1 0.02 0.02' params['wa'] = '0 -3 2 0.05 0.05' params['mnu'] = '0.02 0 5 0.1 0.03' params['omegak'] = '-0.0008 -0.3 0.3 0.001 0.001' # starting exactly on flat seems to confuse minimizer params['nnu'] = '3.046 0.05 10 0.05 0.05' params['nrun'] = '0 -1 1 0.005 0.001' params['nrunrun'] = '0 -1 1 0.002 0.001' params['r'] = '0 0 3 0.03 0.03' params['Alens'] = '1 0 10 0.05 0.05' params['yhe'] = '0.245 0.1 0.5 0.006 0.006' params['alpha1'] = '0 -1 1 0.0003 0.0003' params['meffsterile'] = '0.1 0 3 0.1 0.03' params['Aphiphi'] = '1 0 10 0.02 0.02' params['Alensf'] = '1 0 10 0.03 0.03' # extra parameters that are set only when specific parameters are varied. param_extra_opts = { 'mnu': {'num_massive_neutrinos': 3, 'neutrino_hierarchy': 'degenerate'}, 'meffsterile': {'param[mnu]': '0.06', 'param[nnu]': '3.1 3.046 10 0.05 0.05', 'num_massive_neutrinos': 1, 'accuracy_level': 1.2}, 'yhe': {'bbn_consistency': False}, 'r': {'compute_tensors': True}, 'nt': {'inflation_consistency': False, 'lmax_tensor': 1000} } # dataset names lowl = 'lowl' lensing = 'lensing' lensonly = 'lensonly' lowE = 'lowE' WMAP = 'WMAP' BAO = 'BAO' HST = 'Riess18' JLA = 'JLA' Pantheon = 'Pantheon' BAORSD = 'BAORSD' lowEdata = 'simall_EE.ini' BAOdata = 'BAO.ini' RSDdata = 'BAODR12_RSD.ini' HSTdata = 'HST_Riess2018.ini' theta_prior = {'prior[theta]': '1.0409 0.0006'} # dataset names tauprior = {'prior[tau]': '0.055 0.009'} tauname = 'tau055' variant_tag = ['TT', 'TTTEEE'] variant_pol_tag = ['TE', 'EE'] variants = variant_tag planck_highL_sets = [] planck_pol_sets = [] planck_vars = ['plikHM', 'CamSpecHM'] planck_ini = ['plik_rd12_HM_v22_%s.ini', 'nonclik_v10_7_%s.ini'] clean_ini = ['nonclik_v10_7_TT_clean.ini'] # planck_ini = ['plik_rd12_HM_v22_%s.ini', 'CAMspec_%s_clik14.ini'] planck_base = [[], []] for planck, ini, base in zip(planck_vars, planck_ini, planck_base): for name, var in zip(variant_tag, variants): planck_highL_sets.append(batchjob.dataSet([planck, name], base + [ini % var])) for var in variant_pol_tag: planck_pol_sets.append(batchjob.dataSet([planck, var], base + [ini % var])) baseTT = planck_highL_sets[0] baseTTTEEE = planck_highL_sets[1] WMAP9 = [[WMAP], ['WMAP.ini']] likechecks = [] newCovmats = False # Importance sampling settings class importanceFilterLensing: def wantImportance(self, jobItem): return [planck for planck in planck_vars if planck in jobItem.data_set.names] and ( not 'omegak' in jobItem.param_set or (len(jobItem.param_set) == 1)) class importanceFilterSN: def wantImportance(self, jobItem): return 'JLA' not in jobItem.data_set.names and 'Pantheon' not in jobItem.data_set.names class reion_importance(batchjob.importanceSetting): def wantImportance(self, jobItem): return [planck for planck in planck_vars if planck in jobItem.data_set.names] and not 'reion' in jobItem.data_set.names class zre_importance(batchjob.importanceFilter): def wantImportance(self, jobItem): return [planck for planck in planck_vars if planck in jobItem.data_set.names] and not 'reion' in jobItem.data_set.names def filter(self, batch, jobItem): samples = jobItem.parent.getMCSamples(settings=getdist_options) pars = samples.getParams() samples.filter(pars.zrei >= 6.5) samples.ranges.setRange('zrei', [6.5, None]) samples.saveChainsAsText(jobItem.chainRoot, properties={'burn_removed': True}) class importanceFilterNotOmegak: def wantImportance(self, jobItem): return not ('omegak' in jobItem.param_set) class importanceFilterBAO: def wantImportance(self, jobItem): return not ('omegak' in jobItem.param_set) and jobItem.data_set.hasName('BAO') class importanceFilterNnu: def wantImportance(self, jobItem): return 'nnu' in jobItem.param_set post_lensing = [[lensing], ['lensing.ini'], importanceFilterLensing()] post_lensingBAO = [[BAO, lensing], [BAOdata, 'lensing.ini'], importanceFilterNotOmegak()] post_lensingPantheon = [[lensing, Pantheon], ['lensing.ini', 'Pantheon.ini'], importanceFilterSN()] post_lensingJLA = [[lensing, JLA], ['lensing.ini', 'JLA_marge.ini'], importanceFilterNotOmegak()] post_BAO = [[BAO], [BAOdata], importanceFilterNotOmegak()] post_HST = [[HST], [HSTdata], importanceFilterNotOmegak()] post_BAOJLA = [[BAO, JLA], [BAOdata, 'JLA_marge.ini'], importanceFilterNotOmegak()] post_BAOPantheon = [[BAO, Pantheon], [BAOdata, 'Pantheon.ini'], importanceFilterNotOmegak()] post_BAOHST = [[BAO, HST], [BAOdata, HSTdata], importanceFilterNotOmegak()] post_BAOHSTJLA = [[BAO, JLA, HST], [BAOdata, 'JLA_marge.ini', HSTdata], importanceFilterNotOmegak()] post_BAOHSTPantheon = [[BAO, Pantheon, HST], [BAOdata, 'Pantheon.ini', HSTdata], importanceFilterNotOmegak()] post_BAOlensingPantheon = [[BAO, lensing, Pantheon], [BAOdata, 'lensing.ini', 'Pantheon.ini'], importanceFilterNotOmegak()] post_Pantheon = [[Pantheon], ['Pantheon.ini'], importanceFilterNotOmegak()] post_CookeBBN = ['Cooke17'] post_Aver15 = [['Aver15'], ['Aver15BBN.ini'], importanceFilterNnu()] post_BBN = [['Cooke17', 'Aver15'], ['Aver15BBN.ini', 'Cooke17BBN.ini'], importanceFilterNnu()] # set up groups of parameters and data sets groups = [] g = batchjob.jobGroup('main') g.datasets = copy.deepcopy(planck_highL_sets) for d in g.datasets: d.add(lowl) d.add(lowE, lowEdata) g.params = [[], ['omegak'], ['mnu'], ['r'], ['nrun', 'r'], ['nnu'], ['nrun'], ['Alens'], ['yhe'], ['w'], ['alpha1']] g.importanceRuns = [post_BAO, post_lensing, post_lensingBAO, post_HST, post_BBN] groups.append(g) gpol = batchjob.jobGroup('mainpol') gpol.datasets = copy.deepcopy(planck_pol_sets) for d in gpol.datasets: d.add(lowE, lowEdata) gpol.params = [[], ['mnu'], ['nnu'], ['nrun'], ['Alens'], ['yhe'], ['r']] gpol.importanceRuns = [post_BAO] groups.append(gpol) gpol = batchjob.jobGroup('polbao') gpol.datasets = copy.deepcopy(planck_pol_sets) for d in gpol.datasets: d.add(lowE, lowEdata) d.add(BAO, BAOdata) gpol.params = [[], ['mnu'], ['nnu']] gpol.importanceRuns = [post_lensing] groups.append(gpol) gpol = batchjob.jobGroup('pollensing') gpol.datasets = copy.deepcopy(planck_pol_sets) for d in gpol.datasets: d.add(lowE, lowEdata) d.add(lensing) for d in list(gpol.datasets): d = d.copy().add(BAO, BAOdata).add('CookeDH', 'baryon_density.ini') gpol.datasets.append(d) for d in copy.deepcopy(planck_pol_sets): d.add(lowE, lowEdata) d.add(lensing) d.add('CookeDH', 'baryon_density.ini') gpol.datasets.append(d) gpol.params = [[]] gpol.importanceRuns = [] groups.append(gpol) gnotau = batchjob.jobGroup('nopoltau') gnotau.params = [[]] gnotau.datasets = copy.deepcopy(planck_highL_sets) for d in gnotau.datasets: d.add(lowl) for d in copy.deepcopy(planck_highL_sets): d.add(lowl) d.add(lensing) gnotau.datasets.append(d) for d in copy.deepcopy(planck_highL_sets): d.add(lowl) d.add('reion', 'reion_tau.ini') gnotau.datasets.append(d) gnotau.importanceRuns = [post_BAO] groups.append(gnotau) gnotau = batchjob.jobGroup('nopoltaumnu') gnotau.params = [['mnu'], ['Alens']] gnotau.datasets = [] for d in copy.deepcopy(planck_highL_sets): d.add(lowl) d.add(lensing) gnotau.datasets.append(d) gnotau.importanceRuns = [post_BAO] groups.append(gnotau) g2 = batchjob.jobGroup('ext') g2.datasets = copy.deepcopy(g.datasets) g2.params = [['nnu', 'meffsterile'], ['nnu', 'mnu'], ['nnu', 'yhe']] g2.importanceRuns = [post_BAO, post_HST, post_lensing, post_lensingBAO] groups.append(g2) g3 = batchjob.jobGroup('geom') g3.params = [['omegak'], ['w'], ['w', 'wa']] g3.datasets = [] for d in copy.deepcopy(g.datasets): d.add(BAO, BAOdata) g3.datasets.append(d) for d in copy.deepcopy(g.datasets): d.add(BAO, BAOdata) d.add(HST, HSTdata) d.add(JLA) g3.datasets.append(d) g3.importanceRuns = [post_lensing, post_lensingPantheon] groups.append(g3) g3 = batchjob.jobGroup('de') g3.params = [['w'], ['w', 'wa']] g3.datasets = [] for d in copy.deepcopy(g.datasets): d.add(BAO, BAOdata) d.add(Pantheon) g3.datasets.append(d) for d in copy.deepcopy(g.datasets): d.add(BAO, BAOdata) d.add(HST, HSTdata) d.add(Pantheon) g3.datasets.append(d) g3.importanceRuns = [post_lensing] groups.append(g3) g6 = batchjob.jobGroup('lensing') g6.datasets = copy.deepcopy(g.datasets) for d in g6.datasets: d.add(lensing) g6.params = [['omegak'], ['mnu'], ['Alens']] g6.importanceRuns = [post_BAO] groups.append(g6) inflat = batchjob.jobGroup('inflat') inflat.datasets = copy.deepcopy(g.datasets) for d in inflat.datasets: d.add(lensing) inflat.params = [['r'], ['nrun', 'r']] inflat.importanceRuns = [post_BAO] groups.append(inflat) gbest = batchjob.jobGroup('basebest') gbest.datasets = copy.deepcopy(g.datasets) for d in gbest.datasets: d.add(lensing) gbest.params = [[]] gbest.importanceRuns = [post_BAO, post_HST, post_BAOHST, post_Pantheon, post_BAOHSTJLA, post_BAOPantheon, post_BAOHSTPantheon] groups.append(gbest) g7 = batchjob.jobGroup('mnu') g7.datasets = [] for d in copy.deepcopy(g.datasets): d.add(BAO, BAOdata) g7.datasets.append(d) for d in copy.deepcopy(g.datasets): d.add(lensing) d.add(BAO, BAOdata) g7.datasets.append(d) g7.params = [['mnu'], ['nnu', 'meffsterile'], ['nnu', 'mnu']] g7.importanceRuns = [post_Pantheon, post_Aver15, post_BBN] groups.append(g7) gnonbbn = batchjob.jobGroup('nonbbn') gnonbbn.datasets = copy.deepcopy(g.datasets) for d in gnonbbn.datasets: d.add('Aver15', 'Aver15BBN') gnonbbn.params = [['yhe'], ['nnu', 'yhe']] gnonbbn.importanceRuns = [post_BAO, post_lensing, post_lensingBAO] groups.append(gnonbbn) gnnu = batchjob.jobGroup('nnu') gnnu.datasets = [] for d in copy.deepcopy(g.datasets): d.add(BAO, BAOdata) gnnu.datasets.append(d) gnnu.params = [['nnu']] gnnu.importanceRuns = [post_lensingJLA, post_lensingPantheon, post_lensing, post_Aver15, post_BBN] groups.append(gnnu) gHST = batchjob.jobGroup('HST') gHST.datasets = [] for d in copy.deepcopy(g.datasets): d.add(HST, HSTdata) gHST.datasets.append(d) gHST.params = [['nnu']] gHST.importanceRuns = [post_BAO, post_BAOPantheon, post_lensing, post_lensingBAO, post_BAOlensingPantheon] groups.append(gHST) gclean = batchjob.jobGroup('cleaned') d = batchjob.dataSet(['CleanedCamSpecHM', 'TT'], [clean_ini]) d.add(lowl) d.add(lowE, lowEdata) gclean.datasets = [d] gclean.params = [[], ['mnu'], ['nnu'], ['yhe'], ['Alens'], ['omegak'], ['nrun'], ['r'], ['w']] groups.append(gclean) # Things mainly for the lensing paper glens = batchjob.jobGroup('lensonly') # get this well converged so importance sampling might work lensdata = batchjob.dataSet(['lensing', 'lenspriors'], [lensonly, 'lensonly_priors', {'MPI_Converge_Stop': 0.002}]) glens.datasets = [lensdata] glens.datasets += [lensdata.copy().add('theta', theta_prior)] lensdata = lensdata.copy().add(BAO, BAOdata) glens.datasets.append(lensdata) lensdata = lensdata.copy().add('theta', theta_prior) glens.datasets.append(lensdata) glens.params = [[], ['mnu']] glens.importanceRuns = [post_Pantheon] varnames = ['agr2', 'conslmin40', 'agrlmax425', 'ptt', 'pttagr2', 'bfcl', 'agr2bfcl', 'linear', 'acc', 'agr2acc', 'takahashi', 'agr2takahashi', 'Apr6'] if True: # Consistency checks mainly for the lensing paper base = 'smicadx12_Dec5_ftl_mv2_n' vars = [('dclpp_p_teb_agr2_CMBmarged', {}), ('dclpp_p_teb_consext8_CMBmarged', {'cmb_dataset[lensing,use_min]': 2}), ('dclpp_p_teb_agr2_CMBmarged', {'cmb_dataset[lensing,use_max]': 9}), ('dclpttptt_p_teb_consext8_CMBmarged', {}), ('dclpttptt_p_teb_agr2_CMBmarged', {}), ('dclpp_p_teb_consext8_lensonly', {}), ('dclpp_p_teb_agr2_lensonly', {}), # ('dclpp_p_teb_consext8_lensonly', { # 'cmb_dataset[lensing,linear_correction_bin_window_fix_cl_file]': '../base_omegak_plikHM_TTTEEE_lowl_lowE.minimum.theory_cl'}), ('dclpp_p_teb_consext8_CMBmarged', {'redo_theory': True, 'redo_cls': True, 'use_nonlinear_lensing': False}), ('dclpp_p_teb_consext8_CMBmarged', {'redo_theory': True, 'redo_cls': True, 'accuracy_level': 1.5, 'k_eta_max_scalar': 50000}), ('dclpp_p_teb_agr2_CMBmarged', {'redo_theory': True, 'redo_cls': True, 'accuracy_level': 1.5, 'k_eta_max_scalar': 50000}), ('dclpp_p_teb_consext8_CMBmarged', {'redo_theory': True, 'redo_cls': True, 'halofit_version': 4}), ('dclpp_p_teb_agr2_CMBmarged', {'redo_theory': True, 'redo_cls': True, 'halofit_version': 4}), ('smicadx12_Apr6_ndclpp_p_teb_consext8_CMBmarged', {}), ] for name, var in zip(varnames, vars): tag, opt = var dic = {'redo_likelihood': True, 'redo_add': False, 'cmb_dataset[lensing]': '%%DATASETDIR%%planck_lensing_2017/%s%s.dataset' % ( base if 'smica' not in tag else '', tag)} dic.update(opt) if 'ptt' in name and not 'CMBmarged' in name: dic['cmb_dataset[lensing,linear_correction_bin_window_fix_cl]'] = 'TT' glens.importanceRuns.append([[name], [dic]]) glens.extra_opts = {'sampling_method': 1} # no fast params groups.append(glens) # Things mainly for the lensing paper glensTT = batchjob.jobGroup('lensTT') base = 'smicadx12_Dec5_ftl_mv2_n' tag = 'dclpttptt_p_teb_agr2_CMBmarged' lensdata = batchjob.dataSet(['lensing', 'lenspriors', 'pttagr2'], [lensonly, 'lensonly_priors', {'cmb_dataset[lensing]': '%%DATASETDIR%%planck_lensing_2017/%s%s.dataset' % (base, tag)}]) glensTT.datasets = [lensdata] glensTT.datasets += [lensdata.copy().add('theta', theta_prior)] lensdata = lensdata.copy().add(BAO, BAOdata) glensTT.datasets.append(lensdata) lensdata = lensdata.copy().add('theta', theta_prior) glensTT.datasets.append(lensdata) glensTT.params = [[], ['mnu']] groups.append(glensTT) glens = batchjob.jobGroup('lensonlyastro') lensdata = batchjob.dataSet(['lensing', 'DESpriors'], [lensonly, 'DES_astro_priors']) glens.datasets = [lensdata] glens.datasets += [lensdata.copy().add(BAO, BAOdata)] lensdata = lensdata.copy().add('CookeDH', 'baryon_density.ini') glens.datasets += [lensdata] lensdata = lensdata.copy().add(BAO, BAOdata) glens.datasets += [lensdata] glens.param_extra_opts = {'mnu': {'param[mnu]': '0.07 0.05 1 0.1 0.03'}} glens.params = [[], ['mnu']] glens.extra_opts = {'sampling_method': 1} # no fast params groups.append(glens) gphi = batchjob.jobGroup('Aphiphi') gphi.params = [['Aphiphi']] gphi.datasets = [] for d in copy.deepcopy(g.datasets): d.add(lensing) gphi.datasets.append(d) gphi.importanceRuns = [] groups.append(gphi) gphi = batchjob.jobGroup('Alens') gphi.params = [[], ['Alens']] gphi.datasets = [] for d in copy.deepcopy(planck_highL_sets): gphi.datasets.append(d) dlow = d.copy() dlow.add(lowl) gphi.datasets.append(dlow) dtau = d.copy() dtau.add(lowE, lowEdata) gphi.datasets.append(dtau) gphi.importanceRuns = [post_BAO] groups.append(gphi) gWMAP = batchjob.jobGroup('WMAP') gWMAP.params = [[]] gWMAP.datasets = [WMAP9] gWMAP.importanceRuns = [post_BAO] groups.append(gWMAP) for bk in ['BK14']: gbkp = batchjob.jobGroup(bk) gbkp.datasets = [] for d in copy.deepcopy(planck_highL_sets): d.add(lowl) d.add(lowE, lowEdata) d.add(bk) gbkp.datasets.append(d) for d in [copy.deepcopy(baseTTTEEE)]: d.add(lowl) d.add(lowE, lowEdata) d.add(bk) d.add(lensing) gbkp.datasets.append(d) gbkp.params = [['r'], ['nrun', 'r']] gbkp.importanceRuns = [post_BAO, post_lensing, post_lensingBAO] groups.append(gbkp) DESdatapriors = [batchjob.dataSet(['DES', 'lenspriors'], ['DES', 'lensonly_priors']), batchjob.dataSet(['DESlens', 'lenspriors'], ['DES_lensing', 'lensonly_priors'])] gWL = batchjob.jobGroup('DES') gWL.datasets = copy.deepcopy(DESdatapriors) for d in copy.deepcopy(DESdatapriors): d.add('lensing', lensonly) gWL.datasets.append(d) for d in copy.deepcopy(DESdatapriors): d.add(BAO, BAOdata) gWL.datasets.append(d) for d in copy.deepcopy(DESdatapriors): d.add('lensing', lensonly) d.add(BAO, BAOdata) gWL.datasets.append(d) gWL.params = [[], ['mnu']] gWL.importanceRuns = [] groups.append(gWL) DESdatapriors = [batchjob.dataSet(['DES', 'DESpriors'], ['DES', 'DES_astro_priors']), batchjob.dataSet(['DESlens', 'DESpriors'], ['DES_lensing', 'DES_astro_priors']), batchjob.dataSet(['DESwt', 'DESpriors'], ['DES_wt', 'DES_astro_priors']) ] gWL = batchjob.jobGroup('DESastro') gWL.datasets = copy.deepcopy(DESdatapriors) for d in copy.deepcopy(DESdatapriors): d.add('lensing', 'lensonly') gWL.datasets.append(d) for d in copy.deepcopy(DESdatapriors): d.add(BAO, BAOdata) d.add('CookeDH', 'baryon_density.ini') gWL.datasets.append(d) for d in copy.deepcopy(DESdatapriors): d.add('lensing', lensonly) d.add(BAO, BAOdata) d.add('CookeDH', 'baryon_density.ini') gWL.datasets.append(d) gWL.param_extra_opts = {'mnu': {'param[mnu]': '0.07 0.05 1 0.1 0.03'}} gWL.params = [[], ['mnu']] gWL.importanceRuns = [] groups.append(gWL) gDESPlanck = batchjob.jobGroup('DESPlanck') gDESPlanck.datasets = [] for d in [copy.deepcopy(baseTTTEEE)]: d.add(lowl) d.add(lowE, lowEdata) d.add('DES') gDESPlanck.datasets.append(d) for d in [copy.deepcopy(baseTTTEEE)]: d.add(lowl) d.add(lowE, lowEdata) d.add('DESlens', 'DES_lensing') gDESPlanck.datasets.append(d) # for d in copy.deepcopy(gDESPlanck.datasets): # d.add(lensing) # gDESPlanck.datasets.append(d) gDESPlanck.params = [[], ['mnu']] gDESPlanck.importanceRuns = [post_BAO, post_lensing, post_lensingBAO] groups.append(gDESPlanck) gext = batchjob.jobGroup('twos') d = copy.deepcopy(baseTTTEEE) d.add(lowl) d.add(lowE, lowEdata) gext.datasets = [d] gext.params = [['nrun', 'nrunrun'], ['nnu', 'nrun']] gext.importanceRuns = [post_BAO, post_lensing, post_lensingBAO] groups.append(gext) gext = batchjob.jobGroup('big') d = copy.deepcopy(baseTTTEEE) d.add(lowl) d.add(lowE, lowEdata) d.add(BAO, BAOdata) d.add(HST, HSTdata) d.add(Pantheon) d.add(lensing) gext.datasets = [d] gext.params = [['nrun', 'nnu', 'w', 'mnu']] gext.importanceRuns = [] groups.append(gext) gBBN = batchjob.jobGroup('lensingBBN') BBN = batchjob.dataSet(['lensing', 'lenspriors', BAO, 'Cooke17', 'Aver15'], [lensonly, 'Aver15BBN', 'Cooke17BBN', BAOdata, 'lensonly_priors', {'prior[omegabh2]': ''}]) gBBN.datasets = [BBN] gBBN.datasets += [BBN.copy().add('theta', theta_prior)] gBBN.params = [['nnu'], ['nnu', 'mnu']] gBBN.extra_opts = {'sampling_method': 1} gBBN.importanceRuns = [post_Pantheon] groups.append(gBBN) noCMB = {'lmin_store_all_cmb': 0, 'lmin_computed_cl': 0, 'param[ns]': 0.96, 'param[logA]': 3, 'param[tau]': 0.055, 'get_sigma8': False} gBBN = batchjob.jobGroup('BBN') BBN = batchjob.dataSet([BAO, 'Cooke17'], [BAOdata, 'Cooke17BBN', noCMB]) gBBN.datasets = [BBN] gBBN.datasets += [BBN.copy().add('Pantheon')] gBBN.datasets += [BBN.copy().add('JLA')] gBBN.datasets += [BBN.copy().add('Pantheon').add('theta', theta_prior)] gBBN.datasets += [BBN.copy().add('theta', theta_prior)] gBBN.params = [[], ['mnu']] gBBN.extra_opts = {'sampling_method': 1} groups.append(gBBN) gBBN = batchjob.jobGroup('BBNnnu') BBN1 = batchjob.dataSet([BAO, 'Cooke17', 'Aver15'], ['Aver15BBN', 'Cooke17BBN', BAOdata, noCMB]) BBN2 = batchjob.dataSet([BAO, 'Cooke17Marc', 'Aver15'], ['Aver15BBN', {'abundance_dataset[Cooke17Marc]': '%DATASETDIR%D_Cooke2017_marcucci.dataset'}, BAOdata, noCMB]) BBN3 = batchjob.dataSet([BAO, 'Cooke17Adel', 'Aver15'], ['Aver15BBN', {'abundance_dataset[Cooke17Adel]': '%DATASETDIR%D_Cooke2017_adelberger.dataset'}, BAOdata, noCMB]) gBBN.datasets = [] for BBN in [BBN1, BBN2, BBN3]: gBBN.datasets += [BBN] gBBN.datasets += [BBN.copy().add('Pantheon')] gBBN.datasets += [BBN.copy().add('theta', theta_prior)] gBBN.datasets += [BBN.copy().add('Pantheon').add('theta', theta_prior)] gBBN.params = [['nnu'], ['nnu', 'mnu']] gBBN.extra_opts = {'sampling_method': 1} groups.append(gBBN) # add zre prior for all runs importance_filters = [zre_importance(['zre6p5'])] skip = [] covWithoutNameOrder = ['lenspriors', 'CookeDH', 'pttagr2', HST, 'JLA', Pantheon, BAORSD, 'lensing', 'DESpriors', 'DES', 'DESlens', 'BAO', 'reion', 'abundances', 'theta', 'Aver15'] + varnames covNameMappings = {HST: 'HST', 'CleanedCamSpecHM': 'CamSpecHM', 'Cooke17Adel': 'Cooke17', 'Cooke17Marc': 'Cooke17'} # try to match run to exisitng covmat covrenames = [] for planck in planck_vars: covrenames.append([planck, 'planck']) covrenames.append(['CamSpecHM', 'plikHM']) covrenames.append(['lensing_lenspriors', 'lensonly']) covrenames.append(['lensing', 'lensonly']) covrenames.append(['Alensf', 'Alens']) covrenames.append(['_Aphiphi', '']) covrenames.append(['Pantheon', 'JLA']) covrenames.append(['_Aver15', '']) covrenames.append(['_r', '']) covrenames.append(['_w', '']) covrenames.append(['_alpha1', '']) covrenames.append(['DES_BAO', 'BAO_lensonly']) covrenames.append(['DESlens_BAO', 'BAO_lensonly']) covrenames.append(['DES_lensonly', 'lensonly']) covrenames.append(['DES', 'lensonly']) covrenames.append(['DESwt', 'DES']) covrenames.append(['mnu_DES', 'DES']) covrenames.append(['Riess18', 'HST']) covrenames.append(['DESwt_DESpriors_lensing', 'DES_DESpriors_lensonly']) covrenames.append(['DESwt_DESpriors_BAO_CookeDH', 'DES_DESpriors_BAO']) covrenames.append(['DESwt_DESpriors_lensing_BAO_CookeDH', 'DES_DESpriors_BAO']) covrenames.append(['DESpriors_BAO', 'DESpriors_CookeDH_BAO']) covrenames.append(['base_mnu_plikHM_TTTEEE_lowl_lowE_DES', 'base_mnu_plikHM_TTTEEE_lowl_lowE']) covrenames.append(['base_mnu_plikHM_TTTEEE_lowl_lowE_DESlens', 'base_mnu_plikHM_TTTEEE_lowl_lowE']) covrenames.append(['lensing_lenspriors_theta', 'lensing_lenspriors_theta_BAO']) covrenames.append(['lowl_lensing', 'lowl_lowE']) covrenames.append(['lowl', 'lowl_lowE']) covrenames.append(['TT', 'TT_lowl_lowE']) covrenames.append(['TTTEEE', 'TTTEEE_lowl_lowE']) covrenames.append(['TTTEEE_lowE', 'TTTEEE_lowl_lowE']) covrenames.append(['TT_lowE', 'TT_lowl_lowE']) covrenames.append( ['nrun_nnu_w_mnu_plikHM_TTTEEE_lowl_lowE_BAO_Riess18_Pantheon_lensing', 'w_plikHM_TTTEEE_lowl_lowE_BAO_Pantheon'])
1.734375
2
tests/test_operator/test_parse_comparison.py
gruebel/pycep
2
12784507
import json from pathlib import Path from assertpy import assert_that from pycep import BicepParser EXAMPLES_DIR = Path(__file__).parent / "examples/comparison" BICEP_PARSER = BicepParser() def test_parse_greater_than_or_equals() -> None: # given sub_dir_path = EXAMPLES_DIR / "greater_than_or_equals" file_path = sub_dir_path / "main.bicep" expected_result = json.loads((sub_dir_path / "result.json").read_text()) # when result = BICEP_PARSER.parse(file_path=file_path) # then assert_that(result).is_equal_to(expected_result) def test_parse_greater_than() -> None: # given sub_dir_path = EXAMPLES_DIR / "greater_than" file_path = sub_dir_path / "main.bicep" expected_result = json.loads((sub_dir_path / "result.json").read_text()) # when result = BICEP_PARSER.parse(file_path=file_path) # then assert_that(result).is_equal_to(expected_result) def test_parse_less_than_or_equals() -> None: # given sub_dir_path = EXAMPLES_DIR / "less_than_or_equals" file_path = sub_dir_path / "main.bicep" expected_result = json.loads((sub_dir_path / "result.json").read_text()) # when result = BICEP_PARSER.parse(file_path=file_path) # then assert_that(result).is_equal_to(expected_result) def test_parse_less_than() -> None: # given sub_dir_path = EXAMPLES_DIR / "less_than" file_path = sub_dir_path / "main.bicep" expected_result = json.loads((sub_dir_path / "result.json").read_text()) # when result = BICEP_PARSER.parse(file_path=file_path) # then assert_that(result).is_equal_to(expected_result) def test_parse_equals() -> None: # given sub_dir_path = EXAMPLES_DIR / "equals" file_path = sub_dir_path / "main.bicep" expected_result = json.loads((sub_dir_path / "result.json").read_text()) # when result = BICEP_PARSER.parse(file_path=file_path) # then assert_that(result).is_equal_to(expected_result) def test_parse_not_equals() -> None: # given sub_dir_path = EXAMPLES_DIR / "not_equals" file_path = sub_dir_path / "main.bicep" expected_result = json.loads((sub_dir_path / "result.json").read_text()) # when result = BICEP_PARSER.parse(file_path=file_path) # then assert_that(result).is_equal_to(expected_result) def test_parse_equals_case_insensitive() -> None: # given sub_dir_path = EXAMPLES_DIR / "equals_case_insensitive" file_path = sub_dir_path / "main.bicep" expected_result = json.loads((sub_dir_path / "result.json").read_text()) # when result = BICEP_PARSER.parse(file_path=file_path) # then assert_that(result).is_equal_to(expected_result) def test_parse_not_equals_case_insensitive() -> None: # given sub_dir_path = EXAMPLES_DIR / "not_equals_case_insensitive" file_path = sub_dir_path / "main.bicep" expected_result = json.loads((sub_dir_path / "result.json").read_text()) # when result = BICEP_PARSER.parse(file_path=file_path) # then assert_that(result).is_equal_to(expected_result)
2.9375
3
py/tests/slice.py
DoDaek/gpython
0
12784508
# Copyright 2019 The go-python Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. doc="slice" a = slice(10) assert a.start == None assert a.stop == 10 assert a.step == None a = slice(0, 10, 1) assert a.start == 0 assert a.stop == 10 assert a.step == 1 doc="finished"
2.3125
2
azure-iot-device/tests/common/test_async_adapter.py
necoh/azure-iot-sdk-python-preview
35
12784509
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import pytest import inspect import asyncio import logging import azure.iot.device.common.async_adapter as async_adapter logging.basicConfig(level=logging.INFO) pytestmark = pytest.mark.asyncio @pytest.fixture def dummy_value(): return 123 @pytest.fixture def mock_function(mocker, dummy_value): mock_fn = mocker.MagicMock(return_value=dummy_value) mock_fn.__doc__ = "docstring" return mock_fn @pytest.mark.describe("emulate_async()") class TestEmulateAsync(object): @pytest.mark.it("Returns a coroutine function when given a function") async def test_returns_coroutine(self, mock_function): async_fn = async_adapter.emulate_async(mock_function) assert inspect.iscoroutinefunction(async_fn) @pytest.mark.it( "Returns a coroutine function that returns the result of the input function when called" ) async def test_coroutine_returns_input_function_result( self, mocker, mock_function, dummy_value ): async_fn = async_adapter.emulate_async(mock_function) result = await async_fn(dummy_value) assert mock_function.call_count == 1 assert mock_function.call_args == mocker.call(dummy_value) assert result == mock_function.return_value @pytest.mark.it("Copies the input function docstring to resulting coroutine function") async def test_coroutine_has_input_function_docstring(self, mock_function): async_fn = async_adapter.emulate_async(mock_function) assert async_fn.__doc__ == mock_function.__doc__ @pytest.mark.it("Can be applied as a decorator") async def test_applied_as_decorator(self): # Define a function with emulate_async applied as a decorator @async_adapter.emulate_async def some_function(): return "foo" # Call the function as a coroutine result = await some_function() assert result == "foo" @pytest.mark.describe("AwaitableCallback") class TestAwaitableCallback(object): @pytest.mark.it("Instantiates from a provided callback function") async def test_instantiates(self, mock_function): callback = async_adapter.AwaitableCallback(mock_function) assert isinstance(callback, async_adapter.AwaitableCallback) @pytest.mark.it( "Invokes the callback function associated with an instance and returns its result when a call is invoked the instance" ) async def test_calling_object_calls_input_function_and_returns_result( self, mocker, mock_function ): callback = async_adapter.AwaitableCallback(mock_function) result = callback() assert mock_function.call_count == 1 assert mock_function.call_args == mocker.call() assert result == mock_function.return_value @pytest.mark.it("Completes the instance Future when a call is invoked on the instance") async def test_calling_object_completes_future(self, mock_function): callback = async_adapter.AwaitableCallback(mock_function) assert not callback.future.done() callback() await asyncio.sleep(0.1) # wait to give time to complete the callback assert callback.future.done() @pytest.mark.it("Can be called using positional arguments") async def test_can_be_called_using_positional_args(self, mocker, mock_function): callback = async_adapter.AwaitableCallback(mock_function) result = callback(1, 2, 3) assert mock_function.call_count == 1 assert mock_function.call_args == mocker.call(1, 2, 3) assert result == mock_function.return_value @pytest.mark.it("Can be called using explicit keyword arguments") async def test_can_be_called_using_explicit_kwargs(self, mocker, mock_function): callback = async_adapter.AwaitableCallback(mock_function) result = callback(a=1, b=2, c=3) assert mock_function.call_count == 1 assert mock_function.call_args == mocker.call(a=1, b=2, c=3) assert result == mock_function.return_value @pytest.mark.it("Can have its callback completion awaited upon") async def test_awaiting_completion_of_callback_returns_result(self, mock_function): callback = async_adapter.AwaitableCallback(mock_function) callback() assert await callback.completion() == mock_function.return_value assert callback.future.done()
2.25
2
source/Controller.py
Baumwollboebele/autonnomous_selfie_drone
0
12784510
from Constants import Constants from djitellopy import tello class Controller(): def __init__(self) -> None: """ Initialoization of class variables. """ self.const = Constants() self.drone = tello.Tello() self.up_down_velocity = 0 self.right_left_velocity = 0 self.forward_backward_velocity = 0 self.turn_velocity = 0 def start(self): """ Function starts the drone, it's video recording. """ self.drone.connect() self.drone.takeoff() self.drone.streamon() def battery(self): """ Function prints the current battery level of the drone in percent. """ print(f"Battery at {self.drone.get_battery()}%") def set_velocity(self, vel): """ Function sets the veolitiy of the drone in cm/s Args: vel (int): speed of the drone in cm/s """ self.drone.set_speed(vel) def move(self, x, y): """ Function utilizes the vector from the center of the camera to the detected nose. Depending on the x values orientation the drone is either turned left or right. Deoending on the y values orientation the drone is either moved up or down. Args: x (int): x component of the vector (Centre of camera image to nose) y (int): y component of the vecgtor (centre of camera image to nose) """ self.reset() # TURN if x < - self.const.TOLERANCE_X: self.turn_velocity = - self.const.DRONE_SPEED_TURN elif x > self.const.TOLERANCE_X: self.turn_velocity = self.const.DRONE_SPEED_TURN else: pass # UP DOWN if y < - self.const.TOLERANCE_Y: self.up_down_velocity = self.const.DRONE_SPEED_Y elif y > self.const.TOLERANCE_Y: self.up_down_velocity = - self.const.DRONE_SPEED_Y else: pass self.drone.send_rc_control(self.right_left_velocity, self.forward_backward_velocity, self.up_down_velocity, self.turn_velocity) def move_pose(self, pose): """ Function moves the drone if a pose is detected: - Right arm up - Left arm up - Arms crossed Args: pose (string): String identifier of the pose. """ self.reset() if pose == "left": self.right_left_velocity = -self.const.DRONE_SPEED_X elif pose == "right": self.right_left_velocity = +self.const.DRONE_SPEED_X else: self.right_left_velocity = 0 self.drone.send_rc_control(self.right_left_velocity, 0, 0, 0) def stop(self): """ Function stops the drones movement. """ self.drone.send_rc_control(0, 0, 0, 0) def start_height(self): """ Function sets the starting height of the drone. """ self.drone.send_rc_control(0, 0, self.const.START_HEIGHT, 0) def reset(self): """ Function resets all velocity values of the drone. """ self.up_down_velocity = 0 self.right_left_velocity = 0 self.forward_backward_velocity = 0 self.turn_velocity = 0 def get_stream(self): """ Function returnes the current frame of the video stream. Returns: (frame): Current Frame of the video stream. """ return self.drone.get_frame_read().frame
3.375
3
tests/test_clitool.py
daryl-scott/clitool2
0
12784511
<filename>tests/test_clitool.py """Test Case for the clitool module""" from __future__ import absolute_import import inspect import os from unittest import TestCase from clitool2 import CLITool, parse_docstr def _test1(param1, param2, *args, **kwargs): """Sample function for TestCase. Returns the supplied values. Args: param1: parameter 1 param2: parameter 2 args: var-positional kwargs: JSON-encoded string Returns: tuple: (param1, param2, args, kwargs """ return (param1, param2, args, kwargs) def _test2(num1, num2): """Sample function for TestCase. Returns the supplied values. Args: num1: number 1 num2: number 2 Returns: float: sum of number 1 and 2 """ return float(num1) + float(num2) class CLIToolTestCase(TestCase): """Test Case for the clitool module""" def test_parse_docstr(self): """Test for the parse_docstr function""" expected = ["param1: parameter 1", "param2: parameter 2", "args: var-positional", "kwargs: JSON-encoded string"] info = parse_docstr(inspect.getdoc(_test1)) self.assertEqual(info.summary, "Sample function for TestCase.") self.assertEqual(info.description, "Returns the supplied values.") self.assertEqual(info.args, os.linesep.join(expected)) self.assertEqual(info.returns, "tuple: (param1, param2, args, kwargs") def test_clitool_normal(self): """Test the CLITool class with normal exit""" tool = CLITool(_test1, parse_doc=False) args = ("A", "B", "C", "D", '--kwargs={"E": 5}') expected = ("A", "B", ("C", "D"), {"E": 5}) result = tool(*args) self.assertEqual(result.output, expected) self.assertEqual(result.status, 0) def test_clitool_error(self): """Test the CLITool class with exception in wrapped function""" tool = CLITool(_test2, parse_doc=True) args = ("1", "b") result = tool(*args) self.assertEqual(result.error[0], ValueError) self.assertEqual(result.status, 1)
3.15625
3
write_rotation_to_principal_axes.py
LBJ-Wade/gadget4-tools
1
12784512
import numpy as np from numba import njit from snapshot_functions import read_particles_filter from scipy.linalg import eigh def run(argv): if len(argv) < 5: print('python script.py <IC-file> <preIC-file> <ID> <radius>') return 1 ID = int(argv[3]) r = float(argv[4]) print('getting IDs of nearby particles') pos, header = read_particles_filter(argv[2],ID_list=[ID],opts={'pos':True}) IDs, header = read_particles_filter(argv[2],center=pos[0],radius=r,opts={'ID':True}) print('reading positions of %d particles'%len(IDs)) pos0, ID0, header = read_particles_filter(argv[2],ID_list=IDs,opts={'pos':True,'ID':True}) sort0 = np.argsort(ID0) ID0 = ID0[sort0] pos0 = pos0[sort0] - pos pos1, ID1, header = read_particles_filter(argv[1],ID_list=IDs,opts={'pos':True,'ID':True}) sort1 = np.argsort(ID1) ID1 = ID1[sort1] pos1 = pos1[sort1] - pos if not np.array_equal(ID0,ID1): print('Error') print(np.stack((ID0,ID1)).T.tolist()) return rot = np.diag((1,1,1)) for i in range(2): if i > 0: eigval, eigvec = eigh(e) rot1 = eigvec.T print('rotate by %.0f degrees'%(np.arccos((np.trace(rot1)-1)/2)*180./np.pi)) pos = (rot1 @ (pos.T)).T pos0 = (rot1 @ (pos0.T)).T pos1 = (rot1 @ (pos1.T)).T rot = rot1 @ rot disp = pos1 - pos0 e = np.zeros((3,3)) for c in range(3): dist2 = np.zeros(pos0.shape[0]) for d in range(3): if d != c: dist2 += pos0[:,d]**2 idx = np.argsort(dist2)[:32] for d in range(3): e[c,d] = np.polyfit(pos0[idx,c],disp[idx,d],1)[0] e = .5*(e + e.T) with np.printoptions(precision=5, suppress=True): print('Tidal tensor:') print(e) with np.printoptions(precision=5, suppress=True): print('rotation matrix (%.0f degrees)'%(np.arccos((np.trace(rot)-1)/2)*180./np.pi)) print(rot) np.savetxt('rotation_%d.txt'%ID,rot) if __name__ == '__main__': from sys import argv run(argv)
2.203125
2
books/views.py
lazar-mikov/ManezCo
0
12784513
from django.shortcuts import render, redirect from django.http import HttpResponse from .models import * from .forms import * from django.contrib.auth.decorators import login_required from accounts.decorators import adult_user # Create your views here. @login_required(login_url='login') def bookIndex(request): books = Book.objects.all() form = BookForm() if request.method =='POST': form = BookForm(request.POST, request.FILES) if form.is_valid(): form.save() return redirect('/books') context = {'books': books, 'form':form} return render(request, '../templates/list.html', context) @login_required(login_url='login') def editBook(request, pk): book = Book.objects.get(id=pk) form = BookForm(instance=book) if request.method == 'POST': form = BookForm(request.POST, instance=book) if form.is_valid(): form.save() return redirect('../../') context = {'form':form} return render(request, '../templates/edit_book.html', context) @login_required(login_url='login') def deleteBook(request, pk): item = Book.objects.get(id=pk) if request.method == 'POST': item.delete() return redirect('../../') context = {'item':item} return render(request, '../templates/delete.html', context)
2.21875
2
human_services/locations/migrations/0003_serviceatlocation.py
DarwishMenna/pathways-backend
12
12784514
<reponame>DarwishMenna/pathways-backend # -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-12-21 00:46 from __future__ import unicode_literals import common.models from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('locations', '0002_auto_20171214_1957'), ] operations = [ migrations.CreateModel( name='ServiceAtLocation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('location', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='locations.Location')), ], bases=(common.models.ValidateOnSaveMixin, models.Model), ), ]
1.539063
2
resources/benchmark.py
WIPACrepo/file_catalog
0
12784515
#!/usr/bin/env python from __future__ import print_function import hashlib import string import random import time from json import dumps as json_encode, loads as json_decode import requests class FileCatalogLowLevel(object): """ Low level file catalog interface. Use like a dict:: fc = FileCatalog('http://file_catalog.com') fc['my_new_file'] = {'locations':['/this/is/a/path']} Args: url (str): url of the file catalog server timeout (float): (optional) seconds to wait for a query to finish """ def __init__(self, url, timeout=60): self.url = url self.timeout = timeout self.session = requests.Session() def _getfileurl(self, uid): for _ in range(5): try: r = self.session.get(self.url+'/api/files', params={'query':json_encode({'uid':uid})}, timeout=self.timeout) except requests.exceptions.Timeout: continue if r.status_code == 429: continue r.raise_for_status() files = json_decode(r.text)['files'] break else: raise Exception('server is too busy') if len(files) != 1: raise KeyError() return self.url+files[0] def __getitem__(self, uid): url = self._getfileurl(uid) for _ in range(5): try: r = self.session.get(url, timeout=self.timeout) except requests.exceptions.Timeout: continue if r.status_code == 429: continue r.raise_for_status() return json_decode(r.text) raise Exception('server is too busy') def __setitem__(self, uid, value): meta = value.copy() meta['uid'] = uid data = json_encode(meta) try: url = self._getfileurl(uid) except KeyError: # does not exist method = self.session.post url = self.url+'/api/files' else: # exists, so update method = self.session.put for _ in range(5): try: r = method(url, data=data, timeout=self.timeout) except requests.exceptions.Timeout: continue if r.status_code == 429: continue r.raise_for_status() return raise Exception('server is too busy') def __delitem__(self, uid): url = self._getfileurl(uid) for _ in range(5): try: r = self.session.delete(url, timeout=self.timeout) except requests.exceptions.Timeout: continue if r.status_code == 429: continue r.raise_for_status() return raise Exception('server is too busy') def sha512sum(data): m = hashlib.sha512() m.update(data) return m.hexdigest() def make_data(): return ''.join(random.choice(string.ascii_letters) for _ in range(random.randint(1,1000))) def benchmark(address,num): start = time.time() fc = FileCatalogLowLevel(address) for i in range(num): data = make_data() cksm = sha512sum(data) fc[str(i)] = {'data':data,'checksum':cksm,'locations':[make_data()]} for i in range(num): meta = fc[str(i)] for i in range(num): del fc[str(i)] return time.time()-start def main(): import argparse parser = argparse.ArgumentParser(description='benchmark file_catalog server') parser.add_argument('--address',type=str,default='http://localhost:8888',help='server address') parser.add_argument('-n','--num',type=int,default=10000,help='number of test values') args = parser.parse_args() print('starting benchmark') t = benchmark(args.address, args.num) print('finished. took',t,'seconds') if __name__ == '__main__': main()
2.78125
3
standalone_src/agent.py
lazykyama/atari_trtis_demo
0
12784516
from collections import deque import numpy as np import cv2 import chainer from chainer import links as L import chainerrl from chainerrl import agents from chainerrl.action_value import DiscreteActionValue from chainerrl import explorers from chainerrl import links from chainerrl import replay_buffer def infer(agent, state): gray_state = [cv2.cvtColor(s, cv2.COLOR_RGB2GRAY) for s in state] dqn_state = [cv2.resize(s, (84, 84), interpolation=cv2.INTER_AREA) \ for s in gray_state] input_tensor = np.array(dqn_state).astype(np.float32) return agent.act(input_tensor) class Agent(object): def __init__(self, modelpath, n_actions=4, n_stack_frames=4): # Predefined parameters. replay_start_size = 5 * 10 ** 4 # Load the model. q_func = links.Sequence( links.NatureDQNHead(), L.Linear(512, n_actions), DiscreteActionValue) opt = chainer.optimizers.RMSpropGraves( lr=2.5e-4, alpha=0.95, momentum=0.0, eps=1e-2) opt.setup(q_func) rbuf = replay_buffer.ReplayBuffer(10 ** 6) explorer = explorers.LinearDecayEpsilonGreedy( start_epsilon=1.0, end_epsilon=0.1, decay_steps=10 ** 6, random_action_func=lambda: np.random.randint(n_actions)) def phi(x): # Feature extractor return np.asarray(x, dtype=np.float32) / 255 Agent = agents.DQN self._agent = Agent(q_func, opt, rbuf, gpu=-1, gamma=0.99, explorer=explorer, replay_start_size=replay_start_size, target_update_interval=10 ** 4, clip_delta=True, update_interval=4, batch_accumulator='sum', phi=phi) self._agent.load(modelpath) self._state = deque( [], maxlen=n_stack_frames) self._action = 0 def get_action(self): return self._action def put_state(self, state): # Note: should devide this code to 2 parts: # putting state part and do inference part... self._state.append(state) if len(self._state) < self._state.maxlen: # Need to wait. return state = list(self._state) self._action = infer(self._agent, state)
2.234375
2
data_code/prepare_data.py
yum-ume/Chainer_Image_caption
0
12784517
<reponame>yum-ume/Chainer_Image_caption from pycocotools.coco import COCO import numpy as np import skimage.io as io import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), ".")) from PIL import Image ImageDir=sys.argv[1] ResizeImageDir=sys.argv[2] dataDir ='..' dataType='val2014' annFile='%s/annotations/instances_%s.json'%(dataDir,dataType) # initialize COCO api for instance annotations coco=COCO(annFile) # display COCO categories and supercategories cats = coco.loadCats(coco.getCatIds()) names=[cat['name'] for cat in cats] ids=[cat['id'] for cat in cats] name_ids = {} for i in range(len(names)): if ids[i] not in name_ids: name_ids.update({names[i]:ids[i]}) # get all images containing given categories, select one at random img_dict = {} for name in names: catIds = coco.getCatIds(catNms=[name]); imgIds = coco.getImgIds(catIds=catIds ); for i in range(len(imgIds)): img = coco.loadImgs(imgIds[i])[0] if img["file_name"] not in img_dict: img_dict.update({img["file_name"]: name}) for k,v in sorted(img_dict.items(), key=lambda x: x[0]): ImageFile = '%s/%s'%(ImageDir,k) pil_im = Image.open(ImageFile) out = pil_im.resize((255, 255)) save_image = '%s/%s'%(ResizeImageDir,k) out.save(save_image) print(save_image + " " + str(name_ids[v]))
2.109375
2
tests/frequentist/test_bounds.py
danielsaaf/confidence
107
12784518
import pytest import time import numpy as np from spotify_confidence.analysis.frequentist.confidence_computers.z_test_computer import sequential_bounds @pytest.mark.skip(reason="Skipping because this test is very slow") def test_many_days(): """ This input (based on a real experiment) is very long, which can cause slow calculation """ t = [ 0.0016169976338740648, 0.0057857955498163615, 0.012200379088315757, 0.020199591701142824, 0.02956441064038571, 0.04047102718841871, 0.052929825413405296, 0.06580092295219643, 0.07878439818310792, 0.09148496950057272, 0.1028893343050959, 0.1128434997940756, 0.12298934256730025, 0.13280979910049193, 0.14267997977787195, 0.15281963941289514, 0.16293176212095561, 0.17198778455162406, 0.17996747917082068, 0.18786110540725684, 0.1955669737257397, 0.20335013690301407, 0.21277055903588274, 0.22148328777708232, 0.2295912740670489, 0.23640586948077766, 0.2431234831038822, 0.24987292468428604, 0.2568336065927525, 0.2649271880853427, 0.27282722271091664, 0.2799894816822785, 0.2862801096305317, 0.2925685639072496, 0.2988294699944579, 0.3051314956400879, 0.3118994077972684, 0.31887303037202536, 0.32523581745772245, 0.3307398353487736, 0.33616198578702633, 0.34151324975562525, 0.3478405485563082, 0.3546238566149848, 0.36130761502236336, 0.36751189302418574, 0.3730571543616735, 0.37865278180851814, 0.38428987795273567, 0.3900127609160433, 0.3964718089893684, 0.40306122104207753, 0.40914555292031984, 0.41449831480764515, 0.4198849769608837, 0.4256404199470336, 0.4315384355133149, 0.43801594290086987, 0.4444516211895538, 0.45034373518130405, 0.4556807858158224, 0.4610488197166289, 0.46633036852044285, 0.4717294082126311, 0.47769497653470894, 0.48369759863580825, 0.4892945325380834, 0.49431792124380325, 0.49935417177798586, 0.5043009639028166, 0.5093262559789482, 0.5149098888134348, 0.5205835093969735, 0.5261172491490695, 0.5310141031413226, 0.5359027242118537, 0.540068909216935, 0.5451620919252675, 0.5506752550043325, 0.5562355968920056, 0.5614758121490083, 0.5660462437469214, 0.5706616804819072, 0.5750453002157994, 0.5795939049979849, 0.5861802311128667, 0.5913273051077091, 0.5958976691303413, 0.6001503392324151, 0.6042404457337608, 0.6082963816680697, 0.6124734913435614, 0.6174918231657613, 0.6223867287374153, 0.6268875352709179, 0.6308341907134806, 0.6348490070893678, 0.6388763812049537, 0.6430405276890614, 0.6476616520101889, 0.6525750168960728, 0.6570689758011117, 0.6610427627189518, 0.6649727383296814, 0.6689671694958335, 0.673019050913289, 0.6776959248411508, 0.6825336054124376, 0.6869984168463193, 0.6908780826604262, 0.6949984065748767, 0.6991746490342636, 0.7033415661048878, 0.7082721626873987, 0.7131064081819068, 0.7176506656210218, 0.7216193168175142, 0.7256178250256133, 0.7296113326629264, 0.733677461202103, 0.7383860054116087, 0.7431864069529378, 0.7475115177561259, 0.7513220765829758, 0.7551652404828552, 0.7591154774153049, 0.7635879699061145, 0.76888963361854, 0.7740750002725536, 0.7788235152607059, 0.7829338267710377, 0.7870690059847372, 0.7912444713283939, 0.7954864645360872, 0.8002680350991415, 0.8051864906561857, 0.8097254772233912, 0.8137210008565843, 0.8175460095309978, 0.8214444612731922, 0.8256005212486867, 0.8302889054993935, 0.8351108860804202, 0.839542135124793, 0.8433705788759852, 0.8472835029908369, 0.8513248314019267, 0.8556693700983707, 0.8606610209471658, 0.865499591259651, 0.8699232042972833, 0.8737653545679493, 0.8776996212090155, 0.8816179062961511, 0.8856027192473231, 0.8900849425785808, 0.8947120585746139, 0.8993599427069738, 0.9035026227768521, 0.9075820073336299, 0.9115699850604569, 0.9158137239629064, 0.9207252417911126, 0.925749689176233, 0.9303560370359392, 0.9343408161994707, 0.9384800274049299, 0.9426168396879175, 0.9475247422385961, 0.9523909621035122, 0.9573336433987555, 0.9618665256655873, 0.9657568345864344, 0.9697355995499667, 0.973736889607129, 0.9778353641807583, 0.9828378833872299, 0.987703190985854, 0.9921586319807856, 0.9960384779956415, 1.0, ] start_time = time.time() results = sequential_bounds(np.array(t), alpha=0.003333333, sides=2) my_bounds = results.bounds expected = np.array( [ 5.75400023, 8.0, 5.14701605, 4.91478643, 4.80691346, 4.69004328, 4.57921075, 4.49683943, 4.44452939, 4.38899083, 4.35683792, 4.33289847, 4.301461, 4.27383028, 4.24513591, 4.21444005, 4.18809224, 4.17037988, 4.15702106, 4.13796352, 4.12345883, 4.10808648, 4.07898394, 4.06169498, 4.04985422, 4.04453139, 4.03288177, 4.02205301, 4.00664024, 3.98770613, 3.97358123, 3.96589571, 3.95946059, 3.94995533, 3.94128534, 3.93114789, 3.91870273, 3.90749163, 3.90064315, 3.8958719, 3.88847126, 3.88184277, 3.86841705, 3.85642932, 3.84721152, 3.84099201, 3.83689676, 3.8295672, 3.82234648, 3.81501541, 3.80286989, 3.79370807, 3.78728177, 3.78449351, 3.77865864, 3.76988501, 3.76230126, 3.75251025, 3.74474277, 3.73953663, 3.73534961, 3.72974059, 3.72466752, 3.71785112, 3.70903202, 3.70176221, 3.6976847, 3.6944938, 3.68996741, 3.68449851, 3.67888767, 3.67142884, 3.66522708, 3.65968721, 3.65649679, 3.65207508, 3.65156885, 3.643952, 3.63644572, 3.63029181, 3.62665696, 3.62527741, 3.62117738, 3.61789837, 3.6128686, 3.59904477, 3.5976517, 3.59678297, 3.59434356, 3.59116304, 3.58814574, 3.5835558, 3.57659985, 3.5726481, 3.56990393, 3.56879169, 3.56501955, 3.56127173, 3.55720436, 3.55194666, 3.54597713, 3.5436994, 3.54287161, 3.53974477, 3.53649679, 3.53314876, 3.52700997, 3.52175088, 3.51873367, 3.51846468, 3.51401711, 3.5106822, 3.50742162, 3.50113309, 3.49658758, 3.49376264, 3.49238249, 3.48979047, 3.48725107, 3.48341163, 3.47810608, 3.47381485, 3.47184685, 3.47110719, 3.46801712, 3.46472076, 3.45913659, 3.45209404, 3.4484684, 3.44587153, 3.44472549, 3.44242755, 3.43895355, 3.43549018, 3.43080058, 3.42621252, 3.42437516, 3.42371762, 3.42122891, 3.41861765, 3.41451447, 3.40936002, 3.4051931, 3.40307035, 3.40295986, 3.40052495, 3.39688763, 3.39279348, 3.38725208, 3.38421998, 3.38214471, 3.38133324, 3.37908335, 3.37689107, 3.37364203, 3.36937673, 3.36593888, 3.36250238, 3.36109704, 3.35878324, 3.35666501, 3.35305866, 3.34754255, 3.34364255, 3.34157534, 3.34085629, 3.33864193, 3.33563376, 3.33016843, 3.32687574, 3.32338656, 3.32166421, 3.32107266, 3.31861916, 3.31615129, 3.31334059, 3.30792367, 3.30479742, 3.30339238, 3.30296421, 3.30041534, ] ) assert np.allclose(my_bounds, expected) # if the calculation with max_nints takes longer than 10 seconds, something is most likely broken assert (time.time() - start_time) < 15 # Run a second time but with initial state from last run. start_time = time.time() results = sequential_bounds(np.array(t), alpha=0.003333333, sides=2, state=results.state) my_bounds = results.bounds assert np.allclose(my_bounds, expected) # if the calculation with max_nints takes longer than 10 seconds, something is most likely broken print(f"Time passed second round: {time.time() - start_time}") assert (time.time() - start_time) < 0.01 @pytest.mark.skip(reason="Skipping because this test is very slow") def test_many_days_fast_and_no_crash(): """ This is based on experiment 1735 on 26.11.2020. The calculation of the corresponding bounds takes many minutes without performance tweak. Therefore, this test only checks for absence of crashs and time constraints, but does not compare against the baseline without performance tweak. There is a Jupyter notebook making that comparison. """ t = [ 0.011404679673257933, 0.02292450819418779, 0.0356455988484443, 0.04835740420885424, 0.05971666577058213, 0.06976017458481187, 0.07984165086754545, 0.09002459314412276, 0.10026356929804565, 0.11129746744100509, 0.1222487922920801, 0.13250332796555583, 0.1418309168157694, 0.15072692856918676, 0.15940425274581055, 0.16819162796171988, 0.17766544268380677, 0.18725283769713902, 0.19600162922594835, 0.20386600701959812, 0.21159934032678884, 0.21916233120704773, 0.22688560894714668, 0.23509036348536208, 0.24366994698965522, 0.2515994198750076, 0.25875219123481424, 0.2659624389836802, 0.2731790169781248, 0.28051081384508175, 0.28822790138928306, 0.2962915558739476, 0.3037246366701631, 0.31063411372423433, 0.31767205835063517, 0.32464032826076655, 0.3318100596369355, 0.3397812253123048, 0.3476375502493003, 0.3550356746451523, 0.3616457394863339, 0.3683042335071859, 0.375005792804928, 0.38175551518794676, 0.3891222824602354, 0.39652683513644266, 0.40347332732118724, 0.4098512458112366, 0.4163205187081655, 0.42263992444151655, 0.42899148558161226, 0.43464157988476515, 0.43858871208254674, 0.44192382717460427, 0.44482627278235426, 0.4474605932759375, 0.44957511937869815, 0.4509048070694502, 0.45222422911858906, 0.45333747002744257, 0.45426598540713137, 0.4551955091445229, 0.45605329943533507, 0.456895460181754, 0.4578387508027823, 0.45881449093488524, 0.45965707183034693, 0.4603621239391219, 0.4610501740166303, 0.46173166976907054, 0.4624475477181825, 0.4632872155802805, 0.4641010162663083, 0.46481571779810027, 0.4654194019478082, 0.4660207332628762, 0.4666458170038323, 0.4672646265190821, 0.46791675385342846, 0.4685898046101078, 0.46918687841487516, 0.46969451649339183, 0.47019581032136176, 0.4706811945055765, 0.47116992587716583, 0.47170379526092326, 0.47227291514937425, 0.4727852448922026, 0.47322669549150526, 0.4736554715946826, 0.47408022827201673, 0.47450655350577753, 0.4749737592414058, 0.47545756086422586, 0.4759381553493523, 0.47630259262910407, 0.4766609657576709, 0.47699441004302984, 0.4773518028238301, 0.477775327063972, 0.4781977729215707, 0.47856485714029223, 0.47888037506649034, 0.47919262983512245, 0.47949520717080135, 0.47980748994936967, 0.4801789017032324, 0.4805627078538587, 0.48090167009664675, 0.4811904245288165, 0.48149113920373887, 0.4817901452725537, 0.4820966860142033, 0.48243977972257923, 0.4827841618880198, 0.48309197708176604, 0.4833586316742829, 0.4836129058750043, 0.4838654994795544, 0.4841171547512422, 0.48439948090305657, 0.48470691796266424, 0.4849764575786085, 0.4852081697757299, 0.48545255646897667, 0.4856974893559792, 0.48595208567096676, 0.48624575584693763, 0.4865416528128355, 0.4867930840050338, 0.4870117575768593, 0.4872274340855126, 0.4874240218226533, 0.4876215198827202, 0.4878617751103791, 0.488108108494191, 0.48831807097586183, 0.4884937072807334, 0.48866595438332605, 0.488852192449045, 0.48903411698459087, 0.4892522303576926, 0.4894829201921431, 0.4896802221826566, 0.4898457609055321, 0.49001188783706756, 0.4901847091433521, 0.4903469286887892, 0.4905345812562857, 0.49073597269748276, 0.49091467609036693, 0.4910691508884479, 0.4912115954189357, 0.49135658885361677, 0.49150574176382184, 0.49167835299558493, 0.49186735004001847, 0.49203167033066975, 0.49216849886895175, 0.4923075682021289, 0.4924506289512129, 0.49259525825672346, 0.49276396210238826, 0.49294465420074185, 0.4931019580023778, 0.49330306934421303, 0.4935200763248353, 0.49373208353184794, 0.4939721566949216, 0.4942334053697541, 0.4944958444668745, 0.4947262121870588, 0.49492469059489225, 0.4951192336066912, 0.495294323717807, 0.4954780829041733, 0.4956838158854796, 0.49592192835302007, 0.49614550366367866, 0.49633301618149417, 0.49652995404283723, 0.4967104500716375, 0.4969174855149766, 0.49712443692850716, 0.4973541744251272, 0.49756258235533957, 0.49772464784612763, 0.4978989396740621, 0.4980669292663541, 0.4982378038820735, 0.49843929335804726, 0.4986487236509305, 0.49883442952786183, 0.49899118713574214, 0.49915640374435144, 0.49932506557511197, ] alpha = 0.0033333333333333335 sides = 2 start_time = time.time() my_bounds = sequential_bounds(np.array(t), alpha=alpha, sides=sides).bounds expected = np.array( [ 5.0536015, 4.819334, 4.70702194, 4.60970036, 4.55329219, 4.5118919, 4.465161, 4.42168832, 4.37932413, 4.33343066, 4.29780246, 4.26550766, 4.2476601, 4.22343408, 4.20455427, 4.1834642, 4.15580542, 4.13352266, 4.1170148, 4.10326736, 4.08845795, 4.07496919, 4.05959646, 4.0417501, 4.02262887, 4.01056674, 4.00192679, 3.98996708, 3.97709149, 3.96442225, 3.95010566, 3.93456306, 3.92603865, 3.91801377, 3.90630556, 3.8975012, 3.88641115, 3.87143326, 3.85966246, 3.85112482, 3.84569926, 3.83714224, 3.82719647, 3.81910741, 3.80682977, 3.79652758, 3.78889289, 3.78428912, 3.77646938, 3.76966463, 3.76150223, 3.75820905, 3.76088934, 3.76171382, 3.76141619, 3.76079216, 3.76237742, 3.76725034, 3.76769877, 3.7690107, 3.7710916, 3.77168583, 3.76813708, 3.7705804, 3.76669411, 3.76711572, 3.76808636, 3.76962133, 3.76680748, 3.76844159, 3.76552364, 3.76210975, 3.76321355, 3.76471956, 3.76227721, 3.76424368, 3.76172169, 3.75923, 3.76099518, 3.75829319, 3.76028082, 3.75824824, 3.7562443, 3.76013739, 3.75818674, 3.7560594, 3.75379557, 3.75757852, 3.75582548, 3.75412511, 3.75244297, 3.75075688, 3.74891172, 3.75280489, 3.75090966, 3.7494744, 3.74806463, 3.75254602, 3.75114099, 3.74947802, 3.74782149, 3.74638383, 3.75092969, 3.74970739, 3.7485241, 3.74730404, 3.74585452, 3.74435839, 3.74303855, 3.74191532, 3.74074663, 3.73958567, 3.74415751, 3.74282592, 3.74149075, 3.74029857, 3.73926672, 3.73828357, 3.73730769, 3.7363362, 3.7352472, 3.73406243, 3.74020438, 3.7393112, 3.73836986, 3.73742713, 3.73644796, 3.73531947, 3.73418345, 3.73321896, 3.73238074, 3.73155456, 3.73080198, 3.73004637, 3.7291278, 3.72818669, 3.7273851, 3.72671496, 3.72605809, 3.72534827, 3.72465527, 3.72382494, 3.72294733, 3.73077145, 3.73014101, 3.72950865, 3.72885115, 3.7282343, 3.72752112, 3.72675617, 3.7260778, 3.7254917, 3.72495149, 3.72440186, 3.72383671, 3.723183, 3.72246763, 3.72184599, 3.7213286, 3.72080295, 3.72026245, 3.71971626, 3.71907946, 3.71839777, 3.71780463, 3.71704671, 3.7162294, 3.71543144, 3.71452847, 3.72065881, 3.71967136, 3.71880523, 3.71805949, 3.71732896, 3.71667185, 3.71598258, 3.71521135, 3.71431933, 3.71348235, 3.71278081, 3.71204444, 3.71136994, 3.7105967, 3.70982427, 3.70896735, 3.71527887, 3.71467395, 3.71402372, 3.71339733, 3.71276051, 3.71201001, 3.71123041, 3.71053954, 3.70995666, 3.70934263, 3.70871611, ] ) assert np.allclose(my_bounds, expected) # if the calculation with max_nints takes longer than 30 seconds, something is most likely broken assert (time.time() - start_time) < 30
2.265625
2
Database_Setup.py
TannerWilcoxson/UnitAnalysis
0
12784519
<reponame>TannerWilcoxson/UnitAnalysis import sqlite3 as sql import sys import os class myVars(): ''' A Class for using persistant variables through the use of an SQLite Database Change self.path below to be an absolute path found within your computer. ''' def __init__(self): path = os.path.realpath(__file__) path = path.split('/') path[-1] = "units.db" self.path = "" for i in path: self.path += '/'+i try: file = open(self.path) file.close() except IOError: print("No Database Found. Generating New Database") self.__makeNewDatabase__() def __makeNewDatabase__(self): database = sql.connect(self.path) self.cursor = database.cursor() self.cursor.execute("create table UnitVariables (UnitName text Primary Key,\ UnitType text not null,\ UnitValue real not null);") database.commit() database.close() def loadUnitVariables(self): database = sql.connect(self.path) self.cursor = database.cursor() self.cursor.execute("SELECT * FROM UnitVariables") unitList = self.cursor.fetchall(); database.close() return unitList def add(self, UnitName, UnitType, UnitValue, OverrideExisting = False): database = sql.connect(self.path) varHolder = "(?,?,?)" VarData = (UnitName, UnitType, UnitValue) try: cursor = database.cursor() cursor.execute(f"INSERT INTO UnitVariables VALUES {varHolder}", VarData) database.commit() database.close() return except sql.IntegrityError: if OverrideExisting: try: self.remove(varName) except: database.close() return cursor = database.cursor() cursor.execute(f"INSERT INTO UnitVariables VALUES {varHolder}", VarData) database.commit() database.close() return else: raise Error("Error: Does Unit type already exist? Try OverrideExisting Flag") return def remove(self, varName, database = None): opened = False if not database: opened = True database = sql.connect(self.path) try: cursor = database.cursor() cursor.execute(f"DELETE FROM UnitVariables WHERE VarName = ?", (varName,)) database.commit() if opened: database.close() except: if opened: database.close() print(f"{varName} could not be found")
3.171875
3
main.py
Violet64/Tkinter-Wordle
0
12784520
<reponame>Violet64/Tkinter-Wordle import tkinter as tk class Wordle: def __init__(self, word): root.bind("<KeyPress>", self.__key_press) self.__word = word self.__row = 0 self.__col = 0 self.__labels = [] self.__current_row = "" for i in range(6): temp = [] for j in range(5): label_border = tk.Frame(root, highlightbackground="black", highlightthickness=2) label = tk.Label(label_border, bg="#404040", font=("Arial", 25, "bold"), height=2, width=4, fg="white") label_border.grid(row=i, column=j) label.grid(row=i, column=j) temp.append(label) self.__labels.append(temp) def __key_press(self, event): if event.keysym == "BackSpace": if self.__col != 0: self.__labels[self.__row][self.__col - 1]["text"] = "" self.__col -= 1 self.__current_row = self.__current_row[:-1] elif event.char.isalpha(): self.__labels[self.__row][self.__col]["text"] = event.char.upper() self.__col += 1 self.__current_row += event.char.lower() if self.__col == 5: if self.__row == 4: self.__end_screen(False) return self.__check_row() self.__row += 1 self.__col = 0 self.__current_row = "" def __check_row(self): word: str = self.__word if self.__current_row == self.__word: for i in range(5): self.__labels[self.__row][i]["bg"] = "#50C878" self.__end_screen(True) return for i, char in enumerate(self.__current_row): if char == self.__word[i]: self.__labels[self.__row][i]["bg"] = "#50C878" elif char in word: self.__labels[self.__row][i]["bg"] = "#FADA5E" word = word.replace(char, "-", 1) def __end_screen(self, win: bool): if win is True: text = "YOUWIN" index = 0 for i in range(2, 4): for j in range(1, 4): self.__labels[i][j]["bg"] = "#40E0D0" self.__labels[i][j]["text"] = text[index] index += 1 else: root.bind("<KeyPress>", self.__do_nothing) text = "SUXLOL" index = 0 for i in range(2, 4): for j in range(1, 4): self.__labels[i][j]["bg"] = "#CA3433" self.__labels[i][j]["text"] = text[index] index += 1 for i in range(5): self.__labels[5][i]["bg"] = "#50C878" self.__labels[5][i]["text"] = self.__word[i].upper() def __do_nothing(self, event): pass if __name__ == "__main__": root = tk.Tk() root.title("Wordle") Wordle("sussy") root.mainloop()
3.796875
4
layers/equivariant_linear.py
JoshuaMitton/InvariantGraphNetworks
0
12784521
<filename>layers/equivariant_linear.py # import tensorflow as tf import torch import numpy as np class equi_2_to_2(torch.nn.Module): """equivariant nn layer.""" def __init__(self, input_depth, output_depth, device): super(equi_2_to_2, self).__init__() self.basis_dimension = 15 self.device = device # self.coeffs_values = torch.matmul(torch.randn(size=(input_depth, output_depth, self.basis_dimension), dtype=torch.float32), torch.sqrt(2. / (input_depth + output_depth).type(torch.FloatTensor))) self.coeffs_values = torch.mul(torch.randn(size=(input_depth, output_depth, self.basis_dimension), dtype=torch.float32), torch.sqrt(torch.tensor([2.]) / (input_depth + output_depth)))#.cuda() self.coeffs = torch.nn.Parameter(self.coeffs_values, requires_grad=False) self.diag_bias = torch.nn.Parameter(torch.zeros((1, output_depth, 1, 1), dtype=torch.float32), requires_grad=False) self.all_bias = torch.nn.Parameter(torch.zeros((1, output_depth, 1, 1), dtype=torch.float32), requires_grad=False) def ops_2_to_2(self, inputs, dim, normalization='inf', normalization_val=1.0): # N x D x m x m # print(f'input shape : {inputs.shape}') diag_part = torch.diagonal(inputs, dim1=-2, dim2=-1) # N x D x m # print(f'diag_part shape : {diag_part.shape}') sum_diag_part = torch.sum(diag_part, dim=2, keepdim=True) # N x D x 1 # print(f'sum_diag_part shape : {sum_diag_part.shape}') sum_of_rows = torch.sum(inputs, dim=3) # N x D x m # print(f'sum_of_rows shape : {sum_of_rows.shape}') sum_of_cols = torch.sum(inputs, dim=2) # N x D x m # print(f'sum_of_cols shape : {sum_of_cols.shape}') sum_all = torch.sum(sum_of_rows, dim=2) # N x D # print(f'sum_all shape : {sum_all.shape}') # op1 - (1234) - extract diag op1 = torch.diag_embed(diag_part) # N x D x m x m # op2 - (1234) + (12)(34) - place sum of diag on diag op2 = torch.diag_embed(sum_diag_part.repeat(1, 1, dim)) # N x D x m x m # op3 - (1234) + (123)(4) - place sum of row i on diag ii op3 = torch.diag_embed(sum_of_rows) # N x D x m x m # op4 - (1234) + (124)(3) - place sum of col i on diag ii op4 = torch.diag_embed(sum_of_cols) # N x D x m x m # op5 - (1234) + (124)(3) + (123)(4) + (12)(34) + (12)(3)(4) - place sum of all entries on diag op5 = torch.diag_embed(torch.unsqueeze(sum_all, dim=2).repeat(1, 1, dim)) # N x D x m x m # op6 - (14)(23) + (13)(24) + (24)(1)(3) + (124)(3) + (1234) - place sum of col i on row i op6 = torch.unsqueeze(sum_of_cols, dim=3).repeat(1, 1, 1, dim) # N x D x m x m # op7 - (14)(23) + (23)(1)(4) + (234)(1) + (123)(4) + (1234) - place sum of row i on row i op7 = torch.unsqueeze(sum_of_rows, dim=3).repeat(1, 1, 1, dim) # N x D x m x m # op8 - (14)(2)(3) + (134)(2) + (14)(23) + (124)(3) + (1234) - place sum of col i on col i op8 = torch.unsqueeze(sum_of_cols, dim=2).repeat(1, 1, dim, 1) # N x D x m x m # op9 - (13)(24) + (13)(2)(4) + (134)(2) + (123)(4) + (1234) - place sum of row i on col i op9 = torch.unsqueeze(sum_of_rows, dim=2).repeat(1, 1, dim, 1) # N x D x m x m # op10 - (1234) + (14)(23) - identity op10 = inputs # N x D x m x m # op11 - (1234) + (13)(24) - transpose op11 = inputs.permute(0, 1, 3, 2) # N x D x m x m # op12 - (1234) + (234)(1) - place ii element in row i op12 = torch.unsqueeze(diag_part, dim=3).repeat(1, 1, 1, dim) # N x D x m x m # op13 - (1234) + (134)(2) - place ii element in col i op13 = torch.unsqueeze(diag_part, dim=2).repeat(1, 1, dim, 1) # N x D x m x m # op14 - (34)(1)(2) + (234)(1) + (134)(2) + (1234) + (12)(34) - place sum of diag in all entries op14 = torch.unsqueeze(sum_diag_part, dim=3).repeat(1, 1, dim, dim) # N x D x m x m # op15 - sum of all ops - place sum of all entries in all entries op15 = torch.unsqueeze(torch.unsqueeze(sum_all, dim=2), dim=3).repeat(1, 1, dim, dim) # N x D x m x m if normalization is not None: float_dim = dim.type(torch.FloatTensor) if normalization is 'inf': op2 = torch.div(op2, float_dim) op3 = torch.div(op3, float_dim) op4 = torch.div(op4, float_dim) op5 = torch.div(op5, float_dim**2) op6 = torch.div(op6, float_dim) op7 = torch.div(op7, float_dim) op8 = torch.div(op8, float_dim) op9 = torch.div(op9, float_dim) op14 = torch.div(op14, float_dim) op15 = torch.div(op15, float_dim**2) return [op1, op2, op3, op4, op5, op6, op7, op8, op9, op10, op11, op12, op13, op14, op15] def forward(self, inputs, normalization='inf'): m = torch.tensor(inputs.shape[3], dtype=torch.int32, device=self.device) # extract dimension # print(f'inputs device : {inputs.device}') ops_out = self.ops_2_to_2(inputs=inputs, dim=m, normalization=normalization) # for idx, op in enumerate(ops_out): # print(f'ops_out{idx} : {op.shape}') ops_out = torch.stack(ops_out, dim=2) # print(f'self.coeffs device : {self.coeffs.device}') # print(f'ops_out device : {ops_out.device}') output = torch.einsum('dsb,ndbij->nsij', self.coeffs.double(), ops_out) # N x S x m x m # bias # print(f'diag_bias shape : {self.diag_bias.shape}') # print(f'eye shape : {torch.eye(torch.tensor(inputs.shape[3], dtype=torch.int32, device=self.device), device=self.device).shape}') # mat_diag_bias = torch.mul(torch.unsqueeze(torch.unsqueeze(torch.eye(torch.tensor(inputs.shape[3], dtype=torch.int32, device=self.device), device=self.device), 0), 0), self.diag_bias) mat_diag_bias = self.diag_bias.expand(-1,-1,inputs.shape[3],inputs.shape[3]) mat_diag_bias = torch.mul(mat_diag_bias, torch.eye(inputs.shape[3], device=self.device)) output = output + self.all_bias + mat_diag_bias # print(f'mat_diag_bias shape : {mat_diag_bias.shape}') return output # def equi_2_to_2(name, input_depth, output_depth, inputs, normalization='inf', normalization_val=1.0): # ''' # :param name: name of layer # :param input_depth: D # :param output_depth: S # :param inputs: N x D x m x m tensor # :return: output: N x S x m x m tensor # ''' # basis_dimension = 15 # # initialization values for variables # coeffs_values = torch.matmul(torch.randn(size=(input_depth, output_depth, basis_dimension), dtype=torch.float32), torch.sqrt(2. / (input_depth + output_depth).type(torch.FloatTensor))) # # coeffs_values = tf.multiply(tf.random_normal([input_depth, output_depth, basis_dimension], dtype=tf.float32), tf.sqrt(2. / tf.to_float(input_depth + output_depth))) # #coeffs_values = tf.random_normal([input_depth, output_depth, basis_dimension], dtype=tf.float32) # # define variables # coeffs = torch.autograd.Variable(coeffs_values, requires_grad=True) # # coeffs = tf.get_variable('coeffs', initializer=coeffs_values) # m = inputs.shape[3].type(torch.IntTensor) # extract dimension # # m = tf.to_int32(tf.shape(inputs)[3]) # extract dimension # ops_out = ops_2_to_2(inputs, m, normalization=normalization) # ops_out = torch.stack(ops_out, dim=2) # # ops_out = tf.stack(ops_out, axis=2) # output = torch.einsum('dsb,ndbij->nsij', coeffs, ops_out) # N x S x m x m # # output = tf.einsum('dsb,ndbij->nsij', coeffs, ops_out) # N x S x m x m # # bias # diag_bias = torch.autograd.Variable(torch.zeros((1, output_depth, 1, 1), dtype=torch.float32), requires_grad=True) # # diag_bias = tf.get_variable('diag_bias', initializer=tf.zeros([1, output_depth, 1, 1], dtype=tf.float32)) # all_bias = torch.autograd.Variable(torch.zeros((1, output_depth, 1, 1), dtype=torch.float32), requires_grad=True) # # all_bias = tf.get_variable('all_bias', initializer=tf.zeros([1, output_depth, 1, 1], dtype=tf.float32)) # mat_diag_bias = torch.matmul(torch.unsqueeze(torch.unsqueeze(torch.eye(inputs.shape[3].type(torch.IntTensor)), 0), 0), diag_bias) # # mat_diag_bias = tf.multiply(tf.expand_dims(tf.expand_dims(tf.eye(tf.to_int32(tf.shape(inputs)[3])), 0), 0), diag_bias) # output = output + all_bias + mat_diag_bias # return output def equi_2_to_1(name, input_depth, output_depth, inputs, normalization='inf', normalization_val=1.0): ''' :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m x m tensor :return: output: N x S x m tensor ''' basis_dimension = 5 # with tf.variable_scope(name, reuse=tf.AUTO_REUSE) as scope: # initialization values for variables coeffs_values = torch.matmul(torch.randn(size=(input_depth, output_depth, basis_dimension), dtype=torch.float32), torch.sqrt(2. / (input_depth + output_depth).type(torch.FloatTensor))) # coeffs_values = tf.multiply(tf.random_normal([input_depth, output_depth, basis_dimension], dtype=tf.float32), tf.sqrt(2. / tf.to_float(input_depth + output_depth))) #coeffs_values = tf.random_normal([input_depth, output_depth, basis_dimension], dtype=tf.float32) # define variables coeffs = torch.autograd.Variable(coeffs_values, requires_grad=True) # coeffs = tf.get_variable('coeffs', initializer=coeffs_values) m = inputs.shape[3].type(torch.IntTensor) # extract dimension # m = tf.to_int32(tf.shape(inputs)[3]) # extract dimension ops_out = ops_2_to_1(inputs, m, normalization=normalization) ops_out = torch.stack(ops_out, dim=2) # ops_out = tf.stack(ops_out, axis=2) # N x D x B x m output = torch.einsum('dsb,ndbi->nsi', coeffs, ops_out) # N x S x m x m # output = tf.einsum('dsb,ndbi->nsi', coeffs, ops_out) # N x S x m # bias bias = torch.autograd.Variable(torch.zeros((1, output_depth, 1), dtype=torch.float32), requires_grad=True) # bias = tf.get_variable('bias', initializer=tf.zeros([1, output_depth, 1], dtype=tf.float32)) output = output + bias return output def equi_1_to_2(name, input_depth, output_depth, inputs, normalization='inf', normalization_val=1.0): ''' :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m tensor :return: output: N x S x m x m tensor ''' basis_dimension = 5 # with tf.variable_scope(name, reuse=tf.AUTO_REUSE) as scope: # initialization values for variables coeffs_values = torch.matmul(torch.randn(size=(input_depth, output_depth, basis_dimension), dtype=torch.float32), torch.sqrt(2. / (input_depth + output_depth).type(torch.FloatTensor))) # coeffs_values = tf.multiply(tf.random_normal([input_depth, output_depth, basis_dimension], dtype=tf.float32), tf.sqrt(2. / tf.to_float(input_depth + output_depth))) #coeffs_values = tf.random_normal([input_depth, output_depth, basis_dimension], dtype=tf.float32) # define variables coeffs = torch.autograd.Variable(coeffs_values, requires_grad=True) # coeffs = tf.get_variable('coeffs', initializer=coeffs_values) m = inputs.shape[3].type(torch.IntTensor) # extract dimension # m = tf.to_int32(tf.shape(inputs)[2]) # extract dimension ops_out = ops_1_to_2(inputs, m, normalization=normalization) ops_out = torch.stack(ops_out, dim=2) # ops_out = tf.stack(ops_out, axis=2) # N x D x B x m x m output = torch.einsum('dsb,ndbij->nsij', coeffs, ops_out) # N x S x m x m # output = tf.einsum('dsb,ndbij->nsij', coeffs, ops_out) # N x S x m x m # bias bias = torch.autograd.Variable(torch.zeros((1, output_depth, 1, 1), dtype=torch.float32), requires_grad=True) # bias = tf.get_variable('bias', initializer=tf.zeros([1, output_depth, 1, 1], dtype=tf.float32)) output = output + bias return output def equi_1_to_1(name, input_depth, output_depth, inputs, normalization='inf', normalization_val=1.0): ''' :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m tensor :return: output: N x S x m tensor ''' basis_dimension = 2 # with tf.variable_scope(name, reuse=tf.AUTO_REUSE) as scope: # initialization values for variables coeffs_values = torch.matmul(torch.randn(size=(input_depth, output_depth, basis_dimension), dtype=torch.float32), torch.sqrt(2. / (input_depth + output_depth).type(torch.FloatTensor))) # coeffs_values = tf.multiply(tf.random_normal([input_depth, output_depth, basis_dimension], dtype=tf.float32), tf.sqrt(2. / tf.to_float(input_depth + output_depth))) #coeffs_values = tf.random_normal([input_depth, output_depth, basis_dimension], dtype=tf.float32) # define variables coeffs = torch.autograd.Variable(coeffs_values, requires_grad=True) # coeffs = tf.get_variable('coeffs', initializer=coeffs_values) m = inputs.shape[3].type(torch.IntTensor) # extract dimension # m = tf.to_int32(tf.shape(inputs)[2]) # extract dimension ops_out = ops_1_to_1(inputs, m, normalization=normalization) ops_out = torch.stack(ops_out, dim=2) # ops_out = tf.stack(ops_out, axis=2) # N x D x B x m output = torch.einsum('dsb,ndbi->nsi', coeffs, ops_out) # N x S x m x m # output = tf.einsum('dsb,ndbi->nsi', coeffs, ops_out) # N x S x m # bias bias = torch.autograd.Variable(torch.zeros((1, output_depth, 1), dtype=torch.float32), requires_grad=True) # bias = tf.get_variable('bias', initializer=tf.zeros([1, output_depth, 1], dtype=tf.float32)) output = output + bias return output def equi_basic(name, input_depth, output_depth, inputs): ''' :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m x m tensor :return: output: N x S x m x m tensor ''' basis_dimension = 4 # with tf.variable_scope(name, reuse=tf.AUTO_REUSE) as scope: # initialization values for variables coeffs_values = torch.matmul(torch.randn(size=(input_depth, output_depth, basis_dimension), dtype=torch.float32), torch.sqrt(2. / (input_depth + output_depth).type(torch.FloatTensor))) # coeffs_values = tf.multiply(tf.random_normal([input_depth, output_depth, basis_dimension], dtype=tf.float32), tf.sqrt(2. / tf.to_float(input_depth + output_depth))) #coeffs_values = tf.random_normal([input_depth, output_depth, basis_dimension], dtype=tf.float32) # define variables coeffs = torch.autograd.Variable(coeffs_values, requires_grad=True) # coeffs = tf.get_variable('coeffs', initializer=coeffs_values) m = inputs.shape[3].type(torch.IntTensor) # extract dimension # m = tf.to_int32(tf.shape(inputs)[3]) # extract dimension float_dim = m.type(torch.FloatTensor) # float_dim = tf.to_float(m) # apply ops ops_out = [] # w1 - identity ops_out.append(inputs) # w2 - sum cols sum_of_cols = torch.divide(torch.sum(inputs, dim=2), float_dim) # N x D x m # sum_of_cols = tf.divide(tf.reduce_sum(inputs, axis=2), float_dim) # N x D x m ops_out.append(torch.unsqueeze(sum_of_cols, dim=2).repeat(1, 1, m, 1)) # N x D x m x m # ops_out.append(tf.tile(tf.expand_dims(sum_of_cols, axis=2), [1, 1, m, 1])) # N x D x m x m # w3 - sum rows sum_of_rows = torch.divide(torch.sum(inputs, dim=3), float_dim) # N x D x m # sum_of_rows = tf.divide(tf.reduce_sum(inputs, axis=3), float_dim) # N x D x m ops_out.append(torch.unsqueeze(sum_of_rows, dim=3).repeat(1, 1, 1, m)) # N x D x m x m # ops_out.append(tf.tile(tf.expand_dims(sum_of_rows, axis=3), [1, 1, 1, m])) # N x D x m x m # w4 - sum all sum_all = torch.divide(torch.sum(sum_of_rows, dim=2), torch.square(float_dim)) # N x D # sum_all = tf.divide(tf.reduce_sum(sum_of_rows, axis=2), tf.square(float_dim)) # N x D ops_out.append(torch.unsqueeze(torch.unsqueeze(sum_all, dim=2), dim=3).repeat(1, 1, m, m)) # N x D x m x m # ops_out.append(tf.tile(tf.expand_dims(tf.expand_dims(sum_all, axis=2), axis=3), [1, 1, m, m])) # N x D x m x m ops_out = torch.stack(ops_out, dim=2) # ops_out = tf.stack(ops_out, axis=2) output = torch.einsum('dsb,ndbij->nsij', coeffs, ops_out) # N x S x m x m # output = tf.einsum('dsb,ndbij->nsij', coeffs, ops_out) # N x S x m x m # bias bias = torch.autograd.Variable(torch.zeros((1, output_depth, 1, 1), dtype=torch.float32), requires_grad=True) # bias = tf.get_variable('bias', initializer=tf.zeros([1, output_depth, 1, 1], dtype=tf.float32)) output = output + bias return output # def ops_2_to_2(inputs, dim, normalization='inf', normalization_val=1.0): # N x D x m x m # diag_part = torch.diagonal(inputs) # N x D x m # sum_diag_part = torch.sum(diag_part, dim=2, keepdim=True) # N x D x 1 # sum_of_rows = torch.sum(inputs, dim=3) # N x D x m # sum_of_cols = torch.sum(inputs, dim=2) # N x D x m # sum_all = torch.sum(sum_of_rows, dim=2) # N x D # # op1 - (1234) - extract diag # op1 = torch.diagonal(diag_part) # N x D x m x m # # op2 - (1234) + (12)(34) - place sum of diag on diag # op2 = torch.diagonal(sum_diag_part.repeat(1, 1, dim)) # N x D x m x m # # op3 - (1234) + (123)(4) - place sum of row i on diag ii # op3 = torch.diagonal(sum_of_rows) # N x D x m x m # # op4 - (1234) + (124)(3) - place sum of col i on diag ii # op4 = torch.diagonal(sum_of_cols) # N x D x m x m # # op5 - (1234) + (124)(3) + (123)(4) + (12)(34) + (12)(3)(4) - place sum of all entries on diag # op5 = torch.diagonal(torch.unsqueeze(sum_all, dim=2).repeat(1, 1, dim)) # N x D x m x m # # op6 - (14)(23) + (13)(24) + (24)(1)(3) + (124)(3) + (1234) - place sum of col i on row i # op6 = torch.unsqueeze(sum_of_cols, dim=3).repeat(1, 1, 1, dim) # N x D x m x m # # op7 - (14)(23) + (23)(1)(4) + (234)(1) + (123)(4) + (1234) - place sum of row i on row i # op7 = torch.unsqueeze(sum_of_rows, dim=3).repeat(1, 1, 1, dim) # N x D x m x m # # op8 - (14)(2)(3) + (134)(2) + (14)(23) + (124)(3) + (1234) - place sum of col i on col i # op8 = torch.unsqueeze(sum_of_cols, dim=2).repeat(1, 1, dim, 1) # N x D x m x m # # op9 - (13)(24) + (13)(2)(4) + (134)(2) + (123)(4) + (1234) - place sum of row i on col i # op9 = torch.unsqueeze(sum_of_rows, dim=2).repeat(1, 1, dim, 1) # N x D x m x m # # op10 - (1234) + (14)(23) - identity # op10 = inputs # N x D x m x m # # op11 - (1234) + (13)(24) - transpose # op11 = inputs.permute(0, 1, 3, 2) # N x D x m x m # # op12 - (1234) + (234)(1) - place ii element in row i # op12 = torch.unsqueeze(diag_part, dim=3).repeat(1, 1, 1, dim) # N x D x m x m # # op13 - (1234) + (134)(2) - place ii element in col i # op13 = torch.unsqueeze(diag_part, dim=2).repeat(1, 1, dim, 1) # N x D x m x m # # op14 - (34)(1)(2) + (234)(1) + (134)(2) + (1234) + (12)(34) - place sum of diag in all entries # op14 = torch.unsqueeze(sum_diag_part, dim=3).repeat(1, 1, dim, dim) # N x D x m x m # # op15 - sum of all ops - place sum of all entries in all entries # op15 = torch.unsqueeze(torch.unsqueeze(sum_all, dim=2), dim=3).repeat(1, 1, dim, dim) # N x D x m x m # if normalization is not None: # float_dim = dim.type(torch.FloatTensor) # if normalization is 'inf': # op2 = torch.div(op2, float_dim) # op3 = torch.div(op3, float_dim) # op4 = torch.div(op4, float_dim) # op5 = torch.div(op5, float_dim**2) # op6 = torch.div(op6, float_dim) # op7 = torch.div(op7, float_dim) # op8 = torch.div(op8, float_dim) # op9 = torch.div(op9, float_dim) # op14 = torch.div(op14, float_dim) # op15 = torch.div(op15, float_dim**2) # return [op1, op2, op3, op4, op5, op6, op7, op8, op9, op10, op11, op12, op13, op14, op15] def ops_2_to_1(inputs, dim, normalization='inf', normalization_val=1.0): # N x D x m x m diag_part = tf.matrix_diag_part(inputs) # N x D x m sum_diag_part = tf.reduce_sum(diag_part, axis=2, keepdims=True) # N x D x 1 sum_of_rows = tf.reduce_sum(inputs, axis=3) # N x D x m sum_of_cols = tf.reduce_sum(inputs, axis=2) # N x D x m sum_all = tf.reduce_sum(inputs, axis=(2, 3)) # N x D # op1 - (123) - extract diag op1 = diag_part # N x D x m # op2 - (123) + (12)(3) - tile sum of diag part op2 = tf.tile(sum_diag_part, [1, 1, dim]) # N x D x m # op3 - (123) + (13)(2) - place sum of row i in element i op3 = sum_of_rows # N x D x m # op4 - (123) + (23)(1) - place sum of col i in element i op4 = sum_of_cols # N x D x m # op5 - (1)(2)(3) + (123) + (12)(3) + (13)(2) + (23)(1) - tile sum of all entries op5 = tf.tile(tf.expand_dims(sum_all, axis=2), [1, 1, dim]) # N x D x m if normalization is not None: float_dim = tf.to_float(dim) if normalization is 'inf': op2 = tf.divide(op2, float_dim) op3 = tf.divide(op3, float_dim) op4 = tf.divide(op4, float_dim) op5 = tf.divide(op5, float_dim ** 2) return [op1, op2, op3, op4, op5] def ops_1_to_2(inputs, dim, normalization='inf', normalization_val=1.0): # N x D x m sum_all = tf.reduce_sum(inputs, axis=2, keepdims=True) # N x D x 1 # op1 - (123) - place on diag op1 = tf.matrix_diag(inputs) # N x D x m x m # op2 - (123) + (12)(3) - tile sum on diag op2 = tf.matrix_diag(tf.tile(sum_all, [1, 1, dim])) # N x D x m x m # op3 - (123) + (13)(2) - tile element i in row i op3 = tf.tile(tf.expand_dims(inputs, axis=2), [1, 1, dim, 1]) # N x D x m x m # op4 - (123) + (23)(1) - tile element i in col i op4 = tf.tile(tf.expand_dims(inputs, axis=3), [1, 1, 1, dim]) # N x D x m x m # op5 - (1)(2)(3) + (123) + (12)(3) + (13)(2) + (23)(1) - tile sum of all entries op5 = tf.tile(tf.expand_dims(sum_all, axis=3), [1, 1, dim, dim]) # N x D x m x m if normalization is not None: float_dim = tf.to_float(dim) if normalization is 'inf': op2 = tf.divide(op2, float_dim) op5 = tf.divide(op5, float_dim) return [op1, op2, op3, op4, op5] def ops_1_to_1(inputs, dim, normalization='inf', normalization_val=1.0): # N x D x m sum_all = tf.reduce_sum(inputs, axis=2, keepdims=True) # N x D x 1 # op1 - (12) - identity op1 = inputs # N x D x m # op2 - (1)(2) - tile sum of all op2 = tf.tile(sum_all, [1, 1, dim]) # N x D x m if normalization is not None: float_dim = tf.to_float(dim) if normalization is 'inf': op2 = tf.divide(op2, float_dim) return [op1, op2]
2.75
3
standard/single_map_plot.py
ElthaTeng/multiline-ngc3351
3
12784522
<reponame>ElthaTeng/multiline-ngc3351 import numpy as np import matplotlib.pyplot as plt from astropy.wcs import WCS from astropy.io import fits from matplotlib.colors import LogNorm mom0 = np.load('data_image/NGC3351_CO10_mom0.npy') fits_map = fits.open('data_image/NGC3351_CO10_mom0_broad_nyq.fits') wcs = WCS(fits_map[0].header) map = fits.open('data_image/NGC3351_CO21_mom1_broad_nyq.fits')[0].data mask = np.load('mask_whole_recovered.npy') map_masked = map * mask map_masked[mask == 0] = np.nan fig = plt.figure() ax = fig.add_subplot(111, projection=wcs) ra = ax.coords[0] ra.set_major_formatter('hh:mm:ss.s') plt.imshow(map_masked, cmap='coolwarm', origin='lower') plt.tick_params(axis="y", labelsize=14, labelleft=True) plt.tick_params(axis="x", labelsize=14, labelbottom=True) cb = plt.colorbar() cb.ax.tick_params(labelsize=14) #cb.ax.plot(-0.25, 0.65, 'k.') #plt.contour(mom0,origin='lower',levels=(20,50,100,150,200,250), colors='dimgray', linewidths=1) plt.title(r'(c) Moment 1 of CO 2-1', fontsize=16) plt.xlim(15,60) plt.ylim(15,60) plt.xlabel('R.A. (J2000) ', fontsize=14) # plt.ylabel('Decl. (J2000)', fontsize=14) # plt.savefig('formal_plots/mom1_co21.pdf', bbox_inches='tight', pad_inches=0.1) plt.show()
2.125
2
Decoder.py
zouguojian/Improved-RLSTM
4
12784523
<gh_stars>1-10 import Rlstm as lstm import tensorflow as tf class decoder(object): def __init__(self,h_state,batch_size,predict_time,layer_num=1,nodes=128,is_training=True): ''' :param batch_size: :param layer_num: :param nodes: :param is_training: we need to define the decoder of Encoder-Decoder Model,and the parameter will be express in the Rlstm. ''' self.h_state=h_state self.predict_time=predict_time self.nodes=nodes self.out_num=1 with tf.variable_scope('decoder',reuse=tf.AUTO_REUSE): self.encoder_Lstm=lstm.rlstm(batch_size,layer_num,nodes,is_training) def decoding(self): ''' we always use c_state as the input to decoder ''' # (self.c_state, self.h_state) = self.encoder_Lstm.calculate(self.h_state) h_state=self.h_state h=[] for i in range(self.predict_time): h_state=tf.reshape(h_state,shape=(-1,1,self.nodes)) (c_state, h_state)=self.encoder_Lstm.calculate(h_state) #we use the list h to recoder the out of decoder eatch time h.append(h_state) h=tf.convert_to_tensor(h,dtype=tf.float32) #LSTM的最后输出结果 h_state = tf.reshape(h, [-1, self.nodes]) #the full connect layer to output the end results with tf.variable_scope('Layer', reuse=tf.AUTO_REUSE): w = tf.get_variable("wight", [self.nodes, 1], initializer=tf.truncated_normal_initializer(stddev=0.1)) bias = tf.get_variable("biases", [1], initializer=tf.constant_initializer(0)) results = tf.matmul(h_state, w) + bias return tf.reshape(results, [-1, self.out_num])
2.875
3
code/actions/compile.py
michaelbrockus/meson-ui-
0
12784524
<gh_stars>0 #!/usr/bin/env python3 # # file: compile.py # author: <NAME> # gmail: <<EMAIL>> # class MesonCompile: pass
1.34375
1
quasimodo/fact_combinor.py
Aunsiels/CSK
16
12784525
from quasimodo.parts_of_facts import PartsOfFacts from quasimodo.data_structures.submodule_interface import SubmoduleInterface class FactCombinor(SubmoduleInterface): def __init__(self, module_reference): super().__init__() self._module_reference = module_reference self._name = "Fact Combinor" def process(self, input_interface): parts_of_facts = PartsOfFacts.from_generated_facts(input_interface.get_generated_facts()) return input_interface.replace_generated_facts(parts_of_facts.merge_into_generated_facts())
2.328125
2
utils.py
scanlon-dev/wallhaven-switcher
0
12784526
<reponame>scanlon-dev/wallhaven-switcher import string, urllib, random from pathlib import Path import os, subprocess, configparser, sys from threading import Timer from common import * def get_config_file(create=False): home = str(Path.home()) config_dir = os.path.join(home, '.config/wallhaven/') config_file = os.path.join(home, '.config/wallhaven/configs.ini') if os.path.isfile(config_file): return config_file elif create: image_folder = os.path.join(home, 'WallhavenImgs/') store_image_folder = os.path.join(home, 'Pictures/Wallpapers') subprocess.run(['mkdir', '-p', image_folder]) subprocess.run(['mkdir', '-p', store_image_folder]) subprocess.run(['mkdir', '-p', config_dir]) config_str = DEFAULT_CONFIG_STRING.format(wallpaper_path=image_folder, store_wallpaper_path=store_image_folder) with open(config_file, 'w') as f: f.write(config_str) return config_file return None def read_config_file(config_file, section_name): configs = configparser.ConfigParser() try: configs.read(config_file) # myconfigs.read(CONFIG_FILE) t = configs[section_name] return configs, t except Exception as e: print("Config file format error or there is no section " + section_name) def update_configs(configs, file_path): print("updating configs...") config_file = get_config_file() tconfigs, tsection = read_config_file(config_file, SECTION_NAME) tsection['page'] = configs[SECTION_NAME]['page'] tsection['current wallpaper'] = configs[SECTION_NAME]['current wallpaper'] with open(file_path, 'w') as f: tconfigs.write(f) def clear_folder(folder_path): print("Are you sure you want to clear " + folder_path + '? Y/N') ok = input() if ok != 'y' and ok != 'Y': return try: (_, _, filenames) = next(os.walk(folder_path)) for file in filenames: os.remove(os.path.join(folder_path, file)) except Exception as e: print("Error occurred. Check the path and its contents.") else: print("Clear done.") def check_progress(maxval, results, myconfigs, rm=False): img_folder_path = myconfigs['wallpaper path'] i = 1 j = 0 for img, error in results: print_progress(maxval, i) i = i + 1 if error: print(f" !{img['id']} error: {error}") if rm: try: os.remove(os.path.join(img_folder_path, img['id'])) except: pass else: j = j + 1 return j def print_progress(maxval, i): sys.stdout.write('\r') # the exact output you're looking for: sys.stdout.write("[%-24s] %d/%d" % ('=' * i, i, maxval)) sys.stdout.flush() def fetch_img(img, configs): def timer_handler(response): response.close() img_folder_path = configs['wallpaper path'] try: filename = f'{img["id"]}.{img["file_type"].split("/")[1]}' with open(os.path.join(img_folder_path, filename), 'wb') as f: req = urllib.request.Request(img['path'], headers={'User-Agent': 'Mozilla/5.0'}) with urllib.request.urlopen(req, timeout=TIME_OUT) as response: timer = Timer(TIME_OUT, timer_handler, [response]) timer.start() try: f.write(response.read()) except: timer.cancel() f.close() return img, 'Time out!' timer.cancel() # print(f"{img['name']} done.") return img, None except Exception as e: return img, e def set_system_wallpaper(myconfigs, sys_name, wallpaper): # if myconfigs['hsetroot']=='1': # wallpaper=hsetroot_process(wallpaper_path) #Add wpgtk in this function #if os.path.exists('$HOME/.local/bin/wpg'): # os.run(wpg.sh -g)os.fileaksdlfjl(wallpaper_ # else: # continue if sys_name == 'xfce': xfcesetwallpaper = 'xfconf-query -c xfce4-desktop -p /backdrop/screen0/monitoreDP-1/workspace0/last-image -s'.split() xfcesetwallpaper.append(wallpaper) # print(xfcesetwallpaper) subprocess.run(xfcesetwallpaper) elif sys_name == 'gnome': gnomesetwallpaper = f'gsettings set org.gnome.desktop.background picture-uri "file://{wallpaper}"' subprocess.run(gnomesetwallpaper.split()) elif sys_name == 'feh': feh_options = myconfigs['feh options'] feh_set_wallpaper = f'feh {feh_options} {wallpaper}' print(feh_set_wallpaper) subprocess.run(feh_set_wallpaper.split()) elif sys_name == 'hsetroot': wallpaper=hsetroot_process(wallpaper,myconfigs) command=f'hsetroot {myconfigs["hsetroot image option"]} {wallpaper}' print(command) subprocess.run(command.split()) # image tweak for xfce lock screen # xfcesetwallpaper = 'xfconf-query -c xfce4-desktop -p /backdrop/screen0/monitoreDP-1/workspace0/last-image -s'.split() # xfcesetwallpaper.append(wallpaper) # print(xfcesetwallpaper) # subprocess.run(xfcesetwallpaper) print('successfully set wallpaper ' + wallpaper) def random_string(string_length): """Generate a random string with the combination of lowercase and uppercase letters """ letters = string.ascii_letters + string.digits return ''.join(random.choice(letters) for _ in range(string_length)) def hsetroot_process(wallpaper_path,myconfigs): cur_path=os.path.join(myconfigs['wallpaper path'],CUR_WALLPAPER_NAME) #subprocess.run(['cp', wallpaper_path, cur_path]) command=f'hsetroot {myconfigs["hsetroot image option"]} {wallpaper_path} {myconfigs["hsetroot tweak options"]} -write {cur_path}' print(command) subprocess.run(command.split()) return cur_path
2.28125
2
Factorial_Recursive.py
parth2608/NPTEL-Joy-of-computing-with-Python
0
12784527
def factorial(n): if(n==0): return 1 else: return n*factorial(n-1) n=int(input("Enter a positive number: ")) if(n<0): print("Factorial is not defined on negative numbers.") else: f=factorial(n) print("Factorial of",n,"is",f)
4.21875
4
sc2/constants.py
Olaf-G/Bachelor-s-Degree
7
12784528
<reponame>Olaf-G/Bachelor-s-Degree<filename>sc2/constants.py from .ids.ability_id import * from .ids.buff_id import * from .ids.effect_id import * from .ids.unit_typeid import * from .ids.upgrade_id import *
1.179688
1
app/main/forms.py
HenriqueLR/hangman-game
0
12784529
#coding: utf-8 import re from django import forms from django.utils.translation import ugettext_lazy as _ from main.utils import parse_csv_file as read_file def _validation_word(word): if len(word) > 46: raise forms.ValidationError(_('Maximum length allowed 46 words.')) if ' ' in word: raise forms.ValidationError(_('Forbidden use words with whitespaces.')) if not re.match(r'^\w+$', word): raise forms.ValidationError(_('Forbidden use words with special character.')) class FilesAdminForm(forms.ModelForm): def clean_file(self): file = self.cleaned_data['file'] parse_file = read_file(file) if not 'word' in parse_file.fieldnames: raise forms.ValidationError(_('Structure file incorrect, check example in documentation.')) for row in parse_file: _validation_word(row['word']) return file class Meta: fields = '__all__' class WordsAdminForm(forms.ModelForm): def clean_word(self): word = self.cleaned_data['word'] _validation_word(word) return word class Meta: fields = '__all__'
2.6875
3
je_editor/ui/ui_utils/keyword/__init__.py
JE-Chen/je_editor
1
12784530
<reponame>JE-Chen/je_editor from je_editor.ui.ui_utils.keyword import *
1.007813
1
tests/test_transports.py
freedge/fake-switches
42
12784531
<reponame>freedge/fake-switches<gh_stars>10-100 import unittest from hamcrest import assert_that, equal_to from fake_switches.transports import SwitchSshService, SwitchTelnetService, SwitchHttpService class TransportsTests(unittest.TestCase): def test_http_service_has_default_port(self): http_service = SwitchHttpService() assert_that(http_service.port, equal_to(80)) def test_ssh_service_has_default_port(self): ssh_service = SwitchSshService() assert_that(ssh_service.port, equal_to(22)) def test_telnet_service_has_default_port(self): telnet_service = SwitchTelnetService() assert_that(telnet_service.port, equal_to(23))
2.828125
3
dftd3/parameters/r2r4.py
bast/pyDFTD3
2
12784532
<gh_stars>1-10 # -*- coding: utf-8 -*- # # pyDFTD3 -- Python implementation of Grimme's D3 dispersion correction. # Copyright (C) 2020 <NAME> and contributors. # # This file is part of pyDFTD3. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # For information on the complete list of contributors to the # pyDFTD3, see: <http://github.com/bobbypaton/pyDFTD3/> # from math import sqrt """PBE0/def2-QZVP atomic values for multipole coefficients.""" _R2R4 = [ 8.0589, 3.4698, 29.0974, 14.8517, 11.8799, 7.8715, 5.5588, 4.7566, 3.8025, 3.1036, 26.1552, 17.2304, 17.7210, 12.7442, 9.5361, 8.1652, 6.7463, 5.6004, 29.2012, 22.3934, 19.0598, 16.8590, 15.4023, 12.5589, 13.4788, 12.2309, 11.2809, 10.5569, 10.1428, 9.4907, 13.4606, 10.8544, 8.9386, 8.1350, 7.1251, 6.1971, 30.0162, 24.4103, 20.3537, 17.4780, 13.5528, 11.8451, 11.0355, 10.1997, 9.5414, 9.0061, 8.6417, 8.9975, 14.0834, 11.8333, 10.0179, 9.3844, 8.4110, 7.5152, 32.7622, 27.5708, 23.1671, 21.6003, 20.9615, 20.4562, 20.1010, 19.7475, 19.4828, 15.6013, 19.2362, 17.4717, 17.8321, 17.4237, 17.1954, 17.1631, 14.5716, 15.8758, 13.8989, 12.4834, 11.4421, 10.2671, 8.3549, 7.8496, 7.3278, 7.4820, 13.5124, 11.6554, 10.0959, 9.7340, 8.8584, 8.0125, 29.8135, 26.3157, 19.1885, 15.8542, 16.1305, 15.6161, 15.1226, 16.1576, ] R2R4 = [sqrt(0.5 * x * sqrt(i + 1)) for i, x in enumerate(_R2R4)]
1.929688
2
src/dowml/lib.py
IBMDecisionOptimization/dowml
3
12784533
# -------------------------------------------------------------------------- # Source file provided under Apache License, Version 2.0, January 2004, # http://www.apache.org/licenses/ # (c) Copyright <NAME>, 2021 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- import ast import base64 import csv import glob import io import logging import os import re import sys import tempfile import time import urllib.parse from collections import namedtuple from contextlib import contextmanager from datetime import datetime from functools import lru_cache from operator import attrgetter import requests from ibm_watson_machine_learning.wml_client_error import WMLClientError, ApiRequestFailure from packaging import version from ibm_watson_machine_learning import APIClient # WML Python API version with a fixed Assets.download function WML_HAS_FIXED_DOWNLOAD = "1000.0.0" LOGNAME = 'log.txt' class Error(Exception): """Base class for all errors in this script""" pass class InvalidCredentials(Error): """The WML credentials were not found, or incorrect""" pass class SimilarNamesInJob(Error): """A job can't have two input files with the same name, irrespective of path""" pass class NoCredentialsToCreateSpace(Error): """Need to create a space, but credentials are incomplete to allow that""" pass # # The WML API offers a way to choose which entities are returned when asking # for job details. Unfortunately, that parameter is not surfaced in the WML # Python API, and we have to patch the code in order to send the value we want. # # APIClient._params() is the function that creates the parameters for the REST # call. We replace it with our own function '_new_params' that (1) calls the # original function and adds the filter we want, if we want one. # # The function will not be called with any parameter. So the filter we want to # use, if any, must be set in a global variable. _the_filter = None # Backup of the original function, so that we can call it and restore it later. _the_old_params = None def _new_params(): """Our new function to build a parameter list for the REST call. Called by the instance of APIClient itself.""" global _the_old_params global _the_filter # Use the original code and get its output # noinspection PyCallingNonCallable result = _the_old_params() # Add the filter, if one is required if _the_filter: result['include'] = _the_filter return result def _get_file_spec(path): force = False if path[0] == '+': force = True path = path[1:] basename = os.path.basename(path) return path, basename, force class _CredentialsProvider: """"Reads credentials for a DOWMLLib instance. Stores them as a 'credentials' attribute.""" ENVIRONMENT_VARIABLE_NAME = 'DOWML_CREDENTIALS' ENVIRONMENT_VARIABLE_NAME_FILE = 'DOWML_CREDENTIALS_FILE' # The keys in the credentials APIKEY = 'apikey' TOKEN = 'token' SPACE_ID = 'space_id' SPACE_NAME = 'space_name' URL = 'url' REGION = 'region' COS_CRN = 'cos_resource_crn' ML_CRN = 'ml_instance_crn' REGION_TO_URL = { 'us-south': 'https://us-south.ml.cloud.ibm.com', 'eu-de': 'https://eu-de.ml.cloud.ibm.com', 'eu-gb': 'https://eu-gb.ml.cloud.ibm.com', 'jp-tok': 'https://jp-tok.ml.cloud.ibm.com', } def __init__(self, wml_credentials_file=None, api_key=None, wml_credentials_str=None, url=None, region=None): self._logger = logging.getLogger(self.__class__.__name__) if wml_credentials_str is None: if wml_credentials_file is not None: wml_credentials_str = self._read_wml_credentials_from_file(wml_credentials_file) else: wml_credentials_str = self._read_wml_credentials_from_env() if wml_credentials_str: self._logger.debug('Found credential string.') self.credentials = self.check_credentials(wml_credentials_str, api_key=api_key, url=url, region=region) def usage(self): print(f'${self.ENVIRONMENT_VARIABLE_NAME} should contain credentials as a Python dict of the form:') print(f' {{\'{self.APIKEY}\': \'<apikey>\', \'{self.URL}\': \'https://us-south.ml.cloud.ibm.com\'}}') print(f'Or set ${self.ENVIRONMENT_VARIABLE_NAME_FILE} to the path to a file containing the same information.') def check_credentials(self, wml_cred_str, api_key, url, region): wml_credentials = None if wml_cred_str is not None: assert type(wml_cred_str) is str if not wml_cred_str: raise InvalidCredentials('WML credentials must not be an empty string.') wml_credentials = ast.literal_eval(wml_cred_str) assert type(wml_credentials) is dict if not wml_credentials: # If we don't find a credentials string through the environment, we will # assume that the parameters are enough to build one. wml_credentials = {} if api_key: wml_credentials[self.APIKEY] = api_key if url: wml_credentials[self.URL] = url if region: wml_credentials[self.REGION] = region if self.APIKEY not in wml_credentials and self.TOKEN not in wml_credentials: raise InvalidCredentials('API key (or token) must be specified.') if self.URL not in wml_credentials and self.REGION not in wml_credentials: raise InvalidCredentials('URL or region must be specified (but not both).') if self.APIKEY in wml_credentials: assert type(wml_credentials[self.APIKEY]) is str else: assert type(wml_credentials[self.TOKEN]) is str if region: if url: raise InvalidCredentials(f"You must not specify both '{self.URL}' and '{self.REGION}'.") wml_credentials[self.REGION] = region # Setting a region must clear the URL, otherwise there will be an # ambiguity (and therefore an error) just below wml_credentials.pop(self.URL, None) if self.REGION in wml_credentials: region = wml_credentials[self.REGION] if self.URL in wml_credentials: raise InvalidCredentials(f"WML credentials must not have both '{self.URL}' and '{self.REGION}'.") try: wml_credentials[self.URL] = self.REGION_TO_URL[region] except KeyError: raise InvalidCredentials(f"Unknown region '{region}'.") wml_credentials.pop(self.REGION) if url: # The url specified takes priority over the one in the credentials, if any. wml_credentials[self.URL] = url assert self.URL in wml_credentials assert type(wml_credentials[self.URL]) is str url = wml_credentials[self.URL] if not url: raise InvalidCredentials('URL must not be an empty string.') if url[-1] == '/': self._logger.warning('URL should not have a \'/\' at the end.') wml_credentials[self.URL] = url[:-1] self._logger.debug('Credentials have the expected structure.') return wml_credentials def _read_wml_credentials_from_env(self): """Return a string of credentials suitable for WML from the environment Raises InvalidCredentials if anything is wrong.""" var_name = self.ENVIRONMENT_VARIABLE_NAME var_file_name = self.ENVIRONMENT_VARIABLE_NAME_FILE self._logger.debug(f'Looking for credentials in environment variable {var_name}...') wml_cred_str = None if var_name in os.environ: wml_cred_str = os.environ[var_name] elif var_file_name in os.environ: self._logger.debug(f'Looking for credentials file name in environment variable {var_file_name}...') wml_cred_str = self._read_wml_credentials_from_file(os.environ[var_file_name]) return wml_cred_str def _read_wml_credentials_from_file(self, file): """Return the content of the file, assumed to be WML credentials""" self._logger.debug(f'Looking for credentials in file \'{file}\'...') with open(file) as f: wml_cred_str = f.read() return wml_cred_str def version_is_greater(current, minimum): """Compare two 'vv.nn.pp' versions. Return True is the current version string is greater or equal to the minimum string. Assumes that each string is of type vv.nn.pp, with vv, nn and pp being integers.""" return version.parse(current) >= version.parse(minimum) @contextmanager def suppress_stdout(): """"Sometimes it's nicer to not get printed output from APIClient""" with open(os.devnull, "w") as devnull: old_stdout = sys.stdout sys.stdout = devnull try: yield finally: sys.stdout = old_stdout class DOWMLLib: """A Python client to run DO models on WML""" DOWML_PREFIX = 'dowml' space_name = f'{DOWML_PREFIX}-space' MODEL_NAME = f'{DOWML_PREFIX}-model' MODEL_TYPES = ['cplex', 'cpo', 'opl', 'docplex'] DO_VERSION = '20.1' TSHIRT_SIZES = ['S', 'M', 'XL'] DEPLOYMENT_NAME = f'{DOWML_PREFIX}-deployment' def __init__(self, wml_credentials_file=None, api_key=None, space_id=None, url=None, region=None, tz=datetime.utcnow().astimezone().tzinfo): f"""Read and validate the WML credentials Args: wml_credentials_file: path to the file that contains the WML credentials. If None, they are read from the environment. space_id: the id of the space that should be used. If specified, this replaces the one in the credentials. url: the URL for the Machine Learning service to use. If specified, this replaces the one in the credentials. url and region can't be both specified. region: An alternative way to specify the URL for the Machine Learning service to use. If specified, the URL will be deduced from the region. This replaces the one in the credentials. url and region can't be both specified. Possible values for the region are {list(_CredentialsProvider.REGION_TO_URL.keys())} tz: timezone to use to display time, defaults to Python's default timezone.""" self.model_type = self.MODEL_TYPES[0] """Type of model to solve""" self.tshirt_size = self.TSHIRT_SIZES[0] """Tee-shirt size for the hardware to solve the model""" self.do_version = self.DO_VERSION """DO engines version to use""" self.timelimit = None """Time limit for the solve, in seconds""" self.inputs = 'assets' """Type of inputs that the created jobs should use""" self.outputs = 'inline' """Type of outputs that the created jobs should use""" self._logger = logging.getLogger(self.__class__.__name__) cred_provider = _CredentialsProvider(wml_credentials_file, api_key=api_key, url=url, region=region) wml_credentials = cred_provider.credentials # A space name in the credentials changes the default if cred_provider.SPACE_NAME in wml_credentials: self._logger.debug('They contain a space name.') self.space_name = wml_credentials[cred_provider.SPACE_NAME] if cred_provider.SPACE_ID in wml_credentials: self._logger.debug('And they contain a space id.') # The space_id specified here takes precedence # over the one, if any, defined in the credentials if space_id: wml_credentials[cred_provider.SPACE_ID] = space_id self._wml_credentials = wml_credentials # We don't initialize the client at this time, because this is an # expensive operation. self._client = None self._space_id = None self._data_connection = None self.tz = tz @property def url(self): """The URL for the WML service instance that the library is connected to.""" return self._wml_credentials[_CredentialsProvider.URL] @property def space_id(self): """The id for the deployment space that the library is connected to.""" return self._space_id @property def inline(self): self._logger.warning('Attribute \'inline\' is deprecated: use \'inputs\' instead.') return self.inputs == 'inline' @inline.setter def inline(self, value): self._logger.warning('Attribute \'inline\' is deprecated: use \'inputs\' instead.') self.inputs = 'inline' if value else 'assets' def _create_client(self): """Create the Python APIClient instance""" assert self._client is None self._logger.debug('Creating the WML client...') # http://ibm-wml-api-pyclient.mybluemix.net/#api-for-ibm-cloud client = APIClient(self._wml_credentials) self._logger.info(f'Creating the client succeeded. Client version is {client.version}.') self._logger.info(f'Client uses URL {self._wml_credentials[_CredentialsProvider.URL]}.') return client def _set_default_space(self): space_id_key = _CredentialsProvider.SPACE_ID if space_id_key in self._wml_credentials: space_id = self._wml_credentials[space_id_key] self._logger.debug(f'Using specified space \'{space_id}\'.') else: space_id = self._find_or_create_space() self._logger.debug('Setting default space...') self._client.set.default_space(space_id) self._space_id = space_id self._logger.debug('Done.') def _get_or_make_client(self): if self._client is None: self._client = self._create_client() # The client is pretty much useless when it doesn't yet have a # default space. So let's set it immediately. self._set_default_space() # It would seem natural to assert that self._space_id is not None. # But this fails when we are in unit-tests and we just set _client to # a mock object from outside, without also setting the _space_id. return self._client def solve(self, paths): """Solve the model, return the job id The model is sent as online data to WML (if 'inline yes') or is uploaded as a data asset to be reused later (default). :param paths: one or more pathname to the files to send, as a single string, separated by space :return: The id of the submitted job """ self._get_or_make_client() # As _get_deployment_id caches its results, it may happen that what it returns is # invalid. For example if the user deleted the deployment after the last solve. # So if we get an error about the deployment not existing, we clear the cache # and retry once. first_try = True while True: deployment_id = self._get_deployment_id() self._logger.info(f'Deployment id: {deployment_id}') try: job_id = self.create_job(paths, deployment_id) self._logger.info(f'Job id: {job_id}') return job_id except ApiRequestFailure as e: if first_try and b'deployment_does_not_exist' in e.args[1].content: self._logger.warning('Deployment was not found. Clearing the cache and retrying...') self._get_deployment_id_with_params.cache_clear() first_try = False else: if not first_try: self._logger.warning('Clearing the cache didn\'t help...') raise def client_data_asset_download(self, asset_id, filename): self._logger.debug(f'Downloading asset {asset_id} in {filename}...') with suppress_stdout(): name = self._client.data_assets.download(asset_id, filename) if version_is_greater(self._client.version, WML_HAS_FIXED_DOWNLOAD): filename = name # else the return value is useless when filename is an absolute path self._logger.debug(f'Done saving {filename}.') def get_log(self, job_id): """Extract the engine log from the job. :param job_id: The id of the job to get the log from :return: The decoded log, or None """ def _get_asset_content(asset_id): if version_is_greater(self._client.version, WML_HAS_FIXED_DOWNLOAD): return self._client.data_assets.download(asset_id).decode('ascii') else: with tempfile.TemporaryDirectory() as temp_dir_name: filename = os.path.join(temp_dir_name, f'{asset_id}-log.txt') self.client_data_asset_download(asset_id, filename) with open(filename) as f: content = f.read() return content def _get_log_from_output_references(references): self._logger.debug(f'Looking for {LOGNAME} in output_data_references...') for ref in references: if ref.get('type') != 'data_asset': continue if 'id' not in ref: self._logger.warning('Ignoring data asset with no id.') continue if ref['id'] == LOGNAME: self._logger.debug('Found it.') try: asset_id = ref['location']['id'] except KeyError: self._logger.error('Log data asset has no location/id information.') break self._logger.debug(f'This is asset {asset_id}.') return _get_asset_content(asset_id) return None def _get_log_from_outputs(outputs): self._logger.debug(f'Looking for {LOGNAME} in output_data...') for output_data in outputs: if output_data['id'] == LOGNAME: if 'content' not in output_data: self._logger.error(f'Log without content for job {job_id}.') continue self._logger.debug('Found it. Decoding it...') output = output_data['content'] output = self.decode_log(output) output = self.remove_empty_lines(output) self._logger.debug('Decoded the log.') return output return None job_details = self.get_job_details(job_id, with_contents='log') try: do = job_details['entity']['decision_optimization'] except KeyError: self._logger.warning('No decision_optimization structure available for this job.') return None # When we have references in the job, the 'output_data' may be an empty list if 'output_data' in do and do['output_data']: return _get_log_from_outputs(do['output_data']) elif 'output_data_references' in do: return _get_log_from_output_references(do['output_data_references']) else: self._logger.warning('No output_data or output_data_references structure available for this job.') return None def _parse_asset_references(self, details, key): def find_id_in_href(loc): href = loc.get('href') if loc else None if not href: return None path = urllib.parse.urlparse(href).path s = re.search('/v2/assets/(.*)', path) if s: return s.group(1) self._logger.warning(f'Could not decode href for asset \'{name}\'.') return None def find_id_in_id(loc): return loc.get('id') if loc else None try: refs = details['entity']['decision_optimization'][key] except KeyError: self._logger.debug(f'No \'{key}\' structure available for this job.') return {} result = {} for ref in refs: asset_type = ref.get('type') if asset_type != 'data_asset': self._logger.debug(f'Ignoring asset of unknown type \'{asset_type}\'.') continue name = ref.get('id') if not name: self._logger.warning('Found a data asset with no name.') continue self._logger.debug(f'Found a data asset named {name}.') location = ref.get('location') asset_id = find_id_in_id(location) or find_id_in_href(location) if asset_id: result[name] = asset_id else: self._logger.warning(f'Could not find asset id for asset \'{name}\'.') return result def get_output_asset_ids(self, details): """"Extract the output data asset ids from the job details. :param details: The details of the job to get the output from :return: A dict of outputs. Keys are the names of the outputs, and the corresponding value for each key is the id of the asset. """ return self._parse_asset_references(details, 'output_data_references') def get_input_asset_ids(self, details): """"Extract the input data asset ids from the job details. :param details: The details of the job to get the output from :return: A dict of inputs. Keys are the names of the inputs, and the corresponding value for each key is the id of the asset. """ return self._parse_asset_references(details, 'input_data_references') def get_output(self, details, csv_as_dataframe=None, tabular_as_csv=False): """Deprecated. Use get_outputs instead""" return self.get_outputs(details, csv_as_dataframe, tabular_as_csv) def _extract_inline_files_from_details(self, details, key, tabular_as_csv): try: files = details['entity']['decision_optimization'][key] except KeyError: self._logger.debug(f'No \'{key}\' structure available for this job.') return {} result = {} for output_data in files: name = output_data['id'] if 'content' in output_data: # What we have here is a regular file, encoded self._logger.debug(f'Found a regular file named {name}.') content = self._extract_regular_file(output_data) result[name] = content elif ('values' in output_data and 'fields' in output_data and name.lower().endswith('.csv')): self._logger.debug(f'Found a CSV file named {name}.') content = self._extract_csv_file(output_data, tabular_as_csv) result[name] = content else: self._logger.warning(f'Found an unknown file named {name}.') content = output_data result[name] = content return result def get_outputs(self, details, csv_as_dataframe=None, tabular_as_csv=False): """"Extract the inline outputs from the job details. :param details: The details of the job to get the outputs from :param csv_as_dataframe: Whether the content of a CSV file should be returned as a Pandas DataFrame or not. Deprecated: use tabular_as_csv instead :param tabular_as_csv: Whether tabular outputs should be returned as CSV file content instead of Pandas dataframe :return: A dict of outputs, with the names of the assets as keys, and the content as value, as bytes. We don't assume that the content is actually text. """ if csv_as_dataframe is not None: # We have a non-default value for this deprecated parameter # Let's first check that the replacement parameter is at its default # value assert(tabular_as_csv is False) # Now we can replace it with the correct value tabular_as_csv = not csv_as_dataframe return self._extract_inline_files_from_details(details, 'output_data', tabular_as_csv) def get_inputs(self, details, tabular_as_csv=False): """"Extract the inline inputs from the job details. :param details: The details of the job to get the inputs from :param tabular_as_csv: Whether tabular inputs should be returned as CSV file content instead of Pandas dataframe :return: A dict of inputs, with the names of the assets as keys, and the content as value, as bytes. We don't assume that the content is actually text. """ return self._extract_inline_files_from_details(details, 'input_data', tabular_as_csv) @staticmethod def _extract_csv_file(output_data, tabular_as_csv): if tabular_as_csv: content = io.StringIO() writer = csv.writer(content) writer.writerow(output_data['fields']) for r in output_data['values']: writer.writerow(r) content = content.getvalue().encode() else: import pandas content = pandas.DataFrame(output_data['values'], columns=output_data['fields']) return content @staticmethod def _extract_regular_file(output_data): content = output_data['content'] content = content.encode('UTF-8') content = base64.b64decode(content) return content def get_job_details(self, job_id, with_contents=None): """ Get the job details for the given job :param job_id: The id of the job to look for :param with_contents: if 'names', the details returned include the input and output files names. If 'full', the content of these files is included as well. If 'log', the content only includes the output files :return: The job details """ client = self._get_or_make_client() self._logger.debug('Fetching output...') output_filter = None if not with_contents: output_filter = 'solve_parameters,solve_state,status' elif with_contents == 'log': output_filter = 'output_data,output_data_references' job_details = self.client_get_job_details(client, job_id, output_filter) self._logger.debug('Done.') if with_contents != 'full' and with_contents != 'log': self.filter_large_chunks_from_details(job_details) return job_details @staticmethod def client_get_job_details(client, job_id, with_filter=None): # The filter doesn't work correctly if it contains spaces assert(not with_filter or (with_filter.find(' ') == -1)) if version_is_greater(client.version, "1.0.154"): result = client.deployments.get_job_details(job_id, with_filter) else: global _the_filter global _the_old_params # Save the filter in a global variable for our new function to find it _the_filter = with_filter # Save the pointer to the original code # noinspection PyProtectedMember _the_old_params = client._params # and replace it with our new function client._params = _new_params try: result = client.deployments.get_job_details(job_id) finally: # Put back the original code client._params = _the_old_params return result @staticmethod def filter_large_chunks_from_details(job_details): """Remove the large blobs (input/output) from the given job_details.""" try: do = job_details['entity']['decision_optimization'] for data in do.get('output_data', []): if 'content' in data: # This is the case for regular files, such as the log data['content'] = '[not shown]' elif 'values' in data: # This is the case for CSV files data['values'] = ['[not shown]'] for data in do.get('input_data', []): if 'content' in data: data['content'] = '[not shown]' if 'solve_state' in do and 'latest_engine_activity' in do['solve_state']: do['solve_state']['latest_engine_activity'] = ['[not shown]'] except KeyError: # GH-1: This happens when the job failed pass def _delete_data_assets(self, job_details): job_id = job_details['metadata']['id'] try: odr = job_details['entity']['decision_optimization']['output_data_references'] except KeyError: odr = [] for output in odr: if output.get('type') != 'data_asset': continue if 'location' not in output: self._logger.error(f'Missing \'location\' in details for job {job_id}.') elif 'id' not in output['location']: self._logger.error(f'Missing \'location.id\' in details for job {job_id}.') else: data_asset_id = output['location']['id'] self._logger.debug(f'Deleting data asset {data_asset_id}...') try: self._client.data_assets.delete(data_asset_id) self._logger.debug('Done.') except WMLClientError: self._logger.error('Exception raised while trying to delete the asset.', exc_info=True) def _client_deployments_delete_job(self, job_id, hard, job_details): """Deletes the platform run, so that the deployment job is deleted as well. If only calling client.deployments.delete_job(job_id, hard) the 'run' of the 'platform job' on the Watson Studio side is left, and it will never be deleted. On the other hand, deleting the run on the WS side also deletes the deployment job on the WML side. So let's do that. """ client = self._get_or_make_client() wml_url = self._wml_credentials['url'] # We don't want to (try to) delete the WS run if we only cancel the job # Instead, we skip everything until calling deployments.delete_job(True) everything_ok_so_far = hard ws_url = client.PLATFORM_URLS_MAP.get(wml_url) if everything_ok_so_far and not ws_url: self._logger.error(f'Unknown Watson Studio URL for WML URL {wml_url}.') everything_ok_so_far = False if everything_ok_so_far: try: platform_job_id = job_details['entity']['platform_job']['job_id'] platform_run_id = job_details['entity']['platform_job']['run_id'] url = f'{ws_url}/v2/jobs/{platform_job_id}/runs/{platform_run_id}?space_id={self.space_id}' except KeyError: self._logger.error('Watson Studio job id or run id not found in WML job details.') everything_ok_so_far = False if everything_ok_so_far: # noinspection PyUnboundLocalVariable self._logger.debug(f'Trying to delete run {platform_run_id} of Watson Studio job {platform_job_id}...') # noinspection PyProtectedMember # noinspection PyUnboundLocalVariable r = requests.delete(url, headers={'Authorization': f'Bearer {client.service_instance._get_token()}', 'Content-Type': 'application/json', 'cache-control': 'no-cache'}) if r.status_code != 204: self._logger.error(f'Error when trying to delete the Watson Studio run. {r.text}') everything_ok_so_far = False if not everything_ok_so_far: if hard: self._logger.error('Could not delete the Watson Studio run. Deleting the WML job deployment instead...') # else: # we just wanted to cancel the job, so there's nothing to warn against client.deployments.delete_job(job_id, hard) def delete_job(self, job_id, hard=True): """Delete the given job. :param job_id: the job to be deleted :param hard: deprecated. Use cancel_job instead of passing False """ if not hard: self.cancel_job(job_id) return self._logger.debug(f'Deleting data assets (if any) for job {job_id}...') job_details = self.get_job_details(job_id, with_contents='names') self._delete_data_assets(job_details) self._logger.debug(f'Done. Deleting job {job_id}...') self._client_deployments_delete_job(job_id, True, job_details) self._logger.debug('Done.') def cancel_job(self, job_id): """Cancel the given job. :param job_id: the job to be canceled """ self._logger.debug(f'Canceling job {job_id}...') self._client_deployments_delete_job(job_id, False, None) self._logger.debug('Done.') def decode_log(self, output): """Decode the engine log coming from DO4WML. :param output: A base-64 encoded text with empty lines :return: The decoded text, without empty lines """ output = output.encode('UTF-8') output = base64.b64decode(output) output = output.decode('UTF-8') output = self.remove_empty_lines(output) return output @staticmethod def remove_empty_lines(output): """Remove empty lines from the log. :param output: The text to process :return: The text, with no empty lines """ output = '\n'.join([s for s in output.splitlines() if s]) return output @staticmethod def _get_job_status_from_details(job_details): return job_details['entity']['decision_optimization']['status']['state'] @staticmethod def _get_job_id_from_details(job_details): return job_details['metadata']['id'] @staticmethod def _get_creation_time_from_details(job_details, tz): created = job_details['metadata']['created_at'] if created[-1] == 'Z': # A suffix of Z is not understood by isoformat. Let's replace # it with one that's understood created = created[:-1] + '+00:00' dt = datetime.fromisoformat(created) # Transform to local time dt = dt.astimezone(tz) # Remove timezone information so that ... dt = dt.replace(tzinfo=None) # ... just naively prints local time created = dt.isoformat(sep=' ', timespec='seconds') else: # Let's not mess with what we don't know pass return created @staticmethod def _get_input_names_from_details(job_details): do = job_details['entity']['decision_optimization'] inputs = do.get('input_data', []) names = [i['id'] for i in inputs] inputs = do.get('input_data_references', []) for i in inputs: if 'id' in i: names.append('*' + i['id']) else: names.append('Unknown') return names def wait_for_job_end(self, job_id, print_activity=False): """Wait for the job to finish, return its status and details as a tuple. If print_activity is True, some information is printed in the console.""" class ProgressiveDelay: def __init__(self): self.delays = [2, 2, 2, 2, 2, 2, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 30] def wait(self): delay = self.delays[0] if len(self.delays) > 1: self.delays.pop(0) assert (2 <= delay <= 30) time.sleep(delay) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): pass class StatusLogger: def __init__(self, initial_state): self.last_state = initial_state print(initial_state, end='', flush=True) def log_state(self, state): if state == self.last_state: print('.', end='', flush=True) else: if self.last_state != '': print('') # else: if state was empty, no need to end the line print(state, end='', flush=True) self.last_state = state def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): pass client = self._get_or_make_client() with StatusLogger('') as status_logger, \ ProgressiveDelay() as delayer: while True: job_details = self.client_get_job_details(client, job_id, with_filter='solve_state,status') do = job_details['entity']['decision_optimization'] status = self._get_job_status_from_details(job_details) self._logger.info(f'Job status: {status}') if print_activity: status_logger.log_state(f'Job is {status}.') if status in ['completed', 'failed', 'canceled']: break if print_activity: # There may be a bit of log to look at try: activity = do['solve_state']['latest_engine_activity'] if activity: # Because of the StatusLogger, we're not at the beginning of a line print('') # We are joining the lines in the activity with a CR, # only to remove them if they were already included... act = '\n'.join(activity) act = self.remove_empty_lines(act) print(act) except KeyError: # This must mean that no activity is available yet pass delayer.wait() if print_activity: # The status_logger printed something, but didn't end the line yet print('') return status, job_details @staticmethod def get_file_as_data(path): """Return the base-64 encoded content of a file.""" with open(path, 'rb') as f: data = f.read() data = base64.b64encode(data) data = data.decode('UTF-8') return data def _get_type_from_details(self, job): try: deployment_id = job['entity']['deployment']['id'] deployment = self._get_deployment_from_id(deployment_id) model_id = deployment['entity']['asset']['id'] model = self._get_model_definition_from_id(model_id) deployment_type = model['entity']['wml_model']['type'] match = re.fullmatch(r"do-(....*)_[0-9.]*", deployment_type) if match: deployment_type = match.group(1) return deployment_type except KeyError: # Something changed. But let's not fail just for that self._logger.warning('Error while fetching type of a job!') return '?????' def _get_version_from_details(self, job): try: deployment_id = job['entity']['deployment']['id'] deployment = self._get_deployment_from_id(deployment_id) model_id = deployment['entity']['asset']['id'] model = self._get_model_definition_from_id(model_id) deployment_type = model['entity']['wml_model']['type'] match = re.fullmatch(r"do-....*_([0-9.]*)", deployment_type) engine_version = '?????' if match: engine_version = match.group(1) return engine_version except KeyError: # Something changed. But let's not fail just for that self._logger.warning('Error while fetching version of a job!') return '?????' @lru_cache def _get_model_definition_from_id(self, model_id): client = self._get_or_make_client() model = client.model_definitions.get_details(model_id) return model @lru_cache def _get_deployment_from_id(self, deployment_id): client = self._get_or_make_client() deployment = client.deployments.get_details(deployment_id) return deployment def _get_size_from_details(self, job): try: deployment_id = job['entity']['deployment']['id'] deployment = self._get_deployment_from_id(deployment_id) size = deployment['entity']['hardware_spec']['name'] return size except KeyError: # Something changed. But let's not fail just for that self._logger.warning('Error while fetching size of a job!') return '?' def get_jobs(self): """Return the list of tuples (status, id, ...) for all jobs in the deployment.""" client = self._get_or_make_client() self._logger.debug('Getting job details...') job_details = client.deployments.get_job_details() self._logger.debug('Done.') self._logger.debug('Getting information about deployments and models...') result = [] for job in job_details['resources']: status = self._get_job_status_from_details(job) job_id = self._get_job_id_from_details(job) created = self._get_creation_time_from_details(job, self.tz) names = self._get_input_names_from_details(job) deployment_type = self._get_type_from_details(job) engine_version = self._get_version_from_details(job) size = self._get_size_from_details(job) JobTuple = namedtuple('Job', ['status', 'id', 'created', 'names', 'type', 'version', 'size']) j = JobTuple(status=status, id=job_id, created=created, names=names, type=deployment_type, version=engine_version, size=size) result.append(j) result.sort(key=attrgetter('created')) self._logger.debug('Done.') return result def parse_paths(self, paths): """Expand wildcards that may appear in the input assets list.""" self._logger.debug(f'Parsing input list: {paths}') globbed = [] for path in paths.split(): # Let's first get rid of the 'force' flag that glob # would not understand path, _, force = _get_file_spec(path) files = glob.glob(path) if not files: # If the path doesn't actually match an existing file, this is # not necessarily an error: this name can refer to a data # asset that exists already. So let's keep it. files = [path] if force: # Put back the '+' in front files = [f'+{file}' for file in files] globbed += files self._logger.debug(f'Actual input list: {globbed}') return globbed def create_inputs(self, paths, cdd_inputdata, solve_payload): # First deal with wildcards globbed = self.parse_paths(paths) # And let's now create the inputs from these files names = [] for path in globbed: path, basename, force = _get_file_spec(path) if basename in names: raise SimilarNamesInJob(basename) names.append(basename) if self.inputs == 'inline': input_data = { 'id': basename, 'content': self.get_file_as_data(path) } else: data_asset_id = self._create_data_asset_if_necessary(path, basename, force) input_data = { 'id': basename, "type": "data_asset", "location": { "href": "/v2/assets/" + data_asset_id + "?space_id=" + self.space_id } } solve_payload[cdd_inputdata].append(input_data) def create_job(self, paths, deployment_id): """Create a deployment job (aka a run) and return its id.""" client = self._get_or_make_client() cdd = client.deployments.DecisionOptimizationMetaNames assert(self.outputs == 'inline' or self.outputs == 'assets') cdd_outputdata = cdd.OUTPUT_DATA if self.outputs == 'assets': cdd_outputdata = cdd.OUTPUT_DATA_REFERENCES # Assume we use inline data (i.e. content in the job request) cdd_inputdata = cdd.INPUT_DATA if self.inputs == 'assets': # But if we don't want inline data, we have to submit # input references instead cdd_inputdata = cdd.INPUT_DATA_REFERENCES solve_payload = { cdd.SOLVE_PARAMETERS: { 'oaas.logAttachmentName': 'log.txt', 'oaas.logTailEnabled': 'true', 'oaas.resultsFormat': 'JSON' }, cdd_inputdata: [], cdd_outputdata: [ {'id': '.*'} ] } if self.outputs == 'assets': out = solve_payload[cdd_outputdata][0] out['type'] = 'data_asset' # PyCharm assumes that, because we added a string in the dict on # the previous line, we should only add strings in the same dict. # But this is not how WML does... # noinspection PyTypeChecker out['connection'] = {} # noinspection PyTypeChecker out['location'] = {'name': '${job_id}/${attachment_name}'} if self.timelimit: params = solve_payload[cdd.SOLVE_PARAMETERS] params['oaas.timeLimit'] = 1000 * self.timelimit self.create_inputs(paths, cdd_inputdata, solve_payload) self._logger.debug('Creating the job...') if self.inputs == 'inline': self._logger.debug('Data is inline. Let\'s not print the payload...') else: self._logger.debug(repr(solve_payload)) dt = datetime.now() job_details = client.deployments.create_job(deployment_id, solve_payload) submit_time = (datetime.now() - dt).total_seconds() self._logger.debug(f'Done in {submit_time}. Getting its id...') job_id = client.deployments.get_job_uid(job_details) return job_id def _get_deployment_id(self): # Which deployment we want depends on a number of configuration values # in the library. In order for the cache to work correctly, and not always # return the same deployment id, the cached function must be given these # values as parameters. return self._get_deployment_id_with_params(self.DEPLOYMENT_NAME, self.model_type, self.do_version, self.tshirt_size) @lru_cache def _get_deployment_id_with_params(self, deployment_name_prefix, model_type, do_version, tshirt_size): # The point of this forwarding function is to allow testing. # Specifically, counting the number of calls to the _cached # function, and deciding what it returns. # Mocking this function would remove the lru_cache... return self._get_deployment_id_with_params_cached(deployment_name_prefix, model_type, do_version, tshirt_size) def _get_deployment_id_with_params_cached(self, deployment_name_prefix, model_type, do_version, tshirt_size): """Create the deployment if doesn't exist already, return its id.""" self._logger.debug('Getting deployments...') client = self._get_or_make_client() deployment_details = client.deployments.get_details() self._logger.debug('Done.') resources = deployment_details['resources'] deployment_name = f'{deployment_name_prefix}-{model_type}-{do_version}-{tshirt_size}' self._logger.debug(f'Got the list. Looking for deployment named \'{deployment_name}\'') deployment_id = None for r in resources: if r['entity']['name'] == deployment_name: deployment_id = r['metadata']['id'] self._logger.debug('Found it.') break if deployment_id is not None: return deployment_id self._logger.debug('This deployment doesn\'t exist yet. Creating it...') deployment_id = self._create_deployment(deployment_name) return deployment_id def _create_deployment(self, deployment_name): # We need a model to create a deployment model_id = self._get_model_id() # Create the deployment self._logger.debug('Creating the deployment itself...') client = self._get_or_make_client() cdc = client.deployments.ConfigurationMetaNames meta_props = { cdc.NAME: deployment_name, cdc.DESCRIPTION: "Deployment for the Solve on WML Python script", cdc.BATCH: {}, cdc.HARDWARE_SPEC: {'name': self.tshirt_size, 'num_nodes': 2} } deployment = client.deployments.create(artifact_uid=model_id, meta_props=meta_props) self._logger.debug('Deployment created.') deployment_id = client.deployments.get_id(deployment) return deployment_id def _get_model_id(self): """Create an empty model if one doesn't exist, return its id.""" self._logger.debug('Getting models...') client = self._get_or_make_client() details = client.repository.get_details() self._logger.debug('Done.') resources = details['models']['resources'] model_name = f'{self.MODEL_NAME}-{self.model_type}-{self.do_version}' self._logger.debug(f'Got the list. Looking for model named \'{model_name}\'...') model_id = None for r in resources: if r['metadata']['name'] == model_name: model_id = r['metadata']['id'] self._logger.debug('Found it.') self._logger.debug(f'Model id: {model_id}') break if model_id is None: self._logger.debug('This model doesn\'t exist yet. Creating it...') model_id = self._create_model(model_name) return model_id def get_available_versions(self): """Return the list of available DO versions on the platform.""" client = self._get_or_make_client() target_version = "1.0.92" if not version_is_greater(client.version, target_version): return [f'Error: need WML client version {target_version} or better to retrieve available versions'] available_versions = [] for s in client.software_specifications.get_details()['resources']: name = s['metadata']['name'] match = re.fullmatch(r"do_([0-9.]*)", name) if match: available_versions.append(match.group(1)) return available_versions def _create_model(self, model_name): client = self._get_or_make_client() cr = client.repository crm = cr.ModelMetaNames model_metadata = { crm.NAME: model_name, crm.DESCRIPTION: "Model for the solve-on-wml script", crm.TYPE: f'do-{self.model_type}_{self.do_version}', crm.SOFTWARE_SPEC_UID: client.software_specifications.get_id_by_name(f'do_{self.do_version}') } # We need an empty.zip file, because APIClient doesn't know better handle, path = tempfile.mkstemp(suffix='.zip', text=False) try: # This string is the result of converting the file # empty.zip in the repository using # openssl base64 < empty.zip file_content = base64.b64decode('UEsFBgAAAAAAAAAAAAAAAAAAAAAAAA==') os.write(handle, file_content) finally: os.close(handle) try: model_details = cr.store_model(model=path, meta_props=model_metadata) finally: os.remove(path) self._logger.debug('Model created.') model_id = client.repository.get_model_id(model_details) self._logger.debug(f'Model id: {model_id}') return model_id def _find_or_create_space(self): """Find the Space to use from its name, create it if it doesn't exist.""" assert self._client client = self._client self._logger.debug('Fetching existing spaces...') space_details = client.spaces.get_details() resources = space_details['resources'] self._logger.debug(f'Got the list. Looking for space named \'{self.space_name}\'...') space_id = None for r in resources: if r['entity']['name'] == self.space_name: space_id = r['metadata']['id'] self._logger.debug('Found it.') break if space_id is None: self._logger.debug('This space doesn\'t exist yet. Creating it...') # Prepare necessary information wml_credentials = self._wml_credentials cos_crn = _CredentialsProvider.COS_CRN ml_crn = _CredentialsProvider.ML_CRN if cos_crn not in wml_credentials or ml_crn not in wml_credentials: raise NoCredentialsToCreateSpace(f'WML credentials do not contain the information necessary ' f'to create a deployment space. \nMissing \'{cos_crn}\' ' f'and/or \'{ml_crn}\'.') assert type(wml_credentials[cos_crn]) is str assert type(wml_credentials[ml_crn]) is str csc = client.spaces.ConfigurationMetaNames metadata = { csc.NAME: self.space_name, csc.DESCRIPTION: self.space_name + ' description', csc.STORAGE: { "type": "bmcos_object_storage", "resource_crn": self._wml_credentials[cos_crn] }, csc.COMPUTE: { "name": "existing_instance_id", "crn": self._wml_credentials[ml_crn] } } # Create the space # We want the space to be ready as soon as the code returns from # spaces.store(), so we use background_mode=False. In addition, this # gives us error checking which doesn't happen in default mode. space_details = client.spaces.store(meta_props=metadata, background_mode=False) state = space_details['entity']['status'].get('state') self._logger.debug(f'Space created, with state={state}.') space_id = client.spaces.get_uid(space_details) self._logger.info(f'Space id: {space_id}') return space_id def _get_asset_details(self): """Return the list of all the data assets in the space.""" client = self._get_or_make_client() # This is the first version where data_assets.get_details() works assert(version_is_greater(client.version, "1.0.95.1")) results = client.data_assets.get_details()['resources'] return results def _find_asset_id_by_name(self, name): """Looks for a data asset with the given name, returns its id, or None""" assets = self._get_asset_details() for asset in assets: metadata = asset['metadata'] if metadata['name'] == name: return metadata['asset_id'] return None def create_asset(self, path, basename): """Create a data asset with the given name. A Watson Studio data asset is an entity that mimicks a file.""" client = self._get_or_make_client() asset_details = client.data_assets.create(basename, path) return asset_details['metadata']['guid'] def delete_asset(self, uid): """Delete an existing asset. Return True if ok, False if not.""" client = self._get_or_make_client() status = client.data_assets.delete(uid) return status == "SUCCESS" def _create_data_asset_if_necessary(self, path, basename, force): """Create a data asset (and upload file) if it doesn't exist already (or force is True).""" asset_to_delete = None self._logger.info(f'Checking whether a data asset named \'{basename}\' already exists.') data_asset_id = self._find_asset_id_by_name(basename) if data_asset_id: self._logger.debug(f'Yes, with id {data_asset_id}.') if not force: return data_asset_id self._logger.debug('Creating new asset with local content.') asset_to_delete = data_asset_id else: self._logger.debug('No, creating the data asset.') data_asset_id = self.create_asset(path, basename) self._logger.debug('Done.') if asset_to_delete: self._logger.debug('Deleting the old data asset.') if self.delete_asset(asset_to_delete): self._logger.debug('Done.') else: self._logger.warning('Could not delete pre-existing asset.') return data_asset_id
2.25
2
lecture_transcriber/utils.py
Harrison88/lecture_transcriber
0
12784534
<gh_stars>0 import deepspeech import numpy as np class RewindableChunker: def __init__(self, audiosegment, size=50): self.audiosegment = audiosegment self.size = size self.lower_bounds = range(0, len(audiosegment), size) self.upper_bounds = range(size, len(audiosegment) + size, size) self.current_index = 0 def __iter__(self): while self.current_index < len(self.lower_bounds): lower_bound = self.lower_bounds[self.current_index] upper_bound = self.upper_bounds[self.current_index] yield self.audiosegment[lower_bound:upper_bound] self.current_index += 1 def rewind(self, ms): iterations = (ms // self.size) + 1 self.current_index = self.current_index - iterations def __len__(self): return len(self.lower_bounds) @property def current_time(self): return self.upper_bounds[self.current_index] def words_from_metadata(metadata): word = "" word_list = [] word_start_time = 0 for index, item in enumerate(metadata.items): if item.character != " ": word = word + item.character if item.character == " " or index == metadata.num_items - 1: word_duration = item.start_time - word_start_time if word_duration < 0: word_duration = 0 each_word = { "word": word, "start_time": word_start_time, "duration": word_duration, } word_list.append(each_word) word = "" word_start_time = 0 elif len(word) == 1: word_start_time = item.start_time return word_list def create_deepspeech_model( model, *, beam_width=500, trie=None, lm=None, lm_alpha=0.75, lm_beta=1.85 ): deepspeech_model = deepspeech.Model(model, beam_width) if trie and lm: deepspeech_model.enableDecoderWithLM(lm, trie, lm_alpha, lm_beta) return deepspeech_model def audiosegment_to_np(audiosegment): return np.frombuffer(audiosegment._data, np.int16)
2.59375
3
ryu/app/sdnhub_apps/stateless_lb.py
bpalamol28/TP3SDN
0
12784535
# Copyright (C) 2014 SDN Hub # # Licensed under the GNU GENERAL PUBLIC LICENSE, Version 3. # You may not use this file except in compliance with this License. # You may obtain a copy of the License at # # http://www.gnu.org/licenses/gpl-3.0.txt # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. import logging import json import random from ryu.lib import mac as mac_lib from ryu.lib import ip as ip_lib from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import ipv4 from ryu.lib.packet import tcp from ryu.lib.packet import arp from ryu.ofproto import ether, inet from ryu.ofproto import ofproto_v1_0, ofproto_v1_3 from ryu.lib import dpid as dpid_lib from ryu.app.sdnhub_apps import learning_switch UINT32_MAX = 0xffffffff ################ Main ################### # The stateless server load balancer picks a different server for each # request. For making the assignment, it only uses the servers it # already knows the location of. The clients or the gateway sents along # a request for the Virtual IP of the load-balancer. The first switch # intercepting the request will rewrite the headers to match the actual # server picked. So all other switches will only have to do simple # L2 forwarding. It is possible to avoid IP header writing if alias IP # is set on the servers. The call skip_ip_header_rewriting() will handle # the appropriate flag setting. class StatelessLB(app_manager.RyuApp): def __init__(self, *args, **kwargs): super(StatelessLB, self).__init__(*args, **kwargs) self.rewrite_ip_header = True self.server_index = 0 self.servers = [] self.virtual_ip = None #self.virtual_ip = "10.0.0.5" self.virtual_mac = "A6:63:DD:D7:C0:C8" # Pick something dummy and #self.servers.append({'ip':"10.0.0.2", 'mac':"00:00:00:00:00:02"}) #self.servers.append({'ip':"10.0.0.3", 'mac':"00:00:00:00:00:03"}) #self.servers.append({'ip':"10.0.0.4", 'mac':"00:00:00:00:00:04"}) #self.learning_switch = kwargs['learning_switch'] #self.learning_switch.add_exemption({'dl_type': ether.ETH_TYPE_LLDP}) #self.learning_switch.add_exemption({'dl_dst': self.virtual_mac}) def set_learning_switch(self, learning_switch): self.learning_switch = learning_switch self.learning_switch.clear_exemption() self.learning_switch.add_exemption({'dl_dst': self.virtual_mac}) # Users can skip doing header rewriting by setting the virtual IP # as an alias IP on all the servers. This works well in single subnet def set_rewrite_ip_flag(self, rewrite_ip): if rewrite_ip == 1: self.rewrite_ip_header = True else: self.rewrite_ip_header = False def set_virtual_ip(self, virtual_ip=None): self.virtual_ip = virtual_ip def set_server_pool(self, servers=None): self.servers = servers def formulate_arp_reply(self, dst_mac, dst_ip): if self.virtual_ip == None: return src_mac = self.virtual_mac src_ip = self.virtual_ip arp_opcode = arp.ARP_REPLY arp_target_mac = dst_mac ether_proto = ether.ETH_TYPE_ARP hwtype = 1 arp_proto = ether.ETH_TYPE_IP hlen = 6 plen = 4 pkt = packet.Packet() e = ethernet.ethernet(dst_mac, src_mac, ether_proto) a = arp.arp(hwtype, arp_proto, hlen, plen, arp_opcode, src_mac, src_ip, arp_target_mac, dst_ip) pkt.add_protocol(e) pkt.add_protocol(a) pkt.serialize() return pkt @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def packet_in_handler(self, ev): if self.virtual_ip == None or self.servers == None: return msg = ev.msg datapath = msg.datapath ofp = datapath.ofproto ofp_parser = datapath.ofproto_parser in_port = msg.match['in_port'] dpid = datapath.id pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] if eth.ethertype == ether.ETH_TYPE_ARP: arp_hdr = pkt.get_protocols(arp.arp)[0] if arp_hdr.dst_ip == self.virtual_ip and arp_hdr.opcode == arp.ARP_REQUEST: reply_pkt = self.formulate_arp_reply(arp_hdr.src_mac, arp_hdr.src_ip) actions = [ofp_parser.OFPActionOutput(in_port)] out = ofp_parser.OFPPacketOut(datapath=datapath, in_port=ofp.OFPP_ANY, data=reply_pkt.data, actions=actions, buffer_id = UINT32_MAX) datapath.send_msg(out) return # Only handle IPv4 traffic going forward elif eth.ethertype != ether.ETH_TYPE_IP: return iphdr = pkt.get_protocols(ipv4.ipv4)[0] # Only handle traffic destined to virtual IP if (iphdr.dst != self.virtual_ip): return # Only handle TCP traffic if iphdr.proto != inet.IPPROTO_TCP: return tcphdr = pkt.get_protocols(tcp.tcp)[0] valid_servers = [] for server in self.servers: outport = self.learning_switch.get_attachment_port(dpid, server['mac']) if outport != None: server['outport'] = outport valid_servers.append(server) total_servers = len(valid_servers) # If we there are no servers with location known, then skip if total_servers == 0: return # Round robin selection of servers index = self.server_index % total_servers selected_server_ip = valid_servers[index]['ip'] selected_server_mac = valid_servers[index]['mac'] selected_server_outport = valid_servers[index]['outport'] self.server_index += 1 print "Selected server", selected_server_ip ########### Setup route to server match = ofp_parser.OFPMatch(in_port=in_port, eth_type=eth.ethertype, eth_src=eth.src, eth_dst=eth.dst, ip_proto=iphdr.proto, ipv4_src=iphdr.src, ipv4_dst=iphdr.dst, tcp_src=tcphdr.src_port, tcp_dst=tcphdr.dst_port) if self.rewrite_ip_header: actions = [ofp_parser.OFPActionSetField(eth_dst=selected_server_mac), ofp_parser.OFPActionSetField(ipv4_dst=selected_server_ip), ofp_parser.OFPActionOutput(selected_server_outport) ] else: actions = [ofp_parser.OFPActionSetField(eth_dst=selected_server_mac), ofp_parser.OFPActionOutput(selected_server_outport) ] inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, actions)] cookie = random.randint(0, 0xffffffffffffffff) mod = ofp_parser.OFPFlowMod(datapath=datapath, match=match, idle_timeout=10, instructions=inst, buffer_id = msg.buffer_id, cookie=cookie) datapath.send_msg(mod) ########### Setup reverse route from server match = ofp_parser.OFPMatch(in_port=selected_server_outport, eth_type=eth.ethertype, eth_src=selected_server_mac, eth_dst=eth.src, ip_proto=iphdr.proto, ipv4_src=selected_server_ip, ipv4_dst=iphdr.src, tcp_src=tcphdr.dst_port, tcp_dst=tcphdr.src_port) if self.rewrite_ip_header: actions = ([ofp_parser.OFPActionSetField(eth_src=self.virtual_mac), ofp_parser.OFPActionSetField(ipv4_src=self.virtual_ip), ofp_parser.OFPActionOutput(in_port) ]) else: actions = ([ofp_parser.OFPActionSetField(eth_src=self.virtual_mac), ofp_parser.OFPActionOutput(in_port) ]) inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, actions)] cookie = random.randint(0, 0xffffffffffffffff) mod = ofp_parser.OFPFlowMod(datapath=datapath, match=match, idle_timeout=10, instructions=inst, cookie=cookie) datapath.send_msg(mod)
1.632813
2
sample/tool/__init__.py
Jeanhwea/python-project-template
0
12784536
# -*- coding: utf-8 -*- __all__ = () # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library import logging logging.getLogger(__name__).addHandler(logging.NullHandler())
1.3125
1
thresholding-traceback.py
ANDROID564/pc_cyber_lab
0
12784537
<filename>thresholding-traceback.py import numpy as np import cv2 def nothing(x): pass img = cv2.imread("b4.jpg", cv2.IMREAD_GRAYSCALE) cv2.namedWindow("Image") cv2.createTrackbar("Threshold value", "Image", 128, 255, nothing) #cv2.resizeWindow('image', 10,10) while True: value_threshold = cv2.getTrackbarPos("Threshold value", "Image") _, threshold_binary = cv2.threshold(img, value_threshold, 255, cv2.THRESH_BINARY) _, threshold_binary_inv = cv2.threshold(img, value_threshold, 255, cv2.THRESH_BINARY_INV) _, threshold_trunc = cv2.threshold(img, value_threshold, 255, cv2.THRESH_TRUNC) _, threshold_to_zero = cv2.threshold(img, value_threshold, 255, cv2.THRESH_TOZERO) _, threshold_to_zero_inv = cv2.threshold(img, value_threshold, 255, cv2.THRESH_TOZERO_INV) cv2.imshow("Image", img) cv2.imshow("th binary", threshold_binary) cv2.imshow("th binary inv", threshold_binary_inv) cv2.imshow("th trunc", threshold_trunc) cv2.imshow("th to zero", threshold_to_zero) cv2.imshow("th to zero inv", threshold_to_zero_inv) key = cv2.waitKey(100) if key == 27: break cv2.destroyAllWindows()
3.5625
4
m2-modified/ims/common/agentless-system-crawler/tests/functional/test_functional_plugins.py
CCI-MOC/ABMI
108
12784538
<reponame>CCI-MOC/ABMI import shutil import tempfile import unittest import docker import requests.exceptions from plugins.systems.cpu_container_crawler import CpuContainerCrawler from plugins.systems.cpu_host_crawler import CpuHostCrawler from plugins.systems.memory_container_crawler import MemoryContainerCrawler from plugins.systems.memory_host_crawler import MemoryHostCrawler from plugins.systems.os_container_crawler import OSContainerCrawler from plugins.systems.process_container_crawler import ProcessContainerCrawler # Tests the FeaturesCrawler class # Throws an AssertionError if any test fails # Tests conducted with a single container running. class HostAndContainerPluginsFunctionalTests(unittest.TestCase): image_name = 'alpine:latest' def setUp(self): self.docker = docker.Client( base_url='unix://var/run/docker.sock', version='auto') try: if len(self.docker.containers()) != 0: raise Exception( "Sorry, this test requires a machine with no docker" "containers running.") except requests.exceptions.ConnectionError: print ("Error connecting to docker daemon, are you in the docker" "group? You need to be in the docker group.") self.docker.pull(repository='alpine', tag='latest') self.container = self.docker.create_container( image=self.image_name, command='/bin/sleep 60') self.tempd = tempfile.mkdtemp(prefix='crawlertest.') self.docker.start(container=self.container['Id']) def tearDown(self): self.docker.stop(container=self.container['Id']) self.docker.remove_container(container=self.container['Id']) shutil.rmtree(self.tempd) def test_crawl_invm_cpu(self): fc = CpuHostCrawler() cores = len(list(fc.crawl())) assert cores > 0 def test_crawl_invm_mem(self): fc = MemoryHostCrawler() cores = len(list(fc.crawl())) assert cores > 0 def test_crawl_outcontainer_cpu(self): fc = CpuContainerCrawler() for key, feature, t in fc.crawl(self.container['Id']): print key, feature cores = len(list(fc.crawl(self.container['Id']))) assert cores > 0 def test_crawl_outcontainer_os(self): fc = OSContainerCrawler() assert len(list(fc.crawl(self.container['Id']))) == 1 def test_crawl_outcontainer_processes(self): fc = ProcessContainerCrawler() # sleep + crawler assert len(list(fc.crawl(self.container['Id']))) == 2 def test_crawl_outcontainer_processes_mmapfiles(self): fc = ProcessContainerCrawler() output = "%s" % list(fc.crawl(self.container['Id'], get_mmap_files='True')) assert '/bin/busybox' in output def test_crawl_outcontainer_mem(self): fc = MemoryContainerCrawler() output = "%s" % list(fc.crawl(self.container['Id'])) assert 'memory_used' in output if __name__ == '__main__': unittest.main()
2.09375
2
Pygame/SimplePygame/SimplePygame.py
kasztp/python-lessons
35
12784539
import pygame from pygame.locals import * pygame.init() screen = pygame.display.set_mode((600, 600), 0) pygame.display.set_caption('Simple Pygame Game') bee = pygame.image.load('bee1.png').convert_alpha() beeX = 0 beeY = 0 clock = pygame.time.Clock() loop = True while loop: for event in pygame.event.get(): if event.type == QUIT \ or (event.type == KEYDOWN and event.key == K_ESCAPE): loop = False keystate = pygame.key.get_pressed() if keystate[K_RIGHT]: beeX += 5 screen.fill((0,120,0)) screen.blit(bee, (beeX, beeY)) pygame.display.flip() clock.tick(60) pygame.quit()
3.328125
3
ansible-devel/test/integration/targets/ansible-doc/collections/ansible_collections/testns/testcol/plugins/modules/fakemodule.py
satishcarya/ansible
0
12784540
<gh_stars>0 #!/usr/bin/python from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = """ module: fakemodule short_desciption: fake module description: - this is a fake module options: _notreal: description: really not a real option author: - me """ import json def main(): print(json.dumps(dict(changed=False, source='testns.testcol.fakemodule'))) if __name__ == '__main__': main()
1.765625
2
radcontrold.py
davea/radcontrold
1
12784541
#!/usr/bin/env python import sys import logging from configparser import ConfigParser from os.path import expanduser from socket import gethostname from time import sleep from eq3bt import Thermostat, Mode from bluepy.btle import BTLEException from mqttwrapper import run_script log = logging.getLogger("radcontrold") def callback(topic, payload, config): log.debug("%s %s", topic, payload) room = topic.split("/")[2] mode = { b'0': Mode.Closed, b'1': Mode.Open, }.get(payload) if mode is None: log.warning("Ignoring invalid payload on %s", topic) return addresses = config['radiators'].get(room, "") if not addresses: # Control message is for a radiator we're not responsible for. log.debug("No EQ3 addresses in config for %s", room) return success = True for address in addresses.split(","): for attempt in range(10): try: Thermostat(address).mode = mode log.info("Set %s in %s to %s", address, room, mode) break except BTLEException: log.warning("Couldn't set mode %s for %s in %s", mode, address, room) sleep(1) else: success = False # Only post acknowledgment to MQTT topic if all thermostats were controlled. if success: return [ ("{}/ack".format(topic), payload) ] def main(): formatter = "[%(asctime)s] %(name)s %(levelname)s - %(message)s" logging.basicConfig(level=logging.DEBUG, format=formatter) logging.getLogger('eq3bt').setLevel(logging.ERROR) hostname = gethostname().split(".")[0] config = ConfigParser() config.read(expanduser("~/.config/radcontrold/{}.ini".format(hostname))) if not config.has_section('radiators') or len(config['radiators']) == 0: log.warning("No config for {}, exiting.".format(hostname)) sys.exit(0) run_script(callback, broker=config['mqtt']['broker'], topics=['control/radiator/+/active'], config=config) if __name__ == '__main__': main()
2.109375
2
src/model.py
rish-16/Lightning-Transformer
2
12784542
<gh_stars>1-10 import torch import numpy as np from torch import nn import pytorch_lightning as pl class Attention(pl.LightningModule): def __init__(self, d_model, num_heads, p, d_input=None): super().__init__() self.num_heads = num_heads self.d_model = d_model if d_input is None: d_xq = d_xk = d_xv = d_model else: d_xq, d_xk, d_xv = d_input assert d_model % self.num_heads == 0 self.d_k = d_model // self.num_heads self.W_q = nn.Linear(d_xq, d_model, bias=False) self.W_k = nn.Linear(d_xk, d_model, bias=False) self.W_v = nn.Linear(d_xv, d_model, bias=False) self.W_h = nn.Linear(d_model, d_model) def scaled_dot_product_attention(self, Q, K, V): batch_size = Q.size(0) k_length = K.size(2) Q = Q / np.sqrt(self.d_k) scores = torch.matmul(Q, K.transpose(2, 3)) A = nn.Softmax(dim=-1)(scores) H = torch.matmul(A, V) return H, A def split_heads(self, x, batch_size): return x.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) def group_heads(self, x, batch_size): return x.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k) def forward(self, X_q, X_k, X_v): batch_size, seq_length, dim = X_q.size() Q = self.split_heads(self.W_q(X_q), batch_size) K = self.split_heads(self.W_k(X_k), batch_size) V = self.split_heads(self.W_v(X_v), batch_size) H_cat, A = self.scaled_dot_product_attention(Q, K, V) H_cat = self.group_heads(H_cat, batch_size) H = self._h(H_cat) return H, A class Encoder(pl.LightningModule): def __init__(self, d_model, num_heads, conv_hidden_dim, p=0.1): self.mha = Attention(d_model, num_heads, p) self.layernorm1 = nn.LayerNorm(normalized_shape=d_model, eps=1e-6) self.layernorm2 = nn.LayerNorm(normalized_shape=d_model, eps=1e-6) def forward(self, x): attn_output, _ = self.mha(x, x, x) out1 = self.layernorm1(x + attn_output) cnn_output = self.cnn(out1) out2 = self.layernorm2(out1 + cnn_output) return out2
2.40625
2
tests/fixture_classes/db.py
em-2/em2
0
12784543
from em2.core import Database class FakeConn: async def execute(self, *args, **kwargs): pass class DummyAcquireContext: def __init__(self, conn): self.conn = conn async def __aenter__(self): return self.conn async def __aexit__(self, exc_type, exc_val, exc_tb): pass class TestDatabase(Database): def __init__(self, loop, settings): super().__init__(loop, settings) self.conn = getattr(settings, '_test_conn', FakeConn()) async def startup(self): pass def acquire(self, *, timeout=None): return DummyAcquireContext(self.conn) async def close(self): pass
2.53125
3
dedalus/Tag.py
xzoert/dedalus
0
12784544
class Tag: ASSIGNED=1 NOT_ASSIGNED=0 INHERITED=2 def __init__(self,name): self.name=name.strip() self.key=name def __hash__(self): return hash(self.name) def __eq__(self, other): return self.name == other.name def __ne__(self, other): return not(self == other)
3.03125
3
admin/management/commands/deploy.py
adelsonllima/djangoplus
21
12784545
# -*- coding: utf-8 -*- import os import sys import json import time import datetime from django.core.management.base import BaseCommand from fabric.api import * from fabric.contrib.files import exists, append, contains from django.conf import settings username = 'root' project_dir = os.getcwd() project_name = project_dir.split('/')[-1] remote_project_dir = '/var/opt/{}'.format(project_name) env.user = username env.connection_attempts = 10 # centos 7 - wkhtmltopdf # yum -y install xorg-x11-server-Xvfb xorg-x11-fonts-Type1 xorg-x11-fonts-75dpi # curl -O -L https://downloads.wkhtmltopdf.org/0.12/0.12.5/wkhtmltox-0.12.5-1.centos7.x86_64.rpm # yum -y localinstall wkhtmltox-0.12.5-1.centos7.x86_64.rpm # export QT_XKB_CONFIG_ROOT=/usr/share/X11/xkb # ln -s /usr/local/bin/wkhtmltopdf /bin # pip install pdfkit # python # import pdfkit # pdfkit.from_string('Hello!', 'out.pdf') class Command(BaseCommand): VERBOSE = False def add_arguments(self, parser): super(Command, self).add_arguments(parser) parser.add_argument('--push', action='store_true', dest='push', default=False, help='Syncronize files only') parser.add_argument('--update', action='store_true', dest='update', default=False, help='Syncronize files and update the requirements') parser.add_argument('--deploy', action='store_true', dest='deploy', default=False, help='Deploy the application.') parser.add_argument('--create', action='store_true', dest='create', default=False, help='Creates a new droplet and deploy the application.') parser.add_argument('--verbose', action='store_true', dest='verbose', default=False, help='Verbose the output') def handle(self, *args, **options): if 'help' not in options: if settings.DIGITAL_OCEAN_TOKEN: execute_task = deploy Command.VERBOSE = options.get('verbose', False) output['running'] = Command.VERBOSE output['warnings'] = Command.VERBOSE output['stdout'] = Command.VERBOSE output['stderr'] = Command.VERBOSE if options.get('push'): execute_task = push elif options.get('update'): execute_task = update if options.get('create') or settings.DIGITAL_OCEAN_SERVER: if options.get('create'): host = _create_droplet() if host: env.hosts = [host] execute(execute_task, host=host) else: print('Sorry! The droplet could not be created.') else: host = _check_droplet() if host: env.hosts = [host] execute(execute_task, host=host) else: print('Sorry! The droplet {} could not be found'.format(settings.DIGITAL_OCEAN_SERVER)) else: print('Please, set the DIGITAL_OCEAN_SERVER variable in settings.py or execute the' ' command with --create parameter to create a new droplet.') else: print('Please, set the DIGITAL_OCEAN_TOKEN variable in settings.py') GIT_INGORE_FILE_CONTENT = '''*˜ *.pyc .svn .DS_Store .DS_Store? ._* .idea/ djangoplus/.idea/* .Spotlight-V100 .Trashes ehthumbs.db Thumbs.db .project .pydevproject .settings/* sqlite.db mail/* media/* dist/ djangoplus.egg-info/ */dist/ */*egg-info/ geckodriver.log videos/* ''' NGINEX_FILE_CONTENT = '''server {{ client_max_body_size 100M; listen {port}; server_name {server_name}; access_log /var/opt/{project_name}/logs/nginx_access.log; error_log /var/opt/{project_name}/logs/nginx_error.log; location /static {{ alias /var/opt/{project_name}/static; }} location /media {{ alias /var/opt/{project_name}/media; }} location / {{ proxy_pass_header Server; proxy_set_header Host $http_host; proxy_redirect off; proxy_set_header X-Real_IP $remote_addr; proxy_set_header X-Scheme $scheme; proxy_connect_timeout 600s; proxy_send_timeout 600s; proxy_read_timeout 600s; proxy_pass http://localhost:{local_port}/; }} }} ''' SUPERVISOR_FILE_CONTENT = '''[program:{project_name}] directory = /var/opt/{project_name} user = www-data command = /var/opt/{project_name}/gunicorn_start.sh stdout_logfile = /var/opt/{project_name}/logs/supervisor_out.log stderr_logfile = /var/opt/{project_name}/logs/supervisor_err.log ''' GUNICORN_FILE_CONTENT = '''#!/bin/bash set -e source /var/opt/.virtualenvs/{project_name}/bin/activate mkdir -p /var/opt/{project_name}/logs cd /var/opt/{project_name} export QT_QPA_PLATFORM='offscreen' export QT_QPA_FONTDIR='/usr/share/fonts/truetype/dejavu/' exec gunicorn {project_name}.wsgi:application -w 1 -b 127.0.0.1:{port} --timeout=600 --user=www-data --group=www-data --log-level=_debug --log-file=/var/opt/{project_name}/logs/gunicorn.log 2>>/var/opt/{project_name}/logs/gunicorn.log ''' LIMITS_FILE_CONTENT = ''' * soft nofile 65536 * hard nofile 65536 root soft nofile 65536 root hard nofile 65536 ''' BASHRC_FILE_CONTENT = ''' export WORKON_HOME=/var/opt/.virtualenvs mkdir -p $WORKON_HOME source /usr/local/bin/virtualenvwrapper.sh ''' def _debug(s): if Command.VERBOSE: print('[{}] {}\n'.format(datetime.datetime.now(), s)) def _available_port(): nginex_dir = '/etc/nginx/sites-enabled' port = 8000 with cd(nginex_dir): files = run('ls').split() files.remove('default') if project_name in files: files = [project_name] if files: command = "grep localhost {} | grep -o '[0-9]*'".format(' '.join(files)) ports = run(command).split() ports.sort() port = ports[-1] if project_name not in files: port = int(port) + 1 _debug('Returning port {}!'.format(port)) return int(port) def _check_local_keys(): local_home_dir = local('echo $HOME', capture=True) local_ssh_dir = os.path.join(local_home_dir, '.ssh') local_public_key_path = os.path.join(local_ssh_dir, 'id_rsa.pub') if not os.path.exists(local_ssh_dir): _debug('Creating dir {}...'.format(local_ssh_dir)) local('mkdir {}'.format(local_ssh_dir)) if not os.path.exists(local_public_key_path): local("ssh-keygen -f {}/id_rsa -t rsa -N ''".format(local_ssh_dir)) key = open(local_public_key_path, 'r').read().strip() _debug('Checking if private key was uploaded to digital ocean...') url = 'https://api.digitalocean.com/v2/account/keys' command = '''curl -X GET -H 'Content-Type: application/json' -H 'Authorization: Bearer {}' "{}"'''.format(settings.DIGITAL_OCEAN_TOKEN, url) response = local(command, capture=True) # print response if key not in response: _debug('Uploading private key to digital ocean...') command = '''curl -X POST -H 'Content-Type: application/json' -H 'Authorization: Bearer {}' -d '{{"name":"{}","public_key":"{}"}}' "{}"'''.format(settings.DIGITAL_OCEAN_TOKEN, 'Default', key, url) response = local(command, capture=True) # print response def _check_remote_keys(): local_home_dir = local('echo $HOME', capture=True) local_ssh_dir = os.path.join(local_home_dir, '.ssh') local_public_key_path = os.path.join(local_ssh_dir, 'id_rsa.pub') local_private_key_path = os.path.join(local_ssh_dir, 'id_rsa') remote_home_dir = run('echo $HOME') remote_ssh_dir = os.path.join(remote_home_dir, '.ssh') remote_public_key_path = os.path.join(remote_ssh_dir, 'id_rsa.pub') remote_private_key_path = os.path.join(remote_ssh_dir, 'id_rsa') remote_private_known_hosts_path = os.path.join(remote_ssh_dir, 'known_hosts') if not exists(remote_ssh_dir): _debug('Creading remote dir {}...'.format(remote_ssh_dir)) run('mkdir -p {}'.format(remote_ssh_dir)) _debug('Creating empty file {}...'.format(remote_private_known_hosts_path)) run('touch {}'.format(remote_private_known_hosts_path)) with cd(remote_ssh_dir): public_key = open(local_public_key_path, 'r').read() private_key = open(local_private_key_path, 'r').read() _debug('Checking if public key is in file {}...'.format(remote_public_key_path)) if not contains(remote_public_key_path, public_key): _debug('Appending public key in file {}...'.format(remote_public_key_path)) append(remote_public_key_path, public_key) _debug('Checking if private key is in file {}...'.format(remote_private_key_path)) if not contains(remote_private_key_path, private_key): _debug('Appending private key in file {}...'.format(remote_private_key_path)) append(remote_private_key_path, private_key) run('chmod 644 {}'.format(remote_public_key_path)) run('chmod 600 {}'.format(remote_private_key_path)) _debug('Checking if {} is in file {}...'.format(env.hosts[0], remote_private_known_hosts_path)) if not contains(remote_private_known_hosts_path, env.hosts[0]): _debug('Appending {} in file {}...'.format(env.hosts[0], remote_private_known_hosts_path)) run('ssh-keyscan {} >> {}'.format(env.hosts[0], remote_private_known_hosts_path)) def _check_repository(): with cd('/home'): git_dir = '/home/git' if not exists(git_dir): run('adduser --disabled-password --gecos "" git') run('mkdir /home/git/.ssh && chmod 700 /home/git/.ssh') run('touch /home/git/.ssh/authorized_keys && chmod 600 /home/git/.ssh/authorized_keys') run('cat /root/.ssh/authorized_keys >> /home/git/.ssh/authorized_keys') run('chown -R git.git /home/git/.ssh/') project_git_dir = '/home/git/{}.git'.format(project_name) if not exists(project_git_dir): run('mkdir {}'.format(project_git_dir)) run('cd {} && git init --bare'.format(project_git_dir)) run('chown -R git.git {}'.format(project_git_dir)) return 'git@{}:{}.git'.format(env.hosts[0], project_name) def _setup_local_repository(): _debug('Checking if local project is a git project...') if not os.path.exists(os.path.join(project_dir, '.git')): with cd(project_dir): _debug('Making local project a git project...') repository_url = _check_repository() local('git init') local('git remote add origin "{}"'.format(repository_url)) local('echo "..." > README.md') local('echo "{}" > .gitignore'.format(GIT_INGORE_FILE_CONTENT)) local('git config --global user.email "<EMAIL>"') local('git config --global user.name "user"') def _setup_remote_repository(): _debug('Checking if the project was cloned in remote server...') if not exists(remote_project_dir): with cd('/var/opt'): _debug('Cloning project in remote server...') repository_url = _check_repository() run('git clone {} {}'.format(repository_url, project_name)) run('chown -R www-data.www-data {}'.format(project_name)) _debug('Updating project in remote server...') with cd(remote_project_dir): run('git pull origin master') def _push_local_changes(): _debug('Checking if project has local changes...') now = datetime.datetime.now().strftime("%Y%m%d %H:%M:%S") with cd(project_dir): if 'nothing to commit' not in local('git status', capture=True): _debug('Comminting local changes...') files = [] for file_name in local('ls', capture=True).split(): if file_name not in GIT_INGORE_FILE_CONTENT or file_name == 'fabfile.py': files.append(file_name) files.append('.gitignore') for pattern in NGINEX_FILE_CONTENT.split(): if pattern in files: files.remove(pattern) local('git add {}'.format(' '.join(files))) local("git commit -m '{}'".format(now)) _debug('Uploading local changes...') local('git push origin master') def _setup_remote_env(): _debug('Checking if the virtualenv dir was created in remote server...') virtual_env_dir = '/var/opt/.virtualenvs' if not exists(virtual_env_dir): _debug('Creating dir {}'.format(virtual_env_dir)) run('mkdir -p {}'.format(virtual_env_dir)) project_env_dir = os.path.join(virtual_env_dir, project_name) _debug('Checking if virtualenv for the project was created...') if not exists(project_env_dir): with shell_env(WORKON_HOME=virtual_env_dir): _debug('Creating virtual env {}'.format(project_name)) run('source /usr/local/bin/virtualenvwrapper.sh && mkvirtualenv --python=/usr/bin/python3 {}'.format(project_name)) def _setup_remote_project(): with cd(remote_project_dir): _debug('Checking project requirements..') if exists('requirements.txt'): virtual_env_dir = '/var/opt/.virtualenvs' with shell_env(WORKON_HOME=virtual_env_dir): _debug('Installing/Updating project requirements...') run('source /usr/local/bin/virtualenvwrapper.sh && workon {} && pip3 install --upgrade pip'.format(project_name)) run('source /usr/local/bin/virtualenvwrapper.sh && workon {} && pip3 install -U -r requirements.txt'.format(project_name)) _debug('Checking if necessary dirs (logs, media and static) were created...') run('mkdir -p logs') run('mkdir -p static') run('mkdir -p media') _debug('Granting access to www-data...') run('chown -R www-data.www-data .') def _check_domain(): if settings.DIGITAL_OCEAN_DOMAIN: url = 'https://api.digitalocean.com/v2/domains' command = '''curl -X GET -H 'Content-Type: application/json' -H 'Authorization: Bearer {}' "{}/{}"'''.format(settings.DIGITAL_OCEAN_TOKEN, url, settings.DIGITAL_OCEAN_DOMAIN) _debug('Checking if domain {} was created...'.format(settings.DIGITAL_OCEAN_DOMAIN)) data = json.loads(local(command, capture=True)) if data.get('id', None) == 'not_found': _debug('Creating domain {}...'.format(settings.DIGITAL_OCEAN_DOMAIN)) ip_address = env.hosts[0] command = '''curl -X POST -H 'Content-Type: application/json' -H 'Authorization: Bearer {}' -d '{{"name":"{}","ip_address":"{}"}}' "{}"'''.format(settings.DIGITAL_OCEAN_TOKEN, settings.DIGITAL_OCEAN_DOMAIN, ip_address, url) data = json.loads(local(command, capture=True)) ip_address = None try: ip_address = local('dig {} a +short'.format(settings.DIGITAL_OCEAN_DOMAIN), capture=True).strip() except Exception as e: print(e) if ip_address != env.hosts[0]: _debug('The domain is not activated yet. The ip {} is going to be used for the deploy.'.format(env.hosts[0])) return None return settings.DIGITAL_OCEAN_DOMAIN def _print_remote_url(): file_path = '/etc/nginx/sites-enabled/{}'.format(project_name) local_file_path = '/tmp/nginx.tmp' get(file_path, local_file_path) file_content = open(local_file_path).read() server_name = None port = None for line in file_content.split('\n'): if 'server_name ' in line: server_name = line.strip().split()[1].replace(';', '') elif 'listen ' in line: port = line.strip().split()[1].replace(';', '') url = 'http://{}'.format(server_name) if int(port) != 80: url = '{}:{}'.format(url, port) print(('\n\n\nURL: {}\n\n'.format(url))) def _setup_nginx_file(): file_path = '/etc/nginx/sites-enabled/{}'.format(project_name) _debug('Checking nginx file {}...'.format(file_path)) checked_domain = _check_domain() if exists(file_path): local_file_path = '/tmp/nginx.tmp' get(file_path, local_file_path) file_content = open(local_file_path, 'r').read() if checked_domain and checked_domain not in file_content: content = [] for line in file_content.split('\n'): if 'server_name ' in line: line = line.replace('server_name', 'server_name {}'.format(checked_domain)) elif 'listen ' in line: line = ' listen 80;' content.append(line) file_descriptor = open('/tmp/nginx.tmp', 'w') file_descriptor.write('\n'.join(content)) put(file_descriptor, file_path) _debug('Restarting nginx...') run('/etc/init.d/nginx restart') else: _debug('Creating nginx file {}...'.format(file_path)) local_port = _available_port() if checked_domain: port = 80 server_name = checked_domain else: port = local_port + 1000 server_name = env.hosts[0] text = NGINEX_FILE_CONTENT.format(project_name=project_name, server_name=server_name, port=port, local_port=local_port) append(file_path, text) _debug('Nginx configured with {}:{}'.format(server_name, port)) _debug('Restarting nginx...') run('/etc/init.d/nginx restart') def _setup_supervisor_file(): file_path = '/etc/supervisor/conf.d/{}.conf '.format(project_name) _debug('Checking supervisor file {}...'.format(file_path)) if not exists(file_path): _debug('Creating supervisor file {}...'.format(file_path)) text = SUPERVISOR_FILE_CONTENT.format(project_name=project_name) append(file_path, text) _debug('Reloading supervisorctl...') run('supervisorctl reload') def _setup_gunicorn_file(): file_path = '/var/opt/{}/gunicorn_start.sh '.format(project_name) _debug('Checking gunicorn file {}...'.format(file_path)) if not exists(file_path): _debug('Creating gunicorn file {}'.format(file_path)) port = _available_port() text = GUNICORN_FILE_CONTENT.format(project_name=project_name, port=port) append(file_path, text) run('chmod a+x {}'.format(file_path)) def _setup_postgres(): file_path = '/etc/postgresql/9.6/main/pg_hba.conf ' if not exists(file_path): run('apt-get -y install postgresql postgresql-contrib') run('cp {} /tmp'.format(file_path)) run('echo "local all postgres trust\\nhost all ' 'postgres 127.0.0.1/32 trust\\nhost all postgres ::1/128 ' ' trust" > {}'.format(file_path)) run('/etc/init.d/postgresql restart') def _setup_remote_webserver(): _setup_nginx_file() _setup_supervisor_file() _setup_gunicorn_file() def _reload_remote_application(): _debug('Updating project in remote server...') with cd(remote_project_dir): virtual_env_dir = '/var/opt/.virtualenvs' with shell_env(WORKON_HOME=virtual_env_dir): run('source /usr/local/bin/virtualenvwrapper.sh && workon {} && python manage.py sync'.format(project_name)) run('chown -R www-data.www-data .') run('chmod a+w *.db') run('ls -l') _debug('Restarting supervisorctl...') run('supervisorctl restart {}'.format(project_name)) def _delete_remote_project(): _debug('Deleting remove project...') if exists(remote_project_dir): run('rm -r {}'.format(remote_project_dir)) def _delete_remote_env(): _debug('Deleting remote env...') run('source /usr/local/bin/virtualenvwrapper.sh && rmvirtualenv {}'.format(project_name)) def _delete_domain(): url = 'https://api.digitalocean.com/v2/domains' if settings.DIGITAL_OCEAN_DOMAIN: _debug('Deleting domain {}...'.format(settings.DIGITAL_OCEAN_DOMAIN)) command = '''curl -X DELETE -H 'Content-Type: application/json' -H 'Authorization: Bearer {}' "{}/{}"'''.format(settings.DIGITAL_OCEAN_TOKEN, url, settings.DIGITAL_OCEAN_DOMAIN) local(command) def _delete_repository(): project_git_dir = '/home/git/{}.git'.format(project_name) if exists(project_git_dir): run('rm -r {}'.format(project_git_dir)) def _delete_local_repository(): _debug('Deleting local repository...') with cd(project_dir): local('rm -rf .git') def _delete_nginx_file(): _debug('Deleting nginx file...') file_path = '/etc/nginx/sites-enabled/{} '.format(project_name) if exists(file_path): run('rm {}'.format(file_path)) def _delete_supervisor_file(): _debug('Deleting supervisor file..') file_path = '/etc/supervisor/conf.d/{}.conf'.format(project_name) if exists(file_path): run('rm {}'.format(file_path)) def _reload_remote_webserver(): _debug('Reloading supervisorctl...') run('supervisorctl reload') _debug('Reloading nginx...') run('/etc/init.d/nginx restart') _debug('Starting supervisor...') run('service supervisor start') def _configure_crontab(): _debug('Configuring crontab...') output = run("crontab -l") line = '0 * * * * /var/opt/.virtualenvs/{}/bin/python /var/opt/{}/manage.py backup >/tmp/cron.log 2>&1'.format( project_name, project_name) if line not in output: run('crontab -l | { cat; echo "{}"; } | crontab -'.format(line)) def _check_droplet(): _check_local_keys() url = 'https://api.digitalocean.com/v2/droplets/' command = '''curl -X GET -H 'Content-Type: application/json' -H 'Authorization: Bearer {}' "{}"'''.format(settings.DIGITAL_OCEAN_TOKEN, url) _debug('Checking if droplet exists...') response = json.loads(local(command, capture=True)) if 'droplets' in response: for droplet in response['droplets']: ip_address = droplet['networks']['v4'][0]['ip_address'] if droplet['name'] == project_name or ip_address == settings.DIGITAL_OCEAN_SERVER: _debug('Droplet found with IP {}'.format(ip_address)) local_home_dir = local('echo $HOME', capture=True) local_known_hosts_path = os.path.join(local_home_dir, '.ssh/known_hosts') _debug('Checking if file {} exists...'.format(local_known_hosts_path)) if not os.path.exists(local_known_hosts_path): _debug('Creating empty file {}...'.format(local_known_hosts_path)) local('touch {}'.format(local_known_hosts_path)) local_known_hosts_file_content = open(local_known_hosts_path, 'r').read() if ip_address not in local_known_hosts_file_content: _debug('Registering {} as known host...'.format(ip_address)) time.sleep(5) local('ssh-keyscan -T 15 {} >> {}'.format(ip_address, local_known_hosts_path)) if settings.DIGITAL_OCEAN_SERVER not in local_known_hosts_file_content: _debug('Registering {} as known host...'.format(settings.DIGITAL_OCEAN_SERVER)) local('ssh-keyscan {} >> {}'.format(settings.DIGITAL_OCEAN_SERVER, local_known_hosts_path)) return ip_address _debug('No droplet cound be found for the project') else: raise Exception(response) def _create_droplet(): # curl -X GET --silent "https://api.digitalocean.com/v2/images?per_page=999" -H "Authorization: Bearer XXXXXXX" _check_local_keys() if settings.DIGITAL_OCEAN_TOKEN: url = 'https://api.digitalocean.com/v2/account/keys' _debug('Getting installed keys at digital ocean...') command = '''curl -X GET -H 'Content-Type: application/json' -H 'Authorization: Bearer {}' "{}"'''.format(settings.DIGITAL_OCEAN_TOKEN, url) response = json.loads(local(command, capture=True)) # print response ssh_keys = [] for ssh_key in response['ssh_keys']: ssh_keys.append(ssh_key['id']) _debug('Creating droplet...') url = 'https://api.digitalocean.com/v2/droplets/' command = '''curl -X POST -H 'Content-Type: application/json' -H 'Authorization: Bearer {}' -d '{{"name":"{}","region":"{}","size":"{}","image":"{}", "ssh_keys":{}}}' "{}"'''.format(settings.DIGITAL_OCEAN_TOKEN, project_name, 'nyc3', '512mb', 'debian-9-x64', ssh_keys, url) response = json.loads(local(command, capture=True)) droplet_id = response['droplet']['id'] time.sleep(15) url = 'https://api.digitalocean.com/v2/droplets/{}/'.format(droplet_id) command = '''curl -X GET -H 'Content-Type: application/json' -H 'Authorization: Bearer {}' "{}"'''.format(settings.DIGITAL_OCEAN_TOKEN, url) response = json.loads(local(command, capture=True)) ip_address = response['droplet']['networks']['v4'][0]['ip_address'] _debug('Droplet created with IP {}!'.format(ip_address)) _update_settings_file(ip_address) return _check_droplet() _debug('Please, set the DIGITAL_OCEAN_TOKEN value in settings.py file') sys.exit() def _execute_aptget(): with cd('/'): if not exists('/swap.img'): run('apt-get update') run('apt-get -y install python-pip') run('pip install virtualenv virtualenvwrapper') run('apt-get -y install python3 python3-pip build-essential python3-dev git nginx supervisor libncurses5-dev') run('apt-get -y install vim') run('apt-get -y install libjpeg62-turbo-dev libfreetype6-dev libtiff5-dev liblcms2-dev libwebp-dev tk8.6-dev libjpeg-dev') run('apt-get -y install wkhtmltopdf xvfb') run('apt-get -y install htop') if not contains('/etc/security/limits.conf', '65536'): # print LIMITS_FILE_CONTENT append('/etc/security/limits.conf', LIMITS_FILE_CONTENT) run('pip3 install --upgrade pip') if not contains('/root/.bashrc', 'WORKON_HOME'): # print BASHRC_FILE_CONTENT append('/root/.bashrc', BASHRC_FILE_CONTENT) if not exists('/swap.img'): run('lsb_release -a') run('dd if=/dev/zero of=/swap.img bs=1024k count=2000') run('mkswap /swap.img') run('swapon /swap.img') run('echo "/swap.img none swap sw 0 0" >> /etc/fstab') def _update_settings_file(ip): _debug('Updating settings.py file with {} for DIGITAL_OCEAN_SERVER'.format(ip)) settings_file_path = os.path.join(settings.BASE_DIR, '{}/settings.py'.format(project_name)) content = [] settings_file = open(settings_file_path) lines = settings_file.read().split('\n') settings_file.close() for line in lines: if 'DIGITAL_OCEAN_SERVER' in line: line = 'DIGITAL_OCEAN_SERVER = \'{}\''.format(ip) content.append(line) content_str = '\n'.join(content) print(content_str) settings_file = open(settings_file_path, 'w') settings_file.write(content_str) settings_file.close() def backupdb(): local_home_dir = local('echo $HOME', capture=True) backup_dir = os.path.join(local_home_dir, 'backup') if not os.path.exists(backup_dir): local('mkdir -p {}'.format(backup_dir)) with cd('/var/opt'): for entry in run('ls').split(): file_name = '/var/opt/{}/sqlite.db'.format(entry) bakcup_file_name = os.path.join(backup_dir, '{}.db'.format(entry)) if exists(file_name): command = 'scp {}@{}:{} {}'.format(username, env.hosts[0], file_name, bakcup_file_name) local(command) def install_docker(): run('apt update') run('apt install -y apt-transport-https ca-certificates curl gnupg2 software-properties-common') run('curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key add -') run('add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/debian $(lsb_release -cs) stable"') run('apt update') run('apt-cache policy docker-ce') run('apt install -y docker-ce') def deploy(): _execute_aptget() _setup_postgres() _check_remote_keys() _setup_local_repository() _push_local_changes() _setup_remote_env() _setup_remote_repository() _setup_remote_project() _setup_remote_webserver() _reload_remote_application() _print_remote_url() def update(): _push_local_changes() _setup_remote_repository() _setup_remote_project() _reload_remote_application() _setup_nginx_file() _print_remote_url() def push(): _push_local_changes() _setup_remote_repository() _reload_remote_application() _print_remote_url() def undeploy(): _delete_remote_project() _delete_domain() _delete_repository() _delete_local_repository() _delete_nginx_file() _delete_supervisor_file() _reload_remote_webserver() _delete_remote_env()
1.953125
2
main.py
bywakko/owoautofarm
0
12784546
<gh_stars>0 import discord from discord.ext import commands import colorama from colorama import Fore import asyncio import os #-----SETUP-----# prefix = "!!" #use the .env feature to hide your token token = os.getenv("TOKEN") #---------------# bot = commands.Bot(command_prefix=prefix, help_command=None, case_insensitive=True, self_bot=True) @bot.event async def on_ready(): activity = discord.Game(name="fullu owo ban bypass made by Ari.#6435", type=4) await bot.change_presence(status=discord.Status.idle, activity=activity) print(f'''{Fore.RED} ██╗░░██╗███████╗██████╗░██╗ ██║░░██║██╔════╝██╔══██╗██║ ███████║█████╗░░██████╔╝██║ ██╔══██║██╔══╝░░██╔═══╝░██║ ██║░░██║███████╗██║░░░░░██║ ╚═╝░░╚═╝╚══════╝╚═╝░░░░░╚═╝{Fore.RED} ▒ ░░ ░░ ▒░ ░░ ▒▓ ░▒▓░░ ▒░ ░ ░ ░ ░ ░▒ ░ ▒░░ ░ ░ ░░ ░ ░ ░ ░ ░ {Fore.GREEN} ________ ________ ___ |\ __ \|\ __ \|\ \ \ \ \|\ \ \ \|\ \ \ \ \ \ __ \ \ _ _\ \ \ \ \ \ \ \ \ \\ \\ \ \ ___ \ \__\ \__\ \__\\ _\\ \__\\__\ \|__|\|__|\|__|\|__|\|__\|__| ___ ________ ___ ___ _______ ________ ________ ________ ________ _____ ______ _____ ______ ___ ___ ________ ___ _________ ___ ___ _______ ________ |\ \ |\ __ \|\ \ / /|\ ___ \ |\ __ \|\ ____\ |\ ____\|\ __ \|\ _ \ _ \|\ _ \ _ \|\ \|\ \|\ ___ \|\ \|\___ ___\ |\ \ / /| / ___ \ |\ __ \ \ \ \ \ \ \|\ \ \ \ / / | \ __/|\ \ \|\ \ \ \___|_ \ \ \___|\ \ \|\ \ \ \\\__\ \ \ \ \\\__\ \ \ \ \\\ \ \ \\ \ \ \ \|___ \ \_| \ \ \/ / / /__/|_/ /| \ \ \|\ \ \ \ \ \ \ \\\ \ \ \/ / / \ \ \_|/_\ \ _ _\ \_____ \ \ \ \ \ \ \\\ \ \ \\|__| \ \ \ \\|__| \ \ \ \\\ \ \ \\ \ \ \ \ \ \ \ \ \ / / |__|// / / \ \ \\\ \ \ \ \____\ \ \\\ \ \ / / \ \ \_|\ \ \ \\ \\|____|\ \ \ \ \____\ \ \\\ \ \ \ \ \ \ \ \ \ \ \ \ \\\ \ \ \\ \ \ \ \ \ \ \ \/ / / / /_/__ __\ \ \\\ \ \ \_______\ \_______\ \__/ / \ \_______\ \__\\ _\ ____\_\ \ \ \_______\ \_______\ \__\ \ \__\ \__\ \ \__\ \_______\ \__\\ \__\ \__\ \ \__\__/ / / |\________\\__\ \_______\ \|_______|\|_______|\|__|/ \|_______|\|__|\|__|\_________\ \|_______|\|_______|\|__| \|__|\|__| \|__|\|_______|\|__| \|__|\|__| \|__|\___/ / \|_______\|__|\|_______| selfbot is ready! ''') @bot.command() async def help(ctx): embed = discord.Embed( title="<:bot_tick:870672785322676224>Help AutoOwO<:bot_tick:870672785322676224>", color=420699, description= f":arrow_right: **{prefix}autoOwO**\nowoh, owo sell all, owo flip 500 and owo cash 50 seconds.\n\n**:arrow_right: {prefix}stopautoOwO**\nstops autoOwO.\n\n**:arrow_right: {prefix}Owobanbypass**\nIts prevent you from banning Owo by taking appropriate time\n Example:-`the bot takes breaak 5 min of runnning 1st break= 5min,2nd break=10min 3rd break=15min` \n\n made by Ari.6435" ) embed.set_thumbnail( url= "https://cdn.discordapp.com/icons/856358420385759293/a_c9bb8d2dd31eae42a2a9d6efc010e1bc.png" ) await ctx.send(embed=embed) @bot.command(pass_context=True) async def autoOwO(ctx): await ctx.message.delete() await ctx.send('auto OwO is now **enabled**!') global dmcs dmcs = True while dmcs: async with ctx.typing(): await asyncio.sleep(5) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) @bot.command() async def stopautoOwO(ctx): await ctx.message.delete() await ctx.send('auto OwO Magi is now **disabled**!') global dmcs dmcs = False @bot.command(pass_context=True) async def Owobanbypass(ctx): await ctx.message.delete() await ctx.send('owobanbypass is now **enabled**!') global dmcs dmcs = True while dmcs: async with ctx.typing(): await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(8) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await asyncio.sleep(5) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(11) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(14) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(18) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(12) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(9) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(5) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(17) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(12) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(15) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(9) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(14) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(14) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(300) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(8) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(14) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await asyncio.sleep(5) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(11) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(14) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(18) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(12) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(9) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(18) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(4) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(12) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(16) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(14) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(4) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(11) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(11) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(900) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(8) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(14) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await asyncio.sleep(5) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(11) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(14) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(18) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(12) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(9) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(18) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(4) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(12) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(16) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(14) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(4) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(11) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(11) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(900) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(8) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await asyncio.sleep(5) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(11) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(14) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(18) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(12) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(9) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(10) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(5) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(17) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(12) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(15) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(15) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(9) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(13) await ctx.send('owoh') print(f"{Fore.GREEN}succefully owoh") await asyncio.sleep(14) await ctx.send('owo sell all') print(f"{Fore.GREEN}succefully sell") await ctx.send('owo flip 500') print(f"{Fore.GREEN}succefully owo flip 500") await asyncio.sleep(14) await ctx.send('owo cash') print(f"{Fore.GREEN}succefully cash") await asyncio.sleep(1200) # @bot.command() # async def stopautoOwO(ctx): # await ctx.message.delete() # await ctx.send('auto OwO Magi is now **disabled**!') # global dmcs # dmcs = False bot.run(token, bot=False)
2.46875
2
customers/errors/__init__.py
hnb2/flask-customers
1
12784547
<gh_stars>1-10 ''' This module contains the error blueprint to handle all the common HTTP errors. ''' from flask import Blueprint, jsonify bp = Blueprint('errors', __name__) def _generic_error(error, message, code): ''' Generic error handler :param error: A python error, is None for a normal HTTP error :param message: A custom error message to return :param code: The HTTP error code to use ''' response = jsonify(error=message) response.status_code = code return response @bp.app_errorhandler(400) def bad_request(error): ''' Error handler for 400 :param error: A python error, is None for a normal HTTP error ''' return _generic_error(error, 'Bad request', 400) @bp.app_errorhandler(401) def unauthorized(error): ''' Error handler for 401 :param error: A python error, is None for a normal HTTP error ''' return _generic_error( error, 'Please login with proper credentials', 401 ) @bp.app_errorhandler(404) def page_not_found(error): ''' Error handler for 404 :param error: A python error, is None for a normal HTTP error ''' return _generic_error(error, 'Page not found', 404)
2.703125
3
activelearning/aev_cluster.py
plin1112/ANI-Tools
8
12784548
<reponame>plin1112/ANI-Tools import pyNeuroChem as pync import hdnntools as hdn import pyanitools as pyt import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D wkdir = '/home/jujuman/Research/DataReductionMethods/models/train_c08f/' cnstfile = wkdir + 'rHCNO-4.6A_16-3.1A_a4-8.params' saefile = wkdir + 'sae_6-31gd.dat' nnfdir = wkdir + 'networks/' # Construct pyNeuroChem classes nc = pync.conformers(cnstfile, saefile, nnfdir, 0, True) h5file = '/home/jujuman/Research/ANI-DATASET/h5data/ani-gdb-c01.h5' # Declare loader adl = pyt.anidataloader(h5file) aevs = [] aevi = [] tspc = [] for i,data in enumerate(adl): # Extract molecule data from somewhere erg = data['energies'] spc = data['species'] xyz = data['coordinates'].reshape(erg.shape[0], len(spc), 3) Nm = erg.shape[0] # Number of molecules Na = len(spc) # number of atoms # Set the conformers nc.setConformers(confs=xyz, types=list(spc)) # Compute Energies of Conformations this will produce the AEVs which we can load next Ec = nc.energy().copy() # Load AEVs for all atoms, store in aves for m in range(Nm): for a in range(Na): if spc[a] != 'H': aevi.append((i,Nm,Na)) tspc.append(spc[a]) aevs.append(nc.atomicenvironments(atom_idx=a,molec_idx=m).copy()) X = np.vstack(aevs) print(X.shape) from sklearn.cluster import KMeans from sklearn.preprocessing import normalize from matplotlib.pyplot import cm Nc = 10 k_means = KMeans(n_clusters=Nc, random_state=0).fit(X) labels = k_means.labels_ center = k_means.cluster_centers_ T = [[],[],[],[],[],[],[],[],[],[],] D = [[],[],[],[],[],[],[],[],[],[],] for i,(l,x) in enumerate(zip(labels,X)): d = np.linalg.norm(center[l] - x) Lc = np.linalg.norm(center[l]) Lx = np.linalg.norm(x) t = np.dot(center[l],x) T[l].append(t) D[l].append(d) color=cm.rainbow(np.linspace(0,1,Nc)) for t,d,c in zip(T,D,color): plt.scatter(t,d,color=c) plt.show()
2
2
logs/test2.py
MLD1024/pythonDemo
1
12784549
# -*- coding: utf-8 -*- import os import os.path # rootdir = 'D:\loganalyze' # list = os.listdir(rootdir) # 列出文件夹下所有的目录与文件 # for i in range(0 ,len(list)): # path = os.path.join(rootdir ,list[i]) # if os.path.isfile(path): # print path # else: # print path # def getFile(path): list = os.listdir(path) # 列出文件夹下所有的目录与文件 for i in range(0, len(list)): filepath = os.path.join(path, list[i]) if os.path.isfile(filepath): print filepath else: getFile(filepath) if __name__ == '__main__': getFile('D:\loganalyze')
3.078125
3
src/testproject/sdk/internal/reporter/__init__.py
bbornhau/python-opensdk
38
12784550
<filename>src/testproject/sdk/internal/reporter/__init__.py from .reporter import Reporter __all__ = ["Reporter"]
1.085938
1