max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
src/prefect/environments/execution/__init__.py
vnsn/prefect
8,633
12784051
""" Execution environments encapsulate the logic for where your Flow should execute in Prefect Cloud. DEPRECATED: Environment based configuration is deprecated, please transition to configuring `flow.run_config` instead of `flow.environment`. See https://docs.prefect.io/orchestration/flow_config/overview.html for more info. """ from prefect.environments.execution.base import Environment, load_and_run_flow from prefect.environments.execution.dask import DaskKubernetesEnvironment from prefect.environments.execution.dask import DaskCloudProviderEnvironment from prefect.environments.execution.fargate import FargateTaskEnvironment from prefect.environments.execution.k8s import KubernetesJobEnvironment from prefect.environments.execution.local import LocalEnvironment
1.234375
1
src/load_files.py
marckolak/radio-map-calibration-robot
0
12784052
""" The pypositioning.system.load_files.py module contains functions allowing to load measurement results from various types of files. The currently available functions allow to load **.psd** files collected with TI Packet Sniffer and results obtained using IONIS localization system. Copyright (C) 2020 <NAME> """ import numpy as np import pandas as pd def load_ionis_file(filepath, normalize_ts=False): """ Load measurement file from IONIS system Parameters ---------- filepath: str path to measurement file normalize_ts: bool if True set ts base to 0 (rounds ts to full seconds) Returns ------- ble_df: DataFrame data frame with ble rssi results (contains whole ble packets received by the anchors) uwb_df: Dataframe data frame with uwb-based toa results ts_0: float timestamp of the first received packet """ # open psd file f = open(filepath, 'r') ble_res = [] uwb_res = [] # split and decode each line for line in f: s = line.split('\t') # if int(s[3]) == 19: # ... # the packet is empty if int(s[5]) * 12 + int(s[6]) * 8 + 19 > int(s[3]): print("faulty packet, ts: " + s[0]) else: # get ble and uwb packets number ble_n = int(s[5]) uwb_n = int(s[6]) # for each ble packet for k in range(ble_n): bps = 6 + k * 8 # append array [ts, an_id, an_sqn, an_pressure, BLE packet contents] ble_res.append(s[:3] + [s[4]] + s[bps + 1:bps + 9]) for j in range(uwb_n): ups = 6 + ble_n * 8 + j * 4 # append array [ts, an_id, an_sqn, an_pressure, BLE packet contents] uwb_res.append(s[:3] + s[ups + 1:ups + 5]) # reshape the arrays ble_res = np.array(ble_res) uwb_res = np.array(uwb_res) if ble_res.size > 0: ble_df = pd.DataFrame(data=ble_res, columns=['ts', 'an_id', 'an_sqn', 'an_p', 'rx_id', 'tag_id', 'ble_ts', 'rssi', 'pres', 'volt', 'steps', 'alert']) ble_df = ble_df.astype(dtype={'ts': 'float', 'an_id': 'int32', 'an_sqn': 'int32', 'an_p': 'int32', 'rx_id': 'int32', 'tag_id': 'int32', 'ble_ts': 'int32', 'rssi': 'float', 'pres': 'int32', 'volt': 'int32', 'steps': 'int32', 'alert': 'int32'}) ble_df.loc[ble_df['rssi'] == 0, 'rssi'] = np.nan else: ble_df = None if uwb_res.size > 0: uwb_df = pd.DataFrame(data=uwb_res, columns=['ts', 'an_id', 'an_sqn', 'rx_id', 'tag_id', 'uwb_sqn', 'toa']) uwb_df = uwb_df.astype({'ts': 'float', 'an_id': 'int32', 'an_sqn': 'int32', 'rx_id': 'int32', 'tag_id': 'int32', 'uwb_sqn': 'int32', 'toa': 'float'}) uwb_df['toa'] = uwb_df['toa'].values * 15.65e-12 else: uwb_df = None if normalize_ts: ts_min = 0 if (uwb_res.size > 0 and ble_res.size > 0): ts_min = np.minimum(ble_df.ts.min(), uwb_df.ts.min()) ble_df.ts = np.rint((ble_df.ts - ts_min).values / 1000) uwb_df.ts = np.rint((uwb_df.ts - ts_min).values / 1000) elif uwb_res.size > 0: ts_min = uwb_df.ts.min() uwb_df.ts = np.rint((uwb_df.ts - ts_min).values / 1000) print('no ble results in a file - normalizing uwb ts only') elif ble_res.size > 0: ts_min = ble_df.ts.min() ble_df.ts = np.rint((ble_df.ts - ts_min).values / 1000) print('no uwb results in a file - normalizing ble ts only') return ble_df, uwb_df, ts_min / 1000 return ble_df, uwb_df, 0 def synchronize_toa_ionis(m_uwb, an, an_r): """ Synchronize toa values according to IONIS synchronization scheme Parameters ---------- m_uwb: DataFrame data frame with uwb measurement results an: ndarray anchor nodes coordinates [id,x,y,z] an_r: ndarray reference anchor node coordinates [x,y,z] Returns ------- m_uwb: DataFrame m_uwb data frame with toa values synchronized """ # initialize array with empty rows for missing anchors an_f = np.empty((int(an[:, 0].max()), 3)) an_f[:] = np.NaN for a in an: an_f[int(a[0]) - 1, :] = a[1:] m_uwb["toa"] = m_uwb.toa + np.linalg.norm(an_f[m_uwb.an_id - 1] - an_r, axis=1) / 3e8 return m_uwb def distribute_packets_ionis(df): """ Distribute packets that could be delayed and came to the system controller at the same time Parameters ---------- df: DataFrame dataframe containing measurement results with timestamps and sqns. It must include columns: [ts, an_sqn, an_id]. Timestamp must be rounded to full seconds (might be float) Returns ------- df_d: DataFrame dataframe, where the packet ts were corrected to the reception times, which would occur without the delay """ # copy the dataframe df_d = df.copy() # get unique anchor ids anchor_ids = df.an_id.unique() # for each anchor search for delayed packets and distribute them for an_id in anchor_ids: mask_an_id = df.an_id == an_id uts = df[mask_an_id].ts.unique() for i in range(uts.size): ts = df[mask_an_id & (df.ts == uts[i])] an_sqns = ts.an_sqn.unique() # if the results if an_sqns.size > 1: # find last properly received packet pi = 1 while df[mask_an_id & (df.ts == uts[i - pi])].an_sqn.unique().size > 1: pi = pi + 1 prev_ts = uts[i - pi] prev_an_sqn = df_d[(df_d.an_id == an_id) & (df_d.ts == uts[i - pi])].an_sqn.values[0] # correct timestamps tse = distribute_packet_batch(ts.ts, ts.an_sqn, prev_ts, prev_an_sqn) df_d.ts[(df_d.an_id == an_id) & (df_d.ts == uts[i])] = tse return df_d def distribute_packet_batch(ts, an_sqn, ts_p, an_sqn_p): """Correct timestamps of the packets, which were received in a batch due to delay introduced in the WiFi interface. Parameters ---------- ts: array_like timestamps of packets received in a batch [in seconds] an_sqn: array_like anchor sqns of packets received in a batch [0-255] ts_p: float the timestamp of the last properly received packet an_sqn_p: int the anchor sqn of the last properly received packet Returns ------- tse: ndarray timestamps corrected to the reception times, which would occur without the delay """ # empty list for collected packets tse = [] for t, ans in zip(ts, an_sqn): # check if anchor sqn is higher than the previous one or the counter has turned if ans >= an_sqn_p: te = ts_p + ans - an_sqn_p else: te = ts_p + (256 + ans - an_sqn_p) tse.append(te) return np.array(tse) def rearrange_timestamps_ble(m_ble, tag_id, packet_rate, distribute_delayed=False): """Change timestamps values so that the consecutive packets sent at different times do not have the same ts. The timestamps are changed as follows: \ new_ts = ts + 1/packet_rate * N \ where N is the sequential number of BLE packet inside WiFi frame. Parameters ---------- m_ble: DataFrame dataframe with measurement results tag_id: int tag identifier packet_rate: float packet rate set in the systems [packets per second] distribute_delayed: bool, optional if True call distribute_packets_ionis Returns ------- m_b: DataFrame Input m_ble DataFrame with rearranged timestamps. """ # filter tag id m_b = m_ble[m_ble.tag_id == tag_id] if distribute_delayed: # distribute delayed packets m_b = distribute_packets_ionis(m_b) # group and bin by BLE ts grouped = m_b.groupby(by=['ts', 'an_id', 'an_sqn', 'tag_id']) bins = [] for n, g in grouped: bins.append(pd.cut(g.ble_ts, packet_rate, labels=False)) m_b['bin'] = pd.concat(bins) # group and average power per BLE receiver grouped = m_b.groupby(by=['ts', 'an_id', 'tag_id', 'bin']) m_b = grouped.agg({'rssi': log_mean}) m_b = m_b.reset_index() # get ts with 1/rate m_b['ts'] = m_b['ts'] + m_b['bin'] / packet_rate return m_b def rearrange_timestamps_uwb(m_uwb, tag_id, packet_rate, distribute_delayed=False): """Change timestamps values so that the consecutive packets sent at different times do not have the same ts. The timestamps are changed as follows: \ new_ts = ts + 1/packet_rate * N \ where N is the sequential number of UWB packet inside WiFi frame. Parameters ---------- m_uwb: DataFrame dataframe with measurement results tag_id: int tag identifier packet_rate: float packet rate set in the systems [packets per second] distribute_delayed: bool, optional if True call distribute_packets_ionis Returns ------- m_u: DataFrame Input m_uwb DataFrame with rearranged timestamps. """ # filter tag id m_u = m_uwb[m_uwb.tag_id == tag_id].copy() if distribute_delayed: # distribute delayed packets m_u = distribute_packets_ionis(m_u) # group and bin by reception ts (in this case toa value) grouped = m_u.groupby(by=['ts', 'an_sqn']) bins = [] for n, g in grouped: bins.append(pd.cut(g.toa, packet_rate, labels=False)) m_u['bin'] = pd.concat(bins) # get ts with 1/rate m_u['ts'] = m_u['ts'] + m_u['bin'] / packet_rate return m_u def measurement_array(m_df, mtype, data_frame=False): """Create measurement array [ts, meas values...] Parameters ---------- m_df: DataFrame measurement dataframe mtype: str measurement type: 'ble', 'uwb' data_frame: bool return dataframe, None tuple if true Returns ------- array: ndarray measurement array in format [ts, mx, my, mz ...] an_ids: ndarray anchor_ids: [x,y,z ...] df: DataFrame, optional measurement array stored as dataframe (returned when data_frame==True) """ if mtype == 'uwb': m = m_df[['ts', 'uwb_sqn', 'toa', 'an_id']].copy() elif mtype == 'ble': m = m_df[['ts', 'rssi', 'an_id']].copy() else: print("Unknown type") return None, None df = None # get unique anchor ids anchor_ids = np.sort(m.an_id.unique()) # create array if mtype == 'uwb': for i in anchor_ids: mp = m[m.an_id == i].rename(columns={'toa': 'toa_' + str(i)}).drop(columns='an_id') if df is None: df = mp else: df = df.merge(mp, how='outer', on=['ts', 'uwb_sqn']) df = df.sort_values(['ts', 'uwb_sqn'], ascending=[True, True]).reset_index(drop=True) df = df.drop(columns='uwb_sqn') elif mtype == 'ble': for i in anchor_ids: mp = m[m.an_id == i].rename(columns={'rssi': 'rssi_' + str(i)}).drop(columns='an_id') if df is None: df = mp else: df = df.merge(mp, how='outer', on=['ts']) df = df.sort_values(['ts'], ascending=[True]).reset_index(drop=True) array = df.values anchor_ids = np.r_[0, anchor_ids] # add 0 for ts column if data_frame: return array, anchor_ids, df return array, anchor_ids def hybrid_array(dfs, on='ts', how='outer'): """ Create a hybrid measurement array Parameters ---------- dfs: iterable DataFrames which would be merged into a hybrid frame on: str, default: 'ts' on which column the frames will be merged how: str, default: 'outer' how the frames will be merged Returns ------- m: ndarray measurement array in format [ts, results...] m_type: ndarray type of data in each of the columns e.g. ['ts', 'rssi', 'toa] m_id: ndarray anchor ids of the columns df. Default id is 0 - for 'ts' and other parameter not associated with any particular anchor. df: DataFrame hybrid DataFrame """ df = dfs[0] for d in dfs[1:]: df = df.merge(d, on=on, how=how) m_type= np.array([x.split('_')[0] for x in df.columns[:]]) m_id= np.array([x.split('_')[1] if '_' in x else 0 for x in df.columns[:] ]).astype('int') return df.values, m_type, m_id, df def log_mean(v_db, axis=None): """ Calculate average for values in log scale by converting to linear and back to log. Parameters ---------- v_db: ndarray values in log scale axis: {int, None}, optional axis along which the mean will be calculated Returns ------- avg: {ndarray, double} mean value """ v_lin = 10 ** (v_db / 10) # Power in mW l_mean = np.nanmean(v_lin, axis=axis) db_mean = 10 * np.log10(l_mean) return db_mean
2.515625
3
Chess/main.py
jlefkoff/GridBoard
1
12784053
import ChessFuntions import pprint game = ChessFuntions.Chessgame() game.setup() game.wereToMove(2, 1)
1.617188
2
Q084.py
Linchin/python_leetcode_git
0
12784054
<reponame>Linchin/python_leetcode_git """ 84 hard max rectangle in histogram Given an array of integers heights representing the histogram's bar height where the width of each bar is 1, return the area of the largest rectangle in the histogram. """ from typing import List class Solution: def largestRectangleArea(self, heights: List[int]) -> int: # wrong answer stack = [] area = 0 for i in range(len(heights)): if not stack or heights[stack[-1]] < heights[i]: stack.append(i) else: while stack and heights[stack[-1]] > heights[i]: area = max(area, (i - stack[-1]) * heights[stack[-1]]) stack.pop() stack.append(i) while stack: area = max(area, (len(heights) - stack[-1]) * heights[stack[-1]]) stack.pop() return area heights = [2, 1, 2] heights2 = [2,1,5,6,2,3] sol = Solution() print(sol.largestRectangleArea(heights))
3.578125
4
packages/w3af/w3af/core/controllers/threads/threadpool.py
ZooAtmosphereGroup/HelloPackages
0
12784055
""" threadpool.py Copyright 2006 <NAME> This file is part of w3af, http://w3af.org/ . w3af is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License. w3af is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with w3af; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ import sys import time import Queue import threading import traceback from functools import partial from multiprocessing.dummy import Process, current_process from multiprocessing.util import Finalize, debug from multiprocessing import cpu_count from .pool276 import ThreadPool, RUN, create_detailed_pickling_error, mapstar from w3af.core.data.fuzzer.utils import rand_alnum from w3af.core.controllers.threads.decorators import apply_with_return_error __all__ = ['Pool', 'return_args', 'one_to_many'] class one_to_many(object): """ This is a simple wrapper that translates one argument to many in a function call. Useful for passing to the threadpool map function. """ def __init__(self, func): self.func_orig = func # Similar to functools wraps self.__name__ = func.__name__ self.__doc__ = func.__doc__ def __call__(self, args): return self.func_orig(*args) class return_args(object): """ Utility function that returns the args in the result, useful when calling functions like imap_unordered(). """ def __init__(self, func, *args, **kwds): self.func = partial(func, *args, **kwds) # Similar to functools wraps self.func_orig = func self.__name__ = func.__name__ self.__doc__ = func.__doc__ def __call__(self, *args, **kwds): return args, self.func(*args, **kwds) class DaemonProcess(Process): def __init__(self, group=None, target=None, name=None, args=(), kwargs={}): super(DaemonProcess, self).__init__(group, target, name, args, kwargs) self.daemon = True self.worker = target self.name = name def get_state(self): state = self.worker.get_state() state['name'] = self.name return state def is_idle(self): return self.worker.is_idle() def start(self): """ This is a race condition in DaemonProcess.start() which was found during some of the test scans I run. The race condition exists because we're using Threads for a Pool that was designed to be used with real processes: thus there is no worker.exitcode, thus it has to be simulated in a race condition-prone way. I'm overriding this method in order to move this line: self._start_called = True Closer to the call to .start(), which should reduce the chances of triggering the race conditions by 1% ;-) """ assert self._parent is current_process() if hasattr(self._parent, '_children'): self._parent._children[self] = None self._start_called = True threading.Thread.start(self) def add_traceback_string(_exception): """ Add the traceback string as a new attribute to the exception raised by the target function defined by the developer. Adding this original traceback allows us to better understand the root cause for exceptions that happen in functions which are run inside the Pool (most). For example, this is an exception stored in a /tmp/w3af-crash file before this patch: A "TypeError" exception was found while running crawl.phpinfo on "Method: GET | http://domain/". The exception was: "unsupported operand type(s) for -: 'float' and 'NoneType'" at pool276.py:get():643. The full traceback is: File "/home/user/tools/w3af/w3af/core/controllers/core_helpers/consumers/crawl_infrastructure.py", line 533, in _discover_worker result = plugin.discover_wrapper(fuzzable_request) File "/home/user/tools/w3af/w3af/core/controllers/plugins/crawl_plugin.py", line 53, in crawl_wrapper return self.crawl(fuzzable_request_copy) File "/home/user/tools/w3af/w3af/plugins/crawl/phpinfo.py", line 148, in crawl self.worker_pool.map_multi_args(self._check_and_analyze, args) File "/home/user/tools/w3af/w3af/core/controllers/threads/threadpool.py", line 430, in map_multi_args return self.map_async(one_to_many(func), iterable, chunksize).get() File "/home/user/tools/w3af/w3af/core/controllers/threads/pool276.py", line 643, in get raise self._value And after adding the original traceback and using it in exception_handler.py: A "TypeError" exception was found while running crawl.phpinfo on "Method: GET | http://domain/". The exception was: "unsupported operand type(s) for -: 'float' and 'NoneType'" at pool276.py:get():643. The full traceback is: Traceback (most recent call last): File "/home/user/tools/w3af/w3af/core/controllers/threads/threadpool.py", line 238, in __call__ result = (True, func(*args, **kwds)) File "/home/user/tools/w3af/w3af/core/controllers/threads/pool276.py", line 67, in mapstar return map(*args) File "/home/user/tools/w3af/w3af/core/controllers/threads/threadpool.py", line 55, in __call__ return self.func_orig(*args) File "/home/user/tools/w3af/w3af/plugins/crawl/phpinfo.py", line 180, in _check_and_analyze 1.0 - None TypeError: unsupported operand type(s) for -: 'float' and 'NoneType' The exact line where the exception is raised is shown! Adding new attributes to instances is not something I like, but in this case I had no choice... Creating a new Exception type and wrapping all exceptions generated by the pool with that one wouldn't work: we lose the exception type and can't do: try: ... except TypeError: ... The code for the whole framework would need to be changed to something like: try: ... except PoolException, pe: if isinstance(pe.original_exception, TypeError): ... :param _exception: The exception instance where to add the new attribute :return: None """ except_type, except_class, tb = sys.exc_info() tb = traceback.format_exception(type(_exception), _exception, tb) _exception.original_traceback_string = ''.join(tb) class Worker(object): __slots__ = ('func', 'args', 'kwargs', 'start_time', 'job', 'id') def __init__(self): self.func = None self.args = None self.kwargs = None self.start_time = None self.job = None self.id = rand_alnum(8) def is_idle(self): return self.func is None def get_real_func_name_args(self): """ Because of various levels of abstraction the function name is not always in self.func.__name__, this method "unwraps" the abstractions and shows us something easier to digest. :return: The function name """ # self.func/self.args could change over the execution of this method, so take # a copy here. current_func = self.func current_args = self.args if current_func is mapstar: current_func = current_args[0][0] current_args = current_args[0][1:] if current_func is apply_with_return_error: current_func = current_args[0][0] current_args = current_args[0][1:] if isinstance(current_func, return_args): return current_func.func_orig.__name__, current_args if isinstance(current_func, one_to_many): return current_func.func_orig.__name__, current_args if current_func is None: return None, None return current_func.__name__, current_args def get_state(self): func_name, func_args = self.get_real_func_name_args() return {'func_name': func_name, 'args': func_args, 'kwargs': self.kwargs, 'start_time': self.start_time, 'idle': self.is_idle(), 'job': self.job, 'worker_id': self.id} def __call__(self, inqueue, outqueue, initializer=None, initargs=(), maxtasks=None): assert maxtasks is None or (type(maxtasks) in (int, long) and maxtasks > 0) put = outqueue.put get = inqueue.get if hasattr(inqueue, '_writer'): inqueue._writer.close() outqueue._reader.close() if initializer is not None: initializer(*initargs) completed = 0 while maxtasks is None or (maxtasks and completed < maxtasks): try: task = get() except (EOFError, IOError): debug('worker got EOFError or IOError -- exiting') break if task is None: debug('worker got sentinel -- exiting') break job, i, func, args, kwds = task # Tracking self.func = func self.args = args self.kwargs = kwds self.start_time = time.time() self.job = job try: result = (True, func(*args, **kwds)) except Exception, e: add_traceback_string(e) result = (False, e) # Tracking self.func = None self.args = None self.kwargs = None self.start_time = None self.job = None try: put((job, i, result)) except Exception as e: wrapped = create_detailed_pickling_error(e, result[1]) put((job, i, (False, wrapped))) finally: # https://bugs.python.org/issue29861 task = None job = None result = None func = None args = None kwds = None completed += 1 debug('worker exiting after %d tasks' % completed) class Pool(ThreadPool): def __init__(self, processes=None, initializer=None, initargs=(), worker_names=None, maxtasksperchild=None, max_queued_tasks=0): """ Overriding this method in order to: * Name the pool worker threads * Name the threads used for managing the Pool internals """ self.Process = partial(DaemonProcess, name=worker_names) self.worker_names = worker_names # Setting the max number of queued tasks for the ThreadPool is not # as simple as it looks. # # First I tried to limit the max size of self._inqueue (defined # in _setup_queues), that didn't work. # # Then I tried to limit the size for self._taskqueue, that didn't # work either. # # I had to set the maxsize of self._taskqueue to 1 and use the # max_queued_tasks parameter to limit the size of self._inqueue # This is required due to the ThreadPool internals, see the # definition of the _handle_tasks method in pool276.py where # the function is reading from self._taskqueue and writing to # self._inqueue. # # Not setting the limit in self._taskqueue allows the main thread # to enqueue an infinite number of tasks. # # Only setting the limit in self._taskqueue will not work, since # the _handle_tasks method is always reading from that queue # (which decreases its size) and writing to self._inqueue. Because # of those reads to self._taskqueue, the queue never reaches the # limit. # if max_queued_tasks != 0: assert max_queued_tasks - 1 > 0, 'max_queued_tasks needs to be at least 2' self._setup_queues(max_queued_tasks - 1) self._taskqueue = Queue.Queue(maxsize=1) self._cache = {} self._state = RUN self._maxtasksperchild = maxtasksperchild self._initializer = initializer self._initargs = initargs if processes is None: try: processes = cpu_count() except NotImplementedError: processes = 1 if processes < 1: raise ValueError("Number of processes must be at least 1") if initializer is not None and not hasattr(initializer, '__call__'): raise TypeError('initializer must be a callable') self._processes = processes self._pool = [] self._repopulate_pool() self._worker_handler = threading.Thread( target=Pool._handle_workers, args=(self, ), name='PoolWorkerHandler') self._worker_handler.daemon = True self._worker_handler._state = RUN self._worker_handler.start() self._task_handler = threading.Thread( target=Pool._handle_tasks, args=(self._taskqueue, self._quick_put, self._outqueue, self._pool, self._cache), name='PoolTaskHandler') self._task_handler.daemon = True self._task_handler._state = RUN self._task_handler.start() self._result_handler = threading.Thread( target=Pool._handle_results, args=(self._outqueue, self._quick_get, self._cache), name='PoolResultHandler') self._result_handler.daemon = True self._result_handler._state = RUN self._result_handler.start() self._terminate = Finalize( self, self._terminate_pool, args=(self._taskqueue, self._inqueue, self._outqueue, self._pool, self._worker_handler, self._task_handler, self._result_handler, self._cache), exitpriority=15) def get_inqueue(self): return self._inqueue def get_outqueue(self): return self._outqueue def get_running_task_count(self): # Cheating here a little bit because the task queued in _inqueue will # eventually be run by the pool, but is not yet in the pool running_tasks = self._inqueue.qsize() for process in self._pool[:]: if not process.is_idle(): running_tasks += 1 return running_tasks def _repopulate_pool(self): """ Bring the number of pool processes up to the specified number, for use after reaping workers which have exited. I overwrite this in order to change the Process target to a Worker object (instead of a function) in order to keep better stats of what it is doing. """ for i in range(self._processes - len(self._pool)): w = self.Process(target=Worker(), args=(self._inqueue, self._outqueue, self._initializer, self._initargs, self._maxtasksperchild)) self._pool.append(w) w.name = w.name.replace('Process', 'PoolWorker') w.daemon = True w.start() debug('added worker') def get_worker_count(self): return len(self._pool) def set_worker_count(self, count): """ Set the number of workers. Keep in mind that this is not an immediate when decreasing the pool process count! * When increasing the size, the threadpool will call repopulate_pool() and the new threads will be created * When decreasing the size, a thread will finish because of maxtasksperchild, then repopulate_pool() will be called async and the thread will *not* be created, thus decreasing the pool size The change is made effective depending on the work load and the time required to finish each task. :param count: The new process count :return: None """ assert self._maxtasksperchild, 'Can only adjust size if maxtasksperchild is set' assert count >= 1, 'Number of processes must be at least 1' self._processes = count self._repopulate_pool() def _setup_queues(self, max_queued_tasks): self._inqueue = Queue.Queue(maxsize=max_queued_tasks) self._outqueue = Queue.Queue() self._quick_put = self._inqueue.put self._quick_get = self._outqueue.get def map_multi_args(self, func, iterable, chunksize=None): """ Blocks until all results are done (please note the .get()) """ assert self._state == RUN return self.map_async(one_to_many(func), iterable, chunksize).get() def in_qsize(self): return self._taskqueue.qsize() def is_running(self): return self._state == RUN def terminate_join(self): self.terminate() self.join() def _join_exited_workers(self): """Cleanup after any worker processes which have exited due to reaching their specified lifetime. Returns True if any workers were cleaned up. """ cleaned = False for i in reversed(range(len(self._pool))): worker = self._pool[i] if worker.exitcode is not None: # worker exited try: worker.join() except RuntimeError: # # RuntimeError: cannot join thread before it is started # # This is a race condition in DaemonProcess.start() which was found # during some of the test scans I run. The race condition exists # because we're using Threads for a Pool that was designed to be # used with real processes: thus there is no worker.exitcode, # thus it has to be simulated in a race condition-prone way. # continue else: debug('cleaning up worker %d' % i) cleaned = True del self._pool[i] return cleaned def finish(self, timeout=120): """ Wait until all tasks in the self._inqueue have been processed (the queue has size == 0) and then call terminate on the Pool. I know this is not the best way of doing it, but had some dead-lock issues with: self.close() self.join() :param timeout: Wait up to timeout seconds for the queues to be empty """ delay = 0.1 for _ in xrange(int(timeout / delay)): if (self._inqueue.qsize() == 0 and self._outqueue.qsize() == 0 and self._taskqueue.qsize() == 0): break time.sleep(delay) self.terminate() self.join() def inspect_threads(self): """ This method inspects the attributes exposed by the Worker object defined above and lets us debug the thread pool. This is useful for answering the question: "What functions are running in the pool right now?" :return: Data as a list of dicts, which is usually sent to inspect_data_to_log() """ inspect_data = [] for process in self._pool[:]: worker_state = process.get_state() inspect_data.append(worker_state) return inspect_data
2.59375
3
lib/service.py
psobot/biographer
1
12784056
import logging import inspect import mechanize log = logging.getLogger(__name__) class Service(object): """ The superclass of all services. When creating a service, inherit from this class and implement the following methods as necessary: __init__ authenticate check_<attribute> modify_<attribute> """ _NO_DOCSTRING = "No documentation provided." _authenticated = False _cache = {} def __init__(self, *args, **kwargs): raise NotImplementedError() def authenticate(self, *args, **kwargs): raise NotImplementedError() @classmethod def documentation(cls): doc = inspect.getdoc(cls) base = [doc or cls._NO_DOCSTRING, "Attributes:"] name = lambda: "=== %s ===" % cls.__name__ return name() + "\n" + "\n\t".join(base + ["\t%s %s" % (name, doc or "") for name, doc in cls.attributes_with_docstrings()] ) @classmethod def attributes(cls): methods = dir(cls) return sorted([x.replace('check_', '') for x in methods if x.startswith('check_') and (x.replace('check_', 'modify_') in methods)]) @classmethod def attributes_with_docstrings(cls): return [(x, inspect.getdoc(getattr(cls, "check_" + x)) or inspect.getdoc(getattr(cls, "modify_" + x))) for x in cls.attributes()] def __match(self, check, value, takes_arguments): if takes_arguments: r = check(value) if r in [True, False]: return r else: raise RuntimeError( "Value returned from %s.%s not True or False" % (check.im_class.__name__, check.__name__) ) else: return check() == value def ensure(self, key, value): name = self.__class__.__name__ log = logging.getLogger("service.%s" % name) check = getattr(self, "check_" + key.lower(), None) modify = getattr(self, "modify_" + key.lower(), None) if check and modify: log.info("Checking %s on %s...", key, name) takes_arguments = len(inspect.getargspec(check).args[1:]) > 0 match = lambda: self.__match(check, value, takes_arguments) if not match(): log.info("Did not find expected value '%s'.", value) log.info("Updating %s on %s...", key, name) modify(value) if not match(): raise RuntimeError("Value of %s on %s has not changed " "after modification. Please verify.", key, name) else: log.info("Success! Updated %s on %s.", key, name) return True elif check and not modify: log.warning("Missing modifier for %s on %s.", key, name) elif modify and not check: log.warning("Missing checker for %s on %s.", key, name) else: # this property does not exist on this service return None def cached_property(fn): """ Decorator that turns the given method into a cached property. To clear the cache, delete self._cache[fn]. The preferred way of clearing the cache is by using an "@invalidates_cache" decorator on another method. """ def wrapped(self, *args, **kwargs): if fn not in self._cache: self._cache[fn] = fn(self, *args, **kwargs) return self._cache[fn] return property(wrapped) def invalidates_cache(fn): """ Clears all cached properties after the decorated function is called. Useful when changing external (third-party) state that requires reverification. (e.g.: decorate a "modify_something" method with this.) """ def wrapped(self, *args, **kwargs): r = fn(self, *args, **kwargs) self._cache = {} return r return wrapped def with_new_browser(fn): """ Forces a new browser object to be created before running the wrapped function. """ def wrapped(self, *args, **kwargs): self.browser = mechanize.Browser() return fn(self, *args, **kwargs) return wrapped def requires_authentication(fn): """ Decorator that forces the "authenticate" method of a service to have been called before the given method. """ def wrapped(self, *args, **kwargs): if not self._authenticated: self.browser = self.authenticate(mechanize.Browser()) self._authenticated = True return fn(self, *args, **kwargs) return wrapped
2.96875
3
ostap/fitting/fitresult.py
TatianaOvsiannikova/ostap
14
12784057
<reponame>TatianaOvsiannikova/ostap #!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================= ## @file ostap/fitting/fitresult.py # Tiny decoration for ROOT.FitResult object # @author <NAME> <EMAIL> # @date 2011-06-07 # ============================================================================= """Tiny decoration for ROOT.FitResult object """ # ============================================================================= __version__ = "$Revision$" __author__ = "<NAME> <EMAIL>" __date__ = "2011-06-07" __all__ = () ## nothing to import # ============================================================================= import ROOT # ============================================================================= # logging # ============================================================================= from ostap.logger.logger import getLogger if '__main__' == __name__ : logger = getLogger( 'ostap.fitting.fitresult' ) else : logger = getLogger( __name__ ) # ============================================================================= logger.debug ( 'Tiny decoration for ROOT.FitResult object') # ============================================================================= from ostap.math.ve import VE from ostap.core.ostap_types import integer_types # ============================================================================= ## representation of TFitResult object # @code # fit_result = histo.Fit( func , 'S' , ... ) # print fit_result # @endcode # @author <NAME> <EMAIL> # @date 2011-06-07 def _fit_repr_ ( self ) : """Representaion of TFitResult object >>> fit_result = histo.Fit( func , 'S' , ... ) >>> print fit_result """ _r = '' _r += "\n Status = %s " % self.Status () _r += "\n Chi2/nDoF = %s/%s " % ( self.Chi2 () , self.Ndf() ) _r += "\n Probability = %s " % self.Prob () _p = self.Parameters () _e = self.Errors () for i in range( 0 , len(_p) ) : v = _p[i] e = _e[i] a = VE ( v ,e*e ) _r += " \n %s " % a return _r # ============================================================================== ## print <code>TFitResult</code> as a table def _fit_table_ ( rfit , title = '' , prefix = '' ) : """Print <code>TFitResult</code> as a table """ from ostap.fitting.utils import fit_status, cov_qual from ostap.logger.colorized import attention, allright from ostap.logger.utils import pretty_float, pretty_ve, pretty_2ve, fmt_pretty_ve header = ( '', 'Unit' , 'Value' ) rows = [] ## 0. minimized type row = "Minimizer Type" , '' , rfit.MinimizerType() rows.append ( row ) ## 0. minimized type v = rfit.IsValid() if v : row = "Valid" , '' , 'True' else : row = "Valid" , '' , attention ( 'False') rows.append ( row ) ## 1. fit status status = rfit.Status() if status : row = attention ( 'Status' ) , '' , attention ( fit_status ( status ) ) rows.append ( row ) else : row = 'Status' , '' , allright ( fit_status ( status ) ) rows.append ( row ) ## 4. covariance status cq = rfit.CovMatrixStatus() cn = '' if -1 == cq : cn = cov_qual ( cq ) elif 3 == cq : cn = allright ( cov_qual ( cq ) ) elif cq in ( 0 , 1 , 2 ) : cn = attention ( cov_qual ( cq ) ) else : cn = cov_qual ( cq ) rows.append ( ( 'Covariance matrix quality' , '' , ' ' + cn ) ) ## 3-6. chi2,nDoF,chi2/nDoF,minFCN chi2 = rfit.Chi2 () s , n = pretty_float ( chi2 ) if n : n = '[10^%+d]' % n else : n = '' rows.append ( ( "Chi2" , n , ' ' + s ) ) ## ndf = rfit.Ndf() rows.append ( ( "nDoF" , '' , ' ' + '%d' % ndf ) ) ## c2ndf = rfit.Chi2 () / ndf s , n = pretty_float ( c2ndf ) if n : n = '[10^%+d]' % n else : n = '' rows.append ( ( "Chi2/nDoF" , n , ' ' + s ) ) ## minfcn = rfit.MinFcnValue() s , n = pretty_float ( minfcn ) if n : n = '[10^%+d]' % n else : n = '' rows.append ( ( "Minimal FCN" , n , ' ' + s ) ) ## 7.Probability in %[%] prob = rfit.Prob() / 100 rows.append ( ( "Probability" , '[%]' , ' %5.3e' % prob ) ) ## 8. distrance to minimum edm = rfit.Edm() s , n = pretty_float ( edm ) if n : n = '[10^%+d]' % n else : n = '' rows.append ( ( "Estimated distance to minimum" , n , ' ' + s ) ) ncalls = rfit.NCalls() rows.append ( ( "FCN calls" , '' , ' ' + '%d' % ncalls ) ) ## has_minos = False for i in rfit : if not rfit.HasMinosError( i ) : continue has_minos = True break if has_minos : rows = [ row + ('','','') for row in rows ] header = header + ( 'neg-minos' , 'pos-minos' , 'Global corr.' ) else : rows = [ row + ('',) for row in rows ] header = header + ( 'Global corr.' , ) for i in rfit : pname = rfit.GetParameterName ( i ) value = rfit.Value ( i ) fixed = rfit.IsParameterFixed ( i ) fmte = '' if fixed : v = value s , n = pretty_float ( v ) s = s + '(fixed)' nv = n else : error = rfit.Error ( i ) v = VE ( value , error * error ) ## fmt , fmtv , fmte , n = fmt_pretty_ve ( v ) s = fmt % ( value / 10**n , error / 10**n ) nv = n if n : n = '[10^%+d]' % n else : n = '' pname = "%-2d: %s"% ( i , pname ) row = pname , n , ' ' + s if not fixed and rfit.HasMinosError( i ) : if fmte : error_low = fmte % ( rfit.LowerError ( i ) / 10**nv ) error_up = fmte % ( rfit.UpperError ( i ) / 10**nv ) else : error_low = "%+8g" % ( rfit.LowerError ( i ) / 10**nv ) error_up = "%+8g" % ( rfit.UpperError ( i ) / 10**nv ) else : error_low = '' error_up = '' if has_minos : row = row + ( error_low , error_up ) gcc = rfit.GlobalCC ( i ) * 100 gcc = '%+5.1f%%' % gcc row = row + ( gcc, ) rows.append ( row ) if not title : title = rfit.GetTitle() import ostap.logger.table as T rows = [ header ] + rows return T.table ( rows , title = title , prefix = prefix ) # ============================================================================= ## get number of parameters # @code # fit_result = histo.Fit( func , 'S' , ... ) # print len(fit_result) # @endcode def _fit_len_ ( r ) : """Get number of parameters >>> fit_result = hiisto.Fit( func , 'S' , ... ) >>> print len(fit_result) """ return len ( r.Parameters() ) # ============================================================================= ## iterator over fit-result object # @code # fit_result = hiisto.Fit( func , 'S' , ... ) # for i in fit_results : print i,fit_results[i] # @endcode # @author <NAME> <EMAIL> # @date 2011-06-07 def _fit_iter_ ( r ) : """Iterator over fit-result object >>> fit_result = hiisto.Fit( func , 'S' , ... ) >>> for i in fit_results : print i,fit_results[i] """ l = len( r ) i = 0 while i < l : yield i i += 1 # ============================================================================= ## get parameter number # @code # r = h1.Fit( ... ) # name = r.GetParNumber ( 'mass' ) # @endcode def _fit_parnum_ ( self , par ) : """Get parameter number: >>> r = h1.Fit( ... ) >>> name = r.GetParNumber ( 'mass' ) """ if isinstance ( par , integer_types ) : if 0<= par< len ( self ) : return int( par ) ## RETURN else : return -1 ## RETURN # if isinstance ( par , str ) : ll = len ( self ) for i in range ( 0 , ll ) : if self.ParName(i) == par : return i ## RETURN ## nothing is found return -1 ## RETURN # ============================================================================= ## check parameter # @code # r = h1.Fit(....) ## # if i in r : ... ## check parameter by index # if 'm' in r : ... ## check parameter by name # @endcode # @author <NAME> <EMAIL> # @date 2015-07-12 def _fit_contains_ ( self , par ) : """Check parameter >>> r = h1.Fit(....) ## >>> if i in r : ... ## check parameter by index >>> if 'm' in r : ... ## check parameter by name """ return 0 <= _fit_parnum_ ( self , par ) # ============================================================================= ## getitem for fit-result-object # @code # r = h1.Fit(....) ## # print r[0] ## print 0th parameter # @endcode # @author <NAME> <EMAIL> # @date 2011-06-07 def _fit_getitem_ ( self , par ) : """Getitem for fit-result-object >>> r = h1.Fit(....) ## >>> print r[0] ## print 0th parameter """ ## convert parameter into integer ipar = _fit_parnum_ ( self , par ) if not 0<= ipar : raise IndexError("TFitResult:illegal index %s" % par) # _p = self.Parameter ( ipar ) _e = self.Error ( ipar ) # return VE( _p , _e * _e ) # ============================================================================= ## Get correlation coefficient for parameters 'i' and 'j' # @code # r = ... # print r.cor(1,2) # @endcode def _fit_cor_ ( self , i , j ) : """Get correlation coefficient for parameters 'i' and 'j' >>> r = ... >>> print r.cor(1,2) """ ipar = _fit_parnum_ ( self , i ) jpar = _fit_parnum_ ( self , j ) # if 0 > ipar : raise IndexError( "TFitResult:invalid index %s" % i ) if 0 > jpar : raise IndexError( "TFitResult:invalid index %s" % j ) # _cij = self.CovMatrix ( ipar , jpar ) _ei = self.Errors ( ipar ) _ej = self.Errors ( jpar ) ## if 0 == _ei or 0 == _ej : return 0 ## RETURN # return _cij / ( _ei * _ej ) # ============================================================================= ## Get correlation matrix # @code # r = ... # print r.corMatrix() # @endcode def _fit_corm_ ( self , root = False ) : """Get correlation matrix >>> r = ... >>> print r.corMtrx () """ _l = len (self) matrix = None import ostap.math.linalg try : matrix = Ostap.Math.SymMatrix(_l) except : pass ## fill matrix for i in range (0,_l): for j in range (i, _l): _cij = self.CovMatrix( i , j ) _eij = self.Error( i ) * self.Error( j ) if 0 != _eij : _vij = _cij / _eij else : _vij = 0 matrix [ i , j ] = _vij matrix [ j , i ] = _vij return matrix for klass in ( ROOT.TFitResult , ROOT.TFitResultPtr ) : klass.__contains__ = _fit_contains_ klass.__repr__ = _fit_repr_ klass.__str__ = _fit_repr_ klass.__iter__ = _fit_iter_ klass.__getitem__ = _fit_getitem_ klass.__call__ = _fit_getitem_ klass.__len__ = _fit_len_ klass.cor = _fit_cor_ klass.corMtrx = _fit_corm_ klass.GetParNumber = _fit_parnum_ klass.parnum = _fit_parnum_ klass.table = _fit_table_ # ============================================================================= _decorated_classes_ = ( ROOT.TFitResult , ROOT.TFitResultPtr , ) _new_methods_ = ( ## ROOT.TFitResult .__contains__ , ROOT.TFitResult .__repr__ , ROOT.TFitResult .__str__ , ROOT.TFitResult .__iter__ , ROOT.TFitResult .__getitem__ , ROOT.TFitResult .__call__ , ROOT.TFitResult .__len__ , ROOT.TFitResult .cor , ROOT.TFitResult .corMtrx , ROOT.TFitResult .GetParNumber , ROOT.TFitResult .parnum , ROOT.TFitResult .table , ## ROOT.TFitResultPtr.__contains__ , ROOT.TFitResultPtr.__repr__ , ROOT.TFitResultPtr.__str__ , ROOT.TFitResultPtr.__iter__ , ROOT.TFitResultPtr.__getitem__ , ROOT.TFitResultPtr.__call__ , ROOT.TFitResultPtr.__len__ , ROOT.TFitResultPtr.cor , ROOT.TFitResultPtr.corMtrx , ROOT.TFitResultPtr.GetParNumber , ROOT.TFitResultPtr.parnum , ROOT.TFitResultPtr.table , ) # ============================================================================= if '__main__' == __name__ : from ostap.utils.docme import docme docme ( __name__ , logger = logger ) # ============================================================================= ## The END # =============================================================================
1.703125
2
positionsize.py
fearlessspider/IKH-Quant-Connect
3
12784058
<reponame>fearlessspider/IKH-Quant-Connect from decimal import Decimal class PositionSize: symbol = "USDJPY" algorithm = None bonus = 0 def __init__(self, algorithm, symbol, tenkan, kijun, senkou, period=15): self.symbol = symbol self.algorithm = algorithm # Get POINT value for current asset def get_point_value(self): # lotSize = 1000 conversionRate = self.algorithm.Portfolio.Securities[self.symbol].QuoteCurrency.ConversionRate # conversionRate = 1.31819(GBPUSD) pointValue = self.get_lot_size() * conversionRate # pointValue = 1318.19USD return pointValue # Get LOT size def get_lot_size(self): # E.g.: symbol = "EURGBP"; lotSize = self.algorithm.Portfolio.Securities[self.symbol].SymbolProperties.LotSize return lotSize def checkSLPosition(self, sl, type, data): self.algorithm.Log("Check {0}".format(sl)) _bonus = self.bonus _volume = Decimal(0.01) * self.get_wins_lose_multiplier() position = self.get_point_value() * Decimal(sl) lot = (self.algorithm.Portfolio.Cash * (_volume + Decimal(_bonus))) * self.get_lot_size() / position orderQua = abs(self.algorithm.CalculateOrderQuantity(self.symbol, 38 * type)) #buiyng = self.algorithm.Portfolio.GetBuyingPower(self.symbol, OrderDirectiondirection = OrderDirection.Up) if lot > orderQua: return int(orderQua) return int(lot) # Get wins and loses multiplier from closed positions def get_wins_lose_multiplier(self): multiplier = 1 positionClosed = [] for position in self.positions: if position.leave > 0: positionClosed.append(position) if len(positionClosed) > 0: if positionClosed[-1].Result >= 0: multiplier += 1 if len(positionClosed) > 1: if positionClosed[-2].Result >= 0: multiplier += 1 if len(positionClosed) > 2: if positionClosed[-3].Result >= 0: multiplier += 1 if positionClosed[-1].Result < 0: multiplier -= 0.1 if len(positionClosed) > 1: if positionClosed[-2].Result < 0: multiplier -= 0.1 if len(positionClosed) > 2: if positionClosed[-3].Result < 0: multiplier -= 0.1 return multiplier
2.5
2
alpha.py
ssadjina/FatTailedTools
0
12784059
# A collection of various tools to help estimate and analyze the tail exponent. import pandas as pd import numpy as np import matplotlib.pyplot as plt from FatTailedTools.plotting import plot_survival_function from FatTailedTools.survival import get_survival_function def fit_alpha_linear(series, tail_start_mad=2.5, plot=True, return_loc=False): ''' Estimates the tail parameter by fitting a linear function to the log-log tail of the survival function. 'tail_start_mad' defines where the tail starts in terms of the mean absolute deviation (typically between 2-4 MADs). The estimated location of the Pareto (with the estimated tail exponent) will also re returned if 'return_loc' is True. ''' # Get survival function values if plot: survival, ax = plot_survival_function(series, tail_zoom=False) else: survival = get_survival_function(series) # Estimate tail start (= everything beyond 'tail_start_mad' mean absolute deviations) tail_start = get_tail_start(series, tail_start_mad) # Get tail survival_tail = np.log10(survival.loc[survival['Values'] >= tail_start].iloc[:-1]) # Fit the tail tail_fit = np.polyfit(survival_tail['Values'], survival_tail['P'], 1) lin_func = np.poly1d(tail_fit) # Get tail parameter and location/scale tail = -tail_fit[0] location = (1 - tail_fit[1]) / tail_fit[0] # Get MSE (mean squared error) mse_error = np.mean(np.square(np.subtract(lin_func(survival_tail['Values']), survival_tail['Values']))) # Plot the fit if plot: ax.plot(10**survival_tail['Values'], 10**lin_func(survival_tail['Values']), 'r'); ax.legend(['Fit (MSE = {:.2f})'.format(mse_error), 'Data']); plt.title('Tail exponent fitted to tail (alpha = {:.2f}, loc = {:.2f})'.format(tail, location)); # Construct result result = tail, location if return_loc else tail return result def get_tail_start(series, tail_start_mad): ''' Returns the start of the tail of 'series' based on 'tail_start_mad'. 'tail_start_mad' defines where the tail starts in terms of the mean absolute deviation (typically between 2-4 MADs). ''' return tail_start_mad * series.abs().mad() from scipy.stats import t def fit_alpha(series, plot=True): ''' Estimates the tail parameter by fitting a Studend-T to the data. If the passed data is from a one-sided distribution, it will first be mirrored at 0 to make it symmetrical. ''' # Is the data only one-sided? if (series.dropna() < 0).sum() * (series.dropna() > 0).sum() == 0: # ... then construct a two-sided distribution series = pd.concat([-series.dropna().abs(), series.dropna().abs()]) # Fit the distribution params = t.fit(series.dropna()) if plot: _, ax = plot_survival_function(series, distribution=(t, params)); plt.title('Tail exponent estimated from fitting (alpha = {:.2f})'.format(params[0])); return params[0] import seaborn as sns def fit_alpha_subsampling(series, frac=0.7, n_subsets=100, n_tail_start_samples=1, plot=True, return_loc=False): ''' Estimates the tail parameter by fitting a linear function to the log-log tail of the survival function. Uses 'n_subsets' subsamples to average results over subsets with a fraction 'frac' of samples kept. If return_loc is True, also returns where the tail of the distribution is assumed to start (using random subsampling with 'n_tail_start_samples' samples per subset). ''' # Set up lists _results_both = [] _results_left = [] _results_right = [] # Subsample and fit for subsample in [series.sample(frac=frac) for i in range(n_subsets)]: for tail_start_mad in np.random.normal(2.5, 0.5, n_tail_start_samples): _results_both.append(subsample.abs().agg(fit_alpha_linear, tail_start_mad=tail_start_mad, plot=False, return_loc=True)) _results_left.append(subsample.where(subsample < 0).abs().agg(fit_alpha_linear, tail_start_mad=tail_start_mad, plot=False, return_loc=True)) _results_right.append(subsample.where(subsample >= 0).abs().agg(fit_alpha_linear, tail_start_mad=tail_start_mad, plot=False, return_loc=True)) # Assemble into DataFrame alphas = pd.DataFrame.from_records(np.hstack([_results_both, _results_left, _results_right]), columns=pd.MultiIndex.from_product([['Both', 'Left', 'Right'], ['Tail Exponent', 'Location']])) # Plot if plot: fig, ax = plt.subplots(1, 3, figsize=(15, 5)) fig.suptitle('Tail exponents for {} with random subsamples'.format(series.name)) for idx, name in enumerate(['Both', 'Left', 'Right']): sns.histplot(data=alphas[(name, 'Tail Exponent')], color=['C7', 'C3', 'C0'][idx], stat='probability', bins=10, ax=ax[idx]); ax[idx].set_title('Median = {:.1f} | Mean = {:.1f} ({})'.format(alphas[(name, 'Tail Exponent')].median(), alphas[(name, 'Tail Exponent')].mean(), ['both', 'left', 'right'][idx])); ax[idx].set_xlabel('Tail exponent ({})'.format(['both', 'left', 'right'][idx])); plt.show(); # Also plot locations if return_loc if return_loc: fig, ax = plt.subplots(1, 3, figsize=(15, 5)) fig.suptitle('Locations for {} with random subsamples'.format(series.name)) for idx, name in enumerate(['Both', 'Left', 'Right']): sns.histplot(data=alphas[(name, 'Location')], color=['C7', 'C3', 'C0'][idx], stat='probability', bins=10, ax=ax[idx]); ax[idx].set_title('Median = {:.1f} | Mean = {:.1f} ({})'.format(alphas[(name, 'Location')].median(), alphas[(name, 'Location')].mean(), ['both', 'left', 'right'][idx])); ax[idx].set_xlabel('Location ({})'.format(['both', 'left', 'right'][idx])); plt.show(); # Construct result result = alphas if return_loc else alphas.loc[:, (slice(None), 'Tail Exponent')] return result
3.25
3
foreman_compute_resource.py
Nosmoht/ansible-module-foreman
53
12784060
#!/usr/bin/python # -*- coding: utf-8 -*- # # Ansible module to manage Foreman compute resource resources. # # This module is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This software is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this software. If not, see <http://www.gnu.org/licenses/>. DOCUMENTATION = ''' --- module: foreman_compute_resource short_description: Manage Foreman Compute resources using Foreman API v2 description: - Create and delete Foreman Compute Resources using Foreman API v2 options: name: description: Compute Resource name required: true datacenter: Name of Datacenter (only for Vmware) required: false default: None description: Description of compute resource required: false default: None locations: List of locations the compute resource should be assigned to required: false default: None organizations: List of organizations the compute resource should be assigned to required: false default: None password: description: Password for Ovirt, EC2, Vmware, Openstack. Secret key for EC2 required: false default: None provider: description: Providers name (e.g. Ovirt, EC2, Vmware, Openstack, EC2, Google) required: false default: None server: description: Hostname of Vmware vSphere system required: false default: None state: description: Compute Resource state required: false default: present choices: ["present", "absent"] tenant: description: Tenant name for Openstack required: false default: None domain: description: Domain name for Openstack (required for Keystone v3 API) required: false default: Default url: description: URL for Libvirt, Ovirt, and Openstack required: false default: None user: description: Username for Ovirt, EC2, Vmware, Openstack. Access Key for EC2. required: false default: None foreman_host: description: Hostname or IP address of Foreman system required: false default: 127.0.0.1 foreman_port: description: Port of Foreman API required: false default: 443 foreman_user: description: Username to be used to authenticate on Foreman required: true foreman_pass: description: Password to be used to authenticate user on Foreman required: true foreman_ssl: description: Enable SSL when connecting to Foreman API required: false default: true notes: - Requires the python-foreman package to be installed. See https://github.com/Nosmoht/python-foreman. version_added: "2.0" author: "<NAME> (@nosmoht)" ''' EXAMPLES = ''' - name: Ensure Vmware compute resource foreman_compute_resource: name: VMware datacenter: dc01 locations: - Nevada organizations: - DevOps provider: VMware server: vsphere.example.com url: vsphere.example.com user: domain\admin password: <PASSWORD> state: present foreman_user: admin foreman_pass: secret - name: Ensure Openstack compute resource foreman_compute_resource: name: Openstack provider: OpenStack tenant: ExampleTenant url: https://compute01.example.com:5000/v2.0/tokens user: admin ''' try: from foreman.foreman import * except ImportError: foremanclient_found = False else: foremanclient_found = True def get_provider_params(provider): provider_name = provider.lower() if provider_name == 'docker': return ['password', 'url', 'user'] elif provider_name == 'ec2': return ['access_key', 'password', 'region', 'url', 'user'] elif provider_name == 'google': return ['email', 'key_path', 'project', 'url', 'zone'] elif provider_name == 'libvirt': return ['display_type', 'url'] elif provider_name == 'ovirt': return ['url', 'user', 'password'] elif provider_name == 'openstack': return ['url', 'user', 'password', 'tenant', 'domain'] elif provider_name == 'vmware': return ['datacenter', 'user', 'password', 'server'] else: return [] def get_organization_ids(module, theforeman, organizations): result = [] for i in range(0, len(organizations)): try: organization = theforeman.search_organization(data={'name': organizations[i]}) if not organization: module.fail_json('Could not find Organization {0}'.format(organizations[i])) result.append(organization.get('id')) except ForemanError as e: module.fail_json('Could not get Organizations: {0}'.format(e.message)) return result def get_location_ids(module, theforeman, locations): result = [] for i in range(0, len(locations)): try: location = theforeman.search_location(data={'name':locations[i]}) if not location: module.fail_json('Could not find Location {0}'.format(locations[i])) result.append(location.get('id')) except ForemanError as e: module.fail_json('Could not get Locations: {0}'.format(e.message)) return result def ensure(module): name = module.params['name'] state = module.params['state'] provider = module.params['provider'] description = module.params['description'] locations = module.params['locations'] organizations = module.params['organizations'] foreman_host = module.params['foreman_host'] foreman_port = module.params['foreman_port'] foreman_user = module.params['foreman_user'] foreman_pass = module.params['foreman_pass'] foreman_ssl = module.params['foreman_ssl'] theforeman = Foreman(hostname=foreman_host, port=foreman_port, username=foreman_user, password=<PASSWORD>, ssl=foreman_ssl) data = dict(name=name) try: compute_resource = theforeman.search_compute_resource(data=data) except ForemanError as e: module.fail_json(msg='Could not get compute resource: {0}'.format(e.message)) if organizations: data['organization_ids'] = get_organization_ids(module, theforeman, organizations) if locations: data['location_ids'] = get_location_ids(module, theforeman, locations) if state == 'absent': if compute_resource: try: compute_resource = theforeman.delete_compute_resource(id=compute_resource.get('id')) except ForemanError as e: module.fail_json(msg='Could not delete compute resource: {0}'.format(e.message)) return True, compute_resource data['provider'] = provider params = get_provider_params(provider=provider) + ['description'] for key in params: data[key] = module.params[key] if state == 'present': if not compute_resource: try: compute_resource = theforeman.create_compute_resource(data=data) except ForemanError as e: module.fail_json(msg='Could not create compute resource: {0}'.format(e.message)) return True, compute_resource # Foreman's API doesn't return the password we can't tell if we need to # change it data['password'] = None if not all(data.get(key, None) == compute_resource.get(key, None) for key in params): try: compute_resource = theforeman.update_compute_resource(id=compute_resource.get('id'), data=data) except ForemanError as e: module.fail_json(msg='Could not update compute resource: {0}'.format(e.message)) return True, compute_resource return False, compute_resource def main(): module = AnsibleModule( argument_spec=dict( name=dict(type='str', required=True), access_key=dict(type='str', requireD=False), datacenter=dict(type='str', required=False), description=dict(type='str', required=False), display_type=dict(type='str', required=False), email=dict(type='str', required=False), key_path=dict(type='str', required=False), password=dict(type='str', required=False, no_log=True), provider=dict(type='str', required=False), region=dict(type='str', required=False), server=dict(type='str', required=False), url=dict(type='str', required=False), user=dict(type='str', required=False), state=dict(type='str', default='present', choices=['present', 'absent']), tenat=dict(type='str', required=False), domain=dict(type='str', required=False), locations=dict(type='list', required=False), organizations=dict(type='list', required=False), foreman_host=dict(type='str', default='127.0.0.1'), foreman_port=dict(type='str', default='443'), foreman_user=dict(type='str', required=True), foreman_pass=dict(type='str', required=True, no_log=True), foreman_ssl=dict(type='bool', default=True) ), ) if not foremanclient_found: module.fail_json(msg='python-foreman module is required. See https://github.com/Nosmoht/python-foreman.') changed, compute_resource = ensure(module) module.exit_json(changed=changed, compute_resource=compute_resource) from ansible.module_utils.basic import * if __name__ == '__main__': main()
1.53125
2
tests/isct/test_container.py
UvaCsl/desist
0
12784061
<filename>tests/isct/test_container.py import pathlib import pytest from desist.isct.container import create_container from desist.isct.docker import Docker from desist.isct.singularity import Singularity from .test_runner import DummyRunner from desist.isct.utilities import OS @pytest.mark.parametrize("platform", [OS.MACOS, OS.LINUX]) @pytest.mark.parametrize("path, container_type", [(None, Docker), ("./containers", Singularity)]) def test_new_container(mocker, platform, path, container_type): mocker.patch('desist.isct.utilities.OS.from_platform', return_value=platform) container = create_container(".", path) assert isinstance(container, container_type) @pytest.mark.parametrize("platform, permission", [(OS.MACOS, ''), (OS.LINUX, 'sudo')]) def test_new_container_permission(mocker, platform, permission): mocker.patch('desist.isct.utilities.OS.from_platform', return_value=platform) # Docker container = create_container(".") assert container.sudo == permission # Singularity container = create_container(".", container_path='./container') assert container.sudo == 'sudo -E' @pytest.mark.parametrize("host, local", [ ("/home/folder", "/patient"), ]) @pytest.mark.parametrize("container", [Docker, Singularity]) def test_bind_volume(container, host, local): runner = DummyRunner() if container == Docker: c = container(".", runner=runner) flag = '-v' else: c = container(".", "./container", runner=runner) flag = '-B' assert c.volumes == '' c.bind(host, local) # add host/local pair host = pathlib.Path(host).absolute() local = pathlib.Path(local) assert c.bind_volumes[0] == (host, local) # ensure `:` formatting assert f'{host}:{local}' in c.volumes # run the command; which is traced in the `DummyRunner`s output c.run() # ensure correct `bind_flag` is present assert flag in runner
1.96875
2
pysprint/core/bases/_apply.py
kingablgh/PySprint
13
12784062
import types import warnings from collections.abc import Iterable from inspect import getfullargspec import numpy as np class _DatasetApply: """ Helper class to apply function to `pysprint.core.bases.dataset.Dataset` objects. """ def __init__( self, obj, func, axis=None, args=None, kwargs=None ): self.obj = obj self.args = args or () self.kwargs = kwargs or {} self.f = func self.axis = axis if self.axis == "x" or self.axis == 0: self.target = "x" elif self.axis == "y" or self.axis == 1: self.target = "y" else: raise ValueError("Axis must be 'x', 'y', '0' or '1'.") self.shape = len(getattr(self.obj, self.target)) def perform(self): """ Apply the specified function. """ if isinstance(self.f, str): func = getattr(self.obj, self.f) sig = getfullargspec(func) if "axis" in sig.args: self.kwargs["axis"] = self.axis # Let's assume we don't mess up the shape internally func(*self.args, **self.kwargs) return self.obj # we need to return this because of `inplacify` deco. elif isinstance(self.f, np.ufunc): target = getattr(self.obj, self.target) retval = self.f(target, *self.args, **self.kwargs) value = self._validate(retval) setattr(self.obj, self.target, value) if self.target == "y": setattr(self.obj, "y_norm", value) return value elif isinstance(self.f, types.FunctionType): sig = getfullargspec(self.f) if "axis" in sig.args: self.kwargs["axis"] = self.axis # we can safely vectorize it here self.f = np.vectorize(self.f) target = getattr(self.obj, self.target) retval = self.f(target, *self.args, **self.kwargs) value = self._validate(retval) setattr(self.obj, self.target, value) if self.target == "y": setattr(self.obj, "y_norm", value) return value def _validate(self, val): if isinstance(val, (Iterable, np.ndarray)): val = np.asarray(val, dtype=np.float64) if val.ndim != 1: val = np.concatenate(val).ravel() warnings.warn("Function return value was flattened.") if len(val) != len(np.unique(val)): if len(np.unique(val)) == self.shape: return val else: if self.target == "x": raise ValueError( f"Function returned duplicated values which is not allowed when" " modifying the x axis. After filtering to unique values " f"a {len(np.unique(val))}-length array was produced, " f"but {self.shape} was expected." ) return val if len(val) != self.shape: retval = self._broadcast(val) return retval return val else: raise TypeError("Function should return a number or Iterable type.") def _broadcast(self, val): if len(val) > self.shape: return val[:self.shape] elif len(val) < self.shape: if not self.shape % len(val) == 0: raise ValueError("Cannot broadcast safely to the desired shape.") else: return np.repeat(val, (self.shape % len(val)))
2.53125
3
calculations/statraw/stats2csv.py
paqs2020/paqs2020
1
12784063
<gh_stars>1-10 import csv import pickle finalstat = pickle.load(open("finalstats.pkl","rb")) with open('finalstat.csv','a') as f: w = csv.writer(f) w.writerow(['statistics']+list(finalstat['accurate'].keys())) for quality in finalstat: w.writerow([quality]+list(finalstat[quality].values())) stats = pickle.load(open("stats.pkl","rb")) for quality in stats: with open(quality+'.csv','a') as s: w = csv.writer(s) w.writerow(['subject','fid','response']) for subject in stats[quality]: del stats[quality][subject]['neutral'] for fid in stats[quality][subject]: for resp in stats[quality][subject][fid]: w.writerow([subject,fid,resp]) rq2 = pickle.load(open("RQ2mean.pkl","rb")) with open('RQ2mean.csv','a') as r: w = csv.writer(r) w.writerow(['questions']+list(rq2['accurate'].keys())) for quality in rq2: w.writerow([quality]+list(rq2[quality].values())) rq2raw = pickle.load(open("RQ2stats.pkl","rb")) for quality in rq2raw: with open(quality+'RQ2.csv','a') as rw: w = csv.writer(rw) w.writerow(['subject','fid','Qtype','response']) for subject in rq2raw[quality]: for fid in rq2raw[quality][subject]: for query in rq2raw[quality][subject][fid]: if len(rq2raw[quality][subject][fid][query])>0: for response in rq2raw[quality][subject][fid][query]: w.writerow([subject,fid,query.replace('Query',''),response])
2.765625
3
chill/examples/chill/testcases/jacobi_box_1_32.py
CompOpt4Apps/Artifact-DataDepSimplify
5
12784064
from chill import * source('jacobi_box_1_32.c') destination('jacobi_box_1_32modified.c') procedure('smooth_box_1_32') loop(0) original() print_code() stencil_temp(3) print_code() print_space()
1.679688
2
Exercicios/PythonExercicios/ex041 - 050/ex047.py
sggrilo/Curso-em-Video-Python
0
12784065
# CONTAGEM DE PARES — Crie um programa que mostre na tela todos os números pares entre 1 e 50. from time import sleep print('NÚMEROS PARES ENTRE 2 E 50\n') sleep(1) for i in range(2, 51, 2): print(i)
3.5
4
tests/conftest.py
workforce-data-initiative/etp-warehouse
0
12784066
import os import pytest from sqlalchemy.inspection import inspect from sqlalchemy_utils.functions import drop_database from alembic import config from dbutils import conn_uri_factory, DbConnection def pytest_addoption(parser): """ Custom command line options required for test runs """ parser.addoption('--name', action='store', default=None, help='Schema [transactional | warehouse] to operate on') parser.addoption('--adapter', action='store', default='sqlite', help='SQLAlchemy database connection adapter') parser.addoption('--conf', action='store', default=os.path.join(os.path.dirname(__file__), '../alembic.ini'), help="Alembic config INI path") parser.addoption('--dbconf', action='store', default=os.path.join(os.path.dirname(__file__), '../conf/db.yml'), help='Database connection parameters YAML path') @pytest.fixture(scope='session') def schema_name(request): return request.config.getoption('--name') @pytest.fixture(scope='session') def alembic_cfg(request): return request.config.getoption('--conf') @pytest.fixture(scope='session') def db_conf(request): return request.config.getoption('--dbconf') @pytest.fixture(scope='session') def db_adapter(request): return request.config.getoption('--adapter') @pytest.fixture(scope='session') def alchemy_url(db_conf, db_adapter, schema_name, request): return conn_uri_factory(db_conf, db_adapter, schema_name) @pytest.fixture(scope='session', autouse=True) def db_setup(alembic_cfg, schema_name, db_conf, db_adapter, alchemy_url, request): # run all db migrations config.main(['-c', alembic_cfg, '-n', schema_name, '-x', 'dbconf={0}'.format(db_conf), '-x', 'adapter={0}'.format(db_adapter), 'upgrade', 'head']) def db_drop(): # db teardown - drop all config.main(['-c', alembic_cfg, '-n', schema_name, '-x', 'dbconf={0}'.format(db_conf), '-x', 'adapter={0}'.format(db_adapter), 'downgrade', 'base']) # drop db incl. alembic tables drop_database(alchemy_url) request.addfinalizer(db_drop) @pytest.fixture(scope='session') def db_conn(alchemy_url): return DbConnection(alchemy_url) @pytest.fixture(scope='session') def db_inspector(db_conn): return inspect(db_conn.engine) @pytest.fixture(scope='session') def alembic_tables(): """ Tables created by Alembic to track migrations. Fixture is maintained to differentiate alembic tables from application tables when `inspector.get_table_names()` for tests """ tbl_list = ['alembic_version'] return tbl_list @pytest.fixture(scope='session') def db_tables(schema_name): """ Manifest of all application tables expected in database when all migrations are run """ if schema_name.lower() == 'transactional': tbl_list = ['participant', 'program', 'participant_program', 'program_provider', 'provider', 'outcome', 'exit_type', 'wage', 'entity_type'] else: tbl_list = [] # sort table list - easier test comparison tbl_list.sort() return tbl_list
2.203125
2
uploader.py
fuzzycode/DawnDriver
1
12784067
<gh_stars>1-10 # Copyright (c) 2014, Dawn Robotics Ltd # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # 3. Neither the name of the Dawn Robotics Ltd nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import shutil import filecmp import subprocess import logging from distutils.spawn import find_executable #--------------------------------------------------------------------------------------------------- class BoardInfo: #----------------------------------------------------------------------------------------------- def __init__( self, name, processor, uploadSpeed ): self.name = name self.processor = processor self.uploadSpeed = uploadSpeed #--------------------------------------------------------------------------------------------------- DEFAULT_SERIAL_PORT_NAME = "/dev/ttyUSB0" DEFAULT_BOARD_MODEL = "uno" BUILD_OUTPUT_FILENAME = "/tmp/ino_build_output.txt" INO_BUILDER = "ino" BIN_UPLOADER = "avrdude" BOARD_INFO_DICT = { "uno" : BoardInfo( "uno", "atmega328p", 115200 ), "atmega8" : BoardInfo( "atmega8", "atmega8", 19200 ) } #--------------------------------------------------------------------------------------------------- def getInoUploaderUserDir(): homeDir = os.environ[ "HOME" ] return homeDir + "/.ino_uploader" #--------------------------------------------------------------------------------------------------- def getInoBuilder(): return find_executable(INO_BUILDER) #--------------------------------------------------------------------------------------------------- def getBinUploader(): return find_executable(BIN_UPLOADER) #--------------------------------------------------------------------------------------------------- def upload( sketchDir, serialPortName=DEFAULT_SERIAL_PORT_NAME, boardModel=DEFAULT_BOARD_MODEL, forceRebuild=False ): boardInfo = BOARD_INFO_DICT[ boardModel ] uploadSucceeded = False inoUploaderUserDir = getInoUploaderUserDir() sketchDirBasename = os.path.basename( sketchDir ) if len( sketchDirBasename ) == 0: raise Exception( "Invalid sketch directory - " + sketchDir ) inoUploaderSketchDir = inoUploaderUserDir + "/" + sketchDirBasename inoUploaderSrcDir = inoUploaderSketchDir + "/src" sketchFiles = os.listdir( sketchDir ) # Check to see if we need to copy files over fileCopyNeeded = False if forceRebuild: if os.path.exists( inoUploaderSketchDir ): shutil.rmtree( inoUploaderSketchDir ) fileCopyNeeded = True else: if not os.path.exists( inoUploaderSrcDir ): fileCopyNeeded = True else: match, mismatch, errors = filecmp.cmpfiles( sketchDir, inoUploaderSrcDir, sketchFiles ) if len( mismatch ) > 0 or len( errors ) > 0: fileCopyNeeded = True # Copy files over if needed if fileCopyNeeded: logging.info( "Copying sketch src files" ) if os.path.exists( inoUploaderSrcDir ): shutil.rmtree( inoUploaderSrcDir ) shutil.copytree( sketchDir, inoUploaderSrcDir ) else: logging.info( "No file copy needed" ) # Now try to build the sketch logging.debug( "Building sketch in dir " + inoUploaderSketchDir ) outputFile = open( BUILD_OUTPUT_FILENAME, "w" ) buildResult = subprocess.call( [ getInoBuilder(), "build", "-m", boardModel ], cwd=inoUploaderSketchDir, stdout=outputFile, stderr=outputFile ) outputFile.close() # Upload if the build was successful if buildResult == 0: hexFilename = inoUploaderSketchDir + "/.build/{0}/firmware.hex".format( boardModel ) logging.debug( "Trying to upload " + hexFilename ) uploadResult = subprocess.call( [ getBinUploader(), "-p", boardInfo.processor, "-P", serialPortName, "-c", "arduino", "-b", str( boardInfo.uploadSpeed ), "-D", "-U", "flash:w:{0}:i".format( hexFilename ) ] ) logging.debug( "uploadResult = " + str( uploadResult ) ) if uploadResult == 0: uploadSucceeded = True else: logging.warning( "Building of sketch was unsuccessful" ) return uploadSucceeded
0.878906
1
res/py/3/Context/http/scrape/_DEFAULT.py
ytyaru0/Python.TemplateFileMaker.20180314204216
0
12784068
import urllib.request from bs4 import BeautifulSoup url = 'https://www.google.co.jp' with urllib.request.urlopen(url) as res: soup = BeautifulSoup(res.read(), 'html.parser') print(soup.select('title')[0].text) # `<title>*</title>`
3.484375
3
restapi/apis.py
reindexer/django-restapi
2
12784069
all_apis = []
1.078125
1
env_settings/migrations/0001_initial.py
jjorissen52/django-env-settings
2
12784070
<filename>env_settings/migrations/0001_initial.py from django.conf import settings from django.contrib.auth import get_user_model from django.db import migrations, models INITIAL_GROUPS = [] def add_initial_auth(apps, schema_editor): Group = apps.get_model('auth', 'Group') User = get_user_model() initial_groups = INITIAL_GROUPS existing_groups = list(Group.objects.filter(name__in=initial_groups).values_list('name', flat=True)) Group.objects.bulk_create( [Group(name=group_name) for group_name in initial_groups if group_name not in existing_groups] ) _ = User.objects.create_superuser(username=settings.INITIAL_ADMIN_USERNAME, password=<PASSWORD>, email=settings.INITIAL_ADMIN_EMAIL) class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [migrations.RunPython(add_initial_auth)]
2.0625
2
wiki/forms.py
Jeromeschmidt/makewiki_v2
0
12784071
<filename>wiki/forms.py from django.forms import ModelForm from wiki.models import Page class PageForm(ModelForm): """ Render and process a form based on the Page model. """ model = Page
2.390625
2
parallel/worker.py
proteneer/timemachine
91
12784072
<filename>parallel/worker.py import argparse import numpy as np from datetime import datetime import os import logging import pickle from concurrent import futures from parallel.grpc import service_pb2, service_pb2_grpc from parallel.utils import get_worker_status from parallel.constants import DEFAULT_GRPC_OPTIONS import grpc class Worker(service_pb2_grpc.WorkerServicer): def Submit(self, request, context): start = datetime.now() task_fn, args, kwargs = pickle.loads(request.binary) task_name = task_fn.__name__ print(f"Started {task_name} at {start}", flush=True) result = task_fn(*args, **kwargs) finish_time = datetime.now() total_seconds = (finish_time - start).seconds print(f"Running {task_name} took {total_seconds}", flush=True) return service_pb2.PickleData(binary=pickle.dumps(result)) def Status(self, request, context): return get_worker_status() def serve(args): server = grpc.server(futures.ThreadPoolExecutor(max_workers=1), options=DEFAULT_GRPC_OPTIONS) service_pb2_grpc.add_WorkerServicer_to_server(Worker(), server) server.add_insecure_port("[::]:" + str(args.port)) server.start() server.wait_for_termination() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Worker Server") parser.add_argument("--gpu_idx", type=int, required=True, help="Location of all output files") parser.add_argument( "--port", type=int, required=True, help="Either single or double precision. Double is 8x slower." ) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_idx) logging.basicConfig() serve(args)
2.71875
3
common/test/test_signing_serializer.py
andkononykhin/plenum
148
12784073
<gh_stars>100-1000 from collections import OrderedDict import pytest from common.serializers.serialization import serialize_msg_for_signing def test_serialize_int(): assert b"1" == serialize_msg_for_signing(1) def test_serialize_str(): assert b"aaa" == serialize_msg_for_signing("aaa") def test_serialize_none(): assert b"" == serialize_msg_for_signing(None) def test_serialize_simple_dict(): assert b"1:a|2:b" == serialize_msg_for_signing({1: 'a', 2: 'b'}) assert b"1:a|2:b" == serialize_msg_for_signing({"2": 'b', "1": 'a'}) def test_serialize_array(): assert b"1,5,3,4,2" == serialize_msg_for_signing([1, 5, 3, 4, 2]) def test_serialize_ordered_dict(): v1 = OrderedDict([('1', 'a'), ('2', 'b')]) v2 = OrderedDict([('2', 'b'), ('1', 'a')]) assert b"1:a|2:b" == serialize_msg_for_signing(v1) assert b"1:a|2:b" == serialize_msg_for_signing(v2) def test_serialize_dict_with_array(): assert b"1:a|2:b|3:1,2:k" == serialize_msg_for_signing({1: 'a', 2: 'b', 3: [1, {2: 'k'}]}) assert b"1:a|2:b|3:1,2:k" == serialize_msg_for_signing({'1': 'a', '2': 'b', '3': ['1', {'2': 'k'}]}) @pytest.mark.skip("An issue in Signing Serializer: https://jira.hyperledger.org/browse/INDY-1469") def test_serialize_dicts_with_different_keys(): v1 = serialize_msg_for_signing( { 1: 'a', 2: { 3: 'b', 4: { 5: { 6: 'c' } } } }) v2 = serialize_msg_for_signing( { 1: 'a', 2: { 3: 'b', }, 4: { 5: { 6: 'c' } } }) assert v1 == v2 @pytest.mark.skip("An issue in Signing Serializer: https://jira.hyperledger.org/browse/INDY-1469") def test_serialize_complex_dict(): assert b'1:a|2:3:b|2:4:5:6:c' == serialize_msg_for_signing( { 1: 'a', 2: { 3: 'b', 4: { 5: { 6: 'c' } } } }) assert b'1:a|2:3:b|2:4:5:6:c' == serialize_msg_for_signing( { '1': 'a', '2': { '3': 'b', '4': { '5': { '6': 'c' } } } }) v = serialize_msg_for_signing( { '1': 'a', '2': 'b', '3': { '4': 'c', '5': 'd', '6': { '7': { '8': 'e', '9': 'f' }, '10': { '11': 'g', '12': 'h' } }, '13': { '13': { '13': 'i', } } } }) assert b'1:a|2:b|3:4:c|3:5:d|3:6:7:8:e|3:6:7:9:f|3:6:10:11:g|3:6:10:12:h|3:13:13:13:i' == v @pytest.mark.skip("An issue in Signing Serializer: https://jira.hyperledger.org/browse/INDY-1469") def test_serialize_complex_ordered_dict(): assert b'1:a|2:3:b|4:c' == serialize_msg_for_signing( OrderedDict([ ('1', 'a'), ('2', OrderedDict([ ('3', 'b'), ('4', 'c'), ])) ])) assert b'1:a|2:3:b|4:c' == serialize_msg_for_signing( OrderedDict([ ('2', OrderedDict([ ('4', 'c'), ('3', 'b'), ])), ('1', 'a'), ]))
2.53125
3
src/asphalt/redis/component.py
asphalt-framework/asphalt-redis
5
12784074
<filename>src/asphalt/redis/component.py from __future__ import annotations import logging from typeguard import check_argument_types from asphalt.core import Component, Context, context_teardown from redis.asyncio import Redis logger = logging.getLogger(__name__) class RedisComponent(Component): """ Provides a :class:`redis.asyncio.Redis` client as a resource. :param resource_name: name of the client resource to be added :param validate_connection: if true, check that the server can be connected to before adding the client resource :param kwargs: keyword arguments passed to :class:`redis.asyncio.Redis` """ def __init__( self, *, resource_name: str = "default", validate_connection: bool = True, **kwargs, ): check_argument_types() self.resource_name = resource_name self.validate_connection = validate_connection self.client = Redis(**kwargs) @context_teardown async def start(self, ctx: Context) -> None: async with self.client: if self.validate_connection: await self.client.ping() ctx.add_resource(self.client, self.resource_name) connection_kwargs = self.client.connection_pool.connection_kwargs if "path" in connection_kwargs: params = f"path={connection_kwargs['path']!r}" else: params = ( f"host={connection_kwargs.get('host', 'localhost')!r}, " f"port={connection_kwargs.get('port', 6379)}" ) logger.info( "Configured Redis client (%s; %s)", self.resource_name, params, ) yield logger.info("Redis client (%s) shut down", self.resource_name)
2.34375
2
models/HarmonicNet.py
stegmaierj/HarmonicNet
1
12784075
# -*- coding: utf-8 -*- """ # HarmonicNet. # Copyright (C) 2021 <NAME>, <NAME>, S.Koppers, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the Liceense at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Please refer to the documentation for more information about the software # as well as for installation instructions. # # If you use this application for your work, please cite the following # publication: # # <NAME>, <NAME>, S.Koppers, <NAME>, # "Spherical Harmonics for Shape-Constrained 3D Cell Segmentation", ISBI, 2021. # """ import torch import torch.nn as nn import torch.nn.functional as F import torchvision import pytorch_lightning as pl import json from argparse import ArgumentParser, Namespace from collections import OrderedDict from torch.utils.data import DataLoader from dataloader.harmonic_dataloader import MeristemH5Dataset from ThirdParty.radam import RAdam class HarmonicNet_module(nn.Module): """Implementation of the 3D U-Net architecture. """ def __init__(self, in_channels, coefficients, feat_channels=16, norm_method='instance', **kwargs): super(HarmonicNet_module, self).__init__() self.in_channels = in_channels self.coefficients = coefficients self.feat_channels = feat_channels self.norm_method = norm_method # instance | batch | none if self.norm_method == 'instance': self.norm = nn.InstanceNorm3d elif self.norm_method == 'batch': self.norm = nn.BatchNorm3d elif self.norm_method == 'none': self.norm = nn.Identity else: raise ValueError('Unknown normalization method "{0}". Choose from "instance|batch|none".'.format(self.norm_method)) # Define layer instances self.conv_in = nn.Sequential( nn.Conv3d(in_channels, feat_channels, kernel_size=3, padding=1), nn.PReLU(feat_channels), nn.Conv3d(feat_channels, feat_channels, kernel_size=3, padding=1), nn.PReLU(feat_channels), self.norm(feat_channels) ) self.conv_pre = nn.Sequential( nn.Conv3d(feat_channels, feat_channels, kernel_size=3, padding=1), nn.PReLU(feat_channels), nn.Conv3d(feat_channels, feat_channels, kernel_size=3, padding=1), nn.PReLU(feat_channels), self.norm(feat_channels) ) self.down1 = nn.Sequential( nn.Conv3d(feat_channels, feat_channels*4, kernel_size=4, padding=1, stride=2), nn.PReLU(feat_channels*4), self.norm(feat_channels*4) ) self.down1_conv = nn.Sequential( nn.Conv3d(feat_channels*4, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), nn.Conv3d(feat_channels*4, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), self.norm(feat_channels*4) ) self.down2 = nn.Sequential( nn.Conv3d(feat_channels*4, feat_channels*8, kernel_size=4, padding=1, stride=2), nn.PReLU(feat_channels*8), self.norm(feat_channels*8) ) self.down2_conv = nn.Sequential( nn.Conv3d(feat_channels*8, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), self.norm(feat_channels*8) ) self.down3 = nn.Sequential( nn.Conv3d(feat_channels*8, feat_channels*16, kernel_size=4, padding=1, stride=2), nn.PReLU(feat_channels*16), self.norm(feat_channels*16) ) self.down3_conv = nn.Sequential( nn.Conv3d(feat_channels*16, feat_channels*16, kernel_size=3, padding=1), nn.PReLU(feat_channels*16), nn.Conv3d(feat_channels*16, feat_channels*16, kernel_size=3, padding=1), nn.PReLU(feat_channels*16), self.norm(feat_channels*16) ) self.up1 = nn.Sequential( nn.ConvTranspose3d(feat_channels*16, feat_channels*8, kernel_size=3, stride=2, padding=1, output_padding=1), nn.PReLU(feat_channels*8), self.norm(feat_channels*8) ) self.up1_conv = nn.Sequential( nn.Conv3d(feat_channels*16, feat_channels*8, kernel_size=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), self.norm(feat_channels*8) ) self.up2 = nn.Sequential( nn.ConvTranspose3d(feat_channels*8, feat_channels*4, kernel_size=3, stride=2, padding=1, output_padding=1), nn.PReLU(feat_channels*4), self.norm(feat_channels*4) ) self.up2_conv = nn.Sequential( nn.Conv3d(feat_channels*8, feat_channels*4, kernel_size=1), nn.PReLU(feat_channels*4), nn.Conv3d(feat_channels*4, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), self.norm(feat_channels*4) ) self.det1 = nn.Sequential( nn.Conv3d(feat_channels*16, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), nn.Conv3d(feat_channels*4, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), nn.Conv3d(feat_channels*4, 1, kernel_size=1), nn.Sigmoid() ) self.shape1 = nn.Sequential( nn.Conv3d(feat_channels*16, feat_channels*16, kernel_size=3, padding=1), nn.PReLU(feat_channels*16), nn.Conv3d(feat_channels*16, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, coefficients, kernel_size=1) ) self.det2 = nn.Sequential( nn.Conv3d(feat_channels*8, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), nn.Conv3d(feat_channels*4, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), nn.Conv3d(feat_channels*4, 1, kernel_size=1), nn.Sigmoid() ) self.shape2 = nn.Sequential( nn.Conv3d(feat_channels*8, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, coefficients, kernel_size=1) ) self.det3 = nn.Sequential( nn.Conv3d(feat_channels*4, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), nn.Conv3d(feat_channels*4, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), nn.Conv3d(feat_channels*4, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), nn.Conv3d(feat_channels*4, 1, kernel_size=1), nn.Sigmoid() ) self.shape3 = nn.Sequential( nn.Conv3d(feat_channels*4, feat_channels*4, kernel_size=3, padding=1), nn.PReLU(feat_channels*4), nn.Conv3d(feat_channels*4, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, feat_channels*8, kernel_size=3, padding=1), nn.PReLU(feat_channels*8), nn.Conv3d(feat_channels*8, coefficients, kernel_size=1) ) def forward(self, img): conv_pre1 = self.conv_in(img) conv_pre2 = self.conv_pre(conv_pre1) conv_pre3 = self.conv_pre(conv_pre2+conv_pre1) conv_pre4 = self.conv_pre(conv_pre3+conv_pre2) conv_pre5 = self.conv_pre(conv_pre4+conv_pre3) down1 = self.down1(conv_pre5) down1_conv = self.down1_conv(down1) down2 = self.down2(down1_conv+down1) down2_conv = self.down2_conv(down2) down3 = self.down3(down2_conv+down2) down3_conv = self.down3_conv(down3) up1 = self.up1(down3_conv+down3) up1_conv = self.up1_conv(torch.cat((up1,down2_conv),1)) up2 = self.up2(up1_conv+up1) up2_conv = self.up2_conv(torch.cat((up2,down1_conv),1)) det1 = self.det1(down3_conv) shape1 = self.shape1(down3_conv) out1 = torch.cat((det1,shape1),1) det2 = self.det2(up1_conv) shape2 = self.shape2(up1_conv) out2 = torch.cat((det2,shape2),1) det3 = self.det3(up2_conv) shape3 = self.shape3(up2_conv) out3 = torch.cat((det3,shape3),1) return out1, out2, out3 class HarmonicNet(pl.LightningModule): def __init__(self, hparams): super(HarmonicNet, self).__init__() if type(hparams) is dict: hparams = Namespace(**hparams) self.hparams = hparams self.augmentation_dict = {} # get the number of coefficients self.num_coefficients = int((self.hparams.sh_order+1)**2) # networks self.network = HarmonicNet_module(in_channels=hparams.in_channels, coefficients=self.num_coefficients, feat_channels=hparams.feat_channels, norm_method=hparams.norm_method) # cache for generated images self.last_predictions = None self.last_imgs = None self.last_masks = None def forward(self, z): return self.network(z) def load_pretrained(self, pretrained_file, strict=True, verbose=True): # Load the state dict state_dict = torch.load(pretrained_file)['state_dict'] # Make sure to have a weight dict if not isinstance(state_dict, dict): state_dict = dict(state_dict) # Get parameter dict of current model param_dict = dict(self.network.named_parameters()) layers = [] for layer in param_dict: if strict and not 'network.'+layer in state_dict: if verbose: print('Could not find weights for layer "{0}"'.format(layer)) continue try: param_dict[layer].data.copy_(state_dict['network.'+layer].data) layers.append(layer) except (RuntimeError, KeyError) as e: print('Error at layer {0}:\n{1}'.format(layer, e)) self.network.load_state_dict(param_dict) if verbose: print('Loaded weights for the following layers:\n{0}'.format(layers)) def loss_centroid(self, y_hat, y): loss = F.l1_loss(y_hat, y, reduction='none') weight = y*torch.clamp(torch.sum(y<0.5),1,y.numel()) + (1-y)*torch.clamp(torch.sum(y>0.5),1,y.numel()) weight = torch.div(weight, y.numel()) loss = torch.mul(loss, weight) loss = torch.sum(loss) loss = torch.div(loss, torch.clamp(torch.sum(weight), 1, y.numel())) return loss def loss_encoding(self, y_hat, y, mask): loss = F.l1_loss(y_hat, y, reduction='none') loss = torch.mul(loss, mask) loss = torch.sum(loss) loss = torch.div(loss, torch.clamp(torch.sum(mask)*self.num_coefficients, self.num_coefficients, y.numel())) return loss def training_step(self, batch, batch_idx): # Get image ans mask of current batch self.last_imgs = batch['image'] self.centroid_small = batch['stride{0}/centroid_map'.format(self.hparams.strides[2])] self.encoding_small = batch['stride{0}/encoding_map'.format(self.hparams.strides[2])] self.centroid_medium = batch['stride{0}/centroid_map'.format(self.hparams.strides[1])] self.encoding_medium = batch['stride{0}/encoding_map'.format(self.hparams.strides[1])] self.centroid_large = batch['stride{0}/centroid_map'.format(self.hparams.strides[0])] self.encoding_large = batch['stride{0}/encoding_map'.format(self.hparams.strides[0])] # generate images self.pred_small, self.pred_medium, self.pred_large = self.forward(self.last_imgs) # get the centroid losses loss_centroid_small = self.loss_centroid(self.pred_small[:,0:1,...], self.centroid_small) loss_centroid_medium = self.loss_centroid(self.pred_medium[:,0:1,...], self.centroid_medium) loss_centroid_large = self.loss_centroid(self.pred_large[:,0:1,...], self.centroid_large) loss_centroid = (1/6 * loss_centroid_small + 2/6 * loss_centroid_medium + 3/6 * loss_centroid_large) # get the encoding losses loss_encoding_small = self.loss_encoding(self.pred_small[:,1:,...], self.encoding_small, self.centroid_small) loss_encoding_medium = self.loss_encoding(self.pred_medium[:,1:,...], self.encoding_medium, self.centroid_medium) loss_encoding_large = self.loss_encoding(self.pred_large[:,1:,...], self.encoding_large, self.centroid_large) loss_encoding = (1/6 * loss_encoding_small + 2/6 * loss_encoding_medium + 3/6 * loss_encoding_large) loss = loss_centroid * self.hparams.centroid_weight + \ loss_encoding/self.num_coefficients * self.hparams.encoding_weight tqdm_dict = {'centroid_loss': loss_centroid, 'encoding_loss':loss_encoding, 'epoch': self.current_epoch} output = OrderedDict({ 'loss': loss, 'progress_bar': tqdm_dict, 'log': tqdm_dict }) if torch.isnan(loss): print('Image minmax: {0}/{1}'.format(self.last_imgs.min(), self.last_imgs.max())) print('Cent_small:{0}, Cent_medium:{1}, Cent_large:{2}, Enc_small:{3}, Enc_medium:{4}, Enc_large:{5}'.format(self.centroid_small.min(),\ self.centroid_medium.min(),\ self.centroid_large.min(),\ self.encoding_small.min(),\ self.encoding_medium.min(),\ self.encoding_large.min())) print('Cent_small:{0}, Cent_medium:{1}, Cent_large:{2}, Enc_small:{3}, Enc_medium:{4}, Enc_large:{5}'.format(loss_centroid_small,\ loss_centroid_medium,\ loss_centroid_large,\ loss_encoding_small,\ loss_encoding_medium,\ loss_encoding_large)) return output def test_step(self, batch, batch_idx): test_imgs = batch['image'] centroid_small = batch['stride{0}/centroid_map'.format(self.hparams.strides[2])] encoding_small = batch['stride{0}/encoding_map'.format(self.hparams.strides[2])] centroid_medium = batch['stride{0}/centroid_map'.format(self.hparams.strides[1])] encoding_medium = batch['stride{0}/encoding_map'.format(self.hparams.strides[1])] centroid_large = batch['stride{0}/centroid_map'.format(self.hparams.strides[0])] encoding_large = batch['stride{0}/encoding_map'.format(self.hparams.strides[0])] pred_small, pred_medium, pred_large = self.forward(test_imgs) loss_centroid_small = self.loss_centroid(pred_small[:,0:1,...], centroid_small) loss_centroid_medium = self.loss_centroid(pred_medium[:,0:1,...], centroid_medium) loss_centroid_large = self.loss_centroid(pred_large[:,0:1,...], centroid_large) loss_centroid = (loss_centroid_small + loss_centroid_medium + loss_centroid_large) / 3 # get the encoding losses loss_encoding_small = self.loss_encoding(pred_small[:,1:,...], encoding_small, centroid_small) loss_encoding_medium = self.loss_encoding(pred_medium[:,1:,...], encoding_medium, centroid_medium) loss_encoding_large = self.loss_encoding(pred_large[:,1:,...], encoding_large, centroid_large) loss_encoding = (loss_encoding_small + loss_encoding_medium + loss_encoding_large) / 3 loss = self.hparams.centroid_weight * loss_centroid + \ self.hparams.encoding_weight * loss_encoding return {'test_loss': loss} def test_end(self, outputs): avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean() tensorboard_logs = {'test_loss': avg_loss} return {'avg_test_loss': avg_loss, 'log': tensorboard_logs} def validation_step(self, batch, batch_idx): val_imgs = batch['image'] centroid_small = batch['stride{0}/centroid_map'.format(self.hparams.strides[2])] encoding_small = batch['stride{0}/encoding_map'.format(self.hparams.strides[2])] centroid_medium = batch['stride{0}/centroid_map'.format(self.hparams.strides[1])] encoding_medium = batch['stride{0}/encoding_map'.format(self.hparams.strides[1])] centroid_large = batch['stride{0}/centroid_map'.format(self.hparams.strides[0])] encoding_large = batch['stride{0}/encoding_map'.format(self.hparams.strides[0])] pred_small, pred_medium, pred_large = self.forward(val_imgs) loss_centroid_small = self.loss_centroid(pred_small[:,0:1,...], centroid_small) loss_centroid_medium = self.loss_centroid(pred_medium[:,0:1,...], centroid_medium) loss_centroid_large = self.loss_centroid(pred_large[:,0:1,...], centroid_large) loss_centroid = (loss_centroid_small + loss_centroid_medium + loss_centroid_large) / 3 # get the encoding losses loss_encoding_small = self.loss_encoding(pred_small[:,1:,...], encoding_small, centroid_small) loss_encoding_medium = self.loss_encoding(pred_medium[:,1:,...], encoding_medium, centroid_medium) loss_encoding_large = self.loss_encoding(pred_large[:,1:,...], encoding_large, centroid_large) loss_encoding = (loss_encoding_small + loss_encoding_medium + loss_encoding_large) / 3 loss = self.hparams.centroid_weight * loss_centroid + \ self.hparams.encoding_weight * loss_encoding return {'val_loss': loss} def validation_end(self, outputs): avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() tensorboard_logs = {'val_loss': avg_loss} return {'avg_val_loss': avg_loss, 'log': tensorboard_logs} def configure_optimizers(self): opt = RAdam(self.network.parameters(), lr=self.hparams.learning_rate) return [opt], [] def train_dataloader(self): if self.hparams.train_list is None: return None else: dataset = MeristemH5Dataset(self.hparams.train_list, self.hparams.data_root, patch_size=self.hparams.patch_size,\ image_group=self.hparams.image_groups[0], strides=self.hparams.strides, norm_method=self.hparams.data_norm,\ sh_order=self.hparams.sh_order) return DataLoader(dataset, batch_size=self.hparams.batch_size, shuffle=True, drop_last=True) def test_dataloader(self): if self.hparams.test_list is None: return None else: dataset = MeristemH5Dataset(self.hparams.test_list, self.hparams.data_root, patch_size=self.hparams.patch_size,\ image_group=self.hparams.image_groups[0], strides=self.hparams.strides, norm_method=self.hparams.data_norm, \ sh_order=self.hparams.sh_order) return DataLoader(dataset, batch_size=self.hparams.batch_size) def val_dataloader(self): if self.hparams.val_list is None: return None else: dataset = MeristemH5Dataset(self.hparams.val_list, self.hparams.data_root, patch_size=self.hparams.patch_size,\ image_group=self.hparams.image_groups[0], strides=self.hparams.strides, norm_method=self.hparams.data_norm,\ sh_order=self.hparams.sh_order) return DataLoader(dataset, batch_size=self.hparams.batch_size) def on_epoch_end(self): # log sampled images z_slice_small = int(self.pred_small.shape[2]//2) grid_small = torch.cat((self.pred_small[:,0:1,z_slice_small,:,:], self.centroid_small[:,0:1,z_slice_small,:,:]), 0) prediction_grid = torchvision.utils.make_grid(grid_small) self.logger.experiment.add_image('centroids_small', prediction_grid, self.current_epoch) z_slice_medium = int(self.pred_medium.shape[2]//2) grid_small = torch.cat((self.pred_medium[:,0:1,z_slice_medium,:,:], self.centroid_medium[:,0:1,z_slice_medium,:,:]), 0) prediction_grid = torchvision.utils.make_grid(grid_small) self.logger.experiment.add_image('centroids_medium', prediction_grid, self.current_epoch) z_slice_large = int(self.pred_large.shape[2]//2) grid_small = torch.cat((self.pred_large[:,0:1,z_slice_large,:,:], self.centroid_large[:,0:1,z_slice_large,:,:]), 0) prediction_grid = torchvision.utils.make_grid(grid_small) self.logger.experiment.add_image('centroids_large', prediction_grid, self.current_epoch) z_slice_raw = int(self.last_imgs.shape[2]//2) img_grid = torchvision.utils.make_grid(self.last_imgs[:,0,z_slice_raw,:,:]) self.logger.experiment.add_image('raw_images', img_grid, self.current_epoch) def set_augmentations(self, augmentation_dict_file): self.augmentation_dict = json.load(open(augmentation_dict_file)) @staticmethod def add_model_specific_args(parent_parser): """ Parameters you define here will be available to your model through self.hparams """ parser = ArgumentParser(parents=[parent_parser]) # network params parser.add_argument('--in_channels', default=1, type=int) parser.add_argument('--feat_channels', default=16, type=int) parser.add_argument('--patch_size', default=(64,128,128), type=int, nargs='+') parser.add_argument('--norm_method', default='instance', type=str) # data parser.add_argument('--data_norm', default='percentile', type=str) parser.add_argument('--data_root', default=r'D:\LfB\pytorchRepo\data\PNAS', type=str) parser.add_argument('--train_list', default=r'D:\LfB\pytorchRepo\data\PNAS_harmonic_plant_split1_train.csv', type=str) parser.add_argument('--test_list', default=r'D:\LfB\pytorchRepo\data\PNAS_harmonic_plant_split1_test.csv', type=str) parser.add_argument('--val_list', default=r'D:\LfB\pytorchRepo\data\PNAS_harmonic_plant_split1_val.csv', type=str) parser.add_argument('--image_groups', default=('data/image',), type=str, nargs='+') parser.add_argument('--strides', default=(2,4,8), type=int, nargs='+') parser.add_argument('--sh_order', default=5, type=int) # training params (opt) parser.add_argument('--batch_size', default=1, type=int) parser.add_argument('--learning_rate', default=0.001, type=float) parser.add_argument('--centroid_weight', default=0.50, type=float) parser.add_argument('--encoding_weight', default=0.50, type=float) return parser
1.6875
2
Eldorado_Actor-Critic/source/utils/rollouts.py
jbr-ai-labs/BAROCCO
3
12784076
<gh_stars>1-10 import numpy as np from source.env.lib.log import Blob def discountRewardsTD(rewards, vals, gamma=0.99, nSteps=10000): N = len(rewards) - 1 rets = np.zeros(N) rets[-1] = rewards[-1] for idx in reversed(range(N - 1)): nStepsCur = min(nSteps, N - 1 - idx) ret = [rewards[idx + i + 1] * gamma ** i for i in range(nStepsCur)] rets[idx] = sum(ret) + gamma ** nStepsCur * vals[idx + nStepsCur] return list(rets) class Rollout: def __init__(self, config): self.config = config self.actions = [] self.policy = [] self.states = [] self.states_global = [] self.rewards = [] self.rets = [] self.vals = [] self.states = [] self.contacts = [] self.feather = Feather() def step(self, action, policy, state=None, reward=None, contact=None, val=None): self.actions.append(action) self.policy.append(policy) self.states.append(state) self.rewards.append(reward) self.vals.append(val) self.contacts.append(contact) def stepGlobal(self, state_global): self.states_global.append(state_global) def finish(self): self.lifespan = len(self.rewards) self.rets = discountRewardsTD(self.rewards, self.vals, self.config.GAMMA) self.feather.finish() # Rollout logger class Feather: def __init__(self): self.blob = Blob() def scrawl(self, ent, val, reward, attack, contact): self.blob.annID = ent.annID self.stats(val, reward, attack, contact) def stats(self, value, reward, attack, contact): self.blob.reward.append(reward) self.blob.value.append(float(value)) self.blob.contact.append(float(contact)) if attack is not None: self.blob.attack.append(float(attack)) def finish(self): self.blob.finish()
2.15625
2
pyfont/api.py
BingerYang/pyfont
0
12784077
# -*- coding: utf-8 -*- # @Time : 2019-11-08 10:08 # @Author : binger from .draw_by_html import EffectFont from .draw_by_html import FontDrawByHtml from . import FontDraw, FontAttr from PIL import Image, ImageDraw, ImageFont class FontFactory(object): def __init__(self, effect_font, render_by_mixed=False): """ :param render_by_mixed: False 只有浏览器生成, :param fill_type: """ assert isinstance(effect_font, EffectFont) self.render_by_mixed = render_by_mixed self._effect_font = effect_font self.font_draw = None def is_effected(self): return any([self._effect_font.gradient_enable, self._effect_font.shadow_enable, self._effect_font.stroke_enable, self._effect_font.weight != 'normal']) def get_line_size(self, size, text): if not self.font_draw: self.font_draw = FontDraw(self._effect_font.base) return self.font_draw.get_line_size(text, size=size) def get_max_canvas_size(self, text): if not self.font_draw: self.font_draw = FontDraw(self._effect_font.base) return self.font_draw.max_canvas_size(text, is_truncated=True) def get_size_at_limit_range(self, text, size, char_spacing_par=0.1): if not self.font_draw: self.font_draw = FontDraw(self._effect_font.base) return self.font_draw.get_size_at_limit_range(text, size, char_spacing_par=char_spacing_par) def get_text_size_at_width(self, size, text, width, spacing=4): effect_font = ImageFont.truetype(font=self._effect_font.base.path, size=size) len_text = len(text) line = text remain = '' temp_width = 0 for n in range(len_text): temp_width += effect_font.getsize(text[n])[0] if temp_width > width: line = text[:n - 1] remain = text[n - 1:] break temp_width += spacing return line, remain def render_to_rng(self): if self.render_by_mixed and not self.is_effected(): limit_text_cb = lambda *args, **kwargs: True if not self.font_draw: self.font_draw = FontDraw(self._effect_font.base) resp = self.font_draw.write(self._effect_font.text, limit_text_cb=limit_text_cb) img = resp.img else: img = FontDrawByHtml.render_to_image(self._effect_font) return img if __name__ == '__main__': font = EffectFont() path = '../simkai.ttf' import os print(os.path.abspath(path)) font.set_text_base(size=100, path=path) font.base.clear_margin = True # font.shadow((80, 31, 191, 0.3), sigma=8, x=0, y=6) # font.gradient([("#da7eeb", 0), ("#9070d8", 0.5)], angle="center", type="radial") # font.fill_color = "#da7eeb" font.fill_color = (1, 1, 1, 255) # font.stroke("#4e1269", 1) font.text = '实例\n中国\n实例' obj = FontFactory(font, render_by_mixed=True) img = obj.render_to_rng() print(img.size) img.save("11.png")
2.609375
3
study_tool/query.py
cubeman99/russian-study-tool
0
12784078
<reponame>cubeman99/russian-study-tool<filename>study_tool/query.py from study_tool.card import Card class CardQuery: """ Queries a list of cards. """ def __init__(self, max_count=30, max_score=1.0, max_proficiency=10, card_type=None): """ Defines a study query """ self.max_count = max_count self.max_score = max_score self.max_proficiency = max_proficiency self.card_type = None def matches(self, card: Card, study_data) -> bool: if self.card_type is not None and card.get_word_type() != self.card_type: return False if self.max_score is not None and study_data.get_history_score() > self.max_score: return False if self.max_proficiency is not None and study_data.get_proficiency_level() > self.max_proficiency: return False return True
3.140625
3
thermosteam/utils/decorators/thermo_user.py
yoelcortes/thermotree
2
12784079
<filename>thermosteam/utils/decorators/thermo_user.py # -*- coding: utf-8 -*- # BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules # Copyright (C) 2020-2021, <NAME> <<EMAIL>> # # This module is under the UIUC open-source license. See # github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt # for license details. """ """ import thermosteam as tmo __all__ = ('thermo_user',) def thermo_user(cls): cls._load_thermo = _load_thermo cls.thermo = thermo cls.chemicals = chemicals cls.mixture = mixture return cls def _load_thermo(self, thermo): self._thermo = thermo = tmo.settings.get_default_thermo(thermo) return thermo @property def thermo(self): return self._thermo @property def chemicals(self): return self._thermo.chemicals @property def mixture(self): return self._thermo.mixture
1.929688
2
project/university/migrations/0009_rename_courseid_course_courseid.py
minaee/cd557
0
12784080
# Generated by Django 4.0.3 on 2022-03-12 20:16 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('university', '0008_rename_course_id_course_courseid_and_more'), ] operations = [ migrations.RenameField( model_name='course', old_name='courseId', new_name='courseid', ), ]
1.734375
2
personal_context_builder/test/test_API_models.py
InternetOfUs/personal-context-builder
0
12784081
""" Test for the API that handle models Copyright (c) 2021 Idiap Research Institute, https://www.idiap.ch/ Written by <NAME> <<EMAIL>>, """ import unittest from fastapi.testclient import TestClient # type: ignore from personal_context_builder import config from personal_context_builder.wenet_fastapi_app import app class APIModelsTestCase(unittest.TestCase): def setUp(self): self.client = TestClient(app) def test_simple_lda_exist(self): response = self.client.get(config.PCB_VIRTUAL_HOST_LOCATION + "/models/") self.assertIn("SimpleLDA", response.json()) def test_simple_bow_exist(self): response = self.client.get(config.PCB_VIRTUAL_HOST_LOCATION + "/models/") self.assertIn("SimpleBOW", response.json())
2.484375
2
fonction_py/tools.py
LaRiffle/axa_challenge
1
12784082
<filename>fonction_py/tools.py from numpy import * import math import pandas def poly_exp(X, degree): N,D = X.shape for d in range(2,degree+1): X = column_stack([X,X[:,0:D]**d]) return X def MSE(yt,yp): print("NE PAS UTILISER MSE !! utiliser LinExp !!!") def normalize(df): return (df - df.mean()) / (df.max() - df.min()) def faireSplitting(x, y, taille): # return xTrain, xTest, yTrain, yTest ln = (random.rand(x.shape[0]) < taille) return x[ln], x[~ln], y[ln], y[~ln]; def check(yEmpirique, yTest): # A UTILISER AVEC LES DATA FRAME DE PANDAS alpha=0.1 if(yTest.shape[0] != yEmpirique.shape[0]): print("Erreur sur la taille de la prédiction") return 0 print("accuracy en % :") print(sum(yEmpirique==yTest)*100/yEmpirique.shape[0]) # pourcentage de bonne prediction linex = 0 diff = (yTest-yEmpirique).values for i in range(len(diff)): linex = linex + math.exp(alpha * diff[i]) - alpha*diff[i]-1 print("linEx :") print(linex/yTest.shape[0]) def LinExp(yEmpirique, yTest):#Retourne l'erreur moyenne #UTILISER AVEC DES VECTEURS : POUR CONVERTIR DATA FRAME TO VECTOR DataFrame.values alpha = 0.1 <<<<<<< HEAD ======= coeff=linspace(1,3,len(yEmpirique)) >>>>>>> origin/master linex = 0 diff = (yTest - yEmpirique).values for i in range(len(diff)): linex = linex + coeff[i]*( math.exp(alpha * diff[i]) - alpha * diff[i] - 1) return linex/yTest.shape[0] def MatLinExp(yEmpirique, yTest): #retourne la matrice d'erreur#UTILISER AVEC DES VECTEURS : POUR CONVERTIR DATA FRAME TO VECTOR DataFrame.values alpha = 0.1 linex = [] diff = (yTest - yEmpirique) for i in range(len(diff)): linex.append(math.exp(alpha * diff[i]) - alpha * diff[i] - 1) return linex def Accuracy(yEmpirique, yTest): return sum(yEmpirique==yTest)*100/yEmpirique.shape[0]
2.84375
3
pyot/managedep/static/startproject/views.py
paaksing/Pyot
60
12784083
<reponame>paaksing/Pyot from aiohttp import web from pyot.models import lol from pyot.core.exceptions import NotFound from .wsgi import app # Create your views here ... @app.routes.get('/summoner_level/{name}/{platform}') async def summoner_level(request: web.Request): '''Get summoner level by name and platform''' # Sample Function based View # Pyot Model: lol # Pyot Core Object: Summoner try: summoner = await lol.Summoner(name=request.match_info["name"], platform=request.match_info["platform"]).get() return web.json_response(summoner.level) except NotFound: return web.json_response({"message": "Summoner Not Found"}, status=404) @app.routes.view('/summoner_winrate/{name}/{platform}') class SummonerWinrate(web.View): '''Get summoner winrate by name and platform for this season''' # Sample Class based View # Pyot Model: lol # Pyot Core Object: Summoner, SummonerLeague def get_winrate(self, league: lol.SummonerLeague): wr = [] for entry in league.entries: wr.append(entry.wins / (entry.wins + entry.losses)) return sum(wr) / len(wr) async def get(self): summoner = await lol.Summoner(name=self.request.match_info["name"], platform=self.request.match_info["platform"]).get() league = await summoner.league_entries.get() return web.json_response(self.get_winrate(league) * 100)
2.46875
2
tests/test_guard_instance.py
joaoteixeira88/pyguard
2
12784084
import pytest from exception.argument_not_instance_of_exception import ArgumentNotInstanceOfException from guard import Guard @pytest.mark.parametrize( "param, typeof, param_name, message, expected", [ (2, str, None, "parameter is not from type <class 'str'>.", pytest.raises(ArgumentNotInstanceOfException)), ([], dict, None, "parameter is not from type <class 'dict'>.", pytest.raises(ArgumentNotInstanceOfException)), ("test", bool, None, "parameter is not from type <class 'bool'>.", pytest.raises(ArgumentNotInstanceOfException)) ] ) def test_IsNotInstanceOfType_InvalidType_RaisedArgumentNotInstanceOfException(param, typeof, param_name, message, expected): with expected as err: Guard.is_not_instance_of_type(param=param, typeof=typeof, param_name=param_name) assert message in str(err.value)
2.765625
3
src/UnloadAutoPartitions/genunload.py
rmcelroyF8/amazon-redshift-utils
2,452
12784085
<reponame>rmcelroyF8/amazon-redshift-utils<gh_stars>1000+ """ GenUnload : Generate unload commands given a config file (config.ini) which has information about table, schema, partition column & sort columns ------------------------------------------------------------------------------------------------------------------------------------------- -- <NAME> 05/23/2019 example: python3 genunload.py Readme.md has the requirements info. """ from __future__ import print_function import os import sys import datetime from datetime import timedelta import boto3 import base64 import json import argparse import configparser import pgpasslib import pg8000 import re ssl = True __version__ = "1.0" pg8000.paramstyle = "qmark" def connect(host, port, db, dbuser, table, schema, column_list, partition_column, sort_keys, s3path, iamrole): # get password from .pgpass or environment try: pg_pwd = pgpasslib.getpass(host,port,db,dbuser) print(pg_pwd) if pg_pwd: pwd = <PASSWORD>pwd except pgpasslib.FileNotFound as e: pass # Connect to the cluster try: if debug: print('Connecting to Redshift: %s' % host) conn = pg8000.connect(database=db, user=dbuser, password=<PASSWORD>, host=host, port=port, ssl=ssl) conn.autocommit = True except: print('Redshift Connection Failed: exception %s' % sys.exc_info()[1]) raise if debug: print('Successfully connected to Redshift cluster') # create a new cursor cursor = conn.cursor() check_table_exists(cursor, conn, table, schema) full_column_list, partition_keys, partition_column_type = get_column_list_partition_keys(cursor, conn, table, schema, column_list, partition_column) gen_unload(full_column_list, partition_keys, partition_column_type, schema, table, partition_column, sort_keys, s3path, iamrole) if execute: print("Executing unload commands !") execute_unload(cursor, conn) conn.commit() if debug: print("Done with the script !!") def check_table_exists(cursor, conn, table, schema): # check if table exists if debug: print('Check for table exists: %s' % table) stmt = "SELECT EXISTS (SELECT 1 FROM information_schema.tables WHERE table_schema = '%s' AND table_name = '%s');" % (schema, table) cursor.execute(stmt) s = cursor.fetchone() s = ' '.join(map(str, s)) if s == 'False': print('Table does not exist: %s' % table) exit(1) else: print('Table %s exists' % table) def get_column_list_partition_keys(cursor, conn, table, schema, column_list, partition_column): # get partition column data type stmt = "select data_type from information_schema.columns where table_name = '%s' and table_schema = '%s' and column_name = '%s';" % ( table, schema, partition_column) if debug: print('Collecting data type information for partition column: %s' % partition_column) cursor.execute(stmt) partition_column_type = cursor.fetchone() if partition_column_type is None: print('Please check your partition column: %s' % partition_column) exit(1) partition_column_type = ' '.join(map(str, partition_column_type)) if any(re.findall(r'integer|numeric|decimal|bigint|real|double precision|smallint', partition_column_type, re.IGNORECASE)): partition_column_type = 'numeric' elif any(re.findall(r'timestamp without time zone|date|character varying|character|timestamp with time zone|bool|boolean', partition_column_type, re.IGNORECASE)): partition_column_type = 'alphanumeric' # if column_list not set , then select all columns except for partition column if not column_list: stmt = "select column_name from information_schema.columns where table_name = '%s' and table_schema = '%s' order by ordinal_position;" % (table, schema) if debug: print('Collecting column list excluding partition column: %s' % partition_column) cursor.execute(stmt) column_list = cursor.fetchall() full_column_list = [x[0] for x in column_list] full_column_list.remove(partition_column) full_column_list = ','.join(map(str, full_column_list)) else: full_column_list = column_list # get distinct partition keys using partition column stmt = "select distinct %s from %s.%s;" % (partition_column, schema, table) if debug: print('Collecting distinct partition keys for partition column: %s [skipping NULL values]' % partition_column) cursor.execute(stmt) keys = cursor.fetchall() partition_keys = [x[0] for x in keys] print('Column list = %s' % full_column_list) # print('Partition keys = %s' % partition_keys) return full_column_list, partition_keys, partition_column_type def gen_unload(full_column_list, partition_keys, partition_column_type, schema, table, partition_column, sort_keys, s3path, iamrole): """ :param full_column_list: list :param partition_keys: list :param partition_column_type: str :param schema: str :param table: str :param partition_column: str :param sort_keys: str :param s3path: str :param iamrole: str :return: str """ s3path = s3path[:-1] if s3path.endswith('/') else s3path column_list_str = full_column_list if sort_keys: sql = 'SELECT ' + column_list_str + ' FROM ' + schema + '.' + table + ' WHERE ' + partition_column + '=' + '<>' + ' ORDER BY ' + sort_keys else: sql = 'SELECT ' + column_list_str + ' FROM ' + schema + '.' + table + ' WHERE ' + partition_column + '=' + '<>' part1 = 'UNLOAD ( ' + '\'' + sql + '\'' part3 = 'IAM_ROLE \'' + iamrole + '\' FORMAT PARQUET ALLOWOVERWRITE;' unload_stmt = str() for key in partition_keys: if key is not None: if partition_column_type == 'numeric': temp = part1.replace('<>', str(key)) unload_stmt = unload_stmt + temp + ') TO ' + '\'' + s3path + '/' + partition_column + '=' + str(key) + '/\' ' + part3 + '\n' elif partition_column_type == 'alphanumeric': temp = part1.replace('<>', '\\\'' + str(key) + '\\\'') unload_stmt = unload_stmt + temp + ') TO ' + '\'' + s3path + '/' + partition_column + '=' + str(key) + '/\' ' + part3 + '\n' if debug: print('Generating unload statements !') with open('unload.sql', 'w') as file: file.write(unload_stmt) def execute_unload(cursor, conn): with open(os.path.dirname(__file__) + 'unload.sql', 'r') as sql: unload_commands = sql.read() for s in unload_commands.split(";"): stmt = s.strip() if s is not None and stmt != "": if debug is True: print(stmt) try: cursor.execute(stmt) except Exception as e: if re.search(".*column.*does not exist*", str(e)) is not None: print('Check the column list !') raise else: print(e) raise e conn.commit() print('Done with executing unload commands !') def main(): config = configparser.ConfigParser() config.read('config.ini') parser = argparse.ArgumentParser() global debug global execute host = config.get('cluster', 'identifier', fallback=None) dbuser = config.get('cluster', 'dbuser', fallback='dbadmin') db = config.get('cluster', 'database', fallback='dev') port = int(config.get('cluster', 'port', fallback='5439')) schema = config.get('cluster', 'schema', fallback='public') table = config.get('cluster', 'table', fallback=None) partition_column = config.get('cluster', 'partition_key', fallback=None) sort_keys = config.get('cluster', 'sort_keys', fallback=None) column_list = config.get('cluster', 'column_list', fallback='All') debug = config.getboolean('cluster', 'debug', fallback=False) execute = config.getboolean('cluster', 'execute', fallback=False) s3path = config.get('s3', 'path', fallback=None) iamrole = config.get('creds', 'iam_role', fallback=None) if host is None or dbuser is None or db is None or schema is None or table is None or partition_column is None or sort_keys is None or column_list is None or s3path is None or iamrole is None: parser.print_help() exit() connect(host, port, db, dbuser, table, schema, column_list, partition_column, sort_keys, s3path, iamrole) if __name__ == "__main__": main()
2.578125
3
django_shop/apps/goods/admin.py
XZH950926/mydjango
0
12784086
<gh_stars>0 from django.contrib import admin from .models import Goods,GoodsCategory,IndexBanner,goodsImage # Register your models here. import xadmin class GoodsAdmin(object): #显示的列 list_display = ["name", "click_num", "sold_num", "fav_num", "goods_num", "market_price", "shop_price", "goods_brief", "goods_desc", "is_new", "is_hot", "add_time"] # 可以搜索的字段 style_fields = {"goods_desc": "ueditor"} search_fields = ['name', ] #列表页可以直接编辑的 list_editable = ["is_hot",] class BannerAdmin(object): list_display=['goods','index','image'] class goodsImageAdmin(object): list_display=['goods','image'] xadmin.site.register(Goods,GoodsAdmin) xadmin.site.register(IndexBanner,BannerAdmin) xadmin.site.register(goodsImage,goodsImageAdmin)
1.921875
2
src/materials/reeds_data.py
spasmann/1DQMC
0
12784087
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 28 13:22:41 2022 @author: sampasmann """ import numpy as np from time import process_time def reeds_data(Nx=1000, LB=-8.0, RB=8.0): G = 1 # number of energy groups sigt = np.empty((Nx,G)) sigs = np.empty((Nx,G,G)) source = np.empty((Nx,G)) dx = (RB-LB)/Nx xspan = np.linspace(LB+dx/2, RB-dx/2, Nx) count = 0 for x in xspan: if (x < -6): sigt[count,:] = 1.0 sigs[count,:,:] = 0.9 source[count,:] = 0.0 elif (-6 < x) and (x < -5): sigt[count,:] = 1.0 sigs[count,:] = 0.9 source[count,:] = 1.0 elif (-5 < x < -3): #vacuum region 1 sigt[count,:] = 0.0 sigs[count,:,:] = 0.0 source[count,:] = 0.0 elif (-3 < x < -2): sigt[count,:] = 5.0 sigs[count,:,:] = 0.0 source[count,:] = 0.0 elif (-2 < x < 2): sigt[count,:] = 50.0 sigs[count,:,:] = 0.0 source[count,:] = 50.0 elif (2 < x < 3): sigt[count,:] = 5.0 sigs[count,:,:] = 0.0 source[count,:] = 0.0 elif (3 < x < 5): # vacuum region 2 sigt[count,:] = 0.0 sigs[count,:,:] = 0.0 source[count,:] = 0.0 elif (5 < x < 6): sigt[count,:] = 1.0 sigs[count,:,:] = 0.9 source[count,:] = 1.0 elif (6 < x): sigt[count,:] = 1.0 sigs[count,:,:] = 0.9 source[count,:] = 0.0 count += 1 siga = (sigt - sigs) return sigt, sigs, siga, source, G if __name__ == "__main__": """ start = process_time() sigt, sigs, siga, source, G = reeds_data(1) stop = process_time() time1 = stop-start print("Elapsed time with Compliation:", time1) """ start = process_time() sigt, sigs, siga, source, G = reeds_data(100) stop = process_time() time2 = stop-start #print("Elapsed time After Compliation:", time2) # print("A {}x speed up".format(round(time1/time2)))
2.15625
2
Establishment of basic Database/a3-Q1.py
Xuechunqiu/Basic-SQLite
0
12784088
import sqlite3 import time import hashlib conn = None c = None def connect(path): global conn, c conn = sqlite3.connect(path) c = conn.cursor() c.execute(' PRAGMA foreign_keys=ON; ') conn.commit() return def drop_tables(): global conn, c c.execute("drop table if exists demeritNotices;") c.execute("drop table if exists tickets;") c.execute("drop table if exists registrations;") c.execute("drop table if exists vehicles;") c.execute("drop table if exists marriages;") c.execute("drop table if exists births;") c.execute("drop table if exists persons;") c.execute("drop table if exists payments;") c.execute("drop table if exists users;") conn.commit() def define_tables(): global conn, c c.execute('''create table persons ( fname char(12), lname char(12), bdate date, bplace char(20), address char(30), phone char(12), primary key (fname, lname) ); ''') c.execute('''create table births ( regno int, fname char(12), lname char(12), regdate date, regplace char(20), genderegister char(1), f_fname char(12), f_lname char(12), m_fname char(12), m_lname char(12), primary key (regno), foreign key (fname,lname) references persons, foreign key (f_fname,f_lname) references persons, foreign key (m_fname,m_lname) references persons );''') c.execute('''create table marriages ( regno int, regdate date, regplace char(20), p1_fname char(12), p1_lname char(12), p2_fname char(12), p2_lname char(12), primary key (regno), foreign key (p1_fname,p1_lname) references persons, foreign key (p2_fname,p2_lname) references persons );''') c.execute('''create table vehicles ( vin char(5), make char(10), model char(10), year egister int, color char(10), primary key (vin) );''') c.execute('''create table registrations ( regno int, regdate date, expiry date, plate char(7), vin char(5), fname char(12), lname char(12), primary key (regno), foreign key (vin) references vehicles, foreign key (fname,lname) references persons );''') c.execute('''create table tickets ( tno int, regno int, fine int, violation text, vdate date, primary key (tno), foreign key (regno) references registrations );''') c.execute('''create table demeritNotices ( ddate date, fname char(12), lname char(12), points int, desc text, primary key (ddate,fname,lname), foreign key (fname,lname) references persons );''') c.execute('''create table payments ( tno int, pdate date, amount int, primary key (tno, pdate), foreign key (tno) references tickets );''') c.execute('''create table users ( uid char(8), pwd char(8), utype char(1), -- 'a' for agents, 'o' for officers fname char(12), lname char(12), city char(15), primary key(uid), foreign key (fname,lname) references persons );''') conn.commit() def insert_data(): global conn, c conn.commit() def function_name1(): global conn, c conn.commit() def function_name2(): global conn, c conn.commit() def function_name3(): global conn, c conn.commit() def process_bill(provide_vin, provide_fname, provide_lname, provide_platenum): global conn, c conn.row_factory = sqlite3.Row c.execute('''SELECT r.fname, r.lname FROM vehicles v, registrations r WHERE v.vin = r.vin AND r.vin = ? AND r.plate = ? ORDER BY r.regdate DESC limit 1;''', (provide_vin, provide_platenum)) name = c.fetchall() if name == []: print("Sorry, the name you provided is not in our database.") elif (provide_fname == name[0][0]) and (provide_lname == name[0][1]): #end current registration c.execute('''UPDATE registrations SET expiry = datetime('time') WHERE fname = ? and lname = ?;''', (provide_fname, provide_lname)) #make new registration new_regno = random.randint(0, 1000) c.execute('''INSERT INTO registrations(regno, regdate, expiry, plate, vin, fname, lname) VALUES (?, datetime('now'), datetime('now', '1 year'), ?, ?, ?, ?);''', (new_regno, provide_platenum, provide_vin, provide_fname, provide_lname)) conn.commit() return def process_payment(ticketnum, amount): global conn, c c.execute('''SELECT tno FROM tickets;''') tno = c.fetchall() for t in tno: if t==ticketnum: c.execute('''SELECT sum(amount) FROM payments WHERE tno = ?;''', ticketnum) total = c.fetchall() c.execute('''SELECT fine FROM tickets WHERE tno = ?;''', ticketnum) fine = c.fetchall() if fine > (total+amount): #sum of those payments cannot exceed the fine amount of ticket c.execute('''INSERT INTO payments(tno, pdate, amount VALUES (?, datetime('now'), ?);''', (ticketnum, amount)) conn.commit() def get_driver_abstract(fname, lname): global conn, c c.execute('''SELECT count(t.tno) FROM registrations r, tickets t WHERE r.regno = t.regno and r.fname = ? and r.lname = ?;''', (fname, lname)) num_tickets = c.fetchall() print(num_tickets) print("The number of ticket is %d" % num_tickets[0]) c.execute('''SELECT count(*) FROM demeritNotices d WHERE d.fname = ? and d.lname = ?;''', (fname, lname)) num_dnotices = c.fetchall() print(num_dnotices) print("The number of demerit notices is %d" % num_dnotices[0]) c.execute('''SELECT COALESCE(SUM(d.points),0) FROM demeritNotices d WHERE d.fname = ? and d.lname = ? and d.ddate >= datetime('now', '-2 years');''', (fname, lname)) points_2years = c.fetchall() print(points_2years) print("The total number of demerit points received within 2 years is %d" % points_2years[0]) c.execute('''SELECT COALESCE(SUM(d.points),0) FROM demeritNotices d WHERE d.fname = ? and d.lname = ?;''', (fname, lname)) points_lifetime = c.fetchall() print(points_lifetime) print("The total number of demerit points received within life time is %d" % points_lifetime[0]) check = input("Would you like to see the tickets ordered form te latest to the oldest?(Y/N): ") if check == 'Y' or check == 'y': c.execute('''SELECT t.tno, t.vdate, t.violation, t.fine, t.regno, v.make, v.model FROM tickets t, vehicles v, registrations r WHERE t.regno = r.regno and r.vin = v.vin and r.fname = ? and r.lname = ? ORDER BY t.vdate DESC;''', (fname, lname)) tickets_infor = c.fetchall() ticketsNum = 0 for t in tickets_infor: ticketsNum += 1 if ticketsNum <= 5: print(t) else: see_more = input("Would you like to see more tickets information?(Y/N): ") if see_more == 'y' or see_more == 'Y': print(t) print(ticketsNum) conn.commit() def function_name7(): global conn, c conn.commit() def function_name8(): global conn, c conn.commit() def main(): global conn, c #path = input("Enter the name of database: ") path="./a3.db" connect(path) drop_tables() define_tables() insert_data() #4 user_vin = input("Please provide the vin of a car: ") currentowner_fname = input("Please provide the first name of the current owner: ") currentowner_lname = input("Please provide the last name of the current owner: ") plate_number = input("Please provide a plate number for the new registration: ") process_bill(user_vin, currentowner_fname, currentowner_lname, plate_number) #5 ticket_number = input("Please input a valid ticket number: ") amount = ("Please input the amount you would like to pay:") process_payment(ticket_number, amount) #6 driver_fname = input("Please enter the first name of the driver: ") driver_lname = input("Please enter the last name of the driver: ") get_driver_abstract(driver_fname, driver_lname) conn.commit() conn.close() return if __name__ == "__main__": main()
3.1875
3
pajbot/modules/basic/permaban.py
sadlyfell/bullbot
0
12784089
<reponame>sadlyfell/bullbot import logging from pajbot.managers.adminlog import AdminLogManager from pajbot.models.command import Command from pajbot.models.command import CommandExample from pajbot.modules import BaseModule from pajbot.modules import ModuleType from pajbot.modules.basic import BasicCommandsModule log = logging.getLogger(__name__) class PermabanModule(BaseModule): ID = __name__.split(".")[-1] NAME = "!permaban/!unpermaban" DESCRIPTION = "Permaban a user. (re-bans him if unbanned by mod)" CATEGORY = "Feature" ENABLED_DEFAULT = True MODULE_TYPE = ModuleType.TYPE_ALWAYS_ENABLED PARENT_MODULE = BasicCommandsModule @staticmethod def permaban_command(**options): message = options["message"] bot = options["bot"] source = options["source"] if message: username = message.split(" ")[0].strip().lower() with bot.users.get_user_context(username) as user: if user.banned: bot.whisper(source.username, "User is already permabanned.") return False user.banned = True message = message.lower() log_msg = "{} has been permabanned".format(user.username_raw) bot.whisper(source.username, log_msg) AdminLogManager.add_entry("Permaban added", source, log_msg) @staticmethod def unpermaban_command(**options): message = options["message"] bot = options["bot"] source = options["source"] if message: username = message.split(" ")[0].strip().lower() with bot.users.find_context(username) as user: if not user: bot.whisper(source.username, "No user with that name found.") return False if user.banned is False: bot.whisper(source.username, "User is not permabanned.") return False user.banned = False message = message.lower() log_msg = "{} is no longer permabanned".format(user.username_raw) bot.whisper(source.username, log_msg) AdminLogManager.add_entry("Permaban remove", source, log_msg) def load_commands(self, **options): self.commands["permaban"] = Command.raw_command( self.permaban_command, level=1000, description="Permanently ban a user. Every time the user types in chat, he will be permanently banned again", examples=[ CommandExample( None, "Default usage", chat="user:!permaban Karl_Kons\n" "bot>user:Karl_Kons has now been permabanned", description="Permanently ban Karl_Kons from the chat", ).parse() ], ) self.commands["unpermaban"] = Command.raw_command( self.unpermaban_command, level=1000, description="Remove a permanent ban from a user", examples=[ CommandExample( None, "Default usage", chat="user:!unpermaban Karl_Kons\n" "bot>user:Karl_Kons is no longer permabanned", description="Remove permanent ban from Karl_Kons", ).parse() ], )
2.203125
2
text/jython/delete/text_delete.py
ekzemplaro/data_base_language
3
12784090
#! /opt/jython/bin/jython # -*- coding: utf-8 -*- # # delete/text_delete.py # # Oct/12/2016 import sys import string # # --------------------------------------------------------------- sys.path.append ('/var/www/data_base/common/python_common') sys.path.append ('/var/www/data_base/common/jython_common') from jython_text_manipulate import text_read_proc from jython_text_manipulate import text_write_proc # from text_manipulate import dict_delete_proc # --------------------------------------------------------------- # sys.stderr.write ("*** 開始 ***\n") # file_in = sys.argv[1] id_in = sys.argv[2] print ("%s" % id_in) dict_aa = text_read_proc (file_in) dict_bb = dict_delete_proc (dict_aa,id_in) text_write_proc (file_in,dict_bb) # sys.stderr.write ("*** 終了 ***\n") # ---------------------------------------------------------------
2.421875
2
dekit/run_once.py
algobot76/dekit
0
12784091
import functools def run_once(func): """ The decorated function will only run once. Other calls to it will return None. The original implementation can be found on StackOverflow(https://stackoverflow.com/questions/4103773/efficient-way-of-having-a-function-only-execute-once-in-a-loop) :param func: the function to be limited to run once only :return: the decorated function """ # noqa @functools.wraps(func) def func_wrapper(*args, **kwargs): if not func_wrapper.has_run: func_wrapper.has_run = True return func(*args, **kwargs) func_wrapper.has_run = False return func_wrapper
3.796875
4
scripts/lib/FrequencyLib.py
ixent/qosa-snee
1
12784092
<gh_stars>1-10 #Util library for frequency distributions held as dictionaries of key:count from math import sqrt def sortedReport(frequencies): keys = frequencies.keys() keys.sort() for key in keys: report(str(key)+" :" + str(frequencies[key])) def showSumary(frequencies): sortedReport(frequencies) if len(frequencies) > 0: keys = frequencies.keys() min = keys[0] max = keys[0] sum = 0 square = 0 sumSquare = 0 count = 0 for (key, value) in frequencies.iteritems(): if (key < min): min = key if (key > max): max = key count = count + value sum = sum + (key * value) sumSquare = sumSquare + (key * key * value) #report("Count: " + str(count)) #report("Min: " + str(min)) #report("Max: " + str(max)) average = (sum / count) #report("Average: " + str(average)) #report("Standard Deviation: "+ str(sqrt((sumSquare/count)-(average*average)))) return (str(count)+","+str(min)+","+str(max)+","+str(sum)+","+str(average)+","+str(sqrt((sumSquare/count)-(average*average)))) else: #report ("count = 0") return ("0,n/a,n/a,n/a,n/a") def merge(frequency1, frequency2): results = {} results.update(frequency1) for (key, value) in frequency2.iteritems(): results[key] = frequency1.get(key,0) + value return results def add(frequency1, frequency2): print frequency1 print frequency2 for (key, value) in frequency2.iteritems(): frequency1[key] = frequency1.get(key,0) + value print frequency1 print frequency2 return frequency1 logger = None #Registers a logger for this library def registerLogger(l): global logger logger = l #Ouput info message to screen and logger if applicable def report(message): if (logger != None): logger.info(message) print message #Ouput warning message to screen and logger if applicable def reportWarning(message): if (logger != None): logger.warning(message) print message #Ouput error message to screen and logger if applicable def reportError(message): if (logger != None): logger.error(message) print message def main(): test = {12: 4139, 54: 4127, 34: 4098} showSumary(test) if __name__ == "__main__": main()
3.296875
3
scripts/hackathon/create_all_sts.py
mikiec84/delphi
25
12784093
<reponame>mikiec84/delphi """ Get all preassembled statements, prune away unneeded information, pickle them. """ import sys import pickle from delphi.utils.indra import get_statements_from_json_file if __name__ == "__main__": all_sts = get_statements_from_json_file(sys.argv[1]) with open(sys.argv[2], "wb") as f: pickle.dump(all_sts, f)
2.203125
2
scheduled_bots/ontology/obographs_GO.py
turoger/scheduled-bots
6
12784094
import argparse import os from scheduled_bots.ontology.obographs import Graph, Node from wikidataintegrator import wdi_login, wdi_core, wdi_helpers from scheduled_bots import PROPS def ec_formatter(ec_number): splits = ec_number.split('.') if len(splits) < 4: for x in range(4 - len(splits)): splits.append('-') return '.'.join(splits) class GONode(Node): def _pre_create(self): super(GONode, self)._pre_create() self.xrefs = list(self.xrefs) for n, xref in enumerate(self.xrefs): if xref.startswith("EC:"): prefix, ec_number = xref.split(":") self.xrefs[n] = ":".join([prefix, ec_formatter(ec_number)]) self.xrefs = set(self.xrefs) class GOGraph(Graph): NAME = "Gene Ontology" GRAPH_URI = 'http://purl.obolibrary.org/obo/go.owl' QID = "Q135085" DEFAULT_DESCRIPTION = "gene ontology term" APPEND_PROPS = {PROPS['subclass of'], PROPS['instance of'], PROPS['has cause'], PROPS['location'], PROPS['part of'], PROPS['has part'], PROPS['regulates (molecular biology)'], PROPS['Gene Ontology ID']} FAST_RUN = False PRED_PID_MAP = { 'is_a': PROPS['subclass of'], 'http://purl.obolibrary.org/obo/BFO_0000050': PROPS['part of'], 'http://purl.obolibrary.org/obo/BFO_0000051': PROPS['has part'], 'http://purl.obolibrary.org/obo/RO_0002211': PROPS['regulates (molecular biology)'], # regulates 'http://purl.obolibrary.org/obo/RO_0002212': None, # negatively regulates 'http://purl.obolibrary.org/obo/RO_0002213': None, # positively regulates } NODE_CLASS = GONode regulates = { 'http://purl.obolibrary.org/obo/RO_0002212': 'http://purl.obolibrary.org/obo/GO_0048519', 'http://purl.obolibrary.org/obo/RO_0002213': 'http://purl.obolibrary.org/obo/GO_0048518' } def make_statement_from_edge(self, edge): # custom statement creator for regulates h = self.helper if edge['pred'] in {'http://purl.obolibrary.org/obo/RO_0002212', 'http://purl.obolibrary.org/obo/RO_0002213'}: subj_node = self.uri_node_map[edge['sub']] obj_qid = self.get_object_qid(edge['obj']) # print(obj_qid, edge['pred']) qual_qid = self.uri_node_map[self.regulates[edge['pred']]].qid pred_pid = self.PRED_PID_MAP['http://purl.obolibrary.org/obo/RO_0002211'] if not (obj_qid and qual_qid and pred_pid): m = wdi_helpers.format_msg(edge['sub'], None, None, "failed on edge: {}".format(edge)) print(m) wdi_core.WDItemEngine.log("WARNING", m) return None qualifier = wdi_core.WDItemID(qual_qid, h.get_pid(PROPS['subject has role']), is_qualifier=True) return wdi_core.WDItemID(obj_qid, pred_pid, qualifiers=[qualifier], references=[subj_node.create_ref_statement()]) else: return super(GOGraph, self).make_statement_from_edge(edge) if __name__ == "__main__": parser = argparse.ArgumentParser(description='run wikidata disease ontology bot') parser.add_argument("json_path", help="Path to json file") parser.add_argument("--local", help="preconfigured local wikibase port 7171 and 7272", action='store_true') args = parser.parse_args() if args.local: mediawiki_api_url = "http://localhost:7171/w/api.php" sparql_endpoint_url = "http://localhost:7272/proxy/wdqs/bigdata/namespace/wdq/sparql" login = wdi_login.WDLogin("testbot", "password", mediawiki_api_url=mediawiki_api_url) else: try: from scheduled_bots.local import WDUSER, WDPASS except ImportError: if "WDUSER" in os.environ and "WDPASS" in os.environ: WDUSER = os.environ['WDUSER'] WDPASS = os.environ['WDPASS'] else: raise ValueError("WDUSER and WDPASS must be specified in local.py or as environment variables") mediawiki_api_url = 'https://www.wikidata.org/w/api.php' sparql_endpoint_url = 'https://query.wikidata.org/sparql' login = wdi_login.WDLogin(WDUSER, WDPASS) g = GOGraph(args.json_path, mediawiki_api_url=mediawiki_api_url, sparql_endpoint_url=sparql_endpoint_url) g.run(login)
2.3125
2
blog/views.py
rahulbiswas24680/Blogapp
0
12784095
from django.shortcuts import render, get_object_or_404, redirect from .models import ( Category, Post, Profile, Comment, PostCreationForm, PostEditForm, UserLoginForm, UserRegistrationForm, UserUpdateForm, ProfileUpdateForm, CommentForm ) from django.views.generic.edit import UpdateView from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.utils.text import slugify from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.http import HttpResponse, HttpResponseRedirect, JsonResponse, Http404 from django.urls import reverse from django.contrib import messages from django.db.models import Q from django.core.paginator import Paginator from django.template.loader import render_to_string from django.views.generic.list import ListView def home(requests): post_list = Post.published.all().order_by('-id') cat_section = Category.objects.all() # regional = Post.published.filter(category="regional").order_by('-id') # scintific = Post.published.filter(category="scintific").order_by('-id') # physics = Post.published.filter(category="physics").order_by('-id') # chemistry = Post.published.filter(category="chemistry").order_by('-id') # mathematics = Post.published.filter(category="mathematics").order_by('-id') # biology = Post.published.filter(category="biology").order_by('-id') # sports = Post.published.filter(category="sports").order_by('-id') # ai = Post.published.filter(category="ai").order_by('-id') # offtopic = Post.published.filter(category="offtopic").order_by('-id') # programming = Post.published.filter(category="programming").order_by('-id') # datascience = Post.published.filter(category="datascience").order_by('-id') # entrance_exam = Post.published.filter(category="entrance_exam").order_by('-id') # travel = Post.published.filter(category="travel").order_by('-id') # celebrity_talk = Post.published.filter(category="celebrity_talk").order_by('-id') # world = Post.published.filter(category="world").order_by('-id') # astronomy = Post.published.filter(category="astronomy").order_by('-id') # engineering = Post.published.filter(category="engineering").order_by('-id') # technology = Post.published.filter(category="technology").order_by('-id') query = requests.GET.get("q") if query: post_list = Post.published.filter( Q(title__icontains=query) | Q(author__username=query) | Q(body__icontains=query) ) paginator = Paginator(post_list, 4) page = requests.GET.get("page") try: page_obj = paginator.get_page(page) except PageNotAnInteger: page_obj = paginator.get_page(1) except EmptyPage: page_obj = paginator.get_page(paginator.num_page) # function called for pagination # regional = paginator(regional), # scintific = paginator(scintific), # physics = paginator(physics), # chemistry = paginator(chemistry), # mathematics = paginator(mathematics), # biology = paginator(post_list), # sports = paginator(sports), # ai = paginator(ai), # offtopic = paginator(offtopic), # programming = paginator(programming), # datascience = paginator(datascience), # entrance_exam = paginator(entrance_exam), # travel = paginator(travel), # celebrity_talk = paginator(celebrity_talk), # world = paginator(world), # astronomy = paginator(astronomy), # engineering = paginator(engineering), # technology = paginator(technology), context = { "page_obj": page_obj, "cat_section": cat_section # "regional": regional, # "scintific": scintific, # "physics" : physics, # "chemistry" : chemistry, # "mathematics" : mathematics, # "biology" : biology, # "sports" : sports, # "ai" : ai, # "offtopic" : offtopic, # "programming" : programming, # "datascience" : datascience, # "entrance_exam" : entrance_exam, # "travel" : travel, # "celebrity_talk" : celebrity_talk, # "world" : world, # "astronomy" : astronomy, # "engineering" : engineering, # "technology" : technology, } return render(requests, "blog/home.html", context) def about(requests): return render(requests, "blog/about.html") def post_detail(requests, pk, slug): post = get_object_or_404(Post, pk=pk, slug=slug) comments = Comment.objects.filter(post=post, reply=None).order_by('-id') is_liked = False if post.likes.filter(id=requests.user.id).exists(): is_liked = True if requests.method == "POST": comment_form = CommentForm(requests.POST or None) if comment_form.is_valid(): content = requests.POST.get('content') reply_id = requests.POST.get('comment_id') comment_qs = None if reply_id: comment_qs = Comment.objects.get(id=reply_id) comment = Comment.objects.create(post=post, user=requests.user, content=content, reply=comment_qs) comment.save() messages.success(requests, f"Your comment has been posted.") # return HttpResponseRedirect(post.get_absolute_url()) else: comment_form = CommentForm() context = { "post": post, "is_liked": is_liked, "total_likes": post.total_likes(), "comments": comments, "comment_form": comment_form } if requests.is_ajax(): html = render_to_string("blog/comments.html", context, requests) return JsonResponse({"form": html}) return render(requests, "blog/post_detail.html", context) def like_post(requests): post = get_object_or_404(Post, id=requests.POST.get("id")) is_liked = False if post.likes.filter(id=requests.user.id).exists(): post.likes.remove(requests.user) is_liked = False else: post.likes.add(requests.user) is_liked = True context = { "post": post, "is_liked": is_liked, "total_likes": post.total_likes(), } if requests.is_ajax(): html = render_to_string("blog/like_section.html", context, requests) return JsonResponse({"form": html}) @login_required def create_post(requests): if requests.method == "POST": form = PostCreationForm(requests.POST or None) if form.is_valid(): post = form.save(commit=False) post.author = requests.user post.slug = slugify(post.title) post.save() messages.success(requests, f"Your post has been created!") return HttpResponseRedirect( reverse("post-detail", args=[post.pk, post.slug]) ) else: form = PostCreationForm() context = { "form": form, } return render(requests, "blog/create_post.html", context) @login_required def edit_post(requests, pk): post = get_object_or_404(Post, id=pk) if post.author != requests.user: raise Http404() if requests.method == "POST": form = PostEditForm(requests.POST or None, instance=post) if form.is_valid(): form.save() messages.success(requests, f"Your post has been updated!") return HttpResponseRedirect(post.get_absolute_url()) else: form = PostEditForm(instance=post) context = {"form": form, "post": post} return render(requests, "blog/edit_post.html", context) @login_required def delete_post(requests, pk): post = get_object_or_404(Post, id=pk) # post = Post.objects.get(id=id) if post.author != requests.user: raise Http404() post.delete() print(post) return redirect('blog-home') def user_registration(requests): if requests.method == "POST": form = UserRegistrationForm(requests.POST) if form.is_valid(): username = form.cleaned_data.get("username") new_user = form.save() Profile.objects.create(user=new_user) messages.success( requests, f"Your account has been created for {username}! Please login now.", ) return redirect("user-login") else: form = UserRegistrationForm() context = {"form": form} return render(requests, "blog/user_register.html", context) def user_login(requests): if requests.method == "POST": form = UserLoginForm(requests.POST) if form.is_valid(): username = requests.POST["username"] password = requests.POST["password"] user = authenticate(requests, username=username, password=password) if user is not None: login(requests, user) messages.success(requests, f"You are now loggged in") return HttpResponseRedirect(reverse("blog-home")) else: form = UserLoginForm() context = {"form": form} return render(requests, "blog/user_login.html", context) def user_logout(requests): logout(requests) messages.success(requests, f"You have been loggged out") return HttpResponseRedirect(reverse("blog-home")) @login_required def profile(requests): if requests.method == "POST": u_form = UserUpdateForm(requests.POST, instance=requests.user) p_form = ProfileUpdateForm( requests.POST, instance=requests.user.profile, files=requests.FILES ) if u_form.is_valid() and p_form.is_valid(): u_form.save() p_form.save() messages.success(requests, f"Your profile has been updated") return redirect("profile") else: u_form = UserUpdateForm(instance=requests.user) p_form = ProfileUpdateForm(instance=requests.user.profile) context = {"u_form": u_form, "p_form": p_form} return render(requests, "user/profile.html", context) class CatListView(ListView): template_name = 'blog/category.html' context_object_name = 'catlist' # paginate_by = 4 def get_queryset(self): content = { 'cat': self.kwargs['category'], 'posts': Post.published.filter(category__name=self.kwargs['category']).filter(status='published'), 'all': Category.objects.all() } return content
1.945313
2
pixelpal/callbacks/model_checkpoint.py
mparusinski/pixelpal
1
12784096
from tensorflow.keras.callbacks import ModelCheckpoint import os def produce_callback(): checkpoint_filepath = "./run/weights-improvement-{epoch:02d}-{val_psnr_metric:.2f}-{val_ssim_metric:.2f}.hdf5" os.makedirs(os.path.dirname(checkpoint_filepath), exist_ok=True) model_checkpoint = ModelCheckpoint(checkpoint_filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min') return model_checkpoint
2.28125
2
coding-challenges/firecode/find-ranges.py
acfromspace/infinitygauntlet
3
12784097
def find_range(input_list, input_number): search = [] number_range = [] for index in range(1, len(input_list)): if input_list[index] == input_number: search.append(index) if input_list[index] > input_number: break number_range.append(search[0]) number_range.append(search[-1]) return number_range # return Range(search[0], search[-1]) input_list = [1, 2, 5, 5, 8, 8, 10] input_number = 8 print("find_range():", find_range(input_list, input_number)) input_number = 2 print("find_range():", find_range(input_list, input_number)) """ class Range(object): def __init__(self): self.lower_bound = -1 self.upper_bound = -1 def __init__(self, lower_bound, upper_bound): self.lower_bound = lower_bound self.upper_bound = upper_bound def __str__(self): return "["+str(self.lower_bound)+","+str(self.upper_bound)+"] def find_range(input_list,input_number): first = 0 lower_bound = -1 upper_bound = -1 last = len(input_list) - 1 while first < last: mid = (first+last)/2 if input_list[mid] < input_number: first = mid + 1 else: last = mid if input_list[first] != input_number: return Range() else: lower_bound = first first = 0 last = len(input_list) - 1 while first < last: mid = (first + last)/2 if (input_list[mid] < input_number + 1): first = mid + 1 else: last = mid if(input_list[first] == input_number): upper_bound = first else: upper_bound = first-1 return Range(lower_bound,upper_bound) """ """ def bisect(input_list, input_number, f): left, right = 0, len(input_list) while left < right: mid = left + (right - left)/2 if f(input_list[mid], input_number): left = mid + 1 else: right = mid return left bisect_left = lambda input_list,input_number: bisect(input_list, input_number, lambda x,y: x<y) bisect_right = lambda input_list,input_number: bisect(input_list, input_number, lambda x,y: x<=y) def find_range(input_list, input_number): start = bisect_left(input_list, input_number) end = bisect_right(input_list, input_number) - 1 return Range(start, end) """
3.703125
4
scripts/contractInteraction/config.py
omerzam/Sovryn-smart-contracts
108
12784098
from brownie import * from brownie.network.contract import InterfaceContainer import json def loadConfig(): global contracts, acct thisNetwork = network.show_active() if thisNetwork == "development": acct = accounts[0] configFile = open('./scripts/contractInteraction/testnet_contracts.json') elif thisNetwork == "testnet": acct = accounts.load("rskdeployer") configFile = open('./scripts/contractInteraction/testnet_contracts.json') elif thisNetwork == "testnet-ws": acct = accounts.load("rskdeployer") configFile = open('./scripts/contractInteraction/testnet_contracts.json') elif thisNetwork == "rsk-testnet": acct = accounts.load("rskdeployer") configFile = open('./scripts/contractInteraction/testnet_contracts.json') elif thisNetwork == "rsk-mainnet": acct = accounts.load("rskdeployer") configFile = open('./scripts/contractInteraction/mainnet_contracts.json') else: raise Exception("Network not supported.") contracts = json.load(configFile)
2.390625
2
social_core/backends/fedora.py
shnaqawi/social-core
745
12784099
<filename>social_core/backends/fedora.py<gh_stars>100-1000 """ Fedora OpenId backend, docs at: https://python-social-auth.readthedocs.io/en/latest/backends/fedora.html """ from .open_id import OpenIdAuth class FedoraOpenId(OpenIdAuth): name = 'fedora' URL = 'https://id.fedoraproject.org' USERNAME_KEY = 'nickname'
1.390625
1
SnakesAndLadders.py
S0obi/SnakesAndLadders
0
12784100
from Joueur import Joueur from Plateau import Plateau from BonusType import BonusType from random import randrange nbBonus = int(input("Nombre de bonus : ")) nbJoueur = int(input("Saisissez le nombre de joueur : ")) listJoueur = [] for i in range(0,nbJoueur): listJoueur.append(Joueur(input("Nom du joueur " + str(i+1) + " : "))) print("\n") partieGagne = False gagnant = None Plateau = Plateau(nbBonus) replay = False tour = 0 while not partieGagne: j = listJoueur[tour % nbJoueur] print("*** Tour de " + j.name + " ***") print("Lancer les dés ... : ", end="") input() lancerDe = randrange(1,6) print(str(lancerDe)) tmpPos = j.pos + lancerDe if tmpPos > 100: print("Il faut faire " + str(100 - j.pos) + " pour gagner !\n") tour += 1 continue case = Plateau.content[tmpPos] if case.hasBonus() and tmpPos != 100: print("!!! BONUS : " + case.bonus.type.name + " !!!\n") if case.bonus.type == BonusType.REJOUER: replay = True elif case.bonus.type == BonusType.DOUBLE: tmpPos += lancerDe elif case.bonus.type == BonusType.AVANCER_5_CASES: tmpPos += 5 if tmpPos == 100: partieGagne = True gagnant = j continue elif tmpPos <= 100: j.pos = tmpPos if replay: replay = False continue case = Plateau.content[tmpPos] # update Case for pouvoir if case.hasPouvoir(): print("Attention ! C'est une case " + case.pouvoir.name + " direction la case : " + str(case.targetCase)) j.pos = case.targetCase print ("Case : " + str(j.pos) + "\n") tour += 1 print("Bravo ! Le gagnant est : " + gagnant.name)
3.109375
3
classifier/example.py
Alex92rus/ErrorDetectionProject
1
12784101
<reponame>Alex92rus/ErrorDetectionProject import tensorflow as tf ''' input > weight > hidden layer 1 (activation function) > weights > hidden l 2 (activation function) > weights > output layer feed forward compare output to intended output > cost or loss function (cross entropy) optimisation function (optimizer) > minimize cost (AdamOptimizer) back and manipulate the weights - backpropagation feed forward + backprop = epoch ''' from tensorflow.example.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data", one_hot=True) # 10 classes, 0 - 1 ''' one hot on element is on or hot 0 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 1 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 2 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 3 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] ''' n_nodes_hl1 = 500 n_nodes_hl2 = 500 n_nodes_hl3 = 500 n_classes = 10 batch_size = 100 # height x width x = tf.placeholder('float', [None, 784]) y = tf.placeholder('float') def neural_network_model(data): #starting with something random hidden_1_layer = {'weights':tf.Variable(tf.random_normal([784, n_nodes_hl1])), 'biases':tf.Variable(tf.random_normal(n_nodes_hl1))} # bias adds input_data * weights + bias hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])), 'biases':tf.Variable(tf.random_normal(n_nodes_hl2))} hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])), 'biases':tf.Variable(tf.random_normal(n_nodes_hl3))} output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])), 'biases':tf.Variable(tf.random_normal(n_classes))} # model (input_data * weights) + biases l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases']) l1 = tf.nn.relu(l1) # treshold function l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']), hidden_2_layer['biases']) l2 = tf.nn.relu(l2) # treshold function l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']), hidden_3_layer['biases']) l3 = tf.nn.relu(l3) # treshold function output = tf.matmul(output_layer, output_layer['weights']) + output_layer['biases'] return output
3.5625
4
day19.py
drewbrew/advent-of-code-2020
4
12784102
<gh_stars>1-10 from typing import Dict, List, Sequence, Tuple, Union import re TEST_RULES, TEST_MESSAGES = [ i.splitlines() for i in """0: 4 1 5 1: 2 3 | 3 2 2: 4 4 | 5 5 3: 4 5 | 5 4 4: "a" 5: "b" ababbb bababa abbbab aaabbb aaaabbb""".split( "\n\n" ) ] P2_TEST_RULES, P2_TEST_MESSAGES = [ i.splitlines() for i in """42: 9 14 | 10 1 9: 14 27 | 1 26 10: 23 14 | 28 1 1: "a" 11: 42 31 5: 1 14 | 15 1 19: 14 1 | 14 14 12: 24 14 | 19 1 16: 15 1 | 14 14 31: 14 17 | 1 13 6: 14 14 | 1 14 2: 1 24 | 14 4 0: 8 11 13: 14 3 | 1 12 15: 1 | 14 17: 14 2 | 1 7 23: 25 1 | 22 14 28: 16 1 4: 1 1 20: 14 14 | 1 15 3: 5 14 | 16 1 27: 1 6 | 14 18 14: "b" 21: 14 1 | 1 14 25: 1 1 | 1 14 22: 14 14 8: 42 26: 14 22 | 1 20 18: 15 15 7: 14 5 | 1 21 24: 14 1 abbbbbabbbaaaababbaabbbbabababbbabbbbbbabaaaa bbabbbbaabaabba babbbbaabbbbbabbbbbbaabaaabaaa aaabbbbbbaaaabaababaabababbabaaabbababababaaa bbbbbbbaaaabbbbaaabbabaaa bbbababbbbaaaaaaaabbababaaababaabab ababaaaaaabaaab ababaaaaabbbaba baabbaaaabbaaaababbaababb abbbbabbbbaaaababbbbbbaaaababb aaaaabbaabaaaaababaa aaaabbaaaabbaaa aaaabbaabbaaaaaaabbbabbbaaabbaabaaa babaaabbbaaabaababbaabababaaab aabbbbbaabbbaaaaaabbbbbababaaaaabbaaabba""".split( "\n\n" ) ] with open("day19.txt") as infile: REAL_RULES, REAL_MESSAGES = [i.splitlines() for i in infile.read().split("\n\n")] def rule_to_format_string(expr: str) -> str: rules = expr.split() return "".join("{rules[%s]}" % rule for rule in rules) def parse_rules(rules: List[str]) -> Dict[str, str]: """Convert rules into a list of regex strings""" result = {} splits = [rule.split(":") for rule in rules] base_rules = {} for rule_number, expr in splits: base_rules[int(rule_number)] = expr.strip() for rule_number, expr in base_rules.items(): if '"' in expr: assert len(expr) == 3, expr result[int(rule_number)] = expr[1] # ok, we've gotten our base rules # all our messages are comprised of just a and b assert len(result) == 2 while len(result) != len(base_rules): for rule_number, expr in base_rules.items(): if rule_number in result: continue if "|" in expr: format_str = ( "(" + "|".join( f"{rule_to_format_string(sub_expr)}" for sub_expr in expr.split("|") ) + ")" ) else: format_str = rule_to_format_string(expr) try: result[rule_number] = format_str.format(rules=result) except KeyError: pass return result def part_one(rules: List[str], messages: List[str]) -> int: parsed_rules = parse_rules(rules) regex = re.compile("^" + parsed_rules[0] + "$") score = 0 for message in messages: if regex.match(message): score += 1 return score def part_two(rules: List[str], messages: List[str]) -> int: """work through the rules and sub in as we go""" table = "\n".join(rules) rule_table = dict(re.findall("(\d+):(.+)", table)) # Special rules for part 2 rule_table["8"] = "42+" # make a wild guess and hope that we won't have more than 15 of a recursive rule rule_table["11"] = "|".join(f"{'42 ' * i} {'31 ' * i}" for i in range(1, 15)) while len(rule_table) > 1: # Find a "completed" rule to substitute completed_rule_number, completed_rule = next( (rule_num, rule_expr) for rule_num, rule_expr in rule_table.items() if not re.search("\d", rule_expr) ) rule_table = { rule_num: re.sub( rf"\b{completed_rule_number}\b", f"({completed_rule})", rule_expr ) for rule_num, rule_expr in rule_table.items() if rule_num != completed_rule_number } # we're done # is this rule zero? assert list(rule_table) == ["0"] # trim quotes and whitespace regex_str = re.sub('[ "]', "", rule_table["0"]) # add start/finish markers regex = re.compile(f"^{regex_str}$") return sum(bool(regex.match(line)) for line in messages) def main(): p1_test = part_one(TEST_RULES, TEST_MESSAGES) assert p1_test == 2, p1_test p1_result = part_one(REAL_RULES, REAL_MESSAGES) print(p1_result) print(part_two(REAL_RULES, REAL_MESSAGES)) if __name__ == "__main__": main()
2.25
2
code/network.py
alzaia/four_shapes_classifier
0
12784103
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Definition of the CNN architectures. Baseline: very simple net with few params and no regularization. Regularized: simple net combined with dropout and data augmentation. """ import numpy as np import random import tensorflow as tf from tensorflow.keras.models import * from tensorflow.keras.layers import * from tensorflow.keras.optimizers import * from tensorflow.keras.preprocessing import * def define_baseline(num_classes,input_shape=(200, 200, 1)): inputs = Input(input_shape) inputs_preproc = experimental.preprocessing.Resizing(100, 100, interpolation='bilinear')(inputs) inputs_preproc = experimental.preprocessing.Rescaling(1./255, input_shape=input_shape)(inputs_preproc) conv1 = Conv2D(8, 3, padding='same', activation='relu')(inputs_preproc) conv1 = MaxPool2D(pool_size=(2,2))(conv1) conv2 = Conv2D(16, 3, padding='same', activation='relu')(conv1) conv2 = MaxPool2D(pool_size=(2,2))(conv2) flatten1 = Flatten()(conv2) outputs = Dense(16, activation='relu')(flatten1) outputs = Dense(num_classes, activation='softmax')(outputs) model = Model(inputs = inputs, outputs = outputs) return model data_augmentation = Sequential( [ experimental.preprocessing.RandomFlip("horizontal", input_shape=(200,200,1)), experimental.preprocessing.RandomZoom(0.4), experimental.preprocessing.RandomContrast(0.9) ] ) def define_regularized(num_classes,input_shape=(200, 200, 1)): inputs = Input(input_shape) inputs_preproc = data_augmentation(inputs) inputs_preproc = experimental.preprocessing.Resizing(100, 100, interpolation='bilinear')(inputs_preproc) inputs_preproc = experimental.preprocessing.Rescaling(1./255, input_shape=input_shape)(inputs_preproc) conv1 = Conv2D(16, 3, padding='same', activation='relu')(inputs_preproc) conv1 = MaxPool2D(pool_size=(2,2))(conv1) conv1 = Dropout(0.25)(conv1) conv2 = Conv2D(32, 3, padding='same', activation='relu')(conv1) conv2 = MaxPool2D(pool_size=(2,2))(conv2) conv2 = Dropout(0.25)(conv2) flatten1 = Flatten()(conv2) outputs = Dense(16, activation='relu')(flatten1) outputs = Dense(num_classes, activation='softmax')(outputs) model = Model(inputs = inputs, outputs = outputs) return model
3.28125
3
orthoMcl.py
vetscience/Tools
0
12784104
#!/usr/bin/env python ''' Oct 10, 2017: <NAME>, The University of Melbourne Simplifies running orthoMCL with a wrapper and pre-checks the known formatting issues with FASTA headers to avoid failure in later stages of the run. ''' import os, sys, optparse, getpass from multiprocessing import Process, Pipe from Utils import Base, Fasta ################################################# def options(): parser = optparse.OptionParser('example: %prog -i residues1.fa,residues2.fa,...,residuesN.fa -l LB1,LB2,...,LBN -p 1,1,...,1 -e 1e-5 -s 0.5') parser.add_option('-a', '--ip', dest='ip', help='MySQL server IP address', metavar='IPADDRESS', default='127.0.0.1') parser.add_option('-d', '--dir', dest='wd', help='The directory, in which the FASTA files for the analysis are copied to', metavar='DIR', default='TmpOrthoMcl') parser.add_option('-i', '--filenames', dest='filenames', help='Proteome, CDS or transcript FASTA files of species (separated by commas)', metavar='FILES', default='') parser.add_option('-l', '--labels', dest='labs', help="Respective labels for proteomes following the order of FASTA files (separated by commas)", metavar='LABELS', default='') parser.add_option('-p', '--positions', dest='positions', help="Positions of a unique identifier in FASTA header separated by |. Default position is 1 (separated by commas).", metavar='POSITIONS', default='') parser.add_option('-T', '--threads', dest='pCnt', help='Number of parallel threads (default is half of the capacity but >= 1)', metavar='THREADS', default='0') parser.add_option('-e', '--evalue', dest='evalue', help="E-value for BLAST run. Default is 1e-5. Use always E-value <= 1e-5 and 1e-X format only!", metavar='EVALUE', default='1e-5') parser.add_option('-s', '--similarity', dest='sim', help="Required similarity (0 .. 1) in mcl algorithm. Default if 0.5", metavar='SIM', default='0.5') parser.add_option('-m', '--minlen', dest='minlen', help="Required minimum lenght of a sequence. Default is 20.", metavar='MINLEN', default='20') parser.add_option('-b', '--noblast', dest='skipBlast', action='store_true', help="Skip BLAST (used to rerun mcl using different E-value and similarity settings)", default=False) parser.add_option('-n', '--nucl', dest='nucl', action='store_true', help="The residues in sequences represent nucleotides instead of proteins", default=False) options, args = parser.parse_args() if options.filenames == '' or options.labs == '': parser.print_help() print '\nE.g.: orthoMcl -i proteome1.fa,proteome2.fa -l Tax,Tvi -p 4,4 -e 1e-5' print "Results will be collected to 'Results' directory in groups.txt file." print "Note! Labels must be exactly 3 characters long." sys.exit(-1) return options ################################################# def checkMySqlVersion(wd, mySqlIpAddress): ''' ''' base = Base() with open("%s/version.sql" %wd, 'w') as handle: handle.write('SHOW VARIABLES LIKE "%version%";\n') mySqlVer = base.shell("mysql -h %s -P3306 --protocol tcp --user=root --password=password < %s/version.sql" %(mySqlIpAddress, wd), myStdout = True) verStr = "" found = False for line in mySqlVer.stdout: items = line.strip().split() for i in xrange(len(items)): if "inno" in items[i]: try: verStr = items[i+1].strip() found = True except IndexError: break if found == True: break try: verList = [int(item) for item in verStr.split('.')] except ValueError: print >> sys.stderr, "### Fatal error: Could not read mysql version (%s). Exiting..." %verStr sys.exit(-1) if len(verList) != 3: print >> sys.stderr, "### Fatal error: Could not read mysql version (%s). Exiting..." %verStr sys.exit(-1) return verList ################################################# def checkResidue(fastaFile): ''' ''' retVal = "nucleotides" try: limit = 100 fasta = Fasta(fastaFile) for i in xrange(fasta.cnt()): if i > limit: break seq = fasta.seq(i).upper() for item in seq: if item not in ['A', 'T', 'C', 'G', 'N']: retVal = "amino acids" break except IOError: print >> sys.stderr, "### Fatal error: file %s not found. Exiting..." %fastaFile sys.exit(-1) return retVal ################################################# def checkUniqueIds(fastaFile): ''' ''' fasta = Fasta(fastaFile) if fasta.cnt() != len(set(fasta.headers)): print >> sys.stderr, "### Fatal error: FASTA sequence identifiers are not unique in %s. Exiting..." %fastaFile print >> sys.stderr, "### Probably position for this file is given wrong..." sys.exit(-1) ################################################# def checkIdLen(fastaFile): ''' ''' fasta = Fasta(fastaFile) for i in xrange(fasta.cnt()): seqId = fasta.headers[i].split()[0] if len(seqId) > 56: print >> sys.stderr, "### Fatal error: FASTA sequence identifier %s is too long in %s. Exiting..." %(seqId, fastaFile) sys.exit(-1) ################################################# def createOrthoMclConfigFile(wd, userName, eValue, similarity, mySqlIpAddress): ''' ''' eValue = eValue.split('e')[1] similarity = int(float(similarity) * 100.0) with open("%s/orthomcl.config" %wd, 'w') as handle: handle.write("# this config assumes a mysql database named 'orthomcl'. adjust according\n") handle.write("# to your situation.\n") handle.write("dbVendor=mysql\n") #handle.write("dbConnectString=dbi:mysql:database=ortho%s;host=%s;port=3306\n" %(userName, os.environ["MYSQLHOST"])) handle.write("dbConnectString=dbi:mysql:database=ortho%s;host=%s;port=3306\n" %(userName, mySqlIpAddress)) handle.write("dbLogin=ortho%s\n" %userName) handle.write("dbPassword=<PASSWORD>") handle.write("similarSequencesTable=SimilarSequences\n") handle.write("orthologTable=Ortholog\n") handle.write("inParalogTable=InParalog\n") handle.write("coOrthologTable=CoOrtholog\n") handle.write("interTaxonMatchView=InterTaxonMatch\n") handle.write("percentMatchCutoff=%d\n" %similarity) handle.write("evalueExponentCutoff=%s\n" %eValue) handle.write("oracleIndexTblSpc=NONE\n") ################################################# def createMySqlScripts(wd, userName, ver): ''' ''' with open("%s/createDb.sql" %wd, 'w') as handle: if ver[0] > 5 or (ver[0] == 5 and ver[1] > 7) or (ver[0] == 5 and ver[1] == 7 and ver[2] > 5): handle.write("CREATE USER IF NOT EXISTS 'ortho%s'@'%%' IDENTIFIED BY 'password';\n" %userName) handle.write("CREATE DATABASE ortho%s;\n" %userName) #handle.write("GRANT SELECT,INSERT,UPDATE,DELETE,CREATE VIEW,CREATE,INDEX,DROP on ortho%s.* TO 'ortho%s'@'%%';\n" %(userName, userName)) handle.write("GRANT ALL PRIVILEGES ON ortho%s.* TO 'ortho%s'@'%%';\n" %(userName, userName)) handle.close() handle = open("%s/dropDb.sql" %wd, 'w') handle.write("drop database if exists ortho%s;\n" %userName) ################################################# def callShell(base, cmdStr, dummy = None): ''' ''' base.shell(cmdStr) ################################################# def main(): ''' ''' opts = options() # files contains exactly two PE files pCnt = int(opts.pCnt) if pCnt == 0: pCnt = int(float(multiprocessing.cpu_count()) / 2.0 + 0.5) eValue = opts.evalue similarity = opts.sim minlen = opts.minlen files = ["%s/%s" %(opts.wd.strip('"').strip("'").rstrip('/'), myFile) for myFile in opts.filenames.strip().split(',')] labels = opts.labs.strip().split(',') if len(labels) != len(set(labels)): print >> sys.stderr, "### Fatal error: duplicate labels found. Exiting..." sys.exit(-1) if len(files) != len(set(files)): print >> sys.stderr, "### Fatal error: duplicate fasta file names found. Exiting..." sys.exit(-1) positions = None if opts.positions != "": positions = opts.positions.strip().split(',') if positions == None: positions = [] for i in xrange(len(files)): positions.append("1") if len(files) != len(labels): print >> sys.stderr, "### Fatal error: number of files does not match with the number of labels. Exiting..." sys.exit(-1) if len(positions) != len(labels): print >> sys.stderr, "### Fatal error: number of labels does not match with the number of positions of the ids. Exiting..." sys.exit(-1) for lab in labels: if len(lab) != 3: print >> sys.stderr, "### Fatal error: labels have to be exactly three characters long. Exiting..." sys.exit(-1) base = Base() wd = "Results" wdFasta = "%s/Fasta" %wd base.shell("rm -rf Results") base.createDir(wd) logHandle = open("%s/log.txt" %wd, 'w') base.setLogHandle(logHandle) base.createDir(wdFasta) #userName = getpass.getuser() #createOrthoMclConfigFile(wd, userName, eValue, similarity) #createMySqlScripts(wd, userName) verList = checkMySqlVersion(wd, opts.ip) createOrthoMclConfigFile(wd, "root", eValue, similarity, opts.ip) createMySqlScripts(wd, "root", verList) requiredMolType = "amino acids" if opts.nucl == True: requiredMolType = "nucleotides" for myFile in files: molType = checkResidue(myFile) if requiredMolType != molType: print >> sys.stderr, "### Fatal error: files have to all be %s. Exiting..." %requiredMolType print >> sys.stderr, "### File %s failed and was %s." %(myFile, molType) sys.exit(-1) base.shell("rm -f %s/*.fasta" %wd) base.shell("rm -f %s/*.fasta" %wdFasta) for i in xrange(len(files)): myLab, myFile, myPos = labels[i], files[i], positions[i] if myFile == "%s.fasta" %myLab: print >> sys.stderr, "### Fatal error: orthoMCL produces same filenames that you already have. Please rename your fasta files e.g. to .fa instead of .fasta. Exiting..." sys.exit(-1) base.shell("orthomclAdjustFasta %s %s %s" %(myLab, myFile, myPos)) checkUniqueIds("%s.fasta" %myLab) checkIdLen("%s.fasta" %myLab) base.shell("mv -f %s.fasta %s" %(myLab, wdFasta)) if opts.skipBlast == False: base.shell("orthomclFilterFasta %s %s 20" %(wdFasta, minlen)) base.shell("mv -f poorProteins.* %s" %wd) # Blast all against all if opts.skipBlast == False: if opts.nucl == False: base.shell("makeblastdb -in goodProteins.fasta -dbtype prot") else: base.shell("makeblastdb -in goodProteins.fasta -dbtype nucl") base.shell("cp goodProteins.fasta %s/" %wd) blastEvalue = eValue if float(blastEvalue) < 1e-5: blastEvalue = "1e-5" if opts.skipBlast == False: if opts.nucl == False: base.shell("blastp -db goodProteins.fasta -query goodProteins.fasta -outfmt 6 -evalue %s -num_threads %d > %s/goodProteins.blast" %(blastEvalue, pCnt, wd)) else: base.shell("blastn -db goodProteins.fasta -query goodProteins.fasta -outfmt 6 -evalue %s -num_threads %d > %s/goodProteins.blast" %(blastEvalue, pCnt, wd)) base.shell("""awk '{if ($11<=%s) print $0}' %s/goodProteins.blast | grep -v "^#" > %s/filtered.blast""" %(eValue, wd, wd)) base.shell("mv -f goodProteins.* %s/" %wd) base.shell("orthomclBlastParser %s/filtered.blast %s > %s/similarSequences.txt" %(wd, wdFasta, wd)) # Prepare database base.shell("mysql -h %s -P 3306 --protocol tcp --user=root --password=password < %s/dropDb.sql" %(opts.ip, wd)) base.shell("mysql -h %s -P 3306 --protocol tcp --user=root --password=password < %s/createDb.sql" %(opts.ip, wd)) base.shell("orthomclInstallSchema %s/orthomcl.config" %wd) base.shell("orthomclLoadBlast %s/orthomcl.config %s/similarSequences.txt" %(wd, wd)) # Identify potential orthologs base.shell("orthomclPairs %s/orthomcl.config %s/orthomclPairs.log cleanup=no" %(wd, wd)) base.shell("rm -rf pairs") base.shell("rm -rf %s/pairs" %wd) base.shell("orthomclDumpPairsFiles %s/orthomcl.config" %wd) base.shell("mv -f pairs %s" %wd) # Group the orthologs base.shell("mcl mclInput --abc -I 2.0 -o mclOutput") base.shell("orthomclMclToGroups OWN_ 1 < mclOutput > %s/groups.txt" %wd) base.shell("mv -f mclInput %s" %wd) base.shell("mv -f mclOutput %s" %wd) logHandle.close() ################################################# if __name__ == "__main__": main()
2.3125
2
testing/import_text_test.py
kstepanmpmg/mldb
1
12784105
<reponame>kstepanmpmg/mldb # # import_text_test.py # <NAME>, 2016-06-21 # This file is part of MLDB. Copyright 2016 mldb.ai inc. All rights reserved. # import tempfile from mldb import mldb, MldbUnitTest, ResponseException class ImportTextTest(MldbUnitTest): @classmethod def setUpClass(cls): cls.regular_lines_file = \ tempfile.NamedTemporaryFile(dir='build/x86_64/tmp') cls.regular_lines_file.write(b"a,b,c\n") cls.regular_lines_file.write(b"d,e,f\n") cls.regular_lines_file.flush() cls.irregular_lines_file = \ tempfile.NamedTemporaryFile(dir='build/x86_64/tmp') cls.irregular_lines_file.write(b"a,b,c\n") cls.irregular_lines_file.write(b"d,e\n") cls.irregular_lines_file.write(b"f,g,h,i\n") cls.irregular_lines_file.flush() def test_base(self): res = mldb.post('/v1/procedures', { 'type' : 'import.text', 'params' : { 'runOnCreation' : True, 'dataFileUrl' : 'file://' + self.regular_lines_file.name, 'outputDataset' : { 'id' : 'base_ds', 'type' : 'tabular' } } }).json() self.assertEqual(res['status']['firstRun']['status'], { 'numLineErrors' : 0, 'rowCount' : 1 }) res = mldb.query("SELECT a, b, c FROM base_ds") self.assertTableResultEquals(res, [ ['_rowName', 'a', 'b', 'c'], ['2', 'd', 'e', 'f'] ]) def test_gen_headers(self): """ MLDB-1741 """ res = mldb.post('/v1/procedures', { 'type' : 'import.text', 'params' : { 'runOnCreation' : True, 'dataFileUrl' : 'file://' + self.regular_lines_file.name, 'autoGenerateHeaders' : True, 'outputDataset' : { 'id' : 'gen_headers_ds', 'type' : 'tabular' } } }).json() self.assertEqual(res['status']['firstRun']['status'], { 'numLineErrors' : 0, 'rowCount' : 2 }) res = mldb.query("SELECT * FROM gen_headers_ds") self.assertTableResultEquals(res, [ ['_rowName', '0', '1', '2'], ['1', 'a', 'b', 'c'], ['2', 'd', 'e', 'f'] ]) def test_conflicting_header_config(self): msg = "autoGenerateHeaders cannot be true if headers is defined." with self.assertRaisesRegex(ResponseException, msg): mldb.post('/v1/procedures', { 'type' : 'import.text', 'params' : { 'runOnCreation' : True, 'dataFileUrl' : 'file://' + self.regular_lines_file.name, 'autoGenerateHeaders' : True, 'headers' : ['colA', 'colB', 'colC'], 'outputDataset' : { 'id' : 'gen_headers_ds', 'type' : 'tabular' } } }) def test_basea_irregular(self): msg = "Error parsing CSV row: too many columns in row" with self.assertRaisesRegex(ResponseException, msg): mldb.post('/v1/procedures', { 'type' : 'import.text', 'params' : { 'runOnCreation' : True, 'dataFileUrl' : 'file://' + self.irregular_lines_file.name, 'outputDataset' : { 'id' : 'base_ds', 'type' : 'tabular' } } }) def test_gen_headers_irregular(self): msg = "Error parsing CSV row: too many columns in row" with self.assertRaisesRegex(ResponseException, msg): mldb.post('/v1/procedures', { 'type' : 'import.text', 'params' : { 'runOnCreation' : True, 'dataFileUrl' : 'file://' + self.irregular_lines_file.name, 'autoGenerateHeaders' : True, 'outputDataset' : { 'id' : 'base_ds', 'type' : 'tabular' } } }) def test_rowHash(self): mldb.post('/v1/procedures', { 'type' : 'import.text', 'params' : { "dataFileUrl" : "https://raw.githubusercontent.com/datacratic/mldb-pytanic-plugin/master/titanic_train.csv", 'outputDataset' : "titanic_hashed", "where": "rowHash() % 3 = 0", 'runOnCreation' : True, } }) mldb.post('/v1/procedures', { 'type' : 'import.text', 'params' : { "dataFileUrl" : "https://raw.githubusercontent.com/datacratic/mldb-pytanic-plugin/master/titanic_train.csv", 'outputDataset' : "titanic_no_hashed", 'runOnCreation' : True, } }) self.assertTableResultEquals( mldb.query("select count(*) from titanic_hashed"), [["_rowName","count(*)"], ["[]",287]] ) self.assertTableResultEquals( mldb.query("select count(*) from titanic_no_hashed"), [["_rowName","count(*)"], ["[]",891]] ) def test_import_filename_with_whitespaces(self): """ MLDB-1797 """ mldb.post('/v1/procedures', { 'type' : 'import.text', 'params' : { 'dataFileUrl' : 'file://mldb/testing/filename with whitespaces.csv', 'outputDataset' : 'test_impot_filename_with_whitespaces', 'runOnCreation' : True } }) res = mldb.query("SELECT * FROM test_impot_filename_with_whitespaces") self.assertTableResultEquals(res, [ ['_rowName', 'a', 'b'], ['2', 1, 2] ]) if __name__ == '__main__': mldb.run_tests()
2.53125
3
src/pyfx/view/components/help_bar/help_bar.py
cielong/pyfx
9
12784106
<filename>src/pyfx/view/components/help_bar/help_bar.py import urwid class HelpBar(urwid.WidgetWrap): HELP_TEXT = [ ('title', "Pyfx"), " ", "UP, DOWN, ENTER, Q", ] def __init__(self, manager): self._manager = manager self._text_widget = urwid.Text(HelpBar.HELP_TEXT) super().__init__(urwid.AttrMap(self._text_widget, "foot"))
2.265625
2
aws_interface/cloud/auth/register.py
hubaimaster/aws-interface
53
12784107
from cloud.crypto import * from cloud.auth.get_login_method import do as get_login_method from cloud.permission import Permission, NeedPermission from cloud.auth.get_login_method import match_policy from cloud.message import error import string # Define the input output format of the function. # This information is used when creating the *SDK*. info = { 'input_format': { 'email': 'str', 'password': '<PASSWORD>', 'extra?': 'map' }, 'output_format': { 'item?': { 'id': 'str', 'creation_date': 'float', 'email': 'str', 'login_method': 'str', '...': '...' } }, 'description': 'Register by email and password' } @NeedPermission(Permission.Run.Auth.register) def do(data, resource): body = {} params = data['params'] email = params['email'] password = params['password'] extra = params.get('extra', {}) extra = {key: value for key, value in extra.items() if value != '' and value != {} and value != []} salt = Salt.get_salt(32) password_hash = <PASSWORD>_password(password, salt) password_meta = { 'count': len(password), 'count_lowercase': len([c for c in password if c.islower()]), 'count_uppercase': len([c for c in password if c.isupper()]), 'count_special': len([c for c in password if c in string.punctuation]), } partition = 'user' data['params']['login_method'] = 'email_login' login_conf = get_login_method(data, resource)['item'] register_policy_code = login_conf.get('register_policy_code', None) if not data.get('admin', False): if not match_policy(register_policy_code, extra, password_meta): body['error'] = error.REGISTER_POLICY_VIOLATION return body default_group_name = login_conf['default_group_name'] enabled = login_conf['enabled'] if enabled == 'true': enabled = True elif enabled == 'false': enabled = False if not enabled: body['error'] = error.EMAIL_LOGIN_INVALID return body instructions = [ [None, 'email', 'eq', email] ] items, end_key = resource.db_query(partition, instructions) users = list(items) if len(users) > 0: body['error'] = error.EXISTING_ACCOUNT return body else: item = { 'email': email, 'password_hash': <PASSWORD>, 'salt': <PASSWORD>, 'groups': [default_group_name], 'login_method': 'email_login', } # Put extra value in the item for key in extra: if key not in item: item[key] = extra[key] resource.db_put_item(partition, item) body['item'] = item return body
2.4375
2
src/plotVoltage.py
gdetor/Crebral
0
12784108
<filename>src/plotVoltage.py import numpy as np import matplotlib.pylab as plt def plotVoltage(t, y): fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111) ax.plot(t, y, 'k', lw=2) if __name__ == '__main__': t = np.genfromtxt('time.dat') y = np.genfromtxt('solution.dat') s = np.genfromtxt('stimuli.dat') n = 10 if 0: plotVoltage(t[n:], y[0, n:]) plotVoltage(t[n:], y[1, n:]) if 1: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(t[n:], y[0, n:], 'r', lw=1.5) ax.plot(t[n:], y[1, n:], 'b', lw=1.5) ax.plot(t[n:], s[0, n:] - 28, 'k') plt.show()
3.0625
3
learning-algorithm-batch/run_Batch_DF_Classifier.py
rashid-islam/Differential_Fairness
4
12784109
# -*- coding: utf-8 -*- """ Created on Wed Feb 6 21:52:54 2019 @author: USER """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import sklearn as sk from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score, roc_auc_score,f1_score import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from utilities import load_census_data from fairness_metrics import computeEDFforData from DNN_model import NeuralNet,training_fair_model #The function below ensures that we seed all random generators with the same value to get reproducible results def set_random_seed(state=1): gens = (np.random.seed, torch.manual_seed, torch.cuda.manual_seed) for set_state in gens: set_state(state) RANDOM_STATE = 1 set_random_seed(RANDOM_STATE) #%% data loading and pre-processing # load the train dataset X, y, S = load_census_data('data/adult.data',1) # Define all the "intersectional groups" to maintain stochastic update of p(y|S) correctly among different batches intersectionalGroups = np.unique(S,axis=0) # all intersecting groups, i.e. black-women, white-man etc # load the test dataset test_X, test_y, test_S = load_census_data('data/adult.test',0) # scale/normalize train & test data and shuffle train data scaler = StandardScaler().fit(X) scale_df = lambda df, scaler: pd.DataFrame(scaler.transform(df), columns=df.columns, index=df.index) X = X.pipe(scale_df, scaler) test_X = test_X.pipe(scale_df, scaler) X, y, S = sk.utils.shuffle(X, y, S, random_state=0) X = X.values y = y.values S = S.values test_X = test_X.values test_y = test_y.values test_S = test_S.values X, dev_X, y, dev_y, S, dev_S = train_test_split(X, y, S, test_size=0.30,stratify=y, random_state=7) #%% # deep neural network using pytorch trainData = torch.from_numpy(X) trainLabel = torch.from_numpy(y.reshape((-1,1))) #devData = torch.from_numpy(devData) testData = torch.from_numpy(test_X) devData = torch.from_numpy(dev_X) # hyperparameters input_size = trainData.size()[1] hidden1 = 16 hidden2 = 16 hidden3 = 16 output_size = 1 num_epochs = 500 #burnIn = 50 stepSize = 0.1 learning_rate = 0.001 burnIn = 50 epsilonBase = torch.tensor(0.0) # To protect the 80%-rule in intersectional setting, set this variable to: - log(0.8) = 0.2231 #%% import sys sys.stdout=open("batch_DF_EPS0.txt","w") #%% training DNN model with fairness constraint # Train a fair classifier lamda = torch.tensor(0.01) # λ is ahyper-parameter that balances between the prediction loss and fairness. # Select λ for fair learning algorithms via rigorous grid search on the development set. See paper for details. DF_Model = training_fair_model(input_size,hidden1,hidden2,hidden3,output_size,learning_rate,num_epochs,trainData, trainLabel,S,intersectionalGroups,burnIn,stepSize,epsilonBase,lamda) #%% # Validate the model with torch.no_grad(): devData = Variable(devData.float()) predictProb = DF_Model(devData) predicted = ((predictProb>0.5).numpy()).reshape((-1,)) Accuracy = sum(predicted == dev_y)/len(dev_y) # Save results predictProb = (predictProb.numpy()).reshape((-1,)) print(f"DF classifier dev accuracy: {Accuracy: .3f}") aucScore = roc_auc_score(dev_y,predictProb) print(f"DF classifier dev ROC AUC: {aucScore: .3f}") nn_f1 = f1_score(dev_y,predicted) print(f"DF classifier dev F1 score: {nn_f1: .2f}") epsilon_hard,epsilon_soft,gamma_hard,gamma_soft,p_rule_hard,p_rule_soft = computeEDFforData(dev_S,predicted,predictProb,intersectionalGroups) print(f"DF classifier dev epsilon_hard: {epsilon_hard: .3f}") print(f"DF classifier dev epsilon_soft: {epsilon_soft: .3f}") print(f"DF classifier dev gamma_hard: {gamma_hard: .3f}") print(f"DF classifier dev gamma_soft: {gamma_soft: .3f}") print(f"DF classifier dev p_rule_hard: {p_rule_hard: .3f}") print(f"DF classifier dev p_rule_soft: {p_rule_soft: .3f}") #%% # Test the model with torch.no_grad(): testData = Variable(testData.float()) predictProb = DF_Model(testData) predicted = ((predictProb>0.5).numpy()).reshape((-1,)) Accuracy = sum(predicted == test_y)/len(test_y) # Save results predictProb = (predictProb.numpy()).reshape((-1,)) print(f"DF_Classifier accuracy: {Accuracy: .3f}") aucScore = roc_auc_score(test_y,predictProb) print(f"DF_Classifier ROC AUC: {aucScore: .3f}") nn_f1 = f1_score(test_y,predicted) print(f"DF_Classifier F1 score: {nn_f1: .2f}") epsilon_hard,epsilon_soft,gamma_hard,gamma_soft,p_rule_hard,p_rule_soft = computeEDFforData(test_S,predicted,predictProb,intersectionalGroups) print(f"DF_Classifier epsilon_hard: {epsilon_hard: .3f}") print(f"DF_Classifier epsilon_soft: {epsilon_soft: .3f}") print(f"DF_Classifier gamma_hard: {gamma_hard: .3f}") print(f"DF_Classifier gamma_soft: {gamma_soft: .3f}") print(f"DF_Classifier p_rule_hard: {p_rule_hard: .3f}") print(f"DF_Classifier p_rule_soft: {p_rule_soft: .3f}")
2.625
3
Ejercicios/Filtro.py
dannieldev/Fundamentos-de-Python
0
12784110
def filtro(elem): return(elem > 0) l = [1,-3,2,-7,-8,-9,10] lr = filter(filtro,l) print(l) print(lr)
2.953125
3
Source/input/ai/searcher.py
LucXyMan/starseeker
0
12784111
<reponame>LucXyMan/starseeker<gh_stars>0 #!/usr/bin/env python2.7 # -*- coding:UTF-8 -*-2 u"""searcher.py Copyright (c) 2019 <NAME> This software is released under BSD license. コマンド探索モジュール。 """ import pieces as _pieces import utils.const as _const if _const.IS_MULTIPROCESSING: import multiprocessing as __multiprocessing __PPType = __multiprocessing.Process _PPQueue = __multiprocessing.JoinableQueue else: import threading as __threading import Queue as __Queue __PPType = __threading.Thread _PPQueue = __Queue.Queue class Searcher(__PPType): u"""コマンドを作成する。 アルカナの使用、ピースのルートを設定。 """ __MAX_DEPTH_WEIGHT = 0 __MIN_DEPTH_WEIGHT = 0 __AVG_DEPTH_WEIGHT = 0 __HOLE_PREVENTION_WEIGHT = 3 __SMOOTHNESS_WEIGHT = 1 __BLOCKS_ABOVE_OF_HOLES_WEIGHT = 1 __ADJACENT_SPACES_WEIGHT = 0 __GOAL_DISTANCE_WEIGHT = 0 __MALIGNANCY_WEIGHT = 1 __UNLOCK_WEIGHT = 5 def __init__(self, drop_point): u"""コンストラクタ。 """ import armament.collectible as __collectible super(Searcher, self).__init__() self.__in = _PPQueue() self.__out = _PPQueue() self.__drop_point = _pieces.State(drop_point) self.__is_drive = True self.__is_stop = False self.__collectible = __collectible.get_all() def run(self): u"""AIの起動。 """ import time as __time import command as __command def __get_tactics(): u"""カード使用コマンドを決定。 """ def __get_deletion(): u"""カードの削除コマンドを設定。 """ for cmd, card in zip(( _const.USE5_COMMAND, _const.USE6_COMMAND, _const.USE7_COMMAND, _const.USE8_COMMAND ), arcana): if ( card.type == _const.JOKER_ARCANUM and prm_self.has_purify or card.type == _const.SUMMON_ARCANUM and (prm_self.is_full_group or prm_self.has_soul_eat) ): return [__command.Simple(cmd)] return [] if prm_self.is_arcana_available: arcana = [self.__collectible[i] for i in prm_self.hand] for cmd, arcanum in zip(( _const.USE1_COMMAND, _const.USE2_COMMAND, _const.USE3_COMMAND, _const.USE4_COMMAND ), arcana): if arcanum.type == _const.JOKER_ARCANUM: weight = _const.NUMBER_OF_STAR*prm_self.jokers if prm_self.has_reverse_sorcery or ( prm_self.resource.total <= weight ) and not prm_self.has_purify: return [__command.Simple(cmd)] elif ( arcanum.type == _const.SUMMON_ARCANUM and arcanum.is_available((prm_self, prm_other)) ): return [__command.Simple(cmd)] elif arcanum.type == _const.SORCERY_ARCANUM: altered = arcanum.adapt( None if prm_self.catalyst == -1 else self.__collectible[prm_self.catalyst]) sorcery = altered if altered else arcanum if sorcery.is_available((prm_self, prm_other)): return [__command.Simple(cmd)] deletion = __get_deletion() if deletion: return deletion return [] def __search(): u"""探索処理。 """ import marker as __marker def __calculate(): u"""ピースポイント計算。 """ import point as __point def __get_search_area(): u"""検索範囲取得。 return: top, right, bottom, left. """ def __topmost_block_line(): u"""フィールドの最も高いブロック行番号を取得。 """ height = field.table.height for y in range(height): if any( cell.is_block for cell in field.table.get_line(y) ): return y return height top = max(__topmost_block_line(), target.bottom) right = field.table.width-1 bottom = field.table.height+target.height-1 left = -(target.width-1) return top, right, bottom, left def __is_landingable(): u"""ピース設置可能判定。 """ old_state = target.state if ( not field.is_outer(target) and not field.is_collide(target) and not target.move(field, _const.DOWN) ): return True else: target.state = old_state return False def __set_point(): u"""得点設定。 """ def __get_roughness(): u"""フィールドの粗さを取得する。 """ width = virtual.table.width surface = map( lambda block: virtual.height-1 if block is None else block.point.top, tuple( virtual.table.get_topmost_block(col) for col in range(width))) return ( surface[0]-surface[1]+surface[-1]-surface[-2]+sum( abs(surface[col]-surface[col+1]) for col in range(1, width-2))) def __get_closures(x): u"""ホールの上に存在するブロック数を取得。 """ lowest_space = virtual.table.get_lowest_space(x) lowest_space_height = ( lowest_space.point.top if lowest_space else 0) lowest_hole = virtual.table.get_lowest_hole(x) return ( lowest_hole.point.top-lowest_space_height if lowest_hole else 0) def __get_unlock(field): u"""アンロック可能点数取得。 """ def __has_pair(line): u"""ライン上に鍵と宝箱のペアが存在する場合に真。 """ return any( cell.is_locked for cell in line) and any( cell.name in _const.KEY_NAMES.split("#") for cell in line) lines = ( field.table.get_line(y) for y in range(field.table.height)) return sum(__has_pair(line) for line in lines) def __get_stack(): u"""フィールドの積み重ねを取得。 """ result = 0 width = virtual.table.width for col in range(width): block = virtual.table.get_topmost_block(col) if block: result += virtual.height-block.point.top return result/width virtual = field.virtual squares = virtual.squares depths = tuple(block.point.y for block in target.blocks) point.max_depth = max(depths) << self.__MAX_DEPTH_WEIGHT point.min_depth = min(depths) << self.__MIN_DEPTH_WEIGHT point.avg_depth = ( sum(depths)/len(depths) << self.__AVG_DEPTH_WEIGHT) point.goal_distance = abs( target.state.left-self.__drop_point.left )+abs( target.state.top-self.__drop_point.top ) << self.__GOAL_DISTANCE_WEIGHT target.stamp(virtual) point .unlock = ( __get_unlock(virtual) << self.__UNLOCK_WEIGHT) if point.is_t_spin: virtual.set_super_drop() point.completions = len( virtual.simple_complete() ) << __get_stack() virtual.turn() point.hole_prevention = squares-sum( 1 for cell in virtual.table.below if cell.is_hole ) << self.__HOLE_PREVENTION_WEIGHT point.smoothness = ( squares-__get_roughness() << self.__SMOOTHNESS_WEIGHT) point.block_above_of_holes = squares-sum( __get_closures(x) for x in range(virtual.table.width) ) << self.__BLOCKS_ABOVE_OF_HOLES_WEIGHT point.adjasent_spaces = sum( 1 for cell in virtual.table if cell.is_adjacent ) << self.__ADJACENT_SPACES_WEIGHT point.malignancy = (squares << 2)-sum( block.get_malignancy() for block in virtual.blocks ) << self.__MALIGNANCY_WEIGHT points = [] for is_hold, target in enumerate( (piece,) if prm_self.is_hold_captured else (piece, hold) ): top, right, bottom, left = __get_search_area() for angle in range(target.angles): if ( target.pruning == _const.SINGLE_PRUNING and angle in (_const.A90, _const.A180, _const.A270) ) or ( target.pruning == _const.HALF_PRUNING and angle in (_const.A180, _const.A270) ): continue for x in range(left, right): for y in range(top, bottom): if ( _const.IS_MULTIPROCESSING and self.__out.empty() ): self.__out.put_nowait( ("signal", ("point_calc",))) self.__out.task_done() if not self.__in.empty(): name, _ = self.__in.get_nowait() if name in ("stop", "terminate"): self.__is_stop = True if name == "terminate": self.__is_drive = False return [] target.angle = angle target.bottomleft = x, y if __is_landingable(): point = __point.Point( target.state, is_hold, target.is_t and target.is_three_corner(field) and target.is_flexible(field)) __set_point() points.append(point) return points hold_command = __command.Simple(_const.HOLD_COMMAND) if prm_self.hold: if not self.__is_stop: field = _pieces.Field( _pieces.Pattern(*prm_self.field), is_virtual=True) field.skills = prm_self.skills piece = _pieces.Falling( _pieces.Rotatable(*prm_self.piece), is_virtual=True ).virtual hold = _pieces.Falling( _pieces.Rotatable(*prm_self.hold), is_virtual=True ).virtual piece.topleft = prm_self.piece_pos goal = piece.state points = __calculate() while points: max_point = max(points) points.remove(max_point) target = hold if max_point.is_hold else piece target.state = max_point.state marker = __marker.Marker(field, target, goal) marker.out = self.__out result = marker.mark( max_point.is_t_spin and max_point.completions) if result: if max_point.is_hold: result = [hold_command]+result return result return [__command.Simple(_const.UP_COMMAND)] else: return [hold_command] waiting_time = 1./_const.FRAME_RATE while self.__is_drive: __time.sleep(waiting_time) if not self.__in.empty(): cmd, args = self.__in.get_nowait() if cmd == "search": prm_self, prm_other = args tactics = __get_tactics() cmds = tactics if tactics else __search() if cmds or (not cmds and self.__is_stop): self.__out.put_nowait(("search", (cmds,))) self.__out.task_done() self.__is_stop = False elif cmd == "terminate": self.__is_drive = False @property def in_out(self): u"""入出力キュー取得。 return in, out. """ return self.__in, self.__out
2.28125
2
code/Spectral_condensation.py
matthew-hirn/condensation
2
12784112
# -*- coding: utf-8 -*- """ Created on Thu May 2 13:42:37 2019 @author: <NAME> """ import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.cm as cm from mpl_toolkits.mplot3d import Axes3D import cycler def spectral_decay(case = 4, vname = 'example_0', plot_type = 'val', save = False): ## Parameters & Settings # 0: Barbell # 1: Tree # 2: Gaussian Mix # 3: Hyperuniform Circle # 4: Hyperuniform Ellipse ## Parameters & Settings # case = 4 # 0: Barbell; 1: Tree; 2: Gaussian Mix; 3/4: Hyperuniform Circle/Ellipse # vname = 'example_0' # spectial tag for video file colormap = cm.viridis # cmap for viz # plot_type = 'val' # 'vec': right singular vec embed; 'val': singula val; '3d': 3D # save = False # Save figure? save_type = '.pdf' psi_min = 2 # min right singular vector to plot; 2, 3, ..., 11 psi_max = psi_min + 1 # max right singular vector to plot psi3d_min = 2 # 2, 3, ..., 11 psi3d_mid = psi3d_min + 1 psi3d_max = psi3d_min + 2 for sig in np.arange(2,12): if case == 0: fname = 'barbell' cdir = 'barbell/' plot_title = 'Barbell' elif case == 1: fname = 'tree' cdir = 'tree/' plot_title = 'Tree' elif case == 2: fname = 'gauss' cdir = 'gauss/' plot_title = 'Gauss' elif case == 3: fname = 'hyperuni_circle' cdir = 'h_circle/' plot_title = 'Hyperuniform Circle' elif case == 4: fname = 'hyperuni_ellipse' cdir = 'ellipse/' plot_title = 'Hyperuniform Ellipse' sname = fname + '_' + vname # save name tag fname += vname # load name tag # Get # of Iterations iter_name = 'dm/'+cdir+'iterations_'+fname+'.npy' iterations = np.load(iter_name) # Get Diffusion Maps Spectra eDM_name = 'dm/'+cdir+'E_'+fname+'.npy'; eDM_sig = np.load(eDM_name)[sig - 2] # Initialize Specra Lists ei = []; et = []; eDM = [] # Get Epsilon (shape = (2, #iterations), 0th axis #eps doublings, 1st axis eps) eps_name = 'dm/'+cdir+'epsilon_list_'+fname+'.npy'; eps_adjust = np.load(eps_name) # Get Number of Points in Dataset & Color datasize_name = 'dm/'+cdir+'V_'+fname+'.npy'; N = np.load(datasize_name).shape[0] C_name = 'dm/'+cdir+'C_'+fname+'.npy'; C = np.load(C_name) #%% for i in np.arange(1, 1+iterations): '''Singular Values (DM for Changing Data, TCDM) & Eigenvalues (DM)''' pi_name = 'p_i/'+cdir+'Ei_'+str(i)+'_'+fname+'.npy' pt_name = 'p_t/'+cdir+'Et_'+str(i)+'_'+fname+'.npy' ei.append([i, np.load(pi_name)[sig - 2]]) # Operator P_i et.append([i, np.load(pt_name)[sig - 2]]) # Composed Operator P^((t)) eDM.append([i, eDM_sig**i]) # Diffusion Maps Operator P^{t} if plot_type == 'val': plt.subplot(311) plt.plot(np.asarray(ei).T[0], np.asarray(ei).T[1], marker='o', label=r'$P_{\epsilon,i}$', color = 'c') plt.subplot(312) plt.plot(np.asarray(et).T[0], np.asarray(et).T[1], marker='o', label=r'$P_{\epsilon}^{(t)}$', color = 'purple') plt.ylabel(r"$\sigma_{k}$") plt.subplot(313) plt.plot(np.asarray(eDM).T[0], np.asarray(eDM).T[1], marker='o', label=r'$P_{\epsilon}^{t}$', color = 'g') plt.xlabel("Iteration") # plt.show() save_dir = 'figs/spectral/'+cdir save_name = sname+'_sigma'+str(sig)+'_N-'+str(N) elif plot_type == 'vec': # Set Singular Vectors psiDM_name = 'p_i/'+cdir+'Vi_1_'+fname+'.npy' psiDM = np.load(psiDM_name) # Generate Figure plt.title(r'$\psi_{'+str(psi_min)+'}$ & $\psi_{'+str(psi_max)+'}$ for '+plot_title+' (N = '+str(N)+')') plt.scatter(psiDM[:,psi_min-2], psiDM[:,psi_max-2], c=C, cmap = colormap, vmin=np.amin(C), vmax=np.amax(C), label=r'$P_{\epsilon}^{t}$') plt.xlabel(r'$\psi_{'+str(psi_min)+'}$') plt.ylabel(r'$\psi_{'+str(psi_max)+'}$') plt.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False, left=False, labelleft=False) plt.show() save_dir = 'figs/embed/'+cdir save_name = sname+'_psi'+str(psi_min)+'_psi'+str(psi_max)+'_N-'+str(N) elif plot_type == '3d': # Set Singular Vectors and Plot from mpl_toolkits.mplot3d import Axes3D psiDM_name = 'p_i/'+cdir+'Vi_1_'+fname+'.npy' psiDM = np.load(psiDM_name) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') plt.title(r'$\psi_{'+str(psi3d_min)+'}$, $\psi_{'+str(psi3d_mid)+ '}$, & $\psi_{'+str(psi3d_max)+'}$ Embedding of ' +plot_title+' (N = '+str(N)+')') ax.scatter(psiDM[:, psi3d_min - 2], psiDM[:, psi3d_mid - 2], psiDM[:, psi3d_max - 2], c=C, cmap=colormap) ax.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False, right=False, left=False, labelleft=False) plt.show() save_dir = 'figs/embed/'+cdir save_name = sname+'_psi'+str(psi3d_min)+'_psi'+str( psi3d_mid)+'_psi'+str(psi3d_max)+'_N-'+str(N) # Save Figure if save == True: save_name = save_dir+save_name+save_type plt.savefig(save_name, bbox_inches='tight', transparent=True, dpi=300) return plt.show() if "__name__" == "__main__": spectral_decay() # Save Figure if save == True: save_name = save_dir+save_name+save_type plt.savefig(save_name, bbox_inches='tight', transparent=True, dpi=300)
2.3125
2
dlkit/services/commenting.py
UOC/dlkit
2
12784113
"""DLKit Services implementations of commenting service.""" # pylint: disable=no-init # osid specification includes some 'marker' interfaces. # pylint: disable=too-many-ancestors # number of ancestors defined in spec. # pylint: disable=too-few-public-methods,too-many-public-methods # number of methods defined in spec. Worse yet, these are aggregates. # pylint: disable=invalid-name # method and class names defined in spec. # pylint: disable=no-self-use,unused-argument # to catch unimplemented methods. # pylint: disable=super-init-not-called # it just isn't. from . import osid from .osid_errors import Unimplemented, IllegalState, InvalidArgument from dlkit.abstract_osid.commenting import objects as abc_commenting_objects from dlkit.manager_impls.commenting import managers as commenting_managers DEFAULT = 0 COMPARATIVE = 0 PLENARY = 1 FEDERATED = 0 ISOLATED = 1 ANY_STATUS = 0 ACTIVE = 1 UNSEQUESTERED = 0 SEQUESTERED = 1 AUTOMATIC = 0 MANDATORY = 1 DISABLED = -1 class CommentingProfile(osid.OsidProfile, commenting_managers.CommentingProfile): """CommentingProfile convenience adapter including related Session methods.""" def __init__(self): self._provider_manager = None def supports_comment_lookup(self): """Pass through to provider supports_comment_lookup""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.supports_resource_lookup return self._provider_manager.supports_comment_lookup() def supports_comment_query(self): """Pass through to provider supports_comment_query""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.supports_resource_lookup return self._provider_manager.supports_comment_query() def supports_comment_admin(self): """Pass through to provider supports_comment_admin""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.supports_resource_lookup return self._provider_manager.supports_comment_admin() def supports_comment_book(self): """Pass through to provider supports_comment_book""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.supports_resource_lookup return self._provider_manager.supports_comment_book() def supports_comment_book_assignment(self): """Pass through to provider supports_comment_book_assignment""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.supports_resource_lookup return self._provider_manager.supports_comment_book_assignment() def supports_book_lookup(self): """Pass through to provider supports_book_lookup""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.supports_resource_lookup return self._provider_manager.supports_book_lookup() def supports_book_admin(self): """Pass through to provider supports_book_admin""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.supports_resource_lookup return self._provider_manager.supports_book_admin() def supports_book_hierarchy(self): """Pass through to provider supports_book_hierarchy""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.supports_resource_lookup return self._provider_manager.supports_book_hierarchy() def supports_book_hierarchy_design(self): """Pass through to provider supports_book_hierarchy_design""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.supports_resource_lookup return self._provider_manager.supports_book_hierarchy_design() def get_comment_record_types(self): """Pass through to provider get_comment_record_types""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.get_resource_record_types return self._provider_manager.get_comment_record_types() comment_record_types = property(fget=get_comment_record_types) def get_comment_search_record_types(self): """Pass through to provider get_comment_search_record_types""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.get_resource_record_types return self._provider_manager.get_comment_search_record_types() comment_search_record_types = property(fget=get_comment_search_record_types) def get_book_record_types(self): """Pass through to provider get_book_record_types""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.get_resource_record_types return self._provider_manager.get_book_record_types() book_record_types = property(fget=get_book_record_types) def get_book_search_record_types(self): """Pass through to provider get_book_search_record_types""" # Implemented from kitosid template for - # osid.resource.ResourceProfile.get_resource_record_types return self._provider_manager.get_book_search_record_types() book_search_record_types = property(fget=get_book_search_record_types) class CommentingManager(osid.OsidManager, osid.OsidSession, CommentingProfile, commenting_managers.CommentingManager): """CommentingManager convenience adapter including related Session methods.""" def __init__(self, proxy=None): self._runtime = None self._provider_manager = None self._provider_sessions = dict() self._session_management = AUTOMATIC self._book_view = DEFAULT # This is to initialize self._proxy osid.OsidSession.__init__(self, proxy) self._sub_package_provider_managers = dict() def _set_book_view(self, session): """Sets the underlying book view to match current view""" if self._book_view == COMPARATIVE: try: session.use_comparative_book_view() except AttributeError: pass else: try: session.use_plenary_book_view() except AttributeError: pass def _get_provider_session(self, session_name, proxy=None): """Gets the session for the provider""" agent_key = self._get_agent_key(proxy) if session_name in self._provider_sessions[agent_key]: return self._provider_sessions[agent_key][session_name] else: session = self._instantiate_session('get_' + session_name, self._proxy) self._set_book_view(session) if self._session_management != DISABLED: self._provider_sessions[agent_key][session_name] = session return session def _get_sub_package_provider_manager(self, sub_package_name): if sub_package_name in self._sub_package_provider_managers: return self._sub_package_provider_managers[sub_package_name] config = self._runtime.get_configuration() parameter_id = Id('parameter:{0}ProviderImpl@dlkit_service'.format(sub_package_name)) provider_impl = config.get_value_by_parameter(parameter_id).get_string_value() if self._proxy is None: # need to add version argument sub_package = self._runtime.get_manager(sub_package_name.upper(), provider_impl) else: # need to add version argument sub_package = self._runtime.get_proxy_manager(sub_package_name.upper(), provider_impl) self._sub_package_provider_managers[sub_package_name] = sub_package return sub_package def _get_sub_package_provider_session(self, sub_package, session_name, proxy=None): """Gets the session from a sub-package""" agent_key = self._get_agent_key(proxy) if session_name in self._provider_sessions[agent_key]: return self._provider_sessions[agent_key][session_name] else: manager = self._get_sub_package_provider_manager(sub_package) try: session = self._instantiate_session('get_' + session_name + '_for_bank', proxy=self._proxy, manager=manager) except AttributeError: session = self._instantiate_session('get_' + session_name, proxy=self._proxy, manager=manager) self._set_bank_view(session) if self._session_management != DISABLED: self._provider_sessions[agent_key][session_name] = session return session def _instantiate_session(self, method_name, proxy=None, *args, **kwargs): """Instantiates a provider session""" if 'manager' in kwargs: session_class = getattr(kwargs['manager'], method_name) del kwargs['manager'] else: session_class = getattr(self._provider_manager, method_name) if proxy is None: try: return session_class(bank_id=self._catalog_id, *args, **kwargs) except AttributeError: return session_class(*args, **kwargs) else: try: return session_class(bank_id=self._catalog_id, proxy=proxy, *args, **kwargs) except AttributeError: return session_class(proxy=proxy, *args, **kwargs) def initialize(self, runtime): """OSID Manager initialize""" from .primitives import Id if self._runtime is not None: raise IllegalState('Manager has already been initialized') self._runtime = runtime config = runtime.get_configuration() parameter_id = Id('parameter:commentingProviderImpl@dlkit_service') provider_impl = config.get_value_by_parameter(parameter_id).get_string_value() if self._proxy is None: # need to add version argument self._provider_manager = runtime.get_manager('COMMENTING', provider_impl) else: # need to add version argument self._provider_manager = runtime.get_proxy_manager('COMMENTING', provider_impl) def close_sessions(self): """Close all sessions, unless session management is set to MANDATORY""" if self._session_management != MANDATORY: self._provider_sessions = dict() def use_automatic_session_management(self): """Session state will be saved unless closed by consumers""" self._session_management = AUTOMATIC def use_mandatory_session_management(self): """Session state will be saved and can not be closed by consumers""" self._session_management = MANDATORY def disable_session_management(self): """Session state will never be saved""" self._session_management = DISABLED self.close_sessions() def get_comment_lookup_session(self, *args, **kwargs): """Pass through to provider get_comment_lookup_session""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_catalog_template return self._provider_manager.get_comment_lookup_session(*args, **kwargs) comment_lookup_session = property(fget=get_comment_lookup_session) def get_comment_lookup_session_for_book(self, *args, **kwargs): """Pass through to provider get_comment_lookup_session_for_book""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_for_bin_catalog_template return self._provider_manager.get_comment_lookup_session_for_book(*args, **kwargs) def get_comment_query_session(self, *args, **kwargs): """Pass through to provider get_comment_query_session""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_catalog_template return self._provider_manager.get_comment_query_session(*args, **kwargs) comment_query_session = property(fget=get_comment_query_session) def get_comment_query_session_for_book(self, *args, **kwargs): """Pass through to provider get_comment_query_session_for_book""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_for_bin_catalog_template return self._provider_manager.get_comment_query_session_for_book(*args, **kwargs) def get_comment_admin_session(self, *args, **kwargs): """Pass through to provider get_comment_admin_session""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_catalog_template return self._provider_manager.get_comment_admin_session(*args, **kwargs) comment_admin_session = property(fget=get_comment_admin_session) def get_comment_admin_session_for_book(self, *args, **kwargs): """Pass through to provider get_comment_admin_session_for_book""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_for_bin_catalog_template return self._provider_manager.get_comment_admin_session_for_book(*args, **kwargs) def get_comment_book_session(self, *args, **kwargs): """Pass through to provider get_comment_book_session""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_manager_template return self._provider_manager.get_comment_book_session(*args, **kwargs) comment_book_session = property(fget=get_comment_book_session) def get_comment_book_assignment_session(self, *args, **kwargs): """Pass through to provider get_comment_book_assignment_session""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_manager_template return self._provider_manager.get_comment_book_assignment_session(*args, **kwargs) comment_book_assignment_session = property(fget=get_comment_book_assignment_session) def get_book_lookup_session(self, *args, **kwargs): """Pass through to provider get_book_lookup_session""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_manager_template return self._provider_manager.get_book_lookup_session(*args, **kwargs) book_lookup_session = property(fget=get_book_lookup_session) def get_book_admin_session(self, *args, **kwargs): """Pass through to provider get_book_admin_session""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_manager_template return self._provider_manager.get_book_admin_session(*args, **kwargs) book_admin_session = property(fget=get_book_admin_session) def get_book_hierarchy_session(self, *args, **kwargs): """Pass through to provider get_book_hierarchy_session""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_manager_template return self._provider_manager.get_book_hierarchy_session(*args, **kwargs) book_hierarchy_session = property(fget=get_book_hierarchy_session) def get_book_hierarchy_design_session(self, *args, **kwargs): """Pass through to provider get_book_hierarchy_design_session""" # Implemented from kitosid template for - # osid.resource.ResourceManager.get_resource_lookup_session_manager_template return self._provider_manager.get_book_hierarchy_design_session(*args, **kwargs) book_hierarchy_design_session = property(fget=get_book_hierarchy_design_session) def get_commenting_batch_manager(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services') commenting_batch_manager = property(fget=get_commenting_batch_manager) ## # The following methods are from osid.commenting.CommentBookSession def can_lookup_comment_book_mappings(self): """Pass through to provider CommentBookSession.can_lookup_comment_book_mappings""" # Implemented from kitosid template for - # osid.resource.ResourceBinSession.can_lookup_resource_bin_mappings return self._get_provider_session('comment_book_session').can_lookup_comment_book_mappings() def use_comparative_book_view(self): """Pass through to provider CommentBookSession.use_comparative_book_view""" self._book_view = COMPARATIVE # self._get_provider_session('comment_book_session') # To make sure the session is tracked for session in self._get_provider_sessions(): try: session.use_comparative_book_view() except AttributeError: pass def use_plenary_book_view(self): """Pass through to provider CommentBookSession.use_plenary_book_view""" self._book_view = PLENARY # self._get_provider_session('comment_book_session') # To make sure the session is tracked for session in self._get_provider_sessions(): try: session.use_plenary_book_view() except AttributeError: pass def get_comment_ids_by_book(self, *args, **kwargs): """Pass through to provider CommentBookSession.get_comment_ids_by_book""" # Implemented from kitosid template for - # osid.resource.ResourceBinSession.get_resource_ids_by_bin return self._get_provider_session('comment_book_session').get_comment_ids_by_book(*args, **kwargs) def get_comments_by_book(self, *args, **kwargs): """Pass through to provider CommentBookSession.get_comments_by_book""" # Implemented from kitosid template for - # osid.resource.ResourceBinSession.get_resources_by_bin return self._get_provider_session('comment_book_session').get_comments_by_book(*args, **kwargs) def get_comment_ids_by_books(self, *args, **kwargs): """Pass through to provider CommentBookSession.get_comment_ids_by_books""" # Implemented from kitosid template for - # osid.resource.ResourceBinSession.get_resource_ids_by_bins return self._get_provider_session('comment_book_session').get_comment_ids_by_books(*args, **kwargs) def get_comments_by_books(self, *args, **kwargs): """Pass through to provider CommentBookSession.get_comments_by_books""" # Implemented from kitosid template for - # osid.resource.ResourceBinSession.get_resources_by_bins return self._get_provider_session('comment_book_session').get_comments_by_books(*args, **kwargs) def get_book_ids_by_comment(self, *args, **kwargs): """Pass through to provider CommentBookSession.get_book_ids_by_comment""" # Implemented from kitosid template for - # osid.resource.ResourceBinSession.get_bin_ids_by_resource return self._get_provider_session('comment_book_session').get_book_ids_by_comment(*args, **kwargs) def get_books_by_comment(self, *args, **kwargs): """Pass through to provider CommentBookSession.get_books_by_comment""" # Implemented from kitosid template for - # osid.resource.ResourceBinSession.get_bins_by_resource catalogs = self._get_provider_session('comment_book_session').get_books_by_comment(*args, **kwargs) cat_list = [] for cat in catalogs: cat_list.append(Book(self._provider_manager, cat, self._runtime, self._proxy)) return BookList(cat_list) ## # The following methods are from osid.commenting.CommentBookAssignmentSession def can_assign_comments(self): """Pass through to provider CommentBookAssignmentSession.can_assign_comments""" # Implemented from kitosid template for - # osid.resource.ResourceBinAssignmentSession.can_assign_resources return self._get_provider_session('comment_book_assignment_session').can_assign_comments() def can_assign_comments_to_book(self, *args, **kwargs): """Pass through to provider CommentBookAssignmentSession.can_assign_comments_to_book""" # Implemented from kitosid template for - # osid.resource.ResourceBinAssignmentSession.can_assign_resources_to_bin return self._get_provider_session('comment_book_assignment_session').can_assign_comments_to_book(*args, **kwargs) def get_assignable_book_ids(self, *args, **kwargs): """Pass through to provider CommentBookAssignmentSession.get_assignable_book_ids""" # Implemented from kitosid template for - # osid.resource.ResourceBinAssignmentSession.get_assignable_bin_ids return self._get_provider_session('comment_book_assignment_session').get_assignable_book_ids(*args, **kwargs) def get_assignable_book_ids_for_comment(self, *args, **kwargs): """Pass through to provider CommentBookAssignmentSession.get_assignable_book_ids_for_comment""" # Implemented from kitosid template for - # osid.resource.ResourceBinAssignmentSession.get_assignable_bin_ids_for_resource return self._get_provider_session('comment_book_assignment_session').get_assignable_book_ids_for_comment(*args, **kwargs) def assign_comment_to_book(self, *args, **kwargs): """Pass through to provider CommentBookAssignmentSession.assign_comment_to_book""" # Implemented from kitosid template for - # osid.resource.ResourceBinAssignmentSession.assign_resource_to_bin self._get_provider_session('comment_book_assignment_session').assign_comment_to_book(*args, **kwargs) def unassign_comment_from_book(self, *args, **kwargs): """Pass through to provider CommentBookAssignmentSession.unassign_comment_from_book""" # Implemented from kitosid template for - # osid.resource.ResourceBinAssignmentSession.unassign_resource_from_bin self._get_provider_session('comment_book_assignment_session').unassign_comment_from_book(*args, **kwargs) def reassign_comment_to_book(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) ## # The following methods are from osid.commenting.BookLookupSession def can_lookup_books(self): """Pass through to provider BookLookupSession.can_lookup_books""" # Implemented from kitosid template for - # osid.resource.BinLookupSession.can_lookup_bins_template return self._get_provider_session('book_lookup_session').can_lookup_books() def get_book(self, *args, **kwargs): """Pass through to provider BookLookupSession.get_book""" # Implemented from kitosid template for - # osid.resource.BinLookupSession.get_bin return Book( self._provider_manager, self._get_provider_session('book_lookup_session').get_book(*args, **kwargs), self._runtime, self._proxy) def get_books_by_ids(self, *args, **kwargs): """Pass through to provider BookLookupSession.get_books_by_ids""" # Implemented from kitosid template for - # osid.resource.BinLookupSession.get_bins_by_ids catalogs = self._get_provider_session('book_lookup_session').get_books_by_ids(*args, **kwargs) cat_list = [] for cat in catalogs: cat_list.append(Book(self._provider_manager, cat, self._runtime, self._proxy)) return BookList(cat_list) def get_books_by_genus_type(self, *args, **kwargs): """Pass through to provider BookLookupSession.get_books_by_genus_type""" # Implemented from kitosid template for - # osid.resource.BinLookupSession.get_bins_by_genus_type catalogs = self._get_provider_session('book_lookup_session').get_books_by_genus_type(*args, **kwargs) cat_list = [] for cat in catalogs: cat_list.append(Book(self._provider_manager, cat, self._runtime, self._proxy)) return BookList(cat_list) def get_books_by_parent_genus_type(self, *args, **kwargs): """Pass through to provider BookLookupSession.get_books_by_parent_genus_type""" # Implemented from kitosid template for - # osid.resource.BinLookupSession.get_bins_by_parent_genus_type catalogs = self._get_provider_session('book_lookup_session').get_books_by_parent_genus_type(*args, **kwargs) cat_list = [] for cat in catalogs: cat_list.append(Book(self._provider_manager, cat, self._runtime, self._proxy)) return BookList(cat_list) def get_books_by_record_type(self, *args, **kwargs): """Pass through to provider BookLookupSession.get_books_by_record_type""" # Implemented from kitosid template for - # osid.resource.BinLookupSession.get_bins_by_record_type catalogs = self._get_provider_session('book_lookup_session').get_books_by_record_type(*args, **kwargs) cat_list = [] for cat in catalogs: cat_list.append(Book(self._provider_manager, cat, self._runtime, self._proxy)) return BookList(cat_list) def get_books_by_provider(self, *args, **kwargs): """Pass through to provider BookLookupSession.get_books_by_provider""" # Implemented from kitosid template for - # osid.resource.BinLookupSession.get_bins_by_provider catalogs = self._get_provider_session('book_lookup_session').get_books_by_provider(*args, **kwargs) cat_list = [] for cat in catalogs: cat_list.append(Book(self._provider_manager, cat, self._runtime, self._proxy)) return BookList(cat_list) def get_books(self): """Pass through to provider BookLookupSession.get_books""" # Implemented from kitosid template for - # osid.resource.BinLookupSession.get_bins_template catalogs = self._get_provider_session('book_lookup_session').get_books() cat_list = [] for cat in catalogs: cat_list.append(Book(self._provider_manager, cat, self._runtime, self._proxy)) return BookList(cat_list) books = property(fget=get_books) ## # The following methods are from osid.commenting.BookAdminSession def can_create_books(self): """Pass through to provider BookAdminSession.can_create_books""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.can_create_bins return self._get_provider_session('book_admin_session').can_create_books() def can_create_book_with_record_types(self, *args, **kwargs): """Pass through to provider BookAdminSession.can_create_book_with_record_types""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.can_create_bin_with_record_types return self._get_provider_session('book_admin_session').can_create_book_with_record_types(*args, **kwargs) def get_book_form_for_create(self, *args, **kwargs): """Pass through to provider BookAdminSession.get_book_form_for_create""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.get_bin_form_for_create return self._get_provider_session('book_admin_session').get_book_form_for_create(*args, **kwargs) def create_book(self, *args, **kwargs): """Pass through to provider BookAdminSession.create_book""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.create_bin return Book( self._provider_manager, self._get_provider_session('book_admin_session').create_book(*args, **kwargs), self._runtime, self._proxy) def can_update_books(self): """Pass through to provider BookAdminSession.can_update_books""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.can_update_bins return self._get_provider_session('book_admin_session').can_update_books() def get_book_form_for_update(self, *args, **kwargs): """Pass through to provider BookAdminSession.get_book_form_for_update""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.get_bin_form_for_update return self._get_provider_session('book_admin_session').get_book_form_for_update(*args, **kwargs) def get_book_form(self, *args, **kwargs): """Pass through to provider BookAdminSession.get_book_form_for_update""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.get_bin_form_for_update_template # This method might be a bit sketchy. Time will tell. if isinstance(args[-1], list) or 'book_record_types' in kwargs: return self.get_book_form_for_create(*args, **kwargs) else: return self.get_book_form_for_update(*args, **kwargs) def update_book(self, *args, **kwargs): """Pass through to provider BookAdminSession.update_book""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.update_bin # OSID spec does not require returning updated catalog return Book( self._provider_manager, self._get_provider_session('book_admin_session').update_book(*args, **kwargs), self._runtime, self._proxy) def save_book(self, book_form, *args, **kwargs): """Pass through to provider BookAdminSession.update_book""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.update_bin if book_form.is_for_update(): return self.update_book(book_form, *args, **kwargs) else: return self.create_book(book_form, *args, **kwargs) def can_delete_books(self): """Pass through to provider BookAdminSession.can_delete_books""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.can_delete_bins return self._get_provider_session('book_admin_session').can_delete_books() def delete_book(self, *args, **kwargs): """Pass through to provider BookAdminSession.delete_book""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.delete_bin self._get_provider_session('book_admin_session').delete_book(*args, **kwargs) def can_manage_book_aliases(self): """Pass through to provider BookAdminSession.can_manage_book_aliases""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.can_manage_resource_aliases_template return self._get_provider_session('book_admin_session').can_manage_book_aliases() def alias_book(self, *args, **kwargs): """Pass through to provider BookAdminSession.alias_book""" # Implemented from kitosid template for - # osid.resource.BinAdminSession.alias_bin self._get_provider_session('book_admin_session').alias_book(*args, **kwargs) ## # The following methods are from osid.commenting.BookHierarchySession def get_book_hierarchy_id(self): """Pass through to provider BookHierarchySession.get_book_hierarchy_id""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.get_bin_hierarchy_id return self._get_provider_session('book_hierarchy_session').get_book_hierarchy_id() book_hierarchy_id = property(fget=get_book_hierarchy_id) def get_book_hierarchy(self): """Pass through to provider BookHierarchySession.get_book_hierarchy""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.get_bin_hierarchy return self._get_provider_session('book_hierarchy_session').get_book_hierarchy() book_hierarchy = property(fget=get_book_hierarchy) def can_access_book_hierarchy(self): """Pass through to provider BookHierarchySession.can_access_book_hierarchy""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.can_access_bin_hierarchy return self._get_provider_session('book_hierarchy_session').can_access_book_hierarchy() def get_root_book_ids(self): """Pass through to provider BookHierarchySession.get_root_book_ids""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.get_root_bin_ids return self._get_provider_session('book_hierarchy_session').get_root_book_ids() root_book_ids = property(fget=get_root_book_ids) def get_root_books(self): """Pass through to provider BookHierarchySession.get_root_books""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.get_root_bins return self._get_provider_session('book_hierarchy_session').get_root_books() root_books = property(fget=get_root_books) def has_parent_books(self, *args, **kwargs): """Pass through to provider BookHierarchySession.has_parent_books""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.has_parent_bins return self._get_provider_session('book_hierarchy_session').has_parent_books(*args, **kwargs) def is_parent_of_book(self, *args, **kwargs): """Pass through to provider BookHierarchySession.is_parent_of_book""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.is_parent_of_bin return self._get_provider_session('book_hierarchy_session').is_parent_of_book(*args, **kwargs) def get_parent_book_ids(self, *args, **kwargs): """Pass through to provider BookHierarchySession.get_parent_book_ids""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.get_parent_bin_ids return self._get_provider_session('book_hierarchy_session').get_parent_book_ids(*args, **kwargs) def get_parent_books(self, *args, **kwargs): """Pass through to provider BookHierarchySession.get_parent_books""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.get_parent_bins return self._get_provider_session('book_hierarchy_session').get_parent_books(*args, **kwargs) def is_ancestor_of_book(self, *args, **kwargs): """Pass through to provider BookHierarchySession.is_ancestor_of_book""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.is_ancestor_of_bin return self._get_provider_session('book_hierarchy_session').is_ancestor_of_book(*args, **kwargs) def has_child_books(self, *args, **kwargs): """Pass through to provider BookHierarchySession.has_child_books""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.has_child_bins return self._get_provider_session('book_hierarchy_session').has_child_books(*args, **kwargs) def is_child_of_book(self, *args, **kwargs): """Pass through to provider BookHierarchySession.is_child_of_book""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.is_child_of_bin return self._get_provider_session('book_hierarchy_session').is_child_of_book(*args, **kwargs) def get_child_book_ids(self, *args, **kwargs): """Pass through to provider BookHierarchySession.get_child_book_ids""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.get_child_bin_ids return self._get_provider_session('book_hierarchy_session').get_child_book_ids(*args, **kwargs) def get_child_books(self, *args, **kwargs): """Pass through to provider BookHierarchySession.get_child_books""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.get_child_bins return self._get_provider_session('book_hierarchy_session').get_child_books(*args, **kwargs) def is_descendant_of_book(self, *args, **kwargs): """Pass through to provider BookHierarchySession.is_descendant_of_book""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.is_descendant_of_bin return self._get_provider_session('book_hierarchy_session').is_descendant_of_book(*args, **kwargs) def get_book_node_ids(self, *args, **kwargs): """Pass through to provider BookHierarchySession.get_book_node_ids""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.get_bin_node_ids return self._get_provider_session('book_hierarchy_session').get_book_node_ids(*args, **kwargs) def get_book_nodes(self, *args, **kwargs): """Pass through to provider BookHierarchySession.get_book_nodes""" # Implemented from kitosid template for - # osid.resource.BinHierarchySession.get_bin_nodes return self._get_provider_session('book_hierarchy_session').get_book_nodes(*args, **kwargs) ## # The following methods are from osid.commenting.BookHierarchyDesignSession def can_modify_book_hierarchy(self): """Pass through to provider BookHierarchyDesignSession.can_modify_book_hierarchy""" # Implemented from kitosid template for - # osid.resource.BinHierarchyDesignSession.can_modify_bin_hierarchy return self._get_provider_session('book_hierarchy_design_session').can_modify_book_hierarchy() def create_book_hierarchy(self, *args, **kwargs): """Pass through to provider BookHierarchyDesignSession.can_modify_book_hierarchy""" # Patched in by <EMAIL>, Jul 23, 2014, added by birdland to template on Aug 8, 2014 # Is not part of specs for catalog hierarchy design sessions, but may want to be in hierarchy service instead # Will not return an actual object, just JSON # since a BankHierarchy does not seem to be an OSID thing. return self._get_provider_session('book_hierarchy_design_session').create_book_hierarchy(*args, **kwargs) def delete_book_hierarchy(self, *args, **kwargs): """Pass through to provider BookHierarchyDesignSession.can_modify_book_hierarchy""" # Patched in by <EMAIL>, Jul 23, 2014, added by birdland to template on Aug 8, 2014 # Is not part of specs for catalog hierarchy design sessions, but may want to be in hierarchy service instead # Will not return an actual object, just JSON # since a BankHierarchy does not seem to be an OSID thing. return self._get_provider_session('book_hierarchy_design_session').delete_book_hierarchy(*args, **kwargs) def add_root_book(self, *args, **kwargs): """Pass through to provider BookHierarchyDesignSession.add_root_book""" # Implemented from kitosid template for - # osid.resource.BinHierarchyDesignSession.add_root_bin self._get_provider_session('book_hierarchy_design_session').add_root_book(*args, **kwargs) def remove_root_book(self, *args, **kwargs): """Pass through to provider BookHierarchyDesignSession.remove_root_book""" # Implemented from kitosid template for - # osid.resource.BinHierarchyDesignSession.remove_root_bin self._get_provider_session('book_hierarchy_design_session').remove_root_book(*args, **kwargs) def add_child_book(self, *args, **kwargs): """Pass through to provider BookHierarchyDesignSession.add_child_book""" # Implemented from kitosid template for - # osid.resource.BinHierarchyDesignSession.add_child_bin self._get_provider_session('book_hierarchy_design_session').add_child_book(*args, **kwargs) def remove_child_book(self, *args, **kwargs): """Pass through to provider BookHierarchyDesignSession.remove_child_book""" # Implemented from kitosid template for - # osid.resource.BinHierarchyDesignSession.remove_child_bin self._get_provider_session('book_hierarchy_design_session').remove_child_book(*args, **kwargs) def remove_child_books(self, *args, **kwargs): """Pass through to provider BookHierarchyDesignSession.remove_child_books""" # Implemented from kitosid template for - # osid.resource.BinHierarchyDesignSession.remove_child_bins self._get_provider_session('book_hierarchy_design_session').remove_child_books(*args, **kwargs) class CommentingProxyManager(osid.OsidProxyManager, CommentingProfile, commenting_managers.CommentingProxyManager): """CommentingProxyManager convenience adapter including related Session methods.""" def get_comment_lookup_session(self, *args, **kwargs): """Sends control to Manager""" # Implemented from kitosid template for - # osid.resource.ResourceProxyManager.get_resource_lookup_session_template return CommentingManager.get_comment_lookup_session(*args, **kwargs) def get_comment_lookup_session_for_book(self, *args, **kwargs): """Sends control to Manager""" # Implemented from kitosid template for - # osid.resource.ResourceProxyManager.get_resource_lookup_session_for_bin_template return CommentingManager.get_comment_lookup_session_for_book(*args, **kwargs) def get_comment_query_session(self, *args, **kwargs): """Sends control to Manager""" # Implemented from kitosid template for - # osid.resource.ResourceProxyManager.get_resource_lookup_session_template return CommentingManager.get_comment_query_session(*args, **kwargs) def get_comment_query_session_for_book(self, *args, **kwargs): """Sends control to Manager""" # Implemented from kitosid template for - # osid.resource.ResourceProxyManager.get_resource_lookup_session_for_bin_template return CommentingManager.get_comment_query_session_for_book(*args, **kwargs) def get_comment_admin_session(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comment_admin_session_for_book(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comment_book_session(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comment_book_assignment_session(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_book_lookup_session(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_book_admin_session(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_book_hierarchy_session(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_book_hierarchy_design_session(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_commenting_batch_proxy_manager(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services') commenting_batch_proxy_manager = property(fget=get_commenting_batch_proxy_manager) class Book(abc_commenting_objects.Book, osid.OsidSession, osid.OsidCatalog): """Book convenience adapter including related Session methods.""" # WILL THIS EVER BE CALLED DIRECTLY - OUTSIDE OF A MANAGER? def __init__(self, provider_manager, catalog, runtime, proxy, **kwargs): self._provider_manager = provider_manager self._catalog = catalog self._runtime = runtime osid.OsidObject.__init__(self, self._catalog) # This is to initialize self._object osid.OsidSession.__init__(self, proxy) # This is to initialize self._proxy self._catalog_id = catalog.get_id() self._provider_sessions = kwargs self._session_management = AUTOMATIC self._book_view = DEFAULT self._object_views = dict() self._operable_views = dict() self._containable_views = dict() def _set_book_view(self, session): """Sets the underlying book view to match current view""" if self._book_view == FEDERATED: try: session.use_federated_book_view() except AttributeError: pass else: try: session.use_isolated_book_view() except AttributeError: pass def _set_object_view(self, session): """Sets the underlying object views to match current view""" for obj_name in self._object_views: if self._object_views[obj_name] == PLENARY: try: getattr(session, 'use_plenary_' + obj_name + '_view')() except AttributeError: pass else: try: getattr(session, 'use_comparative_' + obj_name + '_view')() except AttributeError: pass def _set_operable_view(self, session): """Sets the underlying operable views to match current view""" for obj_name in self._operable_views: if self._operable_views[obj_name] == ACTIVE: try: getattr(session, 'use_active_' + obj_name + '_view')() except AttributeError: pass else: try: getattr(session, 'use_any_status_' + obj_name + '_view')() except AttributeError: pass def _set_containable_view(self, session): """Sets the underlying containable views to match current view""" for obj_name in self._containable_views: if self._containable_views[obj_name] == SEQUESTERED: try: getattr(session, 'use_sequestered_' + obj_name + '_view')() except AttributeError: pass else: try: getattr(session, 'use_unsequestered_' + obj_name + '_view')() except AttributeError: pass def _get_provider_session(self, session_name): """Returns the requested provider session. Instantiates a new one if the named session is not already known. """ agent_key = self._get_agent_key() if session_name in self._provider_sessions[agent_key]: return self._provider_sessions[agent_key][session_name] else: session_class = getattr(self._provider_manager, 'get_' + session_name + '_for_book') if self._proxy is None: if 'notification_session' in session_name: # Is there something else we should do about the receiver field? session = session_class('fake receiver', self._catalog.get_id()) else: session = session_class(self._catalog.get_id()) else: if 'notification_session' in session_name: # Is there something else we should do about the receiver field? session = session_class('fake receiver', self._catalog.get_id(), self._proxy) else: session = session_class(self._catalog.get_id(), self._proxy) self._set_book_view(session) self._set_object_view(session) self._set_operable_view(session) self._set_containable_view(session) if self._session_management != DISABLED: self._provider_sessions[agent_key][session_name] = session return session def get_book_id(self): """Gets the Id of this book.""" return self._catalog_id def get_book(self): """Strange little method to assure conformance for inherited Sessions.""" return self def __getattr__(self, name): if '_catalog' in self.__dict__: try: return self._catalog[name] except AttributeError: pass raise AttributeError def close_sessions(self): """Close all sessions currently being managed by this Manager to save memory.""" if self._session_management != MANDATORY: self._provider_sessions = dict() else: raise IllegalState() def use_automatic_session_management(self): """Session state will be saved until closed by consumers.""" self._session_management = AUTOMATIC def use_mandatory_session_management(self): """Session state will always be saved and can not be closed by consumers.""" # Session state will be saved and can not be closed by consumers self._session_management = MANDATORY def disable_session_management(self): """Session state will never be saved.""" self._session_management = DISABLED self.close_sessions() def get_book_record(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) ## # The following methods are from osid.commenting.CommentLookupSession def can_lookup_comments(self): """Pass through to provider CommentLookupSession.can_lookup_comments""" # Implemented from kitosid template for - # osid.resource.ResourceLookupSession.can_lookup_resources_template return self._get_provider_session('comment_lookup_session').can_lookup_comments() def use_comparative_comment_view(self): """Pass through to provider CommentLookupSession.use_comparative_comment_view""" self._object_views['comment'] = COMPARATIVE # self._get_provider_session('comment_lookup_session') # To make sure the session is tracked for session in self._get_provider_sessions(): try: session.use_comparative_comment_view() except AttributeError: pass def use_plenary_comment_view(self): """Pass through to provider CommentLookupSession.use_plenary_comment_view""" self._object_views['comment'] = PLENARY # self._get_provider_session('comment_lookup_session') # To make sure the session is tracked for session in self._get_provider_sessions(): try: session.use_plenary_comment_view() except AttributeError: pass def use_federated_book_view(self): """Pass through to provider CommentLookupSession.use_federated_book_view""" self._book_view = FEDERATED # self._get_provider_session('comment_lookup_session') # To make sure the session is tracked for session in self._get_provider_sessions(): try: session.use_federated_book_view() except AttributeError: pass def use_isolated_book_view(self): """Pass through to provider CommentLookupSession.use_isolated_book_view""" self._book_view = ISOLATED # self._get_provider_session('comment_lookup_session') # To make sure the session is tracked for session in self._get_provider_sessions(): try: session.use_isolated_book_view() except AttributeError: pass def use_effective_comment_view(self): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services') def use_any_effective_comment_view(self): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services') def get_comment(self, *args, **kwargs): """Pass through to provider CommentLookupSession.get_comment""" # Implemented from kitosid template for - # osid.resource.ResourceLookupSession.get_resource_template return self._get_provider_session('comment_lookup_session').get_comment(*args, **kwargs) def get_comments_by_ids(self, *args, **kwargs): """Pass through to provider CommentLookupSession.get_comments_by_ids""" # Implemented from kitosid template for - # osid.resource.ResourceLookupSession.get_resources_by_ids_template return self._get_provider_session('comment_lookup_session').get_comments_by_ids(*args, **kwargs) def get_comments_by_genus_type(self, *args, **kwargs): """Pass through to provider CommentLookupSession.get_comments_by_genus_type""" # Implemented from kitosid template for - # osid.resource.ResourceLookupSession.get_resources_by_genus_type_template return self._get_provider_session('comment_lookup_session').get_comments_by_genus_type(*args, **kwargs) def get_comments_by_parent_genus_type(self, *args, **kwargs): """Pass through to provider CommentLookupSession.get_comments_by_parent_genus_type""" # Implemented from kitosid template for - # osid.resource.ResourceLookupSession.get_resources_by_parent_genus_type_template return self._get_provider_session('comment_lookup_session').get_comments_by_parent_genus_type(*args, **kwargs) def get_comments_by_record_type(self, *args, **kwargs): """Pass through to provider CommentLookupSession.get_comments_by_record_type""" # Implemented from kitosid template for - # osid.resource.ResourceLookupSession.get_resources_by_record_type_template return self._get_provider_session('comment_lookup_session').get_comments_by_record_type(*args, **kwargs) def get_comments_on_date(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_by_genus_type_on_date(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_for_commentor(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_for_commentor_on_date(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_by_genus_type_for_commentor(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_by_genus_type_for_commentor_on_date(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_for_reference(self, *args, **kwargs): """Pass through to provider CommentLookupSession.get_comments_for_reference""" # Implemented from kitosid template for - # osid.relationship.RelationshipLookupSession.get_relationships_for_source_template return self._get_provider_session('comment_lookup_session').get_comments_for_reference(*args, **kwargs) def get_comments_for_reference_on_date(self, *args, **kwargs): """Pass through to provider CommentLookupSession.get_comments_for_reference_on_date""" # Implemented from kitosid template for - # osid.relationship.RelationshipLookupSession.get_relationships_for_source_on_date_template return self._get_provider_session('comment_lookup_session').get_comments_for_reference_on_date(*args, **kwargs) def get_comments_by_genus_type_for_reference(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_by_genus_type_for_reference_on_date(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_for_commentor_and_reference(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_for_commentor_and_reference_on_date(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_by_genus_type_for_commentor_and_reference(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments_by_genus_type_for_commentor_and_reference_on_date(self, *args, **kwargs): """Pass through to provider unimplemented""" raise Unimplemented('Unimplemented in dlkit.services - args=' + str(args) + ', kwargs=' + str(kwargs)) def get_comments(self): """Pass through to provider CommentLookupSession.get_comments""" # Implemented from kitosid template for - # osid.resource.ResourceLookupSession.get_resources_template return self._get_provider_session('comment_lookup_session').get_comments() comments = property(fget=get_comments) ## # The following methods are from osid.commenting.CommentQuerySession def can_search_comments(self): """Pass through to provider CommentQuerySession.can_search_comments""" # Implemented from kitosid template for - # osid.resource.ResourceQuerySession.can_search_resources_template return self._get_provider_session('comment_query_session').can_search_comments() def get_comment_query(self): """Pass through to provider CommentQuerySession.get_comment_query""" # Implemented from kitosid template for - # osid.resource.ResourceQuerySession.get_item_query_template return self._get_provider_session('comment_query_session').get_comment_query() comment_query = property(fget=get_comment_query) def get_comments_by_query(self, *args, **kwargs): """Pass through to provider CommentQuerySession.get_comments_by_query""" # Implemented from kitosid template for - # osid.resource.ResourceQuerySession.get_items_by_query_template return self._get_provider_session('comment_query_session').get_comments_by_query(*args, **kwargs) ## # The following methods are from osid.commenting.CommentAdminSession def can_create_comments(self): """Pass through to provider CommentAdminSession.can_create_comments""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.can_create_resources return self._get_provider_session('comment_admin_session').can_create_comments() def can_create_comment_with_record_types(self, *args, **kwargs): """Pass through to provider CommentAdminSession.can_create_comment_with_record_types""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.can_create_resource_with_record_types return self._get_provider_session('comment_admin_session').can_create_comment_with_record_types(*args, **kwargs) def get_comment_form_for_create(self, *args, **kwargs): """Pass through to provider CommentAdminSession.get_comment_form_for_create""" # Implemented from - # osid.commenting.CommentAdminSession.get_comment_form_for_create return self._get_provider_session('comment_admin_session').get_comment_form_for_create(*args, **kwargs) def create_comment(self, *args, **kwargs): """Pass through to provider CommentAdminSession.create_comment""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.create_resource return self._get_provider_session('comment_admin_session').create_comment(*args, **kwargs) def can_update_comments(self): """Pass through to provider CommentAdminSession.can_update_comments""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.can_update_resources return self._get_provider_session('comment_admin_session').can_update_comments() def get_comment_form_for_update(self, *args, **kwargs): """Pass through to provider CommentAdminSession.get_comment_form_for_update""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.get_resource_form_for_update return self._get_provider_session('comment_admin_session').get_comment_form_for_update(*args, **kwargs) def get_comment_form(self, *args, **kwargs): """Pass through to provider CommentAdminSession.get_comment_form_for_update""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.get_resource_form_for_update # This method might be a bit sketchy. Time will tell. if isinstance(args[-1], list) or 'comment_record_types' in kwargs: return self.get_comment_form_for_create(*args, **kwargs) else: return self.get_comment_form_for_update(*args, **kwargs) def duplicate_comment(self, comment_id): # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.get_resource_form_for_update return self._get_provider_session('comment_admin_session').duplicate_comment(comment_id) def update_comment(self, *args, **kwargs): """Pass through to provider CommentAdminSession.update_comment""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.update_resource # Note: The OSID spec does not require returning updated object return self._get_provider_session('comment_admin_session').update_comment(*args, **kwargs) def save_comment(self, comment_form, *args, **kwargs): """Pass through to provider CommentAdminSession.update_comment""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.update_resource if comment_form.is_for_update(): return self.update_comment(comment_form, *args, **kwargs) else: return self.create_comment(comment_form, *args, **kwargs) def can_delete_comments(self): """Pass through to provider CommentAdminSession.can_delete_comments""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.can_delete_resources return self._get_provider_session('comment_admin_session').can_delete_comments() def delete_comment(self, *args, **kwargs): """Pass through to provider CommentAdminSession.delete_comment""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.delete_resource self._get_provider_session('comment_admin_session').delete_comment(*args, **kwargs) def can_manage_comment_aliases(self): """Pass through to provider CommentAdminSession.can_manage_comment_aliases""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.can_manage_resource_aliases_template return self._get_provider_session('comment_admin_session').can_manage_comment_aliases() def alias_comment(self, *args, **kwargs): """Pass through to provider CommentAdminSession.alias_comment""" # Implemented from kitosid template for - # osid.resource.ResourceAdminSession.alias_resources self._get_provider_session('comment_admin_session').alias_comment(*args, **kwargs) class BookList(abc_commenting_objects.BookList, osid.OsidList): """BookList convenience adapter including related Session methods.""" def get_next_book(self): """Gets next object""" # Implemented from kitosid template for - # osid.resource.ResourceList.get_next_resource try: next_item = next(self) except StopIteration: raise IllegalState('no more elements available in this list') else: return next_item def next(self): """next method for enumerator""" # Implemented from kitosid template for - # osid.resource.ResourceList.get_next_resource next_item = osid.OsidList.next(self) return next_item __next__ = next next_book = property(fget=get_next_book) def get_next_books(self, n): """gets next n objects from list""" # Implemented from kitosid template for - # osid.resource.ResourceList.get_next_resources if n > self.available(): # !!! This is not quite as specified (see method docs) !!! raise IllegalState('not enough elements available in this list') else: next_list = [] i = 0 while i < n: try: next_list.append(next(self)) except StopIteration: break i += 1 return next_list
2.15625
2
service/user.py
kittolau/selepy
0
12784114
<filename>service/user.py from service.logger_manager import logger class Map(dict): """ Example: m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer']) """ def __init__(self, *args, **kwargs): super(Map, self).__init__(*args, **kwargs) for arg in args: if isinstance(arg, dict): for k, v in arg.iteritems(): if isinstance(v, dict): self[k] = Map(v) elif isinstance(v, list): for idx, elm in enumerate(v): if isinstance(elm, dict): v[idx] = Map(elm) else: self[k] = v def __getattr__(self, attr): try: return self[attr] except KeyError: raise Exception("User missing key {attr}".format(attr=attr)) class User(dict): """ Example: m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer']) """ def __init__(self, *args, **kwargs): super(User, self).__init__(*args, **kwargs) for arg in args: if isinstance(arg, dict): for k, v in arg.iteritems(): if isinstance(v, dict): self[k] = Map(v) elif isinstance(v, list): for idx, elm in enumerate(v): if isinstance(elm, dict): v[idx] = Map(elm) else: self[k] = v def __getattr__(self, attr): try: return self[attr] except KeyError: raise Exception("User missing key {attr}".format(attr=attr)) def setUsersCollection(self,users_collection): self.users_collection = users_collection def isWebAccountExist(self,domain): accounts = self.web_accounts for account in accounts: if account.domains == domain: return True return False def getWebAccount(self,domain): accounts = self.web_accounts for account in accounts: if account.domains == domain: return account return None def getBirthDayDayWithLeadingZero(self): return "%02d" % self.birth_day_day def getBirthDayMonthWithLeadingZero(self): return "%02d" % self.birth_day_month def generateWebAccountObj(self,domain=None,username=None,password=None): if not isinstance(domain, basestring): raise Exception("domain expects string in generateWebAccountObj") if not isinstance(username, basestring) and username is not None: raise Exception("username expects string or None in generateWebAccountObj") if not isinstance(password, basestring) and password is not None: raise Exception("password expects string or None in generateWebAccountObj") if username is None: username = self.default_username if password is None: password = <PASSWORD>.default_password web_acount = { "domain" : domain, "username" : username, "password" : password } return web_acount def addWebAccount(self,web_acount): logger.info("added web account:\nuser: %s\ndomain: %s\nusername: %s\npassword: %s\n" % ( self.default_username, web_acount["domain"], web_acount["username"], web_acount["password"] )) self.users_collection.update({"_id":self._id},{"$addToSet":{"web_accounts":web_acount}}) def getWebAccount(self,domain): web_account = next(d for (index, d) in enumerate(self.web_accounts) if d["domain"] == domain) if web_account is None: raise Exception("username %s does not have web account %s" % self.default_username, domain) return web_account
2.984375
3
project_euler/problem_112/sol1.py
kadirbaytin/Python
0
12784115
<reponame>kadirbaytin/Python<filename>project_euler/problem_112/sol1.py<gh_stars>0 """ Problem: Working from left-to-right if no digit is exceeded by the digit to its left it is called an increasing number; for example, 134468. Similarly if no digit is exceeded by the digit to its right it is called a decreasing number; for example, 66420. We shall call a positive integer that is neither increasing nor decreasing a "bouncy" number; for example, 155349. Clearly there cannot be any bouncy numbers below one-hundred, but just over half of the numbers below one-thousand (525) are bouncy. In fact, the least number for which the proportion of bouncy numbers first reaches 50% is 538. Surprisingly, bouncy numbers become more and more common and by the time we reach 21780 the proportion of bouncy numbers is equal to 90%. Find the least number for which the proportion of bouncy numbers is exactly 99%. """ #!/usr/bin/env python from itertools import * def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) def digits(n): return list(map(int, str(n))) def is_increasing(n): return all(prev <= curr for prev, curr in pairwise(digits(n))) def is_decreasing(n): return all(prev >= curr for prev, curr in pairwise(digits(n))) def is_bouncy(n): return not is_increasing(n) and not is_decreasing(n) def running_total(iterable): total = 0 for element in iterable: total += element yield total def main(): nums = count(1) bouncy = running_total(map(lambda n: float(is_bouncy(n)), count(1))) print(next((n for n, b in zip(nums, bouncy) if b / n == 0.99))) if __name__ == "__main__": main()
4.03125
4
App/gui/server_widget.py
Wizard-collab/wizard
0
12784116
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'C:\Users\conta\Documents\script\Wizard\App\work\ui_files\server_widget.ui' # # Created by: PyQt5 UI code generator 5.13.0 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(384, 564) self.verticalLayout = QtWidgets.QVBoxLayout(Form) self.verticalLayout.setContentsMargins(2, 2, 2, 2) self.verticalLayout.setSpacing(1) self.verticalLayout.setObjectName("verticalLayout") self.frame_2 = QtWidgets.QFrame(Form) self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_2.setObjectName("frame_2") self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.frame_2) self.horizontalLayout_2.setContentsMargins(1, 1, 1, 1) self.horizontalLayout_2.setSpacing(1) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.server_quit_pushButton = QtWidgets.QPushButton(self.frame_2) self.server_quit_pushButton.setMinimumSize(QtCore.QSize(0, 40)) self.server_quit_pushButton.setObjectName("server_quit_pushButton") self.horizontalLayout_2.addWidget(self.server_quit_pushButton) self.server_reduce_pushButton = QtWidgets.QPushButton(self.frame_2) self.server_reduce_pushButton.setMinimumSize(QtCore.QSize(0, 40)) self.server_reduce_pushButton.setObjectName("server_reduce_pushButton") self.horizontalLayout_2.addWidget(self.server_reduce_pushButton) self.verticalLayout.addWidget(self.frame_2) self.frame_3 = QtWidgets.QFrame(Form) self.frame_3.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_3.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_3.setObjectName("frame_3") self.horizontalLayout_3 = QtWidgets.QHBoxLayout(self.frame_3) self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.server_project_label = QtWidgets.QLabel(self.frame_3) self.server_project_label.setObjectName("server_project_label") self.horizontalLayout_3.addWidget(self.server_project_label) self.verticalLayout.addWidget(self.frame_3) self.frame = QtWidgets.QFrame(Form) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.frame.sizePolicy().hasHeightForWidth()) self.frame.setSizePolicy(sizePolicy) self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame.setFrameShadow(QtWidgets.QFrame.Raised) self.frame.setObjectName("frame") self.horizontalLayout = QtWidgets.QHBoxLayout(self.frame) self.horizontalLayout.setObjectName("horizontalLayout") self.server_ip_label = QtWidgets.QLabel(self.frame) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.server_ip_label.sizePolicy().hasHeightForWidth()) self.server_ip_label.setSizePolicy(sizePolicy) self.server_ip_label.setObjectName("server_ip_label") self.horizontalLayout.addWidget(self.server_ip_label) self.server_connexions_label = QtWidgets.QLabel(self.frame) self.server_connexions_label.setLayoutDirection(QtCore.Qt.LeftToRight) self.server_connexions_label.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.server_connexions_label.setObjectName("server_connexions_label") self.horizontalLayout.addWidget(self.server_connexions_label) self.verticalLayout.addWidget(self.frame) self.server__users_verticalFrame = QtWidgets.QFrame(Form) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.server__users_verticalFrame.sizePolicy().hasHeightForWidth()) self.server__users_verticalFrame.setSizePolicy(sizePolicy) self.server__users_verticalFrame.setObjectName("server__users_verticalFrame") self.users_layout_0 = QtWidgets.QVBoxLayout(self.server__users_verticalFrame) self.users_layout_0.setObjectName("users_layout_0") self.users_layout = QtWidgets.QVBoxLayout() self.users_layout.setObjectName("users_layout") self.users_layout_0.addLayout(self.users_layout) spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.users_layout_0.addItem(spacerItem) self.verticalLayout.addWidget(self.server__users_verticalFrame) self.log_textEdit = QtWidgets.QTextEdit(Form) self.log_textEdit.setReadOnly(True) self.log_textEdit.setTextInteractionFlags(QtCore.Qt.NoTextInteraction) self.log_textEdit.setObjectName("log_textEdit") self.verticalLayout.addWidget(self.log_textEdit) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Form")) self.server_quit_pushButton.setText(_translate("Form", "Quit")) self.server_reduce_pushButton.setText(_translate("Form", "Reduce")) self.server_project_label.setText(_translate("Form", "Project")) self.server_ip_label.setText(_translate("Form", "IP Label")) self.server_connexions_label.setText(_translate("Form", "Connexions")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_())
1.84375
2
src/visualization_helpers.py
edesz/store-item-demand-forecast
3
12784117
<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import pandas as pd from matplotlib.ticker import MaxNLocator def customize_splines(ax: plt.axis) -> plt.axis: ax.spines["left"].set_edgecolor("black"), ax.spines["left"].set_linewidth(2), ax.spines["left"].set_zorder(3), ax.spines["bottom"].set_edgecolor("black"), ax.spines["bottom"].set_linewidth(2), ax.spines["bottom"].set_zorder(3), ax.spines["top"].set_edgecolor("lightgrey"), ax.spines["top"].set_linewidth(1), ax.spines["right"].set_edgecolor("lightgrey"), ax.spines["right"].set_linewidth(1), return ax def plot_store_item_grid( df, store_item_dict, year_start, year_end, ts_name, fig_size=(12, 40) ): fig = plt.figure(figsize=fig_size) grid = plt.GridSpec(10, 1, hspace=0, wspace=0) ax0 = fig.add_subplot(grid[0, 0]) stores = store_item_dict["store"] items = store_item_dict["item"] for k in range(10): if k > 0: ax = fig.add_subplot(grid[k, 0], xticklabels=[], sharex=ax0) else: ax = ax0 ts = df[ (df["store"] == stores[k]) & (df["item"] == items[k]) ].set_index("date") ts = ts.loc[year_start:year_end][ts_name] ts.plot(ax=ax, color="blue") ax.grid(color="lightgrey") ax.set_title( f"Store {stores[k]}, item {items[k]} in {year_start}-{year_end}", loc="left", fontweight="bold", x=0.01, y=0.85, ) ax.set_xlabel(None) ax.set_ylabel(None) _ = customize_splines(ax) def show_splits( train_cv, test_cv, fold_number, ts_name, n_splits, ptitle, ax, lw, ): train_cv_slice = train_cv.loc[slice(ts_name), slice(None)] test_cv_slice = test_cv.loc[slice(ts_name), slice(None)] ax.plot( train_cv_slice.index.get_level_values(1), pd.Series([fold_number] * len(train_cv_slice), dtype=int), color="black", alpha=1.0, label="train", lw=lw, ) ax.plot( test_cv_slice.index.get_level_values(1), pd.Series([fold_number] * len(test_cv_slice), dtype=int), color="orange", alpha=1.0, label="test", lw=lw, ) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax_to_annotate = 1 if "Expanding" in ptitle else n_splits if fold_number == ax_to_annotate: ax.set_ylabel("Fold Number", fontsize=16) ax.legend( loc="upper left", bbox_to_anchor=(1.00, 1.05), ncol=1, handletextpad=0.4, columnspacing=0.6, frameon=False, prop={"size": 12}, ) ax.grid() ax.set_title( f"CV folds using {ptitle} with {n_splits} folds", fontweight="bold", fontsize=14, loc="left", ) customize_splines(ax) ax.tick_params(axis="x", labelsize=14) ax.tick_params(axis="y", labelsize=14)
2.625
3
mp_video.py
yuangan/A2L
0
12784118
import cv2 import numpy as np import mediapipe as mp import glob import os mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_face_mesh = mp.solutions.face_mesh #import os os.environ['JOBLIB_TEMP_FOLDER'] = '/tmp' # wait for process: "W016","W017","W018","W019","W023","W024","W025","W026","W028","W029","W033","W035","W036","W037","W038","W040" # M028 M029 M030 M031 M032 M033 M034 M035 M037 M039 M040 M041 W009 W011 W014 M042 W015 # M012 M013 M022 M026 M027 M031 M037 M041 W014 # W016 W018 W019 W023 W024 W025 W026 W028 W029 W033 W035 W036 # W040 W038 W037 in_path = glob.glob('/data3/MEAD/W036/video/front/*/level_*/0*.mp4') #in_path = glob.glob('/data3/MEAD/M012/video/front/disgusted/level_2/027.mp4') #print(in_path) out_path = [] out_path_initlmk = [] out_path_motion = [] for pid,path in enumerate(in_path): #print(pid,path) p,f = os.path.split(path) na,ext = os.path.splitext(f) #print(p+"/"+na+"_multiland.npy") out_path.append(p+"/"+na+"_multiland.npy") out_path_initlmk.append(p+"/"+na+"_initlmk_multiland.npy") out_path_motion.append(p+"/"+na+"_motion_multiland.npy") drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1) def vis_landmark_on_img(img, shape, linewidth=2): ''' Visualize landmark on images. ''' def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): for i in idx_list: cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) if (loop): cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) draw_curve(list(range(0, 16)), color=(255, 144, 25)) # jaw draw_curve(list(range(17, 21)), color=(50, 205, 50)) # eye brow draw_curve(list(range(22, 26)), color=(50, 205, 50)) draw_curve(list(range(27, 35)), color=(208, 224, 63)) # nose draw_curve(list(range(36, 41)), loop=True, color=(71, 99, 255)) # eyes draw_curve(list(range(42, 47)), loop=True, color=(71, 99, 255)) draw_curve(list(range(48, 59)), loop=True, color=(238, 130, 238)) # mouth draw_curve(list(range(60, 67)), loop=True, color=(238, 130, 238)) return img with mp_face_mesh.FaceMesh( min_detection_confidence=0.5, min_tracking_confidence=0.5) as face_mesh: for vid,vpath in enumerate(in_path): videoReader = cv2.VideoCapture(in_path[vid]) fs = videoReader.get(cv2.CAP_PROP_FPS) sz = (int(videoReader.get(cv2.CAP_PROP_FRAME_WIDTH)), int(videoReader.get(cv2.CAP_PROP_FRAME_HEIGHT))) #vw = cv2.VideoWriter('./output/video.mp4',cv2.VideoWriter_fourcc('M','P','E','G'), fs, sz) land_res = [] # 帧数 * 3 * landmark数量 motion_res = [] initlmk_res = [] success, frame = videoReader.read() idx = 0 k = 0 while success: #print(success) #print(k) k += 1 image = frame.copy() #cv2.imwrite("./imgs/"+str(k)+"_im.png",image) results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) if not results.multi_face_landmarks: success, frame = videoReader.read() #获取下一帧 continue face_landmarks = results.multi_face_landmarks[0] land_loc = [] xlis = [] ylis = [] zlis = [] for lm in face_landmarks.landmark: x = lm.x * sz[0] y = lm.y * sz[1] xlis.append(x) ylis.append(y) zlis.append(lm.z) #print(x,y,lm.z) land_loc.append(xlis) land_loc.append(ylis) land_loc.append(zlis) land_res.append(land_loc) if idx == 0 : initlmk_res.append(land_loc) motion_res.append( list( np.array(land_loc) - np.array(land_res[ len(land_res) - 1 ]) ) ) idx += 1 # for face_landmarks in results.multi_face_landmarks: # mp_drawing.draw_landmarks( # image=image, # landmark_list=face_landmarks, # connections=mp_face_mesh.FACEMESH_CONTOURS, # landmark_drawing_spec=drawing_spec, # connection_drawing_spec=drawing_spec) #cv2.imwrite('./output/video' + str(idx) + '.png', image) #vw.write(image) # 写视频帧 success, frame = videoReader.read() #获取下一帧 videoReader.release() #vw.release() res = np.array(land_res) np.save(out_path[vid],res) #np.save(out_path_initlmk[vid],initlmk_res) #np.save(out_path_motion[vid],motion_res) print("out:"+out_path[vid])
2.234375
2
py/admin/login.py
newdefence/cj
1
12784119
# coding=utf-8 from tornado.web import RequestHandler, HTTPError from tornado.gen import coroutine from bson import ObjectId from bson.json_util import dumps, loads __author__ = '<EMAIL>' __date__ = "2018/12/14 下午9:58" UID_KEY = 'uid' class LoginHandler(RequestHandler): def check_xsrf_cookie(self): pass def get(self): if self.application.settings['debug']: self.set_secure_cookie(UID_KEY, 'TEST_USER') self.finish({'success': True, 'msg': '登录成功'}) else: raise HTTPError(404) def post(self): user = loads(self.request.body) self.set_secure_cookie(UID_KEY, user['name']) self.finish({'success': True, 'msg': '登录成功'}) def put(self): self.clear_cookie(UID_KEY) self.finish({'success': True, 'msg': '退出成功'})
2.328125
2
agent/tool/result_logger.py
it-akumi/tiss
1
12784120
<reponame>it-akumi/tiss # -*- coding: utf-8 -*- from config.log import TASK_RESULT_KEY, EPISODE_RESULT_KEY import logging import time episode_result_logger = logging.getLogger(EPISODE_RESULT_KEY) task_result_logger = logging.getLogger(TASK_RESULT_KEY) class ResultLogger(object): def __init__(self): self.steps = 0 self.start_time = time.time() self.episode = 0 self.task = 1 episode_result_logger.info("task,episode,step,time") task_result_logger.info("task,success,failure") def initialize(self): self.start_time = time.time() self.steps = 0 self.episode += 1 def step(self): self.steps += 1 def report(self, success, failure, finished): elapsed_time = time.time() - self.start_time if finished: task_result_logger.info('{}, {}, {}'.format(self.task, success, failure)) self.task += 1 self.episode = 0 episode_result_logger.info('{}, {}, {}, {}'.format(self.task, self.episode, self.steps, elapsed_time))
2.734375
3
insights/combiners/multinode.py
lhuett/insights-core
1
12784121
from insights import combiner from insights.combiners.hostname import hostname from insights.core.context import create_product from insights.parsers.metadata import MetadataJson from insights.specs import Specs @combiner(MetadataJson, [hostname, Specs.machine_id]) def multinode_product(md, hn, machine_id): hn = hn.fqdn if hn else machine_id.content[0].rstrip() return create_product(md.data, hn) @combiner(multinode_product) def docker(product): if product and product.name == "docker": return product @combiner(multinode_product) def OSP(product): if product and product.name == "osp": return product @combiner(multinode_product) def RHEV(product): if product and product.name == "rhev": return product @combiner(multinode_product) def RHEL(product): if product and product.name == "rhel": return product
2.109375
2
src/nwb_datajoint/common/common_subject.py
jihyunbak/spyglass
1
12784122
<reponame>jihyunbak/spyglass<filename>src/nwb_datajoint/common/common_subject.py import datajoint as dj schema = dj.schema('common_subject') @schema class Subject(dj.Manual): definition = """ subject_id: varchar(80) --- age = NULL: varchar(200) description = NULL: varchar(2000) genotype = NULL: varchar(2000) sex = "U": enum("M", "F", "U") species = NULL: varchar(200) """ @classmethod def insert_from_nwbfile(cls, nwbf): """Get the subject information from the NWBFile and insert it into the Subject table.""" sub = nwbf.subject if sub is None: print('No subject metadata found.\n') return subject_dict = dict() subject_dict['subject_id'] = sub.subject_id subject_dict['age'] = sub.age subject_dict['description'] = sub.description subject_dict['genotype'] = sub.genotype if sub.sex in ('Male', 'male', 'M', 'm'): sex = 'M' elif sub.sex in ('Female', 'female', 'F', 'f'): sex = 'F' else: sex = 'U' subject_dict['sex'] = sex subject_dict['species'] = sub.species cls.insert1(subject_dict, skip_duplicates=True)
2.671875
3
bosonCloud/freq_res_script.py
Unoaccaso/freqle
0
12784123
<gh_stars>0 from cProfile import label from freqle import cluster import freqle as fr import matplotlib.pyplot as plt import numpy as np import sys Nbh = int(sys.argv[1]) cluster_eta = float(sys.argv[2]) Tfft = float(sys.argv[3]) binsize = 1/Tfft mu = float(sys.argv[4]) pal = cluster(Nbh = Nbh, n_mus = 300, cluster_eta = cluster_eta ) pal.populate(v = True) pal.build_mass_grid() pal.emit_GW(v = True, maximum_det_freq = 2048) pal.calc_freq_distr(remove_outliers = False, v = True, nbins = 64, norm_distr=False) mu_index = np.argmin(np.abs(mu - pal.boson_grid)) freq = pal.get_freqs()[mu_index] mu = pal.boson_grid[mu_index] bins, counts, bin_size = fr.hist_by_row(freq, binsize=binsize, normalize=False) cond = counts[0] > 10 bins = bins [0, :-1] counts = counts [0] bin_size = bin_size[0] cond = counts > 10 sm = np.sum(counts[cond]) peakidx = np.argmin(counts.max()) plt.plot(bins[cond], counts[cond], label = f"Bhs at peak = {counts.max()/Nbh * 100:.2f} % ({int(counts.max())} BHs)\nTfft: {int(Tfft)} $s$\nPeak freq: {bins[peakidx] + binsize/2:.2f} $Hz$\nSomm 1s: {sm}") plt.yscale('log') plt.xscale('log') plt.title(f"Distribuzione delle frequenze per {int(Nbh)} Buchi Neri\n Massa del bosone: {mu * 1e12:.2f} $10^{-12}eV$") plt.xlabel("Frequenza misurata $[Hz]$") plt.legend() plt.axhline(y = 1) plt.show()
2.1875
2
mcenter_client/parallelm/mcenter_client/client.py
lisapm/mlpiper
7
12784124
<reponame>lisapm/mlpiper #! /usr/bin/python3 from __future__ import print_function import time import collections import copy import sys import traceback from . import rest_api from .rest_api.rest import ApiException class _REST(object): def __init__(self, client): self._client = client self.token = None self.agent = rest_api.AgentsApi(client) self.default = rest_api.DefaultApi(client) self.group = rest_api.GroupsApi(client) self.ppatterns = rest_api.PipelinePatternsApi(client) self.pprofiles = rest_api.PipelineProfilesApi(client) self.role = rest_api.RolesApi(client) self.user = rest_api.UsersApi(client) def set_token(self, token): self.token = token self._client.cookie = 'token=' + token def clear_token(self): self.token = None self._client.cookie = None class _Base(object): __slots__ = ("_factory", "_data", "id", "_nd", "_nest") def __init__(self, factory, data): object.__init__(self) self.id = data.id self._data = data self._factory = factory self._nd = None self._nest = 0 def _getter(self, name): return getattr(self._data, name) def _setter(self, name, value): if self._nd is not None: setattr(self._nd, name, value) else: self.update({name: value}) def _deleter(self, name): if self._nd is not None: delattr(self._nd, name) else: raise AttributeError("Cannot delete this attribute") def __enter__(self): if self._nest == 0: self._nd = self._copydata() self._nest += 1 return self._nd def __exit__(self, exc_type, exc_val, exc_tb): if self._nest == 0: raise RuntimeError("__exit__ without __enter__") self._nest -= 1 if self._nest == 0: try: self._data = self._update(self._nd)._data finally: self._nd = None return False def update(self, *args, **kwargs): with self as new_data: for d in args: for k, v in d.items(): setattr(new_data, k, v) for k, v in kwargs.items(): setattr(new_data, k, v) return self def _update(self, data): raise NotImplementedError("Update is not supported") def delete(self): if self._nest != 0: raise RuntimeError("Cannot delete object in the middle of update") self._delete() self.id = None def _delete(self): raise NotImplementedError("Delete is not supported") def _copydata(self): return copy.copy(self._data) def _populate(cls): for field in cls.RestType.openapi_types: if field != "id": f = "_%s" % field setattr(cls, field, property(lambda self, f=f: self._getter(f), lambda self, value, f=f: self._setter(f, value), lambda self, f=f: self._deleter(f))) class _BaseWithID(_Base): __slots__ = () def _copydata(self): data = _Base._copydata(self) data.created = None data.created_by = None data.id = None return data def _update(self, data): return self._factory.update(self.id, data) def _delete(self): self._factory.delete(self.id) class _BaseFactory(object): __slots__ = ("_rest") ClientType = None def __init__(self, rest): self._rest = rest def _get_id(self, id): if isinstance(id, (self.ClientType, self.ClientType.RestType)): return id.id if isinstance(id, collections.Mapping): return id['id'] return id def _unwrap(self, obj): if isinstance(obj, self.ClientType): return obj._data return obj def _wrap(self, obj): return self.ClientType(self, obj) class _User(_BaseWithID): __slots__ = () RestType = rest_api.User def __str__(self): return "<User %s>" % self.id _populate(_User) class _UserFactory(_BaseFactory): __slots__ = () ClientType = _User def __init__(self, rest): _BaseFactory.__init__(self, rest.user) def me(self): return self._wrap(self._rest.me_get()) def list(self): return [self._wrap(u) for u in self._rest.users_get()] def create(self, user): return self._wrap(self._rest.users_post(self._unwrap(user))) def get(self, user_id): return self._wrap(self._rest.users_user_id_get(self._get_id(user_id))) def update(self, user_id, user): return self._wrap(self._rest.users_user_id_put(self._get_id(user_id), self._unwrap(user))) def delete(self, user_id): return self._rest.users_user_id_delete(self._get_id(user_id)) def validate(self, token): return self._rest.auth_validate_post("Bearer %s" % token) class _Group(_BaseWithID): __slots__ = () RestType = rest_api.Group def __str__(self): return "<Group %s>" % self.id _populate(_Group) class _GroupFactory(_BaseFactory): __slots__ = () ClientType = _Group def __init__(self, rest): _BaseFactory.__init__(self, rest.group) def list(self): return [self._wrap(u) for u in self._rest.onboarding_groups_get()] def create(self, group): return self._wrap( self._rest.onboarding_groups_post(self._unwrap(group))) def get(self, group_id): return self._wrap( self._rest.onboarding_groups_group_id_get(self._get_id(group_id))) def update(self, group_id, group): return self._wrap( self._rest.onboarding_groups_group_id_put(self._get_id(group_id), self._unwrap(group))) def delete(self, group_id): return self._rest.onboarding_groups_group_id_delete( self._get_id(group_id)) class _Agent(_BaseWithID): __slots__ = () RestType = rest_api.Agent def __str__(self): return "<Agent %s>" % self.id _populate(_Agent) class _AgentFactory(_BaseFactory): __slots__ = () ClientType = _Agent def __init__(self, rest): _BaseFactory.__init__(self, rest.agent) def list(self): return [self._wrap(u) for u in self._rest.agents_get()] def create(self, agent): return self._wrap(self._rest.agents_post(self._unwrap(agent))) def get(self, agent_id): return self._wrap( self._rest.agents_agent_id_get(self._get_id(agent_id))) def update(self, agent_id, agent): return self._wrap( self._rest.agents_agent_id_put(self._get_id(agent_id), self._unwrap(agent))) def delete(self, agent_id): self._rest.agents_agent_id_delete(self._get_id(agent_id)) class _Role(_BaseWithID): __slots__ = () RestType = rest_api.Role def __str__(self): return "<Role %s>" % self.id _populate(_Role) class _RoleFactory(_BaseFactory): __slots__ = () ClientType = _Role def __init__(self, rest): _BaseFactory.__init__(self, rest.role) def list(self): return [self._wrap(u) for u in self._rest.roles_get()] def create(self, role): return self._wrap(self._rest.roles_post(self._unwrap(role))) def get(self, role_id): return self._wrap(self._rest.roles_role_id_get(self._get_id(role_id))) def update(self, role_id, role): return self._wrap(self._rest.roles_role_id_put(self._get_id(role_id), self._unwrap(role))) def delete(self, role_id): self._rest.roles_role_id_delete(self._get_id(role_id)) class _SettingsFactory(object): __slots__ = ("_rest") def __init__(self, rest): object.__init__(self) self._rest = rest.default def global_parameters(self): return self._rest.settings_global_parameters_get() def build_manifest(self): return self._rest.settings_build_manifest_get() class Client(object): def __init__(self, server=None, user=None, configuration=rest_api.Configuration()): if server is not None: if '//' in server: configuration.host = server elif ']:' in server or (':' in server and ']' not in server): configuration.host = "http://%s/v2" % server else: configuration.host = "http://%s:3456/v2" % server self._rest = _REST(rest_api.ApiClient(configuration)) self.agent = _AgentFactory(self._rest) self.group = _GroupFactory(self._rest) self.role = _RoleFactory(self._rest) self.settings = _SettingsFactory(self._rest) self.user = _UserFactory(self._rest) if user is not None: self.login(user) def login(self, user): res = self._rest.user.auth_login_post(user) self._rest.set_token(res.token) def logout(self): self._rest.clear_token() def get_token(self): return self._rest.token
2.140625
2
grammar-pyml/__init__.py
lschaack/grammar-pyml
0
12784125
<reponame>lschaack/grammar-pyml<gh_stars>0 from __future__ import division import reader
0.851563
1
model/sketch.nyu/test_something_here.py
denyingmxd/Torchssc
0
12784126
<gh_stars>0 import torch import torch.nn as nn import os import numpy as np from utils.ply_utils import * colorMap = np.array([[22, 191, 206], # 0 empty, free space [214, 38, 40], # 1 ceiling red tp [43, 160, 4], # 2 floor green fp [158, 216, 229], # 3 wall blue fn [114, 158, 206], # 4 window [204, 204, 91], # 5 chair new: 180, 220, 90 [255, 186, 119], # 6 bed [147, 102, 188], # 7 sofa [30, 119, 181], # 8 table [188, 188, 33], # 9 tvs [255, 127, 12], # 10 furn [196, 175, 214], # 11 objects [153, 153, 153], # 12 Accessible area, or label==255, ignore ]).astype(np.int32) def print_iou(iou): tp_occ, fp_occ, fn_occ, intersection, union = iou IOU_sc = intersection / union precision_sc = tp_occ / (tp_occ + fp_occ) recall_sc = tp_occ / (tp_occ + fn_occ) return [IOU_sc,precision_sc,recall_sc] def cal_prec_recall_iou(left,right,label_weight): nonefree = np.where((label_weight > 0)) left=left[nonefree] right=right[nonefree] tp_occ = ((left > 0) & (right > 0)).astype(np.int8).sum() fp_occ = ((left == 0) & (right > 0)).astype(np.int8).sum() fn_occ = ((left > 0) & (right == 0)).astype(np.int8).sum() union = ((left > 0) | (right > 0)).astype(np.int8).sum() intersection = ((left > 0) & (right > 0)).astype(np.int8).sum() # IOU_sc = intersection / union # precision_sc = tp_occ / (tp_occ + fp_occ) # recall_sc = tp_occ / (tp_occ + fn_occ) return np.array([tp_occ,fp_occ,fn_occ,intersection,union]) class Projection(nn.Module): def __init__(self,): super(Projection, self).__init__() def forward(self,feature2d,depth_mapping_3d): b, c, h, w = feature2d.shape feature2d = feature2d.view(b, c, h * w).permute(0, 2, 1) # b x h*w x c zerosVec = torch.zeros(b, 1,c).cuda() # for voxels that could not be projected from the depth map, we assign them zero vector # zerosVec = (-1*torch.ones(b, 1,c)).cuda() # for voxels that could not be projected from the depth map, we assign them zero vector segVec = torch.cat((feature2d, zerosVec), 1) segres = [torch.index_select(segVec[i], 0, depth_mapping_3d[i]) for i in range(b)] segres = torch.stack(segres).permute(0, 2, 1).contiguous().view(b, c, 60, 36, 60) # B, (channel), 60, 36, 60 return segres def test_projection_and_one_hot(): seg_2d_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/2DSSGT_npz/0001.npz' depth_mapping_3d_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/Mapping/0001.npz' seg_2d=torch.from_numpy(np.load(seg_2d_path)['gt2d'].astype(np.int64)).cuda() seg_2d = seg_2d.view(1,1,seg_2d.shape[0],seg_2d.shape[1]) depth_mapping_3d=torch.from_numpy(np.load(depth_mapping_3d_path)['arr_0'].astype(np.int64)).view(1,-1).cuda() print('a',depth_mapping_3d.shape) print('b',seg_2d.shape) seg_2d+=1 seg_2d[seg_2d == 256] = 0 seg_2d = seg_2d.float() b = seg_2d.clone() projection = Projection().cuda() seg_2d_one_hot_1 = projection(seg_2d, depth_mapping_3d) print('c',seg_2d_one_hot_1.shape) print('ff',(b==seg_2d).all()) # exit() seg_2d_one_hot = nn.functional.one_hot(seg_2d_one_hot_1.long(), num_classes=12)[0].float().permute(0,4,1,2,3) print('dd',seg_2d.shape) seg_3d = nn.functional.one_hot(seg_2d.long(),num_classes=12).float() print('d',seg_3d.shape) seg_3d=seg_3d[0].permute(0,3,1,2) print('ddd', seg_3d.shape) seg_3d_one_hot = projection(seg_3d, depth_mapping_3d) print('e',seg_3d_one_hot.shape) ind1 = torch.argmax(seg_2d_one_hot, dim=1) ind2 = torch.argmax(seg_3d_one_hot, dim=1) print(ind1.shape) print(seg_2d_one_hot_1.shape) print((ind1[0]==seg_2d_one_hot_1[0][0]).all()) exit() # print(ind1.shape) # print(ind2.shape) # print((ind1==ind2).sum()) # # # print((seg_2d_one_hot==seg_3d_one_hot).sum()) # voxel_complete_ply(ind1[0].cpu().numpy(), './0001.ply') # voxel_complete_ply(ind2[0].cpu().numpy(), './00001.ply') ##be careful using predicted result or gt specially 0 or 255 def save_seg_2d_to_3d_one_hot_npz(): out_base='/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d_to_3d_30000_npz/{}' projection = Projection().cuda() files = os.listdir('/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d_30000/') files.sort() for file in files: print(file) # exit() seg_2d_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d_30000/{}'.format(file) depth_mapping_3d_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/Mapping/{}'.format(file) seg_2d = torch.from_numpy(np.load(seg_2d_path)['arr_0']).float().cuda() seg_2d = seg_2d.view(1, 1, seg_2d.shape[0], seg_2d.shape[1]) depth_mapping_3d = torch.from_numpy(np.load(depth_mapping_3d_path)['arr_0'].astype(np.int64)).view(1, -1).cuda() # seg_2d += 1 # seg_2d[seg_2d == 256] = 0 # seg_2d = seg_2d.float() # print(seg_2d.shape) # print(torch.unique(seg_2d)) # exit() # print(torch.max(seg_2d)) # continue seg_2d_one_hot = projection(seg_2d, depth_mapping_3d) # ind2 = seg_2d_one_hot.clone().int() # ind2 = ind2[0][0].cpu().numpy() # print(np.unique(ind2)) # exit() seg_2d_one_hot = nn.functional.one_hot(seg_2d_one_hot.long(), num_classes=12)[0].float().permute(0, 4, 1, 2, 3) # print(torch.unique(seg_2d_one_hot)) seg_2d_one_hot=seg_2d_one_hot.cpu().numpy()[0].astype(np.uint8) # ind = # voxel_complete_ply(ind2,'0001.ply') np.savez(out_base.format(file),seg_2d_one_hot) # exit() # def from_3d_one_hot_npz_to_3d_sketch(): out_base ='/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d_to_3d_sketch_npz/{}' from utils.Sobel import Sobel3D sobel = Sobel3D().cuda() for file in os.listdir('/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg2d_to_3d_one_hot/'): print(file) data = np.load('/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg2d_to_3d_one_hot/{}'.format(file))['arr_0'] data = torch.from_numpy(data).cuda() data=torch.argmax(data,dim=0) # voxel_complete_ply(data.cpu().numpy(), '0001.ply') data = data.view(1,1,60,36,60).float() sketch = sobel(data).int()[0][0].cpu().numpy().astype(np.uint8) # voxel_complete_ply(sketch,'sketch_0001.ply') np.savez(out_base.format(file),sketch) # exit() def test_3d_sketch_from_2d_seg(): sketch_iou = np.array([0, 0, 0, 0, 0], dtype=float) sketch_dir = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d_to_3d_sketch_npz/' for file in os.listdir(sketch_dir): print(file) sketch = np.load('/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d_to_3d_sketch_npz/{}'.format(file))['arr_0'].reshape(-1,) gt_sketch_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/sketch3D/{}'.format(file.replace('npz','npy')) gt_sketch = np.load(gt_sketch_path).reshape(-1, ) label_weight_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/TSDF/{}'.format(file) label_weight = np.load(label_weight_path)['arr_1'].astype(np.float32) sketch_iou+=cal_prec_recall_iou(gt_sketch, sketch, label_weight) print(print_iou(sketch_iou)) def save_2d_seg_to_sketch_to_ply(): out_dir = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d_to_3d_sketch_Deeplabv3_ply/{}' projection = Projection().cuda() files = os.listdir('/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d/') files.sort() for file in files: print(file) # exit() seg_2d_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d/{}'.format(file) depth_mapping_3d_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/Mapping/{}'.format(file) seg_2d = torch.from_numpy(np.load(seg_2d_path)['arr_0']).float().cuda() seg_2d = seg_2d.view(1, 1, seg_2d.shape[0], seg_2d.shape[1]) depth_mapping_3d = torch.from_numpy(np.load(depth_mapping_3d_path)['arr_0'].astype(np.int64)).view(1, -1).cuda() seg_2d += 1 seg_2d_to_3d = projection(seg_2d, depth_mapping_3d) seg_2d_to_3d=seg_2d_to_3d[0][0].cpu().numpy().astype(np.uint8) voxel_complete_ply(seg_2d_to_3d,out_dir.format(file.replace('npz','ply'))) # np.savez(out_base.format(file), seg_2d_one_hot) # exit() # def test_iou_on_edges(): def test_tsdf_and_S_0_together_ssc(): def hist_info(n_cl, pred, gt): assert (pred.shape == gt.shape) k = (gt >= 0) & (gt < n_cl) # exclude 255 labeled = np.sum(k) correct = np.sum((pred[k] == gt[k])) return np.bincount(n_cl * gt[k].astype(int) + pred[k].astype(int), minlength=n_cl ** 2).reshape(n_cl, n_cl), correct, labeled def compute_score(hist, correct, labeled): iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) mean_IU = np.nanmean(iu) mean_IU_no_back = np.nanmean(iu[1:]) freq = hist.sum(1) / hist.sum() freq_IU = (iu[freq > 0] * freq[freq > 0]).sum() mean_pixel_acc = correct / labeled return iu, mean_IU, mean_IU_no_back, mean_pixel_acc epoch=249 network_tsdf_path='/ssd/lyding/SSC/TorchSSC/model/sketch.nyu/results/network_tsdf/results/epoch-{}'.format(epoch) S_0_Deeplabv3_path = '/ssd/lyding/SSC/TorchSSC/model/sketch.nyu/results/network_s0_Deeplabv3/results/epoch-{}'.format(epoch) files=os.listdir(network_tsdf_path) files.sort() hist_ssc = np.zeros((12,12)) correct_ssc = 0 labeled_ssc = 0 for file in files: print(file) network_tsdf_res = np.load(os.path.join(network_tsdf_path.format(epoch),file)).reshape(-1,) S_0_Deeplabv3_res = np.load(os.path.join(S_0_Deeplabv3_path.format(epoch),file)).reshape(-1,) target = np.load('/ssd/lyding/SSC/TorchSSC/DATA/NYU/Label/{}'.format(file.replace('npy','npz')))['arr_0'] label_weight = np.load('/ssd/lyding/SSC/TorchSSC/DATA/NYU/TSDF/{}'.\ format(file.replace('npy','npz')))['arr_1'].astype(np.float32) pred = np.zeros_like(target) for i in range(len(pred)): if network_tsdf_res[i]==target[i]: pred[i]=target[i] continue if S_0_Deeplabv3_res[i]==target[i]: pred[i]=target[i] continue # if network_tsdf_res[i]==S_0_Deeplabv3_res[i]: # pred[i]=S_0_Deeplabv3_res[i] # pred[i]=network_tsdf_res[i] nonefree_pred = pred[label_weight == 1] nonefree_label = target[label_weight == 1] h_ssc, c_ssc, l_ssc = hist_info(12, nonefree_pred, nonefree_label) hist_ssc += h_ssc correct_ssc += c_ssc labeled_ssc += l_ssc # break score_ssc = compute_score(hist_ssc, correct_ssc, labeled_ssc) print(score_ssc) def test_occupied_voxels_tsdf_and_S_0(): epoch = 249 network_tsdf_path = '/ssd/lyding/SSC/TorchSSC/model/sketch.nyu/results/network_tsdf/results/epoch-{}'.format(epoch) S_0_Deeplabv3_path = '/ssd/lyding/SSC/TorchSSC/model/sketch.nyu/results/network_s0_Deeplabv3/results/epoch-{}'.format( epoch) files = os.listdir(network_tsdf_path) files.sort() nonempty_tsdf=0 nonempty_s0=0 for file in files: print(file) network_tsdf_res = np.load(os.path.join(network_tsdf_path.format(epoch), file)).reshape(-1, ) S_0_Deeplabv3_res = np.load(os.path.join(S_0_Deeplabv3_path.format(epoch), file)).reshape(-1, ) target = np.load('/ssd/lyding/SSC/TorchSSC/DATA/NYU/Label/{}'.format(file.replace('npy', 'npz')))['arr_0'] label_weight = np.load('/ssd/lyding/SSC/TorchSSC/DATA/NYU/TSDF/{}'. \ format(file.replace('npy', 'npz')))['arr_1'].astype(np.float32) network_tsdf_res=network_tsdf_res[(label_weight == 1) & (target < 255)] S_0_Deeplabv3_res = S_0_Deeplabv3_res[(label_weight == 1) & (target < 255)] nonempty_s0+=np.sum(S_0_Deeplabv3_res>0) nonempty_tsdf+=np.sum(network_tsdf_res>0) print(nonempty_tsdf,nonempty_s0) def rgb_complete_ply(vox_rgb, ply_filename,my_color_map,depth_mapping_3d): def _get_xyz(size): ####attention ####sometimes you need to change the z dierction by multiply -1 """x 姘村钩 y楂樹綆 z娣卞害""" _x = np.zeros(size, dtype=np.int32) _y = np.zeros(size, dtype=np.int32) _z = np.zeros(size, dtype=np.int32) for i_h in range(size[0]): # x, y, z _x[i_h, :, :] = i_h # x, left-right flip for i_w in range(size[1]): _y[:, i_w, :] = i_w # y, up-down flip for i_d in range(size[2]): _z[:, :, i_d] = i_d # z, front-back flip return _x, _y, _z #this receive voxel containging value ranging from 0 to 255*255*255 of size 60x36x60 new_vertices = [] num_vertices = 0 new_faces = [] num_faces = 0 size = vox_rgb.shape vox_labeled = vox_rgb.flatten() _x, _y, _z = _get_xyz(size) _x = _x.flatten() _y = _y.flatten() _z = _z.flatten() # vox_labeled[vox_labeled == 255] = 0 _rgb = my_color_map[vox_labeled[:]] xyz_rgb = np.stack((_x, _y, _z, _rgb[:, 0], _rgb[:, 1], _rgb[:, 2]), axis=-1) xyz_rgb = np.array(xyz_rgb) ply_data = xyz_rgb[np.where(vox_labeled >= 0)] # bb=time.time() nnn = torch.sum(depth_mapping_3d<307200).item() if len(ply_data)!=nnn: print('some wrong here') exit() for i in range(len(ply_data)): num_of_line = i z = float(ply_data[i][0]) y = float(ply_data[i][1]) x = float(ply_data[i][2]) r = ply_data[i][3] g = ply_data[i][4] b = ply_data[i][5] vertice_one = [x, y, z, r, g, b] vertice_two = [x, y, z + 1, r, g, b] vertice_three = [x, y + 1, z + 1, r, g, b] vertice_four = [x, y + 1, z, r, g, b] vertice_five = [x + 1, y, z, r, g, b] vertice_six = [x + 1, y, z + 1, r, g, b] vertice_seven = [x + 1, y + 1, z + 1, r, g, b] vertice_eight = [x + 1, y + 1, z, r, g, b] vertices = [vertice_one, vertice_two, vertice_three, vertice_four, vertice_five, vertice_six, vertice_seven, vertice_eight] new_vertices.append(vertices) num_vertices += len(vertices) base = 8 * num_of_line face_one = [4, 0 + base, 1 + base, 2 + base, 3 + base] face_two = [4, 7 + base, 6 + base, 5 + base, 4 + base] face_three = [4, 0 + base, 4 + base, 5 + base, 1 + base] face_four = [4, 1 + base, 5 + base, 6 + base, 2 + base] face_five = [4, 2 + base, 6 + base, 7 + base, 3 + base] face_six = [4, 3 + base, 7 + base, 4 + base, 0 + base] faces = [face_one, face_two, face_three, face_four, face_five, face_six] new_faces.append(faces) num_faces += len(faces) # print(time.time()-bb) # cc = time.time() new_vertices = np.array(new_vertices).reshape(-1, 6) new_faces = np.array(new_faces).reshape(-1, 5) if len(ply_data) == 0: raise Exception("Oops! That was no valid ply data.") ply_head = 'ply\n' \ 'format ascii 1.0\n' \ 'element vertex {}\n' \ 'property float x\n' \ 'property float y\n' \ 'property float z\n' \ 'property uchar red\n' \ 'property uchar green\n' \ 'property uchar blue\n' \ 'element face {}\n' \ 'property list uint8 int32 vertex_indices\n' \ 'end_header'.format(num_vertices, num_faces) # ---- Save ply data to disk # if not os.path.exists('/'.join(ply_filename.split('/')[:-1])): # os.mkdir('/'.join(ply_filename.split('/')[:-1])) np.savetxt(ply_filename, new_vertices, fmt="%d %d %d %d %d %d", header=ply_head, comments='') # It takes 20s with open(ply_filename, 'ab') as f: np.savetxt(f, new_faces, fmt="%d %d %d %d %d", comments='') # It takes 20s del vox_labeled, _x, _y, _z, _rgb, xyz_rgb, ply_data, ply_head def test_rgb_proj_to_3d(): rgb_dir = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/RGB/' label_dir = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/Label/' tsdf_dir = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/TSDF/' mapping_dir = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/Mapping/' files = os.listdir(rgb_dir) files.sort() import cv2 projection = Projection().cuda() for file in files: num = file[3:7] rgb = torch.from_numpy(np.array(cv2.imread(os.path.join(rgb_dir,file))[:, :, ::-1])).float() h,w,c = rgb.shape rgb = rgb.view(1,c,h,w).cuda() label_path=os.path.join(label_dir,'{}.npz'.format(num)) tsdf_path =os.path.join(tsdf_dir,'{}.npz'.format(num)) mapping_path = os.path.join(mapping_dir,'{}.npz'.format(num)) label = np.load(label_path)['arr_0'].astype(np.int64) label_weight = np.load(tsdf_path)['arr_1'].astype(np.float32) depth_mapping_3d = torch.from_numpy(np.load(mapping_path)['arr_0'].astype(np.int64)).view(1, -1).cuda() rrgb = torch.zeros((480,640)).cuda() for i in range(480): for j in range(640): r,g,b = rgb[0,:,i,j] rrgb[i,j] = r*1000*1000+g*1000+b rrgb = rrgb.view(1,1,480,640) rgb = rrgb # # rrgb_3d = projection(rrgb,depth_mapping_3d) # rrgb_3d = rrgb_3d[0].cpu().numpy() # for i in range(60): # for j in range(36): # for k in range(60): # num = rrgb_3d[0,0,i,j,k] # r,g,b=num//1000//1000,(num//1000)%1000,num%1000 rgb_3d = projection(rgb, depth_mapping_3d) rgb_3d = rgb_3d[0].cpu().numpy() rgb_complete_ply(rgb_3d[0],'rgb3d.ply') break def test_2d_label_proj_to_3d(): # label2d_path = '/ssd/lyding/SSC/repositories/DeepLabV3Plus-Pytorch-master/results-latest_deeplabv3_resnet50_nyu_os16-13300/0001_pred_rgb.png' label2d_path = "/ssd/lyding/SSC/TorchSSC/DATA/NYU/RGB/NYU0001_colors.png" mapping_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/Mapping/0001.npz' import cv2 projection = Projection().cuda() label2d = np.array(cv2.imread(label2d_path)[:, :, ::-1]) color_label_2d = np.zeros((480, 640)) for i in range(480): for j in range(640): r,g,b = label2d[i,j] color_label_2d[i,j]=r*256*256+g*256+b color_label_2d = torch.from_numpy(color_label_2d).float() color_label_2d = color_label_2d.view(1,1,480,640).cuda() depth_mapping_3d = torch.from_numpy(np.load(mapping_path)['arr_0'].astype(np.int64)).view(1, -1).cuda() label2d_3d = projection(color_label_2d,depth_mapping_3d) my_color_map = np.array([[i//256//256,(i//256)%256,i%256] for i in range(256**3)]) label2d_3d = label2d_3d[0][0].cpu().numpy().astype(np.int64) rgb_complete_ply(label2d_3d,'rgb2d_3d.ply',my_color_map,depth_mapping_3d) def save_2d_rgb_to_3d_ply(): import cv2 projection = Projection().cuda() my_color_map = np.array([[i // 256 // 256, (i // 256) % 256, i % 256] for i in range(256 ** 3)]) out_base = "/ssd/lyding/SSC/TorchSSC/DATA/NYU/RGB3D_ply/{}.ply" for file in range(1,1450): num = '{:0>4d}'.format(file) print(num) label2d_path = "/ssd/lyding/SSC/TorchSSC/DATA/NYU/RGB/NYU{}_colors.png".format(num) mapping_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/Mapping/{}.npz'.format(num) label2d = np.array(cv2.imread(label2d_path)[:, :, ::-1]) color_label_2d = np.zeros((480, 640)) for i in range(480): for j in range(640): r, g, b = label2d[i, j] color_label_2d[i, j] = r * 256 * 256 + g * 256 + b color_label_2d = torch.from_numpy(color_label_2d).float() color_label_2d = color_label_2d.view(1, 1, 480, 640).cuda() depth_mapping_3d = torch.from_numpy(np.load(mapping_path)['arr_0'].astype(np.int64)).view(1, -1).cuda() label2d_3d = projection(color_label_2d, depth_mapping_3d) label2d_3d = label2d_3d[0][0].cpu().numpy().astype(np.int64) rgb_complete_ply(label2d_3d, out_base.format(num), my_color_map, depth_mapping_3d) # break def test_0_in_rgb(): import cv2 label2d_path = "/ssd/lyding/SSC/TorchSSC/DATA/NYU/RGB/NYU0001_colors.png" label2d = np.array(cv2.imread(label2d_path)[:, :, ::-1]) mapping_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/Mapping/0001.npz' depth_mapping_3d = torch.from_numpy(np.load(mapping_path)['arr_0'].astype(np.int64)).view(1, -1).cuda() print(depth_mapping_3d) def test_save_2d_rgb_normed(): label2d_path = "/ssd/lyding/SSC/TorchSSC/DATA/NYU/RGB/NYU0001_colors.png" mapping_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/Mapping/0001.npz' import cv2 projection = Projection().cuda() label2d = np.array(cv2.imread(label2d_path)[:, :, ::-1]) color_label_2d = np.zeros((480, 640)) for i in range(480): for j in range(640): r, g, b = label2d[i, j] color_label_2d[i, j] = r * 256 * 256 + g * 256 + b color_label_2d = torch.from_numpy(color_label_2d).float() color_label_2d = color_label_2d.view(1, 1, 480, 640).cuda() depth_mapping_3d = torch.from_numpy(np.load(mapping_path)['arr_0'].astype(np.int64)).view(1, -1).cuda() label2d_3d = projection(color_label_2d, depth_mapping_3d) def test_some_small_thing(): from utils.ply_utils import voxel_complete_ply_torchssc one_path = "/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d/0001.npz" two_path = "/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg2d_to_3d_one_hot/0001.npz" three_path = "/ssd/lyding/SSC/TorchSSC/DATA/NYU/seg_2d_to_3d_sketch_Deeplabv3_npz/0001.npz" label_path = "/ssd/lyding/SSC/TorchSSC/DATA/NYU/Label/0001.npz" tsdf_path = "/ssd/lyding/SSC/TorchSSC/DATA/NYU/TSDF/0001.npz" label = np.load(label_path)['arr_0'].astype(np.int64) label_weight = np.load(tsdf_path)['arr_1'].astype(np.float32) a = np.load(one_path)['arr_0'] b = np.load(two_path)['arr_0'] c = np.load(three_path)['arr_0'] b = np.argmax(b,axis=0) c = np.argmax(c,axis=0) voxel_complete_ply_torchssc(b,'b.ply',label_weight,label) voxel_complete_ply_torchssc(c,'c.ply',label_weight,label) print() def test_0_in_depth(): base='/ssd/lyding/datasets/SSC/{}' case='NYUtrain_npz' files = os.listdir(base.format(case)) files.sort() zero_num = 0 for file in files: print(file) data = np.load(os.path.join(base.format(case),file)) depth = data['depth'][0] zero_num+=(depth==0.0).sum() ratio = zero_num/(len(files)*depth.shape[0]*depth.shape[1]) print(ratio) def visualize_tsdf(): file='0001' label_weight_path = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/TSDF/{}.npz'.format(file) label_weight = np.load(label_weight_path)['arr_1'].astype(np.float32) tsdf = np.load(label_weight_path)['arr_0'].astype(np.float32) from utils.ply_utils import voxel_complete_ply tsdf_minus1 = tsdf==-1 tsdf_zero = tsdf==0 tsdf_1 = tsdf==1 tsdf_neg = (tsdf<0) & (tsdf>-0.2) tsdf_pos =(tsdf>0) & (tsdf<1) tsdf_minus1 = tsdf_minus1.astype(int).reshape(60,36,60) tsdf_zero = tsdf_zero.astype(int).reshape(60,36,60) tsdf_1 = tsdf_1.astype(int).reshape(60,36,60) tsdf_neg = tsdf_neg.astype(int).reshape(60,36,60) tsdf_pos = tsdf_pos.astype(int).reshape(60,36,60) voxel_complete_ply(tsdf_minus1,'tsdf_minus_one.ply') voxel_complete_ply(tsdf_zero,'tsdf_zero.ply') voxel_complete_ply(tsdf_1,'tsdf_one.ply') voxel_complete_ply(tsdf_neg,'tsdf_neg.ply') voxel_complete_ply(tsdf_pos,'tsdf_pos.ply') return def _downsample_label_my(label, voxel_size=(240, 144, 240), downscale=4): r"""downsample the labeled data, code taken from https://github.com/waterljwant/SSC/blob/master/dataloaders/dataloader.py#L262 Shape: label, (240, 144, 240) label_downscale, if downsample==4, then (60, 36, 60) """ if downscale == 1: return label ds = downscale small_size = ( voxel_size[0] // ds, voxel_size[1] // ds, voxel_size[2] // ds, ) # small size label_downscale = np.zeros( ( voxel_size[0] // ds, voxel_size[1] // ds, voxel_size[2] // ds, 12 ) , dtype=np.float) empty_t = 0.95 * ds * ds * ds # threshold s01 = small_size[0] * small_size[1] label_i = np.zeros((ds, ds, ds), dtype=np.int32) for i in range(small_size[0] * small_size[1] * small_size[2]): z = int(i / s01) y = int((i - z * s01) / small_size[0]) x = int(i - z * s01 - y * small_size[0]) label_i[:, :, :] = label[ x * ds : (x + 1) * ds, y * ds : (y + 1) * ds, z * ds : (z + 1) * ds ] label_bin = label_i.flatten() zero_count_0 = np.array(np.where(label_bin == 0)).size zero_count_255 = np.array(np.where(label_bin == 255)).size zero_count = zero_count_0 + zero_count_255 if zero_count > empty_t: label_downscale[x, y, z] = 0 if zero_count_0 > zero_count_255 else 255 else: label_i_s = label_bin[ np.where(np.logical_and(label_bin > 0, label_bin < 255)) ] classes, cnts = np.unique(label_i_s, return_counts=True) class_counts = np.zeros(12) class_counts[classes] = cnts target_classes = class_counts / np.sum(class_counts) label_downscale[x, y, z] = target_classes return label_downscale def downsample_high_res_gt(): data_dir = '/ssd/lyding/datasets/SSC/NYUCADtest_npz/' out_dir = '/ssd/lyding/SSC/TorchSSC/DATA/NYU/Label_multi/' files = os.listdir(data_dir) files.sort() from utils.ply_utils import voxel_complete_ply for file in files: print(file) data = np.load(os.path.join(data_dir,file)) target_lr = data['target_lr'] target_hr = data['target_hr'] print(np.sum((target_lr>0)&(target_lr<255))) # voxel_complete_ply(target_lr,'low_1.ply') # voxel_complete_ply(target_hr,'high_1.ply') target_hr = torch.from_numpy(target_hr) down_from_high = _downsample_label_my(target_hr) # down_from_high = down_from_high.transpose(3,0,1,2) # np.savez(os.path.join(out_dir,num+'.npz'),down_from_high) abc = np.zeros((60,36,60),dtype=np.uint8) abc[(down_from_high.sum(axis=-1)==1)&(down_from_high.max(axis=-1)<1.)]=1 # abc[(down_from_high.sum(axis=-1)==1)]=1 print(np.sum(abc)) # xxx=0 # abc=np.zeros((60,36,60),dtype=np.uint8) # for x in range(60): # for y in range(36): # for z in range(60): # probs = down_from_high[:,x,y,z] # if np.sum(probs)==1 and np.max(probs)<1: # xxx+=1 # abc[x,y,z]=1 voxel_complete_ply(abc, 'abc.ply') print(12) # down_from_high = np.argmax(down_from_high,axis=0) # voxel_complete_ply(down_from_high,'down_from_high_1.ply') break def test_tsdf_divided_acc(): def hist_info(n_cl, pred, gt): assert (pred.shape == gt.shape) k = (gt >= 0) & (gt < n_cl) # exclude 255 labeled = np.sum(k) correct = np.sum((pred[k] == gt[k])) return np.bincount(n_cl * gt[k].astype(int) + pred[k].astype(int), minlength=n_cl ** 2).reshape(n_cl, n_cl), correct, labeled def compute_score(hist, correct, labeled): iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) mean_IU = np.nanmean(iu) mean_IU_no_back = np.nanmean(iu[1:]) freq = hist.sum(1) / hist.sum() freq_IU = (iu[freq > 0] * freq[freq > 0]).sum() mean_pixel_acc = correct / labeled return iu, mean_IU, mean_IU_no_back, mean_pixel_acc epoch=249 network_tsdf_path='/ssd/lyding/SSC/TorchSSC/model/sketch.nyu/results/network_tsdf/results/epoch-{}'.format(epoch) # S_0_Deeplabv3_path = '/ssd/lyding/SSC/TorchSSC/model/sketch.nyu/results/network_seg_2d/results/epoch-{}'.format(epoch) S_0_Deeplabv3_path = '/ssd/lyding/SSC/TorchSSC/model/sketch.nyu/results/network_s0_multi_label_loss1/results/epoch-{}'.format(epoch) files=os.listdir(network_tsdf_path) files.sort() hist_ssc = np.zeros((12,12)) correct_ssc = 0 labeled_ssc = 0 a, b =-0.2,0 for file in files: print(file) network_tsdf_res = np.load(os.path.join(network_tsdf_path.format(epoch),file)).reshape(-1,) S_0_Deeplabv3_res = np.load(os.path.join(S_0_Deeplabv3_path.format(epoch),file)).reshape(-1,) label_multi = np.load('/ssd/lyding/SSC/TorchSSC/DATA/NYU/Label_multi/{}'.format(file.replace('.npy','.npz')))['arr_0'] label_multi = ((label_multi.sum(axis=0)==1)&(label_multi.max(axis=0)<1)).flatten() target = np.load('/ssd/lyding/SSC/TorchSSC/DATA/NYU/Label/{}'.format(file.replace('npy','npz')))['arr_0'] label_weight = np.load('/ssd/lyding/SSC/TorchSSC/DATA/NYU/TSDF/{}'.\ format(file.replace('npy','npz')))['arr_1'].astype(np.float32) tsdf = np.load('/ssd/lyding/SSC/TorchSSC/DATA/NYU/TSDF/{}'.\ format(file.replace('npy','npz')))['arr_0'].astype(np.float32) # pred = np.zeros_like(target) pred = S_0_Deeplabv3_res # for i in range(len(pred)): # if tsdf[i]>a and tsdf[i]<b: # pred[i] = network_tsdf_res[i] # continue # pred[(tsdf>a) & (tsdf<b)]=network_tsdf_res[(tsdf>a) & (tsdf<b)] cond = (label_weight == 1) & (label_multi == 1) # cond = (label_weight == 1) nonefree_pred = pred[cond] nonefree_label = target[cond] h_ssc, c_ssc, l_ssc = hist_info(12, nonefree_pred, nonefree_label) hist_ssc += h_ssc correct_ssc += c_ssc labeled_ssc += l_ssc # break score_ssc = compute_score(hist_ssc, correct_ssc, labeled_ssc) print(score_ssc) # test_projection_and_one_hot() # save_seg_2d_to_3d_one_hot_npz() # from_3d_one_hot_npz_to_3d_sketch() # test_3d_sketch_from_2d_seg() # save_2d_seg_to_sketch_to_ply() # test_rgb_proj_to_3d() # test_2d_label_proj_to_3d() # test_0_in_rgb() # save_2d_rgb_to_3d_ply() # test_tsdf_and_S_0_together_ssc() # test_occupied_voxels_tsdf_and_S_0() # test_some_small_thing() # test_0_in_depth() # visualize_tsdf() # downsample_high_res_gt() test_tsdf_divided_acc()
1.757813
2
ashtadhyayi_data/writer/__init__.py
ashtadhyayi/data_curation
0
12784127
<filename>ashtadhyayi_data/writer/__init__.py import logging import os import ashtadhyayi_data from doc_curation.md import library from doc_curation.md.file import MdFile for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig( level=logging.DEBUG, format="%(levelname)s:%(asctime)s:%(module)s:%(lineno)d %(message)s" ) shared_repo_path = "/home/vvasuki/sanskrit/ashtadhyayi" def get_output_path(base_dir, vritti_id, suutra_id): if vritti_id in ["padachcheda", "full_sutra", "anuvritti", "adhikara", "sumit_garg_english", 'topic']: extension = "txt" else: extension = "md" outpath = os.path.join(base_dir, vritti_id, "pada-" + ashtadhyayi_data.get_adhyaya_pada_id(suutra_id), suutra_id + "." + extension) return outpath def dump_tsv_vritti(vritti_id): from ashtadhyayi_data.reader import vritti_tsv vritti_tsv.setup_vritti(vritti_id=vritti_id) for suutra_id in ashtadhyayi_data.suutra_df.index: vritti = vritti_tsv.get_vritti(vritti_id=vritti_id, suutra_id=suutra_id) if vritti is not None: outpath = get_output_path(base_dir=shared_repo_path, vritti_id=vritti_id, suutra_id=suutra_id) os.makedirs(os.path.dirname(outpath), exist_ok=True) with open(outpath, 'w', encoding="utf8") as outfile: outfile.write(vritti) def dump_per_suutra_mds(outpath, dry_run=False): md_file = MdFile(file_path="/home/vvasuki/ashtadhyayi/ashtadhyayi.github.io/content/sutra-details.md") (_, template_content) = md_file.read() suutra_df = ashtadhyayi_data.get_suutra_df() for suutra_id in suutra_df.index: dest_path = os.path.join(outpath, ashtadhyayi_data.get_adhyaya_pada_id(suutra_id), "%s.md" % suutra_id) md_file = MdFile(file_path=dest_path) title = suutra_df.loc[suutra_id, "sutra"] title = "%s %s" % (suutra_id, title) [adhyaaya, paada, suutra] = suutra_id.split(".") content = template_content.replace("ADHYAAYA", adhyaaya).replace("PAADA", paada).replace("SUUTRA", suutra) md_file.dump_to_file(metadata={"title": title}, content=content, dry_run=dry_run) library.fix_index_files(dir_path=outpath) if __name__ == '__main__': pass dump_per_suutra_mds(outpath="/home/vvasuki/ashtadhyayi/ashtadhyayi.github.io/content/suutra/") # dump_tsv_vritti("topic") # delete_empty_vritti_files("padamanjari")
2.234375
2
Desafios/Desafio 049.py
tiagosm1/Pyhton_CEV
0
12784128
num = int(input('Escolha um número para saber sua tabuada:')) tab = 0 for c in range(1, 11): print('{} x {:2} = {:2}'.format(num, c, num*c))
3.90625
4
stock_notifier/__init__.py
saswatraj/stock_notifier
0
12784129
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Package file for Stock Notifier package. @author: rajsaswa """
0.894531
1
util/apis.py
lucasxlu/MMNet
3
12784130
""" Performance Comparision with Commercial APIs like Face++, Google, MS and Amazon """ import sys import os import requests import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score sys.path.append('../') from config.cfg import cfg def prepare_test_imgs(type='basic'): face_with_emt = {} manual_annotation_dir = 'E:\DataSet\CV\TreeCNN\RAF-Face/basic\Annotation\manual' emotion_label_txt_path = os.path.join(cfg['root'], 'RAF-Face', "%s/EmoLabel/list_patition_label.txt" % type) emotion_dict = dict(np.loadtxt(emotion_label_txt_path, dtype=np.str)) for _ in os.listdir(manual_annotation_dir): if _.startswith('test_'): face_fname = _.replace('_manu_attri', '_aligned').replace('.txt', '.jpg') face_with_emt[os.path.join(cfg['root'], 'RAF-Face', '%s/Image/aligned' % type, face_fname)] = int( emotion_dict[face_fname.replace('_aligned', '')].strip()) - 1 return face_with_emt def facepp(img_path): """ Recognition with Face++ Emotion Recognition API :param img_path: :return: """ apikey = '' apisecret = '' url = 'https://api-cn.faceplusplus.com/facepp/v3/detect' files = {'image_file': open(img_path, 'rb')} payload = {'api_key': apikey, 'api_secret': apisecret, # 'return_landmark': 0, 'face_tokens': 'none', 'return_attributes': 'emotion'} response = requests.post(url, data=payload, files=files) if response.status_code == 200: res_json = response.json() max_k = '' max_v = 0 for k, v in res_json['faces'][0]['attributes']['emotion'].items(): if v > max_v: max_v = v max_k = k return max_k else: print(response) return None if __name__ == '__main__': img_files = prepare_test_imgs() print(img_files) basic_emt_map = { 'surprise': 0, 'fear': 1, 'disgust': 2, 'happiness': 3, 'sadness': 4, 'anger': 5, 'neutral': 6 } gt = [] pred = [] for imgf, e in img_files.items(): try: emt = facepp(imgf) print(emt) gt.append(e) pred.append(basic_emt_map[emt]) except: pass print('Accuracy of Emotion Recognition: %s' % str(accuracy_score(gt, pred))) print('Confusion Matrix on FER: ') print(confusion_matrix(np.array(gt).ravel().tolist(), np.array(pred).ravel().tolist()))
2.546875
3
bitcoin_networkapis.py
vizeet/bitcoin_core_python_client
4
12784131
import pycurl from io import BytesIO import json import datetime import pandas as pd myaddress = input('Enter Bitcoin Address: ') btcval = 100000000.0 # in santoshis block_time_in_min = 10 block_time_in_sec = block_time_in_min*60 def getBalance(address: str): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/unspent?active=%s" % (address)) getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() balance = 0.0 # print("getreq = %s" % (getreq.getvalue())) allunspenttx = json.loads(strbuf.getvalue())['unspent_outputs'] for eachtx in allunspenttx: balance += eachtx['value'] return balance def getTxnHistoryOfAddress(address: str): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/address/%s?format=json" % (address)) getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() new_txn_list = [] alltxns = json.loads(strbuf.getvalue())['txs'] for eachtxn in alltxns: new_txn = {} input_list = eachtxn['inputs'] input_value = 0 address_input_value = 0 for each_input in input_list: input_value += each_input['prev_out']['value'] if each_input['prev_out']['addr'] == address: address_input_value += each_input['prev_out']['value'] output_list = eachtxn['out'] output_value = 0 address_output_value = 0 for each_output in output_list: output_value += each_output['value'] if each_output['addr'] == address: address_output_value += each_output['value'] if address_input_value > address_output_value: new_txn['credit_in_btc'] = (address_input_value - address_output_value) / btcval else: new_txn['debit_in_btc'] = (address_output_value - address_input_value) / btcval network_fees = input_value - output_value new_txn['network_fees'] = network_fees / btcval new_txn['network_fees_in_inr'] = new_txn['network_fees'] * getCurrentSellPriceInInr() dt = datetime.datetime.fromtimestamp(eachtxn['time']) new_txn['date_time'] = dt.strftime("%d-%B-%Y %H:%M:%S") new_txn_list.append(new_txn) return new_txn_list def getCurrentBlockHeight(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/blocks?format=json") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() current_block_height = json.loads(strbuf.getvalue())['blocks'][0]['height'] return current_block_height def getTxCountInBlock(block_height: int): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/block-height/%d?format=json" % (block_height)) getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() txlist = json.loads(strbuf.getvalue())['blocks'][0]['tx'] return len(txlist) #def getListOfTxnsOnAddress(address: str): # #def getInputBitcoinInTx(txn: str): # #def getOutputBitcoinInTx(txn: str): # #def getChangeInTx(txn: str): # #def getNetworkFeesInTxn(txn: str): def getTxRate(tx_count_in_block: int): return tx_count_in_block/block_time_in_sec # return block_time_in_sec/tx_count_in_block def getAverageTxRateInLast24Hrs(): current_block_height = getCurrentBlockHeight() min_in_a_day = 60*24 blocks_in_a_day = int(min_in_a_day/block_time_in_min) sum_tx_rate = 0 print("Transaction rate::") for block_height in range(current_block_height - blocks_in_a_day, current_block_height): tx_count = getTxCountInBlock(block_height) tx_rate = getTxRate(tx_count) sum_tx_rate += tx_rate print("block height %d ===> Tx Rate %.6f" % (block_height, tx_rate)) average_tx_rate = sum_tx_rate / blocks_in_a_day return average_tx_rate def getAverageTxRateInLastWeek(): current_block_height = getCurrentBlockHeight() min_in_a_week = 60*24*7 blocks_in_a_week = int(min_in_a_week/block_time_in_min) sum_tx_rate = 0 print("Transaction rate::") for block_height in range(current_block_height - blocks_in_a_week, current_block_height): tx_count = getTxCountInBlock(block_height) tx_rate = getTxRate(tx_count) sum_tx_rate += tx_rate print("block height %d ===> Tx Rate %.6f" % (block_height, tx_rate)) average_tx_rate = sum_tx_rate / blocks_in_a_week return average_tx_rate def getAverageTxRateInLastMonth(): current_block_height = getCurrentBlockHeight() min_in_a_month = 60*24*7 blocks_in_a_month = int(min_in_a_month/block_time_in_min) sum_tx_rate = 0 print("Transaction rate::") for block_height in range(current_block_height - blocks_in_a_month, current_block_height): tx_count = getTxCountInBlock(block_height) tx_rate = getTxRate(tx_count) sum_tx_rate += tx_rate print("block height %d ===> Tx Rate %.6f" % (block_height, tx_rate)) average_tx_rate = sum_tx_rate / blocks_in_a_month return average_tx_rate def getCurrentNetworkHashRate(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/q/hashrate") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: text/plain']) getreq.perform() getreq.close() current_network_hash_rate = int(strbuf.getvalue()) * 10**9 return current_network_hash_rate def getCurrentBlockReward(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/q/bcperblock") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: text/plain']) getreq.perform() getreq.close() block_reward_abs = int(strbuf.getvalue()) block_reward = block_reward_abs / btcval return block_reward def getCurrentBuyPriceInInr(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://www.zebapi.com/api/v1/market/ticker-new/btc/inr") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() current_buy_rate_in_inr = int(json.loads(strbuf.getvalue())['buy']) return current_buy_rate_in_inr def getCurrentSellPriceInInr(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://www.zebapi.com/api/v1/market/ticker-new/btc/inr") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() current_buy_rate_in_inr = int(json.loads(strbuf.getvalue())['sell']) return current_buy_rate_in_inr def getCurrentValueOfBitcoinInAddressInInr(address: str): btc = getBalance(address) / btcval price_in_inr = getCurrentSellPriceInInr() value = btc * price_in_inr return value def getUnconfirmedTransactionCount(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/q/unconfirmedcount") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() unconfirmed_transaction_count = int(strbuf.getvalue()) return unconfirmed_transaction_count def convertToRupeeFormat(num: float): numstr = "%.2f" % (num) # print("numstr = %s" % (numstr)) # print("numstr len = %s" % (len(numstr))) commaloc = 6 while commaloc < len(numstr): numstr = numstr[:-commaloc] + ',' + numstr[-commaloc:] commaloc += 3 rupees = "\u20B9%s" % (numstr) return rupees electricity_rates = {"rate_slabs": [{"min": 1, "max": 30, "unit_price": 3.25}, {"min": 31, "max": 100, "unit_price": 4.7}, {"min": 101, "max": 200, "unit_price": 6.25}, {"min": 201, "unit_price": 7.3}]} def getPriceFromUnit(unit: float): rate_slabs = electricity_rates['rate_slabs'] price = 0 for slab in rate_slabs: if slab['min'] > unit: countinue elif ('max' in slab and slab['max']) > unit or 'max' not in slab: # if 'max' in slab: # print("min = %.2f, max = %.2f, unit = %.2f" % (slab['min'], slab['max'], unit)) # else: # print("min = %.2f, unit = %.2f" % (slab['min'], unit)) price += (unit - slab['min']) * slab['unit_price'] else: price += (slab['max'] - slab['min']) * slab['unit_price'] return price def getUnitFromPower(power: float): unit = power * 24 * 30 / 1000 return unit def getBlockMiningRatePer10Min(hashrate: int): network_hashrate = getCurrentNetworkHashRate() block_mining_rate = hashrate/network_hashrate return block_mining_rate def getBitcoinMiningRate(hashrate: int): block_mining_rate = getBlockMiningRatePer10Min(hashrate) mining_reward = getCurrentBlockReward() bitcoin_mining_rate = block_mining_rate * mining_reward return bitcoin_mining_rate def getMiningPowerExpense(power: float): unit = getUnitFromPower(power) expense = getPriceFromUnit(unit) return expense def getBitcoinMinedPerMonth(hashrate: int): bitcoin_mined_per_month = getBitcoinMiningRate(hashrate) * 6 * 24 * 30 return bitcoin_mined_per_month def miningReturn(power: float, hashrate: int): expense = getMiningPowerExpense(power) bitcoin_mined_per_month = getBitcoinMinedPerMonth(hashrate) revenue = bitcoin_mined_per_month * getCurrentSellPriceInInr() profit = revenue - expense return profit def costOfMiningBitcoin(power: float, hashrate: int): unit = getUnitFromPower(power) price_per_month = getPriceFromUnit(unit) bitcoin_mined_per_month = getBitcoinMiningRate(hashrate) * 6 * 24 * 30 cost_of_mining_bitcoin = price_per_month/bitcoin_mined_per_month return cost_of_mining_bitcoin if __name__ == "__main__": balance = getBalance(myaddress) / btcval print("Current Bitcoin balance = %.8f at Address = %s" % (balance, myaddress)) value = getCurrentValueOfBitcoinInAddressInInr(myaddress) print("Current Value of Bitcoin = %.2f for Address = %s" % (value, myaddress)) current_block_height = getCurrentBlockHeight() print("current block height = %d" % (current_block_height)) tx_count_in_last_block = getTxCountInBlock(current_block_height) print("Number of transactions in last block = %d" % (tx_count_in_last_block)) tx_rate = getTxRate(tx_count_in_last_block) print("Current transaction rate = %.6f" % (tx_rate)) # average_tx_rate = getAverageTxRateInLast24Hrs() # print("Average Transaction Rate in last 24 Hrs = %.6f" % (average_tx_rate)) current_network_hash_rate = getCurrentNetworkHashRate() print("Current Network Hash Rate = %d" % (current_network_hash_rate)) block_reward = getCurrentBlockReward() print("Current Block Reward = %.8f" % (block_reward)) current_buy_rate_in_inr = getCurrentBuyPriceInInr() current_buy_rate_in_rupees = convertToRupeeFormat(current_buy_rate_in_inr) print("Current Buy Rate in Indian Rupees = %s" % (current_buy_rate_in_rupees)) miner_hashrate = 13.5 * 10**12 print("Miner hashrate = %d" % (miner_hashrate)) miner_power = 1323 print ("Miner Power in Watt = %f" % (miner_power)) expense = getMiningPowerExpense(miner_power) print ("Miner Power Expense Per Month = %.2f" % (expense)) bitcoin_mined_per_month = getBitcoinMinedPerMonth(miner_hashrate) print("Bitcoin Mined Per Month = %.8f from Miner with hashrate = %d" % (bitcoin_mined_per_month, miner_hashrate)) mining_return = miningReturn(miner_power, miner_hashrate) print("Mining Return Per Month = %s" % (mining_return)) cost_of_mining_bitcoin = costOfMiningBitcoin(miner_power, miner_hashrate) print("Cost of Mining Bitcoin = %.2f" % (cost_of_mining_bitcoin)) unconfirmed_transaction_count = getUnconfirmedTransactionCount() print("Total Unconfirmed Transaction Count = %d" % (unconfirmed_transaction_count)) txn_history = getTxnHistoryOfAddress(myaddress) txn_history_table = pd.DataFrame(txn_history) print("Transaction History::\n%s" % (txn_history_table))
2.625
3
sandbox/check-mcmc.py
ligo-asimov/asimov
2
12784132
<reponame>ligo-asimov/asimov<gh_stars>1-10 import ast import subprocess from shutil import copy from asimov import gitlab, mattermost from asimov import config from asimov import condor, git from asimov.ini import RunConfiguration import os, glob, datetime from subprocess import check_output as bash import otter server = gitlab.gitlab.Gitlab('https://git.ligo.org', private_token=config.get("gitlab", "token")) repository = server.projects.get(config.get("olivaw", "tracking_repository")) uber_repository = git.MetaRepository(config.get("olivaw", "metarepository")) events = gitlab.find_events(repository, milestone=config.get("olivaw", "milestone")) mattermost = mattermost.Mattermost() from pesummary.gw.file.read import read def get_all_jobs(): all_jobs = bash('condor_q -af:j Iwd'.split(' '), universal_newlines=True) #print(all_jobs) all_jobs = str(all_jobs).split('\n') #print(all_jobs) all_jobs = filter( lambda x: x, all_jobs) wds = [] ids = [] for z in all_jobs: wds.append(z.split()[1]) ids.append(z.split()[0]) return ids, wds def main(): report = otter.Otter(filename="/home/daniel.williams/public_html/LVC/projects/O3/C01/audit_mcmc.html", author="<NAME>", title="Asimov/Olivaw : Preferred run audit report" ) with report: report + "This report contains the latest updates on the run status of the various PE runs ongoing at CIT." report + "Supervisor last checked these events at " + str(datetime.datetime.now()) all_ids, all_wds = get_all_jobs() for event in events: print(event.title) if event.state == None: continue if "Special" in event.labels: continue try: repo = uber_repository.get_repo(event.title) except: print(f"{event.title} missing from the uberrepo") continue repo.update(stash=True) with report: report + f"#{event.title}" try: event_prods = repo.find_prods(config.get("olivaw", "run_category")) except: print(f"No runs in this repository") continue if event.state in ["Generating PSDs", "Productions running", "Stuck"]: psds_dict = {} prod_keys = [key for key in event.data.keys() if "Prod" in key[0:5]] n_productions = len(event_prods) event_psds_l = [] pref_prod = [] for prod in event_prods: prod = prod.split("_")[0] if prod in event.data: if "blocked" in event.data[prod].lower(): continue cluster = event.data[prod] prod_rundir = event.data[f"{prod}_rundir"] run_ini = os.path.join(prod_rundir, "config.ini") actual_config = RunConfiguration(run_ini) try: engine_data = actual_config.get_engine() except: continue if not "daniel.williams" in prod_rundir: continue if actual_config.ini.get("analysis", "engine") == "lalinferencemcmc": # Keep only lists that correspond to the working directory job_ids = [ number for number, directory in zip(all_ids, all_wds) if (prod in directory) and (event.title in directory) ] print(job_ids) if len(job_ids) > 0: report += job_ids tmp = "tmp" try: os.makedirs(tmp) except: pass try: os.makedirs(f"{prod_rundir}/{tmp}/html") #os.popen(f"rm -r /home/john.veitch/projects/O3/SEOBNRv4P_rota_runs/{event.title}/{prod}") os.makedirs(f"/home/john.veitch/projects/O3/SEOBNRv4P_rota_runs/{event.title}/{prod}-robot") except: pass raw_pp_str = os.popen(f'grep cbcBayesPostProc {prod_rundir}/lalinference*.sh').read() pspath0 = raw_pp_str.split('hdf5_snr.txt ')[-1].split(' ')[0] for job in job_ids: os.system(f'condor_ssh_to_job -ssh scp {job} remote:./*.hdf* {prod_rundir}/{tmp}') for h5file in glob.glob(f"{prod_rundir}/{tmp}/*.hdf5"): pspath1 = h5file # os.path.join(prod_rundir, tmp,'*.hdf5') # print(pspath1) file = h5file.split("/")[-1] copy(h5file, f"/home/john.veitch/projects/O3/SEOBNRv4P_rota_runs/{event.title}/{prod}-robot/{file}") pspath = raw_pp_str.replace(pspath0,pspath1) webpath = pspath.split("--outpath")[1].split()[0] new_webpath = f"{prod_rundir}/{tmp}/html" print(pspath.replace(webpath, new_webpath)) # os.popen(pspath.replace(webpath, new_webpath)) main()
2.09375
2
pyweno/__init__.py
alexfikl/PyWENO
1
12784133
<reponame>alexfikl/PyWENO """The PyWENO module.""" import points import kernels import nonuniform import symbolic import symbols import version import weno import cweno
0.992188
1
complaints/forms.py
Three-Dev-Musketeers/Mumbai_Police
5
12784134
<filename>complaints/forms.py from django.forms import ModelForm
1.125
1
recaman_test.py
sfrebel/recamansvg
0
12784135
<filename>recaman_test.py<gh_stars>0 import pytest from recaman import calculate_racaman def test_uniqeness(): sequence = calculate_racaman(24) for elem in sequence: assert sequence.count(elem) == 1 # sequences longer that 24 can contain duplicates (42 for example) def test_sequencelength(): sequence = calculate_racaman(200) assert len(sequence) == 200 sequence = calculate_racaman(42) assert len(sequence) == 42 def test_hardcoded(): referencesequence = [0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, 42, 63, 41, 18, 42, 17, 43, 16, 44, 15, 45, 14, 46, 79, 113, 78, 114, 77, 39, 78, 38, 79, 37, 80, 36, 81, 35, 82, 34, 83, 33, 84, 32, 85, 31, 86, 30, 87, 29, 88, 28, 89, 27, 90, 26, 91, 157, 224, 156, 225, 155] # taken from wikipedia sequence = calculate_racaman(len(referencesequence)) assert referencesequence == sequence
2.96875
3
api/classification/feat_peak.py
xiafanzeng/Raman-Spectroscopy
4
12784136
from scipy.signal import find_peaks import numpy as np import math def search_peaks(x_data, y_data, height=0.1, distance=10): prominence = np.mean(y_data) peak_list = find_peaks(y_data, height=height, prominence=prominence, distance=distance) peaks = [] for i in peak_list[0]: peak = (x_data[i], y_data[i]) peaks.append(peak) return peaks def search_database_peaks(all_spectrum, height=0.1, distance=10): peaks_database = {} for key in list(all_spectrum.keys()): x_data = all_spectrum[key][0] y_data = all_spectrum[key][1] peaks = search_peaks(x_data, y_data, height=height, distance=distance) peaks_database.update({key: peaks}) return peaks_database def compare_peaks(peaks_database, peaks, abs_tol=5): coincide_information = {} for key in list(peaks_database.keys()): coincide_list = [] for peak_d in peaks_database[key]: for peak in peaks: if math.isclose(peak[0], peak_d[0], abs_tol=abs_tol): coincide_list.append([peak_d[0], peak[0]]) coincide_information.update( {key: {'coincide_list': coincide_list, 'coincide_number': [len(peaks_database[key]), len(coincide_list)]}}) return coincide_information def judge_matter(coincide_information, criterion=0.99): contain_dict = {} for key in list(coincide_information.keys()): coincide_number = coincide_information[key]['coincide_number'] key_criterion = coincide_number[1] / coincide_number[0] if key_criterion >= criterion: contain_dict.update({key: key_criterion}) return contain_dict def classify(x_data, y_data, all_spectrum): peaks = search_peaks(x_data,y_data) database_peaks = search_database_peaks(all_spectrum) print(database_peaks) compare_result = compare_peaks(database_peaks,peaks) # pass # print(compare_result) return compare_result compare_result=judge_matter(compare_result)
2.453125
2
pytorch_ares/third_party/free_adv_train/free_train.py
thu-ml/realsafe
107
12784137
<reponame>thu-ml/realsafe """Trains a model, saving checkpoints and tensorboard summaries along the way.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import os import shutil from timeit import default_timer as timer import tensorflow as tf import numpy as np import sys from free_model import Model import cifar10_input import cifar100_input import pdb import config def get_path_dir(data_dir, dataset, **_): path = os.path.join(data_dir, dataset) if os.path.islink(path): path = os.readlink(path) return path def train(tf_seed, np_seed, train_steps, out_steps, summary_steps, checkpoint_steps, step_size_schedule, weight_decay, momentum, train_batch_size, epsilon, replay_m, model_dir, dataset, **kwargs): tf.set_random_seed(tf_seed) np.random.seed(np_seed) model_dir = model_dir + '%s_m%d_eps%.1f_b%d' % (dataset, replay_m, epsilon, train_batch_size) # TODO Replace with not defaults # Setting up the data and the model data_path = get_path_dir(dataset=dataset, **kwargs) if dataset == 'cifar10': raw_data = cifar10_input.CIFAR10Data(data_path) else: raw_data = cifar100_input.CIFAR100Data(data_path) global_step = tf.contrib.framework.get_or_create_global_step() model = Model(mode='train', dataset=dataset, train_batch_size=train_batch_size) # Setting up the optimizer boundaries = [int(sss[0]) for sss in step_size_schedule][1:] values = [sss[1] for sss in step_size_schedule] learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), boundaries, values) optimizer = tf.train.MomentumOptimizer(learning_rate, momentum) # Optimizing computation total_loss = model.mean_xent + weight_decay * model.weight_decay_loss grads = optimizer.compute_gradients(total_loss) # Compute new image pert_grad = [g for g, v in grads if 'perturbation' in v.name] sign_pert_grad = tf.sign(pert_grad[0]) new_pert = model.pert + epsilon * sign_pert_grad clip_new_pert = tf.clip_by_value(new_pert, -epsilon, epsilon) assigned = tf.assign(model.pert, clip_new_pert) # Train no_pert_grad = [(tf.zeros_like(v), v) if 'perturbation' in v.name else (g, v) for g, v in grads] with tf.control_dependencies([assigned]): min_step = optimizer.apply_gradients(no_pert_grad, global_step=global_step) tf.initialize_variables([model.pert]) # TODO: Removed from TF # Setting up the Tensorboard and checkpoint outputs if not os.path.exists(model_dir): os.makedirs(model_dir) saver = tf.train.Saver(max_to_keep=1) tf.summary.scalar('accuracy', model.accuracy) tf.summary.scalar('xent', model.xent / train_batch_size) tf.summary.scalar('total loss', total_loss / train_batch_size) merged_summaries = tf.summary.merge_all() gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: print('\n\n********** free training for epsilon=%.1f using m_replay=%d **********\n\n' % (epsilon, replay_m)) print('important params >>> \n model dir: %s \n dataset: %s \n training batch size: %d \n' % (model_dir, dataset, train_batch_size)) if dataset == 'cifar100': print('the ride for CIFAR100 is bumpy -- fasten your seatbelts! \n \ you will probably see the training and validation accuracy fluctuating a lot early in trainnig \n \ this is natural especially for large replay_m values because we see that mini-batch so many times.') # initialize data augmentation if dataset == 'cifar10': data = cifar10_input.AugmentedCIFAR10Data(raw_data, sess, model) else: data = cifar100_input.AugmentedCIFAR100Data(raw_data, sess, model) # Initialize the summary writer, global variables, and our time counter. summary_writer = tf.summary.FileWriter(model_dir + '/train', sess.graph) eval_summary_writer = tf.summary.FileWriter(model_dir + '/eval') sess.run(tf.global_variables_initializer()) # Main training loop for ii in range(train_steps): if ii % replay_m == 0: x_batch, y_batch = data.train_data.get_next_batch(train_batch_size, multiple_passes=True) nat_dict = {model.x_input: x_batch, model.y_input: y_batch} x_eval_batch, y_eval_batch = data.eval_data.get_next_batch(train_batch_size, multiple_passes=True) eval_dict = {model.x_input: x_eval_batch, model.y_input: y_eval_batch} # Output to stdout if ii % summary_steps == 0: train_acc, summary = sess.run([model.accuracy, merged_summaries], feed_dict=nat_dict) summary_writer.add_summary(summary, global_step.eval(sess)) val_acc, summary = sess.run([model.accuracy, merged_summaries], feed_dict=eval_dict) eval_summary_writer.add_summary(summary, global_step.eval(sess)) print('Step {}: ({})'.format(ii, datetime.now())) print(' training nat accuracy {:.4}% -- validation nat accuracy {:.4}%'.format(train_acc * 100, val_acc * 100)) sys.stdout.flush() # Tensorboard summaries elif ii % out_steps == 0: nat_acc = sess.run(model.accuracy, feed_dict=nat_dict) print('Step {}: ({})'.format(ii, datetime.now())) print(' training nat accuracy {:.4}%'.format(nat_acc * 100)) # Write a checkpoint if (ii+1) % checkpoint_steps == 0: saver.save(sess, os.path.join(model_dir, 'checkpoint'), global_step=global_step) # Actual training step sess.run(min_step, feed_dict=nat_dict) if __name__ == '__main__': args = config.get_args() train(**vars(args))
2.453125
2
DataGenSalientIU_DUC_allAlignments_CDLM.py
oriern/ClusterProp
2
12784138
import pandas as pd from transformers import BertTokenizer, RobertaTokenizer, AutoTokenizer import os import numpy as np import re import glob from nltk import sent_tokenize from utils import num_tokens import math def read_generic_file(filepath): """ reads any generic text file into list containing one line as element """ text = [] with open(filepath, 'r') as f: for line in f.read().splitlines(): text.append(line.strip()) return text def offset_str2list(offset): return [[int(start_end) for start_end in offset.split(',')] for offset in offset.split(';')] def offset_decreaseSentOffset(sentOffset, scu_offsets): return [[start_end[0] - sentOffset, start_end[1] - sentOffset] for start_end in scu_offsets] def insert_string(string, index, value): return string[:index] + value + string[index:] # the next *four* functions are taken from PreSumm implementation def _get_ngrams(n, text): """Calcualtes n-grams. Args: n: which n-grams to calculate text: An array of tokens Returns: A set of n-grams """ ngram_set = set() text_length = len(text) max_index_ngram_start = text_length - n for i in range(max_index_ngram_start + 1): ngram_set.add(tuple(text[i:i + n])) return ngram_set def _get_word_ngrams(n, sentences): """Calculates word n-grams for multiple sentences. """ assert len(sentences) > 0 assert n > 0 # words = _split_into_words(sentences) words = sum(sentences, []) # words = [w for w in words if w not in stopwords] return _get_ngrams(n, words) def cal_rouge(evaluated_ngrams, reference_ngrams): reference_count = len(reference_ngrams) evaluated_count = len(evaluated_ngrams) overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams) overlapping_count = len(overlapping_ngrams) if evaluated_count == 0: precision = 0.0 else: precision = overlapping_count / evaluated_count if reference_count == 0: recall = 0.0 else: recall = overlapping_count / reference_count f1_score = 2.0 * ((precision * recall) / (precision + recall + 1e-8)) return {"f": f1_score, "p": precision, "r": recall} def greedy_selection(doc_sent_list, abstract_sent_list, summary_size=1000): def _rouge_clean(s): return re.sub(r'[^a-zA-Z0-9 ]', '', s) max_rouge = 0.0 abstract = sum(abstract_sent_list, []) abstract = _rouge_clean(' '.join(abstract)).split() sents = [_rouge_clean(' '.join(s)).split() for s in doc_sent_list] evaluated_1grams = [_get_word_ngrams(1, [sent]) for sent in sents] reference_1grams = _get_word_ngrams(1, [abstract]) evaluated_2grams = [_get_word_ngrams(2, [sent]) for sent in sents] reference_2grams = _get_word_ngrams(2, [abstract]) selected = [] for s in range(summary_size): cur_max_rouge = max_rouge cur_id = -1 for i in range(len(sents)): if (i in selected): continue c = selected + [i] candidates_1 = [evaluated_1grams[idx] for idx in c] candidates_1 = set.union(*map(set, candidates_1)) candidates_2 = [evaluated_2grams[idx] for idx in c] candidates_2 = set.union(*map(set, candidates_2)) rouge_1 = cal_rouge(candidates_1, reference_1grams)['f'] rouge_2 = cal_rouge(candidates_2, reference_2grams)['f'] rouge_score = rouge_1 + rouge_2 if rouge_score > cur_max_rouge: cur_max_rouge = rouge_score cur_id = i if (cur_id == -1): return selected selected.append(cur_id) max_rouge = cur_max_rouge return sorted(selected) def greedy_selection_MDS(doc_sent_list, abstracts, summary_size=1000): def _rouge_clean(s): return re.sub(r'[^a-zA-Z0-9 ]', '', s) max_rouge = 0.0 # abstract = sum(abstract_sent_list, []) abstracts = [_rouge_clean(abstract.lower().replace('...',' ... ')).split() for abstract in abstracts] # abstract = _rouge_clean(' '.join(abstract)).split() sents = [_rouge_clean(s.lower().replace('...',' ... ')).split() for s in doc_sent_list] evaluated_1grams = [_get_word_ngrams(1, [sent]) for sent in sents] evaluated_2grams = [_get_word_ngrams(2, [sent]) for sent in sents] references_1grams = [] references_2grams = [] for abstract in abstracts: references_1grams.append(_get_word_ngrams(1, [abstract])) references_2grams.append(_get_word_ngrams(2, [abstract])) selected = [] for s in range(summary_size): cur_max_rouge = max_rouge cur_id = -1 for i in range(len(sents)): if (i in selected): continue c = selected + [i] candidates_1 = [evaluated_1grams[idx] for idx in c] candidates_1 = set.union(*map(set, candidates_1)) candidates_2 = [evaluated_2grams[idx] for idx in c] candidates_2 = set.union(*map(set, candidates_2)) rouge_1 = np.mean([cal_rouge(candidates_1, reference_1grams)['f'] for reference_1grams in references_1grams]) rouge_2 = np.mean([cal_rouge(candidates_2, reference_2grams)['f'] for reference_2grams in references_2grams]) rouge_score = rouge_1 + rouge_2 if rouge_score > cur_max_rouge: cur_max_rouge = rouge_score cur_id = i if (cur_id == -1): return selected selected.append(cur_id) max_rouge = cur_max_rouge return sorted(selected) def add_sent_special_tok(document, OIE_row = None): doc_sents = sent_tokenize(document)#[:20] if OIE_row is not None: #if main document doc_sents = doc_sents[:MAX_SENT_MAIN_DOC] sent_found_flag = False for sent_idx, sent in enumerate(doc_sents): if sent == OIE_row['docSentText']: sent_found_flag = True doc_sents[sent_idx] = add_OIE_special_tok(OIE_row['docSpanOffsets'], OIE_row['docSentCharIdx'], sent) if num_tokens('<doc-s> ' + '<s> ' + ' </s> <s> '.join(doc_sents[:sent_idx+1]) + ' </s>' + ' </doc-s>', tokenizer, add_special_tokens=True)> MAX_TOKENS: return None break if not sent_found_flag: return None else: #if context document doc_sents = doc_sents[:MAX_SENT_CONTEXT_DOC] document = '<s> ' + ' </s> <s> '.join(doc_sents) + ' </s>' return document def adding_files_context(file_context_combination, data_path, topic_dir): documents = [] for file_context in file_context_combination: text = read_generic_file(os.path.join(data_path, topic_dir, file_context)) document = " ".join(text) document = add_sent_special_tok(document) document = add_doc_special_tok(document) documents.append(document) context = ' '.join(documents) return context def add_special_tok(row, document): document_tmp = document[:]#add_OIE_special_tok(docSpanOffsets, document) document_tmp = add_sent_special_tok(document_tmp, row) if document_tmp is not None: document_tmp = add_doc_special_tok(document_tmp) return document_tmp def add_doc_special_tok(document_tmp): return '<doc-s> ' + document_tmp + ' </doc-s>' def add_OIE_special_tok(docSpanOffsets, docSentCharIdx, sent, special_tokens_for_global_attn = True): # document_tmp = document[:] span_offsets = offset_str2list(docSpanOffsets) offsets = offset_decreaseSentOffset(docSentCharIdx, span_offsets) # assume we have max 2 parts if special_tokens_for_global_attn: for offset in offsets[::-1]: #[::-1] start from the end so the remain offsets won't be shifted sent = insert_string(sent, offset[1], ' <OIE1_END> ') sent = insert_string(sent, offset[0], ' <OIE1_START> ') else: for offset in offsets[::-1]: #[::-1] start from the end so the remain offsets won't be shifted sent = insert_string(sent, offset[1], ' > ') sent = insert_string(sent, offset[0], ' < ') return sent def read_abstracts(DATASET, data_path, topic_dir): abstracts = [] if DATASET.startswith('TAC'): # for summary_path in glob.iglob( # data_path + '/summaries/' + topic_dir[:-3].upper() + topic_dir[-2:].upper() + '.*'): for summary_path in glob.iglob( data_path + '/summaries/' + topic_dir[:-3].upper() + '*'): summary = ' '.join(read_generic_file(summary_path)) abstracts.append(summary) else: for summary_path in glob.iglob(data_path + '/summaries/' + topic_dir[:-1].upper() + '.*'): summary = ' '.join(read_generic_file(summary_path)) abstracts.append(summary) return abstracts def add_instance(full_instance, tokenizer, row, highlights_list, highlights_metadata_list, file_context_combination, alignment_label='alignment_label'): full_instance, global_attention_idx = extract_global_attention_idx(full_instance, tokenizer) print('num tokens:', num_tokens(full_instance, tokenizer, add_special_tokens=False)) highlights_list.append([full_instance, row[alignment_label], global_attention_idx, row['greedyMaxRouge']]) highlights_metadata_list.append(row.tolist()+ [file_context_combination]) def replace_special_token(text, special_token_char_idxes, old_special_token, new_special_token): text = text[:special_token_char_idxes[-1]] + new_special_token + text[special_token_char_idxes[-1] + len( old_special_token):] # replace '<OIE1_START>' with '<' special_token_char_idxes[-1] += 1 # include new special token '<' return text, special_token_char_idxes def extract_global_attention_idx(text, tokenizer, model_max_tokens = None): if model_max_tokens is None: model_max_tokens = MAX_TOKENS #and replace new special tokens with '<' '>' so the model wont have to learn new tokens. special_tokens_idx_list = [] special_token_char_idxes = [] mark_start_idx = text.find('<OIE1_START>') while mark_start_idx > -1: # find special_token_char_idxes special_token_char_idxes.append(mark_start_idx) text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE1_START>', '<') special_token_char_idxes.append(text.find('<OIE1_END>')) text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE1_END>', '>') mark_start_idx = text.find('<OIE1_START>') # #find special_token_char_idxes # special_token_char_idxes = [] # special_token_char_idxes.append(text.find('<OIE1_START>')) # text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE1_START>', '<') # special_token_char_idxes.append(text.find('<OIE1_END>')) # text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE1_END>', '>') # start_idx2 = text.find('<OIE2_START>') # if start_idx2 > -1: #if exists # special_token_char_idxes.append(start_idx2) # text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE2_START>', '<') # special_token_char_idxes.append(text.find('<OIE2_END>')) # text, special_token_char_idxes = replace_special_token(text, special_token_char_idxes, '<OIE2_END>', '>') # find special token idxes for special_token_char_idx in special_token_char_idxes: special_token_prev_text = text[:special_token_char_idx] special_token_idx = num_tokens(special_token_prev_text, tokenizer) # special token start sent included as we take len of tokens which is the idx+1 assert(('<' in tokenizer.tokenize(text)[special_token_idx-1]) or ('>' in tokenizer.tokenize(text)[special_token_idx-1])) # check it finds the special token. special_token_idx-1 as we omit special start sent token, as tokemize function doesnt include it. assert(special_token_idx < model_max_tokens) #it shouldnt be longer then 2048 (0-2047), and the last token is special end of sentence token. special_tokens_idx_list.append(special_token_idx) return text, special_tokens_idx_list def createGT_labels(OIEs_topic, data_path, topic_dir, DATASET): labels_column_name = 'greedyMaxRouge' OIEs_topic['original_idx'] = range(len(OIEs_topic)) abstracts = read_abstracts(DATASET, data_path, topic_dir) docFile_summSpan_cands = list(OIEs_topic['docSpanText'].values) positive_summSpan_idx = greedy_selection_MDS(docFile_summSpan_cands, abstracts) positive_summSpan_original_idx = [OIEs_topic['original_idx'].values[cand_idx] for cand_idx in positive_summSpan_idx] scnd_filter_label = np.zeros(len(OIEs_topic), dtype=int) scnd_filter_label[positive_summSpan_original_idx] = 1 if labels_column_name in OIEs_topic.columns: scnd_filter_label = np.array(OIEs_topic[labels_column_name].to_list()) + scnd_filter_label OIEs_topic[labels_column_name] = scnd_filter_label ##validation for correct indexes positive_labeled_spans = OIEs_topic[OIEs_topic[labels_column_name] == 1]['docSpanText'].to_list() positive_labeled_spans_validation = [docFile_summSpan_cands[cand_idx] in positive_labeled_spans for cand_idx in positive_summSpan_idx] assert(all(positive_labeled_spans_validation)) return OIEs_topic def add_sent_in_file_idx(OIEs_topic, data_path, topic_dir): doc_sent_idx = np.zeros(len(OIEs_topic), dtype=int) OIEs_topic['original_idx'] = range(len(OIEs_topic)) topic_files = os.listdir(os.path.join(data_path, topic_dir)) for file_idx, file in enumerate(topic_files): OIEs_topic_file = OIEs_topic[OIEs_topic['documentFile']==file] text = read_generic_file(os.path.join(data_path, topic_dir, file)) document = " ".join(text) doc_sents = sent_tokenize(document) for sent_idx, doc_sent in enumerate(doc_sents): OIEs_topic_file_sent_original_idx = (OIEs_topic_file['original_idx'][OIEs_topic_file['docSentText'] == doc_sent]).values doc_sent_idx[OIEs_topic_file_sent_original_idx] = sent_idx OIEs_topic['inFile_sentIdx'] = doc_sent_idx return OIEs_topic def positive_augmentation(num_negative, num_positive, highlights_df, highlights_metadata_df, label_tag = 'label', SAFE_BUFFER = 100): original_len_highlights_df = len(highlights_df) augmentation_factor = (num_negative- num_positive - SAFE_BUFFER)/num_positive if label_tag != 'label': augmentation_factor = (num_negative - num_positive - SAFE_BUFFER) / len(highlights_df[highlights_df[label_tag]==1]) #threshold = 0.75 augmentation_factor = math.floor(augmentation_factor) #if augmentation_factor < (math.floor(augmentation_factor) + threshold) else math.ceil(augmentation_factor) positive_highlights_df = highlights_df[highlights_df[label_tag] == 1] positive_highlights_metadata_df = highlights_metadata_df.loc[positive_highlights_df.index, :] if augmentation_factor >= 1: for i in range(augmentation_factor): highlights_df = highlights_df.append(positive_highlights_df) highlights_metadata_df = highlights_metadata_df.append(positive_highlights_metadata_df) num_negative = len(highlights_df[highlights_df['label'] == 0]) num_positive = len(highlights_df[highlights_df['label'] == 1]) print('negative samples:', num_negative) print('positive samples:', num_positive) # augmentation_factor = (num_negative - num_positive) / num_positive # if still not equal- add part of positive samples. # if augmentation_factor > 0.5: if num_negative - num_positive > SAFE_BUFFER: selected_index = np.random.choice(positive_highlights_df.index.to_list(),num_negative - num_positive -SAFE_BUFFER,replace=False) selected_positive_highlights_df = highlights_df[:original_len_highlights_df].loc[selected_index, :] #copy from original highlights_df (before augmentation) so rows won't be double augmented by their index selected_positive_highlights_metadata_df = highlights_metadata_df[:original_len_highlights_df].loc[selected_index, :] highlights_df = highlights_df.append(selected_positive_highlights_df) highlights_metadata_df = highlights_metadata_df.append(selected_positive_highlights_metadata_df) num_negative = len(highlights_df[highlights_df['label'] == 0]) num_positive = len(highlights_df[highlights_df['label'] == 1]) print('negative samples:', num_negative) print('positive samples:', num_positive) return highlights_df, highlights_metadata_df ################################## ###### main ############## ################################## if __name__ == "__main__": np.random.seed(42) SET = 'train' DATASETS = ['TAC2008','TAC2009','TAC2010'] NUM_CONTEXT_FILES = 9 MAX_TOKENS = 4096 filter_negative = False FILTER_RATE = 0.4 over_sample_positive = False MAX_SENT_MAIN_DOC = 20 MAX_SENT_CONTEXT_DOC = 9 sentences_level = False if SET == 'train': filter_negative = True over_sample_positive = True positive_label = 'greedyMaxRouge' if filter_negative: filter_negative_label = '_filter_negative' else: filter_negative_label = '' if over_sample_positive: over_sample_positive_label = '_over_sample_positive' else: over_sample_positive_label = '' if sentences_level: sentences_level_label = '_sentence_based' else: sentences_level_label = '' OUTPUT_PATH = 'OIE_highlights/{}_{}_CDLM{}{}{}_fixed_truncated.csv'.format("_".join(DATASETS), SET, filter_negative_label, over_sample_positive_label, sentences_level_label) highlights_list = [] highlights_metadata_list = [] # tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # tokenizer = RobertaTokenizer.from_pretrained('roberta-base') tokenizer = AutoTokenizer.from_pretrained('./CDLM/') tokenizer.add_special_tokens( {'additional_special_tokens': ['<OIE1_START>', '<OIE1_END>', '<OIE2_START>', '<OIE2_END>']}) for DATASET in DATASETS: data_path = 'data/{}/'.format(DATASET) OIEs = pd.read_csv('OIE_cands/OIE_cands_{}.csv'.format(DATASET)) if sentences_level: OIEs['docSpanText'] = OIEs['docSentText'] OIEs['docSpanOffsets'] = OIEs['docSentCharIdx'].apply(str) + ', ' + ( OIEs['docSentCharIdx'] + OIEs['docSentText'].apply(len)).apply(str) used_positive_spans = 0 for topic_dir in os.listdir(data_path): print(topic_dir) if topic_dir == 'summaries': continue OIEs_topic = OIEs[OIEs['topic'] == topic_dir] if DATASET.startswith('TAC'): topic_dir_tac2011 = topic_dir[:-3].upper() + topic_dir[-2:].upper() OIEs_topic = OIEs[OIEs['topic'] == topic_dir_tac2011] OIEs_topic = add_sent_in_file_idx(OIEs_topic, data_path, topic_dir) OIEs_topic = OIEs_topic[OIEs_topic['inFile_sentIdx'] < MAX_SENT_MAIN_DOC] OIEs_topic = createGT_labels(OIEs_topic, data_path, topic_dir, DATASET) topic_files = os.listdir(os.path.join(data_path, topic_dir)) topic_dates = [topic[re.search(r"\d", topic).start():] for topic in topic_files]#[topic_file[3:] for topic_file in topic_files] topic_files = [x for _, x in sorted(zip(topic_dates, topic_files))] for file_idx, file in enumerate(topic_files): text = read_generic_file(os.path.join(data_path, topic_dir, file)) document = " ".join(text) post_context_files = topic_files[file_idx + 1:file_idx + 1 + NUM_CONTEXT_FILES] pre_context_files = [] if len(post_context_files) < NUM_CONTEXT_FILES: diff_len = NUM_CONTEXT_FILES - len(post_context_files) pre_context_files = topic_files[max(0, file_idx - diff_len):file_idx] # + context_files assert (len(post_context_files + pre_context_files) == min(NUM_CONTEXT_FILES, len(topic_files) - 1)) # trunced_document = truncated_text_for_openie(document, tokenizer) OIEs_topic_docFile = OIEs_topic[ OIEs_topic['documentFile'] == file] for index, row in OIEs_topic_docFile.iterrows(): main_document = add_special_tok(row, document) if main_document is None: continue if row[positive_label]: used_positive_spans += 1 else: if filter_negative: if np.random.choice([0, 1], p=[FILTER_RATE, 1 - FILTER_RATE]): # 'continue' in random (1 - FILTER_RATE) of negative cases. continue # for file_context_combination in [context_files]:# combinations(topic_files_tmp,NUM_CONTEXT_FILES): # all context combinations of 2 files pre_documents_context = adding_files_context(pre_context_files, data_path, topic_dir) post_documents_context = adding_files_context(post_context_files, data_path, topic_dir) file_context_combination = pre_context_files + post_context_files full_instance = pre_documents_context + ' ' + main_document + ' ' + post_documents_context add_instance(full_instance, tokenizer, row, highlights_list, highlights_metadata_list, file_context_combination, alignment_label=positive_label) print(len(highlights_list)) highlights_df = pd.DataFrame(highlights_list, columns=['', 'label', 'global_attention_idx', 'greedyMaxRouge']) highlights_metadata_df = pd.DataFrame(highlights_metadata_list, columns=OIEs_topic.columns.tolist() + ['doc_context']) num_negative = len(highlights_df[highlights_df['label'] == 0]) num_positive = len(highlights_df[highlights_df['label'] == 1]) print('negative samples:', num_negative) print('positive samples:', num_positive) if over_sample_positive: highlights_df, highlights_metadata_df = positive_augmentation(num_negative, num_positive, highlights_df, highlights_metadata_df) highlights_df = highlights_df[['', 'label', 'global_attention_idx']] highlights_df.to_csv(OUTPUT_PATH, index=False) highlights_metadata_df.to_csv(OUTPUT_PATH[:-4] + '_metadata.csv', index=False)
2.921875
3
Code/grace/source.py
AndreasMadsen/grace
1
12784139
<gh_stars>1-10 __all__ = ["filelist", "getgrid", "getdata", "getposition"] import os import os.path as path import csv import datetime import numpy as np # Resolve the absolute directory path the grids directory grids = path.join(path.dirname(path.realpath(__file__)), 'grids') # Generate a list of all names for the datafiles in the grids directory # nor the directory path or the file extension is a part of the final # name filelist = [] for name in os.listdir(grids): filepath = path.join(grids, name) if path.isdir(filepath) or (name[0] == '.') or ('\r' in filepath): continue filelist.append(os.path.splitext(name)[0]) def julian2date(julian): """ Return a python date object from a julian date given as an int. """ dt = datetime.timedelta(julian - 18262) return datetime.date(2000, 01, 01) + dt; def getdate(name): """ Return two python dates as a tuple from the given datafile name, first is the start day, last is the end day. """ start = int(name[-11:-6]) end = int(name[-5:]) return (julian2date(start), julian2date(end)) def getgrid(name): """ Return a numpy array with the shape (180, 360). The index is then mat[latitude, longitude] Latitude is from +89.5 to -89.5 Longitude is from -179.5 to +179.5 """ filepath = path.join(grids, name + '.txt') reader = csv.reader(open(filepath), skipinitialspace=True, delimiter=" ") rows = [map(float, row) for row in reader] return np.asarray(rows).reshape((180, 360)) def getposition(index): """ Return (latitude, longitude) as a tuple from a truble containing the (row, collum) index associated with the numpy matrix meaning (latitudeIndex, longitudeIndex) """ if (index[0] < 0 or index[0] >= 180): raise LookupError('latitude index is out of range') if (index[1] < 0 or index[1] >= 360): raise LookupError('longitude index is out of range') return (89.5 - index[0], index[1] - 179.5) if __name__ == "__main__": # test filelist assert len(filelist) == 341 # test getdate assert map(str, getdate(filelist[0])) == ['2002-07-29', '2002-08-07'] # test getdata assert getdata(filelist[0]).shape == (180, 360) # test getposition assert getposition((0 ,0 )) == (+89.5, -179.5) assert getposition((179,359)) == (-89.5, +179.5) print "all tests completed"
3.140625
3
setpasswd/src/__init__.py
Haehnchen/enigma2-plugins
1
12784140
<reponame>Haehnchen/enigma2-plugins # -*- coding: ISO-8859-1 -*- from Components.Language import language from Tools.Directories import resolveFilename, SCOPE_PLUGINS, SCOPE_LANGUAGE import os,gettext PluginLanguageDomain = "SetPasswd" PluginLanguagePath = "SystemPlugins/SetPasswd/locale" def localeInit(): lang = language.getLanguage()[:2] # getLanguage returns e.g. "fi_FI" for "language_country" os.environ["LANGUAGE"] = lang # Enigma doesn't set this (or LC_ALL, LC_MESSAGES, LANG). gettext needs it! print "[SetPasswd] set language to ", lang gettext.bindtextdomain(PluginLanguageDomain, resolveFilename(SCOPE_PLUGINS, PluginLanguagePath)) def _(txt): t = gettext.dgettext(PluginLanguageDomain, txt) if t == txt: print "[SetPasswd] fallback to default translation for", txt t = gettext.gettext(txt) return t localeInit() language.addCallback(localeInit)
2.3125
2
boot_django.py
Volkova-Natalia/django_rest_auth_email_confirm_reset
0
12784141
<reponame>Volkova-Natalia/django_rest_auth_email_confirm_reset # This file sets up and configures Django. It's used by scripts that need to # execute as if running in a Django server. import os import django from django.conf import settings BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "django_rest_auth_email_confirm_reset")) FRONTEND_SCHEME = 'http' FRONTEND_HOST = 'localhost:3000' def boot_django(): if not settings.configured: settings.configure( BASE_DIR=BASE_DIR, DEBUG=True, ALLOWED_HOSTS=[ '127.0.0.1', 'localhost', ], INSTALLED_APPS=[ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'corsheaders', 'django_rest_auth_email_confirm_reset', ], MIDDLEWARE=[ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ], ROOT_URLCONF='django_rest_auth_email_confirm_reset.urls', TEMPLATES=[ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), ] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ], DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } }, AUTH_USER_MODEL='django_rest_auth_email_confirm_reset.User', AUTH_PASSWORD_VALIDATORS=[ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ], LANGUAGE_CODE='en-us', TIME_ZONE="UTC", USE_I18N=True, USE_L10N=True, USE_TZ=True, STATIC_URL='/static/', STATICFILES_DIRS=[ os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR), # for swagger.json os.path.join(os.path.dirname(BASE_DIR)), # for swagger.json ], EMAIL_USE_TLS=True, EMAIL_HOST='smtp.gmail.com', EMAIL_HOST_USER='<EMAIL>', EMAIL_HOST_PASSWORD='<PASSWORD>', EMAIL_PORT=587, EMAIL_BACKEND='django.core.mail.backends.console.EmailBackend', FRONTEND_SCHEME=FRONTEND_SCHEME, FRONTEND_HOST=FRONTEND_HOST, CORS_ALLOW_ALL_ORIGINS=False, CORS_ALLOWED_ORIGINS=[FRONTEND_SCHEME + r'://' + FRONTEND_HOST], CORS_ALLOW_CREDENTIALS=True, CSRF_TRUSTED_ORIGINS=[FRONTEND_HOST], ) django.setup()
2.03125
2
tests/testLock.py
geek-plus/vlcp
1
12784142
''' Created on 2015/12/14 :author: hubo ''' from __future__ import print_function import unittest from vlcp.server.server import Server from vlcp.event.runnable import RoutineContainer from vlcp.event.lock import Lock, Semaphore from vlcp.config.config import manager class Test(unittest.TestCase): def setUp(self): self.server = Server() def tearDown(self): pass def testLock(self): rc = RoutineContainer(self.server.scheduler) obj = [0] def routineLock(key): l = Lock(key, rc.scheduler) for m in l.lock(rc): yield m t = obj[0] for m in rc.waitWithTimeout(0.5): yield m obj[0] = t + 1 l.unlock() rc.subroutine(routineLock('testobj')) rc.subroutine(routineLock('testobj')) self.server.serve() self.assertEqual(obj[0], 2) def testWith(self): rc = RoutineContainer(self.server.scheduler) obj = [0] def routineLock(key): l = Lock(key, rc.scheduler) for m in l.lock(rc): yield m with l: t = obj[0] for m in rc.waitWithTimeout(0.5): yield m obj[0] = t + 1 rc.subroutine(routineLock('testobj')) rc.subroutine(routineLock('testobj')) self.server.serve() self.assertEqual(obj[0], 2) def testLock2(self): rc = RoutineContainer(self.server.scheduler) obj = [0] def routineLock(key): l = Lock(key, rc.scheduler) for m in l.lock(rc): yield m t = obj[0] for m in rc.waitWithTimeout(0.5): yield m obj[0] = t + 1 l.unlock() rc.subroutine(routineLock('testobj')) rc.subroutine(routineLock('testobj2')) self.server.serve() self.assertEqual(obj[0], 1) def testTrylock(self): rc = RoutineContainer(self.server.scheduler) result = [] def routineTrylock(key): l = Lock(key, rc.scheduler) locked = l.trylock() result.append(locked) for m in rc.waitWithTimeout(0.5): yield m l.unlock() rc.subroutine(routineTrylock('testobj')) rc.subroutine(routineTrylock('testobj')) self.server.serve() self.assertEqual(result, [True, False]) def testBeginlock(self): rc = RoutineContainer(self.server.scheduler) obj = [0] def routineLock(key): l = Lock(key, rc.scheduler) locked = l.beginlock(rc) if not locked: for m in rc.waitWithTimeout(1.0): yield m locked = l.trylock() if not locked: raise ValueError('Not locked') t = obj[0] for m in rc.waitWithTimeout(0.5): yield m obj[0] = t + 1 l.unlock() for m in rc.doEvents(): yield m for m in l.lock(rc): yield m t = obj[0] for m in rc.waitWithTimeout(1.0): yield m obj[0] = t + 1 l.unlock() rc.subroutine(routineLock('testobj')) rc.subroutine(routineLock('testobj')) self.server.serve() self.assertEqual(obj[0], 4) def testBeginlock2(self): rc = RoutineContainer(self.server.scheduler) obj = [0] def routineLock(key): l = Lock(key, rc.scheduler) locked = l.beginlock(rc) if not locked: for m in rc.waitWithTimeout(0.5): yield m for m in l.lock(rc): yield m t = obj[0] for m in rc.waitWithTimeout(1.0): yield m obj[0] = t + 1 l.unlock() for m in rc.doEvents(): yield m for m in l.lock(rc): yield m t = obj[0] if t != 2: obj[0] = t - 1 l.unlock() rc.subroutine(routineLock('testobj')) rc.subroutine(routineLock('testobj')) self.server.serve() self.assertEqual(obj[0], 2) def testSemaphore(self): rc = RoutineContainer(self.server.scheduler) obj = [0] smp = Semaphore('testobj', 2, rc.scheduler) smp.create() def routineLock(key): l = Lock(key, rc.scheduler) for m in l.lock(rc): yield m t = obj[0] for m in rc.waitWithTimeout(0.5): yield m obj[0] = t + 1 l.unlock() rc.subroutine(routineLock('testobj')) rc.subroutine(routineLock('testobj')) rc.subroutine(routineLock('testobj')) rc.subroutine(routineLock('testobj')) self.server.serve() self.assertEqual(obj[0], 2) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
2.328125
2
src/tests/__init__.py
miguelarbesu/asd-asd
0
12784143
"""Test suite for asd asd"""
0.894531
1
src/pokeapp/views.py
luisgdev/djangopoke
0
12784144
<filename>src/pokeapp/views.py from django.http import JsonResponse from django.core.serializers import serialize from django.forms.models import model_to_dict from .models import Pokemon, Stat, Evolution # Create your views here. def pokesearch(request, name): pokemon: Pokemon = Pokemon.objects.get(name=name) stats = [] for item in Stat.objects.filter(pokemon=pokemon): stats.append(model_to_dict(item)) evolutions = [] for item in Evolution.objects.filter(evo_id=pokemon.evo_chain): evolutions.append(model_to_dict(item)) response: dict = model_to_dict(pokemon) response["stats"] = stats response["evolutions"] = evolutions return JsonResponse(response)
2.234375
2
Prep/ProgrammingPrac/temp.py
talk2sunil83/UpgradLearning
0
12784145
<reponame>talk2sunil83/UpgradLearning<filename>Prep/ProgrammingPrac/temp.py # %% from typing import Sequence from numba import njit # %% def fib(n: int): if(n <= 2): return 1 return fib(n-1) + fib(n-2) # print(fib(3)) # print(fib(5)) # print(fib(8)) def fib_memo(n: int, memo={1: 1, 2: 1}): if n >= 1: if (n in memo): return memo[n] memo[n] = fib_memo(n-1, memo) + fib_memo(n-2, memo) return memo[n] else: print("Provide Positive int") # %% # print(fib_memo(100)) # @njit(fastmath=True, cache=True) def grid_traveller(x: int, y: int, memo={}) -> int: if (x, y) in memo.keys(): return memo[(x, y)] if x*y == 0: return 0 if x*y == 1: return 1 res = grid_traveller(x-1, y, memo) + grid_traveller(x, y-1, memo) memo[(x, y)] = res return res print(grid_traveller(1, 1)) print(grid_traveller(3, 3)) print(grid_traveller(10, 10)) # %% def can_sum(target: int, arr: Sequence[int]) -> bool: pass # %% def how_sum(target: int, arr: Sequence[int]) -> Sequence[int]: pass # %% def can_sum(target: int, arr: Sequence[int]): pass
3.625
4
pandoc-convert/convert-directory.py
toffer/docker-data-only-container-demo
17
12784146
#!/usr/bin/env python """Convert Directory. Usage: convert_directory.py <src_dir> <dest_dir> -h --help show this """ import errno import os import subprocess from docopt import docopt def convert_directory(src, dest): # Convert the files in place for root, dirs, files in os.walk(src): for filename in files: name, ext = os.path.splitext(filename) if ext in ['.md', '.markdown']: html_filename = '.'.join([name, 'html']) md_path = os.path.join(root, filename) html_path = os.path.join(root, html_filename) subprocess.call(['pandoc', md_path, '-s', '-o', html_path]) # Incredibly hacky way to move all files, except markdown files # (Making sure image files get transferred to dest directory.) subprocess.call(['rsync', '-a', src + '/', dest]) subprocess.call(['find', dest, '-name', '*.md', '-exec', 'rm', '{}', ';']) subprocess.call(['find', dest, '-name', '*.markdown', '-exec', 'rm', '{}', ';']) # Clean out generated html files in src directory. subprocess.call(['find', src, '-name', '*.html', '-exec', 'rm', '{}', ';']) if __name__ == '__main__': args = docopt(__doc__, version='Convert Directory 0.1') src = args['<src_dir>'] dest = args['<dest_dir>'] convert_directory(src, dest)
3.234375
3
build_site_col.py
griffij/eq_hazmap_tests
1
12784147
"""Test building site collection at interpolated points and writing to nrml format Can run in parallel in order to deal with large site collections <NAME> Geoscience Australia """ import os, sys import numpy as np from time import localtime, strftime, gmtime import string import pypar from get_site_model import get_site_collection from openquake.hazardlib.geo.point import Point #from estimate_magnitude import build_site_col def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def build_site_col(sites_data, site_model_file, filename=None): """Interpolate vs30 values to sites of interest """ # sites_data = np.genfromtxt(site_file) site_points = [] for i in range(len(sites_data[:,0])): site_pt = Point(sites_data[i,0], sites_data[i,1]) site_points.append(site_pt) sitecol = get_site_collection(site_model_file, site_points, None, filename) return sitecol # Set up paralell proc = pypar.size() # Number of processors as specified by mpirun myid = pypar.rank() # Id of of this process (myid in [0, proc-1]) node = pypar.get_processor_name() # Host name on which current process is running print 'I am proc %d of %d on node %s' % (myid, proc, node) #nruns = 320 # currently hard coded - need to improve this t0 = pypar.time() locations_file = 'data/jawa_bali_nt_sulawesi_sites_clean.csv'#jawa_sites.csv' sites_file = 'data/jawa_bali_nt_sulawesi_site_model.xml'#jawa_site_model.xml' outfile = 'data/jawa_bali_nt_sulawesi_site_model_full.xml' #locations_file = 'data/jawa_sites_test.csv' #sites_file = 'data/jawa_site_model.xml' #outfile = 'data/jawa_site_model_test.xml' #if myid == 0: sites_data = np.genfromtxt(locations_file, delimiter=',') #print sites_data # Split sources list_length = len(sites_data) / (proc) print list_length if (len(sites_data) % proc) > 0: list_length +=1 pt_list = list(chunks(sites_data, list_length)) #print pt_list for i in range(0, len(pt_list), 1): if i % proc == myid: run = "%03d" % i # Apply geometrical filtering print 'Building site model for run %s' % run tmp_outfile = outfile[:-4] + '_' + str(run) + '.xml' build_site_col(pt_list[i], sites_file, filename=tmp_outfile) pypar.barrier() if myid == 0: outlines = [] tmp_pt_source_filename_list = [] tmp_pt_source_list = [] # Now combine into one file for j in range(0, len(pt_list), 1): tmp_pt_filename = outfile[:-4] + '_%03d.xml' % j tmp_pt_source_filename_list.append(tmp_pt_filename) for tmp_pt_source_file in tmp_pt_source_filename_list: f_in = open(tmp_pt_source_file, 'r') for line in f_in.readlines(): if line.lstrip().startswith('<site '): outlines.append(line) f_in.close() f_out = open(outfile, 'w') # write header f_out.write('<?xml version="1.0" encoding="utf-8"?>\n') f_out.write('<nrml\n') f_out.write('xmlns="http://openquake.org/xmlns/nrml/0.4"\n') f_out.write('xmlns:gml="http://www.opengis.net/gml"\n') f_out.write(' <siteModel>\n') #outlines = [oxml + '\n' for oxml in outlines] f_out.writelines(outlines) f_out.write(' </siteModel>\n') f_out.write('</nrml>') ss = int(pypar.time() - t0) h = ss / 3600 m = (ss % 3600) / 60 s = (ss % 3600) % 60 print "--------------------------------------------------------" print 'P0: Total time (%i seconds): %s:%s:%s (hh:mm:ss)' % (ss, string.zfill(h, 2), string.zfill(m, 2), string.zfill(s,2)) print "--------------------------------------------------------" pypar.finalize()
2.234375
2
hknweb/candidate/tests/models/requirements/committee_project/test_committee_project.py
jyxzhang/hknweb
20
12784148
from django.test import TestCase from hknweb.candidate.tests.models.utils import ModelFactory class CommitteeProjectRequirementModelTests(TestCase): def setUp(self): semester = ModelFactory.create_semester( semester="Spring", year=0, ) committeeproject = ModelFactory.create_committeeproject_requirement( candidateSemesterActive=semester, ) self.semester = semester self.committeeproject = committeeproject def test_str(self): expected = "{} - {}".format(self.committeeproject.name, self.semester) actual = str(self.committeeproject) self.assertEqual(expected, actual)
2.609375
3
ogb_lsc/pcq/conformer_utils.py
kawa-work/deepmind-research
10,110
12784149
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Conformer utilities.""" import copy from typing import List, Optional from absl import logging import numpy as np import rdkit from rdkit import Chem from rdkit.Chem import AllChem import tensorflow.compat.v2 as tf def generate_conformers( molecule: Chem.rdchem.Mol, max_num_conformers: int, *, random_seed: int = -1, prune_rms_thresh: float = -1.0, max_iter: int = -1, fallback_to_random: bool = False, ) -> Chem.rdchem.Mol: """Generates conformers for a given molecule. Args: molecule: molecular representation of the compound. max_num_conformers: maximum number of conformers to generate. If pruning is done, the returned number of conformers is not guaranteed to match max_num_conformers. random_seed: random seed to use for conformer generation. prune_rms_thresh: RMSD threshold which allows to prune conformers that are too similar. max_iter: Maximum number of iterations to perform when optimising MMFF force field. If set to <= 0, energy optimisation is not performed. fallback_to_random: if conformers cannot be obtained, use random coordinates to initialise. Returns: Copy of a `molecule` with added hydrogens. The returned molecule contains force field-optimised conformers. The number of conformers is guaranteed to be <= max_num_conformers. """ mol = copy.deepcopy(molecule) mol = Chem.AddHs(mol) mol = _embed_conformers( mol, max_num_conformers, random_seed, prune_rms_thresh, fallback_to_random, use_random=False) if max_iter > 0: mol_with_conformers = _minimize_by_mmff(mol, max_iter) if mol_with_conformers is None: mol_with_conformers = _minimize_by_uff(mol, max_iter) else: mol_with_conformers = mol # Aligns conformations in a molecule to each other using the first # conformation as the reference. AllChem.AlignMolConformers(mol_with_conformers) # We remove hydrogens to keep the number of atoms consistent with the graph # nodes. mol_with_conformers = Chem.RemoveHs(mol_with_conformers) return mol_with_conformers def atom_to_feature_vector( atom: rdkit.Chem.rdchem.Atom, conformer: Optional[np.ndarray] = None, ) -> List[float]: """Converts rdkit atom object to feature list of indices. Args: atom: rdkit atom object. conformer: Generated conformers. Returns -1 values if set to None. Returns: List containing positions (x, y, z) of each atom from the conformer. """ if conformer: pos = conformer.GetAtomPosition(atom.GetIdx()) return [pos.x, pos.y, pos.z] return [np.nan, np.nan, np.nan] def compute_conformer(smile: str, max_iter: int = -1) -> np.ndarray: """Computes conformer. Args: smile: Smile string. max_iter: Maximum number of iterations to perform when optimising MMFF force field. If set to <= 0, energy optimisation is not performed. Returns: A tuple containing index, fingerprint and conformer. Raises: RuntimeError: If unable to convert smile string to RDKit mol. """ mol = rdkit.Chem.MolFromSmiles(smile) if not mol: raise RuntimeError('Unable to convert smile to molecule: %s' % smile) conformer_failed = False try: mol = generate_conformers( mol, max_num_conformers=1, random_seed=45, prune_rms_thresh=0.01, max_iter=max_iter) except IOError as e: logging.exception('Failed to generate conformers for %s . IOError %s.', smile, e) conformer_failed = True except ValueError: logging.error('Failed to generate conformers for %s . ValueError', smile) conformer_failed = True except: # pylint: disable=bare-except logging.error('Failed to generate conformers for %s.', smile) conformer_failed = True atom_features_list = [] conformer = None if conformer_failed else list(mol.GetConformers())[0] for atom in mol.GetAtoms(): atom_features_list.append(atom_to_feature_vector(atom, conformer)) conformer_features = np.array(atom_features_list, dtype=np.float32) return conformer_features def get_random_rotation_matrix(include_mirror_symmetry: bool) -> tf.Tensor: """Returns a single random rotation matrix.""" rotation_matrix = _get_random_rotation_3d() if include_mirror_symmetry: random_mirror_symmetry = _get_random_mirror_symmetry() rotation_matrix = tf.matmul(rotation_matrix, random_mirror_symmetry) return rotation_matrix def rotate(vectors: tf.Tensor, rotation_matrix: tf.Tensor) -> tf.Tensor: """Batch of vectors on a single rotation matrix.""" return tf.matmul(vectors, rotation_matrix) def _embed_conformers( molecule: Chem.rdchem.Mol, max_num_conformers: int, random_seed: int, prune_rms_thresh: float, fallback_to_random: bool, *, use_random: bool = False, ) -> Chem.rdchem.Mol: """Embeds conformers into a copy of a molecule. If random coordinates allowed, tries not to use random coordinates at first, and uses random only if fails. Args: molecule: molecular representation of the compound. max_num_conformers: maximum number of conformers to generate. If pruning is done, the returned number of conformers is not guaranteed to match max_num_conformers. random_seed: random seed to use for conformer generation. prune_rms_thresh: RMSD threshold which allows to prune conformers that are too similar. fallback_to_random: if conformers cannot be obtained, use random coordinates to initialise. *: use_random: Use random coordinates. Shouldn't be set by any caller except this function itself. Returns: A copy of a molecule with embedded conformers. Raises: ValueError: if conformers cannot be obtained for a given molecule. """ mol = copy.deepcopy(molecule) # Obtains parameters for conformer generation. # In particular, ETKDG is experimental-torsion basic knowledge distance # geometry, which allows to randomly generate an initial conformation that # satisfies various geometric constraints such as lower and upper bounds on # the distances between atoms. params = AllChem.ETKDGv3() params.randomSeed = random_seed params.pruneRmsThresh = prune_rms_thresh params.numThreads = -1 params.useRandomCoords = use_random conf_ids = AllChem.EmbedMultipleConfs(mol, max_num_conformers, params) if not conf_ids: if not fallback_to_random or use_random: raise ValueError('Cant get conformers') return _embed_conformers( mol, max_num_conformers, random_seed, prune_rms_thresh, fallback_to_random, use_random=True) return mol def _minimize_by_mmff( molecule: Chem.rdchem.Mol, max_iter: int, ) -> Optional[Chem.rdchem.Mol]: """Minimizes forcefield for conformers using MMFF algorithm. Args: molecule: a datastructure containing conformers. max_iter: number of maximum iterations to use when optimising force field. Returns: A copy of a `molecule` containing optimised conformers; or None if MMFF cannot be performed. """ molecule_props = AllChem.MMFFGetMoleculeProperties(molecule) if molecule_props is None: return None mol = copy.deepcopy(molecule) for conf_id in range(mol.GetNumConformers()): ff = AllChem.MMFFGetMoleculeForceField( mol, molecule_props, confId=conf_id, ignoreInterfragInteractions=False) ff.Initialize() # minimises a conformer within a mol in place. ff.Minimize(max_iter) return mol def _minimize_by_uff( molecule: Chem.rdchem.Mol, max_iter: int, ) -> Chem.rdchem.Mol: """Minimizes forcefield for conformers using UFF algorithm. Args: molecule: a datastructure containing conformers. max_iter: number of maximum iterations to use when optimising force field. Returns: A copy of a `molecule` containing optimised conformers. """ mol = copy.deepcopy(molecule) conf_ids = range(mol.GetNumConformers()) for conf_id in conf_ids: ff = AllChem.UFFGetMoleculeForceField(mol, confId=conf_id) ff.Initialize() # minimises a conformer within a mol in place. ff.Minimize(max_iter) return mol def _get_symmetry_rotation_matrix(sign: tf.Tensor) -> tf.Tensor: """Returns the 2d/3d matrix for mirror symmetry.""" zero = tf.zeros_like(sign) one = tf.ones_like(sign) # pylint: disable=bad-whitespace,bad-continuation rot = [sign, zero, zero, zero, one, zero, zero, zero, one] # pylint: enable=bad-whitespace,bad-continuation shape = (3, 3) rot = tf.stack(rot, axis=-1) rot = tf.reshape(rot, shape) return rot def _quaternion_to_rotation_matrix(quaternion: tf.Tensor) -> tf.Tensor: """Converts a batch of quaternions to a batch of rotation matrices.""" q0 = quaternion[0] q1 = quaternion[1] q2 = quaternion[2] q3 = quaternion[3] r00 = 2 * (q0 * q0 + q1 * q1) - 1 r01 = 2 * (q1 * q2 - q0 * q3) r02 = 2 * (q1 * q3 + q0 * q2) r10 = 2 * (q1 * q2 + q0 * q3) r11 = 2 * (q0 * q0 + q2 * q2) - 1 r12 = 2 * (q2 * q3 - q0 * q1) r20 = 2 * (q1 * q3 - q0 * q2) r21 = 2 * (q2 * q3 + q0 * q1) r22 = 2 * (q0 * q0 + q3 * q3) - 1 matrix = tf.stack([r00, r01, r02, r10, r11, r12, r20, r21, r22], axis=-1) return tf.reshape(matrix, [3, 3]) def _get_random_rotation_3d() -> tf.Tensor: random_quaternions = tf.random.normal( shape=[4], dtype=tf.float32) random_quaternions /= tf.linalg.norm( random_quaternions, axis=-1, keepdims=True) return _quaternion_to_rotation_matrix(random_quaternions) def _get_random_mirror_symmetry() -> tf.Tensor: random_0_1 = tf.random.uniform( shape=(), minval=0, maxval=2, dtype=tf.int32) random_signs = tf.cast((2 * random_0_1) - 1, tf.float32) return _get_symmetry_rotation_matrix(random_signs)
2.109375
2
remu/plotting.py
ast0815/likelihood-machine
0
12784150
"""Module for handling plotting functions This module contains plotting classes to plot :class:`.Binning` objects. Examples -------- :: plt = plotting.get_plotter(binning) plt.plot_values() plt.savefig('output.png') """ from itertools import cycle import numpy as np from matplotlib import pyplot as plt from matplotlib import ticker from . import binning def get_plotter(obj, *args, **kwargs): """Return a suitable plotting class instance for the object. Parameters ---------- obj : object The object for which a plotter should be returned. *args : optional **kwargs : optional Additional arguments are passed to the init method of the plotter. """ if isinstance(obj, binning.RectilinearBinning): return RectilinearBinningPlotter(obj, *args, **kwargs) if isinstance(obj, binning.LinearBinning): return LinearBinningPlotter(obj, *args, **kwargs) if isinstance(obj, binning.CartesianProductBinning): return CartesianProductBinningPlotter(obj, *args, **kwargs) if isinstance(obj, binning.Binning): return BinningPlotter(obj, *args, **kwargs) if isinstance(obj, np.ndarray): return ArrayPlotter(obj, *args, **kwargs) raise TypeError(f"No known Plotter class for type {type(obj)}") class Plotter: """Plotting base class. Parameters ---------- figax : (Figure, Axes), optional The figure and axis to plot in. Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. """ def __init__(self, figax=None): self.figax = figax self.color = cycle("C%d" % (i,) for i in range(0, 10)) self.hatch = cycle([r"//", r"\\", r"O", "*"]) def __del__(self): """Clean up figures.""" if self.figax is not None: plt.close(self.figax[0]) def subplots(self, *args, **kwargs): """Return the ``(Figure, Axes)`` tuple of the binning. Creates one using Matplotlib's ``subplots``, if necessary. """ if self.figax is None: self.figax = plt.subplots(*args, **kwargs) return self.figax def savefig(self, *args, **kwargs): """Save the figure.""" kwargs2 = {"bbox_inches": "tight"} kwargs2.update(kwargs) self.figax[0].savefig(*args, **kwargs2) class ArrayPlotter(Plotter): """Plotting class for numpy arrays. Parameters ---------- array : ndarray The ndarray to be plotted. bins_per_row : int, optional How many bins are going to be plotted per row. **kwargs : optional Addittional keyword arguments are passed to :class:`Plotter`. See also -------- Plotter Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. array : ndarray The ndarray to be plotted. bins_per_row : int, optional How many bins are going to be plotted per row. """ def __init__(self, array, bins_per_row=25, **kwargs): self.array = array self.bins_per_row = bins_per_row Plotter.__init__(self, **kwargs) def _get_array(self, array): if array is None: array = self.array else: array = np.asarray(array) if array.shape != self.array.shape: raise TypeError("Array must be of equal shape as the initial one.") return array def _get_arrays(self, arrays): try: ret = [self._get_array(a) for a in arrays] except (TypeError, IndexError): ret = [self._get_array(arrays)] return np.array(ret) def get_bin_edges(self, i_min, i_max): """Get the bin edges corresponding to bins i_min to i_max.""" x = np.arange(i_min, i_max) return np.append(x - 0.5, x[-1] + 0.5) # Bins centred on integers def get_axis_label(self): """Return the default label for the axis.""" return "Bin #" @staticmethod def _get_stack_functions(stack_function): try: # A number? np.isfinite(stack_function) except TypeError: # Nope pass else: # A number. lobound = (1.0 - stack_function) / 2.0 hibound = 1.0 - lobound def lower(x, axis=0, bound=lobound): return np.quantile(x, bound, axis=axis) def upper(x, axis=0, bound=hibound): return np.quantile(x, bound, axis=axis) return lower, upper # No number try: # Tuple of functions? lower, upper = stack_function except TypeError: # Nope def lower(x, axis=0): return np.sum(np.zeros_like(x), axis=axis) upper = stack_function return lower, upper def plot_array( self, array=None, density=False, stack_function=np.mean, margin_function=None, **kwargs, ): """Plot an array. Parameters ---------- array : ndarray The thing to plot. density : bool, optional Divide the data by the relative bin width: ``width / total_plot_range``. stack_function : float or function or (lower_function, function) How to deal with multiple arrays. When `float`, plot the respective quantile as equal-tailed interval. When `function`, apply this function to the stack after marginalisation. When `(function, function)`, use these functions to calculate lower and upper bounds of the area to be plotted respectively. Functions must accept ``axis`` keyword argument. """ # The `margin_function` parameter is only here so it can be # safely used with all plotting methods arrays = self._get_arrays(array) lower, upper = self._get_stack_functions(stack_function) bins_per_row = self.bins_per_row if bins_per_row >= 1: n_rows = int(np.ceil(arrays.shape[-1] / bins_per_row)) else: n_rows = 1 bins_per_row = arrays.shape[-1] figax = self.subplots( nrows=n_rows, sharey=True, figsize=(6.4, max(2.4 * n_rows, 4.8)), squeeze=False, ) color = kwargs.get("color", next(self.color)) hatch = kwargs.get("hatch", next(self.hatch)) for i, ax in enumerate(figax[1][:, 0]): i_min = i * bins_per_row i_max = min((i + 1) * bins_per_row, arrays.shape[-1]) y_hi = np.asfarray(upper(arrays[:, i_min:i_max], axis=0)) y_lo = np.asfarray(lower(arrays[:, i_min:i_max], axis=0)) bins = np.asfarray(self.get_bin_edges(i_min, i_max)) # Divide by relative bin widths if density: total_width = bins[-1] - bins[0] rel_widths = (bins[1:] - bins[:-1]) / total_width y_hi /= np.asfarray(rel_widths) y_lo /= np.asfarray(rel_widths) args = { "step": "post", "edgecolor": color, "hatch": hatch, "facecolor": "none", } args.update(kwargs) y_lo = np.append(y_lo, y_lo[-1]) y_hi = np.append(y_hi, y_hi[-1]) poly = ax.fill_between(bins, y_hi, y_lo, **args) # Add sticky y edge so histograms get plotted more beautifully poly.sticky_edges.y.append(np.min(y_lo)) ax.autoscale_view() ax.get_xaxis().set_major_locator(ticker.MaxNLocator(integer=True)) ax.set_xlabel(self.get_axis_label()) def legend(self, **kwargs): """Draw a legend in the first axis.""" args = { "loc": "best", } args.update(kwargs) self.figax[1][0, 0].legend(**args) class BinningPlotter(ArrayPlotter): """Plotting class for the simplest :class:`.Binning` class. Parameters ---------- binning : Binning The binning to be plotted. marginalize_subbinnings : bool, optional Plot the contents of subbinnings as a single bin. **kwargs : optional Addittional keyword arguments are passed to :class:`ArrayPlotter`. See also -------- ArrayPlotter .Binning Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. binning : Binning The binning defining what will be plotted. marginalize_subbinnings : bool Whether or not subbinnings will be marginalized before plotting. """ def __init__(self, binning, marginalize_subbinnings=False, **kwargs): self.binning = binning self.marginalize_subbinnings = marginalize_subbinnings array = self.binning.value_array if marginalize_subbinnings: array = self.binning.marginalize_subbinnings_on_ndarray(array) ArrayPlotter.__init__(self, array, **kwargs) def _get_array(self, array): if array is None: array = self.array else: array = np.asarray(array) # Marginalize subbinnings if necessary if self.marginalize_subbinnings and array.shape != self.array.shape: array = self.binning.marginalize_subbinnings_on_ndarray(array) if array.shape != self.array.shape: raise TypeError("Array must be of equal shape as the initial one.") return array def _get_binning(self, binning): if binning is None: binning = self.binning return binning def plot_values(self, binning=None, **kwargs): """Plot the values of a Binning.""" binning = self._get_binning(binning) return self.plot_array(binning.value_array, **kwargs) def plot_entries(self, binning=None, **kwargs): """Plot the entries of a Binning.""" binning = self._get_binning(binning) return self.plot_array(binning.entries_array, **kwargs) def plot_sumw2(self, binning=None, **kwargs): """Plot the sumw2 of a Binning.""" binning = self._get_binning(binning) return self.plot_array(binning.sumw2_array, **kwargs) class CartesianProductBinningPlotter(BinningPlotter): """Plotting class for :class:`.CartesianProductBinning` Parameters ---------- binning : CartesianProductBinning The binning to be plottet x_axis_binnings : list of int, optional The indices of binnings to be plotted on the x-axis. y_axis_binnings : list of int, optional The indices of binnings to be plotted on the y-axis. **kwargs : optional Additional keyword arguments are passed to :class:`BinningPlotter`. Notes ----- This plotter does always marginalize the subbinnings. See also -------- BinningPlotter .CartesianProductBinning Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. binning : CartesianProductBinning The binning defining what will be plotted. marginalize_subbinnings : bool Whether or not subbinnings will be marginalized before plotting. x_axis_binnings : list of int The indices of binnings to be plotted on the x-axis. y_axis_binnings : list of int The indices of binnings to be plotted on the y-axis. """ def __init__(self, binning, x_axis_binnings=None, y_axis_binnings=None, **kwargs): if x_axis_binnings is None: x_axis_binnings = list(range(int(np.ceil(len(binning.binnings) / 2.0)))) self.x_axis_binnings = x_axis_binnings if y_axis_binnings is None: y_axis_binnings = list( range(int(np.ceil(len(binning.binnings) / 2.0)), len(binning.binnings)) ) self.y_axis_binnings = y_axis_binnings kwargs["marginalize_subbinnings"] = True kwargs["bins_per_row"] = -1 BinningPlotter.__init__(self, binning, **kwargs) def get_bin_edges(self, i_min, i_max, j_binning): """Get the bin edges corresponding to bins i_min to i_max.""" x = np.arange(i_min, i_max) return np.append(x - 0.5, x[-1] + 0.5) # Bins centred on integers def get_axis_label(self, j_binning): """Return the default label for the axis.""" return "Binning %d Bin #" % (j_binning,) def plot_array( self, array=None, density=True, stack_function=np.mean, margin_function=np.sum, scatter=-1, **kwargs, ): """Plot an array. Parameters ---------- array : ndarray, optional The data to be plotted. density : bool, optional Divide the data by the relative bin width: ``width / total_plot_range``. Dividing by the relative bin width, rather than the bin width directly, ensures that the maximum values in all 1D projections are comparable. stack_function : float or function or (lower_function, function) How to deal with multiple arrays. When `float`, plot the respective quantile as equal-tailed interval. When `function`, apply this function to the stack after marginalisation. When `(function, function)`, use these functions to calculate lower and upper bounds of the area to be plotted respectively. Functions must accept ``axis`` keyword argument. margin_function : function, optional The function used to marginalize the data. scatter : int, optional Use a pseudo scatter plot with `scatter` number of points instead of a 2D histogram. Allows to draw multiple sets of 2D data in the same plot. The number of points in each cell is proportional to the value being plotted. Using the `scatter` option is thus implicitly replicating the behaviour of the `density` option for the 2D plots. The `density` argument has no effect on the scatter plots. """ arrays = self._get_arrays(array) lower, upper = self._get_stack_functions(stack_function) shape = self.binning.bins_shape arrays = arrays.reshape(arrays.shape[:1] + shape) n_col = len(self.x_axis_binnings) + 1 # "+1" for the 1D projections n_row = len(self.y_axis_binnings) + 1 # Widths and heights according to number of bins, # 10 px (= 0.1") per bin widths = [ 0.1 * self.binning.binnings[i].data_size for i in self.x_axis_binnings ] heights = [ 0.1 * self.binning.binnings[i].data_size for i in self.y_axis_binnings ] # Axes are counted top to bottom, but we want binnings bottom to top heights.reverse() # Total figure size total_width = np.sum(widths) total_height = np.sum(heights) scale = 4.0 / min(max(total_width, total_height), 4.0) # Room for the 1D histograms if total_width == 0.0: widths.append(6 / scale) else: widths.append(1.5 / scale) if total_height == 0.0: heights.insert(0, 4 / scale) else: heights.insert(0, 1.5 / scale) # Update total sizes total_width = np.sum(widths) total_height = np.sum(heights) fig_x = total_width * scale fig_y = total_height * scale # Subplot spacing is specified as multiple of average axis size # We want it to be relative to the 1D projections wspace = 0.1 * widths[-1] / (total_width / len(widths)) hspace = 0.1 * heights[0] / (total_height / len(heights)) figax = self.subplots( nrows=n_row, ncols=n_col, sharex="col", sharey="row", figsize=(fig_x, fig_y), gridspec_kw={ "width_ratios": widths, "height_ratios": heights, "wspace": wspace, "hspace": hspace, }, squeeze=False, ) color = kwargs.get("color", next(self.color)) hatch = kwargs.get("hatch", next(self.hatch)) # 2D histograms for x, i in enumerate(self.x_axis_binnings): for y, j in enumerate(self.y_axis_binnings): # Get axis to plot in ax = figax[1][-y - 1, x] # rows are counted top to bottom # Project array axis = list(range(arrays.ndim - 1)) # -1 because of stack axis 0 for k in sorted((i, j), reverse=True): del axis[k] axis = tuple(x + 1 for x in axis) # +1 because of stack axis 0 data = np.asfarray(margin_function(arrays, axis=axis)) # 2D plots only show upper limit of stack data = upper(data, axis=0) # Flip axes if necessary if i < j: data = data.T # Bin edges x_edg = self.get_bin_edges(0, data.shape[1], i) y_edg = self.get_bin_edges(0, data.shape[0], j) # Plot the data if scatter >= 0: # Draw a set of random points and plot these # Get bin numbers csum = np.asfarray(data.cumsum()) csum /= np.max(csum) indices = np.digitize(np.random.uniform(size=scatter), csum) # Get x and y bin numbers x_indices = indices % data.shape[1] y_indices = indices // data.shape[1] # Throw X and Y for each event x = [] y = [] for ix, iy in zip(x_indices, y_indices): x_min = x_edg[ix] x_max = x_edg[ix + 1] y_min = y_edg[iy] y_max = y_edg[iy + 1] x.append(np.random.uniform(x_min, x_max)) y.append(np.random.uniform(y_min, y_max)) # Plot the points if data.sum() > 0: # Only actually draw something if we have some events ax.scatter(x, y, 1, color=color, marker=",") else: # Plot a regular 2D histogram # Bin centres x = np.convolve(x_edg, np.ones(2) / 2, mode="valid") y = np.convolve(y_edg, np.ones(2) / 2, mode="valid") xx = np.broadcast_to(x, (len(y), len(x))).flatten() yy = np.repeat(y, len(x)) # Plot it if data.sum() == 0: # Empty data messes with the normalisation data.fill(0.001) ax.hist2d( xx, yy, weights=data.flat, bins=(x_edg, y_edg), density=density ) # 1D vertical histograms for x, i in enumerate(self.x_axis_binnings): # Get axis to plot in ax = figax[1][0, x] # Project array axis = list(range(arrays.ndim - 1)) # -1 because of stack axis 0 del axis[i] axis = tuple(x + 1 for x in axis) # +1 because of stack axis 0 data = np.asfarray(margin_function(arrays, axis=axis)) # Upper and lower limit of area data_hi = upper(data, axis=0) data_lo = lower(data, axis=0) # Divide by relative bin widths bins = np.asfarray(self.get_bin_edges(0, data.shape[1], i)) if density: total_width = bins[-1] - bins[0] rel_widths = (bins[1:] - bins[:-1]) / total_width data_hi /= rel_widths data_lo /= rel_widths # Plot the data args = { "step": "post", "edgecolor": color, "hatch": hatch, "facecolor": "none", } args.update(kwargs) data_lo = np.append(data_lo, data_lo[-1]) data_hi = np.append(data_hi, data_hi[-1]) poly = ax.fill_between(bins, data_hi, data_lo, **args) # Add sticky y edge so histograms get plotted more beautifully poly.sticky_edges.y.append(np.min(data_lo)) ax.autoscale_view() # Only int tick label ax.get_xaxis().set_major_locator(ticker.MaxNLocator(integer=True)) # Add labels at the appropriate axes ax = figax[1][-1, x] ax.set_xlabel(self.get_axis_label(i)) # 1D horizontal histograms for y, i in enumerate(self.y_axis_binnings): # Get axis to plot in ax = figax[1][-y - 1, -1] # Rows are counted top to bottom # Project array axis = list(range(arrays.ndim - 1)) # -1 because of stack axis 0 del axis[i] axis = tuple(x + 1 for x in axis) # +1 because of stack axis 0 data = np.asfarray(margin_function(arrays, axis=axis)) # Upper and lower limit of area data_hi = upper(data, axis=0) data_lo = lower(data, axis=0) # Divide by relative bin widths bins = np.asfarray(self.get_bin_edges(0, data.shape[1], i)) if density: total_width = bins[-1] - bins[0] rel_widths = (bins[1:] - bins[:-1]) / total_width data_hi /= rel_widths data_lo /= rel_widths # Plot the data args = { "step": "post", "edgecolor": color, "hatch": hatch, "facecolor": "none", } args.update(kwargs) data_lo = np.append(data_lo, data_lo[-1]) data_hi = np.append(data_hi, data_hi[-1]) poly = ax.fill_betweenx(bins, data_hi, data_lo, **args) # Add sticky x edge so histograms get plotted more beautifully poly.sticky_edges.x.append(np.min(data_lo)) ax.autoscale_view() # Only int tick label ax.get_yaxis().set_major_locator(ticker.MaxNLocator(integer=True)) # Add labels at the appropriate axes ax = figax[1][-y - 1, 0] # Rows are counted top to bottom ax.set_ylabel(self.get_axis_label(i)) # Hide empty axes figax[1][0, -1].set_axis_off() def legend(self, **kwargs): """Draw a legend in the upper right corner of the plot.""" handles, labels = self.figax[1][0, 0].get_legend_handles_labels() args = { "loc": "center", "borderaxespad": 0.0, "frameon": False, } args.update(kwargs) self.figax[1][0, -1].legend(handles, labels, **args) class LinearBinningPlotter(BinningPlotter): """Plotting class for :class:`.LinearBinning` Parameters ---------- binning : LinearBinning The binning to be plottet **kwargs : optional Additional keyword arguments are passed to :class:`BinningPlotter`. Notes ----- This plotter does always marginalize the subbinnings. See also -------- BinningPlotter .LinearBinning Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. binning : LinearBinning The binning defining what will be plotted. marginalize_subbinnings : bool Whether or not subbinnings will be marginalized before plotting. """ def __init__(self, binning, **kwargs): kwargs["marginalize_subbinnings"] = True args = { "bins_per_row": -1, } args.update(kwargs) BinningPlotter.__init__(self, binning, **args) def plot_array(self, *args, **kwargs): """Plot an array. See :meth:`ArrayPlotter.plot_array`. """ # Change default behaviour of `density` kwargs["density"] = kwargs.get("density", True) return ArrayPlotter.plot_array(self, *args, **kwargs) def get_bin_edges(self, i_min, i_max): """Get the finite bin edges.""" bins = self.binning.bin_edges[i_min : i_max + 1] ret = list(bins) if not np.isfinite(ret[0]): if len(ret) >= 3 and np.isfinite(ret[2]): ret[0] = ret[1] - (ret[2] - ret[1]) elif np.isfinite(ret[1]): ret[0] = ret[1] - 1 else: ret[0] = -0.5 if not np.isfinite(ret[-1]): if len(ret) >= 3 and np.isfinite(ret[-3]): ret[-1] = ret[-2] + (ret[-2] - ret[-3]) else: ret[-1] = ret[-2] + 1 return np.array(ret) def get_axis_label(self): """Return variable name.""" return self.binning.variable class RectilinearBinningPlotter(CartesianProductBinningPlotter): """Plotting class for :class:`.RectilinearBinning` Parameters ---------- binning : RectilinearBinning The binning to be plottet x_axis_binnings : list of int/str, optional The indices of binnings to be plotted on the x-axis. y_axis_binnings : list of int/str, optional The indices of binnings to be plotted on the y-axis. **kwargs : optional Additional keyword arguments are passed to :class:`CartesianProductBinningPlotter`. Notes ----- This plotter does always marginalize the subbinnings. See also -------- CartesianProductBinningPlotter .RectilinearBinning Attributes ---------- figax : (Figure, [[Axes, ...], ...]) The figure and axes that are used for the plotting. color : cycle of str Cycler that determines the color of plotting commands. hatch : cycle of str Cycler that determines the hatching style of plotting commands. binning : RectilinearBinning The binning defining what will be plotted. marginalize_subbinnings : bool Whether or not subbinnings will be marginalized before plotting. x_axis_binnings : list of int or str The indices or variable names of to be plotted on the x-axis. y_axis_binnings : list of int or str The indices or variable names to be plotted on the y-axis. """ def __init__(self, binning, x_axis_binnings=None, y_axis_binnings=None, **kwargs): if x_axis_binnings is None: x_axis_binnings = list(range(int(np.ceil(len(binning.binnings) / 2.0)))) else: x_axis_binnings = map(binning.get_variable_index, x_axis_binnings) if y_axis_binnings is None: y_axis_binnings = list( range(int(np.ceil(len(binning.binnings) / 2.0)), len(binning.binnings)) ) else: y_axis_binnings = map(binning.get_variable_index, y_axis_binnings) kwargs["x_axis_binnings"] = x_axis_binnings kwargs["y_axis_binnings"] = y_axis_binnings kwargs["marginalize_subbinnings"] = True kwargs["bins_per_row"] = -1 CartesianProductBinningPlotter.__init__(self, binning, **kwargs) def get_bin_edges(self, i_min, i_max, j_binning): """Get the finite bin edges.""" bins = self.binning.binnings[j_binning].bin_edges[i_min : i_max + 1] ret = list(bins) if not np.isfinite(ret[0]): if len(ret) >= 3 and np.isfinite(ret[2]): ret[0] = ret[1] - (ret[2] - ret[1]) elif np.isfinite(ret[1]): ret[0] = ret[1] - 1 else: ret[0] = -0.5 if not np.isfinite(ret[-1]): if len(ret) >= 3 and np.isfinite(ret[-3]): ret[-1] = ret[-2] + (ret[-2] - ret[-3]) else: ret[-1] = ret[-2] + 1 return np.array(ret) def get_axis_label(self, j_binning): """Return variable name.""" return self.binning.binnings[j_binning].variable
3.515625
4