max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
mc66c.py
tcoenraad/micropython-multical66c
0
12784251
<reponame>tcoenraad/micropython-multical66c from machine import UART from umqtt.robust import MQTTClient import uos from time import sleep MQTT_HOST = "192.168.1.8" UART_ID = 0 def fetch_standard_data(): device = UART(UART_ID, baudrate=300, bits=7, parity=0, stop=2, timeout=3000) device.write("/#1".encode("utf-8")) sleep(1) # Kamstrup Multical 66C docs specify stopbits = 2, however on ESP8266 this results into gibberish device.init(baudrate=1200, bits=7, parity=0, stop=1, timeout=3000) response = device.read(87) # whitespaces are discarded in some readings # nevertheless, ASCII numbers are always complete, # so we split it manually data = response.decode("utf-8").replace(" ", "") parts = [data[i:i+7] for i in range(0, len(data), 7)] return { "energy": int(parts[0]) / 100, "volume": int(parts[1]) / 100, "temperature_flow": int(parts[3]) / 100, "temperature_return": int(parts[4]) / 100 } def update(): c = MQTTClient("umqtt_client", MQTT_HOST) c.connect() standard_data = fetch_standard_data() print("Publishing: {}".format(standard_data)) c.publish("mc66c/energy", str(standard_data["energy"]), True) c.publish("mc66c/volume", str(standard_data["volume"]), True) c.publish("mc66c/temperature_flow", str(standard_data["temperature_flow"]), True) c.publish("mc66c/temperature_return", str(standard_data["temperature_return"]), True)
2.71875
3
fincorpy/__init__.py
Fincor-Blockchain/fincorpy
0
12784252
<reponame>Fincor-Blockchain/fincorpy from hdwallets import BIP32DerivationError as BIP32DerivationError # noqa: F401 from fincorpy._transaction import Transaction as Transaction # noqa: F401 from fincorpy._wallet import generate_wallet as generate_wallet # noqa: F401 from fincorpy._wallet import privkey_to_address as privkey_to_address # noqa: F401 from fincorpy._wallet import privkey_to_pubkey as privkey_to_pubkey # noqa: F401 from fincorpy._wallet import pubkey_to_address as pubkey_to_address # noqa: F401 from fincorpy._wallet import seed_to_privkey as seed_to_privkey # noqa: F401
1.554688
2
tests/test_visitors/test_ast/test_iterables/test_unpacking.py
Kvm99/wemake-python-styleguide
1
12784253
<reponame>Kvm99/wemake-python-styleguide # -*- coding: utf-8 -*- import pytest from wemake_python_styleguide.violations.consistency import ( IterableUnpackingViolation, ) from wemake_python_styleguide.visitors.ast.iterables import ( IterableUnpackingVisitor, ) args_unpacking_in_call = 'f(*args)' spread_list_definition = '[1, 2, *numbers, 74]' spread_set_definition = '{1, 2, *numbers, 74}' spread_tuple_definition = '(1, 2, *numbers, 74)' spread_assignment = 'first, *_ = [1, 2, 4, 3]' wrong_list_definition = '[*numbers]' wrong_set_definition = '{*numbers}' wrong_tuple_definition = '(*numbers,)' wrong_spread_assignment = '*_, = [1, 2, 4, 3]' @pytest.mark.parametrize('code', [ args_unpacking_in_call, spread_list_definition, spread_set_definition, spread_tuple_definition, spread_assignment, ]) def test_correct_iterable_unpacking_usage( assert_errors, parse_ast_tree, default_options, code, ): """Testing that correct iterable unpacking is allowed.""" tree = parse_ast_tree(code) visitor = IterableUnpackingVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, []) @pytest.mark.parametrize('code', [ wrong_list_definition, wrong_set_definition, wrong_tuple_definition, wrong_spread_assignment, ]) def test_unneccessary_iterable_unpacking_usage( assert_errors, parse_ast_tree, default_options, code, ): """Testing that unneccessary iterable unpacking is restricted.""" tree = parse_ast_tree(code) visitor = IterableUnpackingVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [IterableUnpackingViolation])
2.328125
2
mpsci/distributions/t.py
WarrenWeckesser/mpsci
7
12784254
<filename>mpsci/distributions/t.py """ Student's t distribution ------------------------ """ import mpmath __all__ = ['pdf', 'logpdf', 'cdf', 'sf', 'invcdf', 'invsf', 'entropy'] def logpdf(x, df): """ Logarithm of the PDF of Student's t distribution. """ if df <= 0: raise ValueError('df must be greater than 0') with mpmath.extradps(5): x = mpmath.mpf(x) df = mpmath.mpf(df) h = (df + 1) / 2 logp = (mpmath.loggamma(h) - mpmath.log(df * mpmath.pi)/2 - mpmath.loggamma(df/2) - h * mpmath.log1p(x**2/df)) return logp def pdf(x, df): """ PDF of Student's t distribution. """ if df <= 0: raise ValueError('df must be greater than 0') return mpmath.exp(logpdf(x, df)) def cdf(x, df): """ CDF of Student's t distribution. """ if df <= 0: raise ValueError('df must be greater than 0') with mpmath.extradps(5): half = mpmath.mp.one/2 x = mpmath.mpf(x) df = mpmath.mpf(df) h = (df + 1) / 2 p1 = x * mpmath.gamma(h) p2 = mpmath.hyp2f1(half, h, 3*half, -x**2/df) return half + p1*p2/mpmath.sqrt(mpmath.pi*df)/mpmath.gamma(df/2) def sf(x, df): """ Survival function of Student's t distribution. """ if df <= 0: raise ValueError('df must be greater than 0') with mpmath.extradps(5): half = mpmath.mp.one/2 x = mpmath.mpf(x) df = mpmath.mpf(df) h = (df + 1) / 2 p1 = x * mpmath.gamma(h) p2 = mpmath.hyp2f1(half, h, 3*half, -x**2/df) return half - p1*p2/mpmath.sqrt(mpmath.pi*df)/mpmath.gamma(df/2) def invcdf(p, df): """ Inverse of the CDF for Student's t distribution. This function is also known as the quantile function or the percent point function. For values far in the tails of the distribution, the solution might not be accurate. Check the results, and increase the precision of the calculation if necessary. """ if p < 0 or p > 1: raise ValueError('p must be in the interval [0, 1]') if df <= 0: raise ValueError('df must be greater than 0') if p == 0: return mpmath.ninf if p == 1: return mpmath.inf with mpmath.extradps(5): p = mpmath.mpf(p) if p > 0.5: p0 = mpmath.mp.one - p else: p0 = p df = mpmath.mpf(df) x0 = -mpmath.mp.one count = 0 while cdf(x0, df) > p0: x0 = 2*x0 count += 1 if count > mpmath.mp.prec / 2: raise RuntimeError('failed to find a bracketing interval') def _func(x): return cdf(x, df) - p0 x = mpmath.findroot(_func, (x0, x0/2), solver='anderson') if p > 0.5: x = -x return x def invsf(p, df): """ Inverse of the survival function for Student's t distribution. For values far in the tails of the distribution, the solution might not be accurate. Check the results, and increase the precision of the calculation if necessary. """ if p < 0 or p > 1: raise ValueError('p must be in the interval [0, 1]') if df <= 0: raise ValueError('df must be greater than 0') return -invcdf(p, df) def entropy(df): """ Entropy of Student's t distribution. """ if df <= 0: raise ValueError('df must be greater than 0') with mpmath.extradps(5): df = mpmath.mpf(df) h = df/2 h1 = (df + 1)/2 return (h1*(mpmath.digamma(h1) - mpmath.digamma(h)) + mpmath.log(mpmath.sqrt(df)*mpmath.beta(h, 0.5)))
2.796875
3
scripts/UtilitiesConvertCharacter.py
CrackerCat/pwndra
524
12784255
# Convert an operand to characters #@author b0bb #@category Pwn #@keybinding shift r #@menupath Analysis.Pwn.Utilities.Convert to Char #@toolbar import ghidra.app.cmd.equate.SetEquateCmd as SetEquateCmd import ghidra.program.util.OperandFieldLocation as OperandFieldLocation import ghidra.program.model.lang.OperandType as OperandType def run(): if type(currentLocation) is not OperandFieldLocation: return addr = currentLocation.getAddress() inst = currentProgram.getListing().getInstructionAt(addr) opin = currentLocation.getOperandIndex() if inst.getOperandType(opin) == OperandType.SCALAR: string = '' scalar = inst.getScalar(opin) bvalue = scalar.byteArrayValue() if not currentProgram.getLanguage().isBigEndian(): bvalue.reverse() for value in bvalue: if value < 0x20 or value > 0x7e: string += '\\x%02x' % value else: string += chr(value) cmd = SetEquateCmd('"%s"' % string, addr, opin, scalar.getValue()) state.getTool().execute(cmd, currentProgram) run()
2.375
2
invenio_assets/filters.py
pazembrz/invenio-assets
1
12784256
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2015-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Filters for webassets.""" from __future__ import absolute_import, print_function import json import os import re from subprocess import PIPE, Popen from babel.messages.pofile import read_po from flask import current_app from webassets.filter import Filter, register_filter from webassets.filter.cleancss import CleanCSS from webassets.filter.requirejs import RequireJSFilter as RequireJSFilterBase __all__ = ('AngularGettextFilter', 'RequireJSFilter', 'CleanCSSFilter', ) class RequireJSFilter(RequireJSFilterBase): """Optimize AMD-style modularized JavaScript into a single asset. Adds support for exclusion of files already in defined in other bundles. """ name = 'requirejsexclude' def __init__(self, *args, **kwargs): r"""Initialize filter. :param \*args: Arguments are forwarded to parent class. :param \**kwargs: Keyword arguments are forwarded to parent class except the *exclude* keyword. """ self.excluded_bundles = kwargs.pop('exclude', []) super(RequireJSFilter, self).__init__(*args, **kwargs) def setup(self): """Setup filter (only called when filter is actually used).""" super(RequireJSFilter, self).setup() excluded_files = [] for bundle in self.excluded_bundles: excluded_files.extend( map(lambda f: os.path.splitext(f)[0], bundle.contents) ) if excluded_files: self.argv.append( 'exclude={0}'.format(','.join(excluded_files)) ) class CleanCSSFilter(CleanCSS): """Minify CSS using cleancss. Implements opener capable of rebasing relative CSS URLs against ``COLLECT_STATIC_ROOT`` using both cleancss v3 or v4. """ name = 'cleancssurl' def setup(self): """Initialize filter just before it will be used.""" super(CleanCSSFilter, self).setup() self.root = current_app.config.get('COLLECT_STATIC_ROOT') @property def rebase_opt(self): """Determine which option name to use.""" if not hasattr(self, '_rebase_opt'): # out = b"MAJOR.MINOR.REVISION" // b"3.4.19" or b"4.0.0" out, err = Popen( ['cleancss', '--version'], stdout=PIPE).communicate() ver = int(out[:out.index(b'.')]) self._rebase_opt = ['--root', self.root] if ver == 3 else [] return self._rebase_opt def input(self, _in, out, **kw): """Input filtering.""" args = [self.binary or 'cleancss'] + self.rebase_opt if self.extra_args: args.extend(self.extra_args) self.subprocess(args, out, _in) _re_language_code = re.compile( r'"Language: (?P<language_code>[A-Za-z_]{2,}(_[A-Za-z]{2,})?)\\n"' ) """Match language code group in PO file.""" class AngularGettextFilter(Filter): """Compile GNU gettext messages to angular-gettext module.""" name = 'angular-gettext' options = { 'catalog_name': None, } def output(self, _in, out, **kwargs): """Wrap translation in Angular module.""" out.write( 'angular.module("{0}", ["gettext"]).run(' '["gettextCatalog", function (gettextCatalog) {{'.format( self.catalog_name ) ) out.write(_in.read()) out.write('}]);') def input(self, _in, out, **kwargs): """Process individual translation file.""" language_code = _re_language_code.search(_in.read()).group( 'language_code' ) _in.seek(0) # move at the begining after matching the language catalog = read_po(_in) out.write('gettextCatalog.setStrings("{0}", '.format(language_code)) out.write(json.dumps({ key: value.string for key, value in catalog._messages.items() if key and value.string })) out.write(');') # Register filters on webassets. register_filter(AngularGettextFilter) register_filter(CleanCSSFilter) register_filter(RequireJSFilter)
2.03125
2
aha/controller/translation.py
Letractively/aha-gae
0
12784257
# -*- coding: utf-8 -*- ############################################################################## # # translation.py # Module defining bunch of function to be used for i18n transration # # Copyright (c) 2010 Webcore Corp. All Rights Reserved. # ############################################################################## """ translation.py - Module defining bunch of function to be used for i18n transration. $Id: translation.py 629 2010-06-28 07:57:53Z ats $ """ __author__ = '<NAME> <<EMAIL>>' __docformat__ = 'plaintext' __licence__ = 'BSD' import os import gettext __all__ = ['get_i18ndir', 'get_gettextobject', 'get_languages'] def get_i18ndir(): """ A function to obtain i18n directory """ udir = os.path.dirname(os.path.split(__file__)[0]) dir = os.path.join(udir, 'i18n') return dir def get_gettextobject(dimain = 'aha', languages = None): """ A function to obtain gettext object """ dir = get_i18ndir() t = gettext.translation(domain = dimain, languages = languages, localedir = dir, fallback = True) return t def get_languages(s): """ A function to obtain language settings via Accept-Language header. """ langs = [''.join(x.split(';')[:1]) for x in s] return langs def main(): pass;
2.203125
2
carpark_agent/detect_cars.py
fetchai/carpark_agent
10
12784258
<filename>carpark_agent/detect_cars.py<gh_stars>1-10 import os ROOT_DIR = os.path.abspath("../src/Mask_RCNN/") MODEL_DIR = os.path.abspath("../src/coco/") COCO_MODEL_PATH = os.path.join(MODEL_DIR, "mask_rcnn_coco.h5") import sys import random import math import numpy as np import skimage.io import matplotlib matplotlib.use('PS') import matplotlib.pyplot as plt sys.path.append(ROOT_DIR) import mrcnn.utils import mrcnn.model import mrcnn.visualize import time """Load the configuration file for the MS-COCO model. """ sys.path.append(os.path.join(ROOT_DIR, "samples/coco/")) import coco class InferenceConfig(coco.CocoConfig): """Overwrite the batch size. Batch size = GPU_COUNT * IMAGES_PER_GPU For our needs, we need batch size = 1 """ GPU_COUNT = 1 IMAGES_PER_GPU =1 DETECTION_MIN_CONFIDENCE = 0.2 class Detect(object): def __init__(self, name): self.dir = name self.config = InferenceConfig() def filter_vehicles(self, detect_objects): """Skip boxes that do not indicate carsm busses or trucks. Coco model, IDs are: - 3 car, - 4 motorbike - 6 bus - 7 train - 8 truck - 9 boat """ mask = np.array([i in (3, 8, 6) for i in detect_objects['class_ids']], dtype=bool) vehicles = { 'rois': detect_objects['rois'][mask], 'class_ids': detect_objects['class_ids'][mask], 'scores': detect_objects['scores'][mask], 'masks': detect_objects['masks'][:,:,mask] } return vehicles def main(self): print("detecting cars...") """Create a model object and load the weights.""" model =mrcnn.model.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=self.config) model.load_weights(COCO_MODEL_PATH, by_name=True) """Check class numbers""" dataset = coco.CocoDataset() dataset.load_coco(MODEL_DIR, "train") dataset.prepare() """Load an image""" IMAGE = self.dir #os.path.abspath("../../resources/images/stjohns.jpg") image = skimage.io.imread(IMAGE) results = model.detect([image], verbose=1) """Visualize results""" r = results[0] r = self.filter_vehicles(r) """Save image""" t = int(time.time()) name = str(t) + ".png" path = os.path.abspath("../output") mrcnn.visualize.display_instances( path, name, image, r['rois'], r['masks'], r['class_ids'], dataset.class_names, r['scores'], title='# os detect cars: {}'.format(len(r['class_ids']))) return len(r['class_ids'])
2.265625
2
tests/test_websocket.py
schnitzelbub/bocadillo
0
12784259
from contextlib import suppress import pytest from bocadillo import WebSocket, API, WebSocketDisconnect from bocadillo.constants import WEBSOCKET_CLOSE_CODES # Basic usage def test_websocket_route(api: API): @api.websocket_route("/chat") async def chat(ws: WebSocket): async with ws: assert await ws.receive_text() == "ping" await ws.send_text("pong") with api.client.websocket_connect("/chat") as client: client.send_text("ping") assert client.receive_text() == "pong" def test_websocket_route_parameters(api: API): @api.websocket_route("/chat/{room}") async def chat_room(ws: WebSocket, room: str): async with ws: await ws.send(room) with api.client.websocket_connect("/chat/foo") as client: assert client.receive_text() == "foo" def test_if_route_parameter_fails_validation_then_403(api: API): @api.websocket_route("/chat/{id:d}") async def chat_room(ws: WebSocket, id: int): pass with pytest.raises(WebSocketDisconnect) as ctx: with api.client.websocket_connect("/chat/foo"): pass assert ctx.value.code == 403 def test_non_existing_endpoint_returns_403_as_per_the_asgi_spec(api: API): with pytest.raises(WebSocketDisconnect) as ctx: with api.client.websocket_connect("/foo"): pass assert ctx.value.code == 403 def test_reject_closes_with_403(api: API): @api.websocket_route("/foo") async def foo(ws: WebSocket): await ws.reject() with pytest.raises(WebSocketDisconnect) as ctx: with api.client.websocket_connect("/foo"): pass assert ctx.value.code == 403 def test_iter_websocket(api: API): @api.websocket_route("/chat") async def chat(ws: WebSocket): async with ws: async for message in ws: await ws.send_text(f"You said: {message}") with api.client.websocket_connect("/chat") as ws_client: ws_client.send_text("ping") assert ws_client.receive_text() == "You said: ping" ws_client.send_text("pong") assert ws_client.receive_text() == "You said: pong" def test_can_close_within_context(api: API): @api.websocket_route("/test") async def test(ws: WebSocket): async with ws: await ws.close(4242) with api.client.websocket_connect("/test") as client: message = client.receive() assert message == {"type": "websocket.close", "code": 4242} def test_websocket_url(api: API): @api.websocket_route("/test") async def test(ws: WebSocket): async with ws: assert ws.url == "ws://testserver/test" assert ws.url.path == "/test" assert ws.url.port is None assert ws.url.scheme == "ws" assert ws.url.hostname == "testserver" assert ws.url.query == "" assert ws.url.is_secure is False with api.client.websocket_connect("/test"): pass # Encoding / decoding of messages @pytest.mark.parametrize( "receive_type, example_message, expected_type", [ ("bytes", b"Hello", bytes), ("text", "Hello", str), ("json", {"message": "Hello"}, dict), ], ) def test_receive_type(api: API, receive_type, example_message, expected_type): @api.websocket_route("/chat", receive_type=receive_type) async def chat(ws: WebSocket): async with ws: message = await ws.receive() assert type(message) == expected_type with api.client.websocket_connect("/chat") as client: getattr(client, f"send_{receive_type}")(example_message) @pytest.mark.parametrize( "send_type, example_message, expected_type", [ ("bytes", b"Hello", bytes), ("text", "Hello", str), ("json", {"message": "Hello"}, dict), ], ) def test_send_type(api: API, send_type, example_message, expected_type): @api.websocket_route("/chat", send_type=send_type) async def chat(ws: WebSocket): async with ws: await ws.send(example_message) with api.client.websocket_connect("/chat") as client: message = getattr(client, f"receive_{send_type}")() assert type(message) == expected_type assert message == example_message @pytest.mark.parametrize( "value_type, example_message, expected_type", [ ("bytes", b"Hello", bytes), ("text", "Hello", str), ("json", {"message": "Hello"}, dict), ], ) def test_value_type(api: API, value_type, example_message, expected_type): @api.websocket_route("/chat", value_type=value_type) async def chat(ws: WebSocket): async with ws: message = await ws.receive() assert type(message) == expected_type await ws.send(example_message) with api.client.websocket_connect("/chat") as client: getattr(client, f"send_{value_type}")(example_message) assert type(getattr(client, f"receive_{value_type}")()) == expected_type def test_receive_and_send_event(api: API): @api.websocket_route("/chat", value_type="event") async def chat(ws: WebSocket): async with ws: message = await ws.receive() assert message == {"type": "websocket.receive", "text": "ping"} await ws.send({"type": "websocket.send", "text": "pong"}) with api.client.websocket_connect("/chat") as client: client.send_text("ping") assert client.receive_text() == "pong" # Disconnect errors @pytest.mark.parametrize( "close_codes, code, expected_caught", [ *((None, code, True) for code in (1000, 1001)), *( (None, code, False) for code in WEBSOCKET_CLOSE_CODES if code not in (1000, 1001) ), ((1000,), 1001, False), ((1000,), 1000, True), *(((), code, False) for code in WEBSOCKET_CLOSE_CODES), *((all, code, True) for code in WEBSOCKET_CLOSE_CODES), ], ) def test_catch_disconnect(api: API, close_codes, code, expected_caught): caught = False @api.websocket_route("/chat", caught_close_codes=close_codes) async def chat(ws: WebSocket): nonlocal caught try: async with ws: await ws.receive() # will never receive caught = True except WebSocketDisconnect as exc: # The exception should have been raised only if we told the # WebSocket route not to catch it. assert exc.code not in ws.caught_close_codes with api.client.websocket_connect("/chat") as client: # Close immediately. client.close(code) assert caught is expected_caught # Server error handling class Oops(Exception): pass def test_if_exception_raised_in_context_then_closed_with_1011(api: API): @api.websocket_route("/fail") async def fail(ws: WebSocket): async with ws: raise Oops with suppress(Oops): with api.client.websocket_connect("/fail") as client: message = client.receive() assert message == {"type": "websocket.close", "code": 1011} def test_accepted_and_exception_raised_then_closed_with_1011(api: API): @api.websocket_route("/fail") async def fail(ws: WebSocket): await ws.accept() raise Oops with suppress(Oops): with api.client.websocket_connect("/fail") as client: message = client.receive() assert message == {"type": "websocket.close", "code": 1011} def test_if_not_accepted_and_exception_raised_then_closed_with_1011(api: API): @api.websocket_route("/fail") async def fail(_): raise Oops with pytest.raises(WebSocketDisconnect) as ctx: with api.client.websocket_connect("/fail"): pass assert ctx.value.code == 1011 def test_context_does_not_silence_exceptions(api: API): cleaned_up = False @api.websocket_route("/fail") async def fail(ws): nonlocal cleaned_up async with ws: raise Oops cleaned_up = True with suppress(Oops): with api.client.websocket_connect("/fail"): pass assert not cleaned_up
2.140625
2
anemoi/__init__.py
davidkyle210/anemoi
18
12784260
from ._version import __version__ from anemoi.mast import MetMast import anemoi import anemoi.io.database import anemoi.io.read_data import anemoi.io.write_data import anemoi.io.references import anemoi.utils.mast_data import anemoi.utils.gis import anemoi.analysis.weibull import anemoi.analysis.wind_rose import anemoi.analysis.correlate import anemoi.analysis.shear import anemoi.plotting.plotting import anemoi.plotting.correlate import anemoi.plotting.shear import anemoi.plotting.references
0.976563
1
custom_components/arpansa_uv/pyarpansa.py
joshuar/ha_arpansa_uv
0
12784261
"""ARPANSA """ from cProfile import run from multiprocessing.connection import Client from bs4 import BeautifulSoup import lxml import aiohttp import asyncio from .const import ARPANSA_URL class Arpansa: """Arpansa class fetches the latest measurements from the ARPANSA site""" def __init__( self,session: aiohttp.ClientSession ) -> None: self._session = session self.measurements = None async def fetchLatestMeasurements(self): """Retrieve the latest data from the ARPANSA site.""" try: async with self._session.get(ARPANSA_URL) as response: t = await response.text() self.measurements = BeautifulSoup(t,'xml') if response.status != 200: raise ApiError(f"Unexpected response from ARPANSA server: {response.status}") except Exception as err: raise ApiError from err def getAllLocations(self) -> list: """Get the names of all locations.""" rs = self.measurements.find_all("location") allLocations = [] for l in rs: allLocations.append(l.get("id")) return allLocations def getAllLatest(self) -> list: """Get the latest measurements and details for all locations.""" rs = self.measurements.find_all("location") allLocations = [] for l in rs: thisLocation = extractInfo(l) thisLocation["friendlyname"] = l.get("id") allLocations.append(thisLocation) return allLocations def getLatest(self,name) -> dict: """Get the latest measurements and details for a specified location.""" rs = self.measurements.find("location", {"id": name}) info = extractInfo(rs) info["friendlyname"] = name return info def extractInfo(rs) -> dict: """Convert a BeautifulSoup ResultSet into a dictionary.""" extracted = {} for state in rs: if state.name is not None: extracted[state.name] = state.text return extracted class ApiError(Exception): """Raised when there is a problem accessing the ARPANSA data.""" pass async def main(): """Example usage of the class""" async with aiohttp.ClientSession() as session: arpansa = Arpansa(session) await arpansa.fetchLatestMeasurements() for measurement in arpansa.getAllLatest(): print(measurement) location = arpansa.getLatest("Brisbane") print(location) if __name__ == "__main__": import time s = time.perf_counter() asyncio.run(main()) elapsed = time.perf_counter() - s print(f"{__file__} executed in {elapsed:0.2f} seconds.")
2.984375
3
API/src/main.py
DeVinci-Innovation-Center/SMART-INVENTORY-DB-API
0
12784262
import os import crud, models, schemas from database import SessionLocal from fastapi import FastAPI, Depends, HTTPException, Request, Form from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import HTMLResponse from sqlalchemy.orm import Session from typing import List app = FastAPI(root_path=os.environ['ROOT_PATH']) origins = ['*'] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=['*'], allow_headers=['*'] ) def get_db(): db = SessionLocal() try: yield db finally: db.close() # MAIN @app.get("/") def root(): return {"message": "Welcome to Smart Inventory"} # USERS @app.get("/users/", response_model=List[schemas.User]) def read_all_users(db: Session = Depends(get_db)): return crud.get_all_users(db) @app.get("/user/{uid}/", response_model=schemas.User) def read_user_by_uid(uid: str, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, uid) if db_user is None: raise HTTPException(status_code=404, detail="User not found") return db_user @app.post("/user/", response_model=schemas.User) def create_user(user: schemas.UserCreate, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, user.uid) if db_user: raise HTTPException(status_code=400, detail="User already exists") return crud.create_user(db=db, user=user) @app.delete("/user/{uid}/") def delete_user_by_uid(uid: str, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, uid) if db_user is None: raise HTTPException(status_code=404, detail="User not found") db.delete(db_user) db.commit() return {'Deleted user with uid': uid} # CABINETS @app.get("/cabinets/", response_model=List[schemas.Cabinet]) def read_all_cabinets(db: Session = Depends(get_db)): return crud.get_all_cabinets(db) @app.get("/cabinet/{id}/", response_model=schemas.Cabinet) def read_cabinet_by_id(id: str, db: Session = Depends(get_db)): db_cabinet = crud.get_cabinet_by_id(db, id) if db_cabinet is None: raise HTTPException(status_code=404, detail="Cabinet not found") return db_cabinet @app.post("/cabinet/", response_model=schemas.Cabinet) def create_cabinet(cabinet: schemas.CabinetCreate, db: Session = Depends(get_db)): db_cabinet = crud.get_cabinet_by_id(db, cabinet.id) if db_cabinet: raise HTTPException(status_code=400, detail="Cabinet already exists") return crud.create_cabinet(db, cabinet) @app.delete("/cabinet/{id}/") def delete_cabinet_by_id(id: str, db: Session = Depends(get_db)): db_cabinet = crud.get_cabinet_by_id(db, id) if db_cabinet is None: raise HTTPException(status_code=404, detail="Cabinet not found") db.delete(db_cabinet) db.commit() return {'Deleted cabinet with id': id} # CATEGORIES @app.get("/categories/", response_model=List[schemas.Category]) # reads all categories def read_all_categories(db: Session = Depends(get_db)): return crud.get_all_categories(db) @app.get("/categories/root/", response_model=List[schemas.Category]) # reads all root categories def read_root_categories(db: Session = Depends(get_db)): return crud.get_root_categories(db) @app.get("/category/{id}/", response_model=schemas.Category) def read_category_by_id(id: str, db: Session = Depends(get_db)): db_category = crud.get_category_by_id(db, id) if db_category is None: raise HTTPException(status_code=404, detail="Category not found") return db_category @app.get("/categories/subcategories/{parent_id}/", response_model=List[schemas.Category]) # reads all sub-categories of a category def read_sub_categories(parent_id: int, db: Session = Depends(get_db)): parent_category = crud.get_category_by_id(db, parent_id) if not parent_category: raise HTTPException(status_code=404, detail="Parent category not found") return crud.get_sub_categories(db, parent_id) @app.post("/category/", response_model=schemas.Category) def create_category(category: schemas.CategoryCreate, db: Session = Depends(get_db)): db_category = crud.get_category_by_title(db, category.title) if db_category: raise HTTPException(status_code=400, detail="Category already exists") if category.parent_id is not None: db_parent_category = crud.get_category_by_id(db, category.parent_id) if db_parent_category is None: raise HTTPException(status_code=404, detail="Parent category not found") return crud.create_category(db, category) @app.delete("/category/{id}/") def delete_category_by_id(id: int, db: Session = Depends(get_db)): db_category = crud.get_category_by_id(db, id) if db_category is None: raise HTTPException(status_code=404, detail="Category not found") db.delete(db_category) db.commit() return {'Deleted category with id': id} # ITEMS @app.get("/items/", response_model=List[schemas.Item]) def read_all_items(db: Session = Depends(get_db)): return crud.get_all_items(db) @app.get("/item/{id}/", response_model=schemas.Item) def read_item_by_id(id: int, db: Session = Depends(get_db)): db_item = crud.get_item_by_id(db, id) if db_item is None: raise HTTPException(status_code=404, detail="Item not found") return db_item @app.get("/categories/{category_id}/items/", response_model=List[schemas.Item]) # reads all items under a category def read_all_items(category_id: int, db: Session = Depends(get_db)): category = crud.get_category_by_id(db, category_id) if not category: raise HTTPException(status_code=404, detail="Category not found") return crud.get_items_by_category_id(db, category_id) @app.post("/item/", response_model=schemas.Item) def create_item(item: schemas.ItemCreate, db: Session = Depends(get_db)): if item.category_id is not None: db_category = crud.get_category_by_id(db, item.category_id) if not db_category: raise HTTPException(status_code=404, detail="Category not found") db_item = crud.get_item_by_title(db, item.title) if db_item: raise HTTPException(status_code=400, detail="Item already exists") return crud.create_item(db, item) @app.delete("/item/{id}/") def delete_item_by_id(id: int, db: Session = Depends(get_db)): db_item = crud.get_item_by_id(db, id) if db_item is None: raise HTTPException(status_code=404, detail="Item not found") db.delete(db_item) db.commit() return {'Deleted item with id': id} # ORDER REQUESTS @app.get("/order-requests/", response_model=List[schemas.OrderRequest]) def read_all_order_requests(db: Session = Depends(get_db)): return crud.get_all_order_requests(db) @app.get("/order-requests/item/{id}/", response_model=List[schemas.OrderRequest]) def read_order_requests_by_item_id(id: int, db: Session = Depends(get_db)): db_item = crud.get_item_by_id(db, id) if db_item is None: raise HTTPException(status_code=404, detail="Item not found") return crud.get_order_requests_by_item_id(db, id) @app.get("/order-requests/user/{uid}/", response_model=List[schemas.OrderRequest]) def read_order_requests_by_user_id(uid: str, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, uid) if db_user is None: raise HTTPException(status_code=404, detail="User not found") return crud.get_order_requests_by_user_id(db, uid) @app.get("/order-requests/state/{state}/", response_model=List[schemas.OrderRequest]) def read_order_requests_by_state(state: int, db: Session = Depends(get_db)): return crud.get_order_requests_by_state(db, state) @app.post("/order-request/", response_model=schemas.OrderRequest) def create_order_request(order_request: schemas.OrderRequestCreate, db: Session = Depends(get_db)): db_item = crud.get_item_by_id(db, order_request.item_id) db_user = crud.get_user_by_uid(db, order_request.user_id) if db_item is None or db_user is None: raise HTTPException(status_code=404, detail="Item or user not found") db_order_request = crud.get_order_requests_by_item_and_user_id(db, order_request.item_id, order_request.user_id) if db_order_request: raise HTTPException(status_code=400, detail="Order already requested by this user") return crud.create_order_request(db, order_request) @app.delete("/order-request/{id}/") def delete_order_request_by_id(id: int, db: Session = Depends(get_db)): db_order_request = crud.get_order_request_by_id(db, id) if db_order_request is None: raise HTTPException(status_code=404, detail="Order request not found") db.delete(db_order_request) db.commit() return {'Deleted order request with id': id} # STORAGE UNITS @app.get("/storage-units/", response_model=List[schemas.StorageUnit]) def read_all_storage_units(db: Session = Depends(get_db)): return crud.get_all_storage_units(db) @app.get("/storage-unit/{id}/", response_model=schemas.StorageUnit) def read_storage_unit_by_id(id: int, db: Session = Depends(get_db)): db_storage_unit = crud.get_storage_unit_by_id(db, id) if db_storage_unit is None: raise HTTPException(status_code=404, detail="Storage unit not found") return db_storage_unit @app.get("/storage-units/cabinet/{cabinet_id}/", response_model=List[schemas.StorageUnit]) def read_storage_units_by_cabinet_id(cabinet_id: str, db: Session = Depends(get_db)): db_cabinet = crud.get_cabinet_by_id(db, cabinet_id) if db_cabinet is None: raise HTTPException(status_code=404, detail="Cabinet not found") return crud.get_storage_units_by_cabinet_id(db, cabinet_id) @app.post("/storage-unit/", response_model=schemas.StorageUnit) def create_storage_unit(storage_unit: schemas.StorageUnitCreate, db: Session = Depends(get_db)): db_item = crud.get_item_by_id(db, storage_unit.item_id) if db_item is None: raise HTTPException(status_code=404, detail="Item not found") if storage_unit.cabinet_id is not None: db_cabinet = crud.get_cabinet_by_id(db, storage_unit.cabinet_id) if db_cabinet is None: raise HTTPException(status_code=404, detail="Cabinet not found") db_storage_unit = crud.get_storage_unit_by_id(db, storage_unit.id) if db_storage_unit: raise HTTPException(status_code=400, detail="Storage unit ID already assigned") return crud.create_storage_unit(db, storage_unit) @app.delete("/storage-unit/{id}/") def delete_storage_unit_by_id(id: int, db: Session = Depends(get_db)): db_storage_unit = crud.get_storage_unit_by_id(db, id) if db_storage_unit is None: raise HTTPException(status_code=404, detail="Storage unit not found") db.delete(db_storage_unit) db.commit() return {'Deleted storage unit with id': id} # CABINETS UNLOCK ATTEMPTS @app.get("/unlock-attempts/", response_model=List[schemas.CabinetUnlockAttempt]) def read_all_unlock_attempts(db: Session = Depends(get_db)): return crud.get_all_unlock_attempts(db) @app.get("/unlock-attempts/cabinet/{cabinet_id}/", response_model=List[schemas.CabinetUnlockAttempt]) def read_unlock_attempts_by_cabinet_id(cabinet_id: str, db: Session = Depends(get_db)): db_cabinet = crud.get_cabinet_by_id(db, cabinet_id) if db_cabinet is None: raise HTTPException(status_code=404, detail="Cabinet not found") return crud.get_unlock_attempts_by_cabinet_id(db, cabinet_id) @app.get("/unlock-attempts/user/{uid}/", response_model=List[schemas.CabinetUnlockAttempt]) def read_unlock_attempts_by_user_id(uid: str, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, uid) if db_user is None: raise HTTPException(status_code=404, detail="User not found") return crud.get_unlock_attempts_by_user_id(db, uid) @app.get("/unlock-attempts/cabinet/{cabinet_id}/user/{uid}/", response_model=List[schemas.CabinetUnlockAttempt]) def read_unlock_attempts_by_cabinet_and_user_id(cabinet_id, uid: str, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, uid) db_cabinet = crud.get_cabinet_by_id(db, cabinet_id) if db_user is None or db_cabinet is None: raise HTTPException(status_code=404, detail="User or cabinet not found") return crud.get_unlock_attempts_by_cabinet_and_user_id(db, cabinet_id, uid) @app.post("/unlock-attempt/", response_model=schemas.CabinetUnlockAttempt) def create_unlock_attempt(unlock_attempt: schemas.CabinetUnlockAttemptCreate , db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, unlock_attempt.user_id) db_cabinet = crud.get_cabinet_by_id(db, unlock_attempt.cabinet_id) if db_user is None or db_cabinet is None: raise HTTPException(status_code=404, detail="User or cabinet not found") return crud.create_unlock_attempt(db, unlock_attempt) @app.delete("/unlock-attempts/days/{n}/") def delete_unlock_attempts_older_than(n: int, db: Session = Depends(get_db)): db.execute(f"delete from cabinets_unlock_attempts where date < now() - interval '{n} days';") db.commit() return {'Deleted all cabinets unlock attempts older than number of days': n}
2.34375
2
tests/tests.py
penzance/student_locations
1
12784263
from unittest import TestCase from mock import patch, ANY, DEFAULT, Mock, MagicMock from django.test import RequestFactory from django_auth_lti import const from student_locations.views import index, lti_launch, main @patch.multiple('student_locations.views', render=DEFAULT) class TestMapView(TestCase): longMessage = True def setUp(self): self.resource_link_id = '1234abcd' self.section_id = 5678 self.sis_section_id = 8989 self.request = RequestFactory().get('/fake-path') self.request.user = Mock(name='user_mock') self.request.user.is_authenticated.return_value = True self.request.session = { 'LTI_LAUNCH': { 'resource_link_id': self.resource_link_id, 'roles': [const.INSTRUCTOR], 'user_id' : 'user123' } } def getpostrequest(self): request = RequestFactory().post('/fake-path') request.user = Mock(name='user_mock') request.user.is_authenticated.return_value = True request.session = { 'LTI_LAUNCH': { 'resource_link_id': self.resource_link_id, 'roles': [const.INSTRUCTOR], 'user_id' : 'user123' } } return request # def get_render_context_value(self, render_mock): # """ Returns the value of the context dictionary key associated with the render mock object """ # context = render_mock.call_args[0][2] # return context.get(context_key) def test_view_index(self, render): """ test that the index view renders the index page """ request = self.request index(request) render.assert_called_with(request, 'student_locations/index.html') @patch('student_locations.views.redirect') def test_view_lti_launch_success(self, redirect_mock, render): """ test that the lti_launch view renders the main view on success """ request = self.getpostrequest() lti_launch(request) redirect_mock.assert_called_with('sl:main') @patch('student_locations.views.validaterequiredltiparams') def test_view_lti_launch_user_not_authenticated(self, valid_lti_params_mock, render): """ test that the lti_launch view renders the error page if the required LTI params are not present in the session """ request = self.getpostrequest() valid_lti_params_mock.return_value = False lti_launch(request) render.assert_called_with(request, 'student_locations/error.html', ANY) def test_view_main(self, render): """ test that the main view renders the map_view page """ request = self.request main(request) render.assert_called_with(request, 'student_locations/map_view.html', ANY)
2.296875
2
exhaust/tests/posts/test_sitemaps.py
lewiscollard/exhaust
0
12784264
from datetime import timedelta from xml.etree import ElementTree from django.test import TestCase from django.urls import reverse from django.utils.timezone import now from exhaust.tests.factories import CategoryFactory, PostFactory class SitemapsTestCase(TestCase): def test_posts_sitemap(self): PostFactory.create_batch(5, online=True) # Check that offline ones aren't being shown. PostFactory.create(online=False, date=now() - timedelta(minutes=1)) # ...and ones with a future publication date. PostFactory.create(online=True, date=now() + timedelta(days=1)) response = self.client.get(reverse('django.contrib.sitemaps.views.sitemap')) self.assertEqual(response.status_code, 200) tree = ElementTree.fromstring(response.content.decode('utf-8')) self.assertEqual(len(list(tree)), 5) def test_categories_sitemap(self): # Ensure unused categories are not shown in the sitemap, which # includes those that are only assigned to a post that is offline. used_category, unused_category, unused_category_2 = CategoryFactory.create_batch(3) post = PostFactory.create(online=True) post.categories.set([used_category]) offline_post = PostFactory.create(online=False) offline_post.categories.set([unused_category_2]) response = self.client.get(reverse('django.contrib.sitemaps.views.sitemap')) self.assertEqual(response.status_code, 200) tree = ElementTree.fromstring(response.content.decode('utf-8')) child_items = list(tree) self.assertEqual(len(child_items), 2) nsinfo = {'sitemaps': 'http://www.sitemaps.org/schemas/sitemap/0.9'} for obj in [post, used_category]: self.assertEqual(len([ True for child in child_items if child.find('sitemaps:loc', nsinfo).text == f'http://testserver{obj.get_absolute_url()}' ]), 1) for obj in [unused_category, unused_category_2]: self.assertEqual(len([ True for child in child_items if child.find('sitemaps:loc', nsinfo).text == f'http://testserver{obj.get_absolute_url()}' ]), 0)
2.3125
2
exonum_client/proofs/list_proof/list_proof.py
aleksuss/exonum-python-client
5
12784265
"""Proof Verification Module for Exonum `ProofListIndex`.""" from typing import Dict, List, Tuple, Any, Callable import itertools from logging import getLogger from exonum_client.crypto import Hash from ..utils import is_field_hash, is_field_int, calculate_height from ..hasher import Hasher from .key import ProofListKey from .errors import MalformedListProofError, ListProofVerificationError # pylint: disable=C0103 logger = getLogger(__name__) class HashedEntry: """ Element of a proof with a key and a hash. """ def __init__(self, key: ProofListKey, entry_hash: Hash): self.key = key self.entry_hash = entry_hash @classmethod def parse(cls, data: Dict[Any, Any]) -> "HashedEntry": """ Creates a HashedEntry object from the provided dict. """ if not isinstance(data, dict) or not is_field_hash(data, "hash"): err = MalformedListProofError.parse_error(str(data)) logger.warning( "Could not parse `hash` from dict, which is required for HashedEntry object creation. %s", str(err) ) raise err key = ProofListKey.parse(data) return HashedEntry(key, Hash(bytes.fromhex(data["hash"]))) def __eq__(self, other: object) -> bool: if not isinstance(other, HashedEntry): raise TypeError("Attempt to compare HashedEntry with an object of a different type.") return self.key == other.key and self.entry_hash == other.entry_hash def _hash_layer(layer: List[HashedEntry], last_index: int) -> List[HashedEntry]: """ Takes a layer as a list of hashed entries and the last index as an int and returns a new layer. """ new_len = (len(layer) + 1) // 2 new_layer: List[HashedEntry] = [] for i in range(new_len): left_idx = 2 * i right_idx = 2 * i + 1 # Check if there are both right and left indices in the layer: if len(layer) > right_idx: # Verify that entries are in the correct order: if not layer[left_idx].key.is_left() or layer[right_idx].key.index != layer[left_idx].key.index + 1: err = MalformedListProofError.missing_hash() logger.warning(str(err)) raise err left_hash = layer[left_idx].entry_hash right_hash = layer[right_idx].entry_hash new_entry = HashedEntry(layer[left_idx].key.parent(), Hasher.hash_node(left_hash, right_hash)) else: # If there is an odd number of entries, the index of the last one should be equal to provided last_index: full_layer_length = last_index + 1 if full_layer_length % 2 == 0 or layer[left_idx].key.index != last_index: err = MalformedListProofError.missing_hash() logger.warning(str(err)) raise err left_hash = layer[left_idx].entry_hash new_entry = HashedEntry(layer[left_idx].key.parent(), Hasher.hash_single_node(left_hash)) new_layer.append(new_entry) return new_layer class ListProof: """ListProof class provides an interface to parse and verify proofs for ProofListIndex retrieved from the Exonum blockchain. Example workflow: >>> proof_json = { >>> "proof": [ >>> {"index": 1, "height": 1, "hash": "eae60adeb5c681110eb5226a4ef95faa4f993c4a838d368b66f7c98501f2c8f9"} >>> ], >>> "entries": [[0, "6b70d869aeed2fe090e708485d9f4b4676ae6984206cf05efc136d663610e5c9"]], >>> "length": 2, >>> } >>> expected_hash = "07df67b1a853551eb05470a03c9245483e5a3731b4b558e634908ff356b69857" >>> proof = ListProof.parse(proof_json) >>> result = proof.validate(bytes.fromhex(expected_hash)) >>> assert result == [(0, stored_val)] """ def __init__( self, proof: List[HashedEntry], entries: List[Tuple[int, Any]], length: int, value_to_bytes: Callable[[Any], bytes], ): """ Constructor of the ListProof. It is not intended to be used directly, use ListProof.Parse instead. Parameters ---------- proof : List[HashedEntry] Proof entries. entries: List[Tuple[int, Any]] Unhashed entries (leaves). length: int Length of the proof list. value_to_bytes: Callable[[str], bytes] A function that converts the stored value to bytes for hashing. """ self._proof = proof self._entries = entries self._length = length self._value_to_bytes = value_to_bytes @classmethod def parse(cls, proof_dict: Dict[str, Any], value_to_bytes: Callable[[Any], bytes] = bytes.fromhex) -> "ListProof": """ Method to parse ListProof from the dict. Expected dict format: >>> { 'proof': [ {'index': 1, 'height': 1, 'hash': 'eae60adeb5c681110eb5226a4ef95faa4f993c4a838d368b66f7c98501f2c8f9'} ], 'entries': [ [0, '6b70d869aeed2fe090e708485d9f4b4676ae6984206cf05efc136d663610e5c9'] ], 'length': 2 } If no errors occured during parsing, a ListProof object will be returned. However, successfull parsing does not mean that the proof is not malformed (it only means that the provided dict structure matches the expected one). Actual checks for the proof contents correctness will be performed in the `validate` method. To convert value to bytes, ListProof attemts to use bytes.fromhex by default. If your type should be converted to bytes using Protobuf, you can generate a converter function with the use of `build_encoder_function` from encoder.py. Otherwise, you have to implement the converter function by yourself. Parameters ---------- proof_dict : Dict[str, Any] Proof as a dict. value_to_bytes: Callable[[str], bytes] A function that converts the stored value to bytes for hashing. By default, `bytes.fromhex` is used. Raises ------ MalformedListProofError If the structure of the provided dict does not match the expected one, an exception `MalformedListProofError` is raised. """ if ( not isinstance(proof_dict.get("proof"), list) or not isinstance(proof_dict.get("entries"), list) or not is_field_int(proof_dict, "length") ): err = MalformedListProofError.parse_error(str(proof_dict)) logger.warning("The structure of the provided dict does not match the expected one. %s", str(err)) raise err proof = [HashedEntry.parse(entry) for entry in proof_dict["proof"]] entries = [cls._parse_entry(entry) for entry in proof_dict["entries"]] length = proof_dict["length"] logger.debug("Successfully parsed ListProof from the dict.") return ListProof(proof, entries, length, value_to_bytes) def validate(self, expected_hash: Hash) -> List[Tuple[int, Any]]: """ This method validates the provided proof against the given expected hash. Parameters ---------- expected_hash: Hash Expected root hash. Returns ------- result: List[Tuple[int, Any]] If the hash is correct, a list of the collected values with indices is returned. Raises ------ ListProofVerificationError If verification fails, an exception `ListProofVerificationError` is raised. MalformedListProofError If the proof is malformed, an exception `MalformedListProofError` is raised. """ if not isinstance(expected_hash, Hash): raise TypeError("`expected_hash` should be of type Hash.") tree_root = self._collect() calculated_hash = Hasher.hash_list_node(self._length, tree_root) if calculated_hash != expected_hash: logger.warning("Provided root hash does not match the calculated one.") raise ListProofVerificationError(expected_hash.value, calculated_hash.value) logger.debug("Successfully validated the provided proof against the given expected hash.") return self._entries @staticmethod def _parse_entry(data: List[Any]) -> Tuple[int, Any]: if not isinstance(data, list) or not len(data) == 2: err = MalformedListProofError.parse_error(str(data)) logger.warning("Could not parse a list. %s", err) raise err return data[0], data[1] @staticmethod def _tree_height_by_length(length: int) -> int: if length == 0: return 0 return calculate_height(length) @staticmethod def _check_duplicates(entries: List[Any]) -> None: for idx in range(1, len(entries)): if entries[idx][0] == entries[idx - 1][0]: err = MalformedListProofError.duplicate_key() logger.warning(str(err)) raise err def _collect(self) -> Hash: def _hash_entry(entry: Tuple[int, Any]) -> HashedEntry: """ Creates a hash entry from the value. """ key = ProofListKey(1, entry[0]) entry_hash = Hasher.hash_leaf(self._value_to_bytes(entry[1])) return HashedEntry(key, entry_hash) def _split_hashes_by_height( hashes: List[HashedEntry], height: int ) -> Tuple[List[HashedEntry], List[HashedEntry]]: """ Splits a list of the hashed entries into two lists by the given height. """ current = list(itertools.takewhile(lambda x: x.key.height == height, hashes)) remaining = hashes[len(current) :] return current, remaining tree_height = self._tree_height_by_length(self._length) # Check an edge case when the list contains no elements: if tree_height == 0 and (not self._proof or not self._entries): err = MalformedListProofError.non_empty_proof() logger.warning(str(err)) raise err # If there are no entries, the proof should contain only a single root hash: if not self._entries: if len(self._proof) != 1: if self._proof: err = MalformedListProofError.missing_hash() logger.warning(str(err)) raise err err = MalformedListProofError.unexpected_branch() logger.warning(str(err)) raise err if self._proof[0].key == ProofListKey(tree_height, 0): return self._proof[0].entry_hash err = MalformedListProofError.unexpected_branch() logger.warning(str(err)) raise err # Sort the entries and the proof: self._entries.sort(key=lambda el: el[0]) self._proof.sort(key=lambda el: el.key) # Check that there are no duplicates: self._check_duplicates(self._entries) self._check_duplicates(self._proof) # Check that the hashes at each height have indices in the allowed range: for entry in self._proof: height = entry.key.height if height == 0: err = MalformedListProofError.unexpected_leaf() logger.warning(str(err)) raise err # self._length -1 is the index of the last element at `height = 1`. # This index is divided by 2 with each new height: if height >= tree_height or entry.key.index > (self._length - 1) >> (height - 1): err = MalformedListProofError.unexpected_branch() logger.warning(str(err)) raise err # Create the first layer: layer = list(map(_hash_entry, self._entries)) hashes = list(self._proof) last_index = self._length - 1 for height in range(1, tree_height): # Filter the hashes of the current height and the rest heights (to be processed later): hashes, remaining_hashes = _split_hashes_by_height(hashes, height) # Merge the current layer with the hashes that belong to this layer: layer = sorted(layer + hashes, key=lambda x: x.key) # Calculate a new layer: layer = _hash_layer(layer, last_index) # Size of the next layer is two times smaller: last_index //= 2 # Make remaining_hashes hashes to be processed: hashes = remaining_hashes assert len(layer) == 1, "Result layer length is not 1" return layer[0].entry_hash
2.734375
3
rllab/envs/mujoco/hill/terrain.py
RussellM2020/maml_gps
1,838
12784266
from scipy.stats import multivariate_normal from scipy.signal import convolve2d import matplotlib try: matplotlib.pyplot.figure() matplotlib.pyplot.close() except Exception: matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import os # the colormap should assign light colors to low values TERRAIN_CMAP = 'Greens' DEFAULT_PATH = '/tmp/mujoco_terrains' STEP = 0.1 def generate_hills(width, height, nhills): ''' @param width float, terrain width @param height float, terrain height @param nhills int, #hills to gen. #hills actually generted is sqrt(nhills)^2 ''' # setup coordinate grid xmin, xmax = -width/2.0, width/2.0 ymin, ymax = -height/2.0, height/2.0 x, y = np.mgrid[xmin:xmax:STEP, ymin:ymax:STEP] pos = np.empty(x.shape + (2,)) pos[:, :, 0] = x; pos[:, :, 1] = y # generate hilltops xm, ym = np.mgrid[xmin:xmax:width/np.sqrt(nhills), ymin:ymax:height/np.sqrt(nhills)] mu = np.c_[xm.flat, ym.flat] sigma = float(width*height)/(nhills*8) for i in range(mu.shape[0]): mu[i] = multivariate_normal.rvs(mean=mu[i], cov=sigma) # generate hills sigma = sigma + sigma*np.random.rand(mu.shape[0]) rvs = [ multivariate_normal(mu[i,:], cov=sigma[i]) for i in range(mu.shape[0]) ] hfield = np.max([ rv.pdf(pos) for rv in rvs ], axis=0) return x, y, hfield def clear_patch(hfield, box): ''' Clears a patch shaped like box, assuming robot is placed in center of hfield @param box: rllab.spaces.Box-like ''' if box.flat_dim > 2: raise ValueError("Provide 2dim box") # clear patch h_center = int(0.5 * hfield.shape[0]) w_center = int(0.5 * hfield.shape[1]) fromrow, torow = w_center + int(box.low[0]/STEP), w_center + int(box.high[0] / STEP) fromcol, tocol = h_center + int(box.low[1]/STEP), h_center + int(box.high[1] / STEP) hfield[fromrow:torow, fromcol:tocol] = 0.0 # convolve to smoothen edges somewhat, in case hills were cut off K = np.ones((10,10)) / 100.0 s = convolve2d(hfield[fromrow-9:torow+9, fromcol-9:tocol+9], K, mode='same', boundary='symm') hfield[fromrow-9:torow+9, fromcol-9:tocol+9] = s return hfield def _checkpath(path_): if path_ is None: path_ = DEFAULT_PATH if not os.path.exists(path_): os.makedirs(path_) return path_ def save_heightfield(x, y, hfield, fname, path=None): ''' @param path, str (optional). If not provided, DEFAULT_PATH is used. Make sure the path + fname match the <file> attribute of the <asset> element in the env XML where the height field is defined ''' path = _checkpath(path) plt.figure() plt.contourf(x, y, -hfield, 100, cmap=TERRAIN_CMAP) # terrain_cmap is necessary to make sure tops get light color plt.savefig(os.path.join(path, fname), bbox_inches='tight') plt.close() def save_texture(x, y, hfield, fname, path=None): ''' @param path, str (optional). If not provided, DEFAULT_PATH is used. Make sure this matches the <texturedir> of the <compiler> element in the env XML ''' path = _checkpath(path) plt.figure() plt.contourf(x, y, -hfield, 100, cmap=TERRAIN_CMAP) xmin, xmax = x.min(), x.max() ymin, ymax = y.min(), y.max() # for some reason plt.grid does not work here, so generate gridlines manually for i in np.arange(xmin,xmax,0.5): plt.plot([i,i], [ymin,ymax], 'k', linewidth=0.1) for i in np.arange(ymin,ymax,0.5): plt.plot([xmin,xmax],[i,i], 'k', linewidth=0.1) plt.savefig(os.path.join(path, fname), bbox_inches='tight') plt.close()
2.59375
3
test/parOimparTestCase.py
uip-pc3/numero-par-impar-ArielLK
0
12784267
<filename>test/parOimparTestCase.py import unittest from app.parOimpar import verificar class PoIC(object): pass class parOimparTestCase(unittest.TestCase): # IMPAR = FALSE , PAR = TRUE def test_impar(self): retorno = self.PoIC = verificar(15) self.assertEquals(retorno, False) def test_par(self): retorno = self.PoIC = verificar(20) self.assertEquals(retorno, True) if __name__ == '__main__': unittest.main()
2.6875
3
gui/fonts/font14.py
seelpro/micropython-micro-gui
37
12784268
<gh_stars>10-100 # Code generated by font_to_py.py. # Font: FreeSans.ttf Char set: !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~£¬°Ωαβγδθλμπωϕ # Cmd: ./font_to_py.py -x -k extended FreeSans.ttf 23 font14.py version = '0.33' def height(): return 23 def baseline(): return 18 def max_width(): return 23 def hmap(): return True def reverse(): return False def monospaced(): return False def min_ch(): return 32 def max_ch(): return 981 _font =\ b'\x0d\x00\x00\x00\x0f\xc0\x1f\xe0\x38\x70\x30\x30\x30\x30\x00\x30'\ b'\x00\x70\x00\x60\x01\xc0\x01\x80\x03\x00\x03\x00\x03\x00\x00\x00'\ b'\x00\x00\x03\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x18\x18\x18\x18'\ b'\x18\x18\x18\x18\x18\x18\x18\x18\x18\x00\x00\x18\x18\x00\x00\x00'\ b'\x00\x00\x08\x00\x00\x00\x66\x66\x66\x66\x44\x44\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x00'\ b'\x00\x04\x60\x04\x60\x0c\x60\x0c\x40\x7f\xf8\x7f\xf8\x08\xc0\x18'\ b'\xc0\x18\xc0\x18\x80\xff\xf0\xff\xf0\x31\x80\x31\x80\x31\x00\x33'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x02\x00\x0f'\ b'\x80\x3f\xe0\x32\x60\x62\x30\x62\x30\x62\x00\x62\x00\x3a\x00\x3f'\ b'\x00\x0f\xe0\x02\xf0\x02\x30\x62\x30\x62\x30\x72\x70\x3f\xe0\x0f'\ b'\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x02\x00\x1e\x02\x00\x3f\x04\x00\x73\x8c\x00\x61'\ b'\x88\x00\x73\x98\x00\x3f\x10\x00\x1e\x20\x00\x00\x23\xc0\x00\x47'\ b'\xe0\x00\xce\x70\x00\x8c\x30\x01\x8c\x30\x01\x0e\x70\x02\x07\xe0'\ b'\x02\x03\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x0f\x00\x00\x00\x00\x00\x07\x80\x0f\xc0\x1c\xe0\x18\x60'\ b'\x18\x60\x0c\xc0\x0f\x80\x0f\x00\x1b\x98\x31\xd8\x60\xf8\x60\x70'\ b'\x60\x30\x70\xf8\x3f\xd8\x1f\x0c\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x05\x00\x00\x00\x60\x60\x60\x60\x40\x40\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x02\x04'\ b'\x0c\x08\x18\x18\x10\x30\x30\x30\x30\x30\x30\x30\x30\x18\x18\x18'\ b'\x0c\x0c\x04\x02\x08\x00\x00\x40\x20\x30\x10\x18\x18\x08\x0c\x0c'\ b'\x0c\x0c\x0c\x0c\x0c\x0c\x18\x18\x18\x30\x30\x20\x40\x09\x00\x00'\ b'\x00\x08\x00\x08\x00\x6b\x00\x3e\x00\x1c\x00\x36\x00\x24\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x03'\ b'\x00\x03\x00\x03\x00\x3f\xf0\x3f\xf0\x03\x00\x03\x00\x03\x00\x03'\ b'\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30'\ b'\x30\x10\x10\x20\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x7c\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x30\x30\x00\x00\x00\x00\x00\x06\x00\x00\x04\x0c\x08\x08\x18'\ b'\x10\x10\x10\x30\x20\x20\x20\x60\x40\x40\xc0\x80\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x00\x00\x0f\x80\x1f\xc0\x38\xe0\x30\x60\x60'\ b'\x30\x60\x30\x60\x30\x60\x30\x60\x30\x60\x30\x60\x30\x60\x30\x30'\ b'\x60\x38\xe0\x1f\xc0\x0f\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x00\x00\x01\x00\x03\x00\x07\x00\x1f\x00\x1f'\ b'\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03'\ b'\x00\x03\x00\x03\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x00\x00\x0f\x80\x3f\xe0\x30\x70\x60\x30\x60'\ b'\x30\x00\x30\x00\x30\x00\xe0\x01\xc0\x07\x80\x0e\x00\x18\x00\x10'\ b'\x00\x20\x00\x3f\xf0\x3f\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x00\x00\x0f\xc0\x3f\xe0\x30\x70\x60\x30\x60'\ b'\x30\x00\x70\x07\xe0\x07\xe0\x00\x70\x00\x30\x00\x30\x60\x30\x60'\ b'\x30\x30\x60\x3f\xe0\x0f\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x00\x00\x00\xc0\x00\xc0\x01\xc0\x03\xc0\x06'\ b'\xc0\x04\xc0\x0c\xc0\x18\xc0\x10\xc0\x20\xc0\x3f\xf0\x3f\xf0\x00'\ b'\xc0\x00\xc0\x00\xc0\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x00\x00\x3f\xe0\x3f\xe0\x30\x00\x30\x00\x30'\ b'\x00\x37\x80\x3f\xe0\x70\xe0\x00\x70\x00\x30\x00\x30\x00\x30\x60'\ b'\x30\x70\xe0\x3f\xc0\x0f\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x00\x00\x07\x80\x1f\xe0\x38\x60\x30\x70\x20'\ b'\x00\x60\x00\x67\x80\x7f\xe0\x70\x60\x60\x30\x60\x30\x60\x30\x20'\ b'\x30\x38\x60\x1f\xe0\x0f\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x00\x00\x7f\xe0\x7f\xe0\x00\x40\x00\xc0\x00'\ b'\x80\x01\x80\x03\x00\x03\x00\x06\x00\x06\x00\x04\x00\x0c\x00\x0c'\ b'\x00\x08\x00\x18\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x00\x00\x0f\x80\x1f\xc0\x38\xe0\x30\x60\x30'\ b'\x60\x38\xe0\x1f\xc0\x1f\xc0\x38\xe0\x60\x30\x60\x30\x60\x30\x60'\ b'\x30\x30\x60\x1f\xc0\x0f\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x00\x00\x0f\x00\x3f\xc0\x30\xc0\x60\x60\x60'\ b'\x60\x60\x60\x60\x60\x30\xe0\x3f\xe0\x1f\x60\x00\x60\x00\x60\x60'\ b'\xc0\x31\xc0\x3f\x80\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x06\x00\x00\x00\x00\x00\x00\x00\x30\x30\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x30\x30\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00'\ b'\x00\x00\x30\x30\x00\x00\x00\x00\x00\x00\x00\x00\x30\x30\x10\x10'\ b'\x20\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x10\x00\xf0\x03\xc0\x0f\x00\x78\x00\x60\x00\x3c'\ b'\x00\x0f\x00\x03\xe0\x00\x70\x00\x10\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x7f\xf0\x7f\xf0\x00\x00\x00\x00\x7f'\ b'\xf0\x7f\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x60\x00\x78\x00\x1e\x00\x07\xc0\x00\xf0\x00\x30\x00'\ b'\xf0\x07\x80\x1e\x00\x78\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x0d\x00\x00\x00\x0f\xc0\x1f\xe0\x38\x70\x30\x30\x30'\ b'\x30\x00\x30\x00\x70\x00\x60\x01\xc0\x01\x80\x03\x00\x03\x00\x03'\ b'\x00\x00\x00\x00\x00\x03\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x17\x00\x00\x00\x00\x00\x7f\x00\x03\xff\xc0\x07\x81'\ b'\xe0\x0e\x00\x70\x1c\x38\x38\x38\xfd\x98\x30\xc7\x8c\x31\x83\x0c'\ b'\x63\x83\x0c\x63\x03\x0c\x63\x02\x0c\x63\x06\x18\x63\x06\x18\x73'\ b'\x8e\x30\x31\xff\xf0\x38\xe3\xc0\x1c\x00\x00\x0f\x00\x00\x03\xff'\ b'\x00\x00\xfe\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x03\x80'\ b'\x03\xc0\x07\xc0\x06\xc0\x06\xe0\x0e\x60\x0c\x60\x0c\x70\x18\x30'\ b'\x18\x30\x1f\xf8\x3f\xf8\x30\x18\x30\x1c\x70\x0c\x60\x0c\x60\x0e'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x3f\xe0'\ b'\x3f\xf0\x30\x38\x30\x18\x30\x18\x30\x18\x30\x30\x3f\xe0\x3f\xf0'\ b'\x30\x18\x30\x0c\x30\x0c\x30\x0c\x30\x0c\x30\x18\x3f\xf8\x3f\xf0'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x03\xf0'\ b'\x0f\xf8\x1c\x1c\x38\x0e\x30\x06\x60\x00\x60\x00\x60\x00\x60\x00'\ b'\x60\x00\x60\x00\x60\x06\x30\x06\x38\x0c\x1c\x1c\x0f\xf8\x03\xe0'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x3f\xe0'\ b'\x3f\xf8\x30\x38\x30\x0c\x30\x0c\x30\x06\x30\x06\x30\x06\x30\x06'\ b'\x30\x06\x30\x06\x30\x06\x30\x0c\x30\x0c\x30\x38\x3f\xf0\x3f\xe0'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x3f\xf8'\ b'\x3f\xf8\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x3f\xf8\x3f\xf8'\ b'\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x3f\xfc\x3f\xfc'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x3f\xf8'\ b'\x3f\xf8\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x3f\xf0\x3f\xf0'\ b'\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x12\x00\x00\x00\x00\x03'\ b'\xf0\x00\x0f\xfc\x00\x1c\x0e\x00\x38\x07\x00\x30\x03\x00\x70\x00'\ b'\x00\x60\x00\x00\x60\x00\x00\x60\x3f\x00\x60\x3f\x00\x60\x03\x00'\ b'\x70\x03\x00\x30\x03\x00\x38\x07\x00\x1c\x1f\x00\x0f\xfb\x00\x03'\ b'\xe1\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x11\x00\x00\x00\x00\x30\x06\x00\x30\x06\x00\x30\x06\x00\x30'\ b'\x06\x00\x30\x06\x00\x30\x06\x00\x30\x06\x00\x3f\xfe\x00\x3f\xfe'\ b'\x00\x30\x06\x00\x30\x06\x00\x30\x06\x00\x30\x06\x00\x30\x06\x00'\ b'\x30\x06\x00\x30\x06\x00\x30\x06\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x30\x30\x30\x30\x30'\ b'\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x00\x00\x00\x00'\ b'\x00\x0c\x00\x00\x00\x00\xc0\x00\xc0\x00\xc0\x00\xc0\x00\xc0\x00'\ b'\xc0\x00\xc0\x00\xc0\x00\xc0\x00\xc0\x00\xc0\x00\xc0\x60\xc0\x60'\ b'\xc0\x71\xc0\x3f\x80\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0f\x00\x00\x00\x30\x0e\x30\x1c\x30\x38\x30\x70\x30\xe0\x31'\ b'\xc0\x33\x80\x37\x80\x3f\x80\x3c\xc0\x38\xe0\x30\x60\x30\x30\x30'\ b'\x38\x30\x18\x30\x0c\x30\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x0d\x00\x00\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30'\ b'\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30'\ b'\x00\x30\x00\x3f\xf0\x3f\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x13\x00\x00\x00\x00\x38\x01\xc0\x38\x01\xc0\x3c\x03\xc0\x3c'\ b'\x03\xc0\x36\x02\xc0\x36\x06\xc0\x36\x06\xc0\x33\x04\xc0\x33\x0c'\ b'\xc0\x33\x0c\xc0\x31\x98\xc0\x31\x98\xc0\x31\x98\xc0\x30\xf0\xc0'\ b'\x30\xf0\xc0\x30\xf0\xc0\x30\x60\xc0\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x11\x00\x00\x00\x00\x38\x06\x00'\ b'\x38\x06\x00\x3c\x06\x00\x3c\x06\x00\x36\x06\x00\x37\x06\x00\x33'\ b'\x06\x00\x31\x86\x00\x31\xc6\x00\x30\xc6\x00\x30\x66\x00\x30\x66'\ b'\x00\x30\x36\x00\x30\x3e\x00\x30\x1e\x00\x30\x0e\x00\x30\x0e\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x12'\ b'\x00\x00\x00\x00\x03\xf0\x00\x0f\xfc\x00\x1c\x0e\x00\x38\x07\x00'\ b'\x30\x03\x00\x70\x03\x80\x60\x01\x80\x60\x01\x80\x60\x01\x80\x60'\ b'\x01\x80\x60\x01\x80\x70\x03\x80\x30\x03\x00\x38\x07\x00\x1c\x0e'\ b'\x00\x0f\xfc\x00\x03\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x3f\xe0\x3f\xf8\x30\x18'\ b'\x30\x0c\x30\x0c\x30\x0c\x30\x0c\x30\x1c\x3f\xf8\x3f\xf0\x30\x00'\ b'\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x12\x00\x00\x00\x00\x03\xf0\x00\x0f\xfc'\ b'\x00\x1c\x0e\x00\x38\x07\x00\x30\x03\x00\x70\x03\x80\x60\x01\x80'\ b'\x60\x01\x80\x60\x01\x80\x60\x01\x80\x60\x01\x80\x70\x03\x80\x30'\ b'\x13\x00\x38\x1f\x00\x1c\x1e\x00\x0f\xff\x00\x03\xf3\x00\x00\x01'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00'\ b'\x00\x3f\xf0\x3f\xf8\x30\x1c\x30\x0c\x30\x0c\x30\x0c\x30\x0c\x30'\ b'\x18\x3f\xf0\x3f\xf8\x30\x1c\x30\x0c\x30\x0c\x30\x0c\x30\x0c\x30'\ b'\x0c\x30\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00'\ b'\x00\x07\xe0\x1f\xf8\x18\x38\x30\x0c\x30\x0c\x30\x00\x38\x00\x1f'\ b'\x00\x0f\xf0\x00\xf8\x00\x1c\x00\x0c\x60\x0c\x60\x0c\x38\x18\x1f'\ b'\xf8\x07\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00'\ b'\x00\x7f\xf8\x7f\xf8\x03\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03'\ b'\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03\x00\x03'\ b'\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x00\x00'\ b'\x00\x00\x30\x06\x00\x30\x06\x00\x30\x06\x00\x30\x06\x00\x30\x06'\ b'\x00\x30\x06\x00\x30\x06\x00\x30\x06\x00\x30\x06\x00\x30\x06\x00'\ b'\x30\x06\x00\x30\x06\x00\x30\x06\x00\x38\x0e\x00\x1c\x1c\x00\x0f'\ b'\xf8\x00\x07\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x0f\x00\x00\x00\x60\x0c\x60\x0c\x60\x1c\x30\x18'\ b'\x30\x18\x38\x38\x18\x30\x18\x30\x1c\x70\x0c\x60\x0c\x60\x0e\xe0'\ b'\x06\xc0\x06\xc0\x07\xc0\x03\x80\x03\x80\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x16\x00\x00\x00\x00\xe0\x70\x18\x60\x70\x38\x60'\ b'\x78\x38\x60\x78\x30\x70\xd8\x30\x30\xd8\x30\x30\xcc\x70\x30\xcc'\ b'\x60\x39\x8c\x60\x19\x86\x60\x19\x86\xe0\x1b\x86\xc0\x1f\x06\xc0'\ b'\x0f\x03\xc0\x0f\x03\xc0\x0e\x03\x80\x0e\x03\x80\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x00\x00\x00\x70'\ b'\x0c\x30\x18\x38\x38\x1c\x30\x0c\x60\x0e\xe0\x06\xc0\x03\x80\x03'\ b'\x80\x07\xc0\x06\xc0\x0e\x60\x1c\x70\x18\x30\x38\x18\x70\x1c\x60'\ b'\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x60'\ b'\x0e\x70\x0c\x38\x1c\x18\x18\x1c\x38\x0c\x30\x06\x60\x07\xe0\x03'\ b'\xc0\x03\xc0\x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\x01'\ b'\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x7f'\ b'\xf8\x7f\xf8\x00\x38\x00\x30\x00\x70\x00\xe0\x01\xc0\x01\x80\x03'\ b'\x00\x07\x00\x0e\x00\x1c\x00\x18\x00\x38\x00\x70\x00\x7f\xf8\x7f'\ b'\xf8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x78\x78'\ b'\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60'\ b'\x60\x60\x78\x78\x06\x00\x00\x80\xc0\x40\x40\x60\x20\x20\x20\x30'\ b'\x10\x10\x10\x18\x08\x08\x0c\x04\x00\x00\x00\x00\x00\x06\x00\x00'\ b'\x78\x78\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18\x18'\ b'\x18\x18\x18\x18\x78\x78\x0b\x00\x00\x00\x00\x00\x0c\x00\x0e\x00'\ b'\x0a\x00\x1b\x00\x13\x00\x31\x00\x31\x80\x20\x80\x60\xc0\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\xff\xf8\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x06\x00\x00\x30\x18\x0c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1f\x80\x3f'\ b'\xc0\x60\xe0\x00\x60\x00\x60\x0f\xe0\x3e\x60\x60\x60\x60\x60\x61'\ b'\xe0\x3f\x70\x1e\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d'\ b'\x00\x00\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x67\x80\x7f'\ b'\xe0\x78\xe0\x70\x70\x60\x30\x60\x30\x60\x30\x60\x30\x70\x70\x78'\ b'\xe0\x6f\xc0\x67\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x80\x1f'\ b'\xc0\x30\xe0\x70\x60\x60\x00\x60\x00\x60\x00\x60\x00\x70\x60\x30'\ b'\xe0\x3f\xc0\x0f\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d'\ b'\x00\x00\x00\x00\x30\x00\x30\x00\x30\x00\x30\x00\x30\x0f\x30\x1f'\ b'\xf0\x38\xf0\x70\x70\x60\x30\x60\x30\x60\x30\x60\x30\x70\x70\x38'\ b'\xf0\x1f\xb0\x0f\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x80\x1f'\ b'\xc0\x38\x60\x70\x30\x60\x30\x7f\xf0\x7f\xf0\x60\x00\x60\x30\x30'\ b'\x60\x1f\xe0\x0f\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06'\ b'\x00\x00\x18\x38\x30\x30\x30\x78\x78\x30\x30\x30\x30\x30\x30\x30'\ b'\x30\x30\x30\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x0f\x60\x3f\xe0\x30\xe0\x70\xe0\x60\x60'\ b'\x60\x60\x60\x60\x60\x60\x70\xe0\x30\xe0\x3f\x60\x0e\x60\x00\x60'\ b'\x00\xe0\x60\xc0\x3f\xc0\x1f\x00\x0c\x00\x00\x00\x60\x00\x60\x00'\ b'\x60\x00\x60\x00\x60\x00\x67\x80\x6f\xe0\x78\xe0\x70\x60\x60\x60'\ b'\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x30\x30\x00\x00\x00'\ b'\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x00\x00\x00\x00'\ b'\x00\x06\x00\x00\x30\x30\x00\x00\x00\x30\x30\x30\x30\x30\x30\x30'\ b'\x30\x30\x30\x30\x30\x30\x30\x30\xf0\xe0\x0c\x00\x00\x00\x60\x00'\ b'\x60\x00\x60\x00\x60\x00\x60\x00\x60\xc0\x61\x80\x63\x00\x66\x00'\ b'\x6e\x00\x7e\x00\x77\x00\x63\x00\x61\x80\x61\xc0\x60\xc0\x60\x60'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x60\x60\x60'\ b'\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x00\x00'\ b'\x00\x00\x00\x13\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x67\x1f\x00\x6f\xbf\x80\x71\xe3\x80'\ b'\x60\xc1\x80\x60\xc1\x80\x60\xc1\x80\x60\xc1\x80\x60\xc1\x80\x60'\ b'\xc1\x80\x60\xc1\x80\x60\xc1\x80\x60\xc1\x80\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x67\x80\x6f\xe0\x78\xe0\x70\x60'\ b'\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x80\x1f\xc0\x38\xe0\x70\x70'\ b'\x60\x30\x60\x30\x60\x30\x60\x30\x70\x70\x38\xe0\x1f\xc0\x0f\x80'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x67\x80\x6f\xc0\x78\xe0\x70\x70'\ b'\x60\x30\x60\x30\x60\x30\x60\x30\x70\x70\x78\xe0\x7f\xc0\x67\x80'\ b'\x60\x00\x60\x00\x60\x00\x60\x00\x00\x00\x0d\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x30\x1f\xf0\x38\xf0\x70\x70'\ b'\x60\x30\x60\x30\x60\x30\x60\x30\x70\x70\x38\xf0\x3f\xf0\x0f\x30'\ b'\x00\x30\x00\x30\x00\x30\x00\x30\x00\x00\x08\x00\x00\x00\x00\x00'\ b'\x00\x00\x66\x6e\x78\x60\x60\x60\x60\x60\x60\x60\x60\x60\x00\x00'\ b'\x00\x00\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x1f\x80\x3f\xe0\x70\x60\x60\x00\x70\x00\x3f\x00\x0f\xc0\x00'\ b'\xe0\x60\x60\x70\xe0\x3f\xc0\x1f\x80\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x06\x00\x00\x00\x00\x00\x30\x30\x78\x78\x30\x30\x30'\ b'\x30\x30\x30\x30\x30\x38\x38\x00\x00\x00\x00\x00\x0c\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x60\x60\x60\x60\x60'\ b'\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\xe0\x71\xe0\x7f\x60'\ b'\x1e\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x60\x60\xe0\x60\xc0'\ b'\x70\xc0\x31\x80\x31\x80\x19\x80\x1b\x00\x1b\x00\x0f\x00\x0e\x00'\ b'\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\xc1\xc3\x00\x61\xc3\x00\x63\xc3\x00\x63\xc6\x00\x33\x66\x00\x33'\ b'\x66\x00\x32\x66\x00\x36\x6c\x00\x1e\x3c\x00\x1e\x3c\x00\x1c\x38'\ b'\x00\x0c\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x60\xc0\x71\xc0\x31\x80\x1b\x00\x0e\x00\x0e\x00\x0e\x00\x1b'\ b'\x00\x1b\x00\x31\x80\x60\xc0\x60\xc0\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\xc0\xe0\x60\xc0\x60\xc0\x61\x80\x31\x80\x31\x80\x33\x00\x1b'\ b'\x00\x1b\x00\x1e\x00\x0e\x00\x0e\x00\x0c\x00\x0c\x00\x18\x00\x78'\ b'\x00\x70\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x7f\xc0\x7f\xc0\x01\xc0\x01\x80\x03\x00\x06\x00\x0c\x00\x18'\ b'\x00\x30\x00\x60\x00\x7f\xc0\x7f\xc0\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x08\x00\x00\x0c\x1c\x18\x18\x18\x18\x18\x18\x18\x18'\ b'\x70\x70\x18\x18\x18\x18\x18\x18\x18\x18\x1c\x0c\x06\x00\x00\x30'\ b'\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30\x30'\ b'\x30\x30\x30\x30\x30\x08\x00\x00\x30\x38\x18\x18\x18\x18\x18\x18'\ b'\x18\x18\x0e\x0e\x18\x18\x18\x18\x18\x18\x18\x18\x38\x30\x0c\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00'\ b'\x7c\x00\x4e\x40\x07\xc0\x01\x80\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d\x00'\ b'\x00\x00\x0f\xc0\x1f\xe0\x38\x60\x60\x30\x60\x30\x60\x00\x70\x00'\ b'\x38\x00\xff\x00\xff\x00\x1c\x00\x0c\x00\x0c\x00\x18\x00\x2f\x10'\ b'\x7f\xf0\x61\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x3f\xf8\x3f\xf8\x00\x18\x00\x18\x00\x18\x00\x18\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00'\ b'\x00\x00\x00\x00\x07\x00\x0f\x80\x18\xc0\x10\x40\x18\xc0\x0f\x80'\ b'\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x00'\ b'\x00\x00\x00\x03\xe0\x00\x0f\xf8\x00\x1c\x1c\x00\x38\x0e\x00\x30'\ b'\x06\x00\x60\x03\x00\x60\x03\x00\x60\x03\x00\x60\x03\x00\x60\x03'\ b'\x00\x60\x03\x00\x30\x06\x00\x30\x0e\x00\x18\x0c\x00\x0c\x38\x00'\ b'\x7e\x3f\x00\x7e\x3f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x0f\x60\x3f\xe0\x30\xe0\x60\xe0\x60\x60\x60\x60\x60'\ b'\x60\x60\x60\x60\xe0\x30\xe0\x3f\xf0\x0f\x70\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x1f\x80\x3f\xc0\x70\xe0\x60'\ b'\x60\x60\x60\x60\xc0\x63\x80\x63\xc0\x60\x60\x60\x30\x60\x30\x60'\ b'\x30\x60\x30\x60\x30\x70\x60\x7f\xe0\x6f\x80\x60\x00\x60\x00\x60'\ b'\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\xe0\x60\xe0\x60\x70\xc0\x30\xc0\x30\xc0\x39\x80\x19'\ b'\x80\x1b\x80\x0f\x00\x0f\x00\x06\x00\x06\x00\x06\x00\x06\x00\x06'\ b'\x00\x06\x00\x06\x00\x0d\x00\x00\x00\x3f\xe0\x3f\xe0\x18\x00\x0e'\ b'\x00\x03\x00\x0f\x80\x3f\xc0\x38\xe0\x70\x70\x60\x30\x60\x30\x60'\ b'\x30\x60\x30\x70\x70\x30\xe0\x3f\xc0\x0f\x80\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x0f\x00\x1f\x80\x30\xc0\x30'\ b'\xc0\x60\x60\x60\x60\x60\x60\x7f\xe0\x7f\xe0\x60\x60\x60\x60\x60'\ b'\x60\x60\x60\x30\xc0\x30\xc0\x1f\x80\x0f\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x70\x00\x78\x00\x0c\x00\x0c'\ b'\x00\x06\x00\x06\x00\x0e\x00\x0f\x00\x1b\x00\x19\x00\x19\x80\x31'\ b'\x80\x30\xc0\x30\xc0\x60\xc0\x60\x70\xe0\x70\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60\x60'\ b'\x60\x60\x60\x60\x60\x70\xe0\x7f\xe0\x6f\x60\x60\x00\x60\x00\x60'\ b'\x00\x60\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x7f\xf8\x7f\xf8\x30\x30\x30\x30\x30\x30\x30\x30\x30'\ b'\x30\x30\x30\x30\x30\x30\x30\x30\x3c\x30\x1c\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x0c\x00\x30\x0e\x00\x30'\ b'\x06\x00\x61\x87\x00\x61\x83\x00\x61\x83\x00\x61\x83\x00\x61\x83'\ b'\x00\x61\x83\x00\x33\xc6\x00\x3f\x7e\x00\x1e\x38\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00'\ b'\x00\x00\x01\x80\x01\x80\x01\x80\x01\x80\x0f\xf0\x1f\xf8\x39\x9c'\ b'\x71\x8e\x61\x86\x61\x86\x61\x86\x61\x86\x71\x8e\x39\x9c\x1f\xf8'\ b'\x0f\xf0\x01\x80\x01\x80\x01\x80\x01\x80\x00\x00' _sparse =\ b'\x20\x00\x30\x00\x21\x00\x49\x00\x22\x00\x62\x00\x23\x00\x7b\x00'\ b'\x24\x00\xab\x00\x25\x00\xdb\x00\x26\x00\x22\x01\x27\x00\x52\x01'\ b'\x28\x00\x6b\x01\x29\x00\x84\x01\x2a\x00\x9d\x01\x2b\x00\xcd\x01'\ b'\x2c\x00\xfd\x01\x2d\x00\x16\x02\x2e\x00\x2f\x02\x2f\x00\x48\x02'\ b'\x30\x00\x61\x02\x31\x00\x91\x02\x32\x00\xc1\x02\x33\x00\xf1\x02'\ b'\x34\x00\x21\x03\x35\x00\x51\x03\x36\x00\x81\x03\x37\x00\xb1\x03'\ b'\x38\x00\xe1\x03\x39\x00\x11\x04\x3a\x00\x41\x04\x3b\x00\x5a\x04'\ b'\x3c\x00\x73\x04\x3d\x00\xa3\x04\x3e\x00\xd3\x04\x3f\x00\x03\x05'\ b'\x40\x00\x33\x05\x41\x00\x7a\x05\x42\x00\xaa\x05\x43\x00\xda\x05'\ b'\x44\x00\x0a\x06\x45\x00\x3a\x06\x46\x00\x6a\x06\x47\x00\x9a\x06'\ b'\x48\x00\xe1\x06\x49\x00\x28\x07\x4a\x00\x41\x07\x4b\x00\x71\x07'\ b'\x4c\x00\xa1\x07\x4d\x00\xd1\x07\x4e\x00\x18\x08\x4f\x00\x5f\x08'\ b'\x50\x00\xa6\x08\x51\x00\xd6\x08\x52\x00\x1d\x09\x53\x00\x4d\x09'\ b'\x54\x00\x7d\x09\x55\x00\xad\x09\x56\x00\xf4\x09\x57\x00\x24\x0a'\ b'\x58\x00\x6b\x0a\x59\x00\x9b\x0a\x5a\x00\xcb\x0a\x5b\x00\xfb\x0a'\ b'\x5c\x00\x14\x0b\x5d\x00\x2d\x0b\x5e\x00\x46\x0b\x5f\x00\x76\x0b'\ b'\x60\x00\xa6\x0b\x61\x00\xbf\x0b\x62\x00\xef\x0b\x63\x00\x1f\x0c'\ b'\x64\x00\x4f\x0c\x65\x00\x7f\x0c\x66\x00\xaf\x0c\x67\x00\xc8\x0c'\ b'\x68\x00\xf8\x0c\x69\x00\x28\x0d\x6a\x00\x41\x0d\x6b\x00\x5a\x0d'\ b'\x6c\x00\x8a\x0d\x6d\x00\xa3\x0d\x6e\x00\xea\x0d\x6f\x00\x1a\x0e'\ b'\x70\x00\x4a\x0e\x71\x00\x7a\x0e\x72\x00\xaa\x0e\x73\x00\xc3\x0e'\ b'\x74\x00\xf3\x0e\x75\x00\x0c\x0f\x76\x00\x3c\x0f\x77\x00\x6c\x0f'\ b'\x78\x00\xb3\x0f\x79\x00\xe3\x0f\x7a\x00\x13\x10\x7b\x00\x43\x10'\ b'\x7c\x00\x5c\x10\x7d\x00\x75\x10\x7e\x00\x8e\x10\xa3\x00\xbe\x10'\ b'\xac\x00\xee\x10\xb0\x00\x1e\x11\xa9\x03\x4e\x11\xb1\x03\x95\x11'\ b'\xb2\x03\xc5\x11\xb3\x03\xf5\x11\xb4\x03\x25\x12\xb8\x03\x55\x12'\ b'\xbb\x03\x85\x12\xbc\x03\xb5\x12\xc0\x03\xe5\x12\xc9\x03\x15\x13'\ b'\xd5\x03\x5c\x13' _mvfont = memoryview(_font) _mvsp = memoryview(_sparse) ifb = lambda l : l[0] | (l[1] << 8) def bs(lst, val): while True: m = (len(lst) & ~ 7) >> 1 v = ifb(lst[m:]) if v == val: return ifb(lst[m + 2:]) if not m: return 0 lst = lst[m:] if v < val else lst[:m] def get_ch(ch): doff = bs(_mvsp, ord(ch)) width = ifb(_mvfont[doff : ]) next_offs = doff + 2 + ((width - 1)//8 + 1) * 23 return _mvfont[doff + 2:next_offs], 23, width
1.960938
2
src/c3nav/mapdata/migrations/0016_auto_20161208_2023.py
bate/c3nav
1
12784269
<gh_stars>1-10 # -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-08 20:23 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('mapdata', '0015_auto_20161208_2020'), ] operations = [ migrations.RenameField( model_name='lineobstacle', old_name='altitude', new_name='width', ), ]
1.476563
1
output/process.py
googlx/lasertagger
1
12784270
<filename>output/process.py import os import pandas as pd from tqdm import tqdm names = ['text', 'decoded', 'reference'] df = pd.read_csv('pred.tsv', sep='\t', header=None, names=names) df['text'] = df['text'].apply(lambda x: ' '.join(list(x))) df['reference'] = df['reference'].apply(lambda x: ' '.join(list(x))) char_dict = {} with open('vocab.txt', 'r') as f: i = 1 for line in f.readlines(): char = line.strip() char_dict[char] = str(i) i += 1 for name in names: df[name] = df[name].apply(lambda x: ' '.join([char_dict[char] if char in char_dict.keys() else '0' for char in x.split(' ')])) if not os.path.exists(name): os.mkdir(name) idx = 0 for data in tqdm(df[name]): with open(os.path.join(name, '{0:04d}.txt'.format(idx)), 'w') as f: f.write(data) idx += 1
2.53125
3
lisa/training.py
mjirik/lisa
22
12784271
<reponame>mjirik/lisa #! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © %YEAR% <> # # Distributed under terms of the %LICENSE% license. """ Training module. Default setup makes nothing. Use --all to make all """ from loguru import logger # logger = logging.getLogger() import argparse import organ_localizator import organ_model def main(): # logger = logging.getLogger() logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() logger.addHandler(ch) # create file handler which logs even debug messages # fh = logging.FileHandler('log.txt') # fh.setLevel(logging.DEBUG) # formatter = logging.Formatter( # '%(asctime)s - %(name)s - %(levelname)s - %(message)s') # fh.setFormatter(formatter) # logger.addHandler(fh) # logger.debug('start') # input parser parser = argparse.ArgumentParser( description=__doc__ ) parser.add_argument( '-i', '--inputfile', default=None, # required=True, help='input file' ) parser.add_argument( '-d', '--debug', action='store_true', help='Debug mode') parser.add_argument( '-lm', '--liver-model', action='store_true', help='Train liver model') parser.add_argument( '-ll', '--liver-localizator', action='store_true', help='Train liver localizator') parser.add_argument( '--all', action='store_true', help='Train all') args = parser.parse_args() if args.debug: ch.setLevel(logging.DEBUG) if args.liver_localizator or args.all: organ_localizator.train_liver_localizator_from_sliver_data() if args.liver_model or args.all: organ_model.train_liver_model_from_sliver_data() if __name__ == "__main__": main()
2.03125
2
6/solution.py
thesketh/advent-of-code-2021
0
12784272
<filename>6/solution.py """ Solution to the sixth challenge, calculating the proliferation of lanternfish. """ from collections import Counter from os import PathLike from pathlib import Path from typing import Sequence, Iterable ROOT = Path(__file__).absolute().parent LanternFish = int """A lanternfish, represented by the number of days until spawn.""" def parse_input(path: PathLike) -> Sequence[LanternFish]: """Read in a sequence of lanternfish from a file.""" with open(path, "r", encoding="utf-8") as file: return list(map(int, next(file).rstrip().split(","))) def count_lanternfish_after(lanternfish: Iterable[LanternFish], n_days: int) -> int: """Count the number of lanternfish after a given number of days.""" fish_counter = Counter(lanternfish) for _ in range(n_days): n_spawned = fish_counter[0] for days_til_spawn in range(1, 9): fish_counter[days_til_spawn - 1] = fish_counter[days_til_spawn] fish_counter[6] += n_spawned fish_counter[8] = n_spawned return sum(fish_counter.values()) def main(): """Perform the lanternfish population analysis.""" all_lanternfish = parse_input(ROOT.joinpath("data", "input_1.txt")) n_lanternfish = count_lanternfish_after(all_lanternfish, n_days=80) print(f"{n_lanternfish} fish after 80 days.") n_lanternfish = count_lanternfish_after(all_lanternfish, n_days=256) print(f"{n_lanternfish} fish after 256 days.") if __name__ == "__main__": main()
3.921875
4
FaceTime/frida/replay.py
googleprojectzero/Street-Party
226
12784273
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 import frida import sys import os vid_index=0 aud_index = 0 def on_message(message, data): global vid_index global aud_index print(message) session = frida.attach("avconferenced") code = open('replay.js', 'r').read() script = session.create_script(code); script.on("message", on_message) script.load() print("Press Ctrl-C to quit") sys.stdin.read()
1.828125
2
esimulation/eobjects/test/test_electricity_provider.py
brunoknittel/python-epower-simulation
1
12784274
# Copyright 2020 <NAME> <<EMAIL>> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ---- END OF LICENSE TEXT ---- import unittest from datetime import datetime, timezone, timedelta from ..electricity_provider import ElectricityProvider class ElectricityProviderTest(unittest.TestCase): def setUp(self): config = { "price_per_kWh_sold": 0.147, "price_per_kWh_bought": 0.10 } p = ElectricityProvider() p.load(config) self._p = p self._now = datetime.now(timezone.utc) self._dt = timedelta(1) def test_not_loaded(self): """ Ensures that an error is raised when trying to use an electricity provider that hasn't been configured. This doesn't need the setUp method """ p = ElectricityProvider() when = datetime.now(timezone.utc) dt = timedelta(1) with self.assertRaises(RuntimeError): p.consume_optional(when, dt, 100) with self.assertRaises(RuntimeError): p.consume_required(when, dt) with self.assertRaises(RuntimeError): p.produce_always(when, dt) with self.assertRaises(RuntimeError): p.produce_on_demand(when, dt, 100) def test_produce_always(self): self.assertEquals(0, self._p.produce_always(self._now, self._dt)) def test_produce_on_demand(self): res = self._p.produce_on_demand(self._now, self._dt, 100.0) self.assertEquals(res[0], 100.0) self.assertEquals(res[1], 100.0 * 0.147) def test_consume_required(self): self.assertEquals(0, self._p.consume_required(self._now, self._dt)) def test_consume_optional(self): res = self._p.consume_optional(self._now, self._dt, 100.0) self.assertEquals(res[0], 100.0) self.assertEquals(res[1], 100.0 * 0.10)
2.171875
2
tutorials/W2D3_DecisionMaking/solutions/W2D3_Tutorial1_Solution_be044152.py
liuxiaomiao123/NeuroMathAcademy
2
12784275
sigma = 3.95 num_repeats = 500 # number of simulations to run for each error rate alpha_list = np.power(10,list(range(-5,0)) + np.linspace(-0.9,-0.1,9).tolist()) # list of error rates threshold_list = list(map(threshold_from_errorrate, alpha_list)) def simulate_accuracy_vs_speed(sigma, threshold_list, num_sample=100): """ Calculate the average decision accuracy vs. average decision speed by running repeated SPRT simulations with thresholding stopping rule for each threshold Args: sigma (float): standard deviation for observation model threshold_list (list-like object): a list of evidence thresholds to run over num_sample (int): number of simulations to run per stopping time Returns: accuracy_list: a list of average accuracies corresponding to input `stop_time_list` decision_speed_list: a list of average decision speeds """ decision_speed_list = [] # container for average decision speed for each alpha accuracy_list = [] # container for decision accuracy for each alpha for threshold in threshold_list: decision_time_list = [] # container for decision time for each simulation decision_list = [] # container for decision for every simulation for i in range(num_repeats): # run simulation and get decision of current simulation _, decision, data = simulate_SPRT_threshold(sigma, threshold) decision_time = len(data) decision_list.append(decision) decision_time_list.append(decision_time) decision_speed = np.mean(1.0 / np.asarray(decision_time_list)) decision_accuracy = sum(decision_list) / len(decision_list) decision_speed_list.append(decision_speed) accuracy_list.append(decision_accuracy) return accuracy_list, decision_speed_list accuracy_list, decision_speed_list = simulate_accuracy_vs_speed(sigma, threshold_list, num_sample=num_sample) with plt.xkcd(): simulate_and_plot_speed_vs_accuracy(sigma, threshold_list, num_sample)
3.203125
3
tests/test_module_path_finder.py
swinkels/skempy
0
12784276
<reponame>swinkels/skempy import unittest from skempy.module_path_finder import ModulePathFinder from utils import get_abs_path class TestModulePathFinder(unittest.TestCase): def test_python_file_in_non_package_directory(self): test_file_path = get_abs_path("source_code.py", __file__) module_path = ModulePathFinder().find_path(test_file_path) self.assertEqual("source_code", module_path) def test_python_file_in_package_directory(self): test_file_path = get_abs_path("package/source_code.py", __file__) module_path = ModulePathFinder().find_path(test_file_path) self.assertEqual("package.source_code", module_path) def test_python_file_in_package_directory_tree(self): test_file_path = get_abs_path("package/sub_package/source_code.py", __file__) module_path = ModulePathFinder().find_path(test_file_path) self.assertEqual("package.sub_package.source_code", module_path)
2.65625
3
bin/apache-hive-3.1.2-bin/lib/py/thrift/__init__.py
ptrick/hdfs-hive-sql-playground
0
12784277
version https://git-lfs.github.com/spec/v1 oid sha256:4483dc4e2110743c7c39245cfd5626a1e46f9b4007e129bbf2b7c923d52056ea size 817
0.769531
1
databricksapi/SQLEndpoints.py
lotnikov/databricks_api
0
12784278
from . import Databricks class SQLEndpoints(Databricks.Databricks): def __init__(self, url, token=None): super().__init__(token) self._url = url self._api_type = 'sql' def createEndpoint(self, name, cluster_size, min_num_clusters=1, max_num_clusters=1, auto_stop_mins=10, spot_instance_policy=None, enable_photon=True, enable_serverless_compute=False, tags=None): endpoint = 'endpoints' url = self._set_url(self._url, self._api_type, endpoint) payload = { "name": name, "cluster_size": cluster_size, "min_num_clusters": min_num_clusters, "max_num_clusters": max_num_clusters, "spot_instance_policy":spot_instance_policy, "enable_photon": enable_photon, "enable_serverless_compute": enable_serverless_compute, "tags": tags } return self._post(url, payload) def listEndpoints(self): endpoint = 'endpoints' url = self._set_url(self._url, self._api_type, endpoint) return self._get(url) def deleteEndpoint(self, endpoint_id): endpoint = 'endpoints/'+endpoint_id url = self._set_url(self._url, self._api_type, endpoint) return self._delete(url, payload) def getEndpoint(self, endpoint_id): endpoint = 'endpoints/'+endpoint_id url = self._set_url(self._url, self._api_type, endpoint) return self._get(url) def updateEndpoint(self, endpoint_id, name=None, cluster_size=None, min_num_clusters=None, max_num_clusters=None, auto_stop_mins=None, tags=None, spot_instance_policy=None, enable_photon=None, enable_serverless_compute=None): endpoint = 'endpoints/'+endpoint_id+'/edit' url = self._set_url(self._url, self._api_type, endpoint) payload = {} if endpoint_id != None : payload["id"] = endpoint_id if name != None : payload["name"] = name if cluster_size != None : payload["cluster_size"] = cluster_size if min_num_clusters != None : payload["min_num_clusters"] = min_num_clusters if max_num_clusters != None : payload["max_num_clusters"] = max_num_clusters if auto_stop_mins != None : payload["auto_stop_mins"] = auto_stop_mins if tags != None : payload["tags"] = tags if spot_instance_policy != None : payload["spot_instance_policy"] = spot_instance_policy if enable_photon != None : payload["enable_photon"] = enable_photon if enable_serverless_compute != None : payload["enable_serverless_compute"] = enable_serverless_compute return self._post(url, payload) def startEndpoint(self, endpoint_id): endpoint = 'endpoints'+endpoint_id+'/start' url = self._set_url(self._url, self._api_type, endpoint) return self._post(url) def stopEndpoint(self, endpoint_id): endpoint = 'endpoints'+endpoint_id+'/stop' url = self._set_url(self._url, self._api_type, endpoint) return self._post(url) def listGlobalEndpoints(self): endpoint = 'config/endpoints' url = self._set_url(self._url, self._api_type, endpoint) return self._get(url) def updateGlobalEndpoints(self, security_policy, data_access_config, instance_profile_arn): endpoint = 'config/endpoints' url = self._set_url(self._url, self._api_type, endpoint) payload = { "security_policy": security_policy, "data_access_config": data_access_config, "instance_profile_arn": instance_profile_arn } return self._put(url, payload)
2.28125
2
src/node_read_item_forecast.py
clarify/data-science-tutorials-orchest
0
12784279
from datetime import datetime, timedelta from pyclarify import APIClient import orchest import pandas as pd import numpy as np from merlion.utils import TimeSeries from merlion.models.forecast.prophet import Prophet, ProphetConfig from merlion.transform.base import Identity def pipeline_data(times, values, new_id,new_name, original_id, original_name): labels = {"source":["Orchest pipelines"], "original_id":[original_id]} var_name = "clfy_"+new_id data = { "name" : new_name, "labels" : labels, "times" : times, "series" : values, "kargs" : {"sourceType" : "prediction", "data-source": ["Orchest"], "description" : f"Forecast for {original_name}" } } return {var_name : data } def generate_future_timestamps(n_future, timestamps, start): deltas = [x-timestamps[0] for x in timestamps] avg_delta=np.mean(deltas) future = [(i+1)*avg_delta+start for i in range(n_future)] return future client = APIClient("./clarify-credentials.json") inputs = orchest.get_inputs() invars = [x for x in inputs.keys() if x.startswith("read_config_forecast")] print(invars) output_dict={} for name in invars: item_id = inputs[name]['item_id'] days = inputs[name]['lag_days'] test_lag = inputs[name]['time_split'] future = inputs[name]['future'] data_params = { "items": { "include": True, "filter": { "id": { "$in": [ item_id ] } } }, "data": { "include": True, "notBefore": (datetime.now() - timedelta(days=days)).astimezone().isoformat() } } response = client.select_items(data_params) signal_name = list(response.result.items.values())[0].name print(f"Name {signal_name} and id {item_id}") times = response.result.data.times series = response.result.data.series df = pd.DataFrame(series) df.index = [time.replace(tzinfo=None) for time in times] if len(times) > 0: tzinfo = times[0].tzinfo test_data = TimeSeries.from_pd(df[-test_lag:]) train_data = TimeSeries.from_pd(df[0:-test_lag]) config = ProphetConfig(max_forecast_steps=test_lag, add_seasonality="auto", transform=Identity()) model = Prophet(config) model.train(train_data=train_data) test_times = test_data.time_stamps if future > 0: test_times=test_times+generate_future_timestamps(future, test_data.time_stamps, start=test_data.time_stamps[-1]) test_pred, test_err = model.forecast(time_stamps=test_times) col = test_pred.names[0] col_err = test_err.names[0] forecast_name=col+"_pred" forecast_name_upper=col+"_upper" forecast_name_lower=col+"_lower" forecast_values = test_pred.univariates[col].values forecast_upper_values= [x+y for x,y in zip(test_pred.univariates[col].values, test_err.univariates[col_err].values)] forecast_lower_values= [x-y for x,y in zip(test_pred.univariates[col].values, test_err.univariates[col_err].values)] output_dict.update(pipeline_data(test_pred.time_stamps,forecast_values, forecast_name, f"Forecast {signal_name}", col, signal_name )) output_dict.update(pipeline_data(test_err.time_stamps,forecast_upper_values, forecast_name_upper, f"Forecast {signal_name} upper bound", col, signal_name )) output_dict.update(pipeline_data(test_err.time_stamps,forecast_lower_values, forecast_name_lower, f"Forecast {signal_name} lower bound", col, signal_name )) orchest.output(output_dict, "clfy_dict")
2.796875
3
test/rql_test/drivers/driver_test.py
zadcha/rethinkdb
21,684
12784280
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest from driver import bag, compare, err, err_regex, partial, uuid class PythonTestDriverTest(unittest.TestCase): def compare(self, expected, result, options=None): self.assertTrue(compare(expected, result, options=options)) def compareFalse(self, expected, result, options=None): self.assertFalse(compare(expected, result, options=options)) def test_string(self): # simple self.compare('a', 'a') self.compare('á', 'á') self.compare('something longer\nwith two lines', 'something longer\nwith two lines') self.compareFalse('a', 'b') self.compareFalse('a', 1) self.compareFalse('a', []) self.compareFalse('a', None) self.compareFalse('a', ['a']) self.compareFalse('a', {'a': 1}) def test_array(self): # simple pass self.compare([1, 2, 3], [1, 2, 3]) # out of order self.compareFalse([1, 2, 3], [1, 3, 2]) # totally mistmatched lists self.compareFalse([1, 2, 3], [3, 4, 5]) # missing items self.compareFalse([1, 2, 3], [1, 2]) self.compareFalse([1, 2, 3], [1, 3]) # extra items self.compareFalse([1, 2, 3], [1, 2, 3, 4]) # empty array self.compare([], []) self.compareFalse([1], []) self.compareFalse([], [1]) self.compareFalse([], None) # strings self.compare(['a', 'b'], ['a', 'b']) self.compareFalse(['a', 'c'], ['a', 'b']) # multiple of a single value self.compare([1, 2, 2, 3, 3, 3], [1, 2, 2, 3, 3, 3]) self.compareFalse([1, 2, 2, 3, 3, 3], [1, 2, 3]) self.compareFalse([1, 2, 3], [1, 2, 2, 3, 3, 3]) def test_array_partial(self): '''note that these are all in-order''' # simple self.compare(partial([1]), [1, 2, 3]) self.compare(partial([2]), [1, 2, 3]) self.compare(partial([3]), [1, 2, 3]) self.compare(partial([1, 2]), [1, 2, 3]) self.compare(partial([1, 3]), [1, 2, 3]) self.compare(partial([1, 2, 3]), [1, 2, 3]) self.compareFalse(partial([4]), [1, 2, 3]) # ordered self.compareFalse(partial([3, 2, 1], ordered=True), [1, 2, 3]) self.compareFalse(partial([1, 3, 2], ordered=True), [1, 2, 3]) # empty array self.compare(partial([]), [1, 2, 3]) # multiple of a single items self.compare(partial([1, 2, 2]), [1, 2, 2, 3, 3, 3]) self.compareFalse(partial([1, 2, 2, 2]), [1, 2, 2, 3, 3, 3]) def test_array_unordered(self): # simple self.compare(bag([1, 2]), [1, 2]) self.compare(bag([2, 1]), [1, 2]) self.compareFalse(bag([1, 2]), [1, 2, 3]) self.compareFalse(bag([1, 3]), [1, 2, 3]) self.compareFalse(bag([3, 1]), [1, 2, 3]) # empty array self.compare(bag([]), []) def test_dict(self): # simple self.compare({'a': 1, 'b': 2, 'c': 3}, {'a': 1, 'b': 2, 'c': 3}) self.compare({'a': 1, 'b': 2, 'c': 3}, {'c': 3, 'a': 1, 'b': 2}) self.compareFalse({'a': 1, 'b': 2, 'c': 3}, {'a': 1}) self.compareFalse({'a': 1}, {'a': 1, 'b': 2, 'c': 3}) # empty self.compare({}, {}) self.compareFalse({}, {'a': 1}) self.compareFalse({'a': 1}, {}) def test_dict_partial(self): # simple self.compare(partial({'a': 1}), {'a': 1}) self.compare(partial({'a': 1}), {'a': 1, 'b': 2}) self.compareFalse(partial({'a': 2}), {'a': 1, 'b': 2}) self.compareFalse(partial({'c': 1}), {'a': 1, 'b': 2}) self.compareFalse(partial({'a': 1, 'b': 2}), {'b': 2}) # empty self.compare(partial({}), {}) self.compare(partial({}), {'a': 1}) self.compareFalse(partial({'a': 1}), {}) def test_compare_dict_in_array(self): # simple self.compare([{'a': 1}], [{'a': 1}]) self.compare([{'a': 1, 'b': 2}], [{'a': 1, 'b': 2}]) self.compare([{'a': 1}, {'b': 2}], [{'a': 1}, {'b': 2}]) self.compareFalse([{'a': 1}], [{'a': 1, 'b': 2}]) self.compareFalse([{'a': 2, 'b': 2}], [{'a': 1, 'b': 2}]) self.compareFalse([{'a': 2, 'c': 3}], [{'a': 1, 'b': 2}]) self.compareFalse([{'a': 2, 'c': 3}], [{'a': 1}]) self.compareFalse([{'a': 1}, {'b': 2}], [{'a': 1, 'b': 2}]) # order self.compareFalse([{'a': 1}, {'b': 2}], [{'b': 2}, {'a': 1}]) # partial self.compare(partial([{}]), [{'a': 1, 'b': 2}]) self.compare(partial([{}]), [{'a': 1, 'b': 2}]) self.compare(partial([{'a': 1}]), [{'a': 1, 'b': 2}]) self.compare(partial([{'a': 1, 'b': 2}]), [{'a': 1, 'b': 2}]) self.compare(partial([{'a': 1}, {'b': 2}]), [{'a': 1}, {'b': 2}, {'c': 3}]) self.compareFalse(partial([{'a': 2}]), [{'a': 1, 'b': 2}]) self.compareFalse(partial([{'a': 1, 'b': 2}]), [{'a': 1}]) # partial order self.compareFalse(partial([{'a': 1}, {'b': 2}], ordered=True), [{'b': 2}, {'a': 1}]) # partial unordered self.compare(partial([{'a': 1}, {'b': 2}]), [{'b': 2}, {'a': 1}]) self.compare(partial([{'a': 1}, {'b': 2}], ordered=False), [{'b': 2}, {'a': 1}]) def test_compare_partial_items_in_array(self): self.compare([{'a': 1, 'b': 1}, partial({'a': 2})], [{'a': 1, 'b': 1}, {'a': 2, 'b': 2}]) def test_compare_array_in_dict(self): pass def test_exception(self): # class only self.compare(KeyError, KeyError()) self.compare(KeyError(), KeyError()) self.compare(err('KeyError'), KeyError()) self.compare(err(KeyError), KeyError()) self.compareFalse(KeyError, NameError()) self.compareFalse(KeyError(), NameError()) self.compareFalse(err('KeyError'), NameError()) self.compareFalse(err(KeyError), NameError()) # subclass self.compare(LookupError, KeyError()) self.compare(LookupError(), KeyError()) self.compare(err('LookupError'), KeyError()) self.compare(err(LookupError), KeyError()) self.compareFalse(KeyError, LookupError()) self.compareFalse(KeyError(), LookupError()) self.compareFalse(err('KeyError'), LookupError()) self.compareFalse(err(KeyError), LookupError()) # message self.compare(err(KeyError), KeyError('alpha')) self.compare(err(KeyError, 'alpha'), KeyError('alpha')) self.compareFalse(err(KeyError, 'alpha'), KeyError('beta')) # regex message self.compare(err(KeyError), KeyError('alpha')) # regex message with debug/assertion text self.compare(err_regex(KeyError, 'alpha'), KeyError('alpha')) self.compare(err_regex(KeyError, 'alp'), KeyError('alpha')) self.compare(err_regex(KeyError, '.*pha'), KeyError('alpha')) self.compareFalse(err_regex(KeyError, 'beta'), KeyError('alpha')) # ToDo: frames (when/if we support them) def test_compare_uuid(self): # simple self.compare(uuid(), '4e9e5bc2-9b11-4143-9aa1-75c10e7a193a') self.compareFalse(uuid(), '4') self.compareFalse(uuid(), '*') self.compareFalse(uuid(), None) def test_numbers(self): # simple self.compare(1, 1) self.compare(1, 1.0) self.compare(1.0, 1) self.compare(1.0, 1.0) self.compareFalse(1, 2) self.compareFalse(1, 2.0) self.compareFalse(1.0, 2) self.compareFalse(1.0, 2.0) # precision precision = {'precision': 0.5} self.compare(1, 1.4, precision) self.compare(1.0, 1.4, precision) self.compareFalse(1, 2, precision) self.compareFalse(1, 1.6, precision) self.compareFalse(1.0, 2, precision) self.compareFalse(1.0, 1.6, precision) if __name__ == '__main__': unittest.main()
2.96875
3
xinshuo_io/google_api_io.py
xinshuoweng/cv_ml_tool
31
12784281
<reponame>xinshuoweng/cv_ml_tool # Author: <NAME> # email: <EMAIL> # this file includes functions for google gpi, such as google sheet import os, httplib2 from oauth2client import client, tools from oauth2client.file import Storage from googleapiclient import discovery from xinshuo_miscellaneous import isstring, islistoflist, islist """ BEFORE RUNNING: --------------- 1. If not already done, enable the Google Sheets API and check the quota for your project at https://console.developers.google.com/apis/api/sheets 2. Install the Python client library for Google APIs by running `pip install --upgrade ` """ def get_credentials(): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ try: import argparse flags = argparse.ArgumentParser(parents=[tools.argparser]).parse_args() except ImportError: flags = None home_dir = os.path.expanduser('~') credential_dir = os.path.join(home_dir, '.credentials') if not os.path.exists(credential_dir): os.makedirs(credential_dir) credential_path = os.path.join(credential_dir, 'sheets.googleapis.com-python-quickstart.json') store = Storage(credential_path) credentials = store.get() if not credentials or credentials.invalid: flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE, SCOPES) flow.user_agent = APPLICATION_NAME if flags: credentials = tools.run_flow(flow, store, flags) else: # Needed only for compatibility with Python 2.6 credentials = tools.run(flow, store) print('Storing credentials to ' + credential_path) return credentials def get_sheet_service(): # If modifying these scopes, delete your previously saved credentials # at ~/.credentials/sheets.googleapis.com-python-quickstart.json SCOPES = 'https://www.googleapis.com/auth/spreadsheets' # Authorize using one of the following scopes: # 'https://www.googleapis.com/auth/drive' # 'https://www.googleapis.com/auth/drive.file' # 'https://www.googleapis.com/auth/drive.readonly' # 'https://www.googleapis.com/auth/spreadsheets' # 'https://www.googleapis.com/auth/spreadsheets.readonly' # 'https://www.googleapis.com/auth/drive' # 'https://www.googleapis.com/auth/drive.file' # 'https://www.googleapis.com/auth/spreadsheets' CLIENT_SECRET_FILE = 'client_secret.json' APPLICATION_NAME = 'Google Sheets API Python' # TODO: Change placeholder below to generate authentication credentials. See # https://developers.google.com/sheets/quickstart/python#step_3_set_up_the_sample # credentials = None credentials = get_credentials() service = discovery.build('sheets', 'v4', credentials=credentials) return service def update_patchs2sheet(service, sheet_id, starting_position, data, debug=True): ''' update a list of list data to a google sheet continuously parameters: service: a service request to google sheet sheet_di: a string to identify the sheet uniquely starting_position: a string existing in the sheet to represent the let-top corner of patch to fill in data: a list of list data to fill ''' if debug: isstring(sheet_id), 'the sheet id is not a string' isstring(starting_position), 'the starting position is not correct' islistoflist(data), 'the input data is not a list of list' # How the input data should be interpreted. value_input_option = 'RAW' # TODO: Update placeholder value. value_range_body = {'values': data} request = service.spreadsheets().values().update(spreadsheetId=sheet_id, range=starting_position, valueInputOption=value_input_option, body=value_range_body) response = request.execute() def update_row2sheet(service, sheet_id, row_starting_position, data, debug=True): ''' update a list of data to a google sheet continuously parameters: service: a service request to google sheet sheet_di: a string to identify the sheet uniquely starting_position: a string existing in the sheet to represent the let-top corner of patch to fill in data: a of list data to fill ''' if debug: isstring(sheet_id), 'the sheet id is not a string' isstring(row_starting_position), 'the starting position is not correct' islist(data), 'the input data is not a list' # How the input data should be interpreted. value_input_option = 'RAW' # TODO: Update placeholder value. value_range_body = {'values': [data]} request = service.spreadsheets().values().update(spreadsheetId=sheet_id, range=row_starting_position, valueInputOption=value_input_option, body=value_range_body) response = request.execute() def get_data_from_sheet(service, sheet_id, search_range, debug=True): ''' get a list of data from a google sheet continuously parameters: service: a service request to google sheet sheet_di: a string to identify the sheet uniquely search_range: a list of position queried ''' if debug: isstring(sheet_id), 'the sheet id is not a string' islist(search_range), 'the search range is not a list' # print(search_range) # How the input data should be interpreted. # value_input_option = 'RAW' # TODO: Update placeholder value. # value_range_body = {'values': [data]} request = service.spreadsheets().values().batchGet(spreadsheetId=sheet_id, ranges=search_range) while True: try: response = request.execute() break except: continue data = list() # print(response['valueRanges']) for raw_data in response['valueRanges']: if 'values' in raw_data: data.append(raw_data['values'][0][0]) else: data.append('') return data
2.453125
2
src/dataset/normalizers.py
mug-auth/ssl-chewing
0
12784282
<reponame>mug-auth/ssl-chewing<filename>src/dataset/normalizers.py from abc import ABC, abstractmethod import numpy as np from dataset.template.commons import PureAbstractError class BaseNormalizer(ABC): """ Base class for normalizers. """ @abstractmethod def normalize(self, x: np.ndarray) -> np.ndarray: raise PureAbstractError() class ZeroMeanNormalizer(BaseNormalizer): def normalize(self, x: np.ndarray) -> np.ndarray: assert isinstance(x, np.ndarray) return x - np.mean(x) class StandardizerNormalizer(BaseNormalizer): def __init__(self, min_sigma: float = 1e-9): assert isinstance(min_sigma, float) # self._min_sigma: np.ndarray = np.array(min_sigma) self._min_sigma: float = min_sigma def normalize(self, x: np.ndarray) -> np.ndarray: assert isinstance(x, np.ndarray) sigma = np.max((np.std(x), self._min_sigma)) return (x - np.mean(x)) / sigma
2.84375
3
compare_hosts_lists.py
ayumi-cloud/hosts
0
12784283
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import argparse import os.path from collections import namedtuple from HostsTools import hosts_tools class HostList(namedtuple('HostList', 'filename set')): pass def parse_args() -> sys.argv: parser = argparse.ArgumentParser() parser.add_argument('filename_a', type=str, help='First list to compare') parser.add_argument('filename_b', type=str, help='Second list to compare') parser.add_argument('--diff', default=False, action='store_true', help='Show a full diff of the lists') args = parser.parse_args() if not (args.filename_a and args.filename_b): parser.print_help() exit(1) validate_filename_args(args) return args def validate_filename_args(args) -> None: if not os.path.isfile(args.filename_a): raise Exception('Invalid host file: ', args.filename_a) if not os.path.isfile(args.filename_b): raise Exception('Invalid host file: ', args.filename_b) def main() -> None: args = parse_args() filename_a = args.filename_a filename_b = args.filename_b set_a = hosts_tools.load_domains_from_list(filename_a) set_b = hosts_tools.load_domains_from_list(filename_b) list_a = HostList(filename_a, set_a) list_b = HostList(filename_b, set_b) print() print_list_size(list_a, list_b) print() print_list_difference(list_a, list_b) if args.diff: print() print_list_diff(list_a, list_b) def print_list_size(list_a: HostList, list_b: HostList) -> None: size_a = len(list_a.set) size_b = len(list_b.set) difference = size_a - size_b print('Number of unique host entries: %s' % difference) print_list_fact(list_a.filename, size_a) print_list_fact(list_b.filename, size_b) def print_list_difference(list_a: HostList, list_b: HostList) -> None: unique_list_a = list_a.set - list_b.set size_unique_a = len(unique_list_a) percentage_unique_a = round((size_unique_a / len(list_a.set)) * 100, 2) unique_list_b = list_b.set - list_a.set size_unique_b = len(unique_list_b) percentage_unique_b = round((size_unique_b / len(list_b.set)) * 100, 2) print('Number of unique hosts not in the other list:') print_list_fact(list_a.filename, f'{size_unique_a} ({percentage_unique_a}%)') print_list_fact(list_b.filename, f'{size_unique_b} ({percentage_unique_b}%)') def print_list_fact(list_name, fact) -> None: print('{:<30}{:<30}'.format(list_name, fact)) def print_list_diff(list_a: HostList, list_b: HostList) -> None: full_set = list_a.set.union(list_b.set) full_set_sorted = hosts_tools.sort_domains(list(full_set)) print('Lists Diff:') print('{:<50}{:<50}'.format(list_a.filename, list_b.filename)) for domain in full_set_sorted: list_a_value = domain if domain in list_a.set else '' list_b_value = domain if domain in list_b.set else '' if list_a_value != list_b_value: print('{:<50}{:<50}'.format(list_a_value, list_b_value)) if __name__ == "__main__": main()
2.875
3
src/ffmeta/__init__.py
stephen-bunn/ffmeta
0
12784284
# -*- encoding: utf-8 -*- # Copyright (c) 2021 st37 <<EMAIL>> # ISC License <https://choosealicense.com/licenses/isc> """FFMeta. Tool to write media metadata using ffmpeg. """
0.914063
1
tests/test_middleware.py
TheNeonProject/trivia-game-dialogflow
0
12784285
<filename>tests/test_middleware.py import os import unittest from middleware import is_token_valid class MiddlewareTestCase(unittest.TestCase): def setUp(self): os.environ.setdefault('TOKEN', 'token') def test_is_token_valid_empty_token(self): is_valid = is_token_valid(None) self.assertFalse(is_valid) def test_is_token_valid_invalid_token(self): is_valid = is_token_valid('invalid_token') self.assertFalse(is_valid) def test_is_token_valid_return_true(self): is_valid = is_token_valid('token') self.assertTrue(is_valid)
3.109375
3
infer.py
kevakil/mesh-transformer-jax
0
12784286
<reponame>kevakil/mesh-transformer-jax import os import requests from jax.config import config colab_tpu_addr = os.environ['COLAB_TPU_ADDR'].split(':')[0] url = f'http://{colab_tpu_addr}:8475/requestversion/tpu_driver0.1_dev20210607' requests.post(url) # The following is required to use TPU Driver as JAX's backend. config.FLAGS.jax_xla_backend = "tpu_driver" config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR'] print(jax.devices()) import time import jax from jax.experimental import maps import numpy as np import optax import transformers from mesh_transformer.checkpoint import read_ckpt_lowmem from mesh_transformer.sampling import nucleaus_sample from mesh_transformer.transformer_shard import CausalTransformer params = { "layers": 28, "d_model": 4096, "n_heads": 16, "n_vocab": 50400, "norm": "layernorm", "pe": "rotary", "pe_rotary_dims": 64, "seq": 2048, "cores_per_replica": 8, "per_replica_batch": 1, } per_replica_batch = params["per_replica_batch"] cores_per_replica = params["cores_per_replica"] seq = params["seq"] params["sampler"] = nucleaus_sample # here we "remove" the optimizer parameters from the model (as we don't need them for inference) params["optimizer"] = optax.scale(0) mesh_shape = (jax.device_count() // cores_per_replica, cores_per_replica) devices = np.array(jax.devices()).reshape(mesh_shape) maps.thread_resources.env = maps.ResourceEnv(maps.Mesh(devices, ('dp', 'mp'))) tokenizer = transformers.GPT2TokenizerFast.from_pretrained('gpt2') total_batch = per_replica_batch * jax.device_count() // cores_per_replica network = CausalTransformer(params) network.state = read_ckpt_lowmem(network.state, "step_383500/", devices.shape[1]) network.state = network.move_xmap(network.state, np.zeros(cores_per_replica)) def infer(context, top_p=0.9, temp=1.0, gen_len=512): tokens = tokenizer.encode(context) provided_ctx = len(tokens) pad_amount = seq - provided_ctx padded_tokens = np.pad(tokens, ((pad_amount, 0),)).astype(np.uint32) batched_tokens = np.array([padded_tokens] * total_batch) length = np.ones(total_batch, dtype=np.uint32) * len(tokens) start = time.time() output = network.generate(batched_tokens, length, gen_len, {"top_p": np.ones(total_batch) * top_p, "temp": np.ones(total_batch) * temp}) samples = [] decoded_tokens = output[1][0] for o in decoded_tokens[:, :, 0]: samples.append(f"\033[1m{context}\033[0m{tokenizer.decode(o)}") print(f"completion done in {time.time() - start:06}s") return samples print(infer("EleutherAI is")[0])
2.046875
2
tests/test_champion_rates.py
Canisback/solari
16
12784287
from solari import Leona from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount def test_champion_pickrate(match_set_2): l = Leona([ ChampionPickrate() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira got picked 5 times out of 20 games assert stats["Pickrate"].loc[777] == 5/20 def test_champion_winrate(match_set_2): l = Leona([ ChampionWinrate() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira won 4 times out of 5 games assert stats["Winrate"].loc[777] == 4/5 def test_champion_banrate(match_set_2): l = Leona([ ChampionBanrate() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was banned in 9 out of 19 games assert stats["Banrate"].loc[777] == 9/19 def test_champion_banrate_teamwise(match_set_2): l = Leona([ ChampionBanrate(team_wise=True) ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was banned in 10 times in 19 games assert stats["Banrate"].loc[777] == 10/19 def test_champion_pick_count(match_set_2): l = Leona([ ChampionPickCount() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was picked 5 times assert stats["Pick Count"].loc[777] == 5 def test_champion_ban_count(match_set_2): l = Leona([ ChampionBanCount() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was banned in 9 games assert stats["Ban Count"].loc[777] == 9 def test_champion_ban_count_teamwise(match_set_2): l = Leona([ ChampionBanCount(team_wise=True) ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was banned 10 times assert stats["Ban Count"].loc[777] == 10 def test_champion_presence(match_set_2): l = Leona([ ChampionPickrate(), ChampionBanrate(), ChampionPresenceRate() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was banned in 9 games and picked in 5 games out of 20 assert stats["Presence"].loc[777] == (5 + 9) / 20
2.4375
2
_scripts/paste/getdecoproperties.py
Son-Guhun/Titan-Land-Lands-of-Plenty
12
12784288
"""Gets properties from all decorations a .ini database and generates code to be used in the UnitTypeDefaultValues library. This code is copied to the clipboard and can be pasted in a text editor or inside the World Editor. """ import os import sys sys.path.insert(1, os.path.join(sys.path[0], '..')) #______________________________________________________________________________________________ from myconfigparser import MyConfigParser, load_unit_data, get_decorations import pyperclip keys = ['modelScale','red','green','blue','animProps','maxRoll'] def do(file_path='../../development/table/unit.ini'): with open(file_path) as f: unit_data = load_unit_data(f) result = [] decos = get_decorations(unit_data) for deco in decos: for key in keys: if key in unit_data[deco]: if key == 'animProps': result.append(" set UnitTypeDefaultValues('{}').{} = {}".format(deco, key, unit_data[deco][key].replace(',', ' '))) elif key != 'maxRoll' or float(unit_data[deco]['maxRoll']) < 0: result.append(" set UnitTypeDefaultValues('{}').{} = {}".format(deco, key, unit_data[deco][key])) pyperclip.copy('\n'.join(result))
2.296875
2
labml/internal/tracker/writers/screen.py
conanjm/labml
1
12784289
<reponame>conanjm/labml<gh_stars>1-10 from typing import Dict import numpy as np from labml import logger from .. import Writer, Indicator from ..indicators.artifacts import Artifact from ..indicators.numeric import NumericIndicator from labml.logger import Text class ScreenWriter(Writer): def __init__(self): super().__init__() self._estimates = {} self._beta = 0.9 self._beta_pow = {} self._last_printed_value = {} def update_estimate(self, k, v): if k not in self._estimates: self._estimates[k] = 0 self._beta_pow[k] = 1. self._estimates[k] *= self._beta self._estimates[k] += (1 - self._beta) * v self._beta_pow[k] *= self._beta def get_empty_string(self, length, decimals): return ' ' * (length - 2 - decimals) + '-.' + '-' * decimals def get_value_string(self, k, v): if k not in self._estimates: assert v is None return self.get_empty_string(8, 2) estimate = self._estimates[k] / (1 - self._beta_pow[k]) if abs(estimate) < 1e-9 or np.isnan(estimate): lg = 0 else: lg = int(np.ceil(np.log10(abs(estimate)))) + 1 decimals = 7 - lg decimals = max(1, decimals) decimals = min(6, decimals) fmt = "{v:8,." + str(decimals) + "f}" if v is None: return self.get_empty_string(8, decimals) else: return fmt.format(v=v) @staticmethod def __format_artifact(length: int, value: str): fmt = "{v:>" + str(length + 1) + "}" return fmt.format(v=value) def _get_indicator_string(self, indicators: Dict[str, Indicator]): parts = [] for ind in indicators.values(): if not isinstance(ind, NumericIndicator): continue if not ind.is_print: continue parts.append((f" {ind.name}: ", None)) if not ind.is_empty(): v = ind.get_mean() self.update_estimate(ind.name, v) value = self.get_value_string(ind.name, v) self._last_printed_value[ind.name] = value parts.append((value, Text.value)) elif ind.name in self._last_printed_value: value = self._last_printed_value[ind.name] parts.append((value, Text.subtle)) else: value = self.get_value_string(ind.name, None) parts.append((value, Text.subtle)) return parts @staticmethod def _print_artifacts_list(table: Dict[str, int], artifacts: Dict[str, Artifact]): order = list(table.keys()) if not len(order): return keys = {k for name in order for k in artifacts[name].keys()} for k in keys: for name in order: value = artifacts[name].get_string(k, artifacts) logger.log([(name, Text.key), ": ", (value, Text.value)]) def _print_artifacts_table(self, table: Dict[str, int], artifacts: Dict[str, Artifact]): order = list(table.keys()) if not len(order): return keys = [] keys_set = set() for name in order: for k in artifacts[name].keys(): if k not in keys_set: keys_set.add(k) keys.append(k) parts = [self.__format_artifact(table[name], name) for name in order] logger.log('|'.join(parts), Text.heading) for k in keys: parts = [] for name in order: value = artifacts[name].get_string(k, artifacts) parts.append(self.__format_artifact(table[name], value)) logger.log('|'.join(parts), Text.value) def _print_artifacts(self, indicators: Dict[str, Indicator]): table = {} artifacts = {} for ind in indicators.values(): if not isinstance(ind, Artifact): continue if not ind.is_print: continue if ind.is_empty(): continue if not ind.is_indexed: ind.print_all() continue table[ind.name] = ind.get_print_length() artifacts[ind.name] = ind if sum(table.values()) > 100: self._print_artifacts_list(table, artifacts) else: self._print_artifacts_table(table, artifacts) def write(self, *, global_step: int, indicators: Dict[str, Indicator]): self._print_artifacts(indicators) return self._get_indicator_string(indicators)
2.34375
2
tests/unit/test_order.py
Aspire1Inspire2/td-ameritrade-python-api
610
12784290
<gh_stars>100-1000 import unittest import td.enums as td_enums from unittest import TestCase from configparser import ConfigParser from td.orders import Order from td.orders import OrderLeg from td.client import TDClient from td.stream import TDStreamerClient class TDSession(TestCase): """Will perform a unit test for the TD session.""" def setUp(self) -> None: """Set up the Robot.""" # Grab configuration values. config = ConfigParser() config.read('config/config.ini') CLIENT_ID = config.get('main', 'CLIENT_ID') REDIRECT_URI = config.get('main', 'REDIRECT_URI') JSON_PATH = config.get('main', 'JSON_PATH') ACCOUNT_NUMBER = config.get('main', 'ACCOUNT_NUMBER') # Initalize the session. self.td_session = TDClient( client_id=CLIENT_ID, redirect_uri=REDIRECT_URI, credentials_path=JSON_PATH, account_number=ACCOUNT_NUMBER ) self.td_order = Order() self.td_order_leg = OrderLeg() def test_creates_instance_of_session(self): """Create an instance and make sure it's a robot.""" self.assertIsInstance(self.td_session, TDClient) self.assertIsInstance(self.td_order, Order) self.assertIsInstance(self.td_order_leg, OrderLeg) def test_define_simple_order(self): """Test creating a simple order.""" # Add the Order session. self.td_order.order_session( session=td_enums.ORDER_SESSION.NORMAL ) # Add the Order duration. self.td_order.order_duration( duration=td_enums.DURATION.GOOD_TILL_CANCEL ) # Add the Order Leg Instruction. self.td_order_leg.order_leg_instruction( instruction=td_enums.ORDER_INSTRUCTIONS.SELL ) # Add the Order Leg price. self.td_order_leg.order_leg_price( price=112.50 ) # Add the Order Leg quantity. self.td_order_leg.order_leg_quantity( quantity=10 ) # Add the Order Leg Asset. self.td_order_leg.order_leg_asset( asset_type=td_enums.ORDER_ASSET_TYPE.EQUITY, symbol='MSFT' ) # Add the Order Leg. self.td_order.add_order_leg( order_leg=self.td_order_leg ) correct_dict = { "session": "NORMAL", "duration": "GOOD_TILL_CANCEL", "orderLegCollection": [ { "instruction": "SELL", "price": 112.5, "quantity": 10, "instrument": { "assetType": "EQUITY", "symbol": "MSFT" } } ] } self.assertDictEqual(correct_dict, self.td_order._grab_order()) def tearDown(self): """Clean Up.""" self.td_session = None self.td_order = None self.td_order_leg = None if __name__ == '__main__': unittest.main()
2.859375
3
tests/test_utils.py
afonsobspinto/pyecore
1
12784291
import pytest from pyecore.ecore import * from pyecore.utils import DynamicEPackage @pytest.fixture(scope='module') def simplemm(): A = EClass('A') B = EClass('B') Root = EClass('Root') pack = EPackage('pack', nsURI='http://pack/1.0', nsPrefix='pack') pack.eClassifiers.extend([Root, A, B]) return pack @pytest.fixture(scope='module') def complexmm(): A = EClass('A') B = EClass('B') Root = EClass('Root') pack = EPackage('pack', nsURI='http://pack/1.0', nsPrefix='pack') pack.eClassifiers.extend([Root, A, B]) innerpackage = EPackage('inner', nsURI='http://inner', nsPrefix='inner') C = EClass('C') D = EClass('D') innerpackage.eClassifiers.extend([C, D]) pack.eSubpackages.append(innerpackage) return pack def test_dynamic_access_eclasses(simplemm): SimpleMM = DynamicEPackage(simplemm) assert SimpleMM.A assert SimpleMM.B def test_dynamic_access_innerpackage(complexmm): ComplexMM = DynamicEPackage(complexmm) assert ComplexMM.A assert ComplexMM.B assert ComplexMM.inner.C assert ComplexMM.inner.D def test_dynamic_addition_eclasses(complexmm): ComplexMM = DynamicEPackage(complexmm) E = EClass('E') complexmm.eClassifiers.append(E) assert ComplexMM.E F = EClass('F') complexmm.eSubpackages[0].eClassifiers.append(F) assert ComplexMM.inner.F G = EClass('G') H = EClass('H') complexmm.eClassifiers.extend([G, H]) assert ComplexMM.G assert ComplexMM.H def test_dynamic_removal_eclasses(complexmm): ComplexMM = DynamicEPackage(complexmm) assert ComplexMM.Root complexmm.eClassifiers.remove(ComplexMM.Root) with pytest.raises(AttributeError): ComplexMM.Root assert ComplexMM.A complexmm.eClassifiers[0].delete() with pytest.raises(AttributeError): ComplexMM.A
2.15625
2
custom_layers.py
martinpilat/RBFolutionalLayer
3
12784292
import tensorflow as tf import numpy as np class RBFolution(tf.keras.layers.Layer): def __init__(self, filters, kernel_size=(1, 3, 3, 1), padding="VALID", strides=(1, 1, 1, 1), name="RBFolution", dilation_rate=(1,1), ccs_initializer=tf.keras.initializers.RandomUniform(0,1), beta_initilizer=tf.keras.initializers.RandomUniform(0,1)): super(RBFolution, self).__init__(name=name) self.padding = padding self.strides = strides self.filters = filters self.kernel_size = kernel_size self.ccs_initializer = ccs_initializer self.beta_initilizer = beta_initilizer self.dilation_rate = dilation_rate def build(self, input_shape): self.input_s = input_shape self.output_s = self.compute_output_shape(input_shape) patch_dim = np.prod(self.kernel_size[1:]) self.ccs_tensor = self.add_weight("cluster_centers", shape=(patch_dim, self.filters), dtype="float32", initializer=self.ccs_initializer) self.beta = self.add_weight("beta", shape=[self.filters], dtype="float32", initializer=self.beta_initilizer) def call(self, input, **kwargs): return tf.reshape(self.__rbfolution(input), self.output_s) def compute_output_shape(self, input_shape): space = input_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = RBFolution.conv_output_length( space[i], self.kernel_size[1:-1][i], padding=self.padding.lower(), stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim.value) return (-1,) + tuple(new_space) + (self.filters,) def __rbfolution(self, inputs): batch_size = tf.shape(inputs)[0] patch_dim = np.prod(self.kernel_size[1:]) # Patches extracted from the images (convolution-like). # shape=[batch_size, new_height, new_width, patch_dim] (i. e. individual # patches are flattened) # tf.extract_image_patches "Only supports ksizes across space" -> we change # kernel_size[3] to 1. patches = tf.extract_image_patches( inputs, ksizes=list(self.kernel_size[:3]) + [1], strides=self.strides, rates=[1, 1, 1, 1], padding=self.padding ) patches_shape = tf.shape(patches) new_height = patches_shape[1] new_width = patches_shape[2] # shape=[batch_size, num_patches, patch_dim] reshaped_patches = tf.reshape(patches, [batch_size, -1, patch_dim]) # all_scores[i,j,k] = sum_{l=0}^{patch_dim-1} ( # (ccs_tensor[l,k] - reshaped_patches[i,j,l]) ** 2 # ) # shape=[batch_size, num_patches, filters] all_scores = ( tf.reduce_sum(tf.square(reshaped_patches), 2, keepdims=True) - 2 * tf.einsum("aij,jk->aik", reshaped_patches, self.ccs_tensor) + tf.reduce_sum(tf.square(self.ccs_tensor), 0, keepdims=True) ) res = tf.reshape( tf.exp(tf.multiply(-self.beta, all_scores)), [batch_size, new_height, new_width, self.filters], name="rbfolution_activation" ) return res @staticmethod def conv_output_length(input_length, filter_size, padding, stride, dilation=1): """Determines output length of a convolution given input length. Arguments: input_length: integer. filter_size: integer. padding: one of "same", "valid", "full", "causal" stride: integer. dilation: dilation rate, integer. Returns: The output length (integer). """ if input_length is None: return None assert padding in {'same', 'valid', 'full', 'causal'} dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) if padding in ['same', 'causal']: output_length = input_length elif padding == 'valid': output_length = input_length - dilated_filter_size + 1 elif padding == 'full': output_length = input_length + dilated_filter_size - 1 return (output_length + stride - 1) // stride
2.4375
2
main.py
StanislavPetrovV/Advanced_RayMarching
11
12784293
<gh_stars>10-100 import moderngl_window as mglw class App(mglw.WindowConfig): window_size = 1600, 900 resource_dir = 'programs' def __init__(self, **kwargs): super().__init__(**kwargs) self.quad = mglw.geometry.quad_fs() self.program = self.load_program(vertex_shader='vertex.glsl', fragment_shader='fragment.glsl') self.u_scroll = 3.0 # textures self.texture1 = self.load_texture_2d('../textures/test0.png') self.texture2 = self.load_texture_2d('../textures/hex.png') # floor self.texture3 = self.load_texture_2d('../textures/white_marble1.png') # walls self.texture4 = self.load_texture_2d('../textures/roof/texture3.jpg') # roof self.texture5 = self.load_texture_2d('../textures/black_marble1.png') # pedestal self.texture6 = self.load_texture_2d('../textures/green_marble1.png') # sphere self.texture7 = self.load_texture_2d('../textures/roof/height3.png') # roof bump # uniforms self.program['u_scroll'] = self.u_scroll self.program['u_resolution'] = self.window_size self.program['u_texture1'] = 1 self.program['u_texture2'] = 2 self.program['u_texture3'] = 3 self.program['u_texture4'] = 4 self.program['u_texture5'] = 5 self.program['u_texture6'] = 6 self.program['u_texture7'] = 7 def render(self, time, frame_time): self.ctx.clear() self.program['u_time'] = time self.texture1.use(location=1) self.texture2.use(location=2) self.texture3.use(location=3) self.texture4.use(location=4) self.texture5.use(location=5) self.texture6.use(location=6) self.texture7.use(location=7) self.quad.render(self.program) def mouse_position_event(self, x, y, dx, dy): self.program['u_mouse'] = (x, y) def mouse_scroll_event(self, x_offset, y_offset): self.u_scroll = max(1.0, self.u_scroll + y_offset) self.program['u_scroll'] = self.u_scroll if __name__ == '__main__': mglw.run_window_config(App)
2.15625
2
listener.py
vinhquevu/angora
0
12784294
<reponame>vinhquevu/angora """ Angora Queue """ import socket from typing import Dict, Optional import kombu # type: ignore class Queue: """ An object representing a queue in RabbitMQ. A listener can listen to one or more queues and have one or more callbacks. Consumer expects a sequence of queues. Angora is designed to only have one listener per queue. A kombu.Queue object is passed as a list to kombu.Consumer for this reason. Once you create a Queue object, you can do two things: start up the listener or clear the queue. """ def __init__( self, queue_name: str, routing_key: str, queue_args: Optional[Dict] = None, user: str = "guest", password: str = "<PASSWORD>", host: str = "localhost", port: int = 5672, exchange_name: str = "angora", exchange_type: str = "direct", ) -> None: self.queue_name = queue_name self.routing_key = routing_key self.queue_args = queue_args self.user = user self.password = password self.host = host self.port = port self.exchange_name = exchange_name self.exchange_type = exchange_type @property def queue(self) -> kombu.Queue: return kombu.Queue( self.queue_name, kombu.Exchange(self.exchange_name, type=self.exchange_type), self.routing_key, queue_arguments=self.queue_args, ) @property def connection_str(self) -> str: return "amqp://{}:{}@{}:{}//".format( self.user, self.password, self.host, self.port ) def listen(self, callbacks: Optional[list] = None) -> None: """ Start a listener and handle messeages with the callback(s). If the queue does not already exist in the exchange, it will be created. """ with kombu.Connection(self.connection_str) as conn: with kombu.Consumer(conn, [self.queue], callbacks=callbacks, no_ack=True): try: print("STARTING LISTENER") for _ in kombu.eventloop(conn): pass except KeyboardInterrupt: print("\nExiting\n") def clear(self) -> None: """ Clear a queue of messages. If the queue does not exist in the exchange, it will be created. If the queue doesn't exist, this is the same as creating an empty queue with no listener. """ with kombu.Connection(self.connection_str) as conn: with kombu.Consumer(conn, [self.queue], no_ack=True): try: conn.drain_events(timeout=2) except (socket.timeout, NotImplementedError): print("\nQueue has been drained\n")
3.265625
3
components/services/appengine/stub/beaker/exceptions.py
appcelerator-archive/entourage
1
12784295
<filename>components/services/appengine/stub/beaker/exceptions.py class BeakerException(Exception): pass class InvalidCacheBackendError(BeakerException): pass class MissingCacheParameter(BeakerException): pass class LockError(BeakerException): pass
1.6875
2
ilias2nbgrader/preprocessors/createfolderstructure.py
DigiKlausur/ilias2nbgrader
4
12784296
import os from .preprocessor import Preprocessor from traitlets import Unicode from shutil import move import glob class CreateFolderStructure(Preprocessor): directory = Unicode('restructured', help='Subfolder where processed files go') def __init__(self): super(CreateFolderStructure, self).__init__() def mkdir(self, path): if not os.path.exists(path): os.makedirs(path) def preprocess_student(self, student, resources): self.init_logging('Create Folder Structure') src = os.path.join(self.src, student) dst = os.path.join(self.dst, student, resources['assignment']) self.mkdir(os.path.join(self.dst, student)) move(src, dst) self.log.info('Moved submission to subfolder {}'.format(resources['assignment'])) self.terminate_logging(os.path.join(self.dst, student, resources['assignment'], self.logname)) return student, resources
2.53125
3
ms/collect_figures.py
yoavram/Milpitas
0
12784297
<gh_stars>0 # import tempfile import shutil import os.path from os.path import join as join_path from os.path import split as split_path import re from zipfile import ZipFile if __name__ == '__main__': ms_dir = '../ms' figures_dir = '../figures' ms_figures_dir = join_path(ms_dir, 'figures') zip_fname = '/Users/yoavram/Dropbox/Milpitas/figures.zip' tex_files = ['figures.tex', 'figures_supp.tex'] pattern = re.compile(r'\\includegraphics(?:\[.*\])?\{(.*\.\w{3})\}') if os.path.exists(ms_figures_dir): shutil.rmtree(ms_figures_dir) os.mkdir(ms_figures_dir) figures = [] for fn in tex_files: with open(join_path(ms_dir, fn)) as f: matches = (pattern.match(line) for line in f) matches = (m for m in matches if m is not None) filenames = (m.groups()[0] for m in matches) filenames = (split_path(fn)[-1] for fn in filenames) filenames = (join_path(figures_dir, fn) for fn in filenames) figures.extend(filenames) with ZipFile(zip_fname, 'w') as z: for fn in figures: print(fn) shutil.copy(fn, join_path(ms_figures_dir, split_path(fn)[-1])) z.write(fn) print("{} figures copied to {} and zipped to {}".format( len(figures), ms_figures_dir, zip_fname))
2.640625
3
resources/mechanics_lib/Fulcrum.py
PRECISE/ROSLab
7
12784298
from api.component import Component class Fulcrum(Component): def defComponents(self): # Subcomponents used in this assembly self.addSubcomponent("stem", "Hinge") self.addSubcomponent("left", "RectBeam") self.addSubcomponent("right", "RectBeam") self.addSubcomponent("t", "TJoint") def defParameters(self): # Subcomponent free parameters are inherited by default # Subcomponent parameters that are no longer free in this assembly are deleted ''' self.delParameter("length") self.delParameter("width") self.delParameter("depth") self.delParameter("angle") self.delParameter("rangle") self.delParameter("langle") self.delParameter("phase") self.delParameter("noflap") self.delParameter("faces") ''' # New free parameters specific to this assembly are added self.newParameter("leftlength") self.newParameter("rightlength") self.newParameter("stemwidth") self.newParameter("crosswidth") self.newParameter("thickness") def defInterfaces(self): # Locations on FixedLegs component that higher order components can use for assembly self.newInterface("stemedge") self.newInterface("leftedge") self.newInterface("rightedge") self.newInterface("lefttab") def defConstraints(self): ### Set specific relationships between parameters self.addConstraint(("stem", "perimeter"), ("stemwidth", "thickness"), "2 * sum(x)") self.addConstraint(("stem", "top"), ("stemwidth", "thickness"), "(x[1]-x[0]) * 1.0 / sum(x)") self.addConstraint(("stem", "bot"), ("stemwidth", "thickness"), "(x[1]-x[0]) * 1.0 / sum(x)") self.addConstraint(("left", "depth"), ("thickness")) self.addConstraint(("left", "width"), ("crosswidth")) self.addConstraint(("left", "length"), ("leftlength")) self.addConstraint(("right", "depth"), ("thickness")) self.addConstraint(("right", "width"), ("crosswidth")) self.addConstraint(("right", "length"), ("rightlength")) self.addConstraint(("t", "thickness"), "thickness") self.addConstraint(("t", "crosswidth"), "crosswidth") self.addConstraint(("t", "stemwidth"), "stemwidth") def defConnections(self): self.addConnection(("t", "leftedge"), ("left", "botedge.0.3"), "Flat") self.addConnection(("t", "rightedge"), ("right", "topedge.0.3"), "Flat") self.addConnection(("t", "stemedge"), ("stem", "topedge.1"), "Fold", angle=(-70.5/2)) # XXX Not well shaped -- leaves overhang self.addConnection(("t", "stemtab"), ("stem", "topedge.3"), "Tab", name="tab", depth=10, angle=(-70.5/2)) def defInterfaces(self): # Define interface locations in terms of subcomponent interfaces self.inheritInterface("stemedge", ("stem", "botedge")) self.inheritInterface("lefttab", ("left", "tabedge")) self.inheritInterface("leftedge", ("left", "topedge")) self.inheritInterface("rightedge", ("right", "botedge")) if __name__ == "__main__": # Instantiate new object f = Fulcrum() # Define free parameters f.setParameter("thickness", 10) f.setParameter("stemwidth", 20) f.setParameter("crosswidth", 30) f.setParameter("leftlength", 50) f.setParameter("rightlength", 100) # Generate outputs f.make() f.drawing.graph.toSTL("output/tbar.stl") f.drawing.transform(relative=(0,0)) import utils.display utils.display.displayTkinter(f.drawing)
2.5625
3
poc/db_schema.py
fabienleite/IOMMU-dumper
0
12784299
#!/bin/false # -*- coding: utf-8 -*- import os import sys from sqlalchemy import Column, ForeignKey, Integer, String, Boolean from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship from sqlalchemy import create_engine Base = declarative_base() class Device(Base): __tablename__ = 'device' id = Column(Integer, primary_key=True) name = Column(String(255), unique=True) bdf = Column(String(255), unique=True) class Mapping(Base): __tablename__ = 'mapping' id = Column(Integer, primary_key=True) iova = Column(String(255)) phys_addr = Column(String(255)) size = Column(Integer) device_id = Column(Integer, ForeignKey('device.id')) device = relationship('Device', backref='mapping') engine = create_engine('sqlite:///iommu.db') Base.metadata.create_all(engine)
2.75
3
guide/train_operator_ppo_ray.py
jgori-ouistiti/interaction-agents
0
12784300
<reponame>jgori-ouistiti/interaction-agents<gh_stars>0 from pointing.envs import SimplePointingTask from pointing.assistants import ConstantCDGain from pointing.users import CarefulPointer from coopihc.policy import Policy from coopihc.bundle import PlayUser, Train from gym.wrappers import FlattenObservation from collections import OrderedDict import gym import numpy class ThisActionWrapper(gym.ActionWrapper): def __init__(self, env): super().__init__(env) self.N = env.action_space[0].n self.action_space = gym.spaces.Box(low=-1, high=1, shape=(1,)) def action(self, action): (action * self.N / 2) + (self.N - 1) / 2 return int(numpy.round((action * self.N / 2) + (self.N - 1) / 2)[0]) class Pointing(gym.Env): def __init__(self, env_config): task = SimplePointingTask(gridsize=31, number_of_targets=8) unitcdgain = ConstantCDGain(1) policy = Policy( action_space=[gym.spaces.Discrete(10)], action_set=[-5 + i for i in range(5)] + [i + 1 for i in range(5)], action_values=None, ) user = CarefulPointer(agent_policy=policy) bundle = PlayUser(task, user, unitcdgain) if env_config["observation_mode"] == "flat": observation_mode = "flat" elif env_config["observation_mode"] is None: observation_mode = None else: observation_mode = OrderedDict( { "task_state": OrderedDict({"Position": 0}), "user_state": OrderedDict({"Goal": 0}), } ) env = Train(bundle, observation_mode=observation_mode) env = ThisActionWrapper(env) self.env = env self.action_space = env.action_space self.observation_space = env.observation_space def reset(self): return self.env.reset() def step(self, action): return self.env.step(action) env_config = {"observation_mode": "flat"} flat_env = Pointing(env_config) env_config = {"observation_mode": None} natural_env = Pointing(env_config) env_config = {"observation_mode": "dict"} dict_env = Pointing(env_config) exit() import ray import ray.rllib.agents.ppo as ppo ray.shutdown() ray.init(ignore_reinit_error=True) import shutil CHECKPOINT_ROOT = "tmp/ppo/pointing" shutil.rmtree(CHECKPOINT_ROOT, ignore_errors=True, onerror=None) ray_results = "/home/jgori/ray_results/" shutil.rmtree(ray_results, ignore_errors=True, onerror=None) config = ppo.DEFAULT_CONFIG.copy() config["env_config"] = {} config["log_level"] = "WARN" agent = ppo.PPOTrainer(config, env=Pointing) N_ITER = 1 s = "{:3d} reward {:6.2f}/{:6.2f}/{:6.2f} len {:6.2f} saved {}" for n in range(N_ITER): result = agent.train() file_name = agent.save(CHECKPOINT_ROOT)
2.265625
2
tests/data/test_bo_remove_user_from_group.py
c17r/TagTrain
0
12784301
import pytest from . import db from .db import database from tagtrain import data def test_unknown_owner(database): with pytest.raises(data.Group.DoesNotExist): group = data.by_owner.remove_user_from_group('non-existent', db.GROUP_NAME, 'doesnt-matter') def test_unknown_group(database): with pytest.raises(data.Group.DoesNotExist): group = data.by_owner.remove_user_from_group(db.OWNER_NAME, 'non-existent', 'doesnt-matter') def test_unknown_member(database): with pytest.raises(data.Member.DoesNotExist): group = data.by_owner.remove_user_from_group(db.OWNER_NAME, db.GROUP_NAME, 'non-existent') def test_good_non_empty(database): group = data.by_owner.find_group(db.OWNER_NAME, db.GROUP_NAME) assert group.member_count == 4 assert len(list(group.members)) == 4 group = data.by_owner.remove_user_from_group(db.OWNER_NAME, db.GROUP_NAME, 'one') assert group.name == db.GROUP_NAME assert group.reddit_name == db.OWNER_NAME assert group.member_count == 3 assert len(list(group.members)) == 3 assert group.members[0].reddit_name == 'two' group = data.by_owner.find_group(db.OWNER_NAME, db.GROUP_NAME) assert group.member_count == 3 assert len(list(group.members)) == 3 def test_good_empty(database): group = data.by_owner.find_group(db.OWNER_NAME, db.GROUP_NAME) assert group.member_count == 4 assert len(list(group.members)) == 4 members_to_delete = [m.reddit_name for m in group.members] for m in members_to_delete: group = data.by_owner.remove_user_from_group(db.OWNER_NAME, db.GROUP_NAME, m) assert group.name == db.GROUP_NAME assert group.reddit_name == db.OWNER_NAME assert group.member_count == 0 assert len(list(group.members)) == 0 group = data.by_owner.find_group(db.OWNER_NAME, db.GROUP_NAME) assert group.member_count == 0 assert len(list(group.members)) == 0
2.421875
2
psite/urls.py
jrrobertson/psite
0
12784302
<reponame>jrrobertson/psite from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.urls import path, include from django.views.generic import RedirectView from resume import views urlpatterns = [ path('', RedirectView.as_view(url='resume/')), path('admin/', admin.site.urls), path('resume/', views.view_resume, name='v_resume'), path('aboutme/', views.view_aboutme, name='v_aboutme'), path('blog/', include('blog.urls')), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
1.875
2
elderflower/task.py
NGC4676/minister
1
12784303
<reponame>NGC4676/minister #!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import warnings import numpy as np from pathlib import Path from functools import partial from astropy.io import fits from astropy.table import Table from .io import logger from .io import find_keyword_header, check_save_path, clean_pickling_object from .detection import default_SE_config, default_conv, default_nnw from .mask import mask_param_default from . import DF_pixel_scale, DF_raw_pixel_scale, DF_Gain def Run_Detection(hdu_path, obj_name, band, threshold=5, work_dir='./', config_path=None, executable=None, ZP_keyname='REFZP', ZP=None, pixel_scale=DF_pixel_scale, ref_cat='APASSref.cat', apass_dir=None, sep_match=2, **SE_kwargs): """ Run a first-step source detection with SExtractor. This step generates a SExtractor catalog and segementation map for the cross-match and measurement in Match_Mask_Measure. Magnitudes are converted using the zero-point stored in the header ('ZP_keyname'). If not stored in the header, it will try to compute the zero-point by cross-match with the APASS catalog. In this case, the directory to the APASS catalogs is needed ('apass_dir'). If a reference catalog already exists, it can be provided ('ref_cat') to save time. Parameters ---------- hdu_path : str Full path of hdu data obj_name : str Object name band : str, ‘G’, ‘g’, ‘R’, ‘r’ Filter name threshold : int, optional, default 5 Detection and analysis threshold of SExtractor work_dir : str, optional, default current directory Full path of directory for saving config_path : str, optional, None Full path of configuration file of running SExtractor. By default it uses the one stored in configs/ executable : str, optional, None Full path of the SExtractor executable. If SExtractor is installed this can be obtained by typing '$which source-extractor' or '$which sex' in the shell. By default it will searched with an attempt. ZP_keyname : str, optional, default REFZP Keyword names of zero point in the header. If not found, a value can be passed by ZP. ZP : float or None, optional, default None Zero point value. If None, it finds ZP_keyname in the header. If not provided either, it will compute a zero point by cross-match with the APASS catalog. pixel_scale : float, optional, default 2.5 Pixel scale in arcsec/pixel. ref_cat : str, optional, default 'APASSref.cat' Full path file name of the APASS reference catalog. If not found, it will generate a reference catalog. apass_dir : str, optional, default None Full path of the diectory of the APASS catalogs. sep_match : float, optional, default 2 Maximum separation (in arcsec) for crossmatch with APASS. Not used if ZP is given in the header. Returns ------- ZP: float Zero point value from the header, or a crossmatch with APASS, or a user-input. Notes ----- SExtractor must be installed and the local executable path needs to be correct. A configuration file can be passed by config_path than default, but parameters can be overwritten by passing them as kwargs, e.g. (note SExtractor keywords are in capital): Run_Detection(..., DETECT_THRESH=10) will override threshold. """ from .detection import run as run_sextractor from .io import update_SE_kwargs, get_SExtractor_path logger.info(f"Run SExtractor on {hdu_path}...") check_save_path(work_dir, overwrite=True, verbose=False) band = band.lower() segname = os.path.join(work_dir, f'{obj_name}-{band}_seg.fits') catname = os.path.join(work_dir, f'{obj_name}-{band}.cat') header = fits.getheader(hdu_path) if config_path is None: config_path = default_SE_config if executable is None: executable = get_SExtractor_path() SE_extra_params = ['NUMBER','X_WORLD','Y_WORLD','FLUXERR_AUTO','MAG_AUTO', 'MU_MAX','CLASS_STAR','ELLIPTICITY'] # Find zero-point in the fits header if ZP_keyname not in header.keys(): logger.warning("ZP_keyname is not found in the header") # If not in the header, check kwargs if type(ZP) is not float: # If not available in kwargs, compute by crossmatch with refcat try: from dfreduce.utils.catalogues import (match_catalogues, load_apass_in_region) except ImportError: msg = "Crossmatch is currently not available because dfreduce is not installed. A ZP_keyname is required in the header." logger.error(msg) sys.exit() logger.info("Compute zero-point from crossmatch with APASS catalog...") # alias for CDELT and CD for axis in [1, 2]: cd = 'CD{0}_{1}'.format(axis, axis) if cd not in header.keys(): header[cd] = header['PC{0}_{1}'.format(axis, axis)] # Run sextractor with free zero-point SE_catalog = run_sextractor(hdu_path, extra_params=SE_extra_params, config_path=config_path, catalog_path=catname, executable=executable, DETECT_THRESH=10, ANALYSIS_THRESH=10, PIXEL_SCALE=pixel_scale, FILTER_NAME=default_conv, STARNNW_NAME=default_nnw) # Load (APASS) reference catalog ref_cat = os.path.join(work_dir, "{0}.{1}".format(*os.path.basename(ref_cat).rsplit('.', 1))) if os.path.exists(ref_cat): refcat = Table.read(ref_cat, format='ascii') else: logger.info("Generate APASS reference catalog... It will take some time.") ra_range = abs(header['NAXIS1'] * header['CD1_1']) dec_range = abs(header['NAXIS2'] * header['CD2_2']) maxra = header['CRVAL1'] - header['CRPIX1'] * header['CD1_1'] mindec = header['CRVAL2'] - header['CRPIX2'] * header['CD2_2'] minra = maxra - ra_range maxdec = mindec + dec_range bounds_cat = [mindec, maxdec, minra, maxra] if apass_dir!=None: if os.path.exists(apass_dir): refcat = load_apass_in_region(apass_dir, bounds=bounds_cat) refcat.write(ref_cat, format='ascii') else: raise FileNotFoundError('APASS directory not available.') # Crossmatch SE catalog with reference catalog imagecat_match, refcat_match = match_catalogues(SE_catalog, refcat, band, sep_max=sep_match) # Get the median ZP from the crossmatched catalog ZP = np.median(refcat_match[band] - imagecat_match[band]) logger.info("Matched median zero-point = {:.3f}".format(ZP)) else: ZP = np.float(header[ZP_keyname]) logger.info("Read zero-point from header : ZP = {:.3f}".format(ZP)) logger.info("Pixel scale = {:.2f}".format(pixel_scale)) logger.info("Detection threshold = {:.1f}".format(threshold)) SE_kwargs_update = {'DETECT_THRESH':threshold, 'ANALYSIS_THRESH':threshold, 'MAG_ZEROPOINT':ZP, 'PIXEL_SCALE':pixel_scale} SE_kwargs = update_SE_kwargs(SE_kwargs, SE_kwargs_update) SE_catalog = run_sextractor(hdu_path, extra_params=SE_extra_params, config_path=config_path, catalog_path=catname, executable=executable, CHECKIMAGE_TYPE='SEGMENTATION', CHECKIMAGE_NAME=segname, **SE_kwargs) if not (os.path.isfile(catname)) & (os.path.isfile(segname)): raise FileNotFoundError('SE catalog/segmentation not saved properly.') logger.info(f"CATALOG saved as {catname}") logger.info(f"SEGMENTATION saved as {segname}") return ZP def Match_Mask_Measure(hdu_path, bounds_list, obj_name, band, pixel_scale=DF_pixel_scale, ZP=None, bkg=None, field_pad=50, r_scale=12, mag_limit=15, mag_saturate=13.5, width_ring=1.5, width_cross=10, draw=True, save=True, use_PS1_DR2=False, work_dir='./'): """ Generate a series of files as preparations for the fitting. The function completes by the following steps: 1) Identify bright extended sources empirically and mask them. 2) Crossmatch the SExtractor table with the PANSTARRS catalog. 3) Correct the catalogued magnitudes to the used filter. 4) Add saturated stars missing in the crossmatch by a correction. 5) Make mask maps for dim stars with empirical apertures enlarged from SExtractor. 6) Measure brightness in annuli around bright stars The output files are saved in: work_dir/obj_name/Measure-PS1 or work_dir/obj_name/Measure-PS2 Parameters ---------- hdu_path : str Full path of hdu data. bounds_list : 2D list / turple List of boundaries of regions to be fit (Nx4). [[X min, Y min, X max, Y max],[...],...] obj_name : str Object name. band : str, 'g', 'G', 'r', 'R' Filter name. pixel_scale : float, optional, default 2.5 Pixel scale in arcsec/pixel. ZP : float or None, optional, default None Zero point value (if None, read ZP from header). bkg : float or None, optional, default None Background estimated value (if None, read BACKVAL from header). field_pad : int, optional, default 100 Padding size (in pix) of the field for crossmatch. Only used if use_PS1_DR2=False r_scale : int, optional, default 12 Radius (in pix) at which the brightness is measured. Default is 30" for Dragonfly. mag_limit : float, optional, default 15 Magnitude upper limit below which are measured. mag_saturate : float, optional, default 13.5 Estimate of magnitude at which the image is saturated. The exact value will be fit. width_ring : float, optional, default 1.5 Half-width in arcsec of ring used to measure the scaling. width_cross : float, optional, default 4 * 2.5 Half-width in arcsec of the spike mask when measuring the scaling. draw : bool, optional, default True Whether to draw diagnostic plots. save : bool, optional, default True Whether to save results. use_PS1_DR2 : bool, optional, default False Whether to use PANSTARRS DR2. Crossmatch with DR2 is done by MAST query, which could easily fail if a field is too large (> 1 deg^2). work_dir : str, optional, default current directory Full path of directory for saving. Returns ------- None None """ band = band.lower() bounds_list = np.atleast_2d(bounds_list).astype(int) ################################################## # Read and Display ################################################## from .utils import crop_image, crop_catalog, background_stats from astropy import wcs # Read hdu if not os.path.isfile(hdu_path): msg = "Image does not exist. Check path." logger.error(msg) raise FileNotFoundError() with fits.open(hdu_path) as hdul: logger.info(f"Read Image: {hdu_path}") data = hdul[0].data header = hdul[0].header wcs_data = wcs.WCS(header) # Read output from SExtractor detection SE_cat_full = Table.read(os.path.join(work_dir, f'{obj_name}-{band}.cat'), format="ascii.sextractor") seg_map = fits.getdata(os.path.join(work_dir, f'{obj_name}-{band}_seg.fits')) # Get ZP from header if ZP is None: ZP = find_keyword_header(header, "ZP", raise_error=True) # Get background from header or simple stats bkg, std = background_stats(data, header, mask=(seg_map>0), bkg_keyname="BACKVAL") # Convert SE measured flux into mag flux = SE_cat_full["FLUX_AUTO"] mag = -2.5 * np.ma.log10(flux).filled(flux[flux>0].min()) + ZP SE_cat_full["MAG_AUTO"] = np.around(mag, 5) field_bounds = [field_pad, field_pad, data.shape[1]-field_pad, data.shape[0]-field_pad] if not use_PS1_DR2: logger.info("Match field %r with catalog"%field_bounds) logger.info("Measure Sky Patch [X min, Y min, X max, Y max] :") [logger.info(" - Bounds: %r"%b) for b in bounds_list.tolist()] # Display field_bounds and sub-regions to be matched patch = crop_image(data, field_bounds, sub_bounds=bounds_list, seg_map=seg_map, draw=draw) # Crop parent SE catalog SE_cat = crop_catalog(SE_cat_full, field_bounds) ################################################## # Crossmatch with Star Catalog (across the field) ################################################## import astropy.units as u from .utils import (identify_extended_source, calculate_color_term, add_supplementary_atlas, add_supplementary_SE_star) from .crossmatch import cross_match_PS1 # Identify bright extended sources and enlarge their mask SE_cat_target, ext_cat, mag_saturate = identify_extended_source(SE_cat, draw=draw, mag_limit=mag_limit, mag_saturate=mag_saturate) # Use PANSTARRS DR1 or DR2? if use_PS1_DR2: mag_name = mag_name_cat = band+'MeanPSFMag' bounds_crossmatch = bounds_list dir_name = os.path.join(work_dir, 'Measure-PS2/') else: mag_name = band+'mag' mag_name_cat = mag_name+'_PS' bounds_crossmatch = field_bounds dir_name = os.path.join(work_dir, 'Measure-PS1/') # Crossmatch with PANSTRRS mag < mag_limit tab_target, tab_target_full, catalog_star = \ cross_match_PS1(band, wcs_data, SE_cat_target, bounds_crossmatch, pixel_scale=pixel_scale, sep=DF_pixel_scale, mag_limit=mag_limit, use_PS1_DR2=use_PS1_DR2) # Calculate color correction between PANSTARRS and DF filter CT = calculate_color_term(tab_target_full, mag_range=[mag_saturate,18], mag_name=mag_name_cat, draw=draw) catalog_star["MAG_AUTO_corr"] = catalog_star[mag_name] + CT # corrected MAG_AUTO tab_target["MAG_AUTO_corr"] = tab_target[mag_name_cat] + CT # Mannually add stars missed in the crossmatch or w/ weird mag to table tab_target = add_supplementary_SE_star(tab_target, SE_cat_target, mag_saturate, mag_limit, draw=draw) ################################################## # Save matched table and catalog ################################################## if save: check_save_path(dir_name, overwrite=True, verbose=False) tab_target_name = os.path.join(dir_name, '%s-catalog_match_%smag%d.txt'%(obj_name, band, mag_limit)) tab_target.write(tab_target_name, overwrite=True, format='ascii') catalog_star_name = os.path.join(dir_name, f'{obj_name}-catalog_PS_{band}_all.txt') catalog_star.write(catalog_star_name, overwrite=True, format='ascii') logger.info(f"Saved PANSTARRS catalog & matched sources in {dir_name}") ################################################## # Build Mask & Measure Scaling (in selected patch) ################################################## from .utils import (fit_empirical_aperture, make_segm_from_catalog, measure_Rnorm_all, make_global_stack_PSF) from .plotting import plot_bright_star_profile # Empirical enlarged aperture size from magnitude based on matched SE detection estimate_radius = fit_empirical_aperture(tab_target_full, seg_map, mag_name=mag_name_cat, mag_range=[10,22], K=2, R_max=int(200/pixel_scale), degree=2, draw=draw) for bounds in bounds_list: # Catalog bound slightly wider than the region catalog_bounds = (bounds[0]-50, bounds[1]-50, bounds[2]+50, bounds[3]+50) # Crop the star catalog and matched SE catalog catalog_star_patch = crop_catalog(catalog_star, catalog_bounds, sortby=mag_name, keys=("X_CATALOG", "Y_CATALOG")) tab_target_patch = crop_catalog(tab_target, catalog_bounds, sortby=mag_name_cat, keys=("X_IMAGE", "Y_IMAGE")) # Make segmentation map from catalog based on SE seg map of one band seg_map_c = make_segm_from_catalog(catalog_star_patch, bounds, estimate_radius, mag_name=mag_name, obj_name=obj_name, band=band, ext_cat=ext_cat, draw=draw, save=save, dir_name=dir_name) tab_norm, res_thumb = measure_Rnorm_all(tab_target_patch, bounds, wcs_data, data, seg_map, mag_limit=mag_limit, mag_saturate=mag_saturate, r_scale=r_scale, width_cross=(width_cross/pixel_scale), width_ring=(width_ring/pixel_scale), obj_name=obj_name, mag_name=mag_name_cat, save=save, dir_name=dir_name) if draw: plot_bright_star_profile(tab_target_patch, tab_norm, res_thumb, bkg_sky=bkg, std_sky=std, ZP=ZP, pixel_scale=pixel_scale) make_global_stack_PSF(dir_name, bounds_list, obj_name, band) def Run_PSF_Fitting(hdu_path, bounds_list, obj_name, band, pixel_scale=DF_pixel_scale, ZP=None, bkg=None, G_eff=None, pad=50, r_scale=12, mag_limit=15, mag_threshold=[13.5,11.], mask_param=mask_param_default, resampling_factor=1, n_spline=3, cutoff=True, n_cutoff=4, theta_cutoff=1200, core_param={"frac":0.3, "beta":6.}, theta_0=5, n0_=None, fit_n0=True, fit_n0_range=[20,40], theta0_range=[30,300], fix_n0=False, fit_sigma=True, fit_frac=False, leg2d=False, draw_real=True, brightest_only=False, parallel=True, n_cpu=None, nlive_init=None, sample_method='auto', print_progress=True, draw=True, save=True, stop=False, clean_measure=True, use_PS1_DR2=False, work_dir='./'): """ Run the wide-angle PSF fitting. Parameters ---------- hdu_path : str Full path of hdu data bounds_list : 2D int list / turple List of boundaries of regions to be fit (Nx4) [[X min, Y min, X max, Y max],[...],...] obj_name : str Object name band : str, 'g', 'G', 'r', 'R' Filter name pixel_scale : float, optional, default 2.5 Pixel scale in arcsec/pixel ZP : float or None, optional, default None Zero point value (if None, read ZP from header) bkg : float or None, optional, default None Background estimated value (if None, read BACKVAL from header) G_eff : float or None (default) Effective gain (e-/ADU) pad : int, optional, default 50 Padding size of the field for fitting r_scale : int, optional, default 12 Radius (in pix) at which the brightness is measured. Default is 30" for Dragonfly. mag_limit : float, optional, default 15 Magnitude upper limit below which are measured mag_threshold : [float, float], default: [14, 11] Magnitude theresholds to classify faint stars, medium bright stars and very bright stars. The conversion from brightness is using a static PSF. mask_param: dict, optional Parameters setting up the mask map. See doc string of image.make_mask for details. n_spline : int, optional, default 3 Number of power-law component for the aureole models. The speed goes down as n_spline goes up. Default is 3. cutoff : bool, optional, default True If True, the aureole will be cutoff at theta_cutoff. n_cutoff : float, optional, default 4 Cutoff slope for the aureole model. Default is 4 for Dragonfly. theta_cutoff : float, optional, default 1200 Cutoff range (in arcsec) for the aureole model. Default is 20' for Dragonfly. core_param: dict, optional Initial estimate of parameters of the PSF core (not needed to be accurate). The values will be fitted from stacked PSF. "frac": fraction of aureole "beta": moffat beta "fwhm": moffat fwhm, in arcsec (optional) theta_0 : float, optional, default 5 Flattened radius. Arbitrary but need to be small. in arcsec n0_ : float, optional, default None Power index of the first component, only used if fix_n0=True. fit_n0 : bool, optional, default True If True, fit n0 from profiles of bright stars before the Bayesian fitting. fit_n0_range : 2-list, optional, default [20, 40] Range for fitting n0 in arcsec theta0_range : 2-list, optional, default [30, 300] Range for fitting theta0 in arcsec fix_n0 : bool, optional, default False If True, n0 will be fixed to that value in the fitting. Only set as True when n0 is known to be proper of for test purpose. fit_sigma : bool, optional, default False Whether to fit the background stddev. If False, will use the estimated value. fit_frac : bool, optional, default False Whether to fit the fraction of the aureole. If False, use the fiducial value in core_param. leg2d : bool, optional, default False If True, fit a varied background with 2D Legendre polynomial. Currently only support 1st order. draw_real : bool, optional, default True Whether to draw very bright stars in real space. Recommended to be turned on. brightest_only : bool, optional, default False Whether to draw very bright stars only. If turned on the fitting will ignore medium bright stars. parallel : bool, optional, default True Whether to run drawing for medium bright stars in parallel. n_cpu : int, optional, default None Number of cpu used for fitting and/or drawing. nlive_init : int, optional, default None Number of initial live points in dynesty. If None will use nlive_init = ndim*10. sample_method : {'auto', 'unif', 'rwalk', 'rstagger', 'slice', 'rslice', 'hslice', callable}, optional, default is 'auto' Samplimg method in dynesty. If 'auto', the method is 'unif' for ndim < 10, 'rwalk' for 10 <= ndim <= 20, 'slice' for ndim > 20. print_progress : bool, optional, default True Whether to turn on the progress bar of dynesty draw : bool, optional, default True Whether to draw diagnostic plots save : bool, optional, default True Whether to save results clean_measure : bool, optional, default True Whether to clean intermediate files for measurement use_PS1_DR2 : bool, optional, default False Whether to use PANSTARRS DR2. Crossmatch with DR2 is done by MAST query, which might fail if a field is too large (> 1 deg^2) work_dir : str, optional, default current directory Full Path of directory for saving Returns ------- samplers : list A list of Sampler class which contains fitting results. """ band = band.lower() bounds_list = np.atleast_2d(bounds_list).astype(int) # Set up directory names plot_dir = os.path.join(work_dir, 'plot') check_save_path(plot_dir, overwrite=True, verbose=False) if use_PS1_DR2: dir_measure = os.path.join(work_dir, 'Measure-PS2/') else: dir_measure = os.path.join(work_dir, 'Measure-PS1/') # option for running on resampled image from .utils import process_resampling hdu_path, bounds_list = process_resampling(hdu_path, bounds_list, obj_name, band, pixel_scale=pixel_scale, mag_limit=mag_limit, r_scale=r_scale, dir_measure=dir_measure, work_dir=work_dir, factor=resampling_factor) if resampling_factor!=1: obj_name += '_rp' pixel_scale *= resampling_factor r_scale /= resampling_factor ############################################ # Read Image and Table ############################################ # from . import DF_Gain from .image import ImageList from .utils import background_stats # Read quantities from header header = fits.getheader(hdu_path) data = fits.getdata(hdu_path) if ZP is None: ZP = find_keyword_header(header, "ZP") if G_eff is None: N_frames = find_keyword_header(header, "NFRAMES", default=1e5) G_eff = DF_Gain * N_frames if N_frames==1e5: logger.info("No effective Gain is given. Use sky noise.") else: logger.info("Effective Gain = %.3f"%G_eff) # Get background from header or simple stats seg_map = fits.getdata(os.path.join(work_dir, f'{obj_name}-{band}_seg.fits')) bkg, std = background_stats(data, header, mask=(seg_map>0), bkg_keyname="BACKVAL") # Construct Image List DF_Images = ImageList(hdu_path, bounds_list, obj_name, band, pixel_scale=pixel_scale, pad=pad, ZP=ZP, bkg=bkg, G_eff=G_eff) # Read faint stars info and brightness measurement DF_Images.read_measurement_tables(dir_measure, r_scale=r_scale, mag_limit=mag_limit) ############################################ # Setup Stars ############################################ from .utils import assign_star_props # class for bright stars and all stars stars_b, stars_all = DF_Images.assign_star_props(r_scale=r_scale, mag_threshold=mag_threshold, verbose=True, draw=False, save=save, save_dir=plot_dir) ############################################ # Masking ############################################ from .mask import Mask # Mask faint and centers of bright stars mask_param_default.update(mask_param) DF_Images.make_mask(stars_b, dir_measure, mask_param=mask_param_default, draw=draw, save=save, save_dir=plot_dir) # Collect stars for fit. Choose if only use brightest stars if brightest_only: stars = [s.use_verybright() for s in DF_Images.stars] else: stars = DF_Images.stars # for fit ############################################ # Estimate Background & Fit n0 ############################################ DF_Images.estimate_bkg() if fix_n0: DF_Images.n0_ = n0 = n0_ # fixed value DF_Images.fix_n0 = True # fix n0 as the input value else: DF_Images.fit_n0(dir_measure, pixel_scale=pixel_scale, fit_range=fit_n0_range, mag_max=13.5, mag_limit=mag_limit, r_scale=r_scale, sky_std=std, draw=draw, save=save, save_dir=plot_dir) DF_Images.fix_n0 = fit_n0 # if use prefit value, also fix n0 n0 = np.median(DF_Images.n0) # initial guess ############################################ # Setup PSF and Fit the Core ############################################ from .utils import (make_psf_2D, montage_psf_image) ## PSF Parameters ## n_s = np.array([n0, 2.5]) # initial guess of power index theta_s = np.array([theta_0, 10**2.]) # initial guess of transition radius in arcsec # Core parameters, will be fitted frac, beta = [core_param.get(prop) for prop in ["frac", "beta"]] fwhm = core_param.get("fwhm", DF_Images.fwhm) cutoff_param = dict(cutoff=cutoff, n_c=n_cutoff, theta_c=theta_cutoff) # Make 2D PSF and a PSF Model ('psf') image_psf, psf = make_psf_2D(n_s=n_s, theta_s=theta_s, frac=frac, beta=beta, fwhm=fwhm, cutoff_param=cutoff_param, pixel_scale=pixel_scale, psf_range=theta_cutoff) # Montage the core and the 1st model component fn_psf_satck = os.path.join(dir_measure, f'{obj_name}-{band}-PSF_stack.fits') psf_stack = fits.getdata(fn_psf_satck) image_psf = montage_psf_image(psf_stack, image_psf, r=10) # Fit and update core parameters psf.fit_psf_core_1D(image_psf, obj_name=obj_name, band=band, save=save, save_dir=plot_dir) ############################################ # Set Basement Image ############################################ # Make fixed background of dim stars DF_Images.make_base_image(psf.psf_star, stars_all, draw=False) ############################################ # Setup Priors and Likelihood Models for Fitting ############################################ DF_Images.set_container(psf, stars, n_spline=n_spline, theta0_range=theta0_range, n_min=1.1, leg2d=leg2d, parallel=parallel, draw_real=draw_real, fit_sigma=fit_sigma, fit_frac=fit_frac, brightest_only=brightest_only, method=sample_method, verbose=True) ## (a stop for inspection/developer) if stop: print('Stop for sanity check... Does everything look good?') return DF_Images, psf, stars ############################################ # Run Sampling ############################################ from .sampler import Sampler from .io import DateToday, AsciiUpper samplers = [] for i, reg in enumerate(AsciiUpper(DF_Images.N_Image)): ct = DF_Images.containers[i] ndim = ct.ndim s = Sampler(ct, n_cpu=n_cpu, sample_method=sample_method) if nlive_init is None: nlive_init = ndim*10 # Run fitting s.run_fitting(nlive_init=nlive_init, nlive_batch=5*ndim+5, maxbatch=2, print_progress=print_progress) if save: # Save outputs core_param = {"frac":psf.frac, "fwhm":fwhm, "beta":psf.beta} s.fit_info = {'obj_name':obj_name, 'band':band, 'date':DateToday(), 'n_spline':n_spline, 'bounds':bounds_list[i], 'pixel_scale':pixel_scale, 'r_scale':r_scale, 'core_param':core_param, 'fit_n0':fit_n0} if cutoff: s.fit_info.update(cutoff_param) suffix = str(n_spline)+'p' if leg2d: suffix+='l' if fit_frac: suffix+='f' if brightest_only: suffix += 'b' if use_PS1_DR2: suffix += '_ps2' if sample_method=='mle': suffix+='_mle' Xmin, Ymin, Xmax, Ymax = bounds_list[i] range_str = f'X[{Xmin}-{Xmax}]Y[{Ymin}-{Ymax}]' fname = f'{obj_name}-{band}-{reg}-{range_str}-fit{suffix}.res' s.save_results(fname, save_dir=work_dir) stars[i].save(f'{obj_name}-{band}-{reg}-{range_str}-stars', save_dir=work_dir) ############################################ # Plot Results ############################################ from .plotting import AsinhNorm suffix = str(n_spline)+'p'+'_'+obj_name # Generate bright star model with the PSF s.generate_fit(psf, stars[i], image_base=DF_Images[i].image_base) if draw: r_core = mask_param['r_core'] s.cornerplot(figsize=(18, 16), save=save, save_dir=plot_dir, suffix=suffix) # Plot recovered PSF s.plot_fit_PSF1D(psf, n_bootstrap=500, r_core=r_core, save=save, save_dir=plot_dir, suffix=suffix) # Calculate Chi^2 s.calculate_reduced_chi2(Gain=G_eff, dof=ndim) # Draw 2D compaison s.draw_comparison_2D(r_core=r_core, Gain=G_eff, vmin=DF_Images.bkg-s.bkg_std_fit, vmax=DF_Images.bkg+20*s.bkg_std_fit, save=save, save_dir=plot_dir, suffix=suffix) if leg2d: # Draw background s.draw_background(save=save, save_dir=plot_dir, suffix=suffix) # Append the sampler samplers += [s] # Delete Stars to avoid pickling error in rerun clean_pickling_object('stars') # Clean intermediate outputs of each region for measurement if clean_measure: for file in Path(dir_measure).glob('*X*Y*'): os.remove(file) return samplers class berry: """ Fruit of elderflower. (A wrapper for running the functions.) Parameters ---------- hdu_path : str path of hdu data bounds_list : list [[X min, Y min, X max, Y max],[...],...] list of boundaries of regions to be fit (Nx4) obj_name : str object name band : str, 'g', 'G', 'r', 'R' filter name work_dir : str, optional, default current directory Full Path of directory for saving config_file : yaml, optional, default None configuration file which contains keyword arguments. If None, use the default configuration file. Example ------- # Initialize the task elder = berry(hdu_path, bounds, obj_name, 'g', work_dir, config_file) # Check keyword parameters listed in the configuration: elder.parameters # Run detection elder.detection() # Run the task elder.run() """ def __init__(self, hdu_path, bounds_list, obj_name, band, work_dir='./', config_file=None): self.hdu_path = hdu_path self.bounds_list = bounds_list self.obj_name = obj_name self.band = band with fits.open(hdu_path) as hdul: self.data = hdul[0].data self.header = hdul[0].header hdul.close() self.work_dir = work_dir self.config = config_file from .io import config_kwargs, default_config if config_file is None: config_file = default_config self.config_func = partial(config_kwargs, config_file=config_file) @property def parameters(self): """ Keyword parameter list in the configuration file """ @self.config_func def _kwargs(**kwargs): return kwargs return _kwargs() def detection(self, **kwargs): """ Run the source detection. """ self.ZP = Run_Detection(self.hdu_path, self.obj_name, self.band, work_dir=self.work_dir, FILTER_NAME=default_conv, STARNNW_NAME=default_nnw, **kwargs) def run(self, **kwargs): """ Run the task (Match_Mask_Measure + Run_PSF_Fitting). """ @self.config_func def _run(func, **kwargs): argnames = func.__code__.co_varnames[:func.__code__.co_argcount] keys = set(kwargs.keys()).intersection(argnames) pars = {key: kwargs[key] for key in keys} return func(self.hdu_path, self.bounds_list, self.obj_name, self.band, work_dir=self.work_dir, **pars) _run(Match_Mask_Measure, **kwargs) self.samplers = _run(Run_PSF_Fitting, **kwargs)
2.109375
2
tmp/httprunner/debugtalk2.py
hanzhichao/runnerz
0
12784304
<gh_stars>0 def add(a,b): return a+b def setup(request): print('setup') print(request) def teardown(response): print('teardown') # print(response.resp_obj.text) # 原始请求文本
2.171875
2
0Leetcode Solutions/0053 Maximum Subarray.py
DonghaoQiao/Python
1
12784305
<reponame>DonghaoQiao/Python ''' https://leetcode.com/problems/maximum-subarray/ 53. Maximum Subarray Easy Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Example: Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. ''' class Solution(object): def maxSubArray(self, nums): """ :type nums: List[int] :rtype: int """ for i in range(1,len(nums)): if nums[i-1]>0: nums[i]+=nums[i-1] return max(nums) print(Solution().maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))
4.03125
4
src/optimizer.py
mirefek/GeoModelBuilder
0
12784306
<reponame>mirefek/GeoModelBuilder<filename>src/optimizer.py from abc import ABC, abstractmethod import math import pdb import collections import itertools import tensorflow.compat.v1 as tf import random from tqdm import tqdm from instruction import * from primitives import Line, Point, Circle, Num from util import is_number, FuncInfo # Also stores the points used to compute it LineSF = collections.namedtuple("LineSF", ["a", "b", "c", "p1", "p2"]) CircleNF = collections.namedtuple("CircleNF", ["center", "radius"]) # by convention, n is a unit vector located in the upper-half plane LineNF = collections.namedtuple("LineNF", ["n", "r"]) class Optimizer(ABC): def __init__(self, instructions, opts, unnamed_points, unnamed_lines, unnamed_circles, segments, seg_colors): self.losses = dict() self.has_loss = False self.opts = opts self.verbosity = opts['verbosity'] self.instructions = instructions self.ndgs = dict() self.goals = dict() self.all_points = list() self.name2pt = dict() self.name2line = dict() self.name2circ = dict() self.segments = segments self.seg_colors = seg_colors self.unnamed_points = unnamed_points self.unnamed_lines = unnamed_lines self.unnamed_circles = unnamed_circles self.n_tries = opts['n_tries'] if opts['n_tries'] < opts['n_models']: print("WARNING: n_tries should be at least as big as n_models") self.n_tries = opts['n_models'] self.n_inits = opts['n_inits'] if opts['n_inits'] < opts['n_tries']: print("WARNING: n_inits should be at least as big as n_tries") self.n_inits = opts['n_tries'] super().__init__() def preprocess(self): process_instr_iter = self.instructions if self.verbosity < 0 else tqdm(self.instructions, desc="Processing instructions...") # for i in self.instructions: # for i in tqdm(self.instructions, desc="Processing instructions..."): for i in process_instr_iter: self.process_instruction(i) # After we've processed the instructions, process all the unnamed things self.unnamed_points = [self.lookup_pt(p) for p in self.unnamed_points] self.unnamed_lines = [self.line2nf(l) for l in self.unnamed_lines] self.unnamed_circles = [self.circ2nf(c) for c in self.unnamed_circles] self.segments = [(self.lookup_pt(a), self.lookup_pt(b)) for (a, b) in self.segments] def process_instruction(self, i): if isinstance(i, Sample): self.sample(i) elif isinstance(i, Compute): self.compute(i) elif isinstance(i, Parameterize): self.parameterize(i) elif isinstance(i, Assert): self.add(i) elif isinstance(i, AssertNDG): self.addNDG(i) elif isinstance(i, Eval): self.eval_cons(i) else: raise NotImplementedError("FIXME: Finish process_instruction") @abstractmethod def get_point(self, x, y): pass @abstractmethod def simplify(self, p, method="all"): pass def lookup_pt(self, p, name=None): if isinstance(p.val, str): # Base case return self.name2pt[p] if isinstance(p.val, FuncInfo): head, args = p.val if head == "__val__": return args[0] elif head == "midp": return self.midp(*self.lookup_pts(args)) elif head == "circumcenter": return self.circumcenter(*self.lookup_pts(args)) elif head == "orthocenter": return self.orthocenter(*self.lookup_pts(args)) elif head == "incenter": return self.incenter(*self.lookup_pts(args)) elif head == "centroid": return self.centroid(*self.lookup_pts(args)) elif head == "amidp-opp": return self.amidp_opp(*self.lookup_pts(args)) elif head == "amidp-same": return self.amidp_same(*self.lookup_pts(args)) elif head == "excenter": return self.excenter(*self.lookup_pts(args)) elif head == "foot": X, l = args foot_p = Point(FuncInfo("inter-ll", [l, Line(FuncInfo("perp-at", [X, l]))])) return self.lookup_pt(foot_p) elif head == "harmonic-conj": return self.harmonic_l_conj(*self.lookup_pts(args)) elif head == "origin": assert(len(args) == 1) circ = args[0] cnf = self.circ2nf(circ) return cnf.center elif head == "inter-ll": l1, l2 = args lnf1 = self.line2nf(l1) lnf2 = self.line2nf(l2) return self.inter_ll(lnf1, lnf2) elif head == "inter-lc": l, c, root_select = args lnf = self.line2nf(l) cnf = self.circ2nf(c) if name: self.make_lc_intersect(name, lnf, cnf) else: # Use random name as point is unnamed, but we still want to force LC to intersect rand_name = get_random_string(6) self.make_lc_intersect(rand_name, lnf, cnf) return self.inter_lc(lnf, cnf, root_select) elif head == "inter-cc": c1, c2, root_select = args cnf1 = self.circ2nf(c1) cnf2 = self.circ2nf(c2) if name: self.make_lc_intersect(name, self.radical_axis(cnf1, cnf2), cnf1) else: # Use random name as point is unnamed, but we still want to force LC to intersect rand_name = get_random_string(6) self.make_lc_intersect(rand_name, self.radical_axis(cnf1, cnf2), cnf1) return self.inter_cc(cnf1, cnf2, root_select) elif head == "isogonal-conj": return self.isogonal_conj(*self.lookup_pts(args)) elif head == "isotomic-conj": return self.isotomic_conj(*self.lookup_pts(args)) elif head == "inverse": return self.inverse(*self.lookup_pts(args)) elif head == "reflect-pl": x, l = args X = self.lookup_pt(x) foot_X = self.lookup_pt(Point(FuncInfo("foot", [x, l]))) vec_X_to_l = foot_X - X return X + vec_X_to_l.smul(2) elif head == "midp-from": return self.midp_from(*self.lookup_pts(args)) elif head == "mixtilinear-incenter": return self.mixtilinear_incenter(*self.lookup_pts(args)) else: raise NotImplementedError(f"[lookup_pt] Unsupported head {head}") else: raise RuntimeError("Invalid point type") def lookup_pts(self, ps): p_vals = list() for p in ps: p_vals.append(self.lookup_pt(p)) return p_vals def eval_num(self, n_info): n_val = n_info.val if not isinstance(n_val, tuple) and is_number(n_val): return self.const(n_val) n_pred = n_val[0] n_args = n_val[1] if n_pred == "dist": p1, p2 = self.lookup_pts(n_args) return self.dist(p1, p2) elif n_pred == "uangle": p1, p2, p3 = self.lookup_pts(n_args) return self.angle(p1, p2, p3) elif n_pred == "area": p1, p2, p3 = self.lookup_pts(n_args) return self.area(p1, p2, p3) elif n_pred == "radius": circ = self.circ2nf(n_args[0]) return circ.radius elif n_pred == "diam": circ = self.circ2nf(n_args[0]) return 2 * circ.radius elif n_pred in ["div", "add", "mul", "sub", "pow"]: n1, n2 = [self.eval_num(n) for n in n_args] if n_pred == "div": return n1 / n2 elif n_pred == "add": return n1 + n2 elif n_pred == "mul": return n1 * n2 elif n_pred == "sub": return n1 - n2 else: # pow return n1 ** n2 elif n_pred == "neg": n = self.eval_num(n_args[0]) return -n elif n_pred == "sqrt": n = self.eval_num(n_args[0]) return self.sqrt(n) else: raise NotImplementedError(f"[eval_num] Unsupported pred {n_pred}") @abstractmethod def mkvar(self, name, shape=[], lo=-1.0, hi=1.0, trainable=None): pass @abstractmethod def mk_normal_var(self, name, shape=[], mean=0.0, std=1.0, trainable=None): pass @abstractmethod def register_pt(self, p, P, save_name=True): pass @abstractmethod def register_line(self, l, L): pass @abstractmethod def register_circ(self, c, C): pass @abstractmethod def register_loss(self, key, var, weight=1.0, requires_train=True): pass @abstractmethod def register_ndg(self, key, var, weight=1.0): pass @abstractmethod def register_goal(self, key, var, negate): pass @abstractmethod def regularize_points(self): pass @abstractmethod def make_points_distinct(self): pass # FIXME: The below should be combined with an abstract Point class ##################### ## Math Utilities #################### @abstractmethod def sum(self, xs): pass @abstractmethod def sqrt(self, x): pass @abstractmethod def sin(self, x): pass @abstractmethod def cos(self, x): pass @abstractmethod def asin(self, x): pass @abstractmethod def acos(self, x): pass @abstractmethod def tanh(self, x): pass @abstractmethod def atan2(self, x, y): pass @abstractmethod def sigmoid(self, x): pass @abstractmethod def const(self, x): pass @abstractmethod def max(self, x, y): pass @abstractmethod def min(self, x, y): pass @abstractmethod def cond(self, cond, t_lam, f_lam): pass @abstractmethod def lt(self, x, y): pass @abstractmethod def lte(self, x, y): pass @abstractmethod def gt(self, x, y): pass @abstractmethod def gte(self, x, y): pass @abstractmethod def eq(self, x, y): pass @abstractmethod def logical_or(self, x, y): pass @abstractmethod def abs(self, x): pass @abstractmethod def exp(self, x): pass def softmax(self, xs): exps = [self.exp(x) for x in xs] sum_exps = self.sum(exps) return [e / sum_exps for e in exps] ##################### ## Sample #################### def sample(self, i): s_method = i.sampler s_args = i.args if s_method == "acute-iso-tri": self.sample_triangle(i.points, iso=s_args[0], acute=True) elif s_method == "acute-tri": self.sample_triangle(i.points, acute=True) elif s_method == "equi-tri": self.sample_triangle(i.points, equi=True) elif s_method == "iso-tri": self.sample_triangle(i.points, iso=s_args[0]) elif s_method == "polygon": self.sample_polygon(i.points) elif s_method == "right-tri": self.sample_triangle(i.points, right=s_args[0]) elif s_method == "triangle": self.sample_triangle(i.points) else: raise NotImplementedError(f"[sample] NYI: Sampling method {s_method}") def sample_uniform(self, p, lo=-1.0, hi=1.0, save_name=True): P = self.get_point(x=self.mkvar(str(p)+"x", lo=lo, hi=hi), y=self.mkvar(str(p)+"y", lo=lo, hi=hi)) self.register_pt(p, P, save_name=save_name) return P def sample_polygon(self, ps): if len(ps) < 4: if self.verbosity > 0: print("WARNING: sample_polygon expecting >3 points") angle_zs = [self.mkvar(name=f"polygon_angle_zs_{i}", lo=-2.0, hi=2.0) for i in range(len(ps))] multiplicand = ((len(ps) - 2) / len(ps)) * math.pi angles = [multiplicand + (math.pi / 3) * self.tanh(0.2 * az) for az in angle_zs] scale_zs = [self.mkvar(name=f"polygon_scale_zs_{i}", lo=-2.0, hi=2.0) for i in range(len(ps))] scales = [0.5 * self.tanh(0.2 * sz) for sz in scale_zs] Ps = [self.get_point(self.const(-2.0), self.const(0.0)), self.get_point(self.const(2.0), self.const(0.0))] s = self.dist(Ps[0], Ps[1]) for i in range(2, len(ps) + 1): # print(f"sampling polygon point: {i}") A, B = Ps[-2:] X = B + self.rotate_counterclockwise(-angles[i-1], A - B) P = B + (X - B).smul(s * (1 + scales[i-1]) / self.dist(X, B)) # Ps.append(P) Ps.append(self.simplify(P, method="trig")) # Angles should sum to (n-2) * pi angle_sum = self.sum(angles) expected_angle_sum = math.pi * (len(ps) - 2) self.register_loss("polygon-angle-sum", angle_sum - expected_angle_sum, weight=1e-1) # First point shoudl equal the last point self.register_loss("polygon-first-eq-last", self.dist(Ps[0], Ps[len(ps)]), weight=1e-2) # First angle should be the one sampled (known to be <180) self.register_loss("polygon-first-angle-eq-sampled", angles[0] - self.angle(Ps[-1], Ps[0], Ps[1]), weight=1e-2) # for i in range(len(ps)): # self.segments.append((Ps[i], Ps[(i+1) % (len(ps))])) for p, P in zip(ps, Ps[:-1]): self.register_pt(p, P) def sample_triangle_on_unit_circ(self, ps): [nA, nB, nC] = ps theta_a = self.mk_normal_var(f"{nA}_unit_angle", mean=(2*math.pi) * (1 / 3), std=(2*math.pi) * (1 / 8)) theta_b = self.mk_normal_var(f"{nB}_unit_angle", mean=(2*math.pi) * (2 / 3), std=(2*math.pi) * (1 / 8)) theta_c = self.mk_normal_var(f"{nC}_unit_angle", mean=(2*math.pi) * (3 / 3), std=(2*math.pi) * (1 / 8)) A = self.get_point(self.cos(theta_a), self.sin(theta_a)) B = self.get_point(self.cos(theta_b), self.sin(theta_b)) C = self.get_point(self.cos(theta_c), self.sin(theta_c)) # randomly rotate them to get diversity if random.random() < (1 / 3): (C, A, B) = (A, B, C) elif random.random() < (1 / 3): (B, C, A) = (A, B, C) self.register_pt(nA, A) self.register_pt(nB, B) self.register_pt(nC, C) def sample_triangle(self, ps, iso=None, right=None, acute=False, equi=False): if not (iso or right or acute or equi): # return self.sample_polygon(ps) return self.sample_triangle_on_unit_circ(ps) [nA, nB, nC] = ps B = self.get_point(self.const(-2.0), self.const(0.0)) C = self.get_point(self.const(2.0), self.const(0.0)) if iso is not None or equi: Ax = self.const(0) else: Ax = self.mkvar("tri_x", lo=-1.2, hi=1.2, trainable=False) if right is not None: Ay = self.sqrt(4 - (Ax ** 2)) elif equi: Ay = 2 * self.sqrt(self.const(3.0)) else: AyLo = 1.1 if acute else 0.4 z = self.mkvar("tri") Ay = self.const(AyLo) + 3.0 * self.sigmoid(z) A = self.get_point(Ax, Ay) # Shuffle if the isosceles vertex was not C if iso == nB or right == nB: (A, B, C) = (B, A, C) elif iso == nC or right == nC: (A, B, C) = (C, B, A) self.register_pt(nA, A) self.register_pt(nB, B) self.register_pt(nC, C) # self.segments.extend([(A, B), (B, C), (C, A)]) ##################### ## Compute #################### def compute(self, i): obj_name = i.obj_name c_method = i.computation.val[0] c_args = i.computation.val if isinstance(i.computation, Point): P = self.lookup_pt(i.computation, str(obj_name)) self.register_pt(obj_name, P) elif isinstance(i.computation, Line): L = self.line2nf(i.computation) self.register_line(obj_name, L) elif isinstance(i.computation, Circle): C = self.circ2nf(i.computation) self.register_circ(obj_name, C) else: raise NotImplementedError(f"[compute] NYI: {c_method} not supported") ##################### ## Parameterize #################### def parameterize(self, i): p_name = i.obj_name p_method = i.parameterization[0] p_args = i.parameterization param_method = i.parameterization if p_method == "coords": self.parameterize_coords(p_name) elif p_method == "in-poly": self.parameterize_in_poly(p_name, p_args[1]) elif p_method == "on-circ": self.parameterize_on_circ(p_name, p_args[1]) elif p_method == "on-line": self.parameterize_on_line(p_name, p_args[1]) elif p_method == "on-ray": self.parameterize_on_ray(p_name, p_args[1]) elif p_method == "on-ray-opp": self.parameterize_on_ray_opp(p_name, p_args[1]) elif p_method == "on-seg": self.parameterize_on_seg(p_name, p_args[1]) elif p_method == "on-minor-arc": self.parameterize_on_minor_arc(p_name, p_args[1]) elif p_method == "on-major-arc": self.parameterize_on_major_arc(p_name, p_args[1]) elif p_method == "line": self.parameterize_line(p_name) elif p_method == "through-l": self.parameterize_line_through(p_name, p_args[1]) elif p_method == "tangent-lc": self.parameterize_line_tangentC(p_name, p_args[1]) elif p_method == "tangent-cc": self.parameterize_circ_tangentC(p_name, p_args[1]) elif p_method == "tangent-cl": self.parameterize_circ_tangentL(p_name, p_args[1]) elif p_method == "through-c": self.parameterize_circ_through(p_name, p_args[1]) elif p_method == "circle": self.parameterize_circ(p_name) elif p_method == "origin": self.parameterize_circ_centered_at(p_name, p_args[1]) elif p_method == "radius": self.parameterize_circ_with_radius(p_name, p_args[1]) else: raise NotImplementedError(f"FIXME: Finish parameterize: {i}") def parameterize_coords(self, p): return self.sample_uniform(p) def parameterize_line(self, l): p1 = Point(l.val + "_p1") p2 = Point(l.val + "_p2") P1 = self.sample_uniform(p1, save_name=False) P2 = self.sample_uniform(p2, save_name=False) return self.register_line(l, self.pp2lnf(P1, P2)) def parameterize_line_through(self, l, ps): [through_p] = ps through_p = self.lookup_pt(through_p) p2 = Point(l.val + "_p2") P2 = self.sample_uniform(p2, save_name=False) return self.register_line(l, self.pp2lnf(through_p, P2)) def parameterize_line_tangentC(self, l, args): [c] = args P1 = self.parameterize_on_circ(Point(f"p1"), [c], save_name=False) P1 = Point(FuncInfo('__val__', [P1])) L = self.line2nf(Line(FuncInfo("perp-at", [P1, Point(FuncInfo("origin", [c])), P1]))) return self.register_line(l, L) def parameterize_circ(self, c): o = Point(c.val + "_origin") O = self.sample_uniform(o, save_name=False) circ_nf = CircleNF(center=O, radius=self.mkvar(name=f"{c.val}_origin", lo=0.25, hi=3.0)) return self.register_circ(c, circ_nf) def parameterize_circ_centered_at(self, c, ps): [origin] = ps origin = self.lookup_pt(origin) circ_nf = CircleNF(center=origin, radius=self.mkvar(name=f"{c.val}_origin", lo=0.25, hi=3.0)) return self.register_circ(c, circ_nf) def parameterize_circ_through(self, c, ps): [through_p] = ps through_p = self.lookup_pt(through_p) o = Point("origin") O = self.sample_uniform(o, save_name=False) radius = self.dist(through_p, O) circ_nf = CircleNF(center=O, radius=radius) return self.register_circ(c, circ_nf) def parameterize_circ_with_radius(self, c, rs): [radius] = rs radius = self.eval_num(radius) o = Point("origin") O = self.sample_uniform(o, save_name=False) circ_nf = CircleNF(center=O, radius=radius) return self.register_circ(c, circ_nf) def parameterize_circ_tangentC(self, c, args): [circ2] = args interP = self.parameterize_on_circ(Point(f"tangency_point"), [circ2], save_name=False) interP = Point(FuncInfo('__val__', [interP])) O = self.parameterize_on_line(Point(f"origin"), [Line(FuncInfo("connecting", [interP, Point(FuncInfo("origin", [circ2]))]))], save_name=False) C = CircleNF(center=O, radius=self.dist(O, interP.val.args[0])) return self.register_circ(c, C) def parameterize_circ_tangentL(self, c, args): [l] = args interP = self.parameterize_on_line(Point(f"tangency_point"), [l], save_name=False) interP = Point(FuncInfo('__val__', [interP])) O = self.parameterize_on_line(Point(f"origin"), [Line(FuncInfo("perp-at", [interP, l]))], save_name=False) C = CircleNF(center=O, radius=self.dist(O, interP.val.args[0])) return self.register_circ(c, C) def parameterize_on_seg(self, p, ps): A, B = self.lookup_pts(ps) z = self.mkvar(name=f"{p}_seg", lo=-2, hi=2) # z = 0.9 * z self.register_loss(f"{p}_seg_regularization", z, weight=1e-4, requires_train=False) # self.segments.append((A, B)) return self.register_pt(p, A + (B - A).smul(self.sigmoid(z))) def parameterize_on_line(self, p, p_args, save_name=True): [l] = p_args A, B = self.lnf2pp(self.line2nf(l)) z = self.mkvar(name=f"{p}_line", lo=-2, hi=2) # z = 0.2 * z self.register_loss(f"{p}_line_regularization", z, weight=1e-4, requires_train=False) # TODO: arbitrary and awkward. Better to sample "zones" first? s = 10.0 P1 = A + (A - B).smul(s) P2 = B + (B - A).smul(s) # self.segments.append((A, B)) return self.register_pt(p, P1 + (P2 - P1).smul(self.sigmoid(z)), save_name=save_name) def parameterize_on_ray(self, p, ps): A, B = self.lookup_pts(ps) z = self.mkvar(name=f"{p}_ray", hi=2.0) P = A + (B - A).smul(self.exp(z)) # self.segments.extend([(A, B), (A, P)]) return self.register_pt(p, P) def parameterize_on_ray_opp(self, p, ps): A, B = self.lookup_pts(ps) z = self.mkvar(f"{p}_ray_opp") P = A + (A - B).smul(self.exp(z)) # self.segments.extend([(A, B), (A, P)]) return self.register_pt(p, P) def parameterize_on_circ(self, p, p_args, save_name=True): [circ] = p_args O, r = self.circ2nf(circ) rot = self.mkvar(name=f"{p}_rot") theta = rot * 2 * self.const(math.pi) X = self.get_point(x=O.x + r * self.cos(theta), y=O.y + r * self.sin(theta)) return self.register_pt(p, X, save_name=save_name) # self.unnamed_circles.append((O, r)) def parameterize_on_minor_arc(self, p, p_args): [circ, a, b] = p_args base_str = f"{p}_minor_arc_{circ}" A, B = self.lookup_pts([a, b]) O, r = self.circ2nf(circ) # Enforce that A and B are on circ loss_a = self.dist(O, A) - r loss_b = self.dist(O, B) - r self.register_loss(f"{base_str}_{a}_on_{circ}", loss_a) self.register_loss(f"{base_str}_{b}_on_{circ}", loss_b) z = self.mkvar(base_str, lo=0.1, hi=0.9) aob = self.clockwise_angle(A, O, B) boa = self.clockwise_angle(B, O, A) anchor = self.cond(self.lt(aob, boa), lambda: B, lambda: A) theta = self.min(aob, boa) * (-z) Px = O.x + (anchor.x - O.x) * self.cos(theta) - (anchor.y - O.y) * self.sin(theta) Py = O.y + (anchor.x - O.x) * self.sin(theta) + (anchor.y - O.y) * self.cos(theta) P = self.get_point(Px, Py) return self.register_pt(p, P) def parameterize_on_major_arc(self, p, p_args): [circ, a, b] = p_args base_str = f"{p}_major_arc_{circ}" A, B = self.lookup_pts([a, b]) O, r = self.circ2nf(circ) # Enforce that A and B are on circ loss_a = self.dist(O, A) - r loss_b = self.dist(O, B) - r self.register_loss(f"{base_str}_{a}_on_{circ}", loss_a) self.register_loss(f"{base_str}_{b}_on_{circ}", loss_b) z = self.mkvar(base_str, lo=0.1, hi=0.9) aob = self.clockwise_angle(A, O, B) boa = self.clockwise_angle(B, O, A) anchor = self.cond(self.lt(aob, boa), lambda: A, lambda: B) theta = (math.pi * 2 - self.min(aob, boa)) * (-z) Px = O.x + (anchor.x - O.x) * self.cos(theta) - (anchor.y - O.y) * self.sin(theta) Py = O.y + (anchor.x - O.x) * self.sin(theta) + (anchor.y - O.y) * self.cos(theta) P = self.get_point(Px, Py) return self.register_pt(p, P) def parameterize_in_poly(self, p, ps): Ps = self.lookup_pts(ps) zs = [self.mkvar(name=f"{p}_in_poly_{poly_p}") for poly_p in ps] ws = self.softmax(zs) Px = self.sum([P.x * w for (P, w) in zip(Ps, ws)]) Py = self.sum([P.y * w for (P, w) in zip(Ps, ws)]) P = self.get_point(Px, Py) return self.register_pt(p, P) ##################### ## Assert #################### def add(self, assertion): self.has_loss = True cons = assertion.constraint pred, args, negate = cons.pred, cons.args, cons.negate if negate: raise RuntimeError("[add] Mishandled negation") vals = self.assertion_vals(pred, args) a_str = f"{pred}_{'_'.join([str(a) for a in args])}" weight = 1 / len(vals) for i, val in enumerate(vals): loss_str = a_str if len(vals) == 1 else f"{a_str}_{i}" self.register_loss(loss_str, val, weight=weight) def addNDG(self, ndg): self.has_loss = True ndg_cons = ndg.constraint pred, args = ndg_cons.pred, ndg_cons.args vals = self.assertion_vals(pred, args) # We only have to violate one! ndg_val = tf.reduce_max(vals) # Note how we reduce MAX because we are trying to make non-zero ndg_str = f"not_{pred}_{'_'.join([str(a) for a in args])}" self.register_ndg(ndg_str, ndg_val, weight=1.0) """ a_str = f"not_{pred}_{'_'.join([str(a) for a in args])}" weight = 1 / len(vals) for i, val in enumerate(vals): ndg_str = a_str if len(vals) == 1 else f"{a_str}_{i}" self.register_ndg(ndg_str, val, weight=weight) """ def eval_cons(self, goal): goal_cons = goal.constraint pred, args, negate = goal_cons.pred, goal_cons.args, goal_cons.negate vals = self.assertion_vals(pred, args) g_str = f"{pred}_{'_'.join([str(a) for a in args])}" if negate: g_str = f"not_{g_str}" vals = [tf.reduce_max(vals)] for i, val in enumerate(vals): goal_str = g_str if len(vals) == 1 else f"{g_str}_{i}" self.register_goal(goal_str, val, negate) def assertion_vals(self, pred, args): if pred == "amidp-opp": M, B, C, A = self.lookup_pts(args) return [self.dist(M, self.amidp_opp(B, C, A))] elif pred == "amidp-same": M, B, C, A = self.lookup_pts(args) return [self.dist(M, self.amidp_same(B, C, A))] # elif pred == "between": return self.between_gap(*self.lookup_pts(args)) elif pred == "circumcenter": O, A, B, C = self.lookup_pts(args) # self.unnamed_circles.append((O, self.dist(O, A))) return [self.dist(O, self.circumcenter(A, B, C))] elif pred == "coll": coll_args = self.lookup_pts(args) diffs = [self.coll_phi(A, B, C) for A, B, C in itertools.combinations(coll_args, 3)] # for i in range(len(coll_args)-1): # self.segments.append((coll_args[i], coll_args[i+1])) return diffs elif pred == "concur": l1, l2, l3 = args inter_12 = Point(FuncInfo("inter-ll", [l1, l2])) return self.assertion_vals("on-line", [inter_12, l3]) elif pred == "cong": A, B, C, D = self.lookup_pts(args) # if A in [C, D]: self.unnamed_circles.append((A, self.dist(A, B))) # elif B in [C, D]: self.unnamed_circles.append((B, self.dist(A, B))) return [self.cong_diff(A, B, C, D)] elif pred == "con-tri": [A, B, C, P, Q, R] = self.lookup_pts(args) # self.segments.extend([(A, B), (B, C), (C, A), (P, Q), (Q, R), (R, P)]) return [self.eqangle6_diff(A, B, C, P, Q, R), self.eqangle6_diff(B, C, A, Q, R, P), self.eqangle6_diff(C, A, B, R, P, Q), self.cong_diff(A, B, P, Q), self.cong_diff(A, C, P, R), self.cong_diff(B, C, Q, R)] elif pred == "cycl": cycl_args = self.lookup_pts(args) assert(len(cycl_args) > 3) O = self.circumcenter(*cycl_args[:3]) diffs = [self.eqangle6_diff(A, B, D, A, C, D) for A, B, C, D in itertools.combinations(cycl_args, 4)] # self.unnamed_circles.append((O, self.dist(O, cycl_args[0]))) return diffs elif pred == "dist-lt": X, Y, A, B = self.lookup_pts(args) return [self.max(self.const(0.0), self.dist(X, Y) - dist(A, B))] elif pred == "dist-gt": X, Y, A, B = self.lookup_pts(args) return [self.max(self.const(0.0), self.dist(A, B) - self.dist(X, Y))] elif pred == "eq-n": n1, n2 = [self.eval_num(n) for n in args] return [self.abs(n1 - n2)] elif pred == "eq-p": A, B = self.lookup_pts(args) return [self.dist(A, B)] elif pred == "eq-l": l1, l2 = args lnf1, lnf2 = self.line2nf(l1), self.line2nf(l2) n1, r1 = lnf1 n2, r2 = lnf2 return [self.dist(n1, n2), self.abs(r1 - r2)] elif pred == "gte": n1, n2 = [self.eval_num(n) for n in args] return [self.max(self.const(0.0), n2 - n1)] elif pred == "gt": # n1 > n2 n1, n2 = [self.eval_num(n) for n in args] return [self.max(self.const(0.0), (n2 + 1e-1) - n1)] elif pred == "lte": n1, n2 = [self.eval_num(n) for n in args] return [self.max(self.const(0.0), n1 - n2)] elif pred == "lt": # n1 < n2 n1, n2 = [self.eval_num(n) for n in args] return [self.max(self.const(0.0), (n1 + 1e-1) - n2)] elif pred == "eq-angle": return [self.eqangle8_diff(*self.lookup_pts(args))] # elif pred == "eqoangle": # A, B, C, P, Q, R = self.lookup_pts(args) # return [self.angle(A, B, C) - self.angle(P, Q, R)] elif pred == "eq-ratio": return [self.eqratio_diff(*self.lookup_pts(args))] elif pred == "foot": f, x, l = args F, X = self.lookup_pts([f, x]) lnf = self.line2nf(l) A, B = self.lnf2pp(lnf) return [self.coll_phi(F, A, B), self.perp_phi(F, X, A, B)] elif pred == "i-bisector": X, B, A, C = self.lookup_pts(args) # self.segments.extend([(B, A), (A, X), (A, C)]) return [self.eqangle8_diff(B, A, A, X, X, A, A, C)] elif pred == "incenter": I, A, B, C = self.lookup_pts(args) return [self.dist(I, self.incenter(A, B, C))] elif pred == "in-poly": return self.in_poly_phis(*self.lookup_pts(args)) elif pred == "inter-ll": X, A, B, C, D = self.lookup_pts(args) return [self.coll_phi(X, A, B), self.coll_phi(X, C, D)] elif pred == "isogonal-conj": X, Y, A, B, C = self.lookup_pts(args) return [self.dist(X, self.isogonal_conj(Y, A, B, C))] elif pred == "midp": M, A, B = self.lookup_pts(args) return [self.dist(M, self.midp(A, B))] elif pred == "on-circ": X, C = args [X] = self.lookup_pts([X]) (O, r) = self.circ2nf(C) return [self.dist(O, X) - r] elif pred == "on-line": [X, l] = args [X] = self.lookup_pts([X]) lp1, lp2 = self.line2twoPts(l) return [self.coll_phi(X, lp1, lp2)] elif pred == "on-ray": return [self.coll_phi(*self.lookup_pts(args))] + self.onray_gap(*self.lookup_pts(args)) elif pred == "on-seg": return [self.coll_phi(*self.lookup_pts(args))] + self.between_gap(*self.lookup_pts(args)) elif pred == "opp-sides": a, b, l = args A, B = self.lookup_pts([a, b]) lnf = self.line2nf(l) X, Y = self.lnf2pp(lnf) return [self.max(self.const(0.0), self.side_score_prod(A, B, X, Y))] elif pred == "orthocenter": H, A, B, C = self.lookup_pts(args) return [self.dist(H, self.orthocenter(A, B, C))] elif pred == "perp": if len(args) == 4: # four points return [self.perp_phi(*self.lookup_pts(args))] else: # two lines l1, l2 = args P1, P2 = self.line2twoPts(l1) P3, P4 = self.line2twoPts(l2) return [self.perp_phi(P1, P2, P3, P4)] elif pred == "para": if len(args) == 4: # four points return [self.para_phi(*self.lookup_pts(args))] else: # two lines l1, l2 = args P1, P2 = self.line2twoPts(l1) P3, P4 = self.line2twoPts(l2) return [self.para_phi(P1, P2, P3, P4)] elif pred == "reflect-pl": X, Y, A, B = self.lookup_pts(args) return [self.perp_phi(X, Y, A, B), self.cong_diff(A, X, A, Y)] elif pred == "right": A, B, C = self.lookup_pts(args) return [self.right_phi(A, B, C)] elif pred == "right-tri": A, B, C = self.lookup_pts(args) return [tf.reduce_min([self.right_phi(A, B, C), self.right_phi(B, A, C), self.right_phi(B, C, A)])] elif pred == "same-side": a, b, l = args A, B = self.lookup_pts([a, b]) lnf = self.line2nf(l) X, Y = self.lnf2pp(lnf) return [self.max(self.const(0.0), -self.side_score_prod(A, B, X, Y))] elif pred == "sim-tri": [A, B, C, P, Q, R] = self.lookup_pts(args) # self.segments.extend([(A, B), (B, C), (C, A), (P, Q), (Q, R), (R, P)]) # this is *too* easy to optimize, eqangle properties don't end up holding # return [eqratio_diff(A, B, B, C, P, Q, Q, R), eqratio_diff(B, C, C, A, Q, R, R, P), eqratio_diff(C, A, A, B, R, P, P, Q)] return [self.eqangle6_diff(A, B, C, P, Q, R), self.eqangle6_diff(B, C, A, Q, R, P), self.eqangle6_diff(C, A, B, R, P, Q)] elif pred == "tangent-cc": # https://mathworld.wolfram.com/TangentCircles.html # Could distinguish b/w internally and externally if desired c1, c2 = args cnf1 ,cnf2 = self.circ2nf(c1), self.circ2nf(c2) (x1, y1) = cnf1.center (x2, y2) = cnf2.center r1, r2 = cnf1.radius, cnf2.radius lhs = (x1 - x2) ** 2 + (y1 - y2) ** 2 rhs_1 = (r1 - r2) ** 2 rhs_2 = (r1 + r2) ** 2 return [tf.reduce_min([self.abs(lhs - rhs_1), self.abs(lhs - rhs_2)])] elif pred == "tangent-lc": l, c = args inter_point = Point(FuncInfo("inter-lc", [l, c, Root("arbitrary", list())])) return self.assertion_vals("tangent-at-lc", [inter_point, l, c]) elif pred == "tangent-at-cc": p, c1, c2 = args c1_center = Point(FuncInfo("origin", [c1])) c2_center = Point(FuncInfo("origin", [c2])) p_on_c1 = self.assertion_vals("on-circ", [p, c1]) p_on_c2 = self.assertion_vals("on-circ", [p, c2]) tangency = self.assertion_vals("coll", [p, c1_center, c2_center]) return p_on_c1 + p_on_c2 + tangency elif pred == "tangent-at-lc": p, l, c = args circ_center = Point(FuncInfo("origin", [c])) circ_center_to_p = Line(FuncInfo("connecting", [circ_center, p])) p_on_line = self.assertion_vals("on-line", [p, l]) p_on_circ = self.assertion_vals("on-circ", [p, c]) tangency = self.assertion_vals("perp", [l, circ_center_to_p]) return p_on_line + p_on_circ + tangency else: raise NotImplementedError(f"[assertion_vals] NYI: {pred}") ##################### ## Comp. Geo #################### def midp(self, A, B): return (A + B).smul(0.5) def midp_from(self, M, A): return A + (M - A).smul(2) def sqdist(self, A, B): return (A.x - B.x)**2 + (A.y - B.y)**2 def dist(self, A, B): return self.sqdist(A, B) ** (1 / 2) def inner_product(self, A, B): a1, a2 = A b1, b2 = B return a1*b1 + a2*b2 def scalar_product(self, A, O, B): lhs = (A.x - O.x) * (B.x - O.x) rhs = (A.y - O.y) * (B.y - O.y) return lhs + rhs def matrix_mul(self, mat, pt): pt1, pt2 = mat return self.get_point(self.inner_product(pt1, pt), self.inner_product(pt2, pt)) def rotation_matrix(self, theta): r1 = self.get_point(self.cos(theta), -self.sin(theta)) r2 = self.get_point(self.sin(theta), self.cos(theta)) return (r1, r2) def rotate_counterclockwise(self, theta, pt): return self.matrix_mul(self.rotation_matrix(theta), pt) def rotate_clockwise_90(self, pt): return self.matrix_mul( (self.get_point(self.const(0.0), self.const(1.0)), self.get_point(self.const(-1.0),self.const(0.0))), pt) def rotate_counterclockwise_90(self, pt): return self.matrix_mul( (self.get_point(self.const(0.0), self.const(-1.0)), self.get_point(self.const(1.0),self.const(0.0))), pt) def side_lengths(self, A, B, C): return self.dist(B, C), self.dist(C, A), self.dist(A, B) def clockwise_angle(self, A, B, C): x1, y1 = A.x - B.x, A.y - B.y x2, y2 = C.x - B.x, C.y - B.y dot = x1 * x2 + y1 * y2 det = x1 * y2 - y1 * x2 return self.atan2(det, dot) def angle(self, A, B, C): a, b, c = self.side_lengths(A, B, C) return self.acos((a**2 + c**2 - b**2) / (2 * a * c)) def right_phi(self, A, B, C): return self.abs(self.angle(A, B, C) - math.pi / 2) def conway_vals(self, A, B, C): a, b, c = self.side_lengths(A, B, C) return (b**2 + c**2 - a**2)/2, (c**2 + a**2 - b**2)/2, (a**2 + b**2 - c**2)/2 def trilinear(self, A, B, C, x, y, z): a, b, c = self.side_lengths(A, B, C) denom = a * x + b * y + c * z return self.get_point((a * x * A.x + b * y * B.x + c * z * C.x) / denom, (a * x * A.y + b * y * B.y + c * z * C.y) / denom) def barycentric(self, A, B, C, x, y, z): a, b, c = self.side_lengths(A, B, C) return self.trilinear(A, B, C, x/a, y/b, z/c) def circumcenter(self, A, B, C): a, b, c = self.side_lengths(A, B, C) Sa, Sb, Sc = self.conway_vals(A, B, C) res = self.barycentric(A, B, C, a**2 * Sa, b**2 * Sb, c**2 * Sc) return res def orthocenter(self, A, B, C): a, b, c = self.side_lengths(A, B, C) Sa, Sb, Sc = self.conway_vals(A, B, C) return self.barycentric(A, B, C, Sb * Sc, Sc * Sa, Sa * Sb) def centroid(self, A, B, C): return self.barycentric(A, B, C, 1, 1, 1) def incenter(self, A, B, C): return self.trilinear(A, B, C, 1, 1, 1) def excenter(self, A, B, C): return self.trilinear(A, B, C, -1, 1, 1) def perp_phi(self, A, B, C, D): return (A.x - B.x) * (C.x - D.x) + (A.y - B.y) * (C.y - D.y) def para_phi(self, A, B, C, D): return (A.x - B.x) * (C.y - D.y) - (A.y - B.y) * (C.x - D.x) def cong_diff(self, A, B, C, D): return self.sqdist(A, B) - self.sqdist(C, D) def coll_phi(self, A, B, C): return A.x * (B.y - C.y) + B.x * (C.y - A.y) + C.x * (A.y - B.y) def between_gap(self, X, A, B): eps = 0.2 A1 = self.get_point(A.x + eps * (B.x - A.x), A.y + eps * (B.y - A.y)) B1 = self.get_point(B.x + eps * (A.x - B.x), B.y + eps * (A.y - B.y)) return [self.diff_signs(X.x - A1.x, X.x - B1.x), self.diff_signs(X.y - A1.y, X.y - B1.y)] def onray_gap(self, X, A, B): eps = 0.2 A1 = self.get_point(A.x + eps * (B.x - A.x), A.y + eps * (B.y - A.y)) # TODO: coll_phi causing NaNs when [X, A, B] are perfectly collinear by construction return [self.diff_signs(X.x - A1.x, A1.x - B.x), self.diff_signs(X.y - A1.y, A1.y - B.y)] def det3(self, A, O, B): lhs = (A.x - O.x) * (B.y - O.y) rhs = (A.y - O.y) * (B.x - O.x) return lhs - rhs def side_score_prod(self, a, b, x, y): return self.det3(a, x, y) * self.det3(b, x, y) def opp_sides(self, a, b, x, y): return self.lt(self.side_score_prod(a, b, x, y), 0.0) def same_side(self, a, b, x, y): return self.gt(self.side_score_prod(a, b, x, y), 0.0) def inter_ll(self, l1, l2): (n11, n12), r1 = l1 # TODO(jesse): ensure that this pattern matching works (n21, n22), r2 = l2 def inter_ll_aux(n11, n12, r1, n21, n22, r2): numer = n11 * r2 * (n21 ** 2 + n22**2) - r1 * (n11**2 * n21 + n12**2 * n21) denom = n11 * n22 - n12 * n21 def on_ok(): return numer/denom def on_bad(): return numer/(tf.math.sign(denom) * 1e-4) return tf.cond(tf.less(tf.math.abs(denom), 1e-4), on_bad, on_ok) return self.get_point(x=inter_ll_aux(n22, n21, r2, n12, n11, r1), y=inter_ll_aux(n11, n12, r1, n21, n22, r2)) def inter_pp_c(self, P1, P2, cnf): # We follow http://mathworld.wolfram.com/Circle-LineIntersection.html O, r = cnf P1, P2 = self.shift(O, [P1, P2]) dx = P1.x - P2.x dy = P1.y - P2.y dr = self.sqrt(dx**2 + dy**2) D = P2.x * P1.y - P1.x * P2.y radicand = r**2 * dr**2 - D**2 def on_nneg(): def sgnstar(x): return self.cond(self.lt(x, self.const(0.0)), lambda: self.const(-1.0), lambda: self.const(1.0)) Q1 = self.get_point((D * dy + sgnstar(dy) * dx * self.sqrt(radicand)) / (dr**2), (-D * dx + self.abs(dy) * self.sqrt(radicand)) / (dr**2)) Q2 = self.get_point((D * dy - sgnstar(dy) * dx * self.sqrt(radicand)) / (dr**2), (-D * dx - self.abs(dy) * self.sqrt(radicand)) / (dr**2)) return self.unshift(O, [Q1, Q2]) def on_neg(): Operp = self.rotate_counterclockwise_90(P1 - P2) + O F = self.inter_ll(self.pp2lnf(P1, P2), self.pp2lnf(O, Operp)) X = O + (F - O).smul(r / self.dist(O, F)) Q = self.midp(F, X) return self.unshift(O, [Q, Q]) return self.cond(self.lte(radicand, self.const(0.0)), on_neg, on_nneg) def inter_lc(self, lnf, c, root_select): p1, p2 = self.lnf2pp(lnf) I1, I2 = self.inter_pp_c(p1, p2, c) return self.process_rs(I1, I2, root_select) def inter_cc(self, cnf1, cnf2, root_select): l = self.radical_axis(cnf1, cnf2) result = self.inter_lc(l, cnf1, root_select) return result def make_lc_intersect(self, name, lnf, c): A, B = self.lnf2pp(lnf) O, r = c Operp = self.rotate_counterclockwise_90(A - B) + O F = self.inter_ll(lnf, self.pp2lnf(O, Operp)) d = self.dist(O, F) f_val = self.cond(self.lt(r, d), lambda: d, lambda: self.const(0.0)) loss = self.cond(self.logical_or(self.lt(self.dist(O, Operp), 1e-6), self.lt(self.dist(A, B), 1e-6)), lambda: self.const(0.0), lambda: f_val) self.register_loss(f"interLC_{name}", loss, weight=1e-1) def second_meet_pp_c(self, A, B, O): P1, P2 = self.inter_pp_c(A, B, CircleNF(O, self.dist(O, A))) return self.cond(self.lt(self.sqdist(A, P1), self.sqdist(A, P2)), lambda: P2, lambda: P1) def amidp_opp(self, B, C, A): O = self.circumcenter(A, B, C) I = self.incenter(A, B, C) return self.second_meet_pp_c(A, I, O) def amidp_same(self, B, C, A): M = self.amidp_opp(B, C, A) O = self.circumcenter(A, B, C) return self.second_meet_pp_c(M, O, O) def radical_axis_pts(self, cnf1, cnf2): (c1x, c1y), r1 = cnf1 (c2x, c2y), r2 = cnf2 A = self.const(2.0) * (c2x - c1x) B = self.const(2.0) * (c2y - c1y) C = (r1**2 - r2**2) + (c2y**2 - c1y**2) + (c2x**2 - c1x**2) # FIXME: Fails on EGMO 2.7 because we aren't passing around lambdas anymore # pdb.set_trace() test = self.gt(self.abs(A), 1e-6) p1 = self.cond(test, lambda: self.get_point(x=(C-B)/A, y=self.const(1.0)), lambda: self.get_point(x=self.const(1.0), y=C/B)) p2 = self.cond(test, lambda: self.get_point(x=C/A, y=self.const(0.0)), lambda: self.get_point(x=self.const(0.0), y=C/B)) return p1, p2 def radical_axis(self, cnf1, cnf2): p1, p2 = self.radical_axis_pts(cnf1, cnf2) return self.pp2lnf(p1, p2) def eqangle6_diff(self, A, B, C, P, Q, R): s1 = self.det3(A, B, C) c1 = self.scalar_product(A, B, C) s2 = self.det3(P, Q, R) c2 = self.scalar_product(P, Q, R) return 0.1 * (s1 * c2 - s2 * c1) def eqratio_diff(self, A, B, C, D, P, Q, R, S): # AB/CD = PQ/RS return self.sqrt(self.dist(A, B) * self.dist(R, S)) - self.sqrt(self.dist(P, Q) * self.dist(C, D)) def cycl_diff(self, A, B, C, D): return self.eqangle6_diff(A, B, D, A, C, D) def eqangle8_diff(self, A, B1, B2, C, P, Q1, Q2, R): return self.eqangle6_diff(A, B1, C - B2 + B1, P, Q1, R - Q2 + Q1) def semiperimeter(self, A, B, C): a, b, c = self.side_lengths(A, B, C) return (a + b + c) / 2 def area(self, A, B, C): a, b, c = self.side_lengths(A, B, C) s = self.semiperimeter(A, B, C) return self.sqrt(s * (s - a) * (s - b) * (s - c)) def inradius(self, A, B, C): return self.area(A, B, C) / self.semiperimeter(A, B, C) def exradius(self, A, B, C): r = self.inradius(A, B, C) a, b, c = self.side_lengths(A, B, C) s = (a + b + c)/2 return r * s / (s - a) def mixtilinear_incenter(self, A, B, C): ta, tb, tc = self.angle(C, A, B), self.angle(A, B, C), self.angle(B, C, A) return self.trilinear(A, B, C, (1/2) * (1 + self.cos(ta) - self.cos(tb) - self.cos(tc)), 1, 1) def mixtilinear_inradius(self, A, B, C): r = self.inradius(A, B, C) ta = self.angle(C, A, B) return r * (1 / self.cos(ta / 2)**2) def to_trilinear(self, P, A, B, C): la = self.pp2lnf(B, C) lb = self.pp2lnf(C, A) lc = self.pp2lnf(A, B) ga = self.pp2lnf(P, P + self.rotate_counterclockwise_90(C - B)) gb = self.pp2lnf(P, P + self.rotate_counterclockwise_90(A - C)) gc = self.pp2lnf(P, P + self.rotate_counterclockwise_90(B - A)) da = self.dist(P, self.inter_ll(la, ga)) db = self.dist(P, self.inter_ll(lb, gb)) dc = self.dist(P, self.inter_ll(lc, gc)) da = self.cond(self.opp_sides(P, A, B, C), lambda: -da, lambda: da) db = self.cond(self.opp_sides(P, B, C, A), lambda: -db, lambda: db) dc = self.cond(self.opp_sides(P, C, A, B), lambda: -dc, lambda: dc) return da, db, dc def invert_or_zero(self, x): return self.cond(self.abs(x) < 1e-5, lambda: self.const(0.0), lambda: self.const(1) / x) def isogonal_conj(self, P, A, B, C): x, y, z = self.to_trilinear(P, A, B, C) return self.trilinear(A, B, C, self.invert_or_zero(x), self.invert_or_zero(y), self.invert_or_zero(z)) def isotomic_conj(self, P, A, B, C): a, b, c = self.side_lengths(A, B, C) x, y, z = self.to_trilinear(P, A, B, C) return self.trilinear(A, B, C, (a**2) * self.invert_or_zero(x), (b**2) * self.invert_or_zero(y), (c**2) * self.invert_or_zero(z)) def inverse(self, X, O, A): return O + (X - O).smul(self.sqdist(O, A) / self.sqdist(O, X)) def harmonic_l_conj(self, X, A, B): # see picture in https://en.wikipedia.org/wiki/Projective_harmonic_conjugate # L is arbitrary here, not on the line X A B # (could also do case analysis and cross-ratio) L = A + self.rotate_counterclockwise(self.const(math.pi / 3), X - A).smul(0.5) M = self.midp(A, L) N = self.inter_ll(self.pp2lnf(B, L), self.pp2lnf(X, M)) K = self.inter_ll(self.pp2lnf(A, N), self.pp2lnf(B, M)) Y = self.inter_ll(self.pp2lnf(L, K), self.pp2lnf(A, X)) return Y def in_poly_phis(self, X, *Ps): phis = [] n = len(Ps) for i in range(n): A, B, C = Ps[i], Ps[(i+1) % n], Ps[(i+2) % n] # X and C are on the same side of AB phis.append(self.max(self.const(0.0), - self.side_score_prod(X, C, A, B))) return phis ##################### ## Utilities #################### def line2twoPts(self, l): if isinstance(l.val, str): L = self.name2line[l] return self.lnf2pp(L) elif isinstance(l.val, FuncInfo): pred, args = l.val if pred == "connecting": return self.lookup_pts(args) elif pred == "isogonal": D, A, B, C = self.lookup_pts(args) return A, self.isogonal_conj(D, A, B, C) elif pred == "isotomic": D, A, B, C = self.lookup_pts(args) return A, self.isotomic_conj(D, A, B, C) elif pred == "para-at": x, l = args X = self.lookup_pt(x) L = self.line2nf(l) A, B = self.lnf2pp(L) return X, X + B - A elif pred == "perp-at": x, l = args X = self.lookup_pt(x) L = self.line2nf(l) A, B = self.lnf2pp(L) return X, X + self.rotate_counterclockwise_90(A - B) elif pred == "perp-bis": a, b = args l_ab = Line(FuncInfo("connecting", [a, b])) m_ab = Point(FuncInfo("midp", [a, b])) return self.line2twoPts(Line(FuncInfo("perp-at", [m_ab, l_ab]))) elif pred == "mediator": A, B = self.lookup_pts(args) M = self.midp(A, B) return M, M + self.rotate_counterclockwise_90(A - B) elif pred == "i-bisector": A, B, C = self.lookup_pts(args) X = B + (A - B).smul(self.dist(B, C) / self.dist(B, A)) M = self.midp(X, C) return B, M elif pred == "e-bisector": A, B, C = self.lookup_pts(args) X = B + (A - B).smul(self.dist(B, C) / self.dist(B, A)) M = self.midp(X, C) Y = B + self.rotate_counterclockwise_90(M - B) return B, Y # elif pred == "eqoangle": # B, C, D, E, F = self.lookup_pts(args) # theta = self.angle(D, E, F) # X = B + self.rotate_counterclockwise(theta, C - B) # # self.segments.extend([(A, B), (B, C), (P, Q), (Q, R)]) return B, X elif pred == "reflect-ll": l1, l2 = args lnf1 = self.line2nf(l1) p1, p2 = self.lnf2pp(lnf1) refl_p1 = Point(FuncInfo("reflect-pl", [Point(FuncInfo("__val__", [p1])), l2])) refl_p1 = self.lookup_pt(refl_p1) refl_p2 = Point(FuncInfo("reflect-pl", [Point(FuncInfo("__val__", [p2])), l2])) refl_p2 = self.lookup_pt(refl_p2) return refl_p1, refl_p2 else: raise RuntimeError(f"[line2twoPts] Unexpected line pred: {pred}") else: raise RuntimeError(f"Unsupported line type: {type(l)}") def line2sf(self, l): if isinstance(l.val, str): return self.name2line[l] else: p1, p2 = self.line2twoPts(l) return self.pp2sf(p1, p2) def lnf2pp(self, lnf): n, r = lnf w = n.smul(r) m = self.rotate_clockwise_90(n) return w, w + m def pp2lnf(self, p1, p2): # TODO(jesse): please name this def mysterious_pp2pp(p1, p2): x,y = p2 def pred(x,y): return tf.logical_or(tf.math.less(y, self.const(0.0)), tf.logical_and(tf.equal(y, self.const(0.0)), tf.math.less(x, self.const(0.0)))) return tf.compat.v1.cond(pred(x,y), lambda:(p1, p2.smul(-1.0)), lambda:(p1, p2)) def pp2lnf_core(p1, p2): p1, p2 = mysterious_pp2pp(p1, p2) x , _ = p2 n = tf.compat.v1.cond(tf.less_equal(x,0.0), lambda: self.rotate_clockwise_90(p2), lambda: self.rotate_counterclockwise_90(p2)) r = self.inner_product(p1, n) return LineNF(n=n, r=r) return pp2lnf_core(p1, (p1 - p2).normalize()) def line2nf(self, l): if isinstance(l.val, str): return self.name2line[l] else: p1, p2 = self.line2twoPts(l) return self.pp2lnf(p1, p2) def pp2sf(self, p1, p2): def vert_line(): return LineSF(self.const(1.0), self.const(0.0), p1.x, p1, p2) def horiz_line(): return LineSF(self.const(0.0), self.const(1.0), p1.y, p1, p2) def calc_sf_from_slope_intercept(): (x1, y1) = p1 (x2, y2) = p2 m = (y2 - y1) / (x2 - x1) b = y1 - m * x1 # y = mx + b ---> -mx + (1)y = b return LineSF(-m, self.const(1.0), b, p1, p2) return self.cond(self.eq(p1.x, p2.x), vert_line, lambda: self.cond(self.eq(p1.y, p2.y), horiz_line, calc_sf_from_slope_intercept)) def circ2nf(self, circ): if isinstance(circ.val, str): return self.name2circ[circ] elif isinstance(circ.val, FuncInfo): pred, args = circ.val if pred == "c3" or pred == "circumcircle": A, B, C = self.lookup_pts(args) O = self.circumcenter(A, B, C) return CircleNF(center=O, radius=self.dist(O, A)) elif pred == "coa": O, A = self.lookup_pts(args) return CircleNF(center=O, radius=self.dist(O, A)) elif pred == "cong": O, X, Y = self.lookup_pts(args) return CircleNF(center=O, radius=self.dist(X, Y)) elif pred == "diam": B, C = self.lookup_pts(args) O = self.midp(B, C) return CircleNF(center=O, radius=self.dist(O, B)) elif pred == "incircle": A, B, C = self.lookup_pts(args) I = self.incenter(A, B, C) return CircleNF(center=I, radius=self.inradius(A, B, C)) elif pred == "excircle": A, B, C = self.lookup_pts(args) I = self.excenter(A, B, C) return CircleNF(center=I, radius=self.exradius(A, B, C)) elif pred == "mixtilinear-incircle": A, B, C = self.lookup_pts(args) I = self.mixtilinear_incenter(A, B, C) return CircleNF(center=I, radius=self.mixtilinear_inradius(A, B, C)) else: raise RuntimeError(f"[circ2nf] NYI: {pred}") else: raise RuntimeError("Invalid circle type") def shift(self, O, Ps): return [self.get_point(P.x - O.x, P.y - O.y) for P in Ps] def unshift(self, O, Ps): return [self.get_point(P.x + O.x, P.y + O.y) for P in Ps] def pt_eq(self, p1, p2): return self.lt(self.dist(p1, p2), 1e-6) def pt_neq(self, p1, p2): return self.gt(self.dist(p1, p2), 1e-6) def process_rs(self, P1, P2, root_select): pred = root_select.pred rs_args = root_select.vars if pred == "neq": [pt] = self.lookup_pts(rs_args) return self.cond(self.pt_neq(P1, pt), lambda: P1, lambda: P2) elif pred == "closer-to-p": [pt] = self.lookup_pts(rs_args) test = self.lte(self.sqdist(P1, pt), self.sqdist(P2, pt)) return self.cond(test, lambda: P1, lambda: P2) elif pred == "closer-to-l": [l] = rs_args P1_foot = Point(FuncInfo("foot", [Point(FuncInfo("__val__", [P1])), l])) P1_foot = self.lookup_pt(P1_foot) P2_foot = Point(FuncInfo("foot", [Point(FuncInfo("__val__", [P2])), l])) P2_foot = self.lookup_pt(P2_foot) test = self.lte(self.sqdist(P1, P1_foot), self.sqdist(P2, P2_foot)) return self.cond(test, lambda: P1, lambda: P2) # elif pred == "furtherFrom": # [pt] = self.lookup_pts(rs_args) # test = self.lt(self.sqdist(P2, pt), self.sqdist(P1, pt)) # return self.cond(test, lambda: P1, lambda: P2) elif pred == "opp-sides": [pt] = self.lookup_pts([rs_args[0]]) a, b = self.lnf2pp(self.line2nf(rs_args[1])) return self.cond(self.opp_sides(P1, pt, a, b), lambda: P1, lambda: P2) elif pred == "same-side": [pt] = self.lookup_pts([rs_args[0]]) a, b = self.lnf2pp(self.line2nf(rs_args[1])) return self.cond(self.same_side(P1, pt, a, b), lambda: P1, lambda: P2) elif pred == "arbitrary": return P2 else: raise NotImplementedError(f"[process_rs] NYI: {pred}") def points_far_enough_away(self): name2pt = self.run(self.name2pt) min_dist = self.opts['min_dist'] for a, b in itertools.combinations(name2pt.keys(), 2): A, B = name2pt[a], name2pt[b] d = self.dist(A, B) if d < min_dist: if self.opts['verbosity'] >= 0: print(f"DUP: {a} {b}") return False return True def diff_signs(self, x, y): return self.max(self.const(0.0), x * y)
2.421875
2
slm_lab/agent/algorithm/policy_util.py
achao2013/SLM-Lab
1
12784307
''' Action policy methods to sampling actions Algorithm provides a `calc_pdparam` which takes a state and do a forward pass through its net, and the pdparam is used to construct an action probability distribution as appropriate per the action type as indicated by the body Then the prob. dist. is used to sample action. The default form looks like: ``` ActionPD, pdparam, body = init_action_pd(state, algorithm, body) action, action_pd = sample_action_pd(ActionPD, pdparam, body) ``` We can also augment pdparam before sampling - as in the case of Boltzmann sampling, or do epsilon-greedy to use pdparam-sampling or random sampling. ''' from slm_lab.env.wrapper import LazyFrames from slm_lab.lib import logger, math_util, util from torch import distributions import numpy as np import pydash as ps import torch logger = logger.get_logger(__name__) # probability distributions constraints for different action types; the first in the list is the default ACTION_PDS = { 'continuous': ['Normal', 'Beta', 'Gumbel', 'LogNormal'], 'multi_continuous': ['MultivariateNormal'], 'discrete': ['Categorical', 'Argmax'], 'multi_discrete': ['MultiCategorical'], 'multi_binary': ['Bernoulli'], } class Argmax(distributions.Categorical): ''' Special distribution class for argmax sampling, where probability is always 1 for the argmax. NOTE although argmax is not a sampling distribution, this implementation is for API consistency. ''' def __init__(self, probs=None, logits=None, validate_args=None): if probs is not None: new_probs = torch.zeros_like(probs, dtype=torch.float) new_probs[torch.argmax(probs, dim=0)] = 1.0 probs = new_probs elif logits is not None: new_logits = torch.full_like(logits, -1e8, dtype=torch.float) max_idx = torch.argmax(logits, dim=0) new_logits[max_idx] = logits[max_idx] logits = new_logits super(Argmax, self).__init__(probs=probs, logits=logits, validate_args=validate_args) class MultiCategorical(distributions.Categorical): '''MultiCategorical as collection of Categoricals''' def __init__(self, probs=None, logits=None, validate_args=None): self.categoricals = [] if probs is None: probs = [None] * len(logits) elif logits is None: logits = [None] * len(probs) else: raise ValueError('Either probs or logits must be None') for sub_probs, sub_logits in zip(probs, logits): categorical = distributions.Categorical(probs=sub_probs, logits=sub_logits, validate_args=validate_args) self.categoricals.append(categorical) @property def logits(self): return [cat.logits for cat in self.categoricals] @property def probs(self): return [cat.probs for cat in self.categoricals] @property def param_shape(self): return [cat.param_shape for cat in self.categoricals] @property def mean(self): return torch.stack([cat.mean for cat in self.categoricals]) @property def variance(self): return torch.stack([cat.variance for cat in self.categoricals]) def sample(self, sample_shape=torch.Size()): return torch.stack([cat.sample(sample_shape=sample_shape) for cat in self.categoricals]) def log_prob(self, value): return torch.stack([cat.log_prob(value[idx]) for idx, cat in enumerate(self.categoricals)]) def entropy(self): return torch.stack([cat.entropy() for cat in self.categoricals]) def enumerate_support(self): return [cat.enumerate_support() for cat in self.categoricals] setattr(distributions, 'Argmax', Argmax) setattr(distributions, 'MultiCategorical', MultiCategorical) # base methods def try_preprocess(state, algorithm, body, append=True): '''Try calling preprocess as implemented in body's memory to use for net input''' if isinstance(state, LazyFrames): state = state.__array__() # from global env preprocessor if hasattr(body.memory, 'preprocess_state'): state = body.memory.preprocess_state(state, append=append) # as float, and always as minibatch for net input state = torch.from_numpy(state).float().unsqueeze(dim=0) return state def cond_squeeze(out): '''Helper to squeeze output depending if it is tensor (discrete pdparam) or list of tensors (continuous pdparam of loc and scale)''' if isinstance(out, list): return [out_t.squeeze(dim=0) for out_t in out] else: return out.squeeze(dim=0) def init_action_pd(state, algorithm, body, append=True): ''' Build the proper action prob. dist. to use for action sampling. state is passed through algorithm's net via calc_pdparam, which the algorithm must implement using its proper net. This will return body, ActionPD and pdparam to allow augmentation, e.g. applying temperature tau to pdparam for boltzmann. Then, output must be called with sample_action_pd(body, ActionPD, pdparam) to sample action. @returns {cls, tensor, *} ActionPD, pdparam, body ''' pdtypes = ACTION_PDS[body.action_type] assert body.action_pdtype in pdtypes, f'Pdtype {body.action_pdtype} is not compatible/supported with action_type {body.action_type}. Options are: {ACTION_PDS[body.action_type]}' ActionPD = getattr(distributions, body.action_pdtype) state = try_preprocess(state, algorithm, body, append=append) state = state.to(algorithm.net.device) pdparam = algorithm.calc_pdparam(state, evaluate=False) return ActionPD, pdparam, body def sample_action_pd(ActionPD, pdparam, body): ''' This uses the outputs from init_action_pd and an optionally augmented pdparam to construct a action_pd for sampling action @returns {tensor, distribution} action, action_pd A sampled action, and the prob. dist. used for sampling to enable calculations like kl, entropy, etc. later. ''' pdparam = cond_squeeze(pdparam) if body.is_discrete: action_pd = ActionPD(logits=pdparam) else: # continuous outputs a list, loc and scale assert len(pdparam) == 2, pdparam # scale (stdev) must be >0, use softplus if pdparam[1] < 5: pdparam[1] = torch.log(1 + torch.exp(pdparam[1])) + 1e-8 action_pd = ActionPD(*pdparam) action = action_pd.sample() return action, action_pd # interface action sampling methods def default(state, algorithm, body): '''Plain policy by direct sampling using outputs of net as logits and constructing ActionPD as appropriate''' ActionPD, pdparam, body = init_action_pd(state, algorithm, body) action, action_pd = sample_action_pd(ActionPD, pdparam, body) return action, action_pd def random(state, algorithm, body): '''Random action sampling that returns the same data format as default(), but without forward pass. Uses gym.space.sample()''' state = try_preprocess(state, algorithm, body, append=True) # for consistency with init_action_pd inner logic if body.action_type == 'discrete': action_pd = distributions.Categorical(logits=torch.ones(body.action_space.high, device=algorithm.net.device)) elif body.action_type == 'continuous': # Possibly this should this have a 'device' set action_pd = distributions.Uniform( low=torch.tensor(body.action_space.low).float(), high=torch.tensor(body.action_space.high).float()) elif body.action_type == 'multi_discrete': action_pd = distributions.Categorical( logits=torch.ones(body.action_space.high.size, body.action_space.high[0], device=algorithm.net.device)) elif body.action_type == 'multi_continuous': raise NotImplementedError elif body.action_type == 'multi_binary': raise NotImplementedError else: raise NotImplementedError sample = body.action_space.sample() action = torch.tensor(sample, device=algorithm.net.device) return action, action_pd def epsilon_greedy(state, algorithm, body): '''Epsilon-greedy policy: with probability epsilon, do random action, otherwise do default sampling.''' epsilon = body.explore_var if epsilon > np.random.rand(): return random(state, algorithm, body) else: return default(state, algorithm, body) def boltzmann(state, algorithm, body): ''' Boltzmann policy: adjust pdparam with temperature tau; the higher the more randomness/noise in action. ''' tau = body.explore_var ActionPD, pdparam, body = init_action_pd(state, algorithm, body) pdparam /= tau action, action_pd = sample_action_pd(ActionPD, pdparam, body) return action, action_pd # multi-body policy with a single forward pass to calc pdparam def multi_default(states, algorithm, body_list, pdparam): ''' Apply default policy body-wise Note, for efficiency, do a single forward pass to calculate pdparam, then call this policy like: @example pdparam = self.calc_pdparam(state, evaluate=False) action_a, action_pd_a = self.action_policy(pdparam, self, body_list) ''' pdparam = pdparam.squeeze(dim=0) # assert pdparam has been chunked assert len(pdparam.shape) > 1 and len(pdparam) == len(body_list), f'pdparam shape: {pdparam.shape}, bodies: {len(body_list)}' action_list, action_pd_a = [], [] for idx, sub_pdparam in enumerate(pdparam): body = body_list[idx] try_preprocess(states[idx], algorithm, body, append=True) # for consistency with init_action_pd inner logic ActionPD = getattr(distributions, body.action_pdtype) action, action_pd = sample_action_pd(ActionPD, sub_pdparam, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a def multi_random(states, algorithm, body_list, pdparam): '''Apply random policy body-wise.''' pdparam = pdparam.squeeze(dim=0) action_list, action_pd_a = [], [] for idx, body in body_list: action, action_pd = random(states[idx], algorithm, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a def multi_epsilon_greedy(states, algorithm, body_list, pdparam): '''Apply epsilon-greedy policy body-wise''' assert len(pdparam) > 1 and len(pdparam) == len(body_list), f'pdparam shape: {pdparam.shape}, bodies: {len(body_list)}' action_list, action_pd_a = [], [] for idx, sub_pdparam in enumerate(pdparam): body = body_list[idx] epsilon = body.explore_var if epsilon > np.random.rand(): action, action_pd = random(states[idx], algorithm, body) else: try_preprocess(states[idx], algorithm, body, append=True) # for consistency with init_action_pd inner logic ActionPD = getattr(distributions, body.action_pdtype) action, action_pd = sample_action_pd(ActionPD, sub_pdparam, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a def multi_boltzmann(states, algorithm, body_list, pdparam): '''Apply Boltzmann policy body-wise''' assert len(pdparam) > 1 and len(pdparam) == len(body_list), f'pdparam shape: {pdparam.shape}, bodies: {len(body_list)}' action_list, action_pd_a = [], [] for idx, sub_pdparam in enumerate(pdparam): body = body_list[idx] try_preprocess(states[idx], algorithm, body, append=True) # for consistency with init_action_pd inner logic tau = body.explore_var sub_pdparam /= tau ActionPD = getattr(distributions, body.action_pdtype) action, action_pd = sample_action_pd(ActionPD, sub_pdparam, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a # action policy update methods class VarScheduler: ''' Variable scheduler for decaying variables such as explore_var (epsilon, tau) and entropy e.g. spec "explore_var_spec": { "name": "linear_decay", "start_val": 1.0, "end_val": 0.1, "start_step": 0, "end_step": 800, }, ''' def __init__(self, var_decay_spec=None): self._updater_name = 'no_decay' if var_decay_spec is None else var_decay_spec['name'] self._updater = getattr(math_util, self._updater_name) util.set_attr(self, dict( start_val=np.nan, )) util.set_attr(self, var_decay_spec, [ 'start_val', 'end_val', 'start_step', 'end_step', ]) if not getattr(self, 'end_val', None): self.end_val = self.start_val def update(self, algorithm, clock): '''Get an updated value for var''' if (util.in_eval_lab_modes()) or self._updater_name == 'no_decay': return self.end_val step = clock.get(clock.max_tick_unit) val = self._updater(self.start_val, self.end_val, self.start_step, self.end_step, step) return val # misc calc methods def guard_multi_pdparams(pdparams, body): '''Guard pdparams for multi action''' action_dim = body.action_dim is_multi_action = ps.is_iterable(action_dim) if is_multi_action: assert ps.is_list(pdparams) pdparams = [t.clone() for t in pdparams] # clone for grad safety assert len(pdparams) == len(action_dim), pdparams # transpose into (batch_size, [action_dims]) pdparams = [list(torch.split(t, action_dim, dim=0)) for t in torch.cat(pdparams, dim=1)] return pdparams def calc_log_probs(algorithm, net, body, batch): ''' Method to calculate log_probs fresh from batch data Body already stores log_prob from self.net. This is used for PPO where log_probs needs to be recalculated. ''' states, actions = batch['states'], batch['actions'] action_dim = body.action_dim is_multi_action = ps.is_iterable(action_dim) # construct log_probs for each state-action pdparams = algorithm.calc_pdparam(states, net=net) pdparams = guard_multi_pdparams(pdparams, body) assert len(pdparams) == len(states), f'batch_size of pdparams: {len(pdparams)} vs states: {len(states)}' pdtypes = ACTION_PDS[body.action_type] ActionPD = getattr(distributions, body.action_pdtype) log_probs = [] for idx, pdparam in enumerate(pdparams): if not is_multi_action: # already cloned for multi_action above pdparam = pdparam.clone() # clone for grad safety _action, action_pd = sample_action_pd(ActionPD, pdparam, body) log_probs.append(action_pd.log_prob(actions[idx].float()).sum(dim=0)) log_probs = torch.stack(log_probs) assert not torch.isnan(log_probs).any(), f'log_probs: {log_probs}, \npdparams: {pdparams} \nactions: {actions}' logger.debug(f'log_probs: {log_probs}') return log_probs def update_online_stats(body, state): ''' Method to calculate the running mean and standard deviation of the state space. See https://www.johndcook.com/blog/standard_deviation/ for more details for n >= 1 M_n = M_n-1 + (state - M_n-1) / n S_n = S_n-1 + (state - M_n-1) * (state - M_n) variance = S_n / (n - 1) std_dev = sqrt(variance) ''' logger.debug(f'mean: {body.state_mean}, std: {body.state_std_dev}, num examples: {body.state_n}') # Assumes only one state is given if ('Atari' in util.get_class_name(body.memory)): assert state.ndim == 3 elif getattr(body.memory, 'raw_state_dim', False): assert state.size == body.memory.raw_state_dim else: assert state.size == body.state_dim or state.shape == body.state_dim mean = body.state_mean body.state_n += 1 if np.isnan(mean).any(): assert np.isnan(body.state_std_dev_int) assert np.isnan(body.state_std_dev) body.state_mean = state body.state_std_dev_int = 0 body.state_std_dev = 0 else: assert body.state_n > 1 body.state_mean = mean + (state - mean) / body.state_n body.state_std_dev_int = body.state_std_dev_int + (state - mean) * (state - body.state_mean) body.state_std_dev = np.sqrt(body.state_std_dev_int / (body.state_n - 1)) # Guard against very small std devs if (body.state_std_dev < 1e-8).any(): body.state_std_dev[np.where(body.state_std_dev < 1e-8)] += 1e-8 logger.debug(f'new mean: {body.state_mean}, new std: {body.state_std_dev}, num examples: {body.state_n}') def normalize_state(body, state): ''' Normalizes one or more states using a running mean and standard deviation Details of the normalization from Deep RL Bootcamp, L6 https://www.youtube.com/watch?v=8EcdaCk9KaQ&feature=youtu.be ''' same_shape = False if type(state) == list else state.shape == body.state_mean.shape has_preprocess = getattr(body.memory, 'preprocess_state', False) if ('Atari' in util.get_class_name(body.memory)): # never normalize atari, it has its own normalization step logger.debug('skipping normalizing for Atari, already handled by preprocess') return state elif ('Replay' in util.get_class_name(body.memory)) and has_preprocess: # normalization handled by preprocess_state function in the memory logger.debug('skipping normalizing, already handled by preprocess') return state elif same_shape: # if not atari, always normalize the state the first time we see it during act # if the shape is not transformed in some way if np.sum(body.state_std_dev) == 0: return np.clip(state - body.state_mean, -10, 10) else: return np.clip((state - body.state_mean) / body.state_std_dev, -10, 10) else: # broadcastable sample from an un-normalized memory so we should normalize logger.debug('normalizing sample from memory') if np.sum(body.state_std_dev) == 0: return np.clip(state - body.state_mean, -10, 10) else: return np.clip((state - body.state_mean) / body.state_std_dev, -10, 10) # TODO Not currently used, this will crash for more exotic memory structures # def unnormalize_state(body, state): # ''' # Un-normalizes one or more states using a running mean and new_std_dev # ''' # return state * body.state_mean + body.state_std_dev def update_online_stats_and_normalize_state(body, state): ''' Convenience combination function for updating running state mean and std_dev and normalizing the state in one go. ''' logger.debug(f'state: {state}') update_online_stats(body, state) state = normalize_state(body, state) logger.debug(f'normalized state: {state}') return state def normalize_states_and_next_states(body, batch, episodic_flag=None): ''' Convenience function for normalizing the states and next states in a batch of data ''' logger.debug(f'states: {batch["states"]}') logger.debug(f'next states: {batch["next_states"]}') episodic = episodic_flag if episodic_flag is not None else body.memory.is_episodic logger.debug(f'Episodic: {episodic}, episodic_flag: {episodic_flag}, body.memory: {body.memory.is_episodic}') if episodic: normalized = [] for epi in batch['states']: normalized.append(normalize_state(body, epi)) batch['states'] = normalized normalized = [] for epi in batch['next_states']: normalized.append(normalize_state(body, epi)) batch['next_states'] = normalized else: batch['states'] = normalize_state(body, batch['states']) batch['next_states'] = normalize_state(body, batch['next_states']) logger.debug(f'normalized states: {batch["states"]}') logger.debug(f'normalized next states: {batch["next_states"]}') return batch
2.96875
3
test/unit/test_cli.py
pgiraud/temboard-agent
0
12784308
<gh_stars>0 from __future__ import unicode_literals import pytest def test_ok(): from temboardagent.cli import cli @cli def main(argv, environ): assert 'TESTVALUE' in argv return 0xcafe with pytest.raises(SystemExit) as ei: main(argv=['TESTVALUE']) assert 0xcafe == ei.value.code def test_bdb_quit(): from temboardagent.cli import cli from bdb import BdbQuit @cli def main(argv, environ): raise BdbQuit() with pytest.raises(SystemExit) as ei: main() assert 1 == ei.value.code def test_interrupt(): from temboardagent.cli import cli @cli def main(argv, environ): raise KeyboardInterrupt() with pytest.raises(SystemExit) as ei: main(argv=[]) assert 1 == ei.value.code def test_user_error(): from temboardagent.cli import cli from temboardagent.errors import UserError @cli def main(argv, environ): raise UserError('POUET', retcode=0xd0d0) with pytest.raises(SystemExit) as ei: main() assert 0xd0d0 == ei.value.code def test_unhandled_error_prod(): from temboardagent.cli import cli @cli def main(argv, environ): raise KeyError('name') with pytest.raises(SystemExit) as ei: main() assert 1 == ei.value.code def test_unhandled_error_debug(mocker): from temboardagent.cli import cli pm = mocker.patch('temboardagent.cli.pdb.post_mortem') @cli def main(argv, environ): raise KeyError('name') with pytest.raises(SystemExit) as ei: main(environ=dict(DEBUG='y')) assert 1 == ei.value.code assert pm.called is True def test_bootstrap(mocker): mocker.patch('temboardagent.cli.Application.read_file', autospec=True) mocker.patch('temboardagent.cli.Application.apply_config', autospec=True) mocker.patch('temboardagent.cli.MergedConfiguration') from temboardagent.cli import Application, bootstrap app = Application() app.config.temboard.configfile = 'pouet' app.bootstrap(args=None, environ={}) assert repr(app) app = bootstrap(args=None, environ={}) assert app.apply_config.called is True def test_apply_config_with_plugins(mocker): mod = 'temboardagent.cli.' mocker.patch(mod + 'Postgres', autospec=True) mocker.patch(mod + 'Application.setup_logging', autospec=True) cp = mocker.patch(mod + 'Application.create_plugins', autospec=True) mocker.patch(mod + 'Application.update_plugins', autospec=True) mocker.patch(mod + 'Application.purge_plugins', autospec=True) from temboardagent.cli import Application app = Application() app.config_sources = dict() app.config = mocker.Mock(name='config') app.config.postgresql = dict() cp.return_value = ['plugin'] app.apply_config() assert app.postgres assert app.setup_logging.called is True assert app.update_plugins.called is True assert app.purge_plugins.called is True def test_apply_config_without_plugins(mocker): mod = 'temboardagent.cli.' mocker.patch(mod + 'Postgres', autospec=True) mocker.patch(mod + 'Application.setup_logging', autospec=True) from temboardagent.cli import Application app = Application(with_plugins=False) app.config_sources = dict() app.config = mocker.Mock(name='config') app.config.postgresql = dict() app.apply_config() assert app.postgres assert app.setup_logging.called is True def test_application_specs(): from temboardagent.cli import Application app = Application() list(app.bootstrap_specs()) list(app.core_specs()) app = Application(with_plugins=None) specs = [str(s) for s in app.core_specs()] assert 'temboard_plugins' not in specs def test_app_pickle(): from pickle import dumps as pickle, loads as unpickle from temboardagent.cli import Application empty_generator = (x for x in []) orig = Application(specs=empty_generator) orig.config.update(dict(a=1)) copy = unpickle(pickle(orig)) assert [] == copy.specs assert copy.config def test_read_file(mocker): from temboardagent.cli import Application, UserError app = Application() open_ = mocker.patch('temboardagent.cli.open', create=True) app.read_file(mocker.Mock(name='parser'), 'pouet.conf') open_.side_effect = IOError() with pytest.raises(UserError): app.read_file(mocker.Mock(name='parser'), 'pouet.conf') def test_reload(mocker): mocker.patch('temboardagent.cli.Application.read_file', autospec=True) mocker.patch('temboardagent.cli.Application.apply_config', autospec=True) from temboardagent.cli import Application app = Application() app.config = mocker.Mock(name='config') app.reload() def test_fetch_plugin(mocker): iter_ep = mocker.patch('temboardagent.cli.iter_entry_points') from temboardagent.cli import Application app = Application() ep = mocker.Mock(name='found') ep.name = 'found' ep.load.return_value = 'PLUGIN OBJECT' iter_ep.return_value = [ep] assert 'PLUGIN OBJECT' == app.fetch_plugin(['found']) def test_fetch_failing(mocker): iter_ep = mocker.patch('temboardagent.cli.iter_entry_points') from temboardagent.cli import Application, UserError app = Application() ep = mocker.Mock(name='ep') ep.load.side_effect = Exception('Pouet') iter_ep.return_value = [ep] with pytest.raises(UserError): app.fetch_plugin('myplugin') def test_fetch_missing(mocker): iter_ep = mocker.patch('temboardagent.cli.iter_entry_points') from temboardagent.cli import Application, UserError app = Application() iter_ep.return_value = [] with pytest.raises(UserError): app.fetch_plugin('myplugin') def test_create_plugins(mocker): mocker.patch( 'temboardagent.cli.Application.fetch_plugin', autospec=True) llp = mocker.patch('temboardagent.cli.load_legacy_plugins', autospec=True) from temboardagent.cli import Application app = Application() app.config = mocker.Mock(name='config') app.config.temboard.plugins = ['legacy', 'ng'] llp.return_value = dict(legacy=dict()) app.create_plugins() assert 'legacy' not in app.plugins assert 'legacy' in app.config.plugins assert 'ng' in app.plugins assert 'ng' not in app.config.plugins def test_update_plugins(mocker): from temboardagent.cli import Application app = Application() unloadme = mocker.Mock(name='unloadme') old_plugins = dict(unloadme=unloadme) loadme = mocker.Mock(name='loadme') app.plugins = dict(loadme=loadme) app.update_plugins(old_plugins=old_plugins) assert loadme.load.called is True assert unloadme.unload.called is True def test_purge_plugins(): from temboardagent.cli import Application, MergedConfiguration app = Application() app.plugins = dict(destroyme=1, keepme=1) app.config = MergedConfiguration() app.config.update(dict(temboard=dict(plugins=['keepme']))) app.purge_plugins() assert 'destroyme' not in app.plugins def test_debug_arg(): from argparse import ArgumentParser, SUPPRESS from temboardagent.cli import define_core_arguments parser = ArgumentParser(argument_default=SUPPRESS) define_core_arguments(parser) args = parser.parse_args([]) assert 'logging_debug' not in args args = parser.parse_args(['--debug']) assert args.logging_debug is True args = parser.parse_args(['--debug', 'myplugin']) assert 'myplugin' == args.logging_debug def test_debug_var(): from temboardagent.cli import detect_debug_mode assert not detect_debug_mode(dict()) assert not detect_debug_mode(dict(DEBUG=b'N')) env = dict(DEBUG=b'1') assert detect_debug_mode(env) is True assert b'__debug__' == env['TEMBOARD_LOGGING_DEBUG'] env = dict(DEBUG=b'mymodule') assert detect_debug_mode(env) assert b'mymodule' == env['TEMBOARD_LOGGING_DEBUG']
2.109375
2
battleship/battleship.py
johncoleman83/codewars
0
12784309
<reponame>johncoleman83/codewars<gh_stars>0 #!/usr/bin/env python3 def ship_size(row, i): size = 0 if 0 <= i < 10 and row[i] == 1: row[i] = 0 size += 1 + ship_size(row, i + 1) + ship_size(row, i - 1) return size def check_diagonals(f): coords = {} for r in range(10): for c in range(10): coords[(r, c)] = f[r][c] for coord, val in coords.items(): if val == 1: r, c = coord[0], coord[1] diagonals = [ coords.get((r - 1, c - 1), 0), coords.get((r - 1, c + 1), 0), coords.get((r + 1, c - 1), 0), coords.get((r + 1, c + 1), 0) ] if any(diagonals): return False return True def validateBattlefield(f): if check_diagonals(f) is False: return False fr = list(zip(*f[::-1])) for r in range(10): fr[r] = list(fr[r]) ships, subs = [4, 3, 3, 2, 2, 2], 4 while len(ships) > 0: pre_ships = len(ships) + subs r = 0 while r < 10: c = 0 while c < 10: if f[r][c] == 1: c_r, c_c = c, 9 - r count_r = ship_size(f[r].copy(), c) count_c = ship_size(fr[c_r].copy(), c_c) count = max(count_r, count_c) if count_r > 1 and count_c > 1: return False if count_r == 1 and count_c == 1: subs -= 1 ship_size(f[r], c) ship_size(fr[c_r], c_c) if len(ships) > 0 and count == ships[0]: if len(ships) > 0: del ships[0] else: return False ship_size(f[r], c) ship_size(fr[c_r], c_c) c += 1 r += 1 if pre_ships == len(ships) + subs: return False if len(ships) == 0 and subs == 0: return True return False battleField = [ [1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0, 1, 0], [1, 0, 1, 0, 1, 1, 1, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] battleField2 = [ [1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] battleField3 = [ [1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0, 1, 0], [1, 0, 1, 0, 1, 1, 1, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] valid = validateBattlefield(battleField3) print(valid)
3.21875
3
corehq/warehouse/migrations/0003_userstagingtable.py
kkrampa/commcare-hq
1
12784310
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-05-29 08:39 from __future__ import unicode_literals from __future__ import absolute_import from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('warehouse', '0002_domainstagingtable_groupstagingtable'), ] operations = [ migrations.CreateModel( name='UserStagingTable', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_id', models.CharField(max_length=255)), ('username', models.CharField(max_length=150)), ('first_name', models.CharField(max_length=30, null=True)), ('last_name', models.CharField(max_length=30, null=True)), ('email', models.CharField(max_length=255, null=True)), ('doc_type', models.CharField(max_length=100)), ('base_doc', models.CharField(max_length=100)), ('is_active', models.BooleanField()), ('is_staff', models.BooleanField()), ('is_superuser', models.BooleanField()), ('last_login', models.DateTimeField(null=True)), ('date_joined', models.DateTimeField()), ('user_last_modified', models.DateTimeField(null=True)), ], options={ 'abstract': False, }, ), ]
1.75
2
setup.py
KyleKing/not-on-pypi
0
12784311
"""Setup File.""" from pathlib import Path from setuptools import setup from setuptools.command.install import install # ✓ PACKAGE_NAME = 'common_app' # ✓ PACKAGE_NAME = 'cn_smtp_sink_server' # ✓ PACKAGE_NAME = 'common_bootstrap' # ✓ PACKAGE_NAME = 'common_dash' # ✓ PACKAGE_NAME = 'common_img' # ✓ PACKAGE_NAME = 'common_inst' # ✓ PACKAGE_NAME = 'common_notifier' # ✓ PACKAGE_NAME = 'common_prstub' # ✓ PACKAGE_NAME = 'common_tracker' PACKAGE_NAME = None """Modify the package name here which is to be seen on PyPi.""" VERSION = '0.0.0a1' AUTHOR = '<NAME>' AUTHOR_EMAIL = '<EMAIL>' package_init = Path(PACKAGE_NAME).resolve() / '__init__.py' package_init.parent.mkdir(exist_ok=True) package_init.write_text('"""Do nothing."""\n') # -------------------------------------------------------------------------------------- class WrongPackageInstalledError(RuntimeError): """More specific error.""" pass class RaiseErrorPreInstall(install): """Customized setuptools install command - prints a friendly greeting.""" def run(self): raise WrongPackageInstalledError(f""" \n\n '{PACKAGE_NAME}' was downloaded from the public pypi.org repository, but is only available on an internal repository Please update your installer's configuration and download from the proper index-url \n\n """) if __name__ == '__main__': setup( name=PACKAGE_NAME, version=VERSION, packages=[PACKAGE_NAME], description = 'Reserved package name', long_description = Path('README.md').read_text(), long_description_content_type='text/markdown', author=AUTHOR, author_email=AUTHOR_EMAIL, url='https://github.com/KyleKing/not-on-pypi', license = 'Unlicense', classifiers=['License :: Public Domain'], cmdclass={ 'install': RaiseErrorPreInstall, }, # repository = 'https://github.com/KyleKing/not-on-pypi', # documentation = 'https://github.com/KyleKing/not-on-pypi', # 'Bug Tracker' = 'https://github.com/KyleKing/not-on-pypi/issues', # include = [ 'LICENSE.md',], # scripts = [], )
2.546875
3
src/coalescenceml/cli/hidden.py
bayoumi17m/CoalescenceML
1
12784312
<gh_stars>1-10 import time import click from coalescenceml.cli.cli import cli import coalescenceml.cli.utils as cli_utils from coalescenceml.constants import console from coalescenceml.logger import get_logger @cli.command(name="over", help="Funny joke...hehe", hidden=True) def print_deez_nutz_joke()->None: deez_nutz = r""" - - _/-\_ _/-\_ .-`-:-:-`-. _____ ______ ______ ______ _ _ _ _ _______ ______ .-`-:-:-`-. /-:-:-:-:-:-\ | __ \ | ____| | ____| |___ / | \ | | | | | | |__ __| |___ / /-:-:-:-:-:-\ \:-:-:-:-:-:/ | | | | | |__ | |__ / / | \| | | | | | | | / / \:-:-:-:-:-:/ |` `| | | | | | __| | __| / / | . ` | | | | | | | / / |` `| | | | |__| | | |____ | |____ / /__ | |\ | | |__| | | | / /__ | | `\ /` |_____/ |______| |______| /_____| |_| \_| \____/ |_| /_____| `\ /` `-._.-' `-._.-'""" max_width = console.width deez_nutz_width = console.measure(deez_nutz).maximum styling = "bold cyan" console.print("coml over...", style="cyan", justify="left") with console.status("", spinner="monkey"): time.sleep(5) if deez_nutz_width >= max_width: console.print(deez_nutz, style=styling, overflow="crop") console.rule(f"") else: width_buffer = int((max_width - deez_nutz_width) / (2)) deez_nutz = "\n".join([ ((" "* width_buffer) + line) for line in deez_nutz.split("\n") ]) console.print(deez_nutz, style=styling) console.rule("")
1.945313
2
Domains/Python/04 - Sets/No Idea!/solution.py
abhinavgunwant/hackerrank-solutions
1
12784313
n,m = [int(i) for i in input().split()] arr = [int(i) for i in input().split()] A = set([int(i) for i in input().split()]) B = set([int(i) for i in input().split()]) happiness = 0 for i in arr: if i in A: happiness += 1 elif i in B: happiness -= 1 print(happiness)
2.96875
3
preprocessing/hdf5/opflow_hdf5.py
sbrodeur/CREATE-dataset
0
12784314
<filename>preprocessing/hdf5/opflow_hdf5.py<gh_stars>0 #!/usr/bin/env python # Copyright (c) 2018, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE. import os import logging import numpy as np import cv2 import scipy.signal import matplotlib.pyplot as plt from h5utils import Hdf5Dataset from optparse import OptionParser logger = logging.getLogger(__name__) def is_cv2(): import cv2 as lib return lib.__version__.startswith("2.") def is_cv3(): import cv2 as lib return lib.__version__.startswith("3.") clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) class FlowPlotter(object): def __init__(self, x, y, scale): h, w = x.shape self.x = x self.y = y # NOTE: the y-axis needs to be inverted to be in image-coordinates fig = plt.figure(figsize=(20,10), facecolor='white') ax = fig.add_subplot(121) q = ax.quiver(x, y, np.zeros((h,w)), np.zeros((h,w)), edgecolor='k', scale=1, angles='xy', scale_units='xy') ax.invert_yaxis() plt.axis('off') self.fig = fig self.ax = ax self.q = q ax2 = fig.add_subplot(122) m = ax2.imshow(np.zeros((int(h/scale), int(w/scale))), vmin = 0, vmax = 255, cmap = plt.get_cmap('gray')) plt.axis('off') self.ax2 = ax2 self.m = m plt.ion() def update(self, flow, img): # NOTE: the y-axis needs to be negated to be in image-coordinates self.q.set_UVC(flow[:,:,0], -flow[:,:,1]) self.m.set_data(img) self.fig.canvas.draw() def computeSparseFlow(img, imgPrev, gridShape, border): # Define the fixed grid where optical flow is calculated h, w = img.shape[:2] y, x = np.meshgrid(np.linspace(border * h, (1.0 - border) * h, gridShape[0], dtype=np.int), np.linspace(border * w, (1.0 - border) * w, gridShape[1], dtype=np.int), indexing='ij') p0 = np.stack((y,x), axis=-1).astype(np.float32) # Calculate optical flow if is_cv2(): p1, _, _ = cv2.calcOpticalFlowPyrLK(imgPrev, img, p0.reshape((-1,2)), None, winSize=(63,63), maxLevel=5) else: p1, _, _ = cv2.calcOpticalFlowPyrLK(imgPrev, img, p0.reshape((-1,2)), None, winSize=(63,63), maxLevel=5) flow = np.zeros((h, w, 2), dtype=np.float32) flow[y, x] = (p1.reshape(p0.shape) - p0) # TODO: test if all valid with p1[st==1] ? f = flow[y, x] return f, x, y def computeCompactFlow(img, imgPrev, gridShape, border, filtering=False, filterSize=16): # Calculate optical flow if is_cv2(): flow = cv2.calcOpticalFlowFarneback(imgPrev, img, pyr_scale=0.5, levels=5, winsize=63, iterations=3, poly_n=7, poly_sigma=1.5, flags=cv2.OPTFLOW_FARNEBACK_GAUSSIAN) else: flow = np.zeros((img.shape[0], img.shape[1], 2), dtype=np.float32) flow = cv2.calcOpticalFlowFarneback(imgPrev, img, flow, pyr_scale=0.5, levels=5, winsize=63, iterations=3, poly_n=7, poly_sigma=1.5, flags=cv2.OPTFLOW_FARNEBACK_GAUSSIAN) flow = np.array(flow, np.float32) h, w = flow.shape[:2] y, x = np.meshgrid(np.linspace(border * h, (1.0 - border) * h, gridShape[0], dtype=np.int), np.linspace(border * w, (1.0 - border) * w, gridShape[1], dtype=np.int), indexing='ij') if filtering: kernel = np.ones((filterSize, filterSize)) / float(filterSize * filterSize) flow = np.stack([scipy.signal.convolve2d(flow[:,:,k], kernel, mode='same', boundary='symm') for k in range(flow.shape[-1])], axis=-1) f = flow[y, x] return f, x, y def preprocessImage(img, scale=0.5): imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) imggray = clahe.apply(imggray) imggray = np.array(imggray * 255, dtype=np.uint8) imggray = cv2.resize(imggray, None,fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR) return imggray def processImageSequence(raw, clock, shape, scale=0.25, gridShape=(12,16), border=0.1, filtering=True, filterSize=5, visualize=False, stepSize=1): if visualize: plotter = None flows = [] for i in range(stepSize, raw.shape[0]): logger.info('Processing image %d (%d total)' % (i+1, raw.shape[0])) img = cv2.imdecode(raw[i, :shape[i,0]], flags=-1) #CV_LOAD_IMAGE_UNCHANGED img = preprocessImage(img, scale) imgPrev = cv2.imdecode(raw[i-stepSize, :shape[0,0]], flags=-1) # CV_LOAD_IMAGE_UNCHANGED imgPrev = preprocessImage(imgPrev, scale) flow, x, y = computeCompactFlow(img, imgPrev, gridShape, border, filtering, filterSize) #flow, x, y = computeSparseFlow(img, imgPrev, gridShape, border) # Divide by the time interval and scale to get flow in unit of pixels/sec relative to the full-size image dt = clock[i] - clock[i-stepSize] assert dt > 0 flow /= (dt * scale) if visualize: if plotter is None: plotter = FlowPlotter(x, y, scale) plotter.update(flow, img) plt.show() flows.append(flow) flows = np.stack(flows, axis=0) clock = clock[stepSize:] # # Temporal filtering # if filtering: # kernel = np.ones((filterSize,)) / float(filterSize) # for i in range(flow.shape[0]): # for j in range(flow.shape[1]): # flow[i,j,:] = scipy.signal.convolve(flow[i,j,:], kernel, mode='same') return flows, clock def main(args=None): parser = OptionParser() parser.add_option("-i", "--input", dest="input", type='string', default=None, help='specify the path of the input HDF5 file') parser.add_option("-o", "--output", dest="output", type='string', default=None, help='specify the path of the output HDF5 file') parser.add_option("-s", "--scale", dest="scale", type='float', default=0.5, help='specify the rescaling of images') parser.add_option("-b", "--border", dest="border", type='float', default=0.1, help='specify the border to keep') parser.add_option("-f", "--filter-size", dest="filterSize", type='int', default=16, help='specify the size of the smoothing filter') parser.add_option("-m", "--step-size", dest="stepSize", type='int', default=1, help='specify the number of frame between optical flow calculation') parser.add_option("-y", "--grid-shape-y", dest="gridShape_y", type='int', default=12, help='specify the shape of the optical flow on the y-axis') parser.add_option("-x", "--grid-shape-x", dest="gridShape_x", type='int', default=16, help='specify the shape of the optical flow on the x-axis') parser.add_option("-t", "--filtering", action="store_true", dest="filtering", default=False, help='specify to visualize computed optical flow') parser.add_option("-v", "--visualize", action="store_true", dest="visualize", default=False, help='specify to visualize computed optical flow') (options,args) = parser.parse_args(args=args) inputDatasetPath = os.path.abspath(options.input) logger.info('Using input HDF5 dataset file: %s' % (inputDatasetPath)) outputDatasetPath = os.path.abspath(options.output) logger.info('Using output HDF5 dataset file: %s' % (outputDatasetPath)) with Hdf5Dataset(outputDatasetPath, mode='w') as outHdf5: with Hdf5Dataset(inputDatasetPath, mode='r') as inHdf5: # Process states for state in inHdf5.getAllStates(): name, group, raw, clock, shape = state # Write original data to output file if group is not None: ngroup = '/' + group else: ngroup = '' fs = 1.0/np.mean(clock[1:] - clock[:-1]) logger.info('Writing to output HDF5 dataset file: %s, shape=%s, fs=%f Hz' % (ngroup + '/' + name, str(raw.shape), fs)) outHdf5.addStates(name, raw, clock, group, shape) if group == 'video': rawFlow, clockFlow = processImageSequence(raw, clock, shape, scale=options.scale, gridShape=(options.gridShape_y, options.gridShape_x), border=options.border, filtering=options.filtering, filterSize=options.filterSize, visualize=options.visualize, stepSize=options.stepSize) groupFlow = 'optical_flow' # Write original data to output file fsFlow = 1.0/np.mean(clockFlow[1:] - clockFlow[:-1]) logger.info('Writing to output HDF5 dataset file: %s, shape=%s, fs=%f Hz' % ('/' + groupFlow + '/' + name, str(rawFlow.shape), fsFlow)) outHdf5.addStates(name, rawFlow, clockFlow, groupFlow, shape=None) logger.info('All done.') if __name__ == '__main__': logging.basicConfig(level=logging.INFO) main()
1.523438
2
gethouse/urls.py
Alvin-21/patanyumba
0
12784315
from django.urls import path, re_path from . import views urlpatterns = [ re_path(r'^$', views.index, name='homepage'), re_path(r'^ajax/subscription/$', views.subscription, name='subscription'), re_path(r'^search/', views.search_results, name='search_results'), re_path(r'^accomodation/(\d+)', views.accomodation, name='accomodation'), re_path(r'^new/accomodation$', views.new_accom, name='new_accomodation'), re_path(r'^profile/(\d+)$', views.profile, name='profile'), re_path(r'^edit/profile', views.edit_profile, name='edit_profile'), re_path(r'^api/accomodations$', views.AccomodationList.as_view()), re_path(r'api/accomodation/accom-id/(\d+)$', views.AccomodationDetails.as_view()), re_path(r'^api/profiles$', views.ProfileList.as_view()), re_path(r'^api/profile/profile-id/(\d+)$', views.ProfileDetails.as_view()), ]
1.890625
2
pyble/const/characteristic/body_sensor_location.py
bgromov/PyBLEWrapper
14
12784316
NAME="Body Sensor Location" UUID=0x2A38
1.070313
1
libs/gradiusnlp/old/gradius_nlp.py
gradiuscypher/internetmademe
0
12784317
import praw import elasticsearch import string import random from nltk import word_tokenize, pos_tag class GradiusNlp: def __init__(self): self.elastic = elasticsearch.Elasticsearch() def get_reddit_data(self, subreddit, post_count): r = praw.Reddit(user_agent="https://github.com/gradiuscypher/internetmademe") sub = r.get_subreddit(subreddit) top = sub.get_top_from_day(limit=post_count) #process post_count top posts for post in top: comments = post.comments #process top comment for c in comments: if type(c) is praw.objects.Comment: tokens = word_tokenize(c.body) tagged_tokens = pos_tag(tokens) for tag in tagged_tokens: print(tag) if not tag[1] in string.punctuation: es_index = tag[1].lower() q_txt = 'word: ' + '"' + tag[0].lower() + '"' if self.elastic.indices.exists(es_index): if not (self.elastic.search(index=es_index, q=q_txt)['hits']['total'] > 0): self.elastic.index(index=es_index, doc_type='word', body={'word': tag[0].lower()}) else: self.elastic.index(index=es_index, doc_type='word', body={'word': tag[0].lower()}) #process comment replies one tree down for r in c.replies: if type(r) is praw.objects.Comment: tokens = word_tokenize(r.body) tagged_tokens = pos_tag(tokens) for tag in tagged_tokens: print(tag) if not tag[1] in string.punctuation: es_index = tag[1].lower() q_txt = 'word: ' + '"' + tag[0].lower() + '"' if self.elastic.indices.exists(es_index): if not (self.elastic.search(index=es_index, q=q_txt)['hits']['total'] > 0): self.elastic.index(index=es_index, doc_type='word', body={'word': tag[0].lower()}) else: self.elastic.index(index=es_index, doc_type='word', body={'word': tag[0].lower()}) def reform_sentence(self, sentence, force_replace_count=1): sentence_tokens = word_tokenize(sentence) replace_count = random.randint(force_replace_count, len(sentence_tokens)) print(replace_count) #Ensure at least force_replace_count words are being replaced for x in range(0, replace_count): tagged_tokens = pos_tag(sentence_tokens) choice = random.choice(tagged_tokens) while choice[0] in string.punctuation: choice = random.choice(tagged_tokens) new_word = self.replace_pos(choice) sentence_tokens[sentence_tokens.index(choice[0])] = new_word return ' '.join(sentence_tokens) def replace_pos(self, pos_tuple): es_index = pos_tuple[1].lower() results = self.elastic.search(index=es_index, body={"query": { "function_score": { "query": {"wildcard": {"word": "*"}}, "random_score": {} }}}) return random.choice(results['hits']['hits'])['_source']['word']
2.78125
3
reply.py
Asdvamp/CEH-python-Scripts
0
12784318
<reponame>Asdvamp/CEH-python-Scripts<filename>reply.py<gh_stars>0 while True: message = input("Send -> ") with open("log.txt", "w") as file: file.write(message)
2.484375
2
insect/models/__init__.py
Kradukman/beesUlb
0
12784319
from . import super_family from . import family from . import sub_family from . import tribe from . import genus from . import specie from . import sub_specie from . import wizard
1.28125
1
nanopores/py4gmsh/__init__.py
mitschabaude/nanopores
8
12784320
from basic import * from extra import *
1.28125
1
examples/traveltime_straight_channel.py
wrightky/dorado
19
12784321
"""Example case for particle travel times in a straight channel.""" import numpy as np import matplotlib.pyplot as plt import dorado.particle_track as pt # fix the random seed so it stays the same as weights change np.random.seed(1) # create synthetic domain and flow field domain = np.zeros((100, 50)) depth = np.zeros_like(domain) stage = np.zeros_like(domain) u = np.zeros_like(domain) v = np.zeros_like(domain) dx = 50. Np_tracer = 500 seed_xloc = [10] seed_yloc = [25] # set up straight channel depth[:, 10:40] = 1.0 stage[:, 10:40] = 1.0 v[:, 10:40] = -10.0 # choose number of iterations for particle to route num_iter = 100 # define your 'known' or 'expected' travel time for this simple geometry # picking expected time from location x=10 to x=70 # (really the boundary of row 70, so 1/2 a cell) # 59.5 cells * 50 m/cell / 10 m/s = 297.5 seconds target_row = 70 expected_time = 297.5 # assign particle parameters params = pt.modelParams() params.depth = depth params.stage = stage params.u = u params.v = v params.dx = dx # set-up figure plt.figure() plt.imshow(np.sqrt(u**2 + v**2)) plt.colorbar() plt.scatter(seed_yloc, seed_xloc, c='k', marker='o', s=5) # plot the target line where time is measured plt.plot(np.linspace(0, 50, 100), np.ones(100)*target_row, c='red') plt.title('Velocity Field') plt.legend(labels=['Target Row to Measure Times', 'Particle Seeding Location'], loc='best') plt.tight_layout() plt.show() # do the routing twice, once without any diffusivity added to the travel times # (diff_coeff==0) then a second time with significant diffusion (diff_coeff==1) for dc in list(range(0, 2)): # set diff_coeff if dc == 0: params.diff_coeff = 0.0 else: params.diff_coeff = 1.0 # make particle particle = pt.Particles(params) # walk it particle.generate_particles(Np_tracer, seed_xloc, seed_yloc) for i in list(range(0, num_iter)): walk_data = particle.run_iteration() # get travel times associated with particles when they are at coord x=70 # use the exposure_time function to measure this roi = np.zeros_like(depth, dtype='int') roi[0:target_row, :] = 1 target_times = pt.exposure_time(walk_data, roi) # plot histogram plt.subplot(1, 2, dc+1) n, bins, _ = plt.hist(target_times, bins=100, range=(200, 400), histtype='bar', density=True, color=[0.5, 0.5, 1, 0.5]) # plot expected travel time to row 70 plt.scatter(expected_time, np.max(n), s=75, c='green', marker='x', linewidths=20) plt.legend(['Expected Travel Time', 'Histogram of Final Travel Times'], ncol=2, loc='upper left', bbox_to_anchor=(0.0, -0.06), fontsize=16) plt.title('Travel Time Distribution at Target Row \n' 'Diffusion Coefficient : ' + str(params.diff_coeff), fontsize=20) plt.xlabel('Travel Time at Target Row [s]', fontsize=16) plt.ylabel('Probability Density', fontsize=16) plt.show()
3.078125
3
descwl_shear_sims/randsphere.py
aguinot/descwl-shear-sims
5
12784322
import numpy as np import esutil as eu def randcap(*, rng, nrand, ra, dec, radius, get_radius=False, dorot=False): """ Generate random points in a sherical cap parameters ---------- nrand: The number of random points ra,dec: The center of the cap in degrees. The ra should be within [0,360) and dec from [-90,90] radius: float radius of the cap, same units as ra,dec get_radius: bool, optional if true, return radius of each point in radians dorot: bool If dorot is True, generate the points on the equator and rotate them to be centered at the desired location. This is the default when the dec is within 0.1 degrees of the pole, to avoid calculation issues """ # generate uniformly in r**2 if dec >= 89.9 or dec <= -89.9: dorot = True if dorot: tra, tdec = 90.0, 0.0 rand_ra, rand_dec, rand_r = randcap( rng=rng, nrand=nrand, ra=90.0, dec=0.0, radius=radius, get_radius=True, ) rand_ra, rand_dec = eu.coords.rotate( 0.0, dec-tdec, 0.0, rand_ra, rand_dec, ) rand_ra, rand_dec = eu.coords.rotate( ra-tra, 0.0, 0.0, rand_ra, rand_dec, ) else: rand_r = rng.uniform(size=nrand) rand_r = np.sqrt(rand_r)*radius # put in degrees np.deg2rad(rand_r, rand_r) # generate position angle uniformly 0, 2*PI rand_posangle = rng.uniform(low=0, high=2*np.pi, size=nrand) theta = np.array(dec, dtype='f8', ndmin=1, copy=True) phi = np.array(ra, dtype='f8', ndmin=1, copy=True) theta += 90 np.deg2rad(theta, theta) np.deg2rad(phi, phi) sintheta = np.sin(theta) costheta = np.cos(theta) sinr = np.sin(rand_r) cosr = np.cos(rand_r) cospsi = np.cos(rand_posangle) costheta2 = costheta*cosr + sintheta*sinr*cospsi np.clip(costheta2, -1, 1, costheta2) # gives [0,pi) theta2 = np.arccos(costheta2) sintheta2 = np.sin(theta2) cos_dphi = (cosr - costheta*costheta2)/(sintheta*sintheta2) np.clip(cos_dphi, -1, 1, cos_dphi) dphi = np.arccos(cos_dphi) # note fancy usage of where phi2 = np.where(rand_posangle > np.pi, phi+dphi, phi-dphi) np.rad2deg(phi2, phi2) np.rad2deg(theta2, theta2) rand_ra = phi2 rand_dec = theta2-90.0 eu.coords.atbound(rand_ra, 0.0, 360.0) if get_radius: np.rad2deg(rand_r, rand_r) return rand_ra, rand_dec, rand_r else: return rand_ra, rand_dec def randsphere(rng, num, ra_range=None, dec_range=None): """Generate random points on the sphere, possibly on a subset of it. Routine due to Erin Sheldon. Parameters ---------- num: integer The number of randoms to generate ra_range: list, optional Should be within range [0,360]. Default [0,360] dec_range: list, optional Should be within range [-90,90]. Default [-90,90] Returns ------- ra : array-like ra values for the random points dec : array-like dec values for the random points """ ra_range = _check_range(ra_range, [0.0, 360.0]) dec_range = _check_range(dec_range, [-90.0, 90.0]) ra = rng.uniform( size=num, low=ra_range[0], high=ra_range[1], ) cosdec_min = np.cos(np.radians(90.0+dec_range[0])) cosdec_max = np.cos(np.radians(90.0+dec_range[1])) v = rng.uniform( size=num, low=cosdec_min, high=cosdec_max, ) np.clip(v, -1.0, 1.0, v) # Now this generates on [0,pi) dec = np.arccos(v) # convert to degrees np.degrees(dec, dec) # now in range [-90,90.0) dec -= 90.0 return ra, dec def _check_range(rng, allowed): if rng is None: rng = allowed else: if not hasattr(rng, '__len__'): raise ValueError("range input does not have len() method") if rng[0] < allowed[0] or rng[1] > allowed[1]: raise ValueError("%s should be within %s" % (rng, allowed)) return rng
3.375
3
sandbox/advect_microbes_llc.py
ali-ramadhan/lagrangian-microbes
6
12784323
import os from datetime import datetime, timedelta import numpy as np import xarray as xr import parcels import matplotlib import matplotlib.cm as cm import matplotlib.pyplot as plt import matplotlib.ticker as mticker import cartopy import cartopy.util import cartopy.crs as ccrs from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER u_filename = '/home/alir/hawaii_npac/0000969408_U_10800.8150.1_1080.3720.90' v_filename = '/home/alir/hawaii_npac/0000969408_V_10800.8150.1_1080.3720.90' level = 0 with open(u_filename, 'rb') as f: nx, ny = 1080, 3720 # parse; advance file-pointer to data segment record_length = 4 # [bytes] f.seek(level * record_length * nx*ny, os.SEEK_SET) u_data = np.fromfile(f, dtype='>f4', count=nx*ny) u_array = np.reshape(u_data, [ny, nx], order='F') with open(v_filename, 'rb') as f: nx, ny = 1080, 3720 # parse; advance file-pointer to data segment record_length = 4 # [bytes] f.seek(level * record_length * nx*ny, os.SEEK_SET) v_data = np.fromfile(f, dtype='>f4', count=nx*ny) v_array = np.reshape(v_data, [ny, nx], order='F') u_data = u_array v_data = v_array # u_data = np.ma.masked_where(u_array == 0, u_array) # v_data = np.ma.masked_where(v_array == 0, v_array) lats = np.arange(ny)/48 lons = np.arange(nx)/48 depth = np.array([0.0]) u_field = parcels.field.Field(name='U', data=u_data, lon=lons, lat=lats, depth=depth, mesh='spherical') v_field = parcels.field.Field(name='V', data=v_data, lon=lons, lat=lats, depth=depth, mesh='spherical') u_magnitude = np.sqrt(u_data*u_data + v_data*v_data) fieldset = parcels.fieldset.FieldSet(u_field, v_field) # fieldset.U.show() lats_pset = np.tile(np.linspace(5, 70, 11), 11) lons_pset = np.repeat(np.linspace(5, 15, 11), 11) # species_field = -1 * np.ones((11,11), dtype=np.int32) # for i, lat in enumerate(np.linspace(10, 50, 11)): # for j, lon in enumerate(np.linspace(-170, -130, 11)): # pass # species_pfield = parcels.field.Field(name='species', data=species_field, # lat=np.linspace(10, 50, 11), lon=np.linspace(-170, -130, 11), depth=depth, mesh='spherical') class MicrobeParticle(parcels.JITParticle): species = parcels.Variable('species', dtype=np.int32, initial=-1) pset = parcels.ParticleSet.from_list(fieldset=fieldset, pclass=MicrobeParticle, lon=lons_pset, lat=lats_pset) for i, particle in enumerate(pset): if 37.5 <= particle.lat <= 52.5 and -172.5 <= particle.lon <= -157.5: particle.species = 1 elif 37.5 <= particle.lat <= 52.5 and -157.5 <= particle.lon <= -142.5: particle.species = 2 elif 37.5 <= particle.lat <= 52.5 and -142.5 <= particle.lon <= -127.5: particle.species = 3 elif 22.5 <= particle.lat <= 37.5 and -172.5 <= particle.lon <= -157.5: particle.species = 3 elif 22.5 <= particle.lat <= 37.5 and -157.5 <= particle.lon <= -142.5: particle.species = 1 elif 22.5 <= particle.lat <= 37.5 and -142.5 <= particle.lon <= -127.5: particle.species = 2 elif 7.5 <= particle.lat <= 22.5 and -172.5 <= particle.lon <= -157.5: particle.species = 2 elif 7.5 <= particle.lat <= 22.5 and -157.5 <= particle.lon <= -142.5: particle.species = 3 elif 7.5 <= particle.lat <= 22.5 and -142.5 <= particle.lon <= -127.5: particle.species = 1 particle.species = 1 print("Particle {:03d} @({:.2f},{:.2f}) [species={:d}]".format(i, particle.lat, particle.lon, particle.species)) def rock_paper_scissors_type(n): if n == 1: return "rock" elif n == 2: return "paper" elif n == 3: return "scissors" return None vector_crs = ccrs.PlateCarree() land_50m = cartopy.feature.NaturalEarthFeature('physical', 'land', '50m', edgecolor='face',facecolor='dimgray', linewidth=0) t = datetime(2017, 1, 1) dt = timedelta(hours=1) for n in range(1): print("Advecting: {:} -> {:}".format(t, t+dt)) nc_filename = "advected_microbes_" + str(n).zfill(4) + ".nc" pset.execute(parcels.AdvectionRK4, runtime=dt, dt=dt, verbose_progress=True, output_file=pset.ParticleFile(name=nc_filename, outputdt=dt)) # print("Computing microbe interactions...") # N = len(pset) # for i, p1 in enumerate(pset): # for j, p2 in enumerate(pset[i+1:]): # if np.abs(p1.lat - p2.lat) < 1 and np.abs(p1.lon - p2.lon) < 1: # p1_type = rock_paper_scissors_type(p1.species) # p2_type = rock_paper_scissors_type(p2.species) # winner = None # if p1_type == "rock" and p2_type == "scissors": # winner = p1 # elif p1_type == "rock" and p2_type == "paper": # winner = p2 # elif p1_type == "paper" and p2_type == "rock": # winner = p1 # elif p1_type == "paper" and p2_type == "scissors": # winner = p2 # elif p1_type == "scissors" and p2_type == "rock": # winner = p2 # elif p1_type == "scissors" and p2_type == "paper": # winner = p1 # else: # winner = None # if winner == p1: # p2.species = p1.species # print("[{:s}#{:d}] @({:.2f}, {:.2f}) vs. [{:s}#{:d}] @({:.2f}, {:.2f}): #{:d} wins!" # .format(p1_type, i, p1.lat, p1.lon, p2_type, j+i, p2.lat, p2.lon, i)) # elif winner == p2: # p1.species = p2.species # print("[{:s}#{:d}] @({:.2f}, {:.2f}) vs. [{:s}#{:d}] @({:.2f}, {:.2f}): #{:d} wins!" # .format(p1_type, i, p1.lat, p1.lon, p2_type, j+i, p2.lat, p2.lon, j+i)) # for i, p in enumerate(pset): # if p.lat >= 59 or p.lat <= 1 or p.lon <= -179 or p.lon >= -121: # print("Removing particle #{:d} @({:.2f},{:.2f}). Too close to boundary" # .format(i, p.lat, p.lon)) # pset.remove(i) t = t+dt print("Plotting figure...") fig = plt.figure(figsize=(16, 9)) matplotlib.rcParams.update({'font.size': 10}) crs_sps = ccrs.PlateCarree(central_longitude=-150) crs_sps._threshold = 1000.0 # This solves https://github.com/SciTools/cartopy/issues/363 ax = plt.subplot(111, projection=crs_sps) ax.add_feature(land_50m) ax.set_extent([0, 22.5, 0, 77.5], ccrs.PlateCarree()) gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=1, color='black', alpha=0.8, linestyle='--') gl.xlabels_top = False gl.ylabels_left = False gl.xlocator = mticker.FixedLocator([0, 7.5, 15, 22.5]) gl.ylocator = mticker.FixedLocator([0, 15.5, 31, 46.5, 62, 77.5]) gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER im = ax.pcolormesh(lons, lats, u_magnitude, transform=vector_crs, vmin=0, vmax=1, cmap='Blues_r') clb = fig.colorbar(im, ax=ax, extend='max', fraction=0.046, pad=0.1) clb.ax.set_title(r'm/s') rock_lats, rock_lons = [], [] paper_lats, paper_lons = [], [] scissors_lats, scissors_lons = [], [] for microbe in pset: if microbe.species == 1: rock_lats.append(microbe.lat) rock_lons.append(microbe.lon) elif microbe.species == 2: paper_lats.append(microbe.lat) paper_lons.append(microbe.lon) elif microbe.species == 3: scissors_lats.append(microbe.lat) scissors_lons.append(microbe.lon) # ax.plot(rock_lons, rock_lats, marker='o', linestyle='', color='red', ms=4, label='Rocks', transform=vector_crs) # ax.plot(paper_lons, paper_lats, marker='o', linestyle='', color='lime', ms=4, label='Papers', transform=vector_crs) # ax.plot(scissors_lons, scissors_lats, marker='o', linestyle='', color='cyan', ms=4, label='Scissors', transform=vector_crs) plt.title(str(t)) ax.legend() # plt.show() png_filename = "advected_microbes_" + str(n).zfill(4) + ".png" print("Saving figure: {:s}".format(png_filename)) plt.savefig(png_filename, dpi=300, format='png', transparent=False) plt.close('all')
1.929688
2
project_euler/051-100/75.py
floppp/programming_challenges
0
12784324
''' It turns out that 12 cm is the smallest length of wire that can be bent to form an integer sided right angle triangle in exactly one way, but there are many more examples. 12 cm: (3,4,5) 24 cm: (6,8,10) 30 cm: (5,12,13) 36 cm: (9,12,15) 40 cm: (8,15,17) 48 cm: (12,16,20) In contrast, some lengths of wire, like 20 cm, cannot be bent to form an integer sided right angle triangle, and other lengths allow more than one solution to be found; for example, using 120 cm it is possible to form exactly three different integer sided right angle triangles. 120 cm: (30,40,50), (20,48,52), (24,45,51) Given that L is the length of the wire, for how many values of L ≤ 1,500,000 can exactly one integer sided right angle triangle be formed? ''' from time import time from math import sqrt def find_sides(l): o = c = h = 0 hay_resultado = False for i in range(l//2 - 1, l//3, -1): h = i hs = i ** 2 limit = (l - h) // 2 for j in range(i - 1, limit, -1): o = j os = j ** 2 c = l - h - o cs = c ** 2 if cs + os == hs: if hay_resultado: return False hay_resultado = True if hay_resultado: return 1 return 0 def pytagoric_triplet(l): a = b = c = 0 n = int(sqrt(l)) + 1 m = 2*n / 3 for i in range(1, m): for j in range(i+1, n): if a + b + c != l: a = j*j - i*i b = 2*j*i c = j*j + i*i else: return 1 return 0 if __name__ == "__main__": start = time() res = 0 N = 150000 pytagoric_triplet(36) for i in range(2, N+1): res += pytagoric_triplet(i) print res, 'ternas primitivas' # for i in range(2, N+1, 2): # res += find_sides(i) # print res print 'total time =', (time() - start), 's'
4.28125
4
src/pyasys/__init__.py
heewoonkim2020/pyasys
0
12784325
<filename>src/pyasys/__init__.py """ The official Pyasys Python library! Please check README.md for more information on how to set up Pyasys for your next project. """ class Pyasys: def __init__(self, import_name, author): """ Sets up a basic project class where project data can be stored. :param import_name: The __name__ of the import structure. :param author: The author of the project. Used for project directory handling and project attribute handling. """ # Setup self.setup_project(project_automation=True, author=author, import_dir=import_name) def setup_project(self, project_automation, author, import_dir): # Prepare for project self.project_automation = project_automation self.author = author self.import_dir = import_dir self.data = {} def get_attribute(self, keyname): """ :param keyname: The key name of the attribute to find. """ if keyname in self.data: return self.data[keyname] else: return None
3
3
quilldelta/types.py
mariocesar/quill-delta-py
2
12784326
<filename>quilldelta/types.py from collections import namedtuple from functools import partial from typing import Any, Dict, Union from quilldelta import utils as _ __all__ = ['Insert', 'Retain', 'Delete', 'OperationType', 'is_retain', 'is_insert', 'is_delete', 'it_insert_text', 'load_operation'] def _sum_operation(instance, other): type_op = type(instance) type_other = type(other) if type(other) != type_op: raise ValueError(f'Operations are not the same type ' f'{type_op.__name__} != {type_other}') if hasattr(instance, 'attributes'): instance_attr = instance.attributes if instance.attributes else None other_attr = other.attributes if other.attributes else None if instance_attr != other_attr: raise ValueError("Can't sum operations with different attributes") return type_op(instance.value + other.value, other_attr) else: return type_op(instance.value + other.value) class Insert(namedtuple('Insert', 'value, attributes')): __slots__ = () __str__ = _.instance_as_json __add__ = _sum_operation as_data = _.instance_as_dict as_json = _.instance_as_json @classmethod def fromdict(cls, data): data.setdefault('attributes', None) return _.dict_to_class(cls, data) @property def length(self): if isinstance(self.value, str): return len(self.value) return 1 class Retain(namedtuple('Retain', 'value, attributes')): __slots__ = () __str__ = _.instance_as_json __add__ = _sum_operation as_data = _.instance_as_dict as_json = _.instance_as_json @classmethod def fromdict(cls, data: dict): data.setdefault('attributes', None) return _.dict_to_class(cls, data) @property def length(self): return self.value @length.setter def length(self, val: int): assert isinstance(val, int) self.value = val class Delete(namedtuple('Delete', 'value')): __slots__ = () __str__ = _.instance_as_json __add__ = _sum_operation as_data = _.instance_as_dict as_json = _.instance_as_json @classmethod def fromdict(cls, data: dict): return _.dict_to_class(cls, data) @property def length(self): return self.value @length.setter def length(self, val: int): assert isinstance(val, int) self.value = val OperationType = Union[Insert, Retain, Delete, Dict] def load_operation(data: OperationType): if isinstance(data, (Insert, Retain, Delete)): return data elif isinstance(data, Dict): if 'insert' in data: return Insert.fromdict(data) elif 'retain' in data: return Retain.fromdict(data) elif 'delete' in data: return Delete.fromdict(data) raise ValueError('Unknown operation for %s' % data) def _isinstance(op: Any, class_or_tuple): return isinstance(op, class_or_tuple) is_insert = partial(_isinstance, class_or_tuple=Insert) is_retain = partial(_isinstance, class_or_tuple=Retain) is_delete = partial(_isinstance, class_or_tuple=Delete) def it_insert_text(op: Any): return is_insert(op) and isinstance(op.value, str)
2.3125
2
03_ThreeWayAndTkinter/main.py
faizovboris/PythonDevelopment2021
0
12784327
<reponame>faizovboris/PythonDevelopment2021 import random import tkinter as tk import tkinter.messagebox class Game(): def __init__(self): self.root = tk.Tk(); self.root.title("Game 15") self.root.rowconfigure(0, weight=1) self.root.columnconfigure(0, weight=1) self.frame = tk.Frame(self.root) self.frame.grid(column=0, row=0, sticky=tk.NSEW) self.new_button = tk.Button(self.frame, text="New", command=self.new_game) self.new_button.grid(column=0, row=0, columnspan=2, sticky="") self.exit_button = tk.Button(self.frame, text="Exit", command=self.stop_game) self.exit_button.grid(column=2, row=0, columnspan=2, sticky="") self.game_buttons = [None] for i in range(1, 16): self.game_buttons.append(tk.Button(self.frame, text=str(i), command=self.make_move(i))) for i in range(4): self.frame.grid_rowconfigure(i + 1, weight=1, pad=1, uniform="row_gr") self.frame.grid_columnconfigure(i, weight=1, pad=1, uniform="col_gr") self.new_game() def new_game(self): self.buttons_order = [] for i in range(1, 16): self.buttons_order.append(i) random.shuffle(self.buttons_order) inv_cnt = 0 for i in range(15): for j in range(i + 1, 15): inv_cnt += (self.buttons_order[i] > self.buttons_order[j]) if inv_cnt % 2 != 0: self.swap_buttons(self.buttons_order.index(14), self.buttons_order.index(15)) self.buttons_order.append('Blank') self.place_buttons() def swap_buttons(self, i, j): self.buttons_order[i], self.buttons_order[j] = self.buttons_order[j], self.buttons_order[i] def place_buttons(self): for i, button_id in enumerate(self.buttons_order): if button_id == 'Blank': continue self.game_buttons[button_id].grid(column=i % 4, row=1 + i // 4, columnspan=1, sticky=tk.NSEW) self.game_buttons[button_id]['background'] = '#00bbbb' def make_move(self, button_id): def move_fn(): button_position = self.buttons_order.index(button_id) button_x = button_position % 4 button_y = button_position // 4 if button_x > 0 and self.buttons_order[button_position - 1] == 'Blank': self.swap_buttons(button_position, button_position - 1) elif button_x < 3 and self.buttons_order[button_position + 1] == 'Blank': self.swap_buttons(button_position, button_position + 1) elif button_y > 0 and self.buttons_order[button_position - 4] == 'Blank': self.swap_buttons(button_position, button_position - 4) elif button_y < 3 and self.buttons_order[button_position + 4] == 'Blank': self.swap_buttons(button_position, button_position + 4) self.place_buttons() self.check_winning() return move_fn def check_winning(self): for i in range(15): if self.buttons_order[i] != i + 1: return tk.messagebox.showinfo(message="You win!") self.new_game() return def stop_game(self): self.root.destroy() def start_game(self): self.root.mainloop() if __name__ == '__main__': game = Game() game.start_game()
3.4375
3
gunicorn.conf.py
jience/flask_gunicorn_nginx
1
12784328
<reponame>jience/flask_gunicorn_nginx """ gunicorn WSGI server configuration. https://docs.gunicorn.org/en/latest/index.html """ import multiprocessing loglevel = "debug" bind = "unix:/tmp/gunicorn.sock" workers = multiprocessing.cpu_count() * 2 + 1 worker_class = "gevent" max_requests = 1000 pidfile = "gunicorn.pid" accesslog = "gunicorn.access.log" errorlog = "gunicorn.error.log"
1.9375
2
gists/process_data.py
snafis/Utils
3
12784329
<gh_stars>1-10 # coding: utf-8 import os import warnings import pandas as pd import numpy as np import click import pathlib from src.utils.io.get_absolute_fpath import get_absolute_fpath from src.utils.io.python_config_dict import config_dict_from_python_fpath # Silence C dtype mapping warnings warnings.filterwarnings("ignore", category=pd.errors.PerformanceWarning) # Silence Deprecation Warning for click using importlib warnings.filterwarnings("ignore", category=DeprecationWarning) # Change to root dir os.chdir(get_absolute_fpath()) # Script Purpose ################# # 1) Load in data from a source file and table (e.g. SQL, HDF, cloud etc) # 2) Load in an sklearn pipeline for ETL transformation via the config file # specified at --config_path which should be a python file holding necessary # variables, specifically the ETL pipeline in variable PIPELINE # 3) Export data to a db and table. If none is specified, use the import variable ones @click.command() @click.option('--config_path', default=None) @click.option('--db_import_path', default=None) @click.option('--db_input_table', default=None) @click.option('--db_export_path', default=None) @click.option('--db_export_table', default=None) @click.option('--verbose', default=1) def process_data(config_path: str = None, db_import_path: str = None, db_input_table: str = None, db_export_path: str = None, db_export_table: str = None, verbose: int = None ): """ Process the data """ # Set export variables if none specified to be the same as import (e.g. inplace) if verbose: if (not db_export_path) | (not db_export_table): click.echo('No export variables set. Data ETL will be done in place at the' f'db and table specified by db at "{db_export_path}" and table "{db_export_table}"') if not db_export_path: db_export_path = db_import_path if not db_export_table: db_export_table = db_input_table # Turn string paths into pathlib Paths db_import_path = pathlib.Path(db_import_path) db_export_path = pathlib.Path(db_export_path) config = config_dict_from_python_fpath(config_path) # Establish database connection # conn = sqlite3.connect(db_import_path.as_posix()) # Read Data # df = pd.read_sql(sql=f'SELECT * FROM {db_input_table}', con=conn) df = pd.read_hdf(db_import_path.as_posix(), db_input_table) if verbose: click.echo(f'Reading in data from table {db_input_table} at {db_import_path.as_posix()}') # Process data with pipeline pipeline = config['PIPELINE'] transformed_df = pipeline.fit_transform(df) # Write to DB # Write each DF into the database, replacing the table if it previously existed if verbose: click.echo(f'Final datashape for transformed data is {transformed_df.shape}') click.echo(f'Compare to original shapes of: {df.shape}') if verbose: click.echo(f'Placing data into table "{db_export_table}" in the db at {db_export_path.as_posix()}') # transformed_df.to_sql(db_export_table, con=conn, if_exists='replace', index=False) transformed_df.to_hdf(db_export_path.as_posix(), db_export_table) if __name__ == '__main__': process_data()
2.609375
3
search.py
wifijanitor/Search
0
12784330
<reponame>wifijanitor/Search<filename>search.py<gh_stars>0 #!/usr/bin/env python3 import os import sys import re version = 2.0 part = sys.argv[1] file = open(os.path.expanduser('~/Cisco/price.txt')) rgx = re.compile(part, re.I) for line in file: if re.search(rgx, line): print(line) file.close()
2.875
3
terrainbento/boundary_handlers/not_core_node_baselevel_handler.py
alexmitchell/terrainbento
18
12784331
<gh_stars>10-100 # coding: utf8 # !/usr/env/python """**NotCoreNodeBaselevelHandler** modifies elevation for not-core nodes.""" import os import numpy as np from scipy.interpolate import interp1d class NotCoreNodeBaselevelHandler(object): """Control the elevation of all nodes that are not core nodes. The **NotCoreNodeBaselevelHandler** controls the elevation of all nodes on the model grid with ``status != 0`` (i.e., all not-core nodes). The elevation change at these nodes is specified either as a constant rate, or through a text file that specifies the elevation change through time. Through the parameter ``modify_core_nodes`` the user can determine if the core nodes should be moved in the direction (up or down) specified by the elevation change directive, or if the non-core nodes should be moved in the opposite direction. The **NotCoreNodeBaselevelHandler** expects that ``topographic__elevation`` is an at-node model grid field. It will modify this field as well as the field ``bedrock__elevation``, if it exists. Note that **NotCoreNodeBaselevelHandler** increments time at the end of the **run_one_step** method. """ def __init__( self, grid, modify_core_nodes=False, lowering_rate=None, lowering_file_path=None, model_end_elevation=None, **kwargs ): """ Parameters ---------- grid : landlab model grid modify_core_nodes : boolean, optional Flag to indicate if the core nodes or the non-core nodes will be modified. Default is False, indicating that the boundary nodes will be modified. lowering_rate : float, optional Lowering rate of the outlet node. One of ``lowering_rate`` and ``lowering_file_path`` is required. Units are implied by the model grids spatial scale and the time units of ``step``. Negative values mean that the outlet lowers. lowering_file_path : str, optional Lowering history file path. One of ``lowering_rate`` and `lowering_file_path` is required. Units are implied by the model grids spatial scale and the time units of ``step``. This file should be readable with ``np.loadtxt(filename, skiprows=1, delimiter=",")`` Its first column is time and its second colum is the elevation change at the outlet since the onset of the model run. Negative values mean the outlet lowers. model_end_elevation : float, optional Average elevation of the nodes_to_lower at the end of the model run duration. When the outlet is lowered based on an lowering_file_path, a ``model_end_elevation`` can be set such that lowering is scaled based on the starting and ending outlet elevation. Default behavior is to not scale the lowering pattern. Examples -------- Start by creating a landlab model grid and set its boundary conditions. >>> from landlab import RasterModelGrid >>> mg = RasterModelGrid((5, 5)) >>> z = mg.add_zeros("node", "topographic__elevation") >>> mg.set_closed_boundaries_at_grid_edges(bottom_is_closed=True, ... left_is_closed=True, ... right_is_closed=True, ... top_is_closed=True) >>> mg.set_watershed_boundary_condition_outlet_id( ... 0, mg.at_node["topographic__elevation"], -9999.) >>> print(z.reshape(mg.shape)) [[ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]] Now import the **NotCoreNodeBaselevelHandler** and instantiate. >>> from terrainbento.boundary_handlers import ( ... NotCoreNodeBaselevelHandler) >>> bh = NotCoreNodeBaselevelHandler(mg, ... modify_core_nodes = False, ... lowering_rate = -0.1) >>> bh.run_one_step(10.0) We should expect that the boundary nodes (except for node 0) will all have lowered by -1. >>> print(z.reshape(mg.shape)) [[-1. -1. -1. -1. -1.] [-1. 0. 0. 0. -1.] [-1. 0. 0. 0. -1.] [-1. 0. 0. 0. -1.] [-1. -1. -1. -1. -1.]] If we wanted instead for all of the non core nodes to change their elevation, we would set ``modify_core_nodes = True``. >>> mg = RasterModelGrid((5, 5)) >>> z = mg.add_zeros("node", "topographic__elevation") >>> mg.set_closed_boundaries_at_grid_edges(bottom_is_closed=True, ... left_is_closed=True, ... right_is_closed=True, ... top_is_closed=True) >>> mg.set_watershed_boundary_condition_outlet_id( ... 0, mg.at_node["topographic__elevation"], -9999.) >>> from terrainbento.boundary_handlers import ( ... NotCoreNodeBaselevelHandler) >>> bh = NotCoreNodeBaselevelHandler(mg, ... modify_core_nodes = True, ... lowering_rate = -0.1) >>> bh.run_one_step(10.0) >>> print(z.reshape(mg.shape)) [[ 0. 0. 0. 0. 0.] [ 0. 1. 1. 1. 0.] [ 0. 1. 1. 1. 0.] [ 0. 1. 1. 1. 0.] [ 0. 0. 0. 0. 0.]] More complex baselevel histories can be provided with a ``lowering_file_path``. """ self.model_time = 0.0 self.grid = grid self.modify_core_nodes = modify_core_nodes self.z = self.grid.at_node["topographic__elevation"] # determine which nodes to lower # based on which are lowering, set the prefactor correctly. if self.modify_core_nodes: self.nodes_to_lower = self.grid.status_at_node == 0 self.prefactor = -1.0 else: self.nodes_to_lower = self.grid.status_at_node != 0 self.prefactor = 1.0 if (lowering_file_path is None) and (lowering_rate is None): raise ValueError( ( "NotCoreNodeBaselevelHandler requires one of " "lowering_rate and lowering_file_path" ) ) else: if lowering_rate is None: # initialize outlet elevation object if os.path.exists(lowering_file_path): elev_change_df = np.loadtxt( lowering_file_path, skiprows=1, delimiter="," ) time = elev_change_df[:, 0] elev_change = elev_change_df[:, 1] model_start_elevation = np.mean( self.z[self.nodes_to_lower] ) if model_end_elevation is None: self.scaling_factor = 1.0 else: self.scaling_factor = np.abs( model_start_elevation - model_end_elevation ) / np.abs(elev_change[0] - elev_change[-1]) outlet_elevation = ( self.scaling_factor * self.prefactor * elev_change_df[:, 1] ) + model_start_elevation self.outlet_elevation_obj = interp1d( time, outlet_elevation ) self.lowering_rate = None else: raise ValueError( ( "The lowering_file_path provided " "to NotCoreNodeBaselevelHandler does not " "exist." ) ) elif lowering_file_path is None: self.lowering_rate = lowering_rate self.outlet_elevation_obj = None else: raise ValueError( ( "Both an lowering_rate and a " "lowering_file_path have been provided " "to NotCoreNodeBaselevelHandler. Please provide " "only one." ) ) def run_one_step(self, step): """Run **NotCoreNodeBaselevelHandler** forward and update elevations. The **run_one_step** method provides a consistent interface to update the terrainbento boundary condition handlers. In the **run_one_step** routine, the **NotCoreNodeBaselevelHandler** will either lower the closed or raise the non-closed nodes based on inputs specified at instantiation. Note that **NotCoreNodeBaselevelHandler** increments time at the end of the **run_one_step** method. Parameters ---------- step : float Duration of model time to advance forward. """ # next, lower the correct nodes the desired amount # first, if we do not have an outlet elevation object if self.outlet_elevation_obj is None: # calculate lowering amount and subtract self.z[self.nodes_to_lower] += ( self.prefactor * self.lowering_rate * step ) # if bedrock__elevation exists as a field, lower it also other_fields = [ "bedrock__elevation", "lithology_contact__elevation", ] for of in other_fields: if of in self.grid.at_node: self.grid.at_node[of][self.nodes_to_lower] += ( self.prefactor * self.lowering_rate * step ) # if there is an outlet elevation object else: # if bedrock__elevation exists as a field, lower it also # calcuate the topographic change required to match the current # time"s value for outlet elevation. This must be done in case # bedrock elevation exists, and must be done before the topography # is lowered mean_z = np.mean(self.z[self.nodes_to_lower]) self.topo_change = mean_z - self.outlet_elevation_obj( self.model_time ) other_fields = [ "bedrock__elevation", "lithology_contact__elevation", ] for of in other_fields: if of in self.grid.at_node: self.grid.at_node[of][ self.nodes_to_lower ] -= self.topo_change # lower topography self.z[self.nodes_to_lower] -= self.topo_change # increment model time self.model_time += step
2.515625
3
new_network/spw_network_new_brian2.py
andrisecker/KOKI_sharp_waves
0
12784332
<filename>new_network/spw_network_new_brian2.py #!/usr/bin/python # -*- coding: utf8 -*- """ creates PC (adExp IF) and BC (exp IF) population in Brian2, loads in recurrent connection matrix for PC population runs simulation and checks the dynamics (updated network, parameters are/should be closer to the experimental data!) authors: <NAME>, <NAME> last update: 11.2017 """ import os import sys from brian2 import * import numpy as np import random as pyrandom import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # ignore scipy 0.18 sparse matrix warning... SWBasePath = os.path.sep.join(os.path.abspath('__file__').split(os.path.sep)[:-2]) sys.path.insert(0, os.path.sep.join([SWBasePath, 'scripts'])) from detect_oscillations import * from plots import * # size of populations NE = 4000 NI = 1000 # sparseness eps_pyr = 0.16 eps_bas = 0.4 # synaptic time constants: # rise time constants PyrExc_rise = 1.3 * ms # Guzman 2016 (only from Fig.1 H - 20-80%) PyrExcMF_rise = 0.65 * ms # Vyleta ... Jonas 2016 (20-80%) PyrInh_rise = 0.3 * ms # Bartos 2002 (20-80%) BasExc_rise = 1. * ms # Lee 2014 (data from CA1) BasInh_rise = 0.25 * ms # Bartos 2002 (20-80%) # decay time constants PyrExc_decay = 9.5 * ms # Guzman 2016 ("needed for temporal summation of EPSPs") PyrExcMF_decay = 5.4 * ms # Vyleta ... Jonas 2016 PyrInh_decay = 3.3 * ms # Bartos 2002 BasExc_decay = 4.1 * ms # Lee 2014 (data from CA1) BasInh_decay = 1.2 * ms # Bartos 2002 # Normalization factors (normalize the peak of the PSC curve to 1) invpeak_PyrExc = (PyrExc_decay / PyrExc_rise) ** (PyrExc_rise / (PyrExc_decay - PyrExc_rise)) invpeak_PyrExcMF = (PyrExcMF_decay / PyrExcMF_rise) ** (PyrExcMF_rise / (PyrExcMF_decay - PyrExcMF_rise)) invpeak_PyrInh = (PyrInh_decay / PyrInh_rise) ** (PyrInh_rise / (PyrInh_decay - PyrInh_rise)) invpeak_BasExc = (BasExc_decay / BasExc_rise) ** (BasExc_rise / (BasExc_decay - BasExc_rise)) invpeak_BasInh = (BasInh_decay / BasInh_rise) ** (BasInh_rise / (BasInh_decay - BasInh_rise)) # synaptic delays: delay_PyrExc = 2.2 * ms # Guzman 2016 delay_PyrInh = 1.1 * ms # Bartos 2002 delay_BasExc = 0.9 * ms # Geiger 1997 (data from DG) delay_BasInh = 0.6 * ms # Bartos 2002 # synaptic reversal potentials E_Exc = 0.0 * mV E_Inh = -70.0 * mV # mossy fiber input rate_MF = 20 * Hz z = 1 * nS # parameters for pyr cells (optimized by Bence) gL_Pyr = 4.49581428461e-3 * uS tauMem_Pyr = 37.97630516 * ms Cm_Pyr = tauMem_Pyr * gL_Pyr Vrest_Pyr = -59.710040237 * mV reset_Pyr = -24.8988661181 * mV theta_Pyr = -13.3139788756 * mV tref_Pyr = 3.79313737057 * ms a_Pyr = -0.255945300382 * nS b_Pyr = 0.22030375858 * nA delta_T_Pyr = 3.31719795927 * mV tau_w_Pyr = 80.1747780694 * ms v_spike_Pyr = theta_Pyr + 10 * delta_T_Pyr # parameters for bas cells (optimized by Bence) gL_Bas = 7.0102757369e-3 * uS tauMem_Bas = 37.7598232668 * ms Cm_Bas = tauMem_Bas * gL_Bas Vrest_Bas = -58.9682231705 * mV reset_Bas = -39.1229822301 * mV theta_Bas = -39.5972788689 * mV tref_Bas = 1.06976577195 * ms delta_T_Bas = 2.21103724225 * mV v_spike_Bas = theta_Bas + 10 * delta_T_Bas eqs_Pyr = ''' dvm/dt = (-gL_Pyr*(vm-Vrest_Pyr) + gL_Pyr*delta_T_Pyr*exp((vm- theta_Pyr)/delta_T_Pyr) - w - ((g_ampa+g_ampaMF)*z*(vm-E_Exc) + g_gaba*z*(vm-E_Inh)))/Cm_Pyr : volt (unless refractory) dw/dt = (a_Pyr*(vm- Vrest_Pyr )-w)/tau_w_Pyr : amp dg_ampa/dt = (invpeak_PyrExc * x_ampa - g_ampa) / PyrExc_rise : 1 dx_ampa/dt = -x_ampa / PyrExc_decay : 1 dg_ampaMF/dt = (invpeak_PyrExcMF * x_ampaMF - g_ampaMF) / PyrExcMF_rise : 1 dx_ampaMF/dt = -x_ampaMF / PyrExcMF_decay : 1 dg_gaba/dt = (invpeak_PyrInh * x_gaba - g_gaba) / PyrInh_rise : 1 dx_gaba/dt = -x_gaba/PyrInh_decay : 1 ''' eqs_Bas = ''' dvm/dt = (-gL_Bas*(vm-Vrest_Bas) + gL_Bas*delta_T_Bas*exp((vm- theta_Bas)/delta_T_Bas) - (g_ampa*z*(vm-E_Exc) + g_gaba*z*(vm-E_Inh)))/Cm_Bas : volt (unless refractory) dg_ampa/dt = (invpeak_BasExc * x_ampa - g_ampa) / BasExc_rise : 1 dx_ampa/dt = -x_ampa/BasExc_decay : 1 dg_gaba/dt = (invpeak_BasInh * x_gaba - g_gaba) / BasInh_rise : 1 dx_gaba/dt = -x_gaba/BasInh_decay : 1 ''' def run_simulation(Wee, STDP_mode="asym", detailed=True, verbose=True): """ Sets up the network and runs simulation :param Wee: np.array representing synaptic weight matrix :param STDP_mode: symmetric or asymmetric weight matrix flag (used for synapse parameters) :param detailed: bool - useage of multi state monitor (for membrane pot and inh. and exc. inputs of some singe cells) :param verbose: bool - report status of simulation :return sme, smi, popre, popri, selection, msMe: brian2 monitors (+ array of selected cells used by multi state monitor) """ np.random.seed(12345) pyrandom.seed(12345) # synaptic weights J_PyrInh = 0.02 if STDP_mode == "asym": J_BasExc = 5 J_BasInh = 0.4 J_PyrMF = 24.25 elif STDP_mode == "sym": J_BasExc = 5.5 J_BasInh = 0.8 J_PyrMF = 30 # wmx scale factor already introduced in the stdp* script! PE = NeuronGroup(NE, model=eqs_Pyr, threshold="vm>v_spike_Pyr", reset="vm=reset_Pyr; w+=b_Pyr", refractory=tref_Pyr, method="exponential_euler") PI = NeuronGroup(NI, model=eqs_Bas, threshold="vm>v_spike_Bas", reset="vm=reset_Bas", refractory=tref_Bas, method="exponential_euler") PE.vm = Vrest_Pyr PE.g_ampa = 0 PE.g_ampaMF = 0 PE.g_gaba = 0 PI.vm = Vrest_Bas PI.g_ampa = 0 PI.g_gaba = 0 MF = PoissonGroup(NE, rate_MF) Cext = Synapses(MF, PE, on_pre="x_ampaMF+=J_PyrMF") Cext.connect(j='i') # weight matrix used here: Cee = Synapses(PE, PE, 'w_exc:1', on_pre='x_ampa+=w_exc') Cee.connect() Cee.w_exc = Wee.flatten() Cee.delay = delay_PyrExc del Wee # clear memory Cei = Synapses(PE, PI, on_pre='x_ampa+=J_BasExc') Cei.connect(p=eps_pyr) Cei.delay = delay_BasExc Cie = Synapses(PI, PE, on_pre='x_gaba+=J_PyrInh') Cie.connect(p=eps_bas) Cie.delay = delay_PyrInh Cii = Synapses(PI, PI, on_pre='x_gaba+=J_BasInh') Cii.connect(p=eps_bas) Cii.delay = delay_BasInh # Monitors sme = SpikeMonitor(PE) smi = SpikeMonitor(PI) popre = PopulationRateMonitor(PE) popri = PopulationRateMonitor(PI) if detailed: selection = np.arange(0, 4000, 50) # subset of neurons for recoring variables mSME = StateMonitor(PE, ["vm", "w", "g_ampa", "g_ampaMF","g_gaba"], record=selection.tolist()) # comment this out later (takes memory!) sMI = StateMonitor(PI, "vm", record=[500]) if verbose: run(10000*ms, report="text") else: run(10000*ms) if detailed: return sme, smi, popre, popri, selection, mSME, sMI else: return sme, smi, popre, popri if __name__ == "__main__": try: STDP_mode = sys.argv[1] except: STDP_mode = "asym" assert(STDP_mode in ["sym", "asym"]) fIn = "wmxR_%s.txt"%STDP_mode detailed = True TFR = True # load in weight matrix fName = os.path.join(SWBasePath, "files", fIn) Wee = load_Wee(fName) # run simulation if detailed: sme, smi, popre, popri, selection, mSME, sMI = run_simulation(Wee, STDP_mode) else: sme, smi, popre, popri = run_simulation(Wee, STDP_mode, detailed=False) # analyse results if sme.num_spikes > 0 and smi.num_spikes > 0: # check if there is any activity # analyse spikes spikeTimesE, spikingNeuronsE, poprE, ISIhist, bin_edges = preprocess_monitors(sme, popre) spikeTimesI, spikingNeuronsI, poprI = preprocess_monitors(smi, popri, calc_ISI=False) # detect replay avgReplayInterval = replay(ISIhist[3:16]) # bins from 150 to 850 (range of interest) # analyse rates if TFR: meanEr, rEAC, maxEAC, tMaxEAC, fE, PxxE, trfE, tE, freqsE = analyse_rate(poprE, TFR=True) meanIr, rIAC, maxIAC, tMaxIAC, fI, PxxI, trfI, tI, freqsI = analyse_rate(poprI, TFR=True) else: meanEr, rEAC, maxEAC, tMaxEAC, fE, PxxE = analyse_rate(poprE) meanIr, rIAC, maxIAC, tMaxIAC, fI, PxxI = analyse_rate(poprI) maxEACR, tMaxEACR, avgRippleFE, ripplePE = ripple(rEAC, fE, PxxE) maxIACR, tMaxIACR, avgRippleFI, ripplePI = ripple(rIAC, fI, PxxI) avgGammaFE, gammaPE = gamma(fE, PxxE) avgGammaFI, gammaPI = gamma(fI, PxxI) # print out some info print "Mean excitatory rate: %.3f"%meanEr print "Mean inhibitory rate: %.3f"%meanIr print "Average exc. ripple freq: %.3f"%avgRippleFE print "Exc. ripple power: %.3f"%ripplePE print "Average exc. gamma freq: %.3f"%avgGammaFE print "Exc. gamma power: %.3f"%gammaPE print "Average inh. ripple freq: %.3f"%avgRippleFI print "Inh. ripple power: %.3f"%ripplePI print "Average inh. gamma freq: %.3f"%avgGammaFI print "Inh. gamma power: %.3f"%gammaPI print "--------------------------------------------------" # Plots plot_raster_ISI(spikeTimesE, spikingNeuronsE, poprE, [ISIhist, bin_edges], "blue", multiplier_=1) if TFR: plot_PSD(poprE, rEAC, fE, PxxE, "Pyr_population", "blue", multiplier_=1, TFR=True, tfr=trfE, t=tE, freqs=freqsE, fs=1000) plot_PSD(poprI, rIAC, fI, PxxI, "Bas_population", "green", multiplier_=1, TFR=True, tfr=trfI, t=tI, freqs=freqsI, fs=1000) else: plot_PSD(poprE, rEAC, fE, PxxE, "Pyr_population", "blue", multiplier_=1) plot_PSD(poprI, rIAC, fI, PxxI, "Bas_population", "green", multiplier_=1) if detailed: subset = plot_zoomed(spikeTimesE, spikingNeuronsE, poprE, "Pyr_population", "blue", multiplier_=1, sm=mSME, selection=selection) plot_zoomed(spikeTimesI, spikingNeuronsI, poprI, "Bas_population", "green", multiplier_=1, Pyr_pop=False, sm=sMI) plot_detailed(mSME, subset, multiplier_=1, new_network=True) else: plot_zoomed(spikeTimesE, spikingNeuronsE, poprE, "Pyr_population", "blue", multiplier_=1) plot_zoomed(spikeTimesI, spikingNeuronsI, poprI, "Bas_population", "green", multiplier_=1, Pyr_pop=False) else: # if there is no activity the auto-correlation function will throw an error! print "No activity !" print "--------------------------------------------------" plt.show()
2.15625
2
a01_gui_main.py
CyabbageRoll/Schedule_Manager
0
12784333
# %% ======================================================================= # import libraries #=========================================================================== # default import os import datetime import hashlib # conda import pandas as pd import PySimpleGUI as sg # user from b01_schedule_class_base import ScheduleManageBase from b01_schedule_class import ScheduleManage # %% ======================================================================= # pysimple gui settings #=========================================================================== # window layout is defined in b01_schedule_class_base # button or other functions are difined in b01_schedule_class sch_m = ScheduleManage() sch_m.create_window() sch_m.window.read(timeout=1) # %% ======================================================================= # simple gyi while #=========================================================================== # Event Loop to process "events" and get the "values" of the inputs while True: event, pos, item, eid = sch_m.parse_event() # if event and "MV" not in event: # print(event, pos, item, eid) if event == sg.WIN_CLOSED: # if user closes window or clicks cancel break # %% ======================================================================= # header #=========================================================================== if pos == "hd": # header if item == "btn": # click button if eid == 0: # all sch_m.header_all_button_pressed() sch_m.header_checkbox_changed() if eid == 1: # clear sch_m.header_clear_button_pressed() sch_m.header_checkbox_changed() if eid == 2: # drawchart sch_m.header_refresh_button_pressed() if eid == 3: # upload sch_m.header_upload_button_pressed() if eid == 4: # download sch_m.header_reload_button_pressed() if item == "cbx": # check box was updated sch_m.header_checkbox_changed([eid]) if item == "rdi": # radio button sch_m.header_member_raido_button_changed() continue # %% ======================================================================= # left tab #=========================================================================== if pos == "lt": if item == "grp": sch_m.l1_chart_draw() continue if pos == "l1": # left tab1 if item[:3] == "grp": if len(item) == 3: sch_m.l1_graph_area_clicked() if "MV" in item: sch_m.l1_graphs_capture_mouse_motion(eid) if "RC" in item: sch_m.l1_graph_right_click_menu_selected(event, eid) continue if pos == "l2": # left tab2 continue if pos == "l3": # left tab2 if item == "btn": if eid < 4: sch_m.l3_priority_updown_button_pressed(eid) if eid == 4: sch_m.l3_priority_auto_button_pressed() if "tbl" in item: sch_m.l3_table_selected_ticket_changed() continue if pos == "l0": if item == "btn": if eid == 0: sch_m.l0_settings_save_and_restart_button_pressed() # %% ======================================================================= # right tab #=========================================================================== if pos == "r1": # right tab1 if item[:3] == "inp": if len(item) == 6: if item[4:6] == "LC": sch_m.r1_input_date_box_selected(eid) sch_m.r1_input_check() # sch_m._r1_pre_next_ticket_table_update() if item[:3] == "btn": if eid == 0: sch_m.r1_apply_button_pressed() if eid == 1: sch_m.r1_delete_button_pressed() if item == "right_menu": sch_m.r1_right_click_menu_clicked(event) continue if pos == "r2": # right tab2 if item == "btn": # if eid == 0: # sch_m.r2_save_plan_button_pressed() if eid == 1: sch_m.r2_save_record_button_pressed() if eid == 4: sch_m.r2_delete_button_pressed() if item == "txt": if eid == 2: sch_m.r2_date_txt_pressed() if item == "inp": sch_m.r2_information_box_inputed() continue if pos == "r3": # right tab3 if item == "btn": if eid == 0: sch_m.r3_mail_button_pressed() if eid == 1: sch_m.r3_folder_button_pressed() if eid == 2: sch_m.r3_memo_button_pressed() continue if pos == "r4": # right tab4 continue if pos == "r5": # right tab5 if item == "btn": sch_m.r5_arrow_button_pressed(eid) if item == "mul": sch_m.r5_df_from_multiline(eid) sch_m.window.close()
1.882813
2
OOP-PythonBackend/sensor_db.py
mrmareksvk/Project3
0
12784334
import psycopg2 from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT class Sensor_DB: def __init__(self, host="127.0.0.1", database="postgres", user="postgres", password=""): self.__DBconnection = psycopg2.connect( host=host, database="postgres", user=user, password=password ) self.__DBconnection.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) self.__DBcursor = self.__DBconnection.cursor() self.__DBcursor.execute("SELECT 1 FROM pg_catalog.pg_database WHERE datname = %s", (database,),) self.__DBexists = self.__DBcursor.fetchone() if not self.__DBexists: self.__DBcursor.execute("CREATE DATABASE " + database) self.__DBcursor.close() self.__DBconnection.close() ############################################### self.__DBconnection = psycopg2.connect( host=host, database=database, user=user, password=password ) self.__DBcursor = self.__DBconnection.cursor() self.__DBtables = set() def __createTable(self, tableID): self.__DBcursor.execute( "CREATE TABLE IF NOT EXISTS sensor%s (" " id_entry SERIAL PRIMARY KEY," " temperature DOUBLE PRECISION," " humidity INT," " lux INT," " latitude DOUBLE PRECISION," " longitude DOUBLE PRECISION," " dt TIMESTAMP" ")", (int(tableID),), ) self.__DBconnection.commit() self.__DBtables.add(tableID) def saveData(self, sensorID, temperature, humidity, lux, latitude, longitude, date, time): if sensorID not in self.__DBtables: self.__createTable(sensorID) self.__DBcursor.execute( "INSERT INTO sensor%s (temperature, humidity, lux, latitude, longitude, dt) VALUES(%s, %s, %s, %s, %s, %s)", ( int(sensorID), temperature, humidity, lux, latitude, longitude, date + " " + time, ), ) self.__DBconnection.commit()
3.25
3
tests/test_log.py
Yusadolat/bottery
0
12784335
<reponame>Yusadolat/bottery import logging from testfixtures import LogCapture from bottery.log import DEFAULT_LOGGING, ColoredFormatter def test_ColoredFormatter(): '''Test if logs are being colored''' logging.config.dictConfig(DEFAULT_LOGGING) with LogCapture(names='bottery') as logs: logger = logging.getLogger('bottery') logger.debug('DEBUG') logger.info('INFO') logger.warning('WARN') logger.error('ERROR') logger.critical('CRITICAL') records = [record for record in logs.records] # Create a list of all records formated with ColoredFormatter colored_formatter = ColoredFormatter() formatted_records = [colored_formatter.format(record) for record in records] expected_records = [ 'DEBUG', 'INFO', '\x1b[33mWARN\x1b[0m', '\x1b[31mERROR\x1b[0m', '\x1b[30m\x1b[41mCRITICAL\x1b[0m' ] assert formatted_records == expected_records
2.765625
3
tests/guinea-pigs/unittest/subtest_failure.py
djeebus/teamcity-python
0
12784336
<gh_stars>0 import unittest from teamcity.unittestpy import TeamcityTestRunner class TestXXX(unittest.TestCase): def testSubtestFailure(self): with self.subTest(i=0): pass with self.subTest(i="abc.xxx"): assert 1 == 0 unittest.main(testRunner=TeamcityTestRunner)
2.328125
2
refex/python/syntactic_template.py
ssbr/refex
11
12784337
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ :mod:`refex.python.syntactic_template` -------------------------------------- Syntax-aware Python substitution templates, as described in :doc:`/guide/patterns_templates`. The core problem with lexical or textual substitution of Python code, as with e.g. :class:`refex.formatting.ShTemplate`, is that the substitution can be unintentionally wrong. For example: If you replace ``f($x)`` with ``$x``, what if ``$x`` contains a newline? If you replace ``$a`` with ``$a * 2``, what if ``$a`` is ``1 + 2``? The template classes here aim to make replacements that match the intended syntax -- i.e. the structure of the template -- and will parenthesize as necessary. .. autoclass:: PythonExprTemplate .. autoclass:: PythonStmtTemplate """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import ast import tokenize from typing import Text from absl import logging import attr import cached_property import six from refex import formatting from refex.python import matcher from refex.python import python_pattern from refex.python.matchers import ast_matchers from refex.python.matchers import base_matchers from refex.python.matchers import syntax_matchers @attr.s(frozen=True) class _LexicalTemplate(object): """Lexically-aware Python templates. $variables are only used for replacements if they occur inside Python, not inside of e.g. a string literal or a comment. So "a = $x" has an x variable in the template, but "a = '$x'" does not. """ template = attr.ib() _tokens = attr.ib(init=False, repr=False) _var_to_i = attr.ib(init=False, repr=False) variables = attr.ib(init=False, repr=False) def __attrs_post_init__(self): # Because we have frozen=True, creating values for _tokens and _var_to_i # is a little complex, and requires invoking object.__setattr__. tokenized, metavar_indices = python_pattern.token_pattern(self.template) var_to_i = {} for i in metavar_indices: var = tokenized[i][1] var_to_i.setdefault(var, []).append(i) object.__setattr__(self, '_tokens', tokenized) object.__setattr__(self, '_var_to_i', var_to_i) object.__setattr__(self, 'variables', six.viewkeys(var_to_i)) def substitute(self, replacements): """Lexically-aware substitution. Args: replacements: A map from metavariable name to new content. Returns: Substituted Python code. Raises: KeyError: A variable in the template was not specified in the replacements. THis is to be compatible with strings.Template. """ if not self.template: # Work around: if u'' is untokenized and then retokenized, # it comes back out as b'' on Python 2! return self.template # Take a copy of tokens to modify the target slots. tokens = list(self._tokens) free_vars = set(self._var_to_i) logging.debug('Applying %r to tokens %r for substitution of %r', free_vars, tokens, replacements) for var, new in six.iteritems(replacements): try: all_i = self._var_to_i[var] except KeyError: # overspecified: a replacement for a variable not in the template. continue free_vars.remove(var) for i in all_i: tok = list(tokens[i]) tok[1] = new tokens[i] = tuple(tok) if free_vars: raise KeyError(next(iter(free_vars))) return tokenize.untokenize(tokens) @attr.s(frozen=True) class _BasePythonTemplate(formatting.Template): """Base class for syntax-aware templates. The templates use ShTemplate/string.Template style templates. e.g. "$x + $y". Subclasses must override _pattern_factory to provide a matcher for the template. Attributes: template: The source template """ template = attr.ib(type=Text) _lexical_template = attr.ib(repr=False, init=False, type=_LexicalTemplate) _ast_matcher = attr.ib(repr=False, init=False, type=matcher.Matcher) def __attrs_post_init__(self): if not isinstance(self.template, six.text_type): raise TypeError('Expected text, got: {}'.format( type(self.template).__name__)) @_lexical_template.default def _lexical_template_default(self): return _LexicalTemplate(self.template) @_ast_matcher.default def _ast_matcher_default(self): return self._pattern_factory(self.template) def substitute_match(self, parsed, match, matches): """Syntax-aware substitution, parsing the template using _pattern_factory. Args: parsed: The ParsedFile being substituted into. match: The match being replaced. matches: The matches used for formatting. Returns: Substituted Python code. """ replacement, _ = self._parenthesized( _matchers_for_matches(matches), formatting.stringify_matches(matches), ) if not isinstance(parsed, matcher.PythonParsedFile): # This file is not (known to be) a Python file, so we can't (efficiently) # check the replacement into the parent AST node. # TODO: It would help if we could automatically obtain a # PythonParsedFile for any given ParsedFile. This also lets us compose # arbitrary searchers together, some of which take a PythonParsedFile, and # others which don't. return replacement # replacement is now a safely-interpolated string: all of the substitutions # are parenthesized where needed. The only thing left is to ensure that when # replacement itself is substituted in, it itself is parenthesized # correctly. # # To do this, we essentially repeat the same safe substitution algorithm, # except using the context of the replacement as a fake pattern. # # Note that this whole process is only valid if we are matching an actual # AST node, and an expr node at that. # For example, it is _not_ valid to replace b'foo' with b('foo'), or 'foo' # with 'f(o)o'. if not isinstance(match, matcher.LexicalASTMatch): # The match wasn't even for an AST node. We'll assume they know what # they're doing and pass thru verbatim. Non-AST matches can't be # automatically parenthesized -- for example, b'foo' vs b('foo') return replacement if not isinstance(match.matched, ast.expr): # Only expressions need to be parenthesized, so this is fine as-is. return replacement parent = parsed.nav.get_parent(match.matched) if isinstance(parent, ast.Expr): # the matched object is already a top-level expression, and will never # need extra parentheses. # We are assuming here that the template does not contain comments, # which is not enforced. We also assume that it doesn't contain raw # newlines, but this is enforced by the template and substitution both # needing to parse on their own. return replacement if isinstance(parent, ast.stmt) and hasattr(parent, 'body'): # TODO(b/139758169): re-enable reparsing of statements in templating. # Multi-line statements can't be reparsed due to issues with # indentation. We can usually safely assume that it doesn't need parens, # although exceptions exist. (Including, in an ironic twist, "except".) return replacement # keep navigating up until we reach a lexical AST node. # e.g. skip over lists. while True: parent_span = matcher.create_match(parsed, parent).span if parent_span is not None and isinstance(parent, (ast.expr, ast.stmt)): # We need a parent node which has a known source span, # and which is by itself parseable (i.e. is an expr or stmt). break next_parent = parsed.nav.get_parent(parent) if isinstance(next_parent, ast.stmt) and hasattr(next_parent, 'body'): # TODO(b/139758169): re-enable reparsing of statements in templating. # We encountered no reparseable parents between here and a # non-reparseable statement, so, as before, we must fall back to # returning the replacement verbatim and hoping it isn't broken. # (For example, replacing T with T1, T2 in "class A(T)" is incorrect.) return replacement parent = next_parent else: raise formatting.RewriteError( "Bug in Python formatter? Couldn't find parent of %r" % match) # Re-apply the safe substitution, but on the parent. context_start, context_end = parent_span match_start, match_end = match.span prefix = parsed.text[context_start:match_start] suffix = parsed.text[match_end:context_end] if isinstance(parent, ast.expr): # expressions can occur in a multiline context, but now that we've # removed it from its context for reparsing, we're in a single-line # unparenthesized context. We need to add parens to make sure this # parses correctly. prefix = '(' + prefix suffix += ')' parent_pseudotemplate = PythonTemplate(prefix + u'$current_expr' + suffix) parsed_replacement = ast.parse(replacement) if len(parsed_replacement.body) != 1 or not isinstance( parsed_replacement.body[0], ast.Expr): raise formatting.RewriteError( "Non-expression template can't be used in expression context: %s" % self.template) current_matcher = syntax_matchers.ast_matchers_matcher( parsed_replacement.body[0].value) _, safe_mapping = parent_pseudotemplate._parenthesized( # pylint: disable=protected-access {u'current_expr': current_matcher}, {u'current_expr': replacement}) return safe_mapping[u'current_expr'] def _parenthesized(self, matchers, stringified_matches): """Parenthesizes a substitution for a template. Args: matchers: Dict mapping {var: Matcher that must match this variable} stringified_matches: Dict mapping variable -> string for match. Returns: A tuple of two elements: 0: The full safely parenthesized substitution. 1: A dict dict mapping var -> parenthesized string, for each match. """ safe_mapping = {} unparenthesized_mapping = {} for k, v in stringified_matches.items(): raw_string = stringified_matches[k] if k in matchers: safe_mapping[k] = '(%s)' % raw_string unparenthesized_mapping[k] = raw_string else: # Non-expressions cannot be parenthesized and must be inserted verbatim. safe_mapping[k] = raw_string # We start parenthesized and try dropping parentheses to see if things # still match the same way. # First, build up the canonical replacement: replacement = self._lexical_template.substitute(safe_mapping) # Now let's parse the produced canonical replacement and make sure that it # looks "correct" -- it is structurally the same as our template is, # and the substituted in values are identical. try: parsed_template = matcher.parse_ast(replacement, '<_BasePythonTemplate pattern>') except matcher.ParseError as e: raise formatting.RewriteError( 'Bug in Python formatter? Failed to parse formatted Python string as ' 'Python: template=%r, substitute(matches for %r) -> %r: %s' % (self.template, stringified_matches, replacement, e)) m = self._ast_matcher.match( matcher.MatchContext(parsed_template), parsed_template.tree) if m is None: raise formatting.RewriteError( 'Bug in Python formatter? Even "safe" formatting of Python template ' 'produced an incorrect and different AST, so it must be discarded: ' ' template=%r, substitute(matches for %r) -> %r' % (self.template, stringified_matches, replacement )) for k, bound in m.bindings.items(): v = bound.value if not matchers[k].match( matcher.MatchContext(parsed_template), v.matched): raise formatting.RewriteError( 'Bug in Python formatter? Even "safe" formatting of Python template' ' produced an incorrect and different AST, so it must be discarded ' '[variable %s=%r was corrupted -- %r]: ' 'template=%r, substitute(matches for %r) -> %r' % (k, matchers[k], v, self.template, stringified_matches, replacement)) # The preliminaries are done: safe templating worked, and all that's left is # to try to make the substitutions less over-parenthesized. candidate_matcher = syntax_matchers.ast_matchers_matcher( parsed_template.tree) for k, unparenthesized in unparenthesized_mapping.items(): parenthesized = safe_mapping[k] safe_mapping[k] = unparenthesized try: alt_replacement = self._lexical_template.substitute(safe_mapping) alt_parsed = matcher.parse_ast( alt_replacement, '<_BasePythonTemplate alternate proposal>') except matcher.ParseError as e: pass else: if candidate_matcher.match( matcher.MatchContext(alt_parsed), alt_parsed.tree): replacement = alt_replacement continue # if we made it this far, the replacement was not a success. safe_mapping[k] = parenthesized return replacement, safe_mapping @cached_property.cached_property def variables(self): return self._lexical_template.variables def _matchers_for_matches(matches): """Returns AST matchers for all expressions in `matches`. Args: matches: A mapping of variable name -> match Returns: A mapping of <variable name> -> <matcher that must match>. Only variables that can be parenthesized are in this mapping, and the matcher must match where those variables are substituted in. """ matchers = {} for k, v in matches.items(): if (isinstance(v, matcher.LexicalASTMatch) and isinstance(v.matched, ast.expr)): matchers[k] = syntax_matchers.ast_matchers_matcher(v.matched) else: # as a fallback, treat it as a black box, and assume that the rest of the # expression will catch things. matchers[k] = base_matchers.Anything() return matchers class PythonTemplate(_BasePythonTemplate): _pattern_factory = syntax_matchers.ModulePattern class PythonExprTemplate(_BasePythonTemplate): """A template for a Python expression.""" @staticmethod def _pattern_factory(pattern): return ast_matchers.Module( body=base_matchers.ItemsAre( [ast_matchers.Expr(value=syntax_matchers.ExprPattern(pattern))])) class PythonStmtTemplate(_BasePythonTemplate): """A template for a single Python statement.""" @staticmethod def _pattern_factory(pattern): return ast_matchers.Module( body=base_matchers.ItemsAre([syntax_matchers.StmtPattern(pattern)]))
2.21875
2
core/polyaxon/polyboard/processors/logs_processor.py
admariner/polyaxon
3,200
12784338
<filename>core/polyaxon/polyboard/processors/logs_processor.py # !/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from polyaxon.polyboard.logging.handler import PolyaxonHandler EXCLUDE_DEFAULT_LOGGERS = ("polyaxon.client", "polyaxon.cli") def setup_logging(add_logs, exclude=EXCLUDE_DEFAULT_LOGGERS): plx_logger = logging.getLogger() plx_logger.setLevel(logging.INFO) if logging.StreamHandler not in map(type, plx_logger.handlers): plx_logger.addHandler(logging.StreamHandler()) plx_logger.propagate = False if PolyaxonHandler in map(type, plx_logger.handlers): for handler in plx_logger.handlers: if isinstance(handler, PolyaxonHandler): handler.set_add_logs(add_logs=add_logs) else: handler = PolyaxonHandler(add_logs=add_logs) plx_logger.addHandler(handler) for logger_name in exclude: plx_logger = logging.getLogger(logger_name) if logging.StreamHandler not in map(type, plx_logger.handlers): plx_logger.addHandler(logging.StreamHandler()) plx_logger.propagate = False
1.914063
2
opt/lib/local_lib_color.py
MeF0504/basic_setup
4
12784339
<gh_stars>1-10 #! /usr/bin/env python3 from __future__ import print_function BG = {'k':'\033[40m','w':'\033[47m','r':'\033[41m','g':'\033[42m','b':'\033[44m','m':'\033[45m','c':'\033[46m','y':'\033[43m'} FG = {'k':'\033[30m','w':'\033[37m','r':'\033[31m','g':'\033[32m','b':'\033[34m','m':'\033[35m','c':'\033[36m','y':'\033[33m'} END = '\033[0m' def BG256(n): if (0 <= n < 256): return '\033[48;5;%dm' % n else: return '' def FG256(n): if (0 <= n < 256): return '\033[38;5;%dm' % n else: return '' # for vim color test def isdark(r,g,b): # cond = (r+g+b<7) and (max([r,g,b])<4) # cond = (r**2+g**2+b**2 < 5**2) # if r < 4: # cond = (g==0 or g*g+b*b < 3**2) # cond = (g<3 and g+b < 6) # else: # cond = g*g+b*b < (7-r)**2 w_r, w_g, w_b = (0.299,0.587,0.114) cond = (r*w_r+g*w_g+b*w_b)/(w_r+w_g+w_b) < 2.1 w_r_old, w_g_old, w_b_old = (0.299,0.587,0.114) cond_old = (r*w_r+g*w_g+b*w_b)/(w_r+w_g+w_b) < 2.1 return cond, cond_old col_list = None def convert_color_name(color_name, color_type, verbose=False): if color_type not in ['256', 'full']: if verbose: print('incorrect color type ({}).'.format(color_type)) print('selectable type: "256" or "full". return None.') return None global col_list if col_list is None: col_list = { \ "black" : {'256':0 , 'full': '#000000'}, \ "maroon" : {'256':1 , 'full': '#800000'}, \ "green" : {'256':2 , 'full': '#008000'}, \ "olive" : {'256':3 , 'full': '#808000'}, \ "navy" : {'256':4 , 'full': '#000080'}, \ "purple" : {'256':5 , 'full': '#800080'}, \ "teal" : {'256':6 , 'full': '#008080'}, \ "silver" : {'256':7 , 'full': '#c0c0c0'}, \ "gray" : {'256':8 , 'full': '#808080'}, \ "grey" : {'256':8 , 'full': '#808080'}, \ "red" : {'256':9 , 'full': '#ff0000'}, \ "lime" : {'256':10 , 'full': '#00ff00'}, \ "yellow" : {'256':11 , 'full': '#ffff00'}, \ "blue" : {'256':12 , 'full': '#0000ff'}, \ "fuchsia" : {'256':13 , 'full': '#ff00ff'}, \ "aqua" : {'256':14 , 'full': '#00ffff'}, \ "white" : {'256':15 , 'full': '#ffffff'}, \ "gray0" : {'256':16 , 'full': '#000000'}, \ "grey0" : {'256':16 , 'full': '#000000'}, \ "navyblue" : {'256':17 , 'full': '#00005f'}, \ "darkblue" : {'256':18 , 'full': '#000087'}, \ "blue3" : {'256':19 , 'full': '#0000af'}, \ "blue3" : {'256':20 , 'full': '#0000d7'}, \ "blue1" : {'256':21 , 'full': '#0000ff'}, \ "darkgreen" : {'256':22 , 'full': '#005f00'}, \ "deepskyblue4" : {'256':23 , 'full': '#005f5f'}, \ "deepskyblue4" : {'256':24 , 'full': '#005f87'}, \ "deepskyblue4" : {'256':25 , 'full': '#005faf'}, \ "dodgerblue3" : {'256':26 , 'full': '#005fd7'}, \ "dodgerblue2" : {'256':27 , 'full': '#005fff'}, \ "green4" : {'256':28 , 'full': '#008700'}, \ "springgreen4" : {'256':29 , 'full': '#00875f'}, \ "turquoise4" : {'256':30 , 'full': '#008787'}, \ "deepskyblue3" : {'256':31 , 'full': '#0087af'}, \ "deepskyblue3" : {'256':32 , 'full': '#0087d7'}, \ "dodgerblue1" : {'256':33 , 'full': '#0087ff'}, \ "green3" : {'256':34 , 'full': '#00af00'}, \ "springgreen3" : {'256':35 , 'full': '#00af5f'}, \ "darkcyan" : {'256':36 , 'full': '#00af87'}, \ "lightseagreen" : {'256':37 , 'full': '#00afaf'}, \ "deepskyblue2" : {'256':38 , 'full': '#00afd7'}, \ "deepskyblue1" : {'256':39 , 'full': '#00afff'}, \ "green3" : {'256':40 , 'full': '#00d700'}, \ "springgreen3" : {'256':41 , 'full': '#00d75f'}, \ "springgreen2" : {'256':42 , 'full': '#00d787'}, \ "cyan3" : {'256':43 , 'full': '#00d7af'}, \ "darkturquoise" : {'256':44 , 'full': '#00d7d7'}, \ "turquoise2" : {'256':45 , 'full': '#00d7ff'}, \ "green1" : {'256':46 , 'full': '#00ff00'}, \ "springgreen2" : {'256':47 , 'full': '#00ff5f'}, \ "springgreen1" : {'256':48 , 'full': '#00ff87'}, \ "mediumspringgreen" : {'256':49 , 'full': '#00ffaf'}, \ "cyan2" : {'256':50 , 'full': '#00ffd7'}, \ "cyan1" : {'256':51 , 'full': '#00ffff'}, \ "darkred" : {'256':52 , 'full': '#5f0000'}, \ "deeppink4" : {'256':53 , 'full': '#5f005f'}, \ "purple4" : {'256':54 , 'full': '#5f0087'}, \ "purple4" : {'256':55 , 'full': '#5f00af'}, \ "purple3" : {'256':56 , 'full': '#5f00d7'}, \ "blueviolet" : {'256':57 , 'full': '#5f00ff'}, \ "orange4" : {'256':58 , 'full': '#5f5f00'}, \ "gray37" : {'256':59 , 'full': '#5f5f5f'}, \ "grey37" : {'256':59 , 'full': '#5f5f5f'}, \ "mediumpurple4" : {'256':60 , 'full': '#5f5f87'}, \ "slateblue3" : {'256':61 , 'full': '#5f5faf'}, \ "slateblue3" : {'256':62 , 'full': '#5f5fd7'}, \ "royalblue1" : {'256':63 , 'full': '#5f5fff'}, \ "chartreuse4" : {'256':64 , 'full': '#5f8700'}, \ "darkseagreen4" : {'256':65 , 'full': '#5f875f'}, \ "paleturquoise4" : {'256':66 , 'full': '#5f8787'}, \ "steelblue" : {'256':67 , 'full': '#5f87af'}, \ "steelblue3" : {'256':68 , 'full': '#5f87d7'}, \ "cornflowerblue" : {'256':69 , 'full': '#5f87ff'}, \ "chartreuse3" : {'256':70 , 'full': '#5faf00'}, \ "darkseagreen4" : {'256':71 , 'full': '#5faf5f'}, \ "cadetblue" : {'256':72 , 'full': '#5faf87'}, \ "cadetblue" : {'256':73 , 'full': '#5fafaf'}, \ "skyblue3" : {'256':74 , 'full': '#5fafd7'}, \ "steelblue1" : {'256':75 , 'full': '#5fafff'}, \ "chartreuse3" : {'256':76 , 'full': '#5fd700'}, \ "palegreen3" : {'256':77 , 'full': '#5fd75f'}, \ "seagreen3" : {'256':78 , 'full': '#5fd787'}, \ "aquamarine3" : {'256':79 , 'full': '#5fd7af'}, \ "mediumturquoise" : {'256':80 , 'full': '#5fd7d7'}, \ "steelblue1" : {'256':81 , 'full': '#5fd7ff'}, \ "chartreuse2" : {'256':82 , 'full': '#5fff00'}, \ "seagreen2" : {'256':83 , 'full': '#5fff5f'}, \ "seagreen1" : {'256':84 , 'full': '#5fff87'}, \ "seagreen1" : {'256':85 , 'full': '#5fffaf'}, \ "aquamarine1" : {'256':86 , 'full': '#5fffd7'}, \ "darkslategray2" : {'256':87 , 'full': '#5fffff'}, \ "darkslategrey2" : {'256':87 , 'full': '#5fffff'}, \ "darkred" : {'256':88 , 'full': '#870000'}, \ "deeppink4" : {'256':89 , 'full': '#87005f'}, \ "darkmagenta" : {'256':90 , 'full': '#870087'}, \ "darkmagenta" : {'256':91 , 'full': '#8700af'}, \ "darkviolet" : {'256':92 , 'full': '#8700d7'}, \ "purple" : {'256':93 , 'full': '#8700ff'}, \ "orange4" : {'256':94 , 'full': '#875f00'}, \ "lightpink4" : {'256':95 , 'full': '#875f5f'}, \ "plum4" : {'256':96 , 'full': '#875f87'}, \ "mediumpurple3" : {'256':97 , 'full': '#875faf'}, \ "mediumpurple3" : {'256':98 , 'full': '#875fd7'}, \ "slateblue1" : {'256':99 , 'full': '#875fff'}, \ "yellow4" : {'256':100 , 'full': '#878700'}, \ "wheat4" : {'256':101 , 'full': '#87875f'}, \ "gray53" : {'256':102 , 'full': '#878787'}, \ "grey53" : {'256':102 , 'full': '#878787'}, \ "lightslategray" : {'256':103 , 'full': '#8787af'}, \ "lightslategrey" : {'256':103 , 'full': '#8787af'}, \ "mediumpurple" : {'256':104 , 'full': '#8787d7'}, \ "lightslateblue" : {'256':105 , 'full': '#8787ff'}, \ "yellow4" : {'256':106 , 'full': '#87af00'}, \ "darkolivegreen3" : {'256':107 , 'full': '#87af5f'}, \ "darkseagreen" : {'256':108 , 'full': '#87af87'}, \ "lightskyblue3" : {'256':109 , 'full': '#87afaf'}, \ "lightskyblue3" : {'256':110 , 'full': '#87afd7'}, \ "skyblue2" : {'256':111 , 'full': '#87afff'}, \ "chartreuse2" : {'256':112 , 'full': '#87d700'}, \ "darkolivegreen3" : {'256':113 , 'full': '#87d75f'}, \ "palegreen3" : {'256':114 , 'full': '#87d787'}, \ "darkseagreen3" : {'256':115 , 'full': '#87d7af'}, \ "darkslategray3" : {'256':116 , 'full': '#87d7d7'}, \ "darkslategrey3" : {'256':116 , 'full': '#87d7d7'}, \ "skyblue1" : {'256':117 , 'full': '#87d7ff'}, \ "chartreuse1" : {'256':118 , 'full': '#87ff00'}, \ "lightgreen" : {'256':119 , 'full': '#87ff5f'}, \ "lightgreen" : {'256':120 , 'full': '#87ff87'}, \ "palegreen1" : {'256':121 , 'full': '#87ffaf'}, \ "aquamarine1" : {'256':122 , 'full': '#87ffd7'}, \ "darkslategray1" : {'256':123 , 'full': '#87ffff'}, \ "darkslategrey1" : {'256':123 , 'full': '#87ffff'}, \ "red3" : {'256':124 , 'full': '#af0000'}, \ "deeppink4" : {'256':125 , 'full': '#af005f'}, \ "mediumvioletred" : {'256':126 , 'full': '#af0087'}, \ "magenta3" : {'256':127 , 'full': '#af00af'}, \ "darkviolet" : {'256':128 , 'full': '#af00d7'}, \ "purple" : {'256':129 , 'full': '#af00ff'}, \ "darkorange3" : {'256':130 , 'full': '#af5f00'}, \ "indianred" : {'256':131 , 'full': '#af5f5f'}, \ "hotpink3" : {'256':132 , 'full': '#af5f87'}, \ "mediumorchid3" : {'256':133 , 'full': '#af5faf'}, \ "mediumorchid" : {'256':134 , 'full': '#af5fd7'}, \ "mediumpurple2" : {'256':135 , 'full': '#af5fff'}, \ "darkgoldenrod" : {'256':136 , 'full': '#af8700'}, \ "lightsalmon3" : {'256':137 , 'full': '#af875f'}, \ "rosybrown" : {'256':138 , 'full': '#af8787'}, \ "gray63" : {'256':139 , 'full': '#af87af'}, \ "grey63" : {'256':139 , 'full': '#af87af'}, \ "mediumpurple2" : {'256':140 , 'full': '#af87d7'}, \ "mediumpurple1" : {'256':141 , 'full': '#af87ff'}, \ "gold3" : {'256':142 , 'full': '#afaf00'}, \ "darkkhaki" : {'256':143 , 'full': '#afaf5f'}, \ "navajowhite3" : {'256':144 , 'full': '#afaf87'}, \ "gray69" : {'256':145 , 'full': '#afafaf'}, \ "grey69" : {'256':145 , 'full': '#afafaf'}, \ "lightsteelblue3" : {'256':146 , 'full': '#afafd7'}, \ "lightsteelblue" : {'256':147 , 'full': '#afafff'}, \ "yellow3" : {'256':148 , 'full': '#afd700'}, \ "darkolivegreen3" : {'256':149 , 'full': '#afd75f'}, \ "darkseagreen3" : {'256':150 , 'full': '#afd787'}, \ "darkseagreen2" : {'256':151 , 'full': '#afd7af'}, \ "lightcyan3" : {'256':152 , 'full': '#afd7d7'}, \ "lightskyblue1" : {'256':153 , 'full': '#afd7ff'}, \ "greenyellow" : {'256':154 , 'full': '#afff00'}, \ "darkolivegreen2" : {'256':155 , 'full': '#afff5f'}, \ "palegreen1" : {'256':156 , 'full': '#afff87'}, \ "darkseagreen2" : {'256':157 , 'full': '#afffaf'}, \ "darkseagreen1" : {'256':158 , 'full': '#afffd7'}, \ "paleturquoise1" : {'256':159 , 'full': '#afffff'}, \ "red3" : {'256':160 , 'full': '#d70000'}, \ "deeppink3" : {'256':161 , 'full': '#d7005f'}, \ "deeppink3" : {'256':162 , 'full': '#d70087'}, \ "magenta3" : {'256':163 , 'full': '#d700af'}, \ "magenta3" : {'256':164 , 'full': '#d700d7'}, \ "magenta2" : {'256':165 , 'full': '#d700ff'}, \ "darkorange3" : {'256':166 , 'full': '#d75f00'}, \ "indianred" : {'256':167 , 'full': '#d75f5f'}, \ "hotpink3" : {'256':168 , 'full': '#d75f87'}, \ "hotpink2" : {'256':169 , 'full': '#d75faf'}, \ "orchid" : {'256':170 , 'full': '#d75fd7'}, \ "mediumorchid1" : {'256':171 , 'full': '#d75fff'}, \ "orange3" : {'256':172 , 'full': '#d78700'}, \ "lightsalmon3" : {'256':173 , 'full': '#d7875f'}, \ "lightpink3" : {'256':174 , 'full': '#d78787'}, \ "pink3" : {'256':175 , 'full': '#d787af'}, \ "plum3" : {'256':176 , 'full': '#d787d7'}, \ "violet" : {'256':177 , 'full': '#d787ff'}, \ "gold3" : {'256':178 , 'full': '#d7af00'}, \ "lightgoldenrod3" : {'256':179 , 'full': '#d7af5f'}, \ "tan" : {'256':180 , 'full': '#d7af87'}, \ "mistyrose3" : {'256':181 , 'full': '#d7afaf'}, \ "thistle3" : {'256':182 , 'full': '#d7afd7'}, \ "plum2" : {'256':183 , 'full': '#d7afff'}, \ "yellow3" : {'256':184 , 'full': '#d7d700'}, \ "khaki3" : {'256':185 , 'full': '#d7d75f'}, \ "lightgoldenrod2" : {'256':186 , 'full': '#d7d787'}, \ "lightyellow3" : {'256':187 , 'full': '#d7d7af'}, \ "gray84" : {'256':188 , 'full': '#d7d7d7'}, \ "grey84" : {'256':188 , 'full': '#d7d7d7'}, \ "lightsteelblue1" : {'256':189 , 'full': '#d7d7ff'}, \ "yellow2" : {'256':190 , 'full': '#d7ff00'}, \ "darkolivegreen1" : {'256':191 , 'full': '#d7ff5f'}, \ "darkolivegreen1" : {'256':192 , 'full': '#d7ff87'}, \ "darkseagreen1" : {'256':193 , 'full': '#d7ffaf'}, \ "honeydew2" : {'256':194 , 'full': '#d7ffd7'}, \ "lightcyan1" : {'256':195 , 'full': '#d7ffff'}, \ "red1" : {'256':196 , 'full': '#ff0000'}, \ "deeppink2" : {'256':197 , 'full': '#ff005f'}, \ "deeppink1" : {'256':198 , 'full': '#ff0087'}, \ "deeppink1" : {'256':199 , 'full': '#ff00af'}, \ "magenta2" : {'256':200 , 'full': '#ff00d7'}, \ "magenta1" : {'256':201 , 'full': '#ff00ff'}, \ "orangered1" : {'256':202 , 'full': '#ff5f00'}, \ "indianred1" : {'256':203 , 'full': '#ff5f5f'}, \ "indianred1" : {'256':204 , 'full': '#ff5f87'}, \ "hotpink" : {'256':205 , 'full': '#ff5faf'}, \ "hotpink" : {'256':206 , 'full': '#ff5fd7'}, \ "mediumorchid1" : {'256':207 , 'full': '#ff5fff'}, \ "darkorange" : {'256':208 , 'full': '#ff8700'}, \ "salmon1" : {'256':209 , 'full': '#ff875f'}, \ "lightcoral" : {'256':210 , 'full': '#ff8787'}, \ "palevioletred1" : {'256':211 , 'full': '#ff87af'}, \ "orchid2" : {'256':212 , 'full': '#ff87d7'}, \ "orchid1" : {'256':213 , 'full': '#ff87ff'}, \ "orange1" : {'256':214 , 'full': '#ffaf00'}, \ "sandybrown" : {'256':215 , 'full': '#ffaf5f'}, \ "lightsalmon1" : {'256':216 , 'full': '#ffaf87'}, \ "lightpink1" : {'256':217 , 'full': '#ffafaf'}, \ "pink1" : {'256':218 , 'full': '#ffafd7'}, \ "plum1" : {'256':219 , 'full': '#ffafff'}, \ "gold1" : {'256':220 , 'full': '#ffd700'}, \ "lightgoldenrod2" : {'256':221 , 'full': '#ffd75f'}, \ "lightgoldenrod2" : {'256':222 , 'full': '#ffd787'}, \ "navajowhite1" : {'256':223 , 'full': '#ffd7af'}, \ "mistyrose1" : {'256':224 , 'full': '#ffd7d7'}, \ "thistle1" : {'256':225 , 'full': '#ffd7ff'}, \ "yellow1" : {'256':226 , 'full': '#ffff00'}, \ "lightgoldenrod1" : {'256':227 , 'full': '#ffff5f'}, \ "khaki1" : {'256':228 , 'full': '#ffff87'}, \ "wheat1" : {'256':229 , 'full': '#ffffaf'}, \ "cornsilk1" : {'256':230 , 'full': '#ffffd7'}, \ "gray100" : {'256':231 , 'full': '#ffffff'}, \ "grey100" : {'256':231 , 'full': '#ffffff'}, \ "gray3" : {'256':232 , 'full': '#080808'}, \ "grey3" : {'256':232 , 'full': '#080808'}, \ "gray7" : {'256':233 , 'full': '#121212'}, \ "grey7" : {'256':233 , 'full': '#121212'}, \ "gray11" : {'256':234 , 'full': '#1c1c1c'}, \ "grey11" : {'256':234 , 'full': '#1c1c1c'}, \ "gray15" : {'256':235 , 'full': '#262626'}, \ "grey15" : {'256':235 , 'full': '#262626'}, \ "gray19" : {'256':236 , 'full': '#303030'}, \ "grey19" : {'256':236 , 'full': '#303030'}, \ "gray23" : {'256':237 , 'full': '#3a3a3a'}, \ "grey23" : {'256':237 , 'full': '#3a3a3a'}, \ "gray27" : {'256':238 , 'full': '#444444'}, \ "grey27" : {'256':238 , 'full': '#444444'}, \ "gray30" : {'256':239 , 'full': '#4e4e4e'}, \ "grey30" : {'256':239 , 'full': '#4e4e4e'}, \ "gray35" : {'256':240 , 'full': '#585858'}, \ "grey35" : {'256':240 , 'full': '#585858'}, \ "gray39" : {'256':241 , 'full': '#626262'}, \ "grey39" : {'256':241 , 'full': '#626262'}, \ "gray42" : {'256':242 , 'full': '#6c6c6c'}, \ "grey42" : {'256':242 , 'full': '#6c6c6c'}, \ "gray46" : {'256':243 , 'full': '#767676'}, \ "grey46" : {'256':243 , 'full': '#767676'}, \ "gray50" : {'256':244 , 'full': '#808080'}, \ "grey50" : {'256':244 , 'full': '#808080'}, \ "gray54" : {'256':245 , 'full': '#8a8a8a'}, \ "grey54" : {'256':245 , 'full': '#8a8a8a'}, \ "gray58" : {'256':246 , 'full': '#949494'}, \ "grey58" : {'256':246 , 'full': '#949494'}, \ "gray62" : {'256':247 , 'full': '#9e9e9e'}, \ "grey62" : {'256':247 , 'full': '#9e9e9e'}, \ "gray66" : {'256':248 , 'full': '#a8a8a8'}, \ "grey66" : {'256':248 , 'full': '#a8a8a8'}, \ "gray70" : {'256':249 , 'full': '#b2b2b2'}, \ "grey70" : {'256':249 , 'full': '#b2b2b2'}, \ "gray74" : {'256':250 , 'full': '#bcbcbc'}, \ "grey74" : {'256':250 , 'full': '#bcbcbc'}, \ "gray78" : {'256':251 , 'full': '#c6c6c6'}, \ "grey78" : {'256':251 , 'full': '#c6c6c6'}, \ "gray82" : {'256':252 , 'full': '#d0d0d0'}, \ "grey82" : {'256':252 , 'full': '#d0d0d0'}, \ "gray85" : {'256':253 , 'full': '#dadada'}, \ "grey85" : {'256':253 , 'full': '#dadada'}, \ "gray89" : {'256':254 , 'full': '#e4e4e4'}, \ "grey89" : {'256':254 , 'full': '#e4e4e4'}, \ "gray93" : {'256':255 , 'full': '#eeeeee'}, \ "grey93" : {'256':255 , 'full': '#eeeeee'}, \ } try: import matplotlib.colors as mcolors named_colors = mcolors.get_named_colors_mapping() col_list.update(named_colors) except ImportError as e: if verbose: print('matplotlib is not imported.') for i in range(101): if 'gray{:d}'.format(i) in col_list: continue gray_level = int(255*i/100+0.5) col_list['gray{:d}'.format(i)] = {'256':None, 'full': '#{:02x}{:02x}{:02x}'.format(gray_level, gray_level, gray_level)} col_list['grey{:d}'.format(i)] = {'256':None, 'full': '#{:02x}{:02x}{:02x}'.format(gray_level, gray_level, gray_level)} # print(col_list) if not color_name in col_list: if verbose: print('no match color name {} found. return None.'.format(color_name)) return None else: col = col_list[color_name] if type(col) == dict: return col[color_type] elif type(col) == str: if color_type == 'full': return col_list[color_name] elif color_type == '256': r = int(col[1:3], 16) g = int(col[3:5], 16) b = int(col[5:7], 16) return convert_fullcolor_to_256(r, g, b) else: r, g, b = col if color_type == 'full': return '#{:02x}{:02x}{:02x}'.format(int(255*r), int(255*g), int(255*b)) elif color_type == '256': r = int(r*255) g = int(g*255) b = int(b*255) return convert_fullcolor_to_256(r, g, b) def convert_256_to_fullcolor(color_index): if color_index < 16: color_list = [ \ '#000000', \ '#800000', \ '#008000', \ '#808000', \ '#000080', \ '#800080', \ '#008080', \ '#c0c0c0', \ '#808080', \ '#ff0000', \ '#00ff00', \ '#ffff00', \ '#0000ff', \ '#ff00ff', \ '#00ffff', \ '#ffffff', \ ] return color_list[color_index] elif color_index < 232: r_index = int((color_index-16)/36) g_index = int((color_index-16-36*r_index)/6) b_index = int( color_index-16-36*r_index-6*g_index) print('r:{}, g:{}, b:{}'.format(r_index, g_index, b_index)) return '#{:02x}{:02x}{:02x}'.format(55+40*r_index, 55+40*g_index, 55+40*b_index) elif color_index < 256: gray_level = 8*10*(color_index-232) return '#{:02x}{:02x}{:02x}'.format(gray_level, gray_level, gray_level) def convert_fullcolor_to_256(r, g, b): r_index = int((r-55)/40+0.5) if r_index < 0: r_index = 0 g_index = int((g-55)/40+0.5) if g_index < 0: g_index = 0 b_index = int((b-55)/40+0.5) if b_index < 0: b_index = 0 return 36*r_index+6*g_index+b_index+16 def main_test(num): print('system colors') for i in range(8): if num == 1: if i%2 == 0: # even tmp_st = '{}{:02x}{}'.format(FG['w'], i, END) else: # odd tmp_st = '{}{:02x}{}'.format(FG['k'], i, END) else: tmp_st = ' ' print('{}{}{}'.format(BG256(i), tmp_st, END), end='') print() for i in range(8,16): if num == 1: if i%2 == 0: # even tmp_st = '{}{:02x}{}'.format(FG['w'], i, END) else: # odd tmp_st = '{}{:02x}{}'.format(FG['k'], i, END) else: tmp_st = ' ' print('{}{}{}'.format(BG256(i), tmp_st, END), end='') print('\n') print('6x6x6 color blocks') for g in range(6): for r in range(6): for b in range(6): i = 36*r+6*g+b+16 if num == 0: tmp_st = ' ' elif num == 1: if i%2 == 0: # even tmp_st = '{}{:02x}{}'.format(FG['w'], i, END) else: # odd tmp_st = '{}{:02x}{}'.format(FG['k'], i, END) else: # tmp_st = '{}{:02x}{}'.format(FG256(36*((r+3)%6)+6*((g+3)%6)+(b+3)%6+16), i, END) dark_new, dark_old = isdark(r, g, b) if dark_new: tmp_st = '{}{:02x}{}'.format(FG256(255), i, END) else: tmp_st = '{}{:02x}{}'.format(FG256(234), i, END) print('{}{}{}'.format(BG256(i), tmp_st, END), end='') print(' ', end='') print() print() print('gray scales') st = 6*6*6+16 for i in range(st, 256): if num == 1: tmp_st = '{}{:02x}{}'.format(FG256(255+st-i), i, END) else: tmp_st = ' ' print('{}{}{}'.format(BG256(i), tmp_st, END), end='') print('\n') if num == 2: for r in range(6): for g in range(6): for b in range(6): i = 36*r+6*g+b+16 dark_new, dark_old = isdark(r, g, b) if dark_new != dark_old: if dark_new: fg1 = FG256(255) fg2 = FG256(234) else: fg1 = FG256(234) fg2 = FG256(255) print('{}{}{:02x}{} -> {}{}{:03d}{}'.format(BG256(i), fg2, i, END, BG256(i), fg1, i, END), end=' ') print() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--num', help='0... no fg, 1... show number, 2... is_dark', choices=[0,1,2], type=int) args = parser.parse_args() if hasattr(args, 'num') and (args.num is not None): num = args.num else: num = 0 main_test(num)
2.46875
2
wp/setup_posts.py
positiondev/offset
3
12784340
from subprocess import check_output from os import system system ("wp post delete 1") system("wp post create --post_title='A first post' --post_status=publish --post_date='2014-10-01 07:00:00' --post_content=\"This is the content\" --post_author=1") system("wp post create --post_title='A second post' --post_status=publish --post_date='2014-10-02 07:00:00' --post_content=\"This is the second post content\" --post_author=1 ") system("wp post create --post_title='A third post' --post_status=publish --post_date='2014-10-10 07:00:00' --post_content=\"This is the third post content\" --post_author=1 ") system("wp post create --post_title='A fourth post' --post_status=publish --post_date='2014-10-15 07:00:00' --post_content=\"This is the fourth post content\" --post_author=1 ") system("wp post create --post_title='A sports post' --post_status=publish --post_date='2014-10-20 07:00:00' --post_content=\"This is the sports post content\" --post_author=1") system("wp post create --post_type=page --post_title='A first page' --post_status=publish --post_date='2014-10-15 07:00:00' --post_content=\"This is the first page content\" --post_author=1") system("wp option update permalink_structure '/%year%/%monthnum%/%postname%/' ") system("wp plugin activate --all") system("wp user update 1 --display_name='<NAME>' --first_name='Ira' --last_name='Rubel' ") system("wp eval-file create_password.php") (p5, p4, p3, p2, p1) = check_output(["wp","post","list","--field=ID"]).split() system("wp post term add %s post_tag tag1" % p1) system("wp post term add %s post_tag tag1" % p2) system("wp post term add %s post_tag tag2" % p2) system("wp post term add %s post_tag tag1" % p3) system("wp post term add %s category cat1" % p1) system("wp post term add %s departments sports" % p5)
2.375
2
xmeos/models/old/master_orig.py
aswolf/xmeos
1
12784341
import numpy as np import scipy as sp from abc import ABCMeta, abstractmethod from scipy import integrate import scipy.interpolate as interpolate import matplotlib.pyplot as plt #==================================================================== # xmeos: Xtal-Melt Equation of State package # models - library of equation of state models #==================================================================== #==================================================================== # SECT 0: Admin functions #==================================================================== class Control(object): @classmethod def init_consts( cls, eos_d ): eos_d['const_d'] = cls.default_consts() pass @classmethod def default_consts(cls): const_d = {} const_d['eVperHa'] = 27.211 # eV/Ha const_d['JperHa'] = 4.35974434e-18 # J/Ha const_d['JperCal'] = 4.184 # J/Cal const_d['Nmol'] = 6.0221413e+23 # atoms/mol const_d['kJ_molpereV'] = 96.49 # kJ/mol/eV const_d['R'] = 8.314462 # J/K/mol const_d['kboltz'] = 8.617332e-5 # eV/K const_d['ang3percc'] = 1e24 # ang^3/cm^3 const_d['PV_ratio'] = 160.2176487 # (GPa*ang^3)/eV const_d['TS_ratio'] = const_d['R']/const_d['kboltz'] # (J/mol)/eV return const_d @classmethod def set_consts( cls, name_l, val_l, eos_d ): if 'const_d' in eos_d.keys(): const_d = eos_d['const_d'] else: cls.init_consts( eos_d ) for name, val in zip( name_l, val_l ): const_d[name] = val pass @classmethod def get_consts( cls, name_l, eos_d ): """ Retrieve list of desired consts stored in eos_d['const_d'] """ const_d = eos_d['const_d'] const_l = [] for name in name_l: const_l.append( const_d[name] ) return tuple( const_l ) @classmethod def set_params( cls, name_l, val_l, eos_d ): if 'param_d' in eos_d.keys(): param_d = eos_d['param_d'] else: param_d = {} eos_d['param_d'] = param_d for name, val in zip( name_l, val_l ): param_d[name] = val pass @classmethod def get_params( cls, name_l, eos_d ): """ Retrieve list of desired params stored in eos_d['param_d'] """ param_d = eos_d['param_d'] param_l = [] for name in name_l: param_l.append( param_d[name] ) return tuple( param_l ) @classmethod def swap_params( cls, name_l, eos_d ): """ Retrieve list of desired params stored in eos_d['param_d'] """ # Use shallow copy to avoid unneeded duplication eos_swap_d = copy.copy( eos_d ) # Use deep copy on params to ensure swap without affecting original param_swap_d = copy.deepcopy(eos_d['param_d']) eos_swap_d['param_d'] = param_swap_d cls.set_params( name_l, eos_swap_d ) return eos_swap_d @classmethod def set_array_params( cls, basename, param_arr_a, eos_d ): name_l = [] for i in range(len(param_arr_a)): iname = basename+'_'+np.str(i) name_l.append(iname) cls.set_params(name_l, param_arr_a, eos_d) @classmethod def get_array_params( cls, basename, eos_d ): param_d = eos_d['param_d'] paramkeys_a = np.array(param_d.keys()) baselen = len(basename+'_') mask = np.array([key.startswith(basename+'_') for key in paramkeys_a]) arrindlist = [] vallist = [] for key in paramkeys_a[mask]: idstr = key[baselen:] try: idnum = np.array(idstr).astype(np.float) assert np.equal(np.mod(idnum,1),0), \ 'Parameter keys that are part of a parameter array must '+\ 'have form "basename_???" where ??? are integers.' idnum = idnum.astype(np.int) except: assert False, 'That basename does not correspond to any valid parameter arrays stored in eos_d' arrindlist.append(idnum) vallist.append(param_d[key]) arrind_a = np.array(arrindlist) val_a = np.array(vallist) if arrind_a.size==0: return np.array([]) else: indmax = np.max(arrind_a) param_arr = np.zeros(indmax+1) for arrind, val in zip(arrind_a,val_a): param_arr[arrind] = val return param_arr @classmethod def set_modtypes( cls, name_l, val_l, eos_d ): if 'modtype_d' in eos_d.keys(): modtype_d = eos_d['modtype_d'] else: modtype_d = {} eos_d['modtype_d'] = modtype_d # Should we verify match? for name, val in zip( name_l, val_l ): if globals().has_key(name): # modtype = globals()[name] # modtype_d[name] = modtype() modtype_d[name] = val else: print name + " is not a valid modtype object" pass @classmethod def get_modtypes( cls, name_l, eos_d ): """ Retrieve list of desired model types stored in eos_d['modtype_d'] """ modtype_d = eos_d['modtype_d'] modtype_l = [] for name in name_l: modtype_l.append( modtype_d[name] ) return tuple( modtype_l ) @classmethod def set_args( cls, name_l, val_l, eos_d ): if 'arg_d' in eos_d.keys(): arg_d = eos_d['arg_d'] else: arg_d = {} eos_d['arg_d'] = arg_d for name, val in zip( name_l, val_l ): arg_d[name] = val pass #==================================================================== #==================================================================== # SECT 1: Fitting Routines #==================================================================== class ModFit(object): def __init__( self ): pass def get_resid_fun( self, eos_fun, eos_d, param_key_a, sys_state_tup, val_a, err_a=1.0): # def resid_fun( param_in_a, eos_fun=eos_fun, eos_d=eos_d, # param_key_a=param_key_a, sys_state_tup=sys_state_tup, # val_a=val_a, err_a=err_a ): # # Don't worry about transformations right now # param_a = param_in_a # # set param value in eos_d dict # globals()['set_param']( param_key_a, param_a, eos_d ) # # Take advantage of eos model function input format # # uses tuple expansion for input arguments # mod_val_a = eos_fun( *(sys_state_tup+(eos_d,)) ) # resid_a = (mod_val_a - val_a)/err_a # return resid_a wrap_eos_fun = self.get_wrap_eos_fun( eos_fun, eos_d, param_key_a ) def resid_fun( param_in_a, wrap_eos_fun=wrap_eos_fun, sys_state_tup=sys_state_tup, val_a=val_a, err_a=err_a ): mod_val_a = wrap_eos_fun( param_in_a, sys_state_tup ) resid_a = (mod_val_a - val_a)/err_a return resid_a return resid_fun def get_wrap_eos_fun( self, eos_fun, eos_d, param_key_a ): def wrap_eos_fun(param_in_a, sys_state_tup, eos_fun=eos_fun, eos_d=eos_d, param_key_a=param_key_a ): # Don't worry about transformations right now param_a = param_in_a # set param value in eos_d dict Control.set_params( param_key_a, param_a, eos_d ) # Take advantage of eos model function input format # uses tuple expansion for input arguments mod_val_a = eos_fun( *(sys_state_tup+(eos_d,)) ) return mod_val_a return wrap_eos_fun #==================================================================== # SECT N: Code Utility Functions #==================================================================== def fill_array( var1, var2 ): """ fix fill_array such that it returns two numpy arrays of equal size use numpy.full_like """ var1_a = np.asarray( var1 ) var2_a = np.asarray( var2 ) if var1_a.shape==(): var1_a = np.asarray( [var1] ) if var2_a.shape==(): var2_a = np.asarray( [var2] ) # Begin try/except block to handle all cases for filling an array while True: try: assert var1_a.shape == var2_a.shape break except: pass try: var1_a = np.full_like( var2_a, var1_a ) break except: pass try: var2_a = np.full_like( var1_a, var2_a ) break except: pass # If none of the cases properly handle it, throw error assert False, 'var1 and var2 must both be equal shape or size=1' return var1_a, var2_a #==================================================================== #==================================================================== # SECT 3: EOS Objects #==================================================================== # 3.1: Base Clases #==================================================================== class EosMod(object): """ Abstract Equation of State Parent Base class """ __metaclass__ = ABCMeta def __init__( self ): pass def get_param_scale( self, eos_d, apply_expand_adj=True): """Return scale values for each parameter""" return self.get_param_scale_sub( eos_d ) def get_param_scale_sub( self, eos_d ): raise NotImplementedError("'get_param_scale_sub' function not implimented for this model") #==================================================================== class CompressMod(EosMod): """ Abstract Equation of State class to describe Compression Behavior generally depends on both vol and temp """ __metaclass__ = ABCMeta def press( self, V_a, T_a, eos_d ): """Returns Press behavior due to compression.""" return self.calc_press(V_a, T_a, eos_d) def vol( self, P_a, T_a, eos_d ): """Returns Vol behavior due to compression.""" return self.calc_vol(V_a, T_a, eos_d) def energy( self, V_a, T_a, eos_d ): """Returns Energy behavior due to compression.""" return self.calc_energy(V_a, T_a, eos_d) def energy_perturb( self, V_a, T_a, eos_d ): """Returns Energy pertubation basis functions resulting from fractional changes to EOS params.""" return self.calc_energy_perturb(V_a, T_a, eos_d) def bulk_mod( self, V_a, T_a, eos_d ): """Returns Bulk Modulus behavior due to compression.""" return self.calc_bulk_mod(V_a, T_a, eos_d) def bulk_mod_deriv( self, V_a, T_a, eos_d ): """Returns Bulk Modulus Deriv (K') behavior due to compression.""" return self.calc_bulk_mod_deriv(V_a, T_a, eos_d) # Standard methods must be overridden (as needed) by implimentation model def calc_press( self, V_a, T_a, eos_d ): """Calculates Press behavior due to compression.""" raise NotImplementedError("'calc_press' function not implimented for this model") def calc_vol( self, P_a, T_a, eos_d ): """Calculates Vol behavior due to compression.""" raise NotImplementedError("'calc_vol' function not implimented for this model") def calc_energy( self, V_a, T_a, eos_d ): """Calculates Energy behavior due to compression.""" raise NotImplementedError("'calc_energy' function not implimented for this model") def calc_energy_perturb( self, V_a, T_a, eos_d ): """Calculates Energy pertubation basis functions resulting from fractional changes to EOS params.""" raise NotImplementedError("'calc_energy_perturb' function not implimented for this model") def calc_bulk_mod( self, V_a, T_a, eos_d ): """Calculates Bulk Modulus behavior due to compression.""" raise NotImplementedError("'calc_bulk_mod' function not implimented for this model") def calc_bulk_mod_deriv( self, V_a, T_a, eos_d ): """Calculates Bulk Modulus Deriv (K') behavior due to compression.""" raise NotImplementedError("'calc_bulk_mod_deriv' function not implimented for this model") #==================================================================== class CompressPathMod(CompressMod): """ Abstract Equation of State class for a reference Compression Path Path can either be isothermal (T=const) or adiabatic (S=const) For this restricted path, thermodyn properties depend only on volume """ __metaclass__ = ABCMeta path_opts = ['T','S'] supress_energy = False supress_press = False def __init__( self, path_const='T', level_const=300, expand_adj_mod=None, expand_adj=None, supress_energy=False, supress_press=False ): assert path_const in self.path_opts, path_const + ' is not a valid ' + \ 'path const. You must select one of: ' + path_opts self.path_const = path_const self.level_const = level_const self.supress_energy = supress_energy self.supress_press = supress_press # Use Expansion Adjustment for negative pressure region? if expand_adj is None: self.expand_adj = False else: self.expand_adj = expand_adj if expand_adj_mod is None: self.expand_adj = False self.expand_adj_mod = None else: self.expand_adj = True self.expand_adj_mod = expand_adj_mod pass def validate_shared_param_scale( self, scale_pos_a, paramkey_pos_a, scale_neg_a, paramkey_neg_a ): TOL = 1e-4 assert np.all(np.in1d(paramkey_pos_a,paramkey_neg_a)),\ 'paramkey_neg_a must be a superset of paramkey_pos_a' assert len(paramkey_neg_a) <= len(paramkey_pos_a)+1,\ 'paramkey_neg_a must have at most one more parameter than paramkey_neg_a' # shared_mask = np.in1d(paramkey_neg_a,paramkey_pos_a) # paramkey_shared_a = paramkey_neg_a[shared_mask] # scale_shared_a = scale_neg_a[shared_mask] ind_pos_a = np.array([np.where(paramkey_neg_a==paramkey)[0][0] \ for paramkey in paramkey_pos_a]) # scale_a[ind_pos_a] = scale_pos_a assert np.all(np.log(scale_neg_a[ind_pos_a]/scale_pos_a)<TOL),\ 'Shared param scales must match to within TOL.' return ind_pos_a def get_param_scale( self, eos_d, apply_expand_adj=False , output_ind=False): if not self.expand_adj : return self.get_param_scale_sub( eos_d ) else: scale_a, paramkey_a = self.get_param_scale_sub( eos_d ) scale_a = np.append(scale_a,0.01) paramkey_a = np.append(paramkey_a,'logPmin') return scale_a, paramkey_a # paramkey_pos_a = np.append(paramkey_pos_a,1.0) # scale_neg_a, paramkey_neg_a = self.expand_adj_mod.get_param_scale_sub( eos_d ) # ind_pos_a = self.validate_shared_param_scale(scale_pos_a,paramkey_pos_a, # scale_neg_a,paramkey_neg_a) # # Since negative expansion EOS model params are a superset of those # # required for the positive compression model, we can simply return the # # scale and paramkey values from the negative expansion model # scale_a = scale_neg_a # paramkey_a = paramkey_neg_a # if output_ind: # return scale_a, paramkey_a, ind_pos_a # else: # return scale_a, paramkey_a def get_ind_exp( self, V_a, eos_d ): V0 = Control.get_params( ['V0'], eos_d ) ind_exp = np.where( V_a > V0 )[0] return ind_exp def get_path_const( self ): return self.path_const def get_level_const( self ): return self.level_const # EOS property functions def param_deriv( self, fname, paramname, V_a, eos_d, dxfrac=1e-6): scale_a, paramkey_a = self.get_param_scale( eos_d, apply_expand_adj=True ) scale = scale_a[paramkey_a==paramname][0] # print 'scale: ' + np.str(scale) #if (paramname is 'E0') and (fname is 'energy'): # return np.ones(V_a.shape) try: fun = getattr(self, fname) # Note that self is implicitly included val0_a = fun( V_a, eos_d) except: assert False, 'That is not a valid function name ' + \ '(e.g. it should be press or energy)' try: param = Control.get_params( [paramname], eos_d )[0] dparam = scale*dxfrac # print 'param: ' + np.str(param) # print 'dparam: ' + np.str(dparam) except: assert False, 'This is not a valid parameter name' # set param value in eos_d dict Control.set_params( [paramname,], [param+dparam,], eos_d ) # Note that self is implicitly included dval_a = fun(V_a, eos_d) - val0_a # reset param to original value Control.set_params( [paramname], [param], eos_d ) deriv_a = dval_a/dxfrac return deriv_a def press( self, V_a, eos_d, apply_expand_adj=True): if self.supress_press: zero_a = 0.0*V_a return zero_a else: press_a = self.calc_press(V_a, eos_d) if self.expand_adj and apply_expand_adj: ind_exp = self.get_ind_exp(V_a, eos_d) if (ind_exp.size>0): press_a[ind_exp] = self.expand_adj_mod.calc_press( V_a[ind_exp], eos_d ) return press_a pass def energy( self, V_a, eos_d, apply_expand_adj=True ): if self.supress_energy: zero_a = 0.0*V_a return zero_a else: energy_a = self.calc_energy(V_a, eos_d) if self.expand_adj and apply_expand_adj: ind_exp = self.get_ind_exp(V_a, eos_d) if apply_expand_adj and (ind_exp.size>0): energy_a[ind_exp] = self.expand_adj_mod.calc_energy( V_a[ind_exp], eos_d ) return energy_a def bulk_mod( self, V_a, eos_d, apply_expand_adj=True ): bulk_mod_a = self.calc_bulk_mod(V_a, eos_d) if self.expand_adj and apply_expand_adj: ind_exp = self.get_ind_exp(V_a, eos_d) if apply_expand_adj and (ind_exp.size>0): bulk_mod_a[ind_exp] = self.expand_adj_mod.calc_bulk_mod( V_a[ind_exp], eos_d ) return bulk_mod_a def bulk_mod_deriv( self,V_a, eos_d, apply_expand_adj=True ): bulk_mod_deriv_a = self.calc_bulk_mod_deriv(V_a, eos_d) if self.expand_adj and apply_expand_adj: ind_exp = self.get_ind_exp(V_a, eos_d) if apply_expand_adj and (ind_exp.size>0): bulk_mod_deriv_a[ind_exp] = self.expand_adj_mod_deriv.calc_bulk_mod_deriv( V_a[ind_exp], eos_d ) return bulk_mod_deriv_a def energy_perturb( self, V_a, eos_d, apply_expand_adj=True ): # Eval positive press values Eperturb_pos_a, scale_a, paramkey_a = self.calc_energy_perturb( V_a, eos_d ) if (self.expand_adj==False) or (apply_expand_adj==False): return Eperturb_pos_a, scale_a, paramkey_a else: Nparam_pos = Eperturb_pos_a.shape[0] scale_a, paramkey_a, ind_pos = \ self.get_param_scale( eos_d, apply_expand_adj=True, output_ind=True ) Eperturb_a = np.zeros((paramkey_a.size, V_a.size)) Eperturb_a[ind_pos,:] = Eperturb_pos_a # Overwrite negative pressure Expansion regions ind_exp = self.get_ind_exp(V_a, eos_d) if ind_exp.size>0: Eperturb_adj_a = \ self.expand_adj_mod.calc_energy_perturb( V_a[ind_exp], eos_d )[0] Eperturb_a[:,ind_exp] = Eperturb_adj_a return Eperturb_a, scale_a, paramkey_a # Standard methods must be overridden (as needed) by implimentation model def get_param_scale_sub( self, eos_d): raise NotImplementedError("'get_param_scale_sub' function not implimented for this model") def calc_press( self, V_a, eos_d ): """Returns Press variation along compression curve.""" raise NotImplementedError("'press' function not implimented for this model") def calc_energy( self, V_a, eos_d ): """Returns Energy along compression curve.""" raise NotImplementedError("'energy' function not implimented for this model") def calc_energy_perturb( self, V_a, eos_d ): """Returns Energy pertubation basis functions resulting from fractional changes to EOS params.""" fname = 'energy' scale_a, paramkey_a = self.get_param_scale\ ( eos_d, apply_expand_adj=self.expand_adj ) Eperturb_a = [] for paramname in paramkey_a: iEperturb_a = self.param_deriv( fname, paramname, V_a, eos_d) Eperturb_a.append(iEperturb_a) Eperturb_a = np.array(Eperturb_a) return Eperturb_a, scale_a, paramkey_a def calc_bulk_mod( self, V_a, eos_d ): """Returns Bulk Modulus variation along compression curve.""" raise NotImplementedError("'bulk_mod' function not implimented for this model") def calc_bulk_mod_deriv( self, V_a, eos_d ): """Returns Bulk Modulus Deriv (K') variation along compression curve.""" raise NotImplementedError("'bulk_mod_deriv' function not implimented for this model") #==================================================================== class ThermalMod(EosMod): """ Abstract Equation of State class to describe Thermal Behavior generally depends on both vol and temp """ __metaclass__ = ABCMeta # EOS property functions def energy( self, V_a, T_a, eos_d ): return self.calc_energy( V_a, T_a, eos_d ) def heat_capacity( self, V_a, T_a, eos_d ): return self.calc_heat_capacity( V_a, T_a, eos_d ) def press( self, V_a, T_a, eos_d ): return self.calc_press( V_a, T_a, eos_d ) def entropy( self, V_a, T_a, eos_d ): return self.calc_entropy( V_a, T_a, eos_d ) def vol( self, P_a, T_a, eos_d ): return self.calc_vol( P_a, T_a, eos_d ) # Standard methods must be overridden (as needed) by implimentation model def calc_energy( self, V_a, T_a, eos_d ): """Returns Thermal Component of Energy.""" raise NotImplementedError("'energy' function not implimented for this model") def calc_heat_capacity( self, V_a, T_a, eos_d ): """Returns Heat Capacity.""" raise NotImplementedError("'heat_capacity' function not implimented for this model") def calc_entropy( self, V_a, T_a, eos_d ): """Returns Entropy.""" raise NotImplementedError("'entropy' function not implimented for this model") def calc_press( self, V_a, T_a, eos_d ): """Returns thermal contribution to pressure.""" raise NotImplementedError("'press' function not implimented for this model") def calc_vol( self, V_a, T_a, eos_d ): """Returns thermally expanded volume.""" raise NotImplementedError("'vol' function not implimented for this model") #==================================================================== class ThermalPathMod(ThermalMod): """ Abstract Equation of State class for a reference Thermal Path Path can either be isobaric (P=const) or isochoric (V=const) For this restricted path, thermodyn properties depend only on temperature. """ __metaclass__ = ABCMeta path_opts = ['P','V'] def __init__( self, path_const='V', level_const=np.nan ): assert path_const in self.path_opts, path_const + ' is not a valid ' + \ 'path const. You must select one of: ' + path_opts self.path_const = path_const self.level_const = level_const pass def get_path_const( self ): return self.path_const def get_level_const( self ): return self.level_const # EOS property functions def energy( self, T_a, eos_d ): return self.calc_energy( T_a, eos_d ) def heat_capacity( self, T_a, eos_d ): return self.calc_heat_capacity( T_a, eos_d ) def press( self, T_a, eos_d ): return self.calc_press( T_a, eos_d ) def entropy( self, T_a, eos_d ): return self.calc_entropy( T_a, eos_d ) def vol( self, T_a, eos_d ): return self.calc_vol( T_a, eos_d ) # Standard methods must be overridden (as needed) by implimentation model def calc_energy( self, T_a, eos_d ): """Returns Thermal Component of Energy along heating path.""" raise NotImplementedError("'energy' function not implimented for this model") def calc_heat_capacity( self, T_a, eos_d ): """Returns Heat Capacity along heating path.""" raise NotImplementedError("'heat_capacity' function not implimented for this model") def calc_entropy( self, T_a, eos_d ): """Returns Entropy along heating path.""" raise NotImplementedError("'entropy' function not implimented for this model") def calc_press( self, T_a, eos_d ): """Returns thermal contribution to pressure along heating path.""" raise NotImplementedError("'press' function not implimented for this model") def calc_vol( self, T_a, eos_d ): """Returns thermally expanded volume along heating path.""" raise NotImplementedError("'vol' function not implimented for this model") #==================================================================== class GammaMod(EosMod): """ Abstract Equation of State class for Gruneisen Parameter curves """ __metaclass__ = ABCMeta def __init__( self, V0ref=True ): self.V0ref = V0ref pass @abstractmethod def gamma( self, V_a, eos_d ): """Returns Gruneisen Param (gamma) variation due to compression.""" # @abstractmethod # def temp( self, V_a, T0, eos_d ): # """Returns Gruneisen Param (gamma) variation due to compression.""" def temp( self, V_a, TR, eos_d ): """ Return temperature for debye model V_a: sample volume array TR: temperature at V=VR """ if np.isscalar(V_a): V_a = np.array([V_a]) TOL = 1e-8 Nsamp = 81 # Nsamp = 281 # Nsamp = 581 if self.V0ref: VR, = Control.get_params( ['V0'], eos_d ) else: VR, = Control.get_params( ['VR'], eos_d ) Vmin = np.min(V_a) Vmax = np.max(V_a) dVmax = np.log(Vmax/VR) dVmin = np.log(Vmin/VR) T_a = TR*np.ones(V_a.size) if np.abs(dVmax) < TOL: dVmax = 0.0 if np.abs(dVmin) < TOL: dVmin = 0.0 if dVmax > TOL: indhi_a = np.where(np.log(V_a/VR) > TOL)[0] # indhi_a = np.where(V_a > VR)[0] # ensure numerical stability by shifting # if (Vmax-VR)<=TOL: # T_a[indhi_a] = TR # else: Vhi_a = np.linspace(VR,Vmax,Nsamp) gammahi_a = self.gamma( Vhi_a, eos_d ) logThi_a = integrate.cumtrapz(-gammahi_a/Vhi_a,x=Vhi_a) logThi_a = np.append([0],logThi_a) logtemphi_f = interpolate.interp1d(Vhi_a,logThi_a,kind='cubic') T_a[indhi_a] = TR*np.exp(logtemphi_f(V_a[indhi_a])) if dVmin < -TOL: indlo_a = np.where(np.log(V_a/VR) < -TOL)[0] # indlo_a = np.where(V_a <= VR)[0] # # ensure numerical stability by shifting # if (VR-Vmin)<TOL: # T_a[indlo_a] = TR # else: Vlo_a = np.linspace(VR,Vmin,Nsamp) gammalo_a = self.gamma( Vlo_a, eos_d ) logTlo_a = integrate.cumtrapz(-gammalo_a/Vlo_a,x=Vlo_a) logTlo_a = np.append([0],logTlo_a) logtemplo_f = interpolate.interp1d(Vlo_a,logTlo_a,kind='cubic') T_a[indlo_a] = TR*np.exp(logtemplo_f(V_a[indlo_a])) return T_a #==================================================================== class FullMod(EosMod): """ Abstract Equation of State class for Full Model (combines all EOS terms) """ __metaclass__ = ABCMeta # Standard methods must be overridden (as needed) by implimentation model def press( self, V_a, T_a, eos_d ): """Returns Total Press.""" raise NotImplementedError("'press' function not implimented for this model") def energy( self, V_a, T_a, eos_d ): """Returns Toal Energy.""" raise NotImplementedError("'energy' function not implimented for this model") def therm_exp( self, V_a, T_a, eos_d ): TOL = 1e-4 V_a, T_a = fill_array( V_a, T_a ) dlogV = 1e-4 S_a = self.entropy( V_a, T_a, eos_d ) KT_a = self.bulk_modulus( V_a, T_a, eos_d ) S_hi_a = self.entropy( np.exp(dlogV)*V_a, T_a, eos_d ) S_lo_a = self.entropy( np.exp(-dlogV)*V_a, T_a, eos_d ) dSdlogV_a = (S_hi_a-S_lo_a) / (2*dlogV) alpha_a = dSdlogV_a/(KT_a*V_a*eos_d['const_d']['PV_ratio']) return alpha_a def bulk_mod( self, V_a, T_a, eos_d ): """Returns Total Bulk Modulus.""" raise NotImplementedError("'bulk_mod' function not implimented for this model") #==================================================================== # 3.2: Model Implementations #==================================================================== # 3.2.1: CompressPathMod Implementations #==================================================================== class BirchMurn3(CompressPathMod): def calc_press( self, V_a, eos_d ): V0, K0, KP0 = Control.get_params( ['V0','K0','KP0'], eos_d ) vratio_a = 1.0*V_a/V0 press_a = 3.0/2*K0 * (vratio_a**(-7.0/3) - vratio_a**(-5.0/3)) * \ (1 + 3.0/4*(KP0-4)*(vratio_a**(-2.0/3)-1)) return press_a def calc_energy( self, V_a, eos_d ): V0, K0, KP0, E0 = Control.get_params( ['V0','K0','KP0','E0'], eos_d ) PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) vratio_a = 1.0*V_a/V0 fstrain_a = 0.5*(vratio_a**(-2.0/3) - 1) energy_a = E0 + 9.0/2*(V0*K0/PV_ratio)*\ ( KP0*fstrain_a**3 + fstrain_a**2*(1-4*fstrain_a) ) return energy_a #==================================================================== class BirchMurn4(CompressPathMod): def get_param_scale_sub( self, eos_d): """Return scale values for each parameter""" V0, K0, KP0, KP20 = Control.get_params( ['V0','K0','KP0','KP20'], eos_d ) PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) paramkey_a = np.array(['V0','K0','KP0','KP20','E0']) scale_a = np.array([V0,K0,KP0,KP0/K0,K0*V0/PV_ratio]) return scale_a, paramkey_a def calc_strain_energy_coeffs(self, nexp, K0, KP0, KP20 ): a1 = 3./2*(KP0-nexp-2) a2 = 3./2*(K0*KP20 + KP0*(KP0-2*nexp-3)+3+4*nexp+11./9*nexp**2) return a1,a2 def calc_press( self, V_a, eos_d ): # globals()['set_param']( ['nexp'], [self.nexp], eos_d ) # press_a = self.gen_finite_strain_mod.press( V_a, eos_d ) V0, K0, KP0, KP20 = Control.get_params( ['V0','K0','KP0','KP20'], eos_d ) nexp = +2.0 vratio_a = 1.0*V_a/V0 fstrain_a = 1./nexp*(vratio_a**(-nexp/3) - 1) a1,a2 = self.calc_strain_energy_coeffs(nexp,K0,KP0,KP20) press_a = 3.0*K0*(1+a1*fstrain_a + a2*fstrain_a**2)*\ fstrain_a*(nexp*fstrain_a+1)**((nexp+3)/nexp) return press_a def calc_energy( self, V_a, eos_d ): # globals()['set_param']( ['nexp'], [self.nexp], eos_d ) # energy_a = self.gen_finite_strain_mod.energy( V_a, eos_d ) V0, K0, KP0, KP20, E0 = Control.get_params( ['V0','K0','KP0','KP20','E0'], eos_d ) nexp = +2.0 PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) vratio_a = 1.0*V_a/V0 fstrain_a = 1./nexp*(vratio_a**(-nexp/3) - 1) a1,a2 = self.calc_strain_energy_coeffs(nexp,K0,KP0,KP20) energy_a = E0 + 9.0*(V0*K0/PV_ratio)*\ ( 0.5*fstrain_a**2 + a1/3*fstrain_a**3 + a2/4*fstrain_a**4) return energy_a #==================================================================== class GenFiniteStrain(CompressPathMod): """ Generalized Finite Strain EOS from Jeanloz1989b Note: nexp=2 yields Birch Murnaghan (eulerian strain) EOS nexp=-2 yields lagragian strain EOS """ def calc_strain_energy_coeffs(self, nexp, K0, KP0, KP20=None, KP30=None): a1 = 3./2*(KP0-nexp-2) if KP20 is None: return a1 else: a2 = 3./2*(K0*KP20 + KP0*(KP0-2*nexp-3)+3+4*nexp+11./9*nexp**2) if KP30 is None: return a1,a2 else: a3 = 1./8*(9*K0**2*KP30 + 6*(6*KP0-5*nexp-6)*K0*KP20 +((3*KP0-5*nexp-6)**2 +10*nexp**2 + 30*nexp + 18)*KP0 -(50./3*nexp**3 + 70*nexp**2 + 90*nexp + 36)) return a1,a2,a3 def calc_press( self, V_a, eos_d ): V0, K0, KP0, KP20, nexp = Control.get_params( ['V0','K0','KP0','KP20','nexp'], eos_d ) vratio_a = 1.0*V_a/V0 fstrain_a = 1./nexp*(vratio_a**(-nexp/3) - 1) a1,a2 = self.calc_strain_energy_coeffs(nexp,K0,KP0,KP20=KP20) press_a = 3.0*K0*(1+a1*fstrain_a + a2*fstrain_a**2)*\ fstrain_a*(nexp*fstrain_a+1)**((nexp+3)/nexp) return press_a def calc_energy( self, V_a, eos_d ): V0, K0, KP0, KP20, E0, nexp = Control.get_params( ['V0','K0','KP0','KP20','E0','nexp'], eos_d ) PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) vratio_a = 1.0*V_a/V0 fstrain_a = 1./nexp*(vratio_a**(-nexp/3) - 1) a1,a2 = self.calc_strain_energy_coeffs(nexp,K0,KP0,KP20=KP20) energy_a = E0 + 9.0*(V0*K0/PV_ratio)*\ ( 0.5*fstrain_a**2 + a1/3*fstrain_a**3 + a2/4*fstrain_a**4) return energy_a #==================================================================== class Vinet(CompressPathMod): def get_param_scale_sub( self, eos_d): """Return scale values for each parameter""" V0, K0, KP0 = Control.get_params( ['V0','K0','KP0'], eos_d ) PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) paramkey_a = np.array(['V0','K0','KP0','E0']) scale_a = np.array([V0,K0,KP0,K0*V0/PV_ratio]) return scale_a, paramkey_a def calc_press( self, V_a, eos_d ): V0, K0, KP0 = Control.get_params( ['V0','K0','KP0'], eos_d ) eta = 3./2*(KP0-1) vratio_a = 1.0*V_a/V0 x_a = vratio_a**(1./3) press_a = 3*K0*(1-x_a)*x_a**(-2)*np.exp(eta*(1-x_a)) return press_a def calc_energy( self, V_a, eos_d ): V0, K0, KP0, E0 = Control.get_params( ['V0','K0','KP0','E0'], eos_d ) # print V0 # print K0 # print KP0 # print E0 PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) eta = 3./2*(KP0-1) vratio_a = 1.0*V_a/V0 x_a = vratio_a**(1.0/3) energy_a = E0 + 9*K0*V0/PV_ratio/eta**2*\ (1 + (eta*(1-x_a)-1)*np.exp(eta*(1-x_a))) return energy_a def calc_energy_perturb( self, V_a, eos_d ): """Returns Energy pertubation basis functions resulting from fractional changes to EOS params.""" V0, K0, KP0, E0 = Control.get_params( ['V0','K0','KP0','E0'], eos_d ) PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) eta = 3./2*(KP0-1) vratio_a = 1.0*V_a/V0 x = vratio_a**(1./3) scale_a, paramkey_a = self.get_param_scale_sub( eos_d ) # NOTE: CHECK UNITS (PV_RATIO) here dEdp_a = 1.0/PV_ratio*np.vstack\ ([-3*K0*(eta**2*x*(x-1) + 3*eta*(x-1) - 3*np.exp(eta*(x-1)) + 3)\ *np.exp(-eta*(x-1))/eta**2, -9*V0*(eta*(x-1) - np.exp(eta*(x-1)) + 1)*np.exp(-eta*(x-1))/eta**2, 27*K0*V0*(2*eta*(x-1) + eta*(-x + (x-1)*(eta*(x-1) + 1) + 1) -2*np.exp(eta*(x-1)) + 2)*np.exp(-eta*(x-1))/(2*eta**3), PV_ratio*np.ones(V_a.shape)]) Eperturb_a = np.expand_dims(scale_a,1)*dEdp_a #Eperturb_a = np.expand_dims(scale_a)*dEdp_a return Eperturb_a, scale_a, paramkey_a #==================================================================== class Tait(CompressPathMod): def __init__( self, setlogPmin=False, path_const='T', level_const=300, expand_adj_mod=None, expand_adj=None, supress_energy=False, supress_press=False ): super(Tait, self).__init__( expand_adj=None ) self.setlogPmin = setlogPmin pass # def __init__( self, setlogPmin=False, expand_adj=False ): # self.setlogPmin = setlogPmin # self.expand_adj = expand_adj # pass def get_eos_params(self, eos_d): V0, K0, KP0 = Control.get_params( ['V0','K0','KP0'], eos_d ) if self.setlogPmin: logPmin, = Control.get_params( ['logPmin'], eos_d ) Pmin = np.exp(logPmin) # assert Pmin>0, 'Pmin must be positive.' KP20 = (KP0+1)*(KP0/K0 - 1.0/Pmin) else: KP20, = Control.get_params( ['KP20'], eos_d ) return V0,K0,KP0,KP20 def get_param_scale_sub( self, eos_d ): """Return scale values for each parameter""" V0, K0, KP0, KP20 = self.get_eos_params(eos_d) PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) if self.setlogPmin: # [V0,K0,KP0,E0] paramkey_a = np.array(['V0','K0','KP0','E0']) scale_a = np.array([V0,K0,KP0,K0*V0/PV_ratio]) else: # [V0,K0,KP0,KP20,E0] paramkey_a = np.array(['V0','K0','KP0','KP20','E0']) scale_a = np.array([V0,K0,KP0,KP0/K0,K0*V0/PV_ratio]) return scale_a, paramkey_a def eos_to_abc_params(self, K0, KP0, KP20): a = (KP0 + 1.0)/(K0*KP20 + KP0 + 1.0) b = -KP20/(KP0+1.0) + KP0/K0 c = (K0*KP20 + KP0 + 1.0)/(-K0*KP20 + KP0**2 + KP0) return a,b,c def calc_press( self, V_a, eos_d ): V0, K0, KP0, KP20 = self.get_eos_params(eos_d) a,b,c = self.eos_to_abc_params(K0,KP0,KP20) vratio_a = 1.0*V_a/V0 press_a = 1.0/b*(((vratio_a + a - 1.0)/a)**(-1.0/c) - 1.0) return press_a def calc_energy( self, V_a, eos_d ): V0, K0, KP0, KP20 = self.get_eos_params(eos_d) E0, = Control.get_params( ['E0'], eos_d ) a,b,c = self.eos_to_abc_params(K0,KP0,KP20) PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) vratio_a = 1.0*V_a/V0 press_a = self.calc_press( V_a, eos_d ) eta_a = b*press_a + 1.0 eta_pow_a = eta_a**(-c) # NOTE: Need to simplify energy expression here energy_a = E0 + (V0/b)/PV_ratio*(a*c/(c-1)-1)\ - (V0/b)/PV_ratio*( a*c/(c-1)*eta_a*eta_pow_a - a*eta_pow_a + a - 1) return energy_a def calc_energy_perturb_deprecate( self, V_a, eos_d ): """Returns Energy pertubation basis functions resulting from fractional changes to EOS params.""" V0, K0, KP0, KP20 = self.get_eos_params(eos_d) E0, = Control.get_params( ['E0'], eos_d ) a,b,c = self.eos_to_abc_params(K0,KP0,KP20) PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) vratio_a = V_a/V0 press_a = self.calc_press( V_a, eos_d ) eta_a = b*press_a + 1.0 eta_pow_a = eta_a**(-c) scale_a, paramkey_a = self.get_param_scale_sub( eos_d ) # [V0,K0,KP0,KP20,E0] dEdp_a = np.ones((4, V_a.size)) # dEdp_a[0,:] = 1.0/(PV_ratio*b*(c-1))*eta_a*(-a*eta_pow_a -1 + (1-a)*(a+c)) dEdp_a[0,:] = 1.0/(PV_ratio*b*(c-1))*eta_a*(-a*eta_pow_a +a -1 -a*c+c) \ + 1.0/(PV_ratio*b)*(a*c/(c-1)-1) dEdp_a[-1,:] = 1.0 # from IPython import embed; embed(); import ipdb; ipdb.set_trace() # 1x3 dEdabc_a = np.vstack\ ([V0*eta_a/(a*b*(c-1))*(-a*eta_pow_a + a*(1-c))+c*V0/(b*(c-1)), V0/(b**2*(c-1))*((-a*eta_pow_a+a-1)*(c-1) + c*a*eta_a*eta_pow_a) \ - V0/b**2*(a*c/(c-1) - 1), -a*V0/(b*(c-1)**2)*eta_a*eta_pow_a*(-c+(c-1)*(1-np.log(eta_a)))\ +a*V0/(b*(c-1))*(1-c/(c-1))]) # 3x3 abc_jac = np.array([[-KP20*(KP0+1)/(K0*KP20+KP0+1)**2, K0*KP20/(K0*KP20+KP0+1)**2, -K0*(KP0+1)/(K0*KP20+KP0+1)**2], [-KP0/K0**2, KP20/(KP0+1)**2 + 1./K0, -1.0/(KP0+1)], [KP20*(KP0**2+2.*KP0+1)/(-K0*KP20+KP0**2+KP0)**2, (-K0*KP20+KP0**2+KP0-(2*KP0+1)*(K0*KP20+KP0+1))/\ (-K0*KP20+KP0**2+KP0)**2, K0*(KP0**2+2*KP0+1)/(-K0*KP20+KP0**2+KP0)**2]]) dEdp_a[1:4,:] = 1.0/PV_ratio*np.dot(abc_jac.T,dEdabc_a) print dEdp_a.shape if self.setlogPmin: # [V0,K0,KP0,E0] print dEdp_a.shape dEdp_a = dEdp_a[[0,1,2,4],:] Eperturb_a = np.expand_dims(scale_a,1)*dEdp_a #Eperturb_a = np.expand_dims(scale_a)*dEdp_a return Eperturb_a, scale_a, paramkey_a #==================================================================== class RosenfeldTaranzonaShiftedAdiabat(CompressPathMod): def get_param_scale_sub( self, eos_d): """Return scale values for each parameter""" V0, K0, KP0 = Control.get_params( ['V0','K0','KP0'], eos_d ) PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) paramkey_a = np.array(['V0','K0','KP0','E0']) scale_a = np.array([V0,K0,KP0,K0*V0/PV_ratio]) return scale_a, paramkey_a def calc_press( self, V_a, eos_d ): PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) fac = 1e-3 Vhi_a = V_a*(1.0 + 0.5*fac) Vlo_a = V_a*(1.0 - 0.5*fac) dV_a = Vhi_a-Vlo_a E0S_hi_a = self.calc_energy(Vhi_a, eos_d) E0S_lo_a = self.calc_energy(Vlo_a, eos_d) P0S_a = -PV_ratio*(E0S_hi_a - E0S_lo_a)/dV_a return P0S_a def calc_energy( self, V_a, eos_d ): V0, T0, mexp = Control.get_params( ['V0','T0','mexp'], eos_d ) kB, = Control.get_consts( ['kboltz'], eos_d ) poly_blogcoef_a = Control.get_array_params( 'blogcoef', eos_d ) compress_path_mod, thermal_mod, gamma_mod = \ Control.get_modtypes( ['CompressPathMod', 'ThermalMod', 'GammaMod'], eos_d ) free_energy_isotherm_a = compress_path_mod.energy(V_a,eos_d) T0S_a = gamma_mod.temp(V_a,T0,eos_d) bV_a = np.polyval(poly_blogcoef_a,np.log(V_a/V0)) dS_a = -mexp/(mexp-1)*bV_a/T0*((T0S_a/T0)**(mexp-1)-1)\ -3./2*kB*np.log(T0S_a/T0) energy_isotherm_a = free_energy_isotherm_a + T0*dS_a E0S_a = energy_isotherm_a + bV_a*((T0S_a/T0)**mexp-1)\ +3./2*kB*(T0S_a-T0) return E0S_a #==================================================================== class GenRosenfeldTaranzona(ThermalPathMod): """ Generalized Rosenfeld-Taranzona Equation of State Model (Rosenfeld1998) - Cv takes on general form of shifted power-law as in original Rosenfeld-Taranzona model, but the exponent and high-temp limit are parameters rather than fixed - only applicable to isochores - must provide a method to evaluate properties along isochore """ __metaclass__ = ABCMeta def get_param_scale_sub( self, eos_d): """Return scale values for each parameter""" acoef, bcoef, mexp, lognfac = Control.get_params\ ( ['acoef','bcoef','mexp','lognfac'], eos_d ) acoef_scl = 1.0 # This cannot be well-determined without more info # ...like a reference temp or energy variation bcoef_scl = np.abs(bcoef) mexp_scl = 3./5 lognfac_scl = 0.01 paramkey_a = np.array(['acoef','bcoef','mexp','lognfac']) scale_a = np.array([acoef_scl,bcoef_scl,mexp_scl,lognfac_scl]) return scale_a, paramkey_a def get_param_override( self, paramkey, paramval, eos_d ): if paramval is None: paramval, = Control.get_params( [paramkey], eos_d ) return paramval def calc_therm_dev( self, T_a, eos_d ): """ """ # assert False, 'calc_thermal_dev is not yet implimented' T0, = Control.get_params( ['T0'], eos_d ) mexp, = Control.get_params( ['mexp'], eos_d ) # therm_dev_a = (T_a/T0)**mexp therm_dev_a = (T_a/T0)**mexp - 1.0 return therm_dev_a def calc_therm_dev_deriv( self, T_a, eos_d ): """ """ # assert False, 'calc_thermal_dev is not yet implimented' T0, = Control.get_params( ['T0'], eos_d ) mexp, = Control.get_params( ['mexp'], eos_d ) dtherm_dev_a = (mexp/T0)*(T_a/T0)**(mexp-1.0) return dtherm_dev_a def calc_energy( self, T_a, eos_d, acoef_a=None, bcoef_a=None ): """Returns Thermal Component of Energy.""" mexp, lognfac = Control.get_params( ['mexp','lognfac'], eos_d ) energy_pot_a = self.calc_energy_pot( T_a, eos_d, acoef_a=acoef_a, bcoef_a=bcoef_a ) energy_kin_a = self.calc_energy_kin( T_a, eos_d ) energy_a = energy_pot_a + energy_kin_a return energy_a def calc_energy_kin( self, T_a, eos_d ): """Returns Thermal Component of Energy.""" lognfac, = Control.get_params( ['lognfac'], eos_d ) kB, = Control.get_consts( ['kboltz'], eos_d ) nfac = np.exp(lognfac) energy_kin_a = 3.0/2*nfac*kB*T_a return energy_kin_a def calc_energy_pot( self, T_a, eos_d, acoef_a=None, bcoef_a=None ): """Returns Thermal Component of Energy.""" acoef_a = self.get_param_override( 'acoef', acoef_a, eos_d ) energy_pot_diff_a = self.calc_energy_pot_diff( T_a, eos_d, bcoef_a=bcoef_a ) energy_pot_a = acoef_a + energy_pot_diff_a return energy_pot_a def calc_energy_pot_diff( self, T_a, eos_d, bcoef_a=None ): bcoef_a = self.get_param_override( 'bcoef', bcoef_a, eos_d ) therm_dev_a = self.calc_therm_dev( T_a, eos_d ) energy_pot_diff_a = bcoef_a*therm_dev_a return energy_pot_diff_a def calc_heat_capacity( self, T_a, eos_d, bcoef_a=None ): """Calculate Heat Capacity usin.""" heat_capacity_pot = self.calc_heat_capacity_pot( T_a, eos_d, bcoef_a=bcoef_a ) heat_capacity_kin = self.calc_heat_capacity_kin( T_a, eos_d ) heat_capacity_a = heat_capacity_pot+heat_capacity_kin return heat_capacity_a def calc_heat_capacity_pot( self, T_a, eos_d, bcoef_a=None ): mexp, = Control.get_params( ['mexp'], eos_d ) bcoef_a = self.get_param_override( 'bcoef', bcoef_a, eos_d ) dtherm_dev_a = self.calc_therm_dev_deriv( T_a, eos_d ) heat_capacity_pot_a = bcoef_a*dtherm_dev_a return heat_capacity_pot_a def calc_heat_capacity_kin( self, T_a, eos_d ): lognfac, = Control.get_params( ['lognfac'], eos_d ) kB, = Control.get_consts( ['kboltz'], eos_d ) nfac = np.exp(lognfac) heat_capacity_kin_a = + 3.0/2*nfac*kB return heat_capacity_kin_a def calc_entropy_pot( self, T_a, eos_d, Tref=None, bcoef_a=None ): mexp, = Control.get_params( ['mexp'], eos_d ) Tref = self.get_param_override( 'T0', Tref, eos_d ) Cv_pot = self.calc_heat_capacity_pot( T_a, eos_d, bcoef_a=bcoef_a ) Cv_ref_pot = self.calc_heat_capacity_pot( Tref, eos_d, bcoef_a=bcoef_a ) dSpot_a = (Cv_pot-Cv_ref_pot)/(mexp-1.0) return dSpot_a def calc_entropy_kin( self, T_a, eos_d, Tref=None ): Tref = self.get_param_override( 'T0', Tref, eos_d ) Cv_kin = self.calc_heat_capacity_kin( T_a, eos_d ) dSkin_a = Cv_kin*np.log( T_a/Tref ) return dSkin_a def calc_entropy_heat( self, T_a, eos_d, Tref=None, bcoef_a=None ): """Calculate Entropy change upon heating at constant volume.""" mexp, = Control.get_params( ['mexp'], eos_d ) Tref = self.get_param_override( 'T0', Tref, eos_d ) delS_pot = self.calc_entropy_pot( T_a, eos_d, Tref=Tref, bcoef_a=bcoef_a ) delS_kin = self.calc_entropy_kin( T_a, eos_d, Tref=Tref ) delS_heat_a = delS_pot + delS_kin return delS_heat_a def calc_entropy( self, T_a, eos_d, Tref=None, Sref=None, bcoef_a=None ): """Calculate Full Entropy for isochore.""" Sref = self.get_param_override( 'S0', Sref, eos_d ) delS_heat_a = self.calc_entropy_heat( T_a, eos_d, Tref=Tref, bcoef_a=bcoef_a ) entropy_a = Sref + delS_heat_a return entropy_a #==================================================================== class RosenfeldTaranzonaCompress(ThermalMod): """ Volume-dependent Rosenfeld-Taranzona Equation of State - must impliment particular volume-dependence """ __metaclass__ = ABCMeta #======================== # Override Method #======================== @abstractmethod def calc_entropy_compress( self, V_a, eos_d ): """ If compress path is """ return 0.0 #======================== # Initialization #======================== def __init__( self, coef_kind='logpoly', temp_path_kind='T0', acoef_fun=None ): self.set_empirical_coef( coef_kind, acoef_fun=acoef_fun ) self.set_temp_path( temp_path_kind ) pass def set_empirical_coef( self, coef_kind, acoef_fun=None ): coef_kind_typ = ['logpoly','poly','polynorm'] assert coef_kind in coef_kind_typ, 'coef_kind is not a valid type. '\ 'Available types = '+str(coef_kind_typ)+'.' self.coef_kind= coef_kind calc_coef = getattr(self, 'calc_coef_'+coef_kind) self.calc_bcoef = lambda V_a, eos_d, deriv=0: calc_coef( V_a, 'bcoef', eos_d, deriv=deriv ) if acoef_fun is None: self.calc_acoef = lambda V_a, eos_d: calc_coef( V_a, 'acoef', eos_d ) else: self.calc_acoef = acoef_fun pass def set_temp_path( self, temp_path_kind ): temp_path_kind_typ = ['S0','T0','abszero'] self.temp_path_kind = temp_path_kind assert temp_path_kind in temp_path_kind_typ, 'temp_path_kind is not a valid type. '\ 'Available types = '+str(temp_path_kind_typ)+'.' self.temp_path_kind= temp_path_kind self.calc_temp_path = getattr(self, 'calc_temp_path_'+temp_path_kind) pass #======================== def get_param_scale_sub( self, eos_d): """Return scale values for each parameter""" bcoef_a = Control.get_array_params( 'bcoef', eos_d ) coef_param_key = ['bcoef_'+str(i) for i in range(bcoef_a.size)] coef_param_scale = np.ones(bcoef_a.shape) try: acoef_a = Control.get_array_params( 'acoef', eos_d ) acoef_param_key = ['acoef_'+str(i) for i in range(acoef_a.size)] acoef_param_scale = np.ones(acoef_a.shape) coef_param_key = np.append(coef_param_key,acoef_param_key) coef_param_scale = np.append(coef_param_scale,acoef_param_scale) except: # No bcoef pass paramkey_a = coef_param_key scale_a = coef_param_scale T0, = Control.get_params( ['T0'], eos_d ) T0_scl = T0 mexp_scl = 3./5 lognfac_scl = 0.01 paramkey_a = np.append(paramkey_a,['T0','mexp','lognfac']) scale_a = np.append(scale_a,[T0_scl,mexp_scl,lognfac_scl]) return scale_a, paramkey_a def calc_therm_dev( self, V_a, T_a, eos_d ): """ Extend thermal deviation concept to take difference from reference path, rather than reference point """ T0, = Control.get_params( ['T0'], eos_d ) T_ref_a = self.calc_temp_path( V_a, eos_d ) therm_dev_f = GenRosenfeldTaranzona().calc_therm_dev therm_dev_path_a = therm_dev_f( T_a, eos_d ) - therm_dev_f( T_ref_a, eos_d ) return therm_dev_path_a def calc_energy_pot_diff( self, V_a, T_a, eos_d ): # T0, = Control.get_params( ['T0'], eos_d ) # gamma_mod = eos_d['modtype_d']['GammaMod'] # T_ref_a = gamma_mod.temp( V_a, T0, eos_d ) # del_energy_pot_a = self.calc_energy_pot( V_a, T_a, eos_d ) \ # - self.calc_energy_pot( V_a, T_ref_a, eos_d ) therm_dev_a = self.calc_therm_dev( V_a, T_a, eos_d ) bcoef_a = self.calc_bcoef( V_a, eos_d ) del_energy_pot_a = bcoef_a*therm_dev_a return del_energy_pot_a def calc_energy_kin_diff( self, V_a, T_a, eos_d ): T0, = Control.get_params( ['T0'], eos_d ) T_ref_a = self.calc_temp_path( V_a, eos_d ) del_energy_kin_a = GenRosenfeldTaranzona().calc_energy_kin( T_a, eos_d ) \ - GenRosenfeldTaranzona().calc_energy_kin( T_ref_a, eos_d ) return del_energy_kin_a def calc_energy( self, V_a, T_a, eos_d ): # acoef_a = self.calc_acoef( V_a, eos_d ) dE_pot = self.calc_energy_pot_diff( V_a, T_a, eos_d ) dE_kin = self.calc_energy_kin_diff( V_a, T_a, eos_d ) # E_tot = acoef_a + dE_pot + dE_kin dE_tot = dE_pot + dE_kin return dE_tot def calc_free_energy( self, V_a, T_a, eos_d ): E_tot = self.calc_energy( V_a, T_a, eos_d ) S_tot = self.calc_entropy( V_a, T_a, eos_d ) F_tot = E_tot - T_a*S_tot return F_tot def calc_press( self, V_a, T_a, eos_d ): PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) V0, = Control.get_params( ['V0'], eos_d ) # Use numerical deriv dV = V0*1e-5 F_a = self.calc_free_energy( V_a, T_a, eos_d ) F_hi_a = self.calc_free_energy( V_a+dV, T_a, eos_d ) press_therm_a = -PV_ratio*(F_hi_a-F_a)/dV return press_therm_a def calc_RT_coef_deriv( self, V_a, eos_d ): V0, = Control.get_params( ['V0'], eos_d ) # Use numerical deriv dV = V0*1e-5 acoef_a = self.calc_acoef( V_a, eos_d ) bcoef_a = self.calc_bcoef( V_a, eos_d ) acoef_hi_a = self.calc_acoef( V_a+dV, eos_d ) bcoef_hi_a = self.calc_bcoef( V_a+dV, eos_d ) acoef_deriv_a = (acoef_hi_a-acoef_a)/dV bcoef_deriv_a = (bcoef_hi_a-bcoef_a)/dV return acoef_deriv_a, bcoef_deriv_a def calc_heat_capacity( self, V_a, T_a, eos_d ): """Calculate Heat Capacity usin.""" bcoef_a = self.calc_bcoef( V_a, eos_d ) heat_capacity_a = GenRosenfeldTaranzona().calc_heat_capacity\ ( T_a, eos_d, bcoef_a=bcoef_a ) return heat_capacity_a def calc_entropy( self, V_a, T_a, eos_d ): """ Entropy depends on whether reference Compress Path is isotherm or adiabat """ # from IPython import embed; embed(); import ipdb; ipdb.set_trace() V0, S0 = Control.get_params( ['V0','S0'], eos_d ) T0, = Control.get_params( ['T0'], eos_d ) bcoef_a = self.calc_bcoef( V_a, eos_d ) gamma_mod = eos_d['modtype_d']['GammaMod'] Tref_a = gamma_mod.temp( V_a, T0, eos_d ) dS_heat_a = GenRosenfeldTaranzona().calc_entropy_heat( T_a, eos_d, Tref=Tref_a, bcoef_a=bcoef_a ) dS_compress_a = self.calc_entropy_compress( V_a, eos_d ) S_a = S0 + dS_heat_a + dS_compress_a return S_a def calc_gamma( self, V_a, T_a, eos_d ): gamma_mod = eos_d['modtype_d']['GammaMod'] T0, = Control.get_params( ['T0'], eos_d ) gamma_0S_a = gamma_mod.gamma(V_a,eos_d) T_0S_a = gamma_mod.temp(V_a,T0,eos_d) bcoef_a = self.calc_bcoef(V_a,eos_d) bcoef_der1_a = self.calc_bcoef(V_a,eos_d,deriv=1) CV_a = self.calc_heat_capacity( V_a, T_a, eos_d ) CV_0S_a = self.calc_heat_capacity( V_a, T_0S_a, eos_d ) dS_pot_a = GenRosenfeldTaranzona().calc_entropy_pot( T_a, eos_d, Tref=T_0S_a, bcoef_a=bcoef_a ) gamma_a = gamma_0S_a*(CV_0S_a/CV_a) \ + V_a*(bcoef_der1_a/bcoef_a)*(dS_pot_a/CV_a) return gamma_a #======================== # Empirical Coefficient Model #======================== def calc_coef_poly( self, V_a, coef_key, eos_d, deriv=0 ): poly_coef_a = Control.get_array_params( coef_key, eos_d ) # coef_a = np.polyval(poly_coef_a[::-1], V_a) if deriv==0: coef_a = np.polyval(poly_coef_a, V_a) else: dpoly_coef_a = np.polyder(poly_coef_a,deriv) coef_a = np.polyval(dpoly_coef_a, V_a) return coef_a def calc_coef_logpoly( self, V_a, coef_key, eos_d, deriv=0 ): V0, = Control.get_params( ['V0'], eos_d ) logpoly_coef_a = Control.get_array_params( coef_key, eos_d ) # coef_a = np.polyval(logpoly_coef_a[::-1], np.log(V_a/V0)) if deriv==0: coef_a = np.polyval(logpoly_coef_a, np.log(V_a/V0)) else: dlogpoly_coef_a = np.polyder(logpoly_coef_a,deriv) coef_a = V_a**(-deriv)*np.polyval(dlogpoly_coef_a, np.log(V_a/V0)) return coef_a def calc_coef_polynorm( self, V_a, coef_key, eos_d, deriv=0 ): V0, = Control.get_params( ['V0'], eos_d ) polynorm_coef_a = Control.get_array_params( coef_key, eos_d ) # coef_a = np.polyval(polynorm_coef_a[::-1], V_a/V0-1.0 ) if deriv==0: coef_a = np.polyval(polynorm_coef_a, V_a/V0-1.0 ) else: dpolynorm_coef_a = np.polyder(polynorm_coef_a,deriv) coef_a = V0**(-deriv)*np.polyval(dpolynorm_coef_a, V_a) return coef_a #======================== # Ref Temp path #======================== def calc_temp_path_T0( self, V_a, eos_d ): T0, = Control.get_params( ['T0'], eos_d ) return T0 def calc_temp_path_S0( self, V_a, eos_d ): T0, = Control.get_params( ['T0'], eos_d ) gamma_mod, = Control.get_modtypes( ['GammaMod'], eos_d ) Tref_a = gamma_mod.temp( V_a, T0, eos_d ) return Tref_a def calc_temp_path_abszero( self, V_a, eos_d ): Tref = 0.0 return Tref #==================================================================== class RosenfeldTaranzonaAdiabat(RosenfeldTaranzonaCompress): def __init__( self, coef_kind='logpoly' ): temp_path_kind = 'S0' acoef_fun= self.calc_energy_adiabat_ref self.set_temp_path( temp_path_kind ) self.set_empirical_coef( coef_kind, acoef_fun=acoef_fun ) pass def calc_entropy_compress( self, V_a, eos_d ): dS_a = np.zeros(V_a.shape) return dS_a def calc_entropy_isotherm( self, V_a, eos_d ): kB, = Control.get_consts( ['kboltz'], eos_d ) T0, mexp = Control.get_params( ['T0','mexp'], eos_d ) T0S_a = self.calc_temp_path( V_a, eos_d ) bV_a = self.calc_bcoef( V_a, eos_d ) dS_T0_a = -1.0*mexp/(mexp-1)*bV_a/T0*((T0S_a/T0)**(mexp-1.0)-1.0)\ -3./2*kB*np.log(T0S_a/T0) return dS_T0_a def calc_energy_adiabat_ref( self, V_a, eos_d ): kB, = Control.get_consts( ['kboltz'], eos_d ) T0, mexp = Control.get_params( ['T0','mexp'], eos_d ) compress_path_mod = eos_d['modtype_d']['CompressPathMod'] energy_isotherm_a = compress_path_mod.energy(V_a,eos_d) if compress_path_mod.path_const == 'S': # compress path mod directly describes adiabat # internal energy is given directly by integral of compress path E0S_a = energy_isotherm_a else: # compress path mod describes isotherm # free energy is given by integral of compress path # adjustments are needed to obtain internal energy free_energy_isotherm_a = energy_isotherm_a T0S_a = self.calc_temp_path( V_a, eos_d ) bV_a = self.calc_bcoef( V_a, eos_d ) dS_T0_a = self.calc_entropy_isotherm( V_a, eos_d ) energy_isotherm_a = free_energy_isotherm_a + T0*dS_T0_a E0S_a = energy_isotherm_a +bV_a*((T0S_a/T0)**mexp-1)\ +3./2*kB*(T0S_a-T0) return E0S_a #==================================================================== class RosenfeldTaranzonaIsotherm(RosenfeldTaranzonaCompress): def __init__( self, coef_kind='logpoly' ): temp_path_kind = 'T0' acoef_fun = None self.set_temp_path( temp_path_kind ) self.set_empirical_coef( coef_kind, acoef_fun=acoef_fun ) pass def calc_entropy_compress( self, V_a, eos_d ): dS_T0_a = self.calc_entropy_isotherm( V_a, eos_d ) return dS_T0_a def calc_entropy_isotherm( self, V_a, eos_d ): kB, = Control.get_consts( ['kboltz'], eos_d ) T0, mexp = Control.get_params( ['T0','mexp'], eos_d ) compress_path_mod = eos_d['modtype_d']['CompressPathMod'] free_energy_isotherm_a = compress_path_mod.energy(V_a,eos_d) T0S_a = self.calc_temp_path( V_a, eos_d ) bV_a = self.calc_bcoef( V_a, eos_d ) dS_a = -mexp/(mexp-1)*bV_a/T0*((T0S_a/T0)**(mexp-1)-1)\ -3./2*kB*np.log(T0S_a/T0) return dS_a #==================================================================== class MieGrun(ThermalMod): """ Mie-Gruneisen Equation of State Model (requires extension to define thermal energy model) """ __metaclass__ = ABCMeta def press( self, V_a, T_a, eos_d ): V_a, T_a = fill_array( V_a, T_a ) PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) gamma_mod, = Control.get_modtypes( ['GammaMod'], eos_d ) # Needed functions energy_therm_a = self.calc_energy( V_a, T_a, eos_d ) gamma_a = gamma_mod.gamma( V_a, eos_d ) press_therm_a = PV_ratio*(gamma_a/V_a)*energy_therm_a return press_therm_a @abstractmethod def calc_energy( self, V_a, T_a, eos_d ): """Returns Thermal Component of Energy.""" #==================================================================== class MieGrunDebye(MieGrun): def __init__( self ): super(MieGrunDebye, self).__init__() path_const='V' self.path_const = path_const def calc_energy( self, V_a, T_a, eos_d ): ''' Thermal Energy for Debye model Relies on reference profile properties stored in eos_d defined by: * debye_temp_f( V_a, T_a ) * ref_temp_f( V_a, T_a ) ''' V_a, T_a = fill_array( V_a, T_a ) # NOTE: T0 refers to temp on ref adiabat evaluated at V0 Cvmax, T0, thetaR = Control.get_params( ['Cvmax','T0','thetaR'], eos_d ) TS_ratio, = Control.get_consts( ['TS_ratio'], eos_d ) gamma_mod, = Control.get_modtypes( ['GammaMod'], eos_d ) theta_a = gamma_mod.temp( V_a, thetaR, eos_d ) # Tref_a = gamma_mod.temp( V_a, T0, eos_d ) Tref_a = self.calc_temp_path(V_a,eos_d) # print theta_a ###################### # NOTE: Some weird issue with TS_ratio!!! ###################### # energy_therm_a = (Cvmax/TS_ratio)*( # + T_a*self.debye_func( theta_a/T_a ) # - Tref_a*self.debye_func( theta_a/Tref_a ) ) energy_therm_a = (Cvmax)*( + T_a*self.debye_func( theta_a/T_a ) - Tref_a*self.debye_func( theta_a/Tref_a ) ) return energy_therm_a def calc_entropy( self, V_a, T_a, eos_d ): V_a, T_a = fill_array( V_a, T_a ) Cvmax, thetaR = Control.get_params( ['Cvmax','thetaR'], eos_d ) TS_ratio, = Control.get_consts( ['TS_ratio'], eos_d ) gamma_mod, = Control.get_modtypes( ['GammaMod'], eos_d ) theta_a = gamma_mod.temp( V_a, thetaR, eos_d ) x_a = theta_a/T_a # entropy_a = Cvmax*Cv_const/3. \ # *(4*debye_func( x_a )-3*np.log( 1-np.exp( -x_a ) ) ) # TS_ratio???? # entropy_a = 1.0/3*(Cvmax/TS_ratio) \ # *(4*self.debye_func( x_a )-3*np.log( np.exp( x_a ) - 1 ) + 3*x_a) entropy_a = 1.0/3*(Cvmax) \ *(4*self.debye_func( x_a )-3*np.log( np.exp( x_a ) - 1 ) + 3*x_a) return entropy_a def calc_heat_capacity( self, V_a, T_a, eos_d ): V_a, T_a = fill_array( V_a, T_a ) Cvmax, thetaR = Control.get_params( ['Cvmax','thetaR'], eos_d ) TS_ratio, = Control.get_consts( ['TS_ratio'], eos_d ) gamma_mod, = Control.get_modtypes( ['GammaMod'], eos_d ) theta_a = gamma_mod.temp( V_a, thetaR, eos_d ) # The reference adiabat terms in the internal energy are temperature # independent, and thus play no role in heat capacity x_a = theta_a/T_a # heat_capacity_a = (Cvmax/TS_ratio)*\ # (4*self.debye_func( x_a )-3*x_a/(np.exp(x_a)-1)) ###################### # NOTE: Some weird issue with TS_ratio!!! ###################### heat_capacity_a = (Cvmax)*\ (4*self.debye_func( x_a )-3*x_a/(np.exp(x_a)-1)) return heat_capacity_a def debye_func( self, x_a ): """ Return debye integral value - calculation done using interpolation in a lookup table - interpolation done in log-space where behavior is close to linear - linear extrapolation is implemented manually """ if np.isscalar( x_a ): assert x_a >= 0, 'x_a values must be greater than zero.' else: assert all( x_a >= 0 ), 'x_a values must be greater than zero.' # Lookup table # interpolate in log space where behavior is nearly linear debyex_a = np.array( [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0] ) debyelogf_a = np.array( [ 0.0, -0.03770187, -0.07580279, -0.11429475, -0.15316866, -0.19241674, -0.2320279 , -0.27199378, -0.31230405, -0.35294619, -0.39390815, -0.43518026, -0.47674953, -0.51860413, -0.56072866, -0.64573892, -0.73167389, -0.81841793, -0.90586032, -0.99388207, -1.08236598, -1.17119911, -1.26026101, -1.34944183, -1.43863241, -1.52771969, -1.61660856, -1.70519469, -1.79338479, -1.88108917, -1.96822938, -2.05471771, -2.14049175, -2.35134476, -2.55643273, -2.75507892, -2.94682783, -3.13143746, -3.30880053, -3.47894273, -3.64199587, -3.79820337, -3.94785746] ) # Create interpolation function logdeb_func = interpolate.interp1d( debyex_a, debyelogf_a, kind='cubic', bounds_error=False, fill_value=np.nan ) logfval_a = logdeb_func( x_a ) # Check for extrapolated values indicated by NaN # - replace with linear extrapolation logfextrap_a = debyelogf_a[-1] + (x_a - debyex_a[-1]) \ *(debyelogf_a[-1]-debyelogf_a[-2])\ /(debyex_a[-1]-debyex_a[-2]) logfval_a = np.where( x_a > debyex_a[-1], logfextrap_a, logfval_a ) # exponentiate to get integral value return np.exp( logfval_a ) def calc_temp_path( self, V_a, eos_d ): T0, = Control.get_params( ['T0'], eos_d ) gamma_mod, = Control.get_modtypes( ['GammaMod'], eos_d ) Tref_a = gamma_mod.temp( V_a, T0, eos_d ) return Tref_a def calc_free_energy( self, V_a, T_a, eos_d ): E_tot = self.calc_energy( V_a, T_a, eos_d ) S_tot = self.calc_entropy( V_a, T_a, eos_d ) F_tot = E_tot - T_a*S_tot return F_tot def calc_gamma( self, V_a, T_a, eos_d ): gamma_mod = eos_d['modtype_d']['GammaMod'] T0, = Control.get_params( ['T0'], eos_d ) gamma_0S_a = gamma_mod.gamma(V_a,eos_d) return gamma_0S_a #==================================================================== class GammaPowLaw(GammaMod): def __init__( self, V0ref=True, use_gammap=False ): self.V0ref = V0ref self.use_gammap = use_gammap pass def get_paramkey( self, eos_d ): if self.use_gammap: gammaderiv_typ = 'gammap' else: gammaderiv_typ = 'q' if self.V0ref: VRkey = 'V0' gammaRkey = 'gamma0' gammaderivkey = gammaderiv_typ+'0' else: VRkey = 'VR' gammaRkey = 'gammaR' gammaderivkey = gammaderiv_typ+'R' paramkey_a = [gammaRkey, gammaderivkey, VRkey] return paramkey_a def get_model_params( self, eos_d, ): paramkey_a = self.get_paramkey( eos_d ) gammaR, gammaderiv, VR = Control.get_params(paramkey_a, eos_d) if self.use_gammap: qR = gammaderiv/gammaR else: qR = gammaderiv return ( gammaR, qR, VR ) def get_param_scale_sub( self, eos_d ): """Return scale values for each parameter""" paramkey_a = self.get_paramkey( eos_d ) gammaR, gammaderiv, VR = Control.get_params(paramkey_a, eos_d) gammaR_scl = 1.0 VR_scl = VR # scale value for gammaderiv is equal to 1 for both gammap and q gammaderiv_scl = 1.0 scale_a = np.array([gammaR_scl,gammaderiv_scl,VR_scl]) return scale_a, paramkey_a def gamma( self, V_a, eos_d ): # OLD version fixed to zero-press ref volume # V0, gamma0, qR = Control.get_params( ['V0','gamma0','qR'], eos_d ) # gamma_a = gamma0 *(V_a/V0)**qR # generalized version gammaR, qR, VR = self.get_model_params( eos_d ) gamma_a = gammaR *(V_a/VR)**qR return gamma_a def temp( self, V_a, TR, eos_d ): """ Return temperature for debye model V_a: sample volume array TR: temperature at V=VR """ # generalized version gammaR, qR, VR = self.get_model_params( eos_d ) gamma_a = self.gamma( V_a, eos_d ) T_a = TR*np.exp( -(gamma_a - gammaR)/qR ) return T_a #==================================================================== class GammaFiniteStrain(GammaMod): def get_paramkey( self, eos_d ): if self.V0ref: VRkey = 'V0' gammaRkey = 'gamma0' gammapRkey = 'gammap0' else: VRkey = 'VR' gammaRkey = 'gammaR' gammapRkey = 'gammapR' paramkey_a = [gammaRkey, gammapRkey, VRkey] return paramkey_a def calc_strain_coefs( self, eos_d ): paramkey_a = self.get_paramkey( eos_d ) gammaR, gammapR, VR = Control.get_params(paramkey_a, eos_d) a1 = 6*gammaR a2 = -12*gammaR +36*gammaR**2 -18*gammapR return a1, a2 def get_param_scale_sub( self, eos_d ): """Return scale values for each parameter""" paramkey_a = self.get_paramkey( eos_d ) gammaR, gammapR, VR = Control.get_params( paramkey_a, eos_d ) gammaR_scl = 1.0 gammapR_scl = 1.0 VR_scl = VR scale_a = np.array([gammaR_scl,gammapR_scl,VR_scl]) return scale_a, paramkey_a def calc_fstrain( self, V_a, eos_d ): paramkey_a = self.get_paramkey( eos_d ) gammaR, gammapR, VR = Control.get_params(paramkey_a, eos_d) fstr = 0.5*((VR/V_a)**(2./3)-1.0) # print (V_a) # if np.any(np.isnan(V_a)): return fstr def gamma( self, V_a, eos_d ): a1, a2 = self.calc_strain_coefs( eos_d ) fstr_a = self.calc_fstrain( V_a, eos_d ) gamma_a = (2*fstr_a+1)*(a1+a2*fstr_a)/(6*(1+a1*fstr_a+0.5*a2*fstr_a**2)) return gamma_a def temp( self, V_a, TR, eos_d ): a1, a2 = self.calc_strain_coefs( eos_d ) fstr_a = self.calc_fstrain( V_a, eos_d ) T_a = TR*np.sqrt(1 + a1*fstr_a + 0.5*a2*fstr_a**2) return T_a #==================================================================== class ThermalPressMod(FullMod): # Need to impliment get_param_scale_sub def press( self, V_a, T_a, eos_d ): """Returns Press variation along compression curve.""" V_a, T_a = fill_array( V_a, T_a ) # compress_path_mod, thermal_mod = Control.get_modtypes( ['CompressPathMod', 'ThermalMod'], # eos_d ) # press_a = np.squeeze( compress_path_mod.press( V_a, eos_d ) # + thermal_mod.press( V_a, T_a, eos_d ) ) # return press_a TOL = 1e-4 PV_ratio, = Control.get_consts( ['PV_ratio'], eos_d ) F_mod_a = self.free_energy(V_a,T_a,eos_d) F_hi_mod_a = self.free_energy(V_a*(1.0+TOL),T_a,eos_d) P_mod_a = -PV_ratio*(F_hi_mod_a-F_mod_a)/(V_a*TOL) return P_mod_a def energy( self, V_a, T_a, eos_d ): """Returns Internal Energy.""" V_a, T_a = fill_array( V_a, T_a ) compress_path_mod, thermal_mod = Control.get_modtypes( ['CompressPathMod', 'ThermalMod'], eos_d ) energy_compress_a = compress_path_mod.energy( V_a, eos_d ) if compress_path_mod.path_const=='T': """ Convert free energy to internal energy """ free_energy_compress_a = energy_compress_a T0, = Control.get_params(['T0'],eos_d) # wrong # S_a = thermal_mod.entropy( V_a, T_a, eos_d ) # dF_a = thermal_mod.calc_free_energy( V_a, T_a, eos_d ) # Ftot_a = free_energy_compress_a + dF_a # energy_a = Ftot_a+T_a*S_a # correct # energy_a = thermal_mod.calc_energy_adiabat_ref(V_a,eos_d)\ # +thermal_mod.calc_energy(V_a,T_a,eos_d) S_T0_a = thermal_mod.entropy( V_a, T0, eos_d ) energy_T0_a = free_energy_compress_a + T0*S_T0_a energy_S0_a = energy_T0_a - thermal_mod.calc_energy(V_a,T0,eos_d) energy_a = energy_S0_a + thermal_mod.calc_energy(V_a,T_a,eos_d) else: energy_a = np.squeeze( energy_compress_a + thermal_mod.energy( V_a, T_a, eos_d ) ) return energy_a def bulk_modulus( self, V_a, T_a, eos_d ): TOL = 1e-4 P_lo_a = self.press( V_a*(1.0-TOL/2), T_a, eos_d ) P_hi_a = self.press( V_a*(1.0+TOL/2), T_a, eos_d ) K_a = -V_a*(P_hi_a-P_lo_a)/(V_a*TOL) return K_a def dPdT( self, V_a, T_a, eos_d, Tscl=1000.0 ): TOL = 1e-4 P_lo_a = self.press( V_a, T_a*(1.0-TOL/2), eos_d ) P_hi_a = self.press( V_a, T_a*(1.0+TOL/2), eos_d ) dPdT_a = (P_hi_a-P_lo_a)/(T_a*TOL)*Tscl # # By a maxwell relation dPdT_V = dSdV_T # S_lo_a = self.entropy( V_a*(1.0-TOL/2), T_a, eos_d ) # S_hi_a = self.entropy( V_a*(1.0+TOL/2), T_a, eos_d ) # dSdV_a = (S_hi_a-S_lo_a)/(V_a*TOL) # dPdT_a = dSdV_a*Tscl return dPdT_a def free_energy( self, V_a, T_a, eos_d ): """Returns Free Energy.""" V_a, T_a = fill_array( V_a, T_a ) compress_path_mod, thermal_mod = Control.get_modtypes( ['CompressPathMod', 'ThermalMod'], eos_d ) T0,S0 = Control.get_params(['T0','S0'],eos_d) energy_compress_a = compress_path_mod.energy( V_a, eos_d ) if compress_path_mod.path_const=='T': free_energy_compress_a = energy_compress_a S_T0_a = thermal_mod.entropy( V_a, T0, eos_d ) # wrong # S_a = thermal_mod.entropy( V_a, T_a, eos_d ) # dF_a = thermal_mod.calc_free_energy( V_a, T_a, eos_d ) # Ftot_a = free_energy_compress_a + dF_a # energy_a = Ftot_a+T_a*S_a # correct # energy_a = thermal_mod.calc_energy_adiabat_ref(V_a,eos_d)\ # +thermal_mod.calc_energy(V_a,T_a,eos_d) energy_T0_a = free_energy_compress_a + T0*S_T0_a energy_S0_a = energy_T0_a - thermal_mod.calc_energy(V_a,T0,eos_d) else: energy_S0_a = energy_compress_a Tref_a = thermal_mod.calc_temp_path(V_a,eos_d) free_energy_S0_a = energy_S0_a - Tref_a*S0 # Fix bug for nonzero ref entropy values, need to subtract off reference dF_a = thermal_mod.calc_free_energy( V_a, T_a, eos_d ) \ - thermal_mod.calc_free_energy( V_a, Tref_a, eos_d ) free_energy_a = free_energy_S0_a + dF_a return free_energy_a def entropy( self, V_a, T_a, eos_d ): """Returns Free Energy.""" V_a, T_a = fill_array( V_a, T_a ) thermal_mod, = Control.get_modtypes( ['ThermalMod'], eos_d ) S_a = np.squeeze( thermal_mod.entropy( V_a, T_a, eos_d ) ) return S_a def heat_capacity( self, V_a, T_a, eos_d ): """Returns Free Energy.""" V_a, T_a = fill_array( V_a, T_a ) thermal_mod, = Control.get_modtypes( ['ThermalMod'], eos_d ) Cv_a = np.squeeze( thermal_mod.heat_capacity( V_a, T_a, eos_d ) ) return Cv_a #==================================================================== class MieGrunPtherm(FullMod): # Need to impliment get_param_scale_sub def dPdT( self, V_a, T_a, eos_d ): V_a, T_a = fill_array( V_a, T_a ) poly_blogcoef_a = Control.get_array_params( 'blogcoef', eos_d ) dPdT_a = eos_d['Ptherm_f'] (V_a) return dPdT_a def press( self, V_a, T_a, eos_d ): V_a, T_a = fill_array( V_a, T_a ) Tref = eos_d['Tref'] Pref_a = eos_d['Pref_f'] (V_a) dPdT_a = self.dPdT( V_a, T_a, eos_d ) dPtherm_a = (T_a-Tref)*dPdT_a P_a = Pref_a + dPtherm_a return P_a def energy( self, V_a, T_a, eos_d ): V_a, T_a = fill_array( V_a, T_a ) Tref = eos_d['Tref'] Eref_a = eos_d['Eref_f'] (V_a) dPtherm_a = (T_a-Tref)*eos_d['Ptherm_f'] (V_a) gamma_a = eos_d['gamma_f'] (V_a) dPdT_a = self.dPdT( V_a, T_a, eos_d ) dPtherm_a = (T_a-Tref)*dPdT_a dEtherm_a = dPtherm_a/(gamma_a/V_a)/eos_d['const_d']['PV_ratio'] E_a = Eref_a + dEtherm_a return E_a def bulk_modulus( self, V_a, T_a, eos_d ): TOL = 1e-4 P_lo_a = self.press( V_a*(1.0-TOL/2), T_a, eos_d ) P_hi_a = self.press( V_a*(1.0+TOL/2), T_a, eos_d ) K_a = -V_a*(P_hi_a-P_lo_a)/(V_a*TOL) return K_a def dPdT( self, V_a, T_a, eos_d, Tscl=1000.0 ): TOL = 1e-4 P_lo_a = self.press( V_a, T_a*(1.0-TOL/2), eos_d ) P_hi_a = self.press( V_a, T_a*(1.0+TOL/2), eos_d ) dPdT_a = (P_hi_a-P_lo_a)/(T_a*TOL)*Tscl # # By a maxwell relation dPdT_V = dSdV_T # S_lo_a = self.entropy( V_a*(1.0-TOL/2), T_a, eos_d ) # S_hi_a = self.entropy( V_a*(1.0+TOL/2), T_a, eos_d ) # dSdV_a = (S_hi_a-S_lo_a)/(V_a*TOL) # dPdT_a = dSdV_a*Tscl return dPdT_a def free_energy( self, V_a, T_a, eos_d ): """Returns Free Energy.""" V_a, T_a = fill_array( V_a, T_a ) compress_path_mod, thermal_mod = Control.get_modtypes( ['CompressPathMod', 'ThermalMod'], eos_d ) T0,S0 = Control.get_params(['T0','S0'],eos_d) energy_compress_a = compress_path_mod.energy( V_a, eos_d ) if compress_path_mod.path_const=='T': free_energy_compress_a = energy_compress_a S_T0_a = thermal_mod.entropy( V_a, T0, eos_d ) # wrong # S_a = thermal_mod.entropy( V_a, T_a, eos_d ) # dF_a = thermal_mod.calc_free_energy( V_a, T_a, eos_d ) # Ftot_a = free_energy_compress_a + dF_a # energy_a = Ftot_a+T_a*S_a # correct # energy_a = thermal_mod.calc_energy_adiabat_ref(V_a,eos_d)\ # +thermal_mod.calc_energy(V_a,T_a,eos_d) energy_T0_a = free_energy_compress_a + T0*S_T0_a energy_S0_a = energy_T0_a - thermal_mod.calc_energy(V_a,T0,eos_d) else: energy_S0_a = energy_compress_a Tref_a = thermal_mod.calc_temp_path(V_a,eos_d) free_energy_S0_a = energy_S0_a - Tref_a*S0 dF_a = thermal_mod.calc_free_energy( V_a, T_a, eos_d ) free_energy_a = free_energy_S0_a + dF_a return free_energy_a def entropy( self, V_a, T_a, eos_d ): """Returns Free Energy.""" V_a, T_a = fill_array( V_a, T_a ) thermal_mod, = Control.get_modtypes( ['ThermalMod'], eos_d ) S_a = np.squeeze( thermal_mod.entropy( V_a, T_a, eos_d ) ) return S_a def heat_capacity( self, V_a, T_a, eos_d ): """Returns Free Energy.""" V_a, T_a = fill_array( V_a, T_a ) thermal_mod, = Control.get_modtypes( ['ThermalMod'], eos_d ) Cv_a = np.squeeze( thermal_mod.heat_capacity( V_a, T_a, eos_d ) ) return Cv_a #====================================================================
2.265625
2
scripts/venv/lib/python2.7/site-packages/cogent/parse/fastq.py
sauloal/cnidaria
3
12784342
<reponame>sauloal/cnidaria __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2007-2012, The Cogent Project" __credits__ = ["<NAME>", "<NAME>"] __license__ = "GPL" __version__ = "1.5.3" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" def MinimalFastqParser(data, strict=True): """yields name, seq, qual from fastq file Arguments: - strict: checks the quality and sequence labels are the same """ if type(data) == str: data = open(data) # fastq format is very simple, defined by blocks of 4 lines line_num = -1 record = [] for line in data: line_num += 1 if line_num == 4: if strict: # make sure the seq and qual labels match assert record[0][1:] == record[2][1:], \ 'Invalid format: %s -- %s' % (record[0][1:], record[2][1:]) yield record[0][1:], record[1], record[3] line_num = 0 record = [] record.append(line.strip()) if record: if strict and record[0]: # make sure the seq and qual labels match assert record[0][1:] == record[2][1:], 'Invalid format' if record[0]: # could be just an empty line at eof yield record[0][1:], record[1], record[3] if type(data) == file: data.close()
2.734375
3
lib/id3c/cli/utils.py
UWIT-IAM/uw-redcap-client
21
12784343
""" CLI utilities. """ import click def running_command_name() -> str: """ Returns the current CLI command name as a space-separated string, or ``id3c`` if not running under any command. """ appname = None context = click.get_current_context(silent = True) if context: appname = context.command_path if not appname: appname = "id3c" return appname
2.71875
3
components/mgmtworker/scripts/start.py
cloudify-cosmo/cloudify-manager-blueprints
35
12784344
#!/usr/bin/env python from os.path import join, dirname from cloudify import ctx ctx.download_resource( join('components', 'utils.py'), join(dirname(__file__), 'utils.py')) import utils # NOQA runtime_props = ctx.instance.runtime_properties SERVICE_NAME = runtime_props['service_name'] HOME_DIR = runtime_props['home_dir'] @utils.retry(ValueError) def check_worker_running(): """Use `celery status` to check if the worker is running.""" work_dir = join(HOME_DIR, 'work') celery_path = join(HOME_DIR, 'env', 'bin', 'celery') result = utils.sudo([ 'CELERY_WORK_DIR={0}'.format(work_dir), celery_path, '--config=cloudify.broker_config', 'status' ], ignore_failures=True) if result.returncode != 0: raise ValueError('celery status: worker not running') ctx.logger.info('Starting Management Worker Service...') utils.start_service(SERVICE_NAME) utils.systemd.verify_alive(SERVICE_NAME) try: check_worker_running() except ValueError: ctx.abort_operation('Celery worker failed to start')
1.921875
2
backup/Version 0.7/EvaClientU.py
gabrieloandco/BB84py
0
12784345
<gh_stars>0 # Copyright (c) 2016 <NAME> (<<EMAIL>>) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import socket import pickle from QuantumClasses import Bob import threading import time import select from Encrypt import Decrypt import Queue rLock = threading.Lock() breaking = False key = 0 def EvaTunnel(blocks,connecttoeva, connecttoalice,start_updating,stop_updating,stop_receivingeva,stop_receivingbob,breakevent): breaking = False host = '192.168.0.18' port = 5001 s = socket.socket() s.bind((host,port)) s.listen(2) print "Tunneling Started." connecttoeva.set() ceva, addreva = s.accept() print "Eva address is:" + str(addreva) cbob, addrbob = s.accept() connecttoalice.set() print "Bob address is:" + str(addrbob) receivedfromeva = threading.Event() receivedfrombob = threading.Event() qdatabob = Queue.Queue() qdataeva = Queue.Queue() RFET = threading.Thread(target=ReceiveFrom, args = (blocks,ceva,receivedfromeva,start_updating,stop_receivingeva,stop_updating,qdataeva,"Eva",breakevent)) RFBT = threading.Thread(target=ReceiveFrom, args = (blocks,cbob,receivedfrombob,start_updating,stop_receivingbob,stop_updating,qdatabob,"Bob",breakevent)) RFET.start() RFBT.start() while not breaking: if receivedfromeva.is_set(): dataeva = qdataeva.get() cbob.send(dataeva) print "Sent to Bob" + dataeva receivedfromeva.clear() if receivedfrombob.is_set(): databob = qdatabob.get() ceva.send(databob) print "Sent to Eva" + databob receivedfrombob.clear() if breakevent.is_set(): breaking = True RFET.join() RFBT.join() ceva.close() cbob.close() s.close() def ReceiveFrom(blocks,socket,receivedfrom,start_updating,stop_receivingfrom,stop_updating,qdatafrom,person,breakevent,block=False): breaking = False while not breaking: datafrom = socket.recv(324*(1+blocks)/2) qdatafrom.put(datafrom) print "Received from: " + person + datafrom receivedfrom.set() if not datafrom: breaking = True breakevent.set() if datafrom == "R3c1V3!": stop_receivingfrom.set() stop_updating.clear() start_updating.set() if not stop_receivingfrom.is_set(): print DecryptMessage(datafrom,start_updating) if block: stop_updating.wait() def DecryptMessage(data,start_updating): global key if not start_updating.is_set(): try: print "key: " + str(key) print "message: " + Decrypt(data,key)[0:20] except: print "Couldn't Decrypt" else: pass def UpdateKey(blocks,socketalice,socketeva,stop_receivingbob,stop_receivingeva,stop_receivingfromtunnel,stop_receivingfromalice,stop_updating,start_updating,start_clock,breakingevent): global key breaking = False def uk(): global key try: start_updating.wait() stop_receivingfromalice.wait() stop_receivingbob.wait() stop_receivingeva.wait() stop_receivingfromtunnel.wait() stop_updating.clear() rLock.acquire() print "Updating" ready = select.select([socketalice],[],[],3) if ready[0]: AliceMbits = socketalice.recv(324*(1+blocks)/2) print "Received Alice's bases" print "bases: " + AliceMbits AliceM= pickle.loads(AliceMbits) EvaM = Bob(blocks) ResultM= AliceM.Measure(EvaM) ResultMbits = pickle.dumps(ResultM) socketeva.send(ResultMbits) print "Sent State to Tunnel" consbits = socketeva.recv(47*(1+blocks)/2) print "Received Coincidences from Eva" socketalice.send(consbits) print "Sent Coincidences To Alice" cons = pickle.loads(consbits) newkey = EvaM.Key(ResultM,cons) if newkey == []: newkey = [0] key= int("0b"+"".join(str(i) for i in newkey),2) done = socketalice.recv(1024) socketeva.send(done) done = socketeva.recv(1024) socketalice.send(done) print done print "Key Updated; new key: " + bin(key) stop_receivingeva.clear() stop_receivingbob.clear() stop_updating.set() start_clock.set() start_updating.clear() rLock.release() return key except: print "Update Failed" stop_receivingbob.clear() stop_receivingeva.clear() stop_updating.set() start_clock.set() start_updating.clear() return 1 while not breaking: uk() if breakingevent.is_set(): breaking = True socket.close() if True: blocks=int(raw_input('give me blocks: ')) delay = 20 connecttoeva = threading.Event() connecttoalice = threading.Event() start_updating = threading.Event() stop_receivingeva = threading.Event() stop_receivingbob = threading.Event() stop_updating=threading.Event() start_clock = threading.Event() breakevent = threading.Event() Tunnel = threading.Thread(target=EvaTunnel, args=(blocks,connecttoeva, connecttoalice,start_updating,stop_updating,stop_receivingeva,stop_receivingbob,breakevent)) Tunnel.start() connecttoeva.wait() hostEva='192.168.0.18' portEva = 5001 seva = socket.socket() seva.connect((hostEva,portEva)) connecttoalice.wait() hostAlice='192.168.0.18' portAlice = 5000 salice = socket.socket() salice.connect((hostAlice,portAlice)) receivedfromtunnel = threading.Event() receivedfromalice = threading.Event() stop_receivingfromtunnel = threading.Event() stop_receivingfromalice = threading.Event() qdatatunnel = Queue.Queue() qdataalice = Queue.Queue() RFTT = threading.Thread(target=ReceiveFrom, args = (blocks,seva,receivedfromtunnel,start_updating,stop_receivingfromtunnel,stop_updating,qdatatunnel,"Tunnel",breakevent,True)) RFAT = threading.Thread(target=ReceiveFrom, args = (blocks,salice,receivedfromalice,start_updating,stop_receivingfromalice,stop_updating,qdataalice,"Alice",breakevent, True)) RFTT.start() RFAT.start() uT = threading.Thread(target=UpdateKey, args=(blocks,salice,seva,stop_receivingbob,stop_receivingeva,stop_receivingfromtunnel,stop_receivingfromalice,stop_updating,start_updating,start_clock,breakevent)) uT.start() stop_updating.set() start_clock.set() while not breaking: if receivedfromalice.is_set(): datatunnel = qdatatunnel.get() seva.send(datatunnel) print "Sent to Tunnel" receivedfromalice.clear() if receivedfromtunnel.is_set(): dataalice = qdataalice.get() salice.send(dataalice) print "Sent to Alice" receivedfromtunnel.clear() if breakevent.is_set(): breaking = True uT.join() RFTT.join() RFAT.join() salice.close() seva.close()
2.046875
2
src/fhir_types/FHIR_ClaimResponse.py
anthem-ai/fhir-types
2
12784346
from typing import Any, List, Literal, TypedDict from .FHIR_Attachment import FHIR_Attachment from .FHIR_ClaimResponse_AddItem import FHIR_ClaimResponse_AddItem from .FHIR_ClaimResponse_Adjudication import FHIR_ClaimResponse_Adjudication from .FHIR_ClaimResponse_Error import FHIR_ClaimResponse_Error from .FHIR_ClaimResponse_Insurance import FHIR_ClaimResponse_Insurance from .FHIR_ClaimResponse_Item import FHIR_ClaimResponse_Item from .FHIR_ClaimResponse_Payment import FHIR_ClaimResponse_Payment from .FHIR_ClaimResponse_ProcessNote import FHIR_ClaimResponse_ProcessNote from .FHIR_ClaimResponse_Total import FHIR_ClaimResponse_Total from .FHIR_code import FHIR_code from .FHIR_CodeableConcept import FHIR_CodeableConcept from .FHIR_dateTime import FHIR_dateTime from .FHIR_Element import FHIR_Element from .FHIR_id import FHIR_id from .FHIR_Identifier import FHIR_Identifier from .FHIR_Meta import FHIR_Meta from .FHIR_Narrative import FHIR_Narrative from .FHIR_Period import FHIR_Period from .FHIR_Reference import FHIR_Reference from .FHIR_string import FHIR_string from .FHIR_uri import FHIR_uri # This resource provides the adjudication details from the processing of a Claim resource. FHIR_ClaimResponse = TypedDict( "FHIR_ClaimResponse", { # This is a ClaimResponse resource "resourceType": Literal["ClaimResponse"], # The logical id of the resource, as used in the URL for the resource. Once assigned, this value never changes. "id": FHIR_id, # The metadata about the resource. This is content that is maintained by the infrastructure. Changes to the content might not always be associated with version changes to the resource. "meta": FHIR_Meta, # A reference to a set of rules that were followed when the resource was constructed, and which must be understood when processing the content. Often, this is a reference to an implementation guide that defines the special rules along with other profiles etc. "implicitRules": FHIR_uri, # Extensions for implicitRules "_implicitRules": FHIR_Element, # The base language in which the resource is written. "language": FHIR_code, # Extensions for language "_language": FHIR_Element, # A human-readable narrative that contains a summary of the resource and can be used to represent the content of the resource to a human. The narrative need not encode all the structured data, but is required to contain sufficient detail to make it "clinically safe" for a human to just read the narrative. Resource definitions may define what content should be represented in the narrative to ensure clinical safety. "text": FHIR_Narrative, # These resources do not have an independent existence apart from the resource that contains them - they cannot be identified independently, and nor can they have their own independent transaction scope. "contained": List[Any], # May be used to represent additional information that is not part of the basic definition of the resource. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. "extension": List[Any], # May be used to represent additional information that is not part of the basic definition of the resource and that modifies the understanding of the element that contains it and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer is allowed to define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions.Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). "modifierExtension": List[Any], # A unique identifier assigned to this claim response. "identifier": List[FHIR_Identifier], # The status of the resource instance. "status": FHIR_code, # Extensions for status "_status": FHIR_Element, # A finer grained suite of claim type codes which may convey additional information such as Inpatient vs Outpatient and/or a specialty service. "type": FHIR_CodeableConcept, # A finer grained suite of claim type codes which may convey additional information such as Inpatient vs Outpatient and/or a specialty service. "subType": FHIR_CodeableConcept, # A code to indicate whether the nature of the request is: to request adjudication of products and services previously rendered; or requesting authorization and adjudication for provision in the future; or requesting the non-binding adjudication of the listed products and services which could be provided in the future. "use": FHIR_code, # Extensions for use "_use": FHIR_Element, # The party to whom the professional services and/or products have been supplied or are being considered and for whom actual for facast reimbursement is sought. "patient": FHIR_Reference, # The date this resource was created. "created": FHIR_dateTime, # Extensions for created "_created": FHIR_Element, # The party responsible for authorization, adjudication and reimbursement. "insurer": FHIR_Reference, # The provider which is responsible for the claim, predetermination or preauthorization. "requestor": FHIR_Reference, # Original request resource reference. "request": FHIR_Reference, # The outcome of the claim, predetermination, or preauthorization processing. "outcome": FHIR_code, # Extensions for outcome "_outcome": FHIR_Element, # A human readable description of the status of the adjudication. "disposition": FHIR_string, # Extensions for disposition "_disposition": FHIR_Element, # Reference from the Insurer which is used in later communications which refers to this adjudication. "preAuthRef": FHIR_string, # Extensions for preAuthRef "_preAuthRef": FHIR_Element, # The time frame during which this authorization is effective. "preAuthPeriod": FHIR_Period, # Type of Party to be reimbursed: subscriber, provider, other. "payeeType": FHIR_CodeableConcept, # A claim line. Either a simple (a product or service) or a 'group' of details which can also be a simple items or groups of sub-details. "item": List[FHIR_ClaimResponse_Item], # The first-tier service adjudications for payor added product or service lines. "addItem": List[FHIR_ClaimResponse_AddItem], # The adjudication results which are presented at the header level rather than at the line-item or add-item levels. "adjudication": List[FHIR_ClaimResponse_Adjudication], # Categorized monetary totals for the adjudication. "total": List[FHIR_ClaimResponse_Total], # Payment details for the adjudication of the claim. "payment": FHIR_ClaimResponse_Payment, # A code, used only on a response to a preauthorization, to indicate whether the benefits payable have been reserved and for whom. "fundsReserve": FHIR_CodeableConcept, # A code for the form to be used for printing the content. "formCode": FHIR_CodeableConcept, # The actual form, by reference or inclusion, for printing the content or an EOB. "form": FHIR_Attachment, # A note that describes or explains adjudication results in a human readable form. "processNote": List[FHIR_ClaimResponse_ProcessNote], # Request for additional supporting or authorizing information. "communicationRequest": List[FHIR_Reference], # Financial instruments for reimbursement for the health care products and services specified on the claim. "insurance": List[FHIR_ClaimResponse_Insurance], # Errors encountered during the processing of the adjudication. "error": List[FHIR_ClaimResponse_Error], }, total=False, )
1.710938
2
python_scripts/nand/legacyftl.py
slango20/iphone-dataprotection
19
12784347
<filename>python_scripts/nand/legacyftl.py from carver import NANDCarver from construct.core import Struct from construct.macros import ULInt32, ULInt16, Array, ULInt8, Padding from pprint import pprint from structs import SpareData from util import hexdump from vfl import VFL import plistlib """ openiboot/plat-s5l8900/ftl.c openiboot/plat-s5l8900/includes/s5l8900/ftl.h """ FTLCxtLog = Struct("FTLCxtLog", ULInt32("usn"), ULInt16("wVbn"), ULInt16("wLbn"), ULInt32("wPageOffsets"), ULInt16("pagesUsed"), ULInt16("pagesCurrent"), ULInt32("isSequential") ) FTLCxtElement2 = Struct("FTLCxtElement2", ULInt16("field_0"), ULInt16("field_2") ) FTLCxt = Struct("FTLCxt", ULInt32("usnDec"), ULInt32("nextblockusn"), ULInt16("wNumOfFreeVb"), ULInt16("nextFreeIdx"), ULInt16("swapCounter"), Array(20, ULInt16("awFreeVb")), ULInt16("field_36"), Array(18, ULInt32("pages_for_pawMapTable")), Array(36, ULInt32("pages_for_pawEraseCounterTable")), Array(34, ULInt32("pages_for_wPageOffsets")), ULInt32("pawMapTable"), ULInt32("pawEraseCounterTable"), ULInt32("wPageOffsets"), Array(18, FTLCxtLog), ULInt32("eraseCounterPagesDirty"), ULInt16("unk3"), Array(3, ULInt16("FTLCtrlBlock")), ULInt32("FTLCtrlPage"), ULInt32("clean"), Array(36, ULInt32("pages_for_pawReadCounterTable")), ULInt32("pawReadCounterTable"), Array(5, FTLCxtElement2), ULInt32("field_3C8"), ULInt32("totalReadCount"), ULInt32("page_for_FTLCountsTable"), ULInt32("hasFTLCountsTable"), Padding(0x420), #, ULInt8("field_3D8")), ULInt32("versionLower"), ULInt32("versionUpper") ) FTL_CTX_TYPE = 0x43 FTL_BLOCK_MAP = 0x44 FTL_ERASE_COUNTER = 0x46 FTL_MOUNTED = 0x47 FTL_CTX_TYPE_MAX = 0x4F USER_TYPE = 0x40 USER_LAST_TYPE = 0x41 #last user page in superblock? class FTL(object): def __init__(self, nand, vfl): self.nand = nand self.vfl = vfl self.pawMapTable = {} #maps logical blocks to virtual blocks self.pLogs = {} if not self.FTL_open(): self.FTL_restore() def FTL_open(self): minUsnDec = 0xffffffff ftlCtrlBlock = 0xffff for vb in self.vfl.VFL_get_FTLCtrlBlock(): s, d = self.vfl.read_single_page(vb * self.vfl.pages_per_sublk) if not s: continue if s.type >= FTL_CTX_TYPE and s.type <= FTL_CTX_TYPE_MAX: if s.usn < minUsnDec: ftlCtrlBlock = vb minUsnDec = s.usn print ftlCtrlBlock self.ftlCtrlBlock = ftlCtrlBlock for p in xrange(self.vfl.pages_per_sublk-1,1, -1): s, d = self.vfl.read_single_page(ftlCtrlBlock * self.vfl.pages_per_sublk + p) if not s: continue #print s #print p if s.type == FTL_CTX_TYPE: print s.usn ctx = FTLCxt.parse(d) if ctx.versionLower == 0x46560001: print ctx assert ctx.FTLCtrlPage == (ftlCtrlBlock * self.vfl.pages_per_sublk + p) break else: print "Unclean shutdown, last type 0x%x" % s.type return False self.ctx = ctx print "FTL_open OK !" return True def determine_block_type(self, block): maxUSN = 0 isSequential = True for page in xrange(self.vfl.pages_per_sublk-1,1, -1): s, _ = self.vfl.read_single_page(block * self.vfl.pages_per_sublk + page) if not s: continue if s.usn > maxUSN: maxUSN = s.usn if s.lpn % self.vfl.pages_per_sublk != page: isSequential = False return isSequential, maxUSN return isSequential, maxUSN def FTL_restore(self): self.pLogs = self.vfl.nand.loadCachedData("pLogs") self.pawMapTable = self.vfl.nand.loadCachedData("pawMapTable") if self.pLogs and self.pawMapTable: print "Found cached FTL restore information" return self.pawMapTable = {} self.pLogs = {} ctx = None for p in xrange(self.vfl.pages_per_sublk-1,1, -1): s, d = self.vfl.read_single_page(self.ftlCtrlBlock * self.vfl.pages_per_sublk + p) if not s: continue if s.type == FTL_CTX_TYPE: print s.usn ctx = FTLCxt.parse(d) if ctx.versionLower == 0x46560001: print ctx assert ctx.FTLCtrlPage == (self.ftlCtrlBlock * self.vfl.pages_per_sublk + p) print "Found most recent ctx" break if not ctx: print "FTL_restore fail did not find ctx" raise blockMap = {} self.nonSequential = {} print "FTL_restore in progress ..." for sblock in xrange(self.vfl.userSuBlksTotal + 23): for page in xrange(self.vfl.pages_per_sublk): s, d = self.vfl.read_single_page(sblock * self.vfl.pages_per_sublk + page) if not s: continue if s.type >= FTL_CTX_TYPE and s.type <= FTL_CTX_TYPE_MAX: break if s.type != USER_TYPE and s.type != USER_LAST_TYPE: print "Weird page type %x at %x %x" % (s.type, sblock, page) continue if s.lpn % self.vfl.pages_per_sublk != page: print "Block %d non sequential" % sblock self.nonSequential[sblock] = 1 blockMap[sblock] = (s.lpn / self.vfl.pages_per_sublk, s.usn) break z = dict([(i, [(a, blockMap[a][1]) for a in blockMap.keys() if blockMap[a][0] ==i]) for i in xrange(self.vfl.userSuBlksTotal)]) for k,v in z.items(): if len(v) == 2: print k, v vbA, usnA = v[0] vbB, usnB = v[1] if usnA > usnB: #smallest USN is map block, highest log block self.pawMapTable[k] = vbB self.restoreLogBlock(k, vbA) else: self.pawMapTable[k] = vbA self.restoreLogBlock(k, vbB) elif len(v) > 2: raise Exception("fufu", k, v) else: self.pawMapTable[k] = v[0][0] self.vfl.nand.cacheData("pLogs", self.pLogs) self.vfl.nand.cacheData("pawMapTable", self.pawMapTable) def restoreLogBlock(self, lbn, vbn): log = {"wVbn": vbn, "wPageOffsets": {}} for page in xrange(self.vfl.pages_per_sublk): s, d = self.vfl.read_single_page(vbn * self.vfl.pages_per_sublk + page) if not s: break log["wPageOffsets"][s.lpn % self.vfl.pages_per_sublk] = page self.pLogs[lbn] = log def mapPage(self, lbn, offset): if self.pLogs.has_key(lbn): if self.pLogs[lbn]["wPageOffsets"].has_key(offset): offset = self.pLogs[lbn]["wPageOffsets"][offset] #print "mapPage got log %d %d" % (lbn, offset) return self.pLogs[lbn]["wVbn"] * self.vfl.pages_per_sublk + offset if not self.pawMapTable.has_key(lbn): return 0xFFFFFFFF return self.pawMapTable[lbn] * self.vfl.pages_per_sublk + offset def readLPN(self, lpn, key=None): lbn = lpn / self.vfl.pages_per_sublk offset = lpn % self.vfl.pages_per_sublk vpn = self.mapPage(lbn, offset) if vpn == 0xFFFFFFFF: print "lbn not found %d" % lbn return "\xFF" * self.nand.pageSize s,d = self.vfl.read_single_page(vpn, key, lpn) if not s: return None if s.lpn != lpn: raise Exception("FTL translation FAIL spare lpn=%d vs expected %d" % (s.lpn, lpn)) return d
1.945313
2
labugr/integrate/__init__.py
lserraga/labUGR
1
12784348
from .quadpack import quad, dblquad, tplquad, nquad excluded = ['excluded', 'quadpack'] __all__ = [s for s in dir() if not ((s in excluded)or s.startswith('_'))] from labugr.testing.utils import PytestTester test = PytestTester(__name__) del PytestTester
2.03125
2
src/rollit/ast/util.py
russells-crockpot/roll-with-it
2
12784349
<filename>src/rollit/ast/util.py """ """ import re from contextlib import suppress from .elements import StringLiteral, BinaryOp, Negation, SpecialReference, OneSidedOperator, \ TwoSidedOperator, OverloadOnlyOperator from ..util import is_valid_iterable, ensure_tuple __all__ = [ 'was_evaluated', 'flatten_tuple', 'negate', 'get_operator', ] def was_evaluated(item): """ """ return (item is None or item == SpecialReference.NONE or isinstance(item, (int, bool, float, StringLiteral))) def flatten_tuple(item): """ """ if not is_valid_iterable(item): return ensure_tuple(item) if item and is_valid_iterable(item[0]) and len(item) == 1: item = item[0] if item and is_valid_iterable(item[0]): item = (*item[0], item[1]) return tuple(item) # pylint: disable=too-many-function-args def negate(element, codeinfo=None, script=None): """ """ if element is None or element == SpecialReference.NONE: return 1 if isinstance(element, (int, float, bool)): return 0 if element else 1 if isinstance(element, StringLiteral): return 0 if element.value else 1 if isinstance(element, Negation): return element.value if isinstance(element, BinaryOp) and element.op == TwoSidedOperator.NOT_EQUALS: return BinaryOp(element.left, TwoSidedOperator.EQUALS, element.right, codeinfo=element.codeinfo) return Negation(element, codeinfo=codeinfo) # pylint: disable=no-value-for-parameter def get_operator(symbol): """ """ with suppress(ValueError): return OneSidedOperator(symbol) with suppress(ValueError): return TwoSidedOperator(symbol) with suppress(ValueError): return OverloadOnlyOperator(re.sub(r'\s+', '', symbol)) raise ValueError(f'Unknown operator: {symbol}')
2.640625
3
RadarDataProcessAlg/Mp4ToGif.py
CaptainEven/PyScripts
5
12784350
<gh_stars>1-10 # encoding=utf-8 import argparse import os import cv2 import imageio # name of the video file to convert input_path = os.path.abspath('./output.mp4') # targetFormat must be .gif def ToGif(input_path, target_format, num_frames=60, # max frame number out_size=(1600, 797)): # (640, 360), (854, 480), (1920, 1080) """ 转换成gif格式 """ output_path = os.path.splitext(input_path)[0] + target_format # 'codeblog', 'mp4' print('converting ', input_path, ' to ', output_path) # ----- reader = imageio.get_reader(input_path) fps = reader.get_meta_data()['fps'] writer = imageio.get_writer(output_path, fps=fps) for i, frame in enumerate(reader): if i < num_frames: frame = cv2.resize(frame, out_size, interpolation=cv2.INTER_CUBIC) writer.append_data(frame) # print(f'frame: {frame}') writer.close() # ----- print("Converting done.") class Video2GifConverter(object): def __init__(self, video_path, out_f_path): if not os.path.isfile(video_path): print('[Err]: invalid video file path.') return self.in_f_path = video_path self.out_f_path = out_f_path def convert(self): reader = imageio.get_reader(self.in_f_path) fps = reader.get_meta_data()['fps'] writer = imageio.get_writer(self.out_f_path, fps=fps) cnt = 0 for frame in reader: writer.append_data(frame) cnt += 1 print('Total {:d} frames.'.format(cnt)) writer.close() print('Converting done.') # ToGif(input_path, '.gif') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--video', type=str, default='./output.mp4', help='Video path to be processed') parser.add_argument('--frames', type=int, default=60, help='Number of frames to be processed.') opt = parser.parse_args() ToGif(opt.video, '.gif', opt.frames)
2.90625
3