max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
amocrm_api_client/token_provider/impl/standard/__init__.py
iqtek/amocrm_api_client
0
12783851
<filename>amocrm_api_client/token_provider/impl/standard/__init__.py from .StandardTokenProviderFactory import StandardTokenProviderFactory
1.203125
1
elevation/models.py
michael-weinstein/Elevation
96
12783852
import numpy as np import elevation.model_comparison import os import pandas import multiprocessing cur_dir = os.path.dirname(os.path.abspath(__file__)) class CFDModel(object): def __init__(self, cfd_table=None, cfd_table_file=None): if cfd_table is None: #print "Loading CFD table from file" self.cfd_table = elevation.model_comparison.get_NBT_cfd(cfd_table_file) else: self.cfd_table = cfd_table self.cfd_table.index = self.cfd_table['Mismatch Type'] def fit(self): pass def predict(self, annots_list, num_proc=20): if len(annots_list) == 0: preds = 1.0 preds = np.ones(len(annots_list)) if num_proc > 1: pool = multiprocessing.Pool(processes=num_proc) jobs = [] for i, annots in enumerate(annots_list): jobs.append(pool.apply_async(predict_annot, (annots, self.cfd_table))) pool.close() pool.join() for i, j in enumerate(jobs): pred = j.get() preds[i] = pred pool.terminate() else: for i, annots in enumerate(annots_list): preds[i] = predict_annot(annots, self.cfd_table) return preds def predict_annot(annots, cfd_table): pred_i = 1.0 for a in annots: letters, pos = elevation.model_comparison.parse_mismatch_annot(a) if pos=='': annot_new = letters # a PAM mutation else: letters = str(letters) annot_new = letters[0] + ":" + letters[1] + "," + str(pos) if a == 'GG': tmp_pred = 1.0 else: tmp_pred = cfd_table["Percent-Active"].loc[annot_new] # preds[i] = tmp_pred*preds[i] pred_i = pred_i * tmp_pred return pred_i
2.28125
2
environments/SmartMonitor.py
KMarino/hrl-ep3
17
12783853
import os import collections import pdb import gym import gym.envs.mujoco import time import csv import json import shutil import numpy as np import random from . import ant_env from . import proprioceptive_humanoid_env from . import maze_ant from . import maze_humanoid # Wrapper that records everything we might care about in our environment # All rewards (clipped and raw), states, actions, time and steps # Copied originally from https://github.com/openai/baselines/blob/master/baselines/bench/monitor.py class SmartMonitor(gym.Wrapper): def __init__(self, env, log_dir, rank, opt, verbose=True, allow_early_resets=False): super(SmartMonitor, self).__init__(env) self.tstart = time.time() self.episode_count = -1 # Get the rewards we want to log # Got to be a better way to get the names of the subpart rewards, but it seems to be hardcoded in the mujoco envs self.reward_list = ['reward_env'] if opt['model']['mode'] in ['baseline', 'baseline_reverse', 'baselinewtheta', 'baseline_lowlevel']: self.baseline = True elif opt['model']['mode'] in ['phasesimple', 'phasewstate', 'phasewtheta', 'phase_lowlevel']: self.baseline = False self.reward_list.append('reward_exp') if opt['model']['mode'] != 'phase_lowlevel': self.reward_list.append('reward_move') if opt['env']['state_cycle_weight'] > 0 or opt['env']['action_cycle_weight'] > 0: self.reward_list.append('reward_cycle') self.reward_list.append('reward_cycle_s') self.reward_list.append('reward_cycle_a') elif opt['model']['mode'] == 'interpolate': self.baseline = False self.reward_list.append('reward_interpolate') elif opt['model']['mode'] == 'cyclic': self.baseline = False self.reward_list.append('reward_cycle') self.reward_list.append('reward_thresh') elif opt['model']['mode'] in ['hierarchical', 'hierarchical_many']: self.baseline = True self.reward_list.append('reward_velocity') self.reward_list.append('reward_goal') elif opt['model']['mode'] in [ 'maze_baseline', 'maze_baseline_wphase']: self.baseline = True self.reward_list.append('reward_velocity') self.reward_list.append('reward_goal') else: raise NotImplementedError # This is currently hardcoded to Mujoco envs if isinstance(env.unwrapped, ant_env.BaseAntEnv) or isinstance(env.unwrapped, ant_env.BaseAntLowGearEnv) or isinstance(env.unwrapped, proprioceptive_humanoid_env.BaseProprioceptiveHumanoidEnv): self.reward_list += ['reward_forward', 'reward_ctrl', 'reward_contact', 'reward_survive'] elif isinstance(env.unwrapped, gym.envs.mujoco.AntEnv): self.reward_list += ['reward_forward', 'reward_ctrl', 'reward_contact', 'reward_survive'] else: raise NotImplementedError # Data structure that holds all the values we want to log self.episode_struct = collections.OrderedDict() all_keys = self.reward_list + ['obs', 'action', 'env_count', 'episode_count'] if isinstance(env.unwrapped, ant_env.BaseAntEnv) or isinstance(env.unwrapped, ant_env.BaseAntLowGearEnv) or isinstance(env.unwrapped, proprioceptive_humanoid_env.BaseProprioceptiveHumanoidEnv) or isinstance(env.unwrapped, gym.envs.mujoco.MujocoEnv): all_keys += ['state'] # Log the distances if opt['model']['mode'] in ['hierarchical', 'hierarchical_many', 'maze_baseline', 'maze_baseline_wphase']: if isinstance(env.unwrapped, maze_humanoid.ProprioceptiveHumanoidMazeEnv) or isinstance(env.unwrapped, maze_ant.AntMazeEnv): all_keys += ['goal_distance', 'goal_distance_radius'] for key in all_keys: self.episode_struct[key] = [] # Create and initialize our csv files # File to store entire episode information (rather than every single step) # Prints total reward (for all rewards), overall obs and state displacements, episode length, and episode time episode_filename = os.path.join(log_dir, str(rank) + '.Episode.Monitor.csv') self.ep_f = open(episode_filename, "wt") self.ep_f.write('# Episode Logging %s\n'%json.dumps({"t_start": self.tstart, 'env_id' : env.spec and env.spec.id, 'mode': opt['model']['mode'], 'name': opt['logs']['exp_name']})) ep_fields = self.reward_list + ['delta_obs', 'mean_action', 'episode_len', 'episode_dt', 'episode_count'] if isinstance(env.unwrapped, ant_env.BaseAntEnv) or isinstance(env.unwrapped, ant_env.BaseAntLowGearEnv) or isinstance(env.unwrapped, proprioceptive_humanoid_env.BaseProprioceptiveHumanoidEnv) or isinstance(env.unwrapped, gym.envs.mujoco.MujocoEnv): ep_fields += ['delta_state'] if opt['model']['mode'] in ['hierarchical', 'hierarchical_many', 'maze_baseline', 'maze_baseline_wphase']: if isinstance(env.unwrapped, maze_humanoid.ProprioceptiveHumanoidMazeEnv) or isinstance(env.unwrapped, maze_ant.AntMazeEnv): ep_fields += ['goal_distance', 'goal_distance_radius'] self.ep_logger = csv.DictWriter(self.ep_f, fieldnames=ep_fields) self.ep_logger.writeheader() self.ep_f.flush() # If in super verbose mode if verbose: # File to store every step # Prints everything in episode_struct plus episode count step_filename = os.path.join(log_dir, str(rank) + '.Step.Monitor.csv') self.st_f = open(step_filename, "wt") self.st_f.write('# Episode Logging %s\n'%json.dumps({"t_start": self.tstart, 'env_id' : env.spec and env.spec.id, 'mode': opt['model']['mode'], 'name': opt['logs']['exp_name']})) st_fields = list(self.episode_struct.keys()) self.st_logger = csv.DictWriter(self.st_f, fieldnames=st_fields) self.st_logger.writeheader() self.st_f.flush() else: self.st_f = None self.verbose = verbose self.rank = rank self.opt = opt self.log_dir = log_dir # Other bookkeeping self.allow_early_resets = allow_early_resets self.needs_reset = True self.total_steps = 0 self.current_reset_info = {} # extra info about the current episode, that was passed in during reset() # Reset environment, record initial values def reset(self, **kwargs): if not self.allow_early_resets and not self.needs_reset: raise RuntimeError("Tried to reset an environment before done. If you want to allow early resets, wrap your env with Monitor(env, path, allow_early_resets=True)") # Reset all the values in self.episode_struct for key in self.episode_struct: self.episode_struct[key] = [] # Update episode count self.episode_count += 1 # Update values and return obs = self.env.reset(**kwargs) self.record_info(obs, 0) self.needs_reset = False return obs # Take a step, update all the values def step(self, action): if self.needs_reset: raise RuntimeError("Tried to step environment that needs reset") # Do step obs, rew, done, info = self.env.step(action) # Record new info self.record_info(obs, rew, action, info) # If done with episode, get summary info for episode and dump values to episode and step files if done: self.needs_reset = True # For rewards, get sums epinfo = {} for key in self.reward_list: reward_val = sum(self.episode_struct[key]) epinfo[key] = reward_val # For obs and state, get delta change epinfo['delta_obs'] = self.episode_struct['obs'][-1] - self.episode_struct['obs'][0] if 'state' in self.episode_struct: epinfo['delta_state'] = self.episode_struct['state'][-1] - self.episode_struct['state'][0] # For action, get average value epinfo['mean_action'] = np.mean(self.episode_struct['action'], axis=0) # Update episode_len, episode_dt and episode_count epinfo['episode_len'] = len(self.episode_struct['env_count']) epinfo['episode_dt'] = round(time.time() - self.tstart, 6) epinfo['episode_count'] = self.episode_count # Update goal distances if 'goal_distance' in self.episode_struct: epinfo['goal_distance'] = self.episode_struct['goal_distance'][-1] epinfo['goal_distance_radius'] = self.episode_struct['goal_distance_radius'][-1] elif 'key_distance' in self.episode_struct: epinfo['key_distance'] = self.episode_struct['key_distance'][-1] epinfo['key_distance_radius'] = self.episode_struct['key_distance_radius'][-1] epinfo['lock_distance'] = self.episode_struct['lock_distance'][-1] epinfo['lock_distance_radius'] = self.episode_struct['lock_distance_radius'][-1] # Do string conversion for k in epinfo: epinfo[k] = str(epinfo[k]).replace('\n', '') # Update episode file if self.ep_logger: self.ep_logger.writerow(epinfo) self.ep_f.flush() # If in super verbose mode if self.verbose: # Make and update a temp step file with just the last episode (and only rank 0, and only every 100) if self.rank == 0: #and self.episode_count % 100 == 0: # Setup temp file tmp_step_filename = os.path.join(self.log_dir, 'Tmp.Last.Step.Monitor.csv') tmp_f = open(tmp_step_filename, "wt") tmp_f.write('# Episode Logging %s\n'%json.dumps({"t_start": self.tstart, 'env_id' : self.env.spec and self.env.spec.id, 'mode': self.opt['model']['mode'], 'name': self.opt['logs']['exp_name']})) st_fields = list(self.episode_struct.keys()) tmp_logger = csv.DictWriter(tmp_f, fieldnames=st_fields) tmp_logger.writeheader() tmp_f.flush() else: tmp_f = None # Update step file assert(self.episode_struct['env_count'][-1]+1 == len(self.episode_struct['env_count'])) for step in range(len(self.episode_struct['env_count'])): stepinfo = {} for key in self.episode_struct: stepinfo[key] = self.episode_struct[key][step] # Do string conversion for k in stepinfo: stepinfo[k] = str(stepinfo[k]).replace('\n', '') # Update loggers self.st_logger.writerow(stepinfo) if tmp_f is not None: tmp_logger.writerow(stepinfo) self.st_f.flush() # Write tmp file and close, copy tmp to last if tmp_f is not None: tmp_f.flush() tmp_f.close() # Copy tmp to last last_step_filename = os.path.join(self.log_dir, 'Last.Step.Monitor.csv') shutil.copyfile(tmp_step_filename, last_step_filename) # Update info info['episode'] = epinfo self.total_steps += 1 return (obs, rew, done, info) # Record step info def record_info(self, obs, rew, action=None, info=None): # Update all of our values # Reward values for key in self.reward_list: # If reset, all 0 if info is None: self.episode_struct[key].append(0) else: # For baseline, reward_env is reward if key == 'reward_env' and self.baseline: self.episode_struct[key].append(rew) else: self.episode_struct[key].append(info[key]) # Observation values self.episode_struct['obs'].append(obs) # State values, right now just Mujoco if isinstance(self.env.unwrapped, ant_env.BaseAntEnv) or isinstance(self.env.unwrapped, ant_env.BaseAntLowGearEnv) or isinstance(self.env.unwrapped, proprioceptive_humanoid_env.BaseProprioceptiveHumanoidEnv) or isinstance(self.env.unwrapped, gym.envs.mujoco.MujocoEnv): state = self.env.unwrapped.state_vector() self.episode_struct['state'].append(state) # Update actions if action is None: action = np.zeros(self.env.action_space.shape) self.episode_struct['action'].append(action) # Update step and episode counts env_count = self.env._elapsed_steps self.episode_struct['env_count'].append(env_count) self.episode_struct['episode_count'].append(self.episode_count) # Update distances if 'goal_distance' in self.episode_struct: if info is None: self.episode_struct['goal_distance'].append(0) self.episode_struct['goal_distance_radius'].append(0) else: self.episode_struct['goal_distance'].append(info['goal_distance']) self.episode_struct['goal_distance_radius'].append(info['goal_distance_radius']) # Close file handles def close(self): if self.ep_f is not None: self.ep_f.close() if self.st_f is not None: self.st_f.close() # Get total number of steps def get_total_steps(self): return self.total_steps
2
2
euler49.py
dchourasia/euler-solutions
0
12783854
<filename>euler49.py ''' The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another. There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes, exhibiting this property, but there is one other 4-digit increasing sequence. What 12-digit number do you form by concatenating the three terms in this sequence? ''' import math primes=[] def get_primes(mx): x=1 while x < mx: x+=1 y=int(math.sqrt(x)) isprime=True for z in primes: if z > y: break if x%z==0: isprime=False break if isprime: primes.append(x) get_primes(10000) print(primes[-1]) primes = [x for x in primes if x > 999] print(len(primes)) for i, x in enumerate(primes): for y in primes[i+1:]: if y + y - x in primes and set(str(x)) == set(str(y)) == set(str(y+y-x)): print(x, y, y + y - x)
3.640625
4
addons14/sale_timesheet_rounded/models/sale.py
odoochain/addons_oca
1
12783855
<filename>addons14/sale_timesheet_rounded/models/sale.py # Copyright 2019 Camptocamp SA # License AGPL-3.0 or later (https://www.gnu.org/licenses/agpl) from odoo import api, models class SaleOrderLine(models.Model): _inherit = "sale.order.line" def _get_delivered_quantity_by_analytic(self, additional_domain): # If we land here is only because we are dealing w/ SO lines # having `qty_delivered_method` equal to `analytic` or `timesheet`. # The 1st case matches expenses lines the latter TS lines. # Expenses are already discarded in our a.a.l. overrides # so it's fine to set the ctx key here anyway. return super( SaleOrderLine, self.with_context(timesheet_rounding=True) )._get_delivered_quantity_by_analytic(additional_domain) @api.depends("analytic_line_ids.unit_amount_rounded") def _compute_qty_delivered(self): """Adds the dependency on unit_amount_rounded.""" super()._compute_qty_delivered()
1.71875
2
pyscf/scf/test/test_addons.py
robert-anderson/pyscf
7
12783856
<filename>pyscf/scf/test/test_addons.py #!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import copy import numpy import scipy.linalg from pyscf import gto, lib from pyscf import scf, dft from pyscf.scf import addons mol = gto.Mole() mol.verbose = 7 mol.output = '/dev/null' mol.atom = [ ["O" , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)] ] mol.basis = {"H": '6-31g', "O": '6-31g',} mol.build() mf = scf.RHF(mol).run() mol_dz = mol.copy() mol_dz.basis = 'cc-pvdz' mol_dz.cart = True mol_dz.build(False, False) mol1 = mol.copy() mol1.spin = 2 mf_u = scf.UHF(mol1).run() mol2 = mol.copy() mol2.symmetry = True mol2.build(0,0) sym_mf = scf.RHF(mol2).run() mol3 = mol1.copy() mol3.symmetry = True mol3.spin = 2 mol3.build(0,0) sym_mf_u = scf.UHF(mol3).run() def tearDownModule(): global mol, mf, mol_dz, mol1, mf_u, mol2, sym_mf, mol3, sym_mf_u mol.stdout.close() del mol, mf, mol_dz, mol1, mf_u, mol2, sym_mf, mol3, sym_mf_u class KnownValues(unittest.TestCase): def test_project_mo_nr2nr(self): nao = mol.nao_nr() c = numpy.random.random((nao,nao)) c1 = addons.project_mo_nr2nr(mol, c, mol) self.assertAlmostEqual(abs(c-c1).max(), 0, 12) numpy.random.seed(15) nao = mol.nao_nr() mo1 = numpy.random.random((nao,nao)) mo2 = addons.project_mo_nr2nr(mol, [mo1,mo1], mol_dz) self.assertAlmostEqual(abs(mo2[0]).sum(), 83.436359425591888, 11) self.assertAlmostEqual(abs(mo2[1]).sum(), 83.436359425591888, 11) def test_project_mo_r2r(self): nao = mol.nao_2c() c = numpy.random.random((nao*2,nao*2)) c = c + numpy.sin(c)*1j c1 = addons.project_mo_r2r(mol, c, mol) self.assertAlmostEqual(abs(c-c1).max(), 0, 12) numpy.random.seed(15) n2c = mol.nao_2c() n4c = n2c * 2 mo1 = numpy.random.random((n4c,n4c)) + numpy.random.random((n4c,n4c))*1j mo2 = addons.project_mo_r2r(mol, [mo1,mo1], mol_dz) self.assertAlmostEqual(abs(mo2[0]).sum(), 2159.3715489514038, 11) self.assertAlmostEqual(abs(mo2[1]).sum(), 2159.3715489514038, 11) def test_project_mo_nr2r(self): numpy.random.seed(15) nao = mol.nao_nr() mo1 = numpy.random.random((nao,nao)) mo2 = addons.project_mo_nr2r(mol, [mo1,mo1], mol_dz) self.assertAlmostEqual(abs(mo2[0]).sum(), 172.66468850263556, 11) self.assertAlmostEqual(abs(mo2[1]).sum(), 172.66468850263556, 11) mo2 = addons.project_mo_nr2r(mol, mo1, mol_dz) self.assertAlmostEqual(abs(mo2).sum(), 172.66468850263556, 11) def test_project_dm_nr2nr(self): nao = mol.nao_nr() dm = numpy.random.random((nao,nao)) dm = dm + dm.T x1 = addons.project_dm_nr2nr(mol, dm, mol) self.assertAlmostEqual(abs(dm-x1).max(), 0, 12) numpy.random.seed(15) mo = numpy.random.random((nao,10)) mo1 = addons.project_mo_nr2nr(mol, mo, mol_dz) dm = numpy.dot(mo, mo.T) dmref = numpy.dot(mo1, mo1.T) dm1 = addons.project_dm_nr2nr(mol, [dm,dm], mol_dz) self.assertAlmostEqual(abs(dmref-dm1[0]).max(), 0, 11) self.assertAlmostEqual(abs(dmref-dm1[1]).max(), 0, 11) self.assertAlmostEqual(lib.finger(dm1[0]), 73.603267455214876, 11) def test_project_dm_r2r(self): nao = mol.nao_2c() dm = numpy.random.random((nao*2,nao*2)) dm = dm + numpy.sin(dm)*1j x1 = addons.project_dm_r2r(mol, dm, mol) self.assertTrue(numpy.allclose(dm, x1)) numpy.random.seed(15) n2c = mol.nao_2c() n4c = n2c * 2 mo = numpy.random.random((n4c,10)) + numpy.random.random((n4c,10))*1j mo1 = addons.project_mo_r2r(mol, mo, mol_dz) dm = numpy.dot(mo, mo.T.conj()) dmref = numpy.dot(mo1, mo1.T.conj()) dm1 = addons.project_dm_r2r(mol, [dm,dm], mol_dz) self.assertAlmostEqual(abs(dmref-dm1[0]).max(), 0, 11) self.assertAlmostEqual(abs(dmref-dm1[1]).max(), 0, 11) self.assertAlmostEqual(lib.finger(dm1[0]), -5.3701392643370607+15.484616570244016j, 11) def test_project_dm_nr2r(self): numpy.random.seed(15) nao = mol.nao_nr() mo = numpy.random.random((nao,10)) mo1 = addons.project_mo_nr2r(mol, mo, mol_dz) dm = numpy.dot(mo, mo.T.conj()) dmref = numpy.dot(mo1, mo1.T.conj()) dm1 = addons.project_dm_nr2r(mol, [dm,dm], mol_dz) self.assertAlmostEqual(abs(dmref-dm1[0]).max(), 0, 11) self.assertAlmostEqual(abs(dmref-dm1[1]).max(), 0, 11) self.assertAlmostEqual(lib.finger(dm1[0]), -13.580612999088892-20.209297457056557j, 11) dm1 = addons.project_dm_nr2r(mol, dm, mol_dz) self.assertAlmostEqual(abs(dmref-dm1).max(), 0, 11) def test_frac_occ(self): mol = gto.Mole() mol.verbose = 5 mol.output = '/dev/null' mol.atom = ''' 7 0. 0 -0.7 7 0. 0 0.7''' mol.basis = 'cc-pvdz' mol.charge = 2 mol.build() mf = scf.RHF(mol) mf = addons.frac_occ(mf) self.assertAlmostEqual(mf.scf(), -107.13465364012296, 9) mol.charge = -1 mol.spin = 1 mf = scf.RHF(mol) mf = addons.frac_occ(mf) self.assertAlmostEqual(mf.scf(), -108.3626325837689, 9) mol.charge = 1 mol.spin = 1 mf = scf.rhf.RHF(mol) mf = addons.frac_occ(mf) self.assertAlmostEqual(mf.scf(), -108.10375514714799, 9) mol.charge = 1 mol.spin = 1 mf = scf.UHF(mol) mf = addons.frac_occ(mf) self.assertAlmostEqual(mf.scf(), -108.17458104180083, 9) mol.charge = 0 mol.spin = 0 mf = scf.RHF(mol) mf = addons.frac_occ(mf) self.assertAlmostEqual(mf.scf(), -108.76171800006837, 9) self.assertTrue(numpy.allclose(mf.mo_occ[:7], [2,2,2,2,2,2,2])) mol.stdout.close() def test_dynamic_occ(self): mol = gto.Mole() mol.verbose = 5 mol.output = '/dev/null' mol.atom = ''' 6 0. 0 -0.7 6 0. 0 0.7''' mol.basis = 'cc-pvdz' mol.charge = 2 mol.build() mf = scf.RHF(mol) mf = addons.dynamic_occ(mf) self.assertAlmostEqual(mf.scf(), -74.214503776693817, 9) mol.stdout.close() def test_follow_state(self): mf1 = addons.follow_state(mf).run() self.assertAlmostEqual(mf1.e_tot, mf.e_tot, 9) mo0 = mf.mo_coeff[:,[0,1,2,3,5]] mf1 = addons.follow_state(mf, mo0) self.assertAlmostEqual(mf1.scf(), -75.178145727548511, 9) self.assertTrue(numpy.allclose(mf1.mo_occ[:6], [2,2,2,2,0,2])) def test_float_occ(self): mol = gto.Mole() mol.verbose = 5 mol.output = '/dev/null' mol.atom = ''' C 0. 0 0''' mol.basis = 'cc-pvdz' mol.build() mf = scf.UHF(mol) mf = addons.float_occ(mf) self.assertAlmostEqual(mf.scf(), -37.590712883365917, 9) mol.stdout.close() def test_mom_occ(self): mf = dft.UKS(mol) mf.xc = 'b3lyp' mf.scf() mo0 = mf.mo_coeff occ = mf.mo_occ occ[0][4] = 0. occ[0][5] = 1. mf = addons.mom_occ(mf, mo0, occ) dm = mf.make_rdm1(mo0, occ) self.assertAlmostEqual(mf.scf(dm), -76.0606858747, 9) self.assertTrue(numpy.allclose(mf.mo_occ[0][:6], [1,1,1,1,0,1])) mf = scf.ROHF(mol).run() mo0 = mf.mo_coeff occ = mf.mo_occ setocc = numpy.zeros((2, occ.size)) setocc[:, occ==2] = 1 setocc[0][4] = 0 setocc[0][5] = 1 newocc = setocc[0][:] + setocc[1][:] mf = addons.mom_occ(mf, mo0, setocc) dm = mf.make_rdm1(mo0, newocc) mf.kernel(dm) self.assertAlmostEqual(mf.e_tot, -75.723654936331542, 9) self.assertTrue(numpy.allclose(mf.mo_occ[:6], [2,2,2,2,1,1])) def test_dynamic_level_shift(self): mf = scf.RHF(mol) mf = addons.dynamic_level_shift(mf) mf.init_guess = 'hcore' mf.max_cycle = 4 mf.kernel() self.assertAlmostEqual(mf.e_tot, -75.868344714445342, 9) def test_convert_to_scf(self): from pyscf.x2c import x2c from pyscf.df import df_jk from pyscf.soscf import newton_ah addons.convert_to_rhf(dft.RKS(mol)) addons.convert_to_uhf(dft.RKS(mol)) #addons.convert_to_ghf(dft.RKS(mol)) addons.convert_to_rhf(dft.UKS(mol)) addons.convert_to_uhf(dft.UKS(mol)) #addons.convert_to_ghf(dft.UKS(mol)) #addons.convert_to_rhf(dft.GKS(mol)) #addons.convert_to_uhf(dft.GKS(mol)) #addons.convert_to_ghf(dft.GKS(mol)) self.assertTrue(isinstance(addons.convert_to_rhf(mf), scf.rhf.RHF)) self.assertTrue(isinstance(addons.convert_to_uhf(mf), scf.uhf.UHF)) self.assertTrue(isinstance(addons.convert_to_ghf(mf), scf.ghf.GHF)) self.assertTrue(isinstance(addons.convert_to_rhf(scf.UHF(mol)), scf.rhf.RHF)) self.assertTrue(isinstance(addons.convert_to_rhf(mf_u), scf.rohf.ROHF)) self.assertTrue(isinstance(addons.convert_to_uhf(mf_u), scf.uhf.UHF)) self.assertTrue(isinstance(addons.convert_to_ghf(mf_u), scf.ghf.GHF)) self.assertTrue(isinstance(addons.convert_to_rhf(sym_mf), scf.hf_symm.RHF)) self.assertTrue(isinstance(addons.convert_to_uhf(sym_mf), scf.uhf_symm.UHF)) self.assertTrue(isinstance(addons.convert_to_ghf(sym_mf), scf.ghf_symm.GHF)) self.assertTrue(isinstance(addons.convert_to_rhf(sym_mf_u), scf.hf_symm.ROHF)) self.assertTrue(isinstance(addons.convert_to_uhf(sym_mf_u), scf.uhf_symm.UHF)) self.assertTrue(isinstance(addons.convert_to_ghf(sym_mf_u), scf.ghf_symm.GHF)) mf1 = copy.copy(mf) self.assertTrue(isinstance(mf1.convert_from_(mf), scf.rhf.RHF)) self.assertTrue(isinstance(mf1.convert_from_(mf_u), scf.rhf.RHF)) self.assertFalse(isinstance(mf1.convert_from_(mf_u), scf.rohf.ROHF)) self.assertTrue(isinstance(mf1.convert_from_(sym_mf), scf.rhf.RHF)) self.assertTrue(isinstance(mf1.convert_from_(sym_mf_u), scf.rhf.RHF)) self.assertFalse(isinstance(mf1.convert_from_(sym_mf_u), scf.rohf.ROHF)) self.assertFalse(isinstance(mf1.convert_from_(sym_mf), scf.hf_symm.RHF)) self.assertFalse(isinstance(mf1.convert_from_(sym_mf_u), scf.hf_symm.RHF)) mf1 = copy.copy(mf_u) self.assertTrue(isinstance(mf1.convert_from_(mf), scf.uhf.UHF)) self.assertTrue(isinstance(mf1.convert_from_(mf_u), scf.uhf.UHF)) self.assertTrue(isinstance(mf1.convert_from_(sym_mf), scf.uhf.UHF)) self.assertTrue(isinstance(mf1.convert_from_(sym_mf_u), scf.uhf.UHF)) self.assertFalse(isinstance(mf1.convert_from_(sym_mf), scf.uhf_symm.UHF)) self.assertFalse(isinstance(mf1.convert_from_(sym_mf_u), scf.uhf_symm.UHF)) mf1 = scf.GHF(mol) self.assertTrue(isinstance(mf1.convert_from_(mf), scf.ghf.GHF)) self.assertTrue(isinstance(mf1.convert_from_(mf_u), scf.ghf.GHF)) self.assertTrue(isinstance(mf1.convert_from_(sym_mf), scf.ghf.GHF)) self.assertTrue(isinstance(mf1.convert_from_(sym_mf_u), scf.ghf.GHF)) self.assertFalse(isinstance(mf1.convert_from_(sym_mf), scf.ghf_symm.GHF)) self.assertFalse(isinstance(mf1.convert_from_(sym_mf_u), scf.ghf_symm.GHF)) self.assertTrue(isinstance(addons.convert_to_rhf(scf.RHF(mol).density_fit(), remove_df=False), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_uhf(scf.RHF(mol).density_fit(), remove_df=False), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_ghf(scf.RHF(mol).density_fit(), remove_df=False), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_rhf(scf.UHF(mol).density_fit(), remove_df=False), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_uhf(scf.UHF(mol).density_fit(), remove_df=False), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_ghf(scf.UHF(mol).density_fit(), remove_df=False), df_jk._DFHF)) #self.assertTrue(isinstance(addons.convert_to_rhf(scf.GHF(mol).density_fit(), remove_df=False),df_jk. _DFHF)) #self.assertTrue(isinstance(addons.convert_to_uhf(scf.GHF(mol).density_fit(), remove_df=False),df_jk. _DFHF)) self.assertTrue(isinstance(addons.convert_to_ghf(scf.GHF(mol).density_fit(), remove_df=False), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_rhf(scf.RHF(mol).density_fit(), out=scf.RHF(mol), remove_df=False), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_uhf(scf.RHF(mol).density_fit(), out=scf.UHF(mol), remove_df=False), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.RHF(mol).density_fit(), out=scf.GHF(mol), remove_df=False), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_rhf(scf.UHF(mol).density_fit(), out=scf.RHF(mol), remove_df=False), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_uhf(scf.UHF(mol).density_fit(), out=scf.UHF(mol), remove_df=False), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.UHF(mol).density_fit(), out=scf.GHF(mol), remove_df=False), df_jk._DFHF)) #self.assertFalse(isinstance(addons.convert_to_rhf(scf.GHF(mol).density_fit(), out=scf.RHF(mol), remove_df=False),df_jk. _DFHF)) #self.assertFalse(isinstance(addons.convert_to_uhf(scf.GHF(mol).density_fit(), out=scf.UHF(mol), remove_df=False),df_jk. _DFHF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.GHF(mol).density_fit(), out=scf.GHF(mol), remove_df=False), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_rhf(scf.RHF(mol).density_fit(), out=scf.RHF(mol), remove_df=True), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_uhf(scf.RHF(mol).density_fit(), out=scf.UHF(mol), remove_df=True), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.RHF(mol).density_fit(), out=scf.GHF(mol), remove_df=True), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_rhf(scf.UHF(mol).density_fit(), out=scf.RHF(mol), remove_df=True), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_uhf(scf.UHF(mol).density_fit(), out=scf.UHF(mol), remove_df=True), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.UHF(mol).density_fit(), out=scf.GHF(mol), remove_df=True), df_jk._DFHF)) #self.assertFalse(isinstance(addons.convert_to_rhf(scf.GHF(mol).density_fit(), out=scf.RHF(mol), remove_df=True),df_jk. _DFHF)) #self.assertFalse(isinstance(addons.convert_to_uhf(scf.GHF(mol).density_fit(), out=scf.UHF(mol), remove_df=True),df_jk. _DFHF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.GHF(mol).density_fit(), out=scf.GHF(mol), remove_df=True), df_jk._DFHF)) addons.convert_to_rhf(scf.RHF(mol).x2c().density_fit()) addons.convert_to_uhf(scf.RHF(mol).x2c().density_fit()) addons.convert_to_ghf(scf.RHF(mol).x2c().density_fit()) addons.convert_to_rhf(scf.UHF(mol).x2c().density_fit()) addons.convert_to_uhf(scf.UHF(mol).x2c().density_fit()) addons.convert_to_ghf(scf.UHF(mol).x2c().density_fit()) #addons.convert_to_rhf(scf.GHF(mol).x2c().density_fit()) #addons.convert_to_uhf(scf.GHF(mol).x2c().density_fit()) addons.convert_to_ghf(scf.GHF(mol).x2c().density_fit()) self.assertFalse(isinstance(addons.convert_to_rhf(scf.RHF(mol).x2c().newton().density_fit()), newton_ah._CIAH_SOSCF)) self.assertFalse(isinstance(addons.convert_to_uhf(scf.RHF(mol).x2c().newton().density_fit()), newton_ah._CIAH_SOSCF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.RHF(mol).x2c().newton().density_fit()), newton_ah._CIAH_SOSCF)) self.assertFalse(isinstance(addons.convert_to_rhf(scf.UHF(mol).x2c().newton().density_fit()), newton_ah._CIAH_SOSCF)) self.assertFalse(isinstance(addons.convert_to_uhf(scf.UHF(mol).x2c().newton().density_fit()), newton_ah._CIAH_SOSCF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.UHF(mol).x2c().newton().density_fit()), newton_ah._CIAH_SOSCF)) #self.assertFalse(isinstance(addons.convert_to_rhf(scf.GHF(mol).x2c().newton().density_fit()), newton_ah._CIAH_SOSCF)) #self.assertFalse(isinstance(addons.convert_to_uhf(scf.GHF(mol).x2c().newton().density_fit()), newton_ah._CIAH_SOSCF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.GHF(mol).x2c().newton().density_fit()), newton_ah._CIAH_SOSCF)) self.assertFalse(isinstance(addons.convert_to_rhf(scf.RHF(mol).newton().density_fit()), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_uhf(scf.RHF(mol).newton().density_fit()), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.RHF(mol).newton().density_fit()), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_rhf(scf.UHF(mol).newton().density_fit()), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_uhf(scf.UHF(mol).newton().density_fit()), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.UHF(mol).newton().density_fit()), df_jk._DFHF)) #self.assertFalse(isinstance(addons.convert_to_rhf(scf.GHF(mol).newton().density_fit()), df_jk._DFHF)) #self.assertFalse(isinstance(addons.convert_to_uhf(scf.GHF(mol).newton().density_fit()), df_jk._DFHF)) self.assertFalse(isinstance(addons.convert_to_ghf(scf.GHF(mol).newton().density_fit()), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_rhf(scf.RHF(mol).density_fit().newton()), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_uhf(scf.RHF(mol).density_fit().newton()), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_ghf(scf.RHF(mol).density_fit().newton()), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_rhf(scf.UHF(mol).density_fit().newton()), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_uhf(scf.UHF(mol).density_fit().newton()), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_ghf(scf.UHF(mol).density_fit().newton()), df_jk._DFHF)) #self.assertTrue(isinstance(addons.convert_to_rhf(scf.GHF(mol).density_fit().newton()), df_jk._DFHF)) #self.assertTrue(isinstance(addons.convert_to_uhf(scf.GHF(mol).density_fit().newton()), df_jk._DFHF)) self.assertTrue(isinstance(addons.convert_to_ghf(scf.GHF(mol).density_fit().newton()), df_jk._DFHF)) def test_get_ghf_orbspin(self): orbspin = addons.get_ghf_orbspin(mf.mo_energy, mf.mo_occ) self.assertEqual(list(orbspin), [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]) orbspin = addons.get_ghf_orbspin(mf_u.mo_energy, mf_u.mo_occ, is_rhf=False) self.assertEqual(list(orbspin), [0,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,1]) def test_remove_lindep(self): mol = gto.M(verbose = 0, atom = [('H', 0, 0, i*.5) for i in range(4)], basis = ('sto-3g',[[0, [.002,1]]])) mf = addons.remove_linear_dep_(scf.RHF(mol), threshold=1e-8, lindep=1e-9).run() self.assertAlmostEqual(mf.e_tot, -1.6291001503057689, 7) if __name__ == "__main__": print("Full Tests for addons") unittest.main()
1.757813
2
alipay/aop/api/domain/MiniAppFirstCategoryInfo.py
articuly/alipay-sdk-python-all
0
12783857
<reponame>articuly/alipay-sdk-python-all #!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.MiniAppSecondCategoryInfo import MiniAppSecondCategoryInfo class MiniAppFirstCategoryInfo(object): def __init__(self): self._category_id = None self._category_name = None self._child_category = None @property def category_id(self): return self._category_id @category_id.setter def category_id(self, value): self._category_id = value @property def category_name(self): return self._category_name @category_name.setter def category_name(self, value): self._category_name = value @property def child_category(self): return self._child_category @child_category.setter def child_category(self, value): if isinstance(value, list): self._child_category = list() for i in value: if isinstance(i, MiniAppSecondCategoryInfo): self._child_category.append(i) else: self._child_category.append(MiniAppSecondCategoryInfo.from_alipay_dict(i)) def to_alipay_dict(self): params = dict() if self.category_id: if hasattr(self.category_id, 'to_alipay_dict'): params['category_id'] = self.category_id.to_alipay_dict() else: params['category_id'] = self.category_id if self.category_name: if hasattr(self.category_name, 'to_alipay_dict'): params['category_name'] = self.category_name.to_alipay_dict() else: params['category_name'] = self.category_name if self.child_category: if isinstance(self.child_category, list): for i in range(0, len(self.child_category)): element = self.child_category[i] if hasattr(element, 'to_alipay_dict'): self.child_category[i] = element.to_alipay_dict() if hasattr(self.child_category, 'to_alipay_dict'): params['child_category'] = self.child_category.to_alipay_dict() else: params['child_category'] = self.child_category return params @staticmethod def from_alipay_dict(d): if not d: return None o = MiniAppFirstCategoryInfo() if 'category_id' in d: o.category_id = d['category_id'] if 'category_name' in d: o.category_name = d['category_name'] if 'child_category' in d: o.child_category = d['child_category'] return o
1.992188
2
bin/get_from_ustream.py
cleiver/codeandtalk.com
60
12783858
#!/usr/bin/env python3 import argparse import json import os from pyquery import PyQuery import re import requests # given a URL such as http://www.ustream.tv/recorded/102894434 # fetch the details of the presentation def main(): parser = argparse.ArgumentParser() parser.add_argument('-u', '--url', help='URL of the video: http://www.ustream.tv/recorded/102894434', required=True) parser.add_argument('-d', '--date', help='date in YYYY-MM-DD format', required=True) parser.add_argument('-e', '--event', help='date in YYYY-MM-DD format', required=True) args = parser.parse_args() #print(args.url) #print(args.date) #print(args.event) response = requests.get(args.url) if response.status_code != 200: print("Failed to fetch {}".format(args.url)) return m = re.search(r'\d+$', args.url) video_code = m.group(0) #print(video_code) event_dir = 'data/videos/{}'.format(args.event) #print(event_dir) if not os.path.exists(event_dir): os.mkdir(event_dir) html = PyQuery(response.content) # speaker - title # <meta property="og:title" content="<NAME> - Tech Lead Skills for Developers" /> speaker_title = html('meta[@property="og:title"]')[0].attrib['content'] speaker, title = speaker_title.split(' - ', 2) # print(speaker) # print(title) #re.sub(r'', '-', title.lower()) speaker_nickname = re.sub(r' +', '-', speaker.lower()) print(speaker_nickname) speaker_file = "data/people/{}.txt".format(speaker_nickname) if not os.path.exists(speaker_file): with open(speaker_file, 'w') as fh: fh.write("name: {}\n".format(speaker)) event_file = "{}/{}.json".format(event_dir, video_code) print(event_file) data = { "description" : html('meta[<EMAIL>"]')[0].attrib['content'], "favorite": "0", "length": "", "likes": "0", "recorded": args.date, "speakers": [ speaker_nickname ], "tags": [], # <meta property="og:image" content="http://static-cdn1.ustream.tv/i/video/picture/0/1/102/102894/102894434/1_17590738_102894434,640x360,b,1:2.jpg" /> "thumbnail_url": html('meta[<EMAIL>="og:<EMAIL>"]')[0].attrib['content'], "title": title, "videos": [ { "code": video_code, "type": "ustream" } ], "views": "0" } #import code #video_code.interact(local=locals()) #m = html('meta["property="og:description"]') #print(m.html) if os.path.exists(event_file): print("File {} already exists.".format(event_file)) return with open(event_file, 'w') as fh: json.dump(data, fh, sort_keys=True, indent=4, separators=(',', ': ')) print("length is missing! Add it manually!") main() # vim: expandtab
3.03125
3
examples/validation/core/04_update_template.py
Kitware/trame
42
12783859
<gh_stars>10-100 from trame.app import get_server from trame.widgets import html, trame from trame.ui.html import DivLayout LINE_COUNT = 1 # ----------------------------------------------------------------------------- # Trame setup # ----------------------------------------------------------------------------- server = get_server() layout = DivLayout(server) def add_new_line(): global LINE_COUNT with layout as c: c.root.add_child(f"<br>New line {LINE_COUNT}") LINE_COUNT += 1 with layout: html.Button("Add a new line ({{ tts }})", click=add_new_line) trame.LifeCycleMonitor(type="error", events=("['created']",)) # ----------------------------------------------------------------------------- # start server # ----------------------------------------------------------------------------- if __name__ == "__main__": server.start()
2.671875
3
egs/vwm/tts1/loadXvector.py
mapledxf/espnet
0
12783860
#!/usr/bin/env python # coding=utf-8 import kaldiio x=kaldiio.load_mat("/home/zlj/dxf/espnet/egs/vwm/tts1/decode/tts/xvectors/xvector.1.ark:4") spemb = torch.FloatTensor(x).to(device) print(str(x))
2.421875
2
core/src/main/python/wlsdeploy/aliases/__init__.py
CarolynRountree/weblogic-deploy-tooling
0
12783861
""" Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved. The Universal Permissive License (UPL), Version 1.0 This package provides the WLST knowledge base used by the rest of the code to understand how to perform their work across WebLogic versions and WLST modes. """
0.800781
1
armulator/armv6/memory_types.py
matan1008/armulator
16
12783862
from abc import ABCMeta, abstractmethod class MemoryType(object): __metaclass__ = ABCMeta @abstractmethod def __init__(self, size): self.size = size def __getitem__(self, (address, size)): return self.read(address, size) def __setitem__(self, address_size, value): self.write(address_size[0], address_size[1], value) @abstractmethod def read(self, address, size): pass @abstractmethod def write(self, address, size, value): pass class RAM(MemoryType): def __init__(self, size): super(RAM, self).__init__(size) self.memory_array = bytearray(size) def read(self, address, size): chunk = self.memory_array[address:address + size] return chunk def write(self, address, size, value): self.memory_array[address:address + size] = value MEMORY_TYPE_DICT = { "RAM": RAM }
3.59375
4
combiner/management/commands/fixtures.py
storrellas/idrink
0
12783863
<filename>combiner/management/commands/fixtures.py from django.core.management.base import BaseCommand, CommandError from combiner.models import Ingredient, Drink class Command(BaseCommand): help = 'Closes the specified poll for voting' # def add_arguments(self, parser): # parser.add_argument('poll_id', nargs='+', type=int) def handle(self, *args, **options): # Generate entities try: beefeater = IngredientMongo(name='beefeater', description='this is description for beefeater').save() dry_vermouth = IngredientMongo(name='dry_vermouth', description='this is description for dry_vermouth').save() orange = IngredientMongo(name='orange', description='this is description for dry_vermouth').save() drink = DrinkMongo( name="martini", description="this is a cool drink used among modernets", ingredient_list=[beefeater, dry_vermouth, orange]).save() except: raise CommandError('Failed to create entities') self.stdout.write(self.style.SUCCESS('Successfully created entities for drink'))
2.328125
2
week_3/mapReduce_tasks/problem4.py
FireAndBlood12/db-coursera
0
12783864
import MapReduce import sys """ Word Count Example in the Simple Python MapReduce Framework """ mr = MapReduce.MapReduce() # ============================= # Do not modify above this line def mapper(record): # key: document identifier # value: document contents key = record[0] friend = record[1] #emit main relationship mr.emit_intermediate(key, record); #emit friend relationship to check non-sym mr.emit_intermediate(friend, record); def reducer(key, list_of_values): # key: word # value: book for v in list_of_values: nonRel=[v[1],v[0]] if nonRel not in list_of_values: if v[0] == key: mr.emit((v[0],v[1])) else: mr.emit((v[1],v[0])) # Do not modify below this line # ============================= if __name__ == '__main__': inputdata = open(sys.argv[1]) mr.execute(inputdata, mapper, reducer)
3.703125
4
cli/tests/integrations/test_package.py
ConnectionMaster/dcos-cli
1
12783865
<reponame>ConnectionMaster/dcos-cli import contextlib import json import os import pkg_resources import six from dcos import package, subcommand from dcos.errors import DCOSException import pytest from mock import patch from .common import (assert_command, assert_lines, delete_zk_nodes, exec_command, file_bytes, file_json, get_services, service_shutdown, wait_for_service, watch_all_deployments) @pytest.fixture(scope="module") def zk_znode(request): request.addfinalizer(delete_zk_nodes) return request def _chronos_description(app_ids): """ :param app_ids: a list of application id :type app_ids: [str] :returns: a binary string representing the chronos description :rtype: str """ result = [ {"apps": app_ids, "description": "A fault tolerant job scheduler for Mesos which " "handles dependencies and ISO8601 based schedules.", "framework": True, "images": { "icon-large": "https://downloads.mesosphere.io/chronos/assets/" "icon-service-chronos-large.png", "icon-medium": "https://downloads.mesosphere.io/chronos/assets/" "icon-service-chronos-medium.png", "icon-small": "https://downloads.mesosphere.io/chronos/assets/" "icon-service-chronos-small.png" }, "licenses": [ { "name": "Apache License Version 2.0", "url": "https://github.com/mesos/chronos/blob/master/LICENSE" } ], "maintainer": "<EMAIL>", "name": "chronos", "packageSource": "https://github.com/mesosphere/universe/archive/\ cli-test-3.zip", "postInstallNotes": "Chronos DCOS Service has been successfully " "installed!\n\n\tDocumentation: http://mesos." "github.io/chronos\n\tIssues: https://github.com/" "mesos/chronos/issues", "postUninstallNotes": "The Chronos DCOS Service has been uninstalled " "and will no longer run.\nPlease follow the " "instructions at http://docs.mesosphere." "com/services/chronos/#uninstall to clean up " "any persisted state", "preInstallNotes": "We recommend a minimum of one node with at least " "1 CPU and 2GB of RAM available for the Chronos " "Service.", "releaseVersion": "1", "scm": "https://github.com/mesos/chronos.git", "tags": [ "cron", "analytics", "batch" ], "version": "2.4.0" }] return (json.dumps(result, sort_keys=True, indent=2).replace(' \n', '\n') + '\n').encode('utf-8') def test_package(): stdout = pkg_resources.resource_string( 'tests', 'data/help/package.txt') assert_command(['dcos', 'package', '--help'], stdout=stdout) def test_info(): assert_command(['dcos', 'package', '--info'], stdout=b'Install and manage DCOS packages\n') def test_version(): assert_command(['dcos', 'package', '--version'], stdout=b'dcos-package version SNAPSHOT\n') def test_sources_list(): stdout = b"fd40db7f075490e0c92ec6fcd62ec1caa361b313 " + \ b"https://github.com/mesosphere/universe/archive/cli-test-3.zip\n" assert_command(['dcos', 'package', 'sources'], stdout=stdout) def test_update_without_validation(): returncode, stdout, stderr = exec_command(['dcos', 'package', 'update']) assert returncode == 0 assert b'source' in stdout assert b'Validating package definitions...' not in stdout assert b'OK' not in stdout assert stderr == b'' def test_update_with_validation(): returncode, stdout, stderr = exec_command( ['dcos', 'package', 'update', '--validate']) assert returncode == 0 assert b'source' in stdout assert b'Validating package definitions...' in stdout assert b'OK' in stdout assert stderr == b'' def test_describe_nonexistent(): assert_command(['dcos', 'package', 'describe', 'xyzzy'], stderr=b'Package [xyzzy] not found\n', returncode=1) def test_describe_nonexistent_version(): stderr = b'Version a.b.c of package [marathon] is not available\n' assert_command(['dcos', 'package', 'describe', 'marathon', '--package-version=a.b.c'], stderr=stderr, returncode=1) def test_describe(): stdout = file_json( 'tests/data/package/json/test_describe_marathon.json') assert_command(['dcos', 'package', 'describe', 'marathon'], stdout=stdout) def test_describe_cli(): stdout = file_json( 'tests/data/package/json/test_describe_cli_cassandra.json') assert_command(['dcos', 'package', 'describe', 'cassandra', '--cli'], stdout=stdout) def test_describe_app(): stdout = file_bytes( 'tests/data/package/json/test_describe_app_marathon.json') assert_command(['dcos', 'package', 'describe', 'marathon', '--app'], stdout=stdout) def test_describe_config(): stdout = file_json( 'tests/data/package/json/test_describe_marathon_config.json') assert_command(['dcos', 'package', 'describe', 'marathon', '--config'], stdout=stdout) def test_describe_render(): stdout = file_json( 'tests/data/package/json/test_describe_marathon_app_render.json') assert_command( ['dcos', 'package', 'describe', 'marathon', '--app', '--render'], stdout=stdout) def test_describe_package_version(): stdout = file_json( 'tests/data/package/json/test_describe_marathon_package_version.json') assert_command( ['dcos', 'package', 'describe', 'marathon', '--package-version=0.8.1'], stdout=stdout) def test_describe_package_version_missing(): stderr = b'Version bogus of package [marathon] is not available\n' assert_command( ['dcos', 'package', 'describe', 'marathon', '--package-version=bogus'], returncode=1, stderr=stderr) def test_describe_package_versions(): stdout = file_bytes( 'tests/data/package/json/test_describe_marathon_package_versions.json') assert_command( ['dcos', 'package', 'describe', 'marathon', '--package-versions'], stdout=stdout) def test_describe_package_versions_others(): stderr = (b'If --package-versions is provided, no other option can be ' b'provided\n') assert_command( ['dcos', 'package', 'describe', 'marathon', '--package-versions', '--app'], returncode=1, stderr=stderr) def test_describe_options(): stdout = file_json( 'tests/data/package/json/test_describe_app_options.json') assert_command(['dcos', 'package', 'describe', '--app', '--options', 'tests/data/package/marathon.json', 'marathon'], stdout=stdout) def test_describe_app_cli(): stdout = file_bytes( 'tests/data/package/json/test_describe_app_cli.json') assert_command( ['dcos', 'package', 'describe', 'cassandra', '--app', '--cli'], stdout=stdout) def test_describe_specific_version(): stdout = file_bytes( 'tests/data/package/json/test_describe_marathon_0.8.1.json') assert_command(['dcos', 'package', 'describe', '--package-version=0.8.1', 'marathon'], stdout=stdout) def test_bad_install(): args = ['--options=tests/data/package/chronos-bad.json', '--yes'] stderr = b"""Error: False is not of type 'string' Path: chronos.zk-hosts Value: false Please create a JSON file with the appropriate options, and pass the \ /path/to/file as an --options argument. """ _install_chronos(args=args, returncode=1, stdout=b'', stderr=stderr, postInstallNotes=b'') def test_install(zk_znode): _install_chronos() watch_all_deployments() wait_for_service('chronos') _uninstall_chronos() watch_all_deployments() services = get_services(args=['--inactive']) assert len([service for service in services if service['name'] == 'chronos']) == 0 def test_install_missing_options_file(): """Test that a missing options file results in the expected stderr message.""" assert_command( ['dcos', 'package', 'install', 'chronos', '--yes', '--options=asdf.json'], returncode=1, stderr=b"Error opening file [asdf.json]: No such file or directory\n") def test_install_specific_version(): stdout = (b'We recommend a minimum of one node with at least 2 ' b'CPU\'s and 1GB of RAM available for the Marathon Service.\n' b'Installing Marathon app for package [marathon] ' b'version [0.8.1]\n' b'Marathon DCOS Service has been successfully installed!\n\n' b'\tDocumentation: https://mesosphere.github.io/marathon\n' b'\tIssues: https:/github.com/mesosphere/marathon/issues\n\n') uninstall_stderr = ( b'Uninstalled package [marathon] version [0.8.1]\n' b'The Marathon DCOS Service has been uninstalled and will no longer ' b'run.\nPlease follow the instructions at http://docs.mesosphere.com/' b'services/marathon/#uninstall to clean up any persisted state\n' ) with _package('marathon', stdout=stdout, uninstall_stderr=uninstall_stderr, args=['--yes', '--package-version=0.8.1']): returncode, stdout, stderr = exec_command( ['dcos', 'package', 'list', 'marathon', '--json']) assert returncode == 0 assert stderr == b'' assert json.loads(stdout.decode('utf-8'))[0]['version'] == "0.8.1" def test_install_bad_package_version(): stderr = b'Version a.b.c of package [cassandra] is not available\n' assert_command( ['dcos', 'package', 'install', 'cassandra', '--package-version=a.b.c'], returncode=1, stderr=stderr) def test_package_metadata(): _install_helloworld() # test marathon labels expected_metadata = b"""<KEY>==""" expected_command = b"""<KEY>"" expected_source = b"""https://github.com/mesosphere/universe/archive/\ cli-test-3.zip""" expected_labels = { 'DCOS_PACKAGE_METADATA': expected_metadata, 'DCOS_PACKAGE_COMMAND': expected_command, 'DCOS_PACKAGE_REGISTRY_VERSION': b'2.0.0-rc1', 'DCOS_PACKAGE_NAME': b'helloworld', 'DCOS_PACKAGE_VERSION': b'0.1.0', 'DCOS_PACKAGE_SOURCE': expected_source, 'DCOS_PACKAGE_RELEASE': b'0', } app_labels = _get_app_labels('helloworld') for label, value in expected_labels.items(): assert value == six.b(app_labels.get(label)) # test local package.json package = { "description": "Example DCOS application package", "maintainer": "<EMAIL>", "name": "helloworld", "postInstallNotes": "A sample post-installation message", "preInstallNotes": "A sample pre-installation message", "tags": ["mesosphere", "example", "subcommand"], "version": "0.1.0", "website": "https://github.com/mesosphere/dcos-helloworld", } package_dir = subcommand.package_dir('helloworld') # test local package.json package_path = os.path.join(package_dir, 'package.json') with open(package_path) as f: assert json.load(f) == package # test local source source_path = os.path.join(package_dir, 'source') with open(source_path) as f: assert six.b(f.read()) == expected_source # test local version version_path = os.path.join(package_dir, 'version') with open(version_path) as f: assert six.b(f.read()) == b'0' # uninstall helloworld _uninstall_helloworld() def test_install_with_id(zk_znode): args = ['--app-id=chronos-1', '--yes'] stdout = (b'Installing Marathon app for package [chronos] version [2.4.0] ' b'with app id [chronos-1]\n') _install_chronos(args=args, stdout=stdout) args = ['--app-id=chronos-2', '--yes'] stdout = (b'Installing Marathon app for package [chronos] version [2.4.0] ' b'with app id [chronos-2]\n') _install_chronos(args=args, stdout=stdout) def test_install_missing_package(): stderr = b"""Package [missing-package] not found You may need to run 'dcos package update' to update your repositories """ assert_command(['dcos', 'package', 'install', 'missing-package'], returncode=1, stderr=stderr) def test_uninstall_with_id(zk_znode): _uninstall_chronos(args=['--app-id=chronos-1']) def test_uninstall_all(zk_znode): _uninstall_chronos(args=['--all']) get_services(expected_count=1, args=['--inactive']) def test_uninstall_missing(): stderr = 'Package [chronos] is not installed.\n' _uninstall_chronos(returncode=1, stderr=stderr) stderr = 'Package [chronos] with id [chronos-1] is not installed.\n' _uninstall_chronos( args=['--app-id=chronos-1'], returncode=1, stderr=stderr) def test_uninstall_subcommand(): _install_helloworld() _uninstall_helloworld() _list() def test_uninstall_cli(): _install_helloworld() _uninstall_helloworld(args=['--cli']) stdout = b"""[ { "apps": [ "/helloworld" ], "description": "Example DCOS application package", "maintainer": "<EMAIL>", "name": "helloworld", "packageSource": "https://github.com/mesosphere/universe/archive/\ cli-test-3.zip", "postInstallNotes": "A sample post-installation message", "preInstallNotes": "A sample pre-installation message", "releaseVersion": "0", "tags": [ "mesosphere", "example", "subcommand" ], "version": "0.1.0", "website": "https://github.com/mesosphere/dcos-helloworld" } ] """ _list(stdout=stdout) _uninstall_helloworld() def test_uninstall_multiple_apps(): stdout = (b'A sample pre-installation message\n' b'Installing Marathon app for package [helloworld] version ' b'[0.1.0] with app id [/helloworld-1]\n' b'Installing CLI subcommand for package [helloworld] ' b'version [0.1.0]\n' b'New command available: dcos helloworld\n' b'A sample post-installation message\n') _install_helloworld(['--yes', '--app-id=/helloworld-1'], stdout=stdout) stdout = (b'A sample pre-installation message\n' b'Installing Marathon app for package [helloworld] version ' b'[0.1.0] with app id [/helloworld-2]\n' b'Installing CLI subcommand for package [helloworld] ' b'version [0.1.0]\n' b'New command available: dcos helloworld\n' b'A sample post-installation message\n') _install_helloworld(['--yes', '--app-id=/helloworld-2'], stdout=stdout) stderr = (b"Multiple apps named [helloworld] are installed: " b"[/helloworld-1, /helloworld-2].\n" b"Please use --app-id to specify the ID of the app " b"to uninstall, or use --all to uninstall all apps.\n") _uninstall_helloworld(stderr=stderr, returncode=1) assert_command(['dcos', 'package', 'uninstall', 'helloworld', '--all']) watch_all_deployments() def test_list(zk_znode): _list() _list(args=['xyzzy', '--json']) _list(args=['--app-id=/xyzzy', '--json']) _install_chronos() expected_output = _chronos_description(['/chronos']) _list(stdout=expected_output) _list(args=['--json', 'chronos'], stdout=expected_output) _list(args=['--json', '--app-id=/chronos'], stdout=expected_output) _list(args=['--json', 'ceci-nest-pas-une-package']) _list(args=['--json', '--app-id=/ceci-nest-pas-une-package']) _uninstall_chronos() def test_list_table(): with _helloworld(): assert_lines(['dcos', 'package', 'list'], 2) def test_install_yes(): with open('tests/data/package/assume_yes.txt') as yes_file: _install_helloworld( args=[], stdin=yes_file, stdout=b'A sample pre-installation message\n' b'Continue installing? [yes/no] ' b'Installing Marathon app for package [helloworld] version ' b'[0.1.0]\n' b'Installing CLI subcommand for package [helloworld] ' b'version [0.1.0]\n' b'New command available: dcos helloworld\n' b'A sample post-installation message\n') _uninstall_helloworld() def test_install_no(): with open('tests/data/package/assume_no.txt') as no_file: _install_helloworld( args=[], stdin=no_file, stdout=b'A sample pre-installation message\n' b'Continue installing? [yes/no] Exiting installation.\n') def test_list_cli(): _install_helloworld() stdout = b"""\ [ { "apps": [ "/helloworld" ], "command": { "name": "helloworld" }, "description": "Example DCOS application package", "maintainer": "<EMAIL>", "name": "helloworld", "packageSource": "https://github.com/mesosphere/universe/archive/\ cli-test-3.zip", "postInstallNotes": "A sample post-installation message", "preInstallNotes": "A sample pre-installation message", "releaseVersion": "0", "tags": [ "mesosphere", "example", "subcommand" ], "version": "0.1.0", "website": "https://github.com/mesosphere/dcos-helloworld" } ] """ _list(stdout=stdout) _uninstall_helloworld() stdout = (b"A sample pre-installation message\n" b"Installing CLI subcommand for package [helloworld] " + b"version [0.1.0]\n" b"New command available: dcos helloworld\n" b"A sample post-installation message\n") _install_helloworld(args=['--cli', '--yes'], stdout=stdout) stdout = b"""\ [ { "command": { "name": "helloworld" }, "description": "Example DCOS application package", "maintainer": "<EMAIL>", "name": "helloworld", "packageSource": "https://github.com/mesosphere/universe/archive/\ cli-test-3.zip", "postInstallNotes": "A sample post-installation message", "preInstallNotes": "A sample pre-installation message", "releaseVersion": "0", "tags": [ "mesosphere", "example", "subcommand" ], "version": "0.1.0", "website": "https://github.com/mesosphere/dcos-helloworld" } ] """ _list(stdout=stdout) _uninstall_helloworld() def test_uninstall_multiple_frameworknames(zk_znode): _install_chronos( args=['--yes', '--options=tests/data/package/chronos-1.json']) _install_chronos( args=['--yes', '--options=tests/data/package/chronos-2.json']) watch_all_deployments() expected_output = _chronos_description( ['/chronos-user-1', '/chronos-user-2']) _list(stdout=expected_output) _list(args=['--json', 'chronos'], stdout=expected_output) _list(args=['--json', '--app-id=/chronos-user-1'], stdout=_chronos_description(['/chronos-user-1'])) _list(args=['--json', '--app-id=/chronos-user-2'], stdout=_chronos_description(['/chronos-user-2'])) _uninstall_chronos( args=['--app-id=chronos-user-1'], returncode=1, stderr='Uninstalled package [chronos] version [2.4.0]\n' 'The Chronos DCOS Service has been uninstalled and will no ' 'longer run.\nPlease follow the instructions at http://docs.' 'mesosphere.com/services/chronos/#uninstall to clean up any ' 'persisted state\n' 'Unable to shutdown the framework for [chronos-user] because ' 'there are multiple frameworks with the same name: ') _uninstall_chronos( args=['--app-id=chronos-user-2'], returncode=1, stderr='Uninstalled package [chronos] version [2.4.0]\n' 'The Chronos DCOS Service has been uninstalled and will no ' 'longer run.\nPlease follow the instructions at http://docs.' 'mesosphere.com/services/chronos/#uninstall to clean up any ' 'persisted state\n' 'Unable to shutdown the framework for [chronos-user] because ' 'there are multiple frameworks with the same name: ') for framework in get_services(args=['--inactive']): if framework['name'] == 'chronos-user': service_shutdown(framework['id']) def test_search(): returncode, stdout, stderr = exec_command( ['dcos', 'package', 'search', 'cron', '--json']) assert returncode == 0 assert b'chronos' in stdout assert stderr == b'' returncode, stdout, stderr = exec_command( ['dcos', 'package', 'search', 'xyzzy', '--json']) assert returncode == 0 assert b'"packages": []' in stdout assert b'"source": "https://github.com/mesosphere/universe/archive/\ cli-test-3.zip"' in stdout assert stderr == b'' returncode, stdout, stderr = exec_command( ['dcos', 'package', 'search', 'xyzzy']) assert returncode == 1 assert b'' == stdout assert stderr == b'No packages found.\n' returncode, stdout, stderr = exec_command( ['dcos', 'package', 'search', '--json']) registries = json.loads(stdout.decode('utf-8')) for registry in registries: # assert the number of packages is gte the number at the time # this test was written assert len(registry['packages']) >= 5 assert returncode == 0 assert stderr == b'' def test_search_table(): returncode, stdout, stderr = exec_command( ['dcos', 'package', 'search']) assert returncode == 0 assert b'chronos' in stdout assert len(stdout.decode('utf-8').split('\n')) > 5 assert stderr == b'' def test_search_ends_with_wildcard(): returncode, stdout, stderr = exec_command( ['dcos', 'package', 'search', 'c*', '--json']) assert returncode == 0 assert b'chronos' in stdout assert b'cassandra' in stdout assert stderr == b'' registries = json.loads(stdout.decode('utf-8')) for registry in registries: assert len(registry['packages']) == 2 def test_search_start_with_wildcard(): returncode, stdout, stderr = exec_command( ['dcos', 'package', 'search', '*nos', '--json']) assert returncode == 0 assert b'chronos' in stdout assert stderr == b'' registries = json.loads(stdout.decode('utf-8')) for registry in registries: assert len(registry['packages']) == 1 def test_search_middle_with_wildcard(): returncode, stdout, stderr = exec_command( ['dcos', 'package', 'search', 'c*s', '--json']) assert returncode == 0 assert b'chronos' in stdout assert stderr == b'' registries = json.loads(stdout.decode('utf-8')) for registry in registries: assert len(registry['packages']) == 1 @patch('dcos.package.Package.package_json') @patch('dcos.package.Package.config_json') def test_bad_config_schema_msg(config_mock, package_mock): pkg = package.Package("", "/") config_mock.return_value = {} package_mock.return_value = {'maintainer': '<EMAIL>'} with pytest.raises(DCOSException) as e: pkg.options("1", {}) msg = ("An object in the package's config.json is missing the " "required 'properties' feature:\n {}" "\nPlease contact the project maintainer: <EMAIL>") assert e.exconly().split(':', 1)[1].strip() == msg def _get_app_labels(app_id): returncode, stdout, stderr = exec_command( ['dcos', 'marathon', 'app', 'show', app_id]) assert returncode == 0 assert stderr == b'' app_json = json.loads(stdout.decode('utf-8')) return app_json.get('labels') def _install_helloworld( args=['--yes'], stdout=b'A sample pre-installation message\n' b'Installing Marathon app for package [helloworld] ' b'version [0.1.0]\n' b'Installing CLI subcommand for package [helloworld] ' b'version [0.1.0]\n' b'New command available: dcos helloworld\n' b'A sample post-installation message\n', returncode=0, stdin=None): assert_command( ['dcos', 'package', 'install', 'helloworld'] + args, stdout=stdout, returncode=returncode, stdin=stdin) def _uninstall_helloworld( args=[], stdout=b'', stderr=b'', returncode=0): assert_command(['dcos', 'package', 'uninstall', 'helloworld'] + args, stdout=stdout, stderr=stderr, returncode=returncode) def _uninstall_chronos(args=[], returncode=0, stdout=b'', stderr=''): result_returncode, result_stdout, result_stderr = exec_command( ['dcos', 'package', 'uninstall', 'chronos'] + args) assert result_returncode == returncode assert result_stdout == stdout assert result_stderr.decode('utf-8').startswith(stderr) def _install_chronos( args=['--yes'], returncode=0, stdout=b'Installing Marathon app for package [chronos] ' b'version [2.4.0]\n', stderr=b'', preInstallNotes=b'We recommend a minimum of one node with at least 1 ' b'CPU and 2GB of RAM available for the Chronos ' b'Service.\n', postInstallNotes=b'Chronos DCOS Service has been successfully ' b'''installed! \tDocumentation: http://mesos.github.io/chronos \tIssues: https://github.com/mesos/chronos/issues\n''', stdin=None): cmd = ['dcos', 'package', 'install', 'chronos'] + args assert_command( cmd, returncode, preInstallNotes + stdout + postInstallNotes, stderr, stdin=stdin) def _list(args=['--json'], stdout=b'[]\n'): assert_command(['dcos', 'package', 'list'] + args, stdout=stdout) def _helloworld(): stdout = b'''A sample pre-installation message Installing Marathon app for package [helloworld] version [0.1.0] Installing CLI subcommand for package [helloworld] version [0.1.0] New command available: dcos helloworld A sample post-installation message ''' return _package('helloworld', stdout=stdout) @contextlib.contextmanager def _package(name, stdout=b'', uninstall_stderr=b'', args=['--yes']): """Context manager that installs a package on entrace, and uninstalls it on exit. :param name: package name :type name: str :param stdout: Expected stdout :type stdout: str :param uninstall_stderr: Expected stderr :type uninstall_stderr: str :param args: extra CLI args :type args: [str] :rtype: None """ assert_command(['dcos', 'package', 'install', name] + args, stdout=stdout) try: yield finally: assert_command( ['dcos', 'package', 'uninstall', name], stderr=uninstall_stderr)
1.796875
2
cogs/reddit/gamedeals.py
santoshpanna/Discord-Bot
0
12783866
import praw, os, discord, requests from steamstorefront import SteamStoreFront from datetime import datetime from collections import deque from bs4 import BeautifulSoup from common import common, database from ..helpers import steam, gamedeals, guild from ..helpers.gamedeals import isFromAcceptableStore class GameDeals: r = None steam = None # constructor to initialize varialbles def __init__(self): config = common.getConfig() self.masterLogger = common.getMasterLog() self.r = praw.Reddit(client_id=config['REDDIT']['client.id'], client_secret=config['REDDIT']['client.secret'], user_agent=config['REDDIT']['user.agent']) self.steam = steam.Steam() self.ssf = SteamStoreFront() # get new results def getSubreddit(self, subreddit, limit): rsub = self.r.subreddit(subreddit) res = rsub.new(limit=limit) return res def keyDoesNotExists(self, deq, dict): for el in deq: if el['url'] == dict['url']: return False return True async def run(self, bot): masterLogger = common.getMasterLog() db = database.Database() # subreddits to fetch subreddits = ['gamedeals', 'steamdeals', 'freegamefindings'] # final post container of non existing and distinct deals enriched_post = deque() # for each subreddit for subreddit in subreddits: # get the service record service = db.getService(subreddit) if 'latest' not in service: service['latest'] = None # get the latest submissions posts = [] try: posts = self.getSubreddit(subreddit, 30) except Exception: await bot.get_channel(masterLogger).send(f"**Error** : unable to fetch r/{subreddit}") # id container id = None if common.getEnvironment() == 'dev': # post log in masterlogger await bot.get_channel(masterLogger).send(f"scraped {subreddit}.") # iterate through posts for post in posts: # this is done for getting the first id if not id: id = post.id # if there are no new post, break if post.id == service['latest']: break if isFromAcceptableStore(post): deal = {} deal['title'] = post.title deal['id'] = post.id if "reddit.com" in post.url: deal['url'] = gamedeals.getStoreLink(post) else: deal['url'] = gamedeals.removeURI(post.url) deal['created'] = common.getTimeFromTimestamp(post.created) if 'url' in deal and deal['url']: # check if its steam store link if 'steampowered.com' in deal['url']: price = None try: price = self.ssf.getPrice(url=deal['url']) except InvalidArgument as e: if common.getEnvironment() == 'prod' or common.getEnvironment() == 'dev': await bot.get_channel(masterLogger).send(f"error getting price for {deal['url']} of reddit id {deal['id']}. Arguments passed {e.error}, error type {e.type}.") pass if price: deal['price'] = price['final'] if self.keyDoesNotExists(enriched_post, deal): enriched_post.appendleft(deal) # update database data = {} data["name"] = subreddit if len(enriched_post) > 0: data["lastposted"] = common.getDatetimeIST() if id: data["latest"] = id status = db.upsertService(data) if status == common.STATUS.SUCCESS.INSERTED: await bot.get_channel(masterLogger).send(f"**Created Service**: {data['name']}.") elif status == common.STATUS.FAIL.INSERT: await bot.get_channel(masterLogger).send(f"**DB Insert Error - Service**: {data['name']}.") elif status == common.STATUS.FAIL.UPDATE: await bot.get_channel(masterLogger).send(f"**DB Update Error - Service**: {data['name']}.") else: pass # send the final deque for posting await self.send(enriched_post, bot) # steam deals async def send(self, posts, bot): db = database.Database() # go through new submissions for post in posts: status = db.upsertGameDeal(post) # 1 = updated, 2 = created, -1 = error in update/inserting channels = guild.getChannels('gamedeals') for channel in channels: # the deal already exists if status == common.STATUS.SUCCESS.UPDATED: # price check for steam games if 'steampowered.com' in post['url']: try: existingDeal = db.getGameDeal(post) new_price = self.ssf.getPrice(url=post['url']) new_price = new_price['final'] if new_price else 9223372036854775806 if 'price' in existingDeal: old_price = existingDeal['price'] # if new price is less than older price post the deal if int(new_price) < int(old_price): await self.steam.post(bot, channel, post) # can't compare price, so leave the deal except InvalidArgument as e: if common.getEnvironment() == 'prod' or common.getEnvironment() == 'dev': await bot.get_channel(common.getMasterLog()).send(f"error getting price for {post['url']} of reddit id {post['id']}. Arguments passed {e.error}, error type {e.type}.") pass # else: # await self.steam.post(bot, channel, post) # the deal is a new one elif status == common.STATUS.SUCCESS.INSERTED: # special handler for steam if 'steampowered.com' in post['url']: await self.steam.post(bot, channel, post) else: await bot.get_channel(channel['channel_id']).send(post['url']) # if logging is enabled post log if 'logging' in channel: await bot.get_channel(channel['logging']).send(f"sent {post['title']} in {channel['channel_name']}") # there has been error updating or inserting deal else: # log it in master log bot.get_channel(self.masterLogger).send(f"**DB Error**: Failed Updating/Inserting {post['id']}.")
2.59375
3
examples/settings.py
fakegit/googlevoice-1
156
12783867
import pprint from googlevoice import Voice def run(): voice = Voice() voice.login() pprint.pprint(voice.settings) __name__ == '__main__' and run()
1.914063
2
models/Simple_LSTM.py
Pheithar/Animal-Sounds
1
12783868
<filename>models/Simple_LSTM.py<gh_stars>1-10 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from tqdm import tqdm import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import accuracy_score from . import utils class SimpleLSTM(nn.Module): # Init def __init__(self, net_arch: dict): super(SimpleLSTM, self).__init__() input_size = net_arch["input_size"] hidden_size = net_arch["hidden_size"] num_layers = net_arch["num_layers"] lstm_dropout = net_arch["lstm_dropout"] assert len(net_arch["linear_features"]) == 1 + len(net_arch["linear_dropout"]),\ f"Lenght of linear features ({len(net_arch['linear_features'])})"\ f" must be one more than the the lenght of linear dropout"\ f" ({len(net_arch['linear_dropout'])})." self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=lstm_dropout) # Layers - Linear self.dense = nn.ModuleList() self.ldrop = nn.ModuleList() # Flatten input_channels = hidden_size for linear_features in net_arch["linear_features"]: layer = nn.Linear(input_channels, linear_features) self.dense.append(layer) # Update parameters input_channels = linear_features for drop in net_arch["linear_dropout"]: self.ldrop.append(nn.Dropout(drop)) # Activation self.relu = nn.ReLU() self.last_activation = eval("nn." + net_arch["last_layer_activation"]) def forward(self, x): x, _ = self.lstm(x) x = x[:, -1] for dense, dropout in zip(self.dense, self.ldrop): x = dense(x) x = self.relu(x) x = dropout(x) x = self.last_activation(self.dense[-1](x)) return x def fit(self, num_epochs: int, train_loader: DataLoader, validation_loader: DataLoader, criterion, optimizer, show: bool = True, frequency_val : int = 2, log_file: str = None, plot_file: str = None, train_name: str = "Network"): sns.set() if log_file: with open(log_file, "a") as f: f.write(train_name + "\n") train_loss = [] train_acc = [] plot_epochs_train = [] val_loss = [] val_acc = [] plot_epochs_val = [] fig, (loss_ax, acc_ax) = plt.subplots(2, 1, figsize=(12, 10)) for epoch in tqdm(range(num_epochs), desc=f"Training {train_name}"): running_loss = 0.0 running_accuracy = 0.0 # State that the network is in train mode self.train() for i, data in enumerate(train_loader): # Get the inputs val = data inputs, labels = val["mfcc"], val["label"] inputs = utils.get_cuda(inputs) labels = utils.get_cuda(labels) # Make them variables optimizer.zero_grad() # Forward, backward and around outputs = self(inputs) # print(outputs.shape, labels.shape) loss = criterion(outputs, labels) loss.backward() optimizer.step() labels = utils.get_numpy(self.compute_prediction(labels)) outputs = utils.get_numpy(self.compute_prediction(outputs)) running_accuracy += accuracy_score(outputs, labels) running_loss += loss.data.item() train_loss.append(running_loss / len(train_loader)) train_acc.append(running_accuracy / len(train_loader)) plot_epochs_train.append(epoch+1) if epoch % frequency_val == 0 or epoch == num_epochs-1: running_loss = 0.0 running_accuracy = 0.0 # State that the network is in validation mode self.eval() for i, data in enumerate(validation_loader): # Get the inputs val = data inputs, labels = val["mfcc"], val["label"] inputs = utils.get_cuda(inputs) labels = utils.get_cuda(labels) outputs = self(inputs) loss = criterion(outputs, labels) labels = utils.get_numpy(self.compute_prediction(labels)) outputs = utils.get_numpy(self.compute_prediction(outputs)) running_accuracy += accuracy_score(outputs, labels) running_loss += loss.data.item() val_loss.append(running_loss / len(validation_loader)) val_acc.append(running_accuracy / len(validation_loader)) plot_epochs_val.append(epoch+1) if log_file: with open(log_file, "a") as f: f.write("-------------------------------------------\n") f.write(f"Epoch {epoch+1}:\n") f.write(f"\t Train Loss: {train_loss[-1]:.2f}\n") f.write(f"\t Train Accuracy: {train_acc[-1]:.2f}\n") f.write(f"\t Validation Loss: {val_loss[-1]:.2f}\n") f.write(f"\t Validation Accuracy: {val_acc[-1]:.2f}\n") step = max(int(len(plot_epochs_train) // 10), 1) loss_ax.set_title("Loss function value in the train and validation sets") loss_ax.plot(plot_epochs_train, train_loss, label="Train Loss") loss_ax.plot(plot_epochs_val, val_loss, label="Validation Loss") loss_ax.set_xlabel("Epochs") loss_ax.set_ylabel("Value") loss_ax.legend() loss_ax.set_xticks(range(1, len(plot_epochs_train), step)) acc_ax.set_title("Accuracy of the train and validation sets") acc_ax.plot(plot_epochs_train, train_acc, label="Train Accuracy") acc_ax.plot(plot_epochs_val, val_acc, label="Validation Accuracy") acc_ax.set_xlabel("Epochs") acc_ax.set_ylabel("Percentage") acc_ax.set_xticks(range(1, len(plot_epochs_train), step)) acc_ax.legend() if plot_file: plt.savefig(plot_file) if show: plt.show() else: plt.close() return ((train_loss[-1], train_acc[-1]), (val_loss[-1], val_acc[-1])) def compute_prediction(self, y): if y.shape[1] == 1: return y.int() return torch.max(y, 1)[1]
2.5625
3
examples/1_clap_for_everything.py
InnovativeInventor/pykeybasebot
117
12783869
<reponame>InnovativeInventor/pykeybasebot<gh_stars>100-1000 #!/usr/bin/env python3 ################################### # WHAT IS IN THIS EXAMPLE? # # This bot listens in one channel and reacts to every text message. ################################### import asyncio import logging import os import sys import pykeybasebot.types.chat1 as chat1 from pykeybasebot import Bot logging.basicConfig(level=logging.DEBUG) if "win32" in sys.platform: # Windows specific event-loop policy asyncio.set_event_loop_policy( asyncio.WindowsProactorEventLoopPolicy() # type: ignore ) async def handler(bot, event): if event.msg.content.type_name != chat1.MessageTypeStrings.TEXT.value: return channel = event.msg.channel msg_id = event.msg.id await bot.chat.react(channel, msg_id, ":clap:") listen_options = {"filter-channel": {"name": "yourbot,someoneelse"}} bot = Bot(username="yourbot", paperkey=os.environ["KEYBASE_PAPERKEY"], handler=handler) asyncio.run(bot.start(listen_options))
2.75
3
RegionMap-datagen.py
derrickmehaffy/EliteDangerousRegionMap
8
12783870
#!/bin/env python3 from PIL import Image from numpy import asarray import json regionmap = asarray(Image.open('RegionMap.png')) region1 = 42 * 4 regions = [ None, "Galactic Centre", "Empyrean Straits", "Ryker's Hope", "Odin's Hold", "Norma Arm", "Arcadian Stream", "Izanami", "Inner Orion-Perseus Conflux", "Inner Scutum-Centaurus Arm", "Norma Expanse", "Trojan Belt", "The Veils", "Newton's Vault", "The Conduit", "Outer Orion-Perseus Conflux", "Orion-Cygnus Arm", "Temple", "Inner Orion Spur", "Hawking's Gap", "Dryman's Point", "Sagittarius-Carina Arm", "<NAME>", "Acheron", "Formorian Frontier", "Hieronymus Delta", "Outer Scutum-Centaurus Arm", "Outer Arm", "Aquila's Halo", "Errant Marches", "Perseus Arm", "Formidine Rift", "Vulcan Gate", "Elysian Shore", "Sanguineous Rim", "Outer Orion Spur", "Achilles's Altar", "Xibalba", "Lyra's Song", "Tenebrae", "The Abyss", "Kepler's Crest", "The Void" ] lines = [] for l in regionmap[::-1]: rle = [] p = 0 n = 0 for px in l: px = 0 if px == 0 else (region1 - px) // 4 + 1 if px != p: rle.append((n, p)) p = px n = 1 else: n += 1 rle.append((n, p)) lines.append(rle) with open('RegionMapData.py', 'wt') as f: f.write('#!/bin/env python3\n') f.write('\n') f.write('regions = [\n') for r in regions: f.write(' {0},\n'.format(repr(r))) f.write(']\n') f.write('\n') f.write('regionmap = [\n') for l in lines: f.write(' {0},\n'.format(repr(l))) f.write(']\n') f.write('\n') with open('RegionMapData.json', 'wt') as f: f.write('{\n') f.write(' "regions": [\n') f.write(' {0}\n'.format(',\n '.join(json.dumps(r) for r in regions))) f.write(' ],\n') f.write(' "regionmap": [\n'); f.write(' {0}\n'.format(',\n '.join(json.dumps([[int(rl), int(rv)] for rl, rv in l]) for l in lines))) f.write(' ]\n') f.write('}\n') with open('RegionMapData.cs', 'wt') as f: f.write('namespace EliteDangerousRegionMap\n') f.write('{\n') f.write(' public static partial class RegionMap\n') f.write(' {\n') f.write(' private static string[] RegionNames = new[]\n') f.write(' {\n') for r in regions: f.write(' {0},\n'.format(json.dumps(r))) f.write(' };\n') f.write('\n') f.write(' private static (int, int)[][] RegionMapLines = new[]\n') f.write(' {\n') for row in lines: f.write(' new[]{' + ','.join(repr((l, v)) for l, v in row) + '},\n') f.write(' };\n') f.write(' }\n') f.write('}\n')
2.46875
2
biblescrapeway/cli.py
jonathanvanschenck/biblescrapeway
0
12783871
import click import json from pathlib import Path from .query import query CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help']) def _format_line(obj, _format): if _format == 'refstr': return obj.to_string() if _format == 'str': return '`{}` ({})'.format(obj.text,obj.version) def _formatter(obj_list, _format): # Handle json if _format == 'json': return json.dumps([v.to_dict() for v in obj_list],indent=4) # Handle everything else return "\n".join([_format_line(obj,_format) for obj in obj_list]) @click.command(context_settings=CONTEXT_SETTINGS) @click.option('--version', '-v', default='ESV', help='Bible version to query, default is `ESV`') @click.option('--format', '-f', '_format', default='refstr', type=click.Choice(['refstr','str','json']), help='Specify output format, default is `refstr`') @click.option('--cache/--no-cache', default=False, help='Look up verses saved in a local cache first, and save new queries locally') @click.argument('reference_string') def scrap(version, reference_string, _format, cache): """Scrap bible verses REFERENCE_STRING a (comma delimited) list of references, e.g. `John3.16` or `1Peter3.1-5` or `Gen1,2` """ verses = query( reference_string, version, cache ) click.echo(_formatter(verses, _format))
2.5
2
final report/svm.py
core-not-dumped/Introduction_to_Artificial_Intelligence
0
12783872
# -*- coding: utf-8 -*- from hw7_util import * class Preprocessing(AI_util): def Calculate_Binary(self, data: List[Tuple[str, List[str], int]]) -> List[Tuple[str, List[float], int]]: """ *** You should implement this function with raw code *** *** When you code, you have to erase this comment *** (input) 'data' type : List[Tuple[str, List[str], int]] (input) 'data' format : [(document id, tokenized text, category index)] (output) return type : List[Tuple[str, List[float], int]] (output) return format : [(document id, Binary vector, category index)] """ binary_all = list() for (list_id,tokenized_text,cate) in data: binary_tmp = list(0 for i in range(len(self.word2idx))) for append_word in tokenized_text: if append_word in self.word2idx.keys(): binary_tmp[self.word2idx[append_word]] = 1 binary = (list_id, binary_tmp, cate) binary_all.append(binary) return binary_all def Calculate_TF(self, data: List[Tuple[str, List[str], int]]) -> List[Tuple[str, List[float], int]]: """ *** You should implement this function with raw code *** *** When you code, you have to erase this comment *** (input) 'data' type : List[Tuple[str, List[str], int]] (input) 'data' format : [(document id, tokenized text, category index)] (output) return type : List[Tuple[str, List[float], int]] (output) return format : [(document id, TF, category index)] """ tf_all = list() for (list_id,tokenized_text,cate) in data: tf_tmp = list(0 for i in range(len(self.word2idx))) for append_word in tokenized_text: if append_word in self.word2idx.keys(): tf_tmp[self.word2idx[append_word]] += 1 tf = (list_id,tf_tmp,cate) tf_all.append(tf) return tf_all def Calculate_TF_IDF_Normalization(self, data: List[Tuple[str, List[str], int]], data_type: str) -> List[Tuple[str, List[float], int]]: """ *** You should implement this function with raw code *** *** When you code, you have to erase this comment *** (input) 'data' type : List[Tuple[str, List[str], int]] (input) 'data' format : [(document id, tokenized text, category index)] (output) return type : List[Tuple[str, List[float], int]] (output) return format : [(document id, normalized tf-idf, category index)] """ tf = list() for (list_id,tokenized_text,cate) in data: tf_tmp = list(0 for i in range(len(self.word2idx))) for append_word in tokenized_text: if append_word in self.word2idx.keys(): tf_tmp[self.word2idx[append_word]] += 1 tf.append(tf_tmp) if len(data)>200: self.idf = list(0 for i in range(len(self.word2idx))) for (list_id,tokenized_text,cate) in data: idf_tmp = list(0 for i in range(len(self.word2idx))) for append_word in tokenized_text: if append_word in self.word2idx.keys(): idf_tmp[self.word2idx[append_word]] = 1 for i in range(len(self.word2idx)): self.idf[i] += idf_tmp[i] for i in range(len(self.word2idx)): self.idf[i] = math.log(float(len(data))/float(self.idf[i]),2) tfidf_all = list() for i in range(len(tf)): tfidf_tmp = list(0 for j in range(len(self.word2idx))) tfidf_sqare_sum_tmp = 0 for j in range(len(self.word2idx)): tfidf_tmp[j] = tf[i][j] * self.idf[j] tfidf_sqare_sum_tmp += (tfidf_tmp[j] * tfidf_tmp[j]) for j in range(len(self.word2idx)): tfidf_tmp[j] = tfidf_tmp[j] / math.sqrt(tfidf_sqare_sum_tmp) tfidf = (data[i][0], tfidf_tmp, data[i][2]) if i == 0: print(tfidf) tfidf_all.append(tfidf) return tfidf_all def main(data, label2idx): std_name = "이승태" std_id = "2017313107" result = dict() for inp_type, tr, te in tqdm(data, desc='training & evaluating...'): """ This function is for training and evaluating (testing) SVM Model. """ ### EDIT HERE ### train_inputs = list() train_label = list() test_inputs = list() test_label = list() for i in range(len(tr)): train_inputs.append(tr[i][1]) train_label.append(tr[i][2]) for i in range(len(te)): test_inputs.append(te[i][1]) test_label.append(te[i][2]) classifier = LinearSVC(C=1.0,max_iter=1000) classifier.fit(train_inputs, train_label) prediction = classifier.predict(test_inputs) result[inp_type] = dict() accur_map = np.zeros((5,5)) accuracy = 0.0 number_of_docs = np.zeros(5) for i in range(len(te)): number_of_docs[test_label[i]] += 1 accur_map[prediction[i]][test_label[i]] += 1 if prediction[i] == test_label[i]: accuracy += 1 accuracy = accuracy / len(te) print('accuracy:') print(accuracy) micro_map = np.zeros((2,2)) precision = np.zeros(5) recall = np.zeros(5) label = {0:'entertainment',1:'finance',2:'lifestyle',3:'sports',4:'tv'} for i in range(5): TP = accur_map[i][i] FN = 0.0 FP = 0.0 for j in range(5): if i==j: continue FP += accur_map[i][j] for j in range(5): if i==j: continue FN += accur_map[j][i] micro_map[0][0] += TP micro_map[0][1] += FN micro_map[1][0] += FP precision[i] = TP / (FP + TP) recall[i] = TP / (FN + TP) f1 = 2 * precision[i] * recall[i] / (precision[i] + recall[i]) result[inp_type][label[i]] = (precision[i] * 100, recall[i] * 100, f1 * 100, number_of_docs[i]) result[inp_type]['accuracy'] = (accuracy * 100, np.sum(number_of_docs)) pre = micro_map[0][0] / (micro_map[0][0] + micro_map[1][0]) re = micro_map[0][0] / (micro_map[0][0] + micro_map[0][1]) f1 = 2 * pre * re / (pre + re) result[inp_type]['micro avg'] = (pre * 100, re * 100, f1 * 100, np.sum(number_of_docs)) pre = np.sum(precision)/5 re = np.sum(recall)/5 result[inp_type]['macro avg'] = (pre * 100, re * 100, f1 * 100, np.sum(number_of_docs)) print(result) ### END ### """ result(input variable for "save_result" function) contains 1. Performance for each labels (precision, recall, f1-score per label) 2. Overall micro/macro average and accuracy for the entire test dataset 3. Convert the result 1 and 2 into percentages by multiplying 100 result type : Dict[str, Dict[str, Union[Tuple[float, float, float, int], Tuple[float, int]]]] result input format for "save_result" function: { 'Binary': { "entertainment": (precision, recall, f1-score, # of docs), "finance": (precision, recall, f1-score, # of docs), "lifestyle": (precision, recall, f1-score, # of docs), "sports": (precision, recall, f1-score, # of docs), "tv": (precision, recall, f1-score, # of docs), "accuracy": (accuracy, total docs), "micro avg": (precision, recall, f1-score, total docs), "macro avg": (precision, recall, f1-score, total docs) }, "TF": ..., "TF-IDF": ..., } """ save_result(result, std_name=std_name, std_id=std_id) if __name__ == "__main__": # *** Do not modify the code below *** random.seed(42) np.random.seed(42) Preprocessing = Preprocessing() tr_data = Preprocessing.load_data(data_path='./train.json', data_type='train') Preprocessing.tr_binary = Preprocessing.Calculate_Binary(data=tr_data) Preprocessing.tr_tf = Preprocessing.Calculate_TF(data=tr_data) Preprocessing.tr_tfidf = Preprocessing.Calculate_TF_IDF_Normalization(data=tr_data, data_type='train') te_data = Preprocessing.load_data(data_path='./test.json', data_type='test') Preprocessing.te_binary = Preprocessing.Calculate_Binary(data=te_data) Preprocessing.te_tf = Preprocessing.Calculate_TF(data=te_data) Preprocessing.te_tfidf = Preprocessing.Calculate_TF_IDF_Normalization(data=te_data, data_type='test') data = [ ('Binary', Preprocessing.tr_binary, Preprocessing.te_binary), ('TF', Preprocessing.tr_tf, Preprocessing.te_tf), ('TF-IDF', Preprocessing.tr_tfidf, Preprocessing.te_tfidf) ] main(data, Preprocessing.label2idx) # *** Do not modify the code above ***
3.265625
3
numba/cuda/tests/cudapy/test_cuda_autojit.py
meawoppl/numba
1
12783873
<gh_stars>1-10 from __future__ import print_function from numba import unittest_support as unittest from numba import cuda import numpy as np class TestCudaAutojit(unittest.TestCase): def test_device_array(self): @cuda.autojit def foo(x, y): i = cuda.grid(1) y[i] = x[i] x = np.arange(10) y = np.empty_like(x) dx = cuda.to_device(x) dy = cuda.to_device(y) foo[10, 1](dx, dy) dy.copy_to_host(y) self.assertTrue(np.all(x == y)) if __name__ == '__main__': unittest.main()
2.4375
2
level_3/module/ghost_module.py
yogeshwari-vs/2D-Paramotoring-Pygame
2
12783874
import os import pygame import random from level_3.module import background_module from level_3.module import foreground_module from level_3.module import player_module class Ghost(): """ Describes ghost obstacles. """ # Loading ghost images num_of_imgs = 6 list_of_lists = [] path = r'level_3/Utils/Pics/Ghost/' colour_list = os.listdir(path) num_of_colours = len(colour_list) for colour in colour_list: imgs = [] for x in range(num_of_imgs): imgs.append(pygame.image.load(os.path.join(path, colour+"/"+ str(x) + '.png'))) list_of_lists.append(imgs) ghosts_list = [] collision_ghosts = [] # ghosts for which we have to check collision def __init__(self,x,y,colour_num): self.x = x self.y = y self.run_count = 0 self.colour_num = colour_num random_num = random.uniform(6, 10) self.ghosts_list = [pygame.transform.scale(img, (int(img.get_width()/random_num), int(img.get_height()/random_num))) for img in self.list_of_lists[colour_num]] # Variables for sine wave trajectory calculation self.org_y = y # initial y value where the ghost is spawned self.time = 0 # Taken for a reference self.frequency = random.uniform(0.005, 0.013) # frequency of sine wave self.amplitude = random.randrange(30, 70) # Amplitude of sine wave - defines range of ghost movement in y axis def draw(self, win): # Determining index of ghost image to be drawn self.frames_per_image = 7 # each ghost image is drawn for 7 consecutive frames if self.run_count >= self.frames_per_image*self.num_of_imgs: self.run_count = 0 self.index = self.run_count//self.frames_per_image self.run_count += 1 # Drawing ghost image self.img = self.ghosts_list[self.index] self.randomize_movement() win.blit(self.img, (self.x,self.y)) def randomize_movement(self): # Sine wave trajectory for ghost self.y= self.org_y self.time += 1 def create_ghost(): """ Creates a dragon in the free space. """ x = random.randint(50,400) # choose random y value in upper half of window (WIP) colour_num = random.randrange(Ghost.num_of_colours) new_ghost = Ghost(background_module.bg.get_width(), x, colour_num) Ghost.ghosts_list.append(new_ghost) Ghost.collision_ghosts.append(new_ghost) # To check collision def draw_ghost(win): for ghost in Ghost.ghosts_list: ghost.draw(win) update_ghosts_position() def update_ghosts_position(): """ Updates the x coordinates of ghost. If ghost goes offscreen, remove it from the list. """ for ghost in Ghost.ghosts_list: ghost_width = ghost.imgs[0].get_width() if ghost.x < -1*ghost_width: # If ghost goes offscreen, removing it from ghost list try: ghost.ghosts_list.remove(ghost) except: pass else: ghost.x -= (foreground_module.foreground_speed + 4) def collision_with_ghost(): """ Collision with ghost is checked using Pixel perfect collision method. If collision occurs returns True, else False. Collision is checked only if ghost is near the player to save computation. """ player = player_module.player propeller = player_module.propeller if len(Ghost.collision_ghosts)!=0: for ghost in Ghost.collision_ghosts: if ghost.x < (player.x + player.img.get_width()) and (ghost.x + ghost.img.get_width()) > player.x: if ghost.y < (player.y + player.img.get_height()) and (ghost.y + ghost.img.get_height()) > player.y: # Checking for collision if near player player_mask = pygame.mask.from_surface(player.img) propeller_mask = pygame.mask.from_surface(propeller.propeller_img) ghost_mask = pygame.mask.from_surface(ghost.img) offset = int(ghost.x - player.x), int(ghost.y - player.y) collision_point_with_player = player_mask.overlap(ghost_mask, offset) collision_point_with_propeller = propeller_mask.overlap(ghost_mask, offset) # Checking collision with player if collision_point_with_player or collision_point_with_propeller: Ghost.collision_ghosts.remove(ghost) return True return False
3.296875
3
CombineAndRegress.py
FVL2020/2DImage2BMI
1
12783875
import json from sklearn.metrics import mean_squared_error, mean_absolute_error import numpy as np from model import Dfembeding from sklearn.kernel_ridge import KernelRidge import torch from PIL import Image from utils import * import csv import torch.utils.data as data import pandas as pd def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 # class Dataset(data.Dataset): # def __init__(self, file, transfrom): # self.Pic_Names = os.listdir(file) # self.file = file # self.transfrom = transfrom # # def __len__(self): # return len(self.Pic_Names) # # def __getitem__(self, idx): # img_name = self.Pic_Names[idx] # Pic = Image.open(os.path.join(self.file, self.Pic_Names[idx])) # Pic = self.transfrom(Pic) # try: # ret = re.match(r"\d+?_([FMfm])_(\d+?)_(\d+?)_(\d+).+", img_name) # BMI = (int(ret.group(4)) / 100000) / (int(ret.group(3)) / 100000) ** 2 # Pic_name = os.path.join(self.file, self.Pic_Names[idx]) # return (Pic, Pic_name), BMI # except: # return (Pic, ''), 10000 class Dataset(data.Dataset): def __init__(self, file, transfrom): self.Pic_Names = os.listdir(file) self.file = file self.transfrom = transfrom def __len__(self): return len(self.Pic_Names) def __getitem__(self, idx): img_name = self.Pic_Names[idx] Pic = Image.open(os.path.join(self.file, self.Pic_Names[idx])) Pic = self.transfrom(Pic) ret = re.match(r"\d+?_([FMfm])_(\d+?)_(\d+?)_(\d+).+", img_name) sex = 0 if (ret.group(1) == 'F' or ret.group(1) == 'f') else 1 age = int(ret.group(2)) height = int(ret.group(3)) / 100000 weight = int(ret.group(4)) / 100000 BMI = weight / (height ** 2) # BMI = (int(ret.group(4))/100000) / (int(ret.group(3))/100000)**2 Pic_name = os.path.join(self.file, self.Pic_Names[idx]) return (Pic, Pic_name, img_name, sex, age, height, weight), BMI def CombineDFBF(model, BodyFeatures, df, loader_test, loader_train): # test(model, DEVICE, loader_test) loaders = [ loader_test, loader_train,] files = [ 'test', 'train',] for loader, file in zip(loaders, files): with open('/home/benkesheng/BMI_DETECT/Deep_Learning_Method/DF_BF_csv/20-1_{}.csv'.format(file), 'w', newline='') as fp: writer = csv.writer(fp) model.eval() pred = [] targ = [] for (img, name, img_name, sex, age, height, weight), target in loader: values = [] img, target = img.to(DEVICE), target.to(DEVICE) img_name = img_name[0] # print('Processing IMage :', img_name) values.append(img_name) values.append(target.cpu().numpy()[0]) values.append(sex.numpy()[0]) values.append(BodyFeatures[img_name]['WSR']) values.append(BodyFeatures[img_name]['WTR']) values.append(BodyFeatures[img_name]['WHpR']) values.append(BodyFeatures[img_name]['WHdR']) values.append(BodyFeatures[img_name]['HpHdR']) values.append(BodyFeatures[img_name]['Area']) values.append(BodyFeatures[img_name]['H2W']) conv_out = LayerActivations(model.fc, 1) out = model(img) pred.append(out.item()) targ.append(target.item()) conv_out.remove() xs = torch.squeeze(conv_out.features.detach()).numpy() # print(xs.shape) for x in xs: values.append(float(x)) values.append(age.numpy()[0]) values.append(height.numpy()[0]) values.append(weight.numpy()[0]) writer.writerow(values) MAE = mean_absolute_error(targ, pred) print(file,' ',MAE) def Pre(raw_data, name): if (name != 'vgg16'): raw_data = raw_data.iloc[:, 1:] raw_data = raw_data.replace([np.inf, -np.inf], np.nan) # raw_data = raw_data.fillna(raw_data.mean()) raw_data = raw_data.replace(np.nan, 0) raw_data = raw_data.values.astype(np.float64) return raw_data def Feature(data, df, name): if (name == 'author'): x_5f = data[:, 0:5] y = data[:, 9] return x_5f, y elif (name == 'vgg16'): x_df = data[:, 2:] y = data[:, 0] return x_df, y elif (name == 'ours'): x_5f = data[:, 3:8] x_7f = data[:, 2:9] x_df = data[:, 9:9 + df] y = data[:, 0] return x_5f, x_7f, x_df, y def Stdm(x): Mean = np.mean(x, axis=0) Std = np.std(x, axis=0) return Mean, Std def Regression(df=20, file='test'): # raw_data_train = pd.read_csv('/home/benkesheng/BMI_DETECT/ReDone_CSV/Ours/Image_train.csv') # raw_data_test = pd.read_csv('/home/benkesheng/BMI_DETECT/ReDone_CSV/Ours/Image_test.csv') raw_data_train = pd.read_csv('/home/benkesheng/BMI_DETECT/Deep_Learning_Method/DF_BF_csv/20-1_train.csv') raw_data_test = pd.read_csv('/home/benkesheng/BMI_DETECT/Deep_Learning_Method/DF_BF_csv/20-1_test.csv') raw_data_name = raw_data_test.values raw_data_train = Pre(raw_data_train, 'ours') raw_data_test = Pre(raw_data_test, 'ours') x_5f_train, x_7f_train, x_df_train, y_train = Feature(raw_data_train, df, 'ours') x_5f_test, x_7f_test, x_df_test, y_test = Feature(raw_data_test, df, 'ours') x_body_train = x_7f_train Mean, Std = Stdm(x_body_train) x_body_train = (x_body_train - Mean) / Std x_train = np.append(x_body_train, x_df_train, axis=1) y_train = y_train x_body_test = x_7f_test x_body_test = (x_body_test - Mean) / Std x_test = np.append(x_body_test, x_df_test, axis=1) y_test = y_test print(x_test.shape) print(x_train.shape) krr = KernelRidge() krr.fit(x_train, y_train) y_krr = krr.predict(x_test) print('KRR: MAE: ', mean_absolute_error(y_test, y_krr), ' MAPE: ', mean_absolute_percentage_error(y_test, y_krr)) if file == 'demo': for i, data in enumerate(x_test): y_pred = krr.predict(data[None,:]) print('Name: ', raw_data_name[i][0], ' y_pred:', y_pred[0], ' y_ture:', y_test[i]) if __name__ == '__main__': IMG_SIZE = 224 IMG_MEAN = [0.485, 0.456, 0.406] IMG_STD = [0.229, 0.224, 0.225] transform = transforms.Compose([ Resize(IMG_SIZE), transforms.Pad(IMG_SIZE), transforms.CenterCrop(IMG_SIZE), transforms.ToTensor(), transforms.Normalize(IMG_MEAN, IMG_STD) ]) DEVICE = torch.device("cuda:0") dataset_train = Dataset('/home/benkesheng/BMI_DETECT/datasets/Image_train', transform) dataset_test = Dataset('/home/benkesheng/BMI_DETECT/datasets/Image_test', transform) loader_train = torch.utils.data.DataLoader(dataset_train, batch_size=1, shuffle=True) loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1, shuffle=True) df = 20 model = Dfembeding() # model.load_state_dict(torch.load('/home/benkesheng/BMI_DETECT/ReDone_CSV/model/Ours.pkl'.format(df))) model.load_state_dict(torch.load('/home/benkesheng/BMI_DETECT/MODEL/9-1reexperiment/MIN_RESNET101_BMI_20-1fc.pkl')) model.to(DEVICE) Path = '/home/benkesheng/BMI_DETECT/Deep_Learning_Method/datasets_bodyfeature/BodyFeature.json' with open(Path, 'r') as f: BodyFeatures = json.load(f) # CombineDFBF(model, BodyFeatures, df, loader_test, loader_train) Regression(df)
2.328125
2
alliancepy/cache.py
karx1/alliancepy
6
12783876
import pickle class Cache: def __init__(self): self._filename = "alliancepy.txt" self._cache = {} def __enter__(self): try: with open(self._filename, "rb") as file: d = pickle.load(file) for key, value in d.items(): self._cache[key] = value except (FileNotFoundError, EOFError): self._cache = {} finally: return self def __exit__(self, exc_type, exc_val, exc_tb): with open(self._filename, "wb+") as file: d = {} for key, value in self._cache.items(): d[key] = value pickle.dump(d, file) def keys(self): return self._cache.keys() def add(self, key, value): self._cache[key] = value def get(self, key): return self._cache[key] def remove(self, key): self._cache.pop(key, None) def clear(self): map(self.remove, self.keys())
3.390625
3
tests/integration/examples/multiply/test_example_multiply_configs.py
drohde/deepr
0
12783877
"""Test for examples.multiply.configs""" import logging import deepr as dpr import deepr.examples.multiply logging.basicConfig(level=logging.INFO) PATH_CONFIG = dpr.io.Path(deepr.examples.multiply.__file__).parent / "configs" def test_example_multiply_configs(tmpdir): """Test for examples.multiply.configs""" path_model = str(tmpdir.join("model")) path_dataset = str(tmpdir.join("dataset")) config = dpr.io.read_json(PATH_CONFIG / "config.json") macros = dpr.io.read_json(PATH_CONFIG / "macros.json") macros["paths"]["path_model"] = path_model macros["paths"]["path_dataset"] = path_dataset parsed = dpr.parse_config(config, macros) job = dpr.from_config(parsed) job.run()
2.15625
2
app/models.py
stefanbschneider/feelya
1
12783878
<reponame>stefanbschneider/feelya import datetime from django.db import models from django.urls import reverse from django.contrib.auth.models import User class Entry(models.Model): name = models.CharField(max_length=100) date = models.DateField('date tracked', default=datetime.date.today) owner = models.ForeignKey(User, on_delete=models.CASCADE, null=True, blank=True) def __str__(self): return self.name
2.21875
2
workflow/utils_link_pred.py
skojaku/residual2vec
2
12783879
import numpy as np from scipy import sparse def fit_glove_bias(A, emb): N = A.shape[0] row_sum = np.array(A.sum(axis=1)).reshape(-1).astype(float) col_sum = np.array(A.sum(axis=0)).reshape(-1).astype(float) emb_sum = np.array(emb @ np.array(np.sum(emb, axis=0)).reshape((-1, 1))).reshape(-1) row_sum -= emb_sum col_sum -= emb_sum a = np.zeros(N) b = np.zeros(N) adam_a = ADAM() adam_b = ADAM() for it in range(1000): grad_a = row_sum - np.sum(b) * a grad_b = col_sum - np.sum(a) * b anew = adam_a.update(a, grad_a, 0) bnew = adam_b.update(b, grad_b, 0) if it % 20 == 0: dif = np.mean(np.abs(a - anew) + np.abs(b - bnew)) / 2 dif /= np.maximum(np.mean(np.abs(a) + np.abs(b)) / 2, 1e-8) if dif < 1e-2: break a = anew.copy() b = bnew.copy() return a, b class ADAM: def __init__(self): self.beta1 = 0.9 self.beta2 = 0.999 self.eta = 0.001 self.t = 0 self.mt = None self.vt = None self.eps = 1e-8 def update(self, theta, grad, lasso_penalty, positiveConstraint=False): """Ascending.""" if self.mt is None: self.mt = np.zeros(grad.shape) self.vt = np.zeros(grad.shape) self.t = self.t + 1 self.mt = self.beta1 * self.mt + (1 - self.beta1) * grad self.vt = self.beta2 * self.vt + (1 - self.beta2) * np.multiply(grad, grad) mthat = self.mt / (1 - np.power(self.beta1, self.t)) vthat = self.vt / (1 - np.power(self.beta2, self.t)) new_grad = mthat / (np.sqrt(vthat) + self.eps) return self._prox( theta + self.eta * new_grad, lasso_penalty * self.eta, positiveConstraint ) def _prox(self, x, lam, positiveConstraint): """Soft thresholding operator. Parameters ---------- x : float Variable. lam : float Lasso penalty. Returns ------- y : float Thresholded value of x. """ if positiveConstraint: b = ((lam) > 0).astype(int) return np.multiply(b, np.maximum(x - lam, np.zeros(x.shape))) + np.multiply( 1 - b, np.multiply(np.sign(x), np.maximum(np.abs(x) - lam, np.zeros(x.shape))), ) else: return np.multiply( np.sign(x), np.maximum(np.abs(x) - lam, np.zeros(x.shape)) )
2.4375
2
rapp_speech_detection_google/src/speech_recognition_google.py
DEVX1/NAOrapp-Pythonlib
0
12783880
<gh_stars>0 #!/usr/bin/env python2 # -*- coding: utf-8 -*- #Copyright 2015 RAPP #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at #http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import rospy import httplib import json import sys import os from pylab import * from scipy.io import wavfile from rapp_platform_ros_communications.srv import ( SpeechToTextSrv, SpeechToTextSrvResponse ) from rapp_platform_ros_communications.srv import ( AudioProcessingDenoiseSrv, AudioProcessingDenoiseSrvResponse, AudioProcessingDenoiseSrvRequest ) from rapp_platform_ros_communications.srv import ( AudioProcessingTransformAudioSrv, AudioProcessingTransformAudioSrvResponse, AudioProcessingTransformAudioSrvRequest ) from rapp_platform_ros_communications.msg import ( StringArrayMsg ) from rapp_exceptions import RappError ## @class SpeechToTextGoogle # Implements calls the Google ASR API class SpeechToTextGoogle: ## Default contructor. Declares the service callback def __init__(self): # Speech recognition service published self.serv_topic = rospy.get_param("rapp_speech_detection_google_detect_speech_topic") if(not self.serv_topic): rospy.logerror("Speech detection google topic param not found") self.serv = rospy.Service(self.serv_topic, \ SpeechToTextSrv, self.speech_to_text_callback) ## @brief The service callback # @param req [SpeechToTextSrvRequest] The ROS service request def speech_to_text_callback(self, req): res = SpeechToTextSrvResponse() if req.language == '': res.error = 'No language specified' return res # Getting the results in order to parse them try: transcripts = self.speech_to_text(\ req.filename,\ req.user,\ req.audio_type,\ req.language) #print transcripts except RappError as e: res.error = e.value return res if len(transcripts['result']) == 0: return res # The alternative results alternatives = transcripts['result'][0]['alternative'] res = SpeechToTextSrvResponse() # If alternatives is 0 returns void response if len(alternatives) > 0: # The first alternative is Google's suggestion words = alternatives[0]['transcript'].split(" ") for w in words: res.words = res.words + [w] # Google provides the confidence for the first suggestion if 'confidence' in alternatives[0].keys(): res.confidence.data = alternatives[0]['confidence'] else: res.confidence.data = 0 for alt in alternatives[1:]: sam = StringArrayMsg() words = alt['transcript'].split(" ") for w in words: sam.s = sam.s + [w] res.alternatives = res.alternatives + [sam] else: res.confidence.data = 0 return res ## @brief Performs the call to Google API # @param file_path [string] The audio file # @param user [string] The username # @param audio_type [string] Used to check if denoising is needed. Can be one of headset, nao_ogg, nao_wav_1_ch, nao_wav_4_ch # @param language [string] The language in which the ASR will be performed # @return The transcript from Google def speech_to_text(self, file_path, user, audio_file_type, language): # Check if file exists if not os.path.isfile(file_path): raise RappError("Error: file " + file_path + ' not found') # Check if file is flac. If not convert it new_audio = file_path audio_trans_topic = rospy.get_param("rapp_audio_processing_transform_audio_topic") audio_transform_srv = rospy.ServiceProxy( audio_trans_topic, AudioProcessingTransformAudioSrv ) cleanup = [] transform_req = AudioProcessingTransformAudioSrvRequest() transform_req.source_type = audio_file_type transform_req.source_name = new_audio transform_req.target_type = 'wav' new_audio += '.wav' transform_req.target_name = new_audio transform_req.target_channels = 1 transform_req.target_rate = 16000 trans_response = audio_transform_srv( transform_req ) if trans_response.error != 'success': raise RappError( trans_response.error ) cleanup.append(new_audio) # Denoise if necessary prev_audio_file = new_audio next_audio_file = prev_audio_file if audio_file_type in ['nao_ogg', 'nao_wav_1_ch', 'nao_wav_4_ch']: denoise_topic = rospy.get_param("rapp_audio_processing_denoise_topic") energy_denoise_topic = \ rospy.get_param("rapp_audio_processing_energy_denoise_topic") denoise_service = rospy.ServiceProxy(\ denoise_topic, AudioProcessingDenoiseSrv) energy_denoise_service = rospy.ServiceProxy(\ energy_denoise_topic, AudioProcessingDenoiseSrv) manipulation = {} manipulation['sox_transform'] = False manipulation['sox_denoising'] = False manipulation['sox_channels_and_rate'] = False if audio_file_type == "headset": pass elif audio_file_type == "nao_ogg": manipulation['sox_transform'] = True manipulation['sox_denoising'] = True manipulation['sox_denoising_scale'] = 0.15 elif audio_file_type == "nao_wav_4_ch": manipulation['sox_channels_and_rate'] = True manipulation['sox_denoising'] = True manipulation['sox_denoising_scale'] = 0.15 elif audio_file_type == "nao_wav_1_ch": manipulation['sox_denoising'] = True manipulation['sox_denoising_scale'] = 0.15 manipulation['detect_silence'] = True manipulation['detect_silence_threshold'] = 0.25 # Check if sox_transform is needed if manipulation['sox_transform'] == True: next_audio_file += "_transformed.wav" command = "sox " + prev_audio_file + " " + next_audio_file com_res = os.system(command) if com_res != 0: raise RappError("Error: sox malfunctioned") cleanup.append(next_audio_file) prev_audio_file = next_audio_file if manipulation['sox_channels_and_rate'] == True: next_audio_file += "_mono16k.wav" command = "sox " + prev_audio_file + " -r 16000 -c 1 " + next_audio_file com_res = os.system(command) if com_res != 0: raise RappError("Error: sox malfunctioned") cleanup.append(next_audio_file) prev_audio_file = next_audio_file if manipulation['sox_denoising'] == True: next_audio_file = prev_audio_file + "_denoised.wav" den_request = AudioProcessingDenoiseSrvRequest() den_request.audio_file = prev_audio_file den_request.denoised_audio_file = next_audio_file den_request.audio_type = audio_file_type den_request.user = user den_request.scale = manipulation['sox_denoising_scale'] den_response = denoise_service(den_request) if den_response.success != "true": raise RappError("Error:" + den_response.success) cleanup.append(next_audio_file) prev_audio_file = next_audio_file # must implement a fallback function to clear redundant files # Transform to flac transform_req = AudioProcessingTransformAudioSrvRequest() transform_req.source_type = 'headset' transform_req.source_name = new_audio transform_req.target_type = 'flac' newer_audio = new_audio + '.flac' transform_req.target_name = newer_audio transform_req.target_channels = 1 transform_req.target_rate = 16000 trans_response = audio_transform_srv( transform_req ) cleanup.append(newer_audio) if trans_response.error != 'success': raise RappError( trans_response.error ) # Open the file with open(newer_audio, "r") as f: speech = f.read() url = "www.google.com" # Fix language if language == 'en': language = "en-US" elif language == 'gr': language = 'el' #NOTE - Thats a general usage key. They may disable it in the future. key = "<KEY>" path = "/speech-api/v2/recognize?lang=" + language + "&key=" + key headers = { "Content-type": "audio/x-flac; rate=22050" }; params = {"xjerr": "1", "client": "chromium"} conn = httplib.HTTPSConnection(url) conn.request("POST", path, speech, headers) response = conn.getresponse() data = response.read() initial_data = data # Google returns one empty result for some reason here. Removing it.. index = data.find("}") data = data[index + 1:] if data == '\n': # Returned nothing.. something went wrong data = initial_data jsdata = json.loads(data) # Remove the flac if needed for f in cleanup: command = 'rm -f ' + f if os.system(command): raise RappError("Error: Removal of temporary file malfunctioned") return jsdata ## The main function. Creates a SpeechToTextGoogle object if __name__ == "__main__": rospy.init_node('speech_to_text_ros_node') speech_to_text_node = SpeechToTextGoogle() rospy.spin()
2.078125
2
apps/shows/migrations/0010_show_social.py
jorgesaw/oclock
0
12783881
# Generated by Django 2.2.13 on 2020-10-04 06:53 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('socials', '0004_auto_20201004_0347'), ('shows', '0009_auto_20201004_0137'), ] operations = [ migrations.AddField( model_name='show', name='social', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='socials.UserSocialNetwork', verbose_name='Social Network'), ), ]
1.484375
1
Labs/Unit1Lesson3.py
CAP1Sup/SieskoPythonLabs
0
12783882
# <NAME> # 9/9/19 # This program will ask the user for a few words and then create a story like a Mad Libs paper. def main(): name = input("Please put in the name of a person: ") verb1 = input("Please input a verb in infinitive form: ") noun = input("Please input a proper noun: ") ability = input("Please input an ability in infinitive form (ex fly): ") num1 = input("Please input a number: ") unit1 = input("Please input a unit that has to do with the ability: ") ability2 = input("Please enter a second ability: ") num2 = input("Please input a second number: ") unit2 = input("Please input a second unit (in infinitive) that would fit with the second ability: ") deathDate = input("Please input a date in the future: ") print() print("One day,", name, "was", verb1, "in a forest.") print("All of the sudden,", name, "fell asleep.") nameWithS = (name + "'s") print("Then,", noun, "appeared in", nameWithS, "dream") print(name, "woke up suddenly.") print(name, "went home, and felt tired, so", name, "went to bed.") print("The next morning,", name, "had the ability to", ability) print(name, "discovered that he/she could", ability, "at", num1, unit1) print(name, "also found at that he/she could", ability2, "at", num2, unit2) print(name, "saved the world from the plans of the evil Doctor Siesko. He then promptly enjoyed the rest of his life until the day he died,", deathDate) main()
4.25
4
assignment_dashboard/config.py
osteele/assignment-dashboard
0
12783883
<filename>assignment_dashboard/config.py import os class BaseConfig(object): DEBUG_TB_INTERCEPT_REDIRECTS = False SECRET_KEY = os.environ.get('SECRET_KEY', 'change me in production') db_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../data/database.db')) SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL', 'sqlite:///' + db_path) SQLALCHEMY_ECHO = True if os.environ.get('SQLALCHEMY_ECHO') else False SQLALCHEMY_TRACK_MODIFICATIONS = False TZ = os.environ.get('TZ', 'US/Eastern') if 'GITHUB_CLIENT_ID' in os.environ: REQUIRE_LOGIN = True GITHUB_CLIENT_ID = os.environ['GITHUB_CLIENT_ID'] GITHUB_CLIENT_SECRET = os.environ['GITHUB_CLIENT_SECRET'] else: REQUIRE_LOGIN = False if 'REDIS_HOST' in os.environ: REDIS_HOST = os.environ['REDIS_HOST']
2.03125
2
Python/Stacks/BalancedBrackets/BalancedBrackets.py
zseen/hackerrank-challenges
0
12783884
#!/bin/python3 import math import os import random import re import sys BRACKETS_DICT = {"(": ")", "[": "]", "{": "}"} def printIsBalanced(brackets): result = isBalanced(brackets) if result: print("YES") else: print("NO") def isBalanced(brackets): stack = [] for bracket in brackets: if bracket in BRACKETS_DICT.keys(): stack.append(bracket) else: if not stack or bracket != BRACKETS_DICT[stack.pop()]: return False if stack: return False return True if __name__ == '__main__': sys.stdin = open("BalancedBrackets_input.txt") t = int(input()) for _ in range(t): s = input() printIsBalanced(s)
3.890625
4
os_brick/caches/__init__.py
KioxiaAmerica/os-brick
61
12783885
<filename>os_brick/caches/__init__.py # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import abc from oslo_log import log as logging from oslo_utils import importutils from os_brick import exception from os_brick.i18n import _ LOG = logging.getLogger(__name__) CACHE_ENGINE_TO_CACHE_CLASS_MAP = { "opencas": 'os_brick.caches.opencas.OpenCASEngine', } class CacheEngineBase(object, metaclass=abc.ABCMeta): def __init__(self, **kwargs): self._root_helper = kwargs.get('root_helper') @abc.abstractmethod def is_engine_ready(self, **kwargs): return @abc.abstractmethod def attach_volume(self, **kwargs): return @abc.abstractmethod def detach_volume(self, **kwargs): return class CacheManager(): """Cache manager for volumes. This CacheManager uses cache engines to do volume cache. """ def __init__(self, root_helper, connection_info, *args, **kwargs): data = connection_info['data'] if not data.get('device_path'): volume_id = data.get('volume_id') or connection_info.get('serial') raise exception.VolumeLocalCacheNotSupported( volume_id=volume_id, volume_type=connection_info.get('driver_volume_type')) self.ori_device_path = data.get('device_path') if not data.get('cacheable'): self.cacheable = False return self.cacheable = True self.root_helper = root_helper self.engine_name = kwargs.get('cache_name') self.args = args self.kwargs = kwargs self.kwargs["root_helper"] = root_helper self.kwargs["dev_path"] = data.get('device_path') self.engine = self._get_engine(self.engine_name, **self.kwargs) def _get_engine(self, engine_name, **kwargs): eng_cls_path = CACHE_ENGINE_TO_CACHE_CLASS_MAP.get(engine_name) if eng_cls_path: engine_cls = importutils.import_class(eng_cls_path) eng = engine_cls(**kwargs) if eng.is_engine_ready(): return eng raise exception.Invalid(_("No valid cache engine")) def attach_volume(self): """setup the cache when attaching volume.""" if not self.cacheable: return self.ori_device_path LOG.debug("volume before cached: %s", self.kwargs.get('dev_path')) emulated_disk = self.engine.attach_volume(**self.kwargs) LOG.debug("volume after cached: %s", emulated_disk) return emulated_disk def detach_volume(self): """Release the cache on detaching volume.""" if not self.cacheable: return self.ori_device_path LOG.debug("volume before detach: %s", self.kwargs.get('dev_path')) ori_disk = self.engine.detach_volume(**self.kwargs) LOG.debug("volume after detach: %s", ori_disk) return ori_disk
2.28125
2
py_helloworld/test/run.py
mingshi-wang/fp20
2
12783886
<filename>py_helloworld/test/run.py """Universal launcher for unit tests""" import argparse import logging import os import sys import unittest def main(): """Parse args, collect tests and run them""" # Disable *.pyc files sys.dont_write_bytecode = True # Add ".." to module search path cur_dir = os.path.dirname(os.path.realpath(__file__)) top_dir = os.path.abspath(os.path.join(cur_dir, os.pardir)) sys.path.append(top_dir) # Parse command line arguments parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("-v", "--verbose", action="count", default=0, help="verbosity level, use: [-v | -vv | -vvv]") parser.add_argument("-s", "--start-directory", default=None, help="directory to start discovery") parser.add_argument("-p", "--pattern", default="test*.py", help="pattern to match test files ('test*.py' default)") parser.add_argument("test", nargs="*", help="test specs (e.g. module.TestCase.test_func)") args = parser.parse_args() if not args.start_directory: args.start_directory = cur_dir if args.verbose > 2: logging.basicConfig(level=logging.DEBUG, format="DEBUG: %(message)s") loader = unittest.TestLoader() if args.test: # Add particular tests for test in args.test: suite = unittest.TestSuite() suite.addTests(loader.loadTestsFromName(test)) else: # Find all tests suite = loader.discover(args.start_directory, args.pattern) runner = unittest.TextTestRunner(verbosity=args.verbose) result = runner.run(suite) return result.wasSuccessful() if __name__ == "__main__": # NOTE: True(success) -> 0, False(fail) -> 1 exit(not main())
2.921875
3
exercises/python/data-types/basic/nested-list.py
rogeriosantosf/hacker-rank-profile
0
12783887
<filename>exercises/python/data-types/basic/nested-list.py # Given the names and grades for each student in a class of students, # store them in a nested list and print the name(s) of any student(s) # having the second lowest grade. # Note: If there are multiple students with the second lowest grade, # order their names alphabetically and print each name on a new line. # Sample Input: # 5 # Harry # 37.21 # Berry # 37.21 # Tina # 37.2 # Sample Output: # Berry # Harry if __name__ == '__main__': students = [] for _ in range(int(input())): name = input() score = float(input()) students.append([name, score]) students = sorted(students, key=lambda student: student[1]) lowest_grade = students[0][1] second_lowest_grade = None second_lowest_names = [] for i in range(len(students)): if students[i][1] > lowest_grade: if second_lowest_grade == None: second_lowest_grade = students[i][1] second_lowest_names.append(students[i][0]) elif students[i][1] == second_lowest_grade: second_lowest_names.append(students[i][0]) second_lowest_names.sort() for name in second_lowest_names: print(name)
4.25
4
pepper_snp/modules/python/MakeImages.py
Samteymoori/pepper
0
12783888
import os from pepper_snp.modules.python.ImageGenerationUI import UserInterfaceSupport def make_images(bam_file, draft_file, region, output_path, total_threads, downsample_rate): output_dir = UserInterfaceSupport.handle_output_directory(os.path.abspath(output_path)) chr_list, bed_list = UserInterfaceSupport.get_chromosome_list(region, draft_file, bam_file, region_bed=None) UserInterfaceSupport.chromosome_level_parallelization(chr_list=chr_list, bam_file=bam_file, draft_file=draft_file, truth_bam_h1=None, truth_bam_h2=None, output_path=output_dir, total_threads=total_threads, realignment_flag=False, train_mode=False, downsample_rate=downsample_rate, bed_list=None) def make_train_images(bam_file, draft_file, truth_bam_h1, truth_bam_h2, region, region_bed, output_path, total_threads, downsample_rate): output_dir = UserInterfaceSupport.handle_output_directory(os.path.abspath(output_path)) chr_list, bed_list_dictionary = UserInterfaceSupport.get_chromosome_list(region, draft_file, bam_file, region_bed=region_bed) UserInterfaceSupport.chromosome_level_parallelization(chr_list=chr_list, bam_file=bam_file, draft_file=draft_file, truth_bam_h1=truth_bam_h1, truth_bam_h2=truth_bam_h2, output_path=output_dir, total_threads=total_threads, realignment_flag=False, train_mode=True, downsample_rate=downsample_rate, bed_list=bed_list_dictionary)
2.234375
2
terminusdb_client/woqldataframe/__init__.py
KarenImmanuel/terminusdb-client-python
1
12783889
<gh_stars>1-10 from .woqlDataframe import ( # noqa EmptyException, extract_column, extract_header, query_to_df, result_to_df, type_map, type_value_map, )
1.28125
1
react_front_end/src/tools/copy-layout.py
benthomasson/performance_test
1
12783890
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2018 <NAME> """ Usage: copy-layout [options] <from> <to> Options: -h, --help Show this page --debug Show debug logging --verbose Show verbose logging """ from docopt import docopt import logging import sys import yaml logger = logging.getLogger('copy-layout') def main(args=None): if args is None: args = sys.argv[1:] parsed_args = docopt(__doc__, args) if parsed_args['--debug']: logging.basicConfig(level=logging.DEBUG) elif parsed_args['--verbose']: logging.basicConfig(level=logging.INFO) else: logging.basicConfig(level=logging.WARNING) with open(parsed_args['<from>']) as f: from_fsm = yaml.load(f.read()) with open(parsed_args['<to>']) as f: to_fsm = yaml.load(f.read()) to_states = {x['label']: x for x in to_fsm.get('states', [])} to_fsm['name'] = from_fsm.get('name', '') to_fsm['finite_state_machine_id'] = from_fsm.get( 'finite_state_machine_id', '') to_fsm['diagram_id'] = from_fsm.get('diagram_id', '') for state in from_fsm.get('states', []): to_states.get(state['label'], {})['x'] = state.get('x', 0) to_states.get(state['label'], {})['y'] = state.get('y', 0) with open(parsed_args['<to>'], 'w') as f: f.write(yaml.safe_dump(to_fsm, default_flow_style=False)) return 0 if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
2.296875
2
bluebottle/events/migrations/0015_auto_20200226_0838.py
terrameijar/bluebottle
10
12783891
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2020-02-26 07:38 from __future__ import unicode_literals from datetime import datetime from timezonefinder import TimezoneFinder import pytz from django.db import migrations from django.utils import timezone tf = TimezoneFinder() def set_timezone(apps, schema_editor): Event = apps.get_model('events', 'Event') for event in Event.objects.filter(start__isnull=False, location__isnull=False): tz_name = tf.timezone_at( lng=event.location.position.x, lat=event.location.position.y ) tz = pytz.timezone(tz_name) start = event.start.astimezone(timezone.get_current_timezone()) event.start = tz.localize( datetime( start.year, start.month, start.day, start.hour, start.minute, ) ) event.save() class Migration(migrations.Migration): dependencies = [ ('events', '0014_auto_20200217_1107'), ] operations = [ migrations.RunPython(set_timezone) ]
2.0625
2
MFGPextreme/core/acquisitions.py
umbrellagong/MFGPextreme
1
12783892
import numpy as np from scipy.linalg import cho_solve, inv from scipy.stats import norm from scipy.interpolate import InterpolatedUnivariateSpline from sklearn.mixture import GaussianMixture as GMM from .utils import custom_KDE import time class Acq(object): ''' The base acq class. ''' def __init__(self, inputs): self.inputs = inputs def compute_value(self, x): raise NotImplementedError def update_prior_search(self, model): raise NotImplementedError class AcqLW(Acq): ''' Select the next sample for estimating extreme event statistics. This acquisition can be used in both single and multi-fidelity contexts. parameters: --------- inputs: instance of Input class Input of the problem including pdf information and a sampling method. ll_type: string the type of the weights, must be one of (1) rare: w(x)=p(x)/p(y(x)) (2) extreme: w(x)=p(x)|y(x)-z|^n (3) plain: no weights (4) input: w(x)=p(x) load_pts: bool whether load the input samples from a txt file ll_kwargs: key words for extreme ll_type attributes: ---------- model: instance of gpr.GaussianProcessRegressor The surrogate model based on current dataset DX: array The inputs of current samples gmm: instance of sklearn.GMM The gmm to approximate likelihood, including gmm.means_, gmm.covariances_, and gmm.scores_. ''' def __init__(self, inputs, ll_type='rare', load_pts=False, **ll_kwargs): self.inputs = inputs self.ll_type = ll_type self.load_pts = load_pts self.ll_kwargs = ll_kwargs if load_pts: smpl = np.loadtxt('map_samples.txt') self.pts = smpl[:,0:-1] # mc points self.fx = smpl[:,-1] # pdf of mc points def compute_value_tf_cost(self, pos, fidelity, cost): ''' Compute the benefit per cost of adding a sample (pos, fidelity) ''' x = np.append(pos, fidelity) value, gradient = self.compute_value(x) return value/cost, gradient/cost def compute_value(self, x): ''' Compute the benefit of adding a sample x For single fidelity, x = pos, while for multi-fidelity, x = {pos, fidelity}. ''' x = np.atleast_2d(x) integral, integral_derivative = self.compute_integral(x) cov, cov_deriv = self.model.post_cov(x) value = (integral / cov).item() gradient = 1/cov**2 * (cov*integral_derivative - integral*cov_deriv) gradient = gradient.reshape(-1) return -value, -gradient def compute_integral(self, x): ''' \int cov^2(f_i(pos), f_h(x'))*w(x')dx', x = {pos, i=fidelity} Eq.(15) in paper. and d \int cov^2(f_i(pos), f_h(x'))*w(x')dx' d pos, x = {pos, i=fidelity} Eq.(49) in paper. ''' # compute value kernel = self.model.kernel_ integral = self.compute_mixed_kappa(x,x) alpha = cho_solve((self.model.L_, True), kernel(self.X, x)) integral += alpha.T.dot(np.dot(self.kappaXX, alpha) - 2*self.compute_mixed_kappa(self.X, x)) # compute derivative term1 = 2*self.compute_mixed_dkappa_dx(x,x) dalpha_dx = cho_solve((self.model.L_, True), kernel.gradient_x(x, self.X)) term2 = 2 * alpha.T.dot(np.dot(self.kappaXX, dalpha_dx)) term3 = 2 * alpha.T.dot(self.compute_mixed_dkappa_dx(x,self.X)) term3 += 2 * self.compute_mixed_kappa(x, self.X).dot(dalpha_dx) return integral, term1 + term2 - term3 def update_prior_search(self, model): ''' Update the model(gpr), data(X), compute the gmm of weights and kappa(X,X). ''' self.model = model self.X = self.model.X_train_ # generate GMM approximation of the likelihood self._prepare_likelihood(self.ll_type, **self.ll_kwargs) # constant for all hypothetical point self.kappaXX = self.compute_mixed_kappa(self.X, self.X) def compute_mixed_kappa(self, X1, X2): ''' compute averaged kappa w.r.t gmm components. Eq. (18) in paper. The 'G' function relies on kernel properties. ''' kernel = self.model.kernel_ mixed_kappa = 0 for i in range(self.gmm.n_components): # the number of gmm component mixed_kappa += self.gmm.weights_[i] * kernel.intKKNorm(X1, X2, self.gmm.means_[i], self.gmm.covariances_[i]) return mixed_kappa def compute_mixed_dkappa_dx(self, x, X): ''' Compute the averaged kappa derivatives. Eq.(53) in paper. ''' kernel = self.model.kernel_ mixed_kappa = 0 for i in range(self.gmm.n_components): mixed_kappa += self.gmm.weights_[i] * kernel.dintKKNorm_dx(x, X, self.gmm.means_[i], self.gmm.covariances_[i]) return mixed_kappa def _prepare_likelihood(self, ll_type, n_components=2, power=6, center=0, depressed_side=None): '''Compute gmm components of w(x'). ''' if self.load_pts: pts = self.pts fx = self.fx n_samples = pts.shape[0] else: if self.inputs.dim <= 2: n_samples = int(1e5) else: n_samples = int(1e6) pts = self.inputs.sampling(n_samples) # input-samples fx = self.inputs.pdf(pts) # weights if ll_type =='input': w_raw = fx elif ll_type == 'plain': w_raw = 1 else: # compute the mean prediction for input-samples if self.X.shape[1] != self.inputs.dim: aug_pts = np.concatenate((pts, [[1]] * n_samples), axis = 1) else: aug_pts = pts if ll_type == 'rare': if n_samples > 4*1e5: aug_pts_list = np.array_split(aug_pts, 10) mu = np.empty(0) for iii in range(10): mu = np.concatenate((mu, self.model.predict(aug_pts_list[iii]).flatten())) else: mu = self.model.predict(aug_pts).flatten() x, y = custom_KDE(mu, weights=fx).evaluate() self.fy_interp = InterpolatedUnivariateSpline(x, y, k=1) w_raw = fx/self.fy_interp(mu) elif ll_type == 'extreme': mu = self.model.predict(aug_pts).flatten() if center == 'mean': center = np.average(mu, fx) if depressed_side == 'negative': w_raw = fx*abs(mu - center) ** (power*np.sign(mu - center)) elif depressed_side == 'positive': w_raw = fx*abs(mu - center) ** (-power*np.sign(mu - center)) else: w_raw = fx*abs(mu - center)**power elif ll_type == 'failure': # P(X)(1-P(X)) * p(X) / var(X) mu, std = self.model.predict(aug_pts, return_std=True) # failure probability as a Bernoulli RV p = norm.cdf(mu.flatten()/std.flatten()) vb = p*(1-p) # var of the Bernoulli vf = std**2 # var of the predictions w_raw = vb * fx / vf self.gmm = self._fit_gmm(pts, w_raw, n_components) return self @staticmethod def _fit_gmm(pts, w_raw, n_components): '''Fit gmm with weighted samples ''' sca = np.sum(w_raw) rng = np.random.default_rng() aa = rng.choice(pts, size=50000, p=w_raw/sca) gmm = GMM(n_components=n_components, covariance_type="full") gmm = gmm.fit(X=aa) return gmm
2.21875
2
django_business_logic/django_business_logic/apps/posts/internal_services/usecases.py
gonzaloamadio/django_business_logic
2
12783893
# -*- coding: utf-8 -*- """Concentrate the heavy business logic of the operations of an application. It knows all Models that should be part of the flow and knows the API/services of those models. It also orchestrate all the side-effects and therefore can make the use of other use cases/services. """ from django.utils.translation import gettext as _ from payments_comissions.models import PaymentComission from posts.models import Job from posts_areas.models import PostArea from tektank.internal_services.use_case_interface import UseCaseInterface from tektank.libs_project.helpers import slug_generator from .errors import InvalidCategories, InvalidDateOrder from .interfaces import JobRepositoryInterface class CreateJob(UseCaseInterface): """Create Job service. Service layer for the creation of a Job. Here we are going to do all validations and side effects. We are going to always use this service instead of calling the Models create method directly. We combine validations here, and validators in the model itself. Input: Parameters of Job model, i.e. its fields. repository : A class that will operate against the DB, or any other source to get/put information. Raises: InvalidCategories InvalidDateOrder Returns: Instance of Job created. """ def __init__( self, repository: JobRepositoryInterface, title, email, date_start, date_end, amount_to_pay, avatar=None, company=None, city=None, state=None, country=None, postal_code=None, post_category=None, post_subcategory=None, address=None, phone=None, cellphone=None, description=None, terms=None, deleted=False, slug=None, ): """ We can instantiate like CreateJob('title','<EMAIL>',date1,date2, ** { "address" : " 123 street ","description ":"This is a descr"} So we are providing mandatory fields, and rest that we want to set. Fields: slug and payment_comission does not appear, because they are set by us. It is not an user input. """ # -- Set the internal state of the model for the operation # The fields listed here, should match with the ones defined in the # model definition. And also with only one _ before the field name. self._title = title self._email = email self._date_start = date_start self._date_end = date_end self._amount_to_pay = amount_to_pay self._avatar = avatar self._company = company self._city = city self._state = state self._country = country self._postal_code = postal_code self._post_category = post_category self._post_subcategory = post_subcategory self._address = address self._phone = phone self._cellphone = cellphone self._description = description self._terms = terms # Forces None, as we set them self._slug = None self._payment_comission = None self._deleted = deleted # ----- Other objects ----- # self.__obj = None self.__repository = repository # A list of keys defined in the model. If model is modified, we should # also modify this. self.__model_keys = [ 'title', 'email', 'date_start', 'date_end', 'amount_to_pay', 'avatar', 'company', 'city', 'state', 'country', 'postal_code', 'post_category', 'post_subcategory', 'address', 'phone', 'cellphone', 'description', 'terms', 'slug', 'deleted', 'payment_comission', ] @property def repository(self) -> JobRepositoryInterface: """Return the respository (adapter) used.""" return self.__repository def execute(self) -> Job: """Main operation, the one that be executed by external code. This operation will condense the rest. Will execute side effects, and all required operations in order. """ self._strip_data() # Create an instance of Job, and save it into self.__obj self._factory() self.is_valid() self.__obj.slug = self._generate_slug( # noqa: T484 self.__obj.id, self.__obj.title, # noqa: T484 ) self.__obj.payment_comission = self._generate_payment_comission( # noqa: T484 self.__obj.amount_to_pay, # noqa: T484 ) self.__repository.save(self.__obj) return self.__obj def _strip_data(self): """Clean fields. For example, delete trailing spaces.""" fields = [ "title", "address_1", "address_2", "email", "website", "phone", "cellphone", ] for field in fields: value = getattr(self, field, None) if value: setattr(self, field, value.strip()) def is_valid(self): """Public method to allow clients of this object to validate the data even before to execute the use case. To use it, create an instance of the class with the values desired. And execute it. Returns: True or False Raises: ValidationError, InvalidDateOrder, InvalidCategories """ # ## Check date order if self._date_end and self._date_start and self._date_end <= self._date_start: raise InvalidDateOrder(_("Start date should be before end date")) # ## Check categories match. # TODO: This should not be necessary, but in admin # dropdown menu for selecting categories are not well filtered when selecting parent # categorie, so we need to do it. # TODO: Send ID instead of name for better lookup # TODO: This logic would go inside posts_category services if self._post_category: assert isinstance( self._post_category, str ), "Category name should be a string" if self._post_subcategory: assert isinstance( self._post_subcategory, str ), "Subcategory name should be a string" # If user selected both categories, check that the parent is the correct # If only subcategory selected, fill the right parent. # If only category, do nothing. cat = ( PostArea.objects.find_by_name(self._post_category) if self._post_category else None ) subcat = ( PostArea.objects.find_by_name(self._post_subcategory) if self._post_subcategory else None ) if subcat: if cat and subcat.parent != cat: raise InvalidCategories(cat.name, subcat.name) else: self._post_category = subcat.parent.name # Here at the end, as before this, we were cleaning and validating all # fields, so it has sense that at this point, the model will be in the # final state. # If object is not stored locally, do it. if not self.__obj: self._factory() # ## Execute programatically model validations. Raises validation error. self.__obj.full_clean() return True def _generate_slug(self, uuid, title): """Generate slug for the instance.""" return slug_generator(uuid, title) def _generate_payment_comission(self, amount_to_pay): """Assign an instance to PaymentComission related to this model. This assignment will later dictated how we are going to charge this job. The rules of how we are going to calculate this, are done by us. """ return PaymentComission.assign_payment_comission(amount_to_pay) def _factory(self): """Create an instance of a Job, and save it into self.__obj.""" # Check if it is a field in the model # TODO do it better? # Remove _ from keys, so we pass correct arguments to create, # and leave only values that are not None. def process(s): if s[0] == '_' and s[1] != '_' and s[1:] in self.__model_keys: return s[1:] params = { process(k): v for k, v in self.__dict__.items() if v is not None and process(k) } self.__obj = self.__repository.factory(**params)
2.625
3
data/normalize/normalize.py
18645956947/TripleIE
0
12783894
<gh_stars>0 import re with open('question.txt', 'r', encoding='utf-8') as f: questions = f.readlines() def select_question(question): global normalize_list # 是否为并列问题, 拆分成多个问题, '和'关键字 m_and_1 = re.search(r'(.*)(和)+(.*)', question) if m_and_1: question_list = deal_and_question(question) return question_list return [] # 是否为并列问题, 拆分成多个问题, '和'关键字 def deal_and_question(question): prefix = '' question_list = [] rule_1 = r'(总)*(农村人口|城镇人口|男性人口|女性人口|男女比例|人口|销售额|销量|营业额|利润|订单量|订单id|合同id|合同金额)+' rule_2 = r'(总)+(农村人口|城镇人口|男性人口|女性人口|男女比例|人口|销售额|销量|营业额|利润|订单量|订单id|合同id|合同金额)+' q_list = question.split('和') for i, q in enumerate(q_list): m_i = re.search(rule_1, q) if i == 0: if m_i: # 获取公共前缀 prefix = q[:len(q) - len(m_i.group())] question_0 = prefix + m_i.group() # 将总人口替换成人口 m = re.search(rule_2, question_0) if m: before = question_0[:len(question_0) - len(m.group())] after = m.group().replace('总', '') question_list.append(before + after) else: question_list.append(prefix + m_i.group()) else: if m_i: question_n = prefix + m_i.group() # 将总人口替换成人口 m = re.search(rule_2, question_n) if m: before = question_n[:len(question_n) - len(m.group())] after = m.group().replace('总', '') question_list.append(before + after) else: question_list.append(prefix + m_i.group()) return question_list def replace_words(question): # 人口 question = question.replace('农村的人口', '农村人口') question = question.replace('城镇的人口', '城镇人口') question = question.replace('男性的人口', '男性人口') question = question.replace('女性的人口', '女性人口') question = question.replace('多少人', '人口') question = question.replace('人口数', '人口') question = question.replace('人口数量', '人口') question = question.replace('人口总数', '人口') question = question.replace('人数', '人口') question = question.replace('人的数量', '人口') question = question.replace('人的总数', '人口') question = question.replace('人口的数量', '人口') question = question.replace('销售数量', '销量') question = question.replace('销售的数量', '销量') question = question.replace('销售数', '销量') question = question.replace('订单数量', '订单量') question = question.replace('订单的数量', '订单量') question = question.replace('负面舆情数量', '负面舆情数') question = question.replace('负面舆情的数量', '负面舆情数') question = question.replace('评论数量', '评论数') question = question.replace('评论的数量', '评论数') question = question.replace('点赞数量', '点赞量') question = question.replace('点赞的数量', '点赞量') question = question.replace('阅读数量', '阅读量') question = question.replace('阅读的数量', '阅读量') question = question.replace('转发数数量', '转发数') question = question.replace('转发的数量', '转发数') question = question.replace('有多少', '') question = question.replace('有哪些', '') question = question.replace('哪些', '') question = question.replace('那些', '') question = question.replace('哪个', '') question = question.replace('那个', '') question = question.replace('所有', '') question = question.replace('打开', '') question = question.replace('查找', '') question = question.replace('查询', '') question = question.replace('找出', '') question = question.replace('查查', '') question = question.replace('查看', '') question = question.replace('看看', '') question = question.replace('筛选', '') question = question.replace('选择', '') question = question.replace('选出', '') question = question.replace('筛选出', '') question = question.replace('的', '有') return question normalize_list = [] for question in questions: question_format = question.strip() question_format = replace_words(question_format) q_list = select_question(question_format) if len(q_list): for q in q_list: normalize_list.append(q) else: normalize_list.append(question_format) with open('normalize.txt', 'a+', encoding='utf-8') as f: for line in normalize_list: line = line.replace('总', '') f.write(line + '\n')
2.890625
3
cocojson/run/viz.py
TeyrCrimson/cocojson
0
12783895
<reponame>TeyrCrimson/cocojson import argparse from cocojson.tools import viz def main(): ap = argparse.ArgumentParser() ap.add_argument('json', help='Path to coco json') ap.add_argument('imgroot', help='Path to img root') ap.add_argument('--outdir', help='Path to output dir, leave out to not write out', type=str, nargs='?', const=True) ap.add_argument('--sample', help='Num of imgs to sample, leave this flag out to process all.', type=int) ap.add_argument('--show', help='To imshow', action='store_true') args = ap.parse_args() viz(args.json, args.imgroot, outdir=args.outdir, sample_k=args.sample, show=args.show) if __name__ == '__main__': main()
2.546875
3
app/auth/forms.py
chenke91/ihaveablog
0
12783896
#coding=utf-8 from flask.ext.wtf import Form from wtforms import StringField, SubmitField, PasswordField from wtforms.validators import Required, Email, Length, EqualTo from app.models import User class RegisterForm(Form): username = StringField('用户名', validators=[Required('请输入用户名')]) email = StringField('邮箱', validators=[Required('请输入邮箱地址'), Email('邮箱格式不正确')]) password = PasswordField('密码', validators=[Required('请输入密码'), Length(6, 20, '密码长度为6~20'), EqualTo('password2', '两次输入不一致')]) password2 = PasswordField('重复密码', validators=[Required('请重复密码'), Length(6, 20, '密码长度为6~20')]) submit = SubmitField('注册') def validate_username(self, field): if User.query.filter_by(username=field.data).count(): raise ValueError('用户名已存在') def validate_email(self, field): if User.query.filter_by(email=field.data).count(): raise ValueError('邮箱已注册') class LoginFrom(Form): email = StringField('邮箱', validators=[Required('请输入邮箱地址'), Email('邮箱格式不正确')]) password = PasswordField('密码', validators=[Required('请输入密码'), Length(6, 20, '密码长度为6~20')]) submit = SubmitField('登陆')
2.875
3
solutions/official/utils.py
kurazu/pycon_quiz
0
12783897
from functools import wraps def cached(func): cache = {} @wraps(func) def cached_wrapper(*args): if args not in cache: cache[args] = func(*args) return cache[args] return cached_wrapper
2.921875
3
utils/data/load_raw_data.py
codeKgu/BiLevel-Graph-Neural-Network
20
12783898
<reponame>codeKgu/BiLevel-Graph-Neural-Network from collections import defaultdict from glob import glob from os.path import join, basename import networkx as nx import numpy as np from scipy.sparse import csr_matrix from tqdm import tqdm from utils.data.dataset import BiGNNDataset from utils.data.graph import Graph, GraphPair from utils.util import get_data_path, load, sorted_nicely def load_raw_interaction_data(name, natts, eatts, tvt): if 'drugbank' in name: dir_name = 'DrugBank' drugbank_dir = join(get_data_path(), dir_name) interaction_dir = join(drugbank_dir, 'ddi_data') graph_data = load(join(drugbank_dir, 'klepto', 'graph_data.klepto')) fname_to_gid_func = lambda fname: int(fname[2:]) interaction_fname = 'ddi_snap.tsv' parse_edge_func = parse_edges_biosnap data_dir = join(interaction_dir, 'drugs_snap') if 'small' in name: data_dir = join(interaction_dir, 'drugs_small') interaction_file_path = join(interaction_dir, interaction_fname) edge_types_edge_list, nodes = get_interaction_edgelist( interaction_file_path, parse_edge_func, False, fname_to_gid_func) elif 'drugcombo' in name: dir_name = 'DrugCombo' drugcombo_dir = join(get_data_path(), dir_name) graph_data = load(join(drugcombo_dir, "klepto", 'graph_data.klepto')) data_dir = drugcombo_dir interaction_dir = join(drugcombo_dir, 'ddi_data') interaction_file_path = join(interaction_dir, 'Syner&Antag_voting.csv') drugname_to_cid = load(join(drugcombo_dir, 'klepto', 'drug_name_to_cid')) edge_to_gid_func = lambda x: int(drugname_to_cid[x.lower()][4:]) fname_to_gid_func = lambda x: int(x[4:]) num_pairs_synergy_antagonism = count_pairs_synergy_antagonism( interaction_file_path) edge_types_edge_list, nodes = get_interaction_edgelist( interaction_file_path, parse_edges_drugcombo, True, edge_to_gid_func, skip_first_line=True, num_pairs_synergy_antagonism=num_pairs_synergy_antagonism) else: raise NotImplementedError graphs = iterate_get_graphs(data_dir, graph_data, nodes, fname_to_gid_func, natts=natts) pairs, graph_ids, edge_types_edge_list_filtered = get_graph_pairs( edge_types_edge_list, graphs) hyper_edge_labels = {'interaction': 1, 'no_interaction': 0} sparse_node_feat, gid_to_idx = get_molecular_node_feats(graph_data, graph_ids, fname_to_gid_func) if 'drugcombo' in name: for pair in pairs.values(): if next(iter(pair.edge_types)) == 'antagonism': pair.true_label = 2 hyper_edge_labels = {'antagonism': 2, 'synergy': 1, 'no_interaction': 0} graphs = [graphs[gid] for gid in sorted(graph_ids)] return BiGNNDataset(name, graphs, natts, hyper_edge_labels, eatts, pairs, tvt, sparse_node_feat) def get_molecular_node_feats(graph_data, gids, fname_to_gid_func): gid_to_idx = {gid: i for i, gid in enumerate(sorted(list(gids)))} gid_graph_data = {fname_to_gid_func(id): g_data for id, g_data in graph_data.items()} mats = {} for feat_shape in list(gid_graph_data.values())[0]['drug_feat']: mat = np.zeros((len(gids), int(feat_shape))) for gid in gids: mat[gid_to_idx[gid]] = gid_graph_data[gid]["drug_feat"][feat_shape] mats[feat_shape] = csr_matrix(mat) return mats, gid_to_idx def get_interaction_edgelist(file_path, parse_edges_func, has_interaction_eatts, edge_to_gid_func, skip_first_line=False, **kwargs): # assume each line in file is an edge, parse it using parse_edge_func edge_types_edge_list = defaultdict(lambda: defaultdict(list)) nodes = set() skipped = set() with open(file_path, 'r') as f: readlines = f.readlines() if not skip_first_line else list(f.readlines())[1:] for i, line in enumerate(readlines): edge, edge_type = parse_edges_func(line, **kwargs) if edge: try: e1 = edge_to_gid_func(edge[0]) e2 = edge_to_gid_func(edge[1]) except KeyError as e: skipped.add(str(e)) continue if has_interaction_eatts and edge_type: edge_types_edge_list[edge_type][e1].append(e2) else: edge_types_edge_list['default'][e1].append(e2) nodes.add(e1) nodes.add(e2) print("number skipped: ", len(skipped)) return edge_types_edge_list, nodes def parse_edges_biosnap(line): return line.rstrip('\n').split('\t'), None def count_pairs_synergy_antagonism(file_path): count_syn_ant = defaultdict(lambda: defaultdict(int)) with open(file_path, 'r') as f: for i, line in enumerate(list(f.readlines())[1:]): line = line.split(',') count_syn_ant[tuple(sorted([line[1], line[2]]))][line[-1]] += 1 return count_syn_ant def parse_edges_drugcombo(line, **kwargs): label_counts = kwargs['num_pairs_synergy_antagonism'] line = line.split(',') drugs = [line[1], line[2]] if label_counts[tuple(sorted(drugs))]['synergy\n']\ >= label_counts[tuple(drugs)]['antagonism\n']: label = 'synergy' else: label = 'antagonism' return drugs, label def get_graph_pairs(edge_types_edge_list, graphs): graph_pairs = {} no_graph_structures = set() final_graphs = set() edge_types_edge_list_filtered = defaultdict(lambda: defaultdict(set)) for edge_type, edge_list in tqdm(edge_types_edge_list.items()): for gid1, gid2s in edge_list.items(): if gid1 not in graphs.keys(): no_graph_structures.add(gid1) continue graph1 = graphs[gid1] for gid2 in gid2s: gid_pair = tuple(sorted([gid1, gid2])) if gid_pair not in graph_pairs.keys(): if gid2 not in graphs.keys(): no_graph_structures.add(gid2) continue graph2 = graphs[gid2] final_graphs.add(gid1) final_graphs.add(gid2) graph_pairs[gid_pair] = GraphPair(true_label=1, g1=graph1, g2=graph2, edge_types=set([edge_type])) else: graph_pairs[gid_pair].edge_types.add(edge_type) edge_types_edge_list_filtered[edge_type][gid1].add(gid2) return graph_pairs, final_graphs, edge_types_edge_list_filtered def iterate_get_graphs(dir, graph_data, nodes, fname_to_gid_func, check_connected=False, natts=(), eatts=()): graphs = {} not_connected = [] no_edges = [] graphs_not_in_edge_list = [] for file in tqdm(sorted_nicely(glob(join(dir, '*.gexf')))): fname = basename(file).split('.')[0] gid = fname_to_gid_func(fname) if gid not in nodes: graphs_not_in_edge_list.append(fname) continue g = nx.read_gexf(file) g.graph['gid'] = gid if not nx.is_connected(g): msg = '{} not connected'.format(gid) if check_connected: raise ValueError(msg) else: not_connected.append(fname) # assumes default node mapping to convert_node_labels_to_integers nlist = sorted(g.nodes()) g.graph['node_label_mapping'] = dict(zip(nlist, range(0, g.number_of_nodes()))) add_graph_data_to_nxgraph(g, graph_data[fname]) g = nx.convert_node_labels_to_integers(g, ordering="sorted") if len(g.edges) == 0: no_edges.append(fname) continue # # Must use sorted_nicely because otherwise may result in: # # ['0', '1', '10', '2', '3', '4', '5', '6', '7', '8', '9']. # # Be very cautious on sorting a list of strings # # which are supposed to be integers. for i, (n, ndata) in enumerate(sorted(g.nodes(data=True))): BiGNNDataset.assert_valid_nid(n, g) assert i == n remove_entries_from_dict(ndata, natts) for i, (n1, n2, edata) in enumerate(sorted(g.edges(data=True))): BiGNNDataset.assert_valid_nid(n1, g) BiGNNDataset.assert_valid_nid(n2, g) remove_entries_from_dict(edata, eatts) graphs[gid] = Graph(g) print("total graphs with edges: {}\nnon connected graphs: {}" .format(len(graphs), len(not_connected))) print("not connected ids: ", not_connected) print("num no edges: ", len(no_edges), "\nno edges ids: ", no_edges) if not graphs: raise ValueError('Loaded 0 graphs from {}\n' 'Please download the gexf-formated dataset' ' from Google Drive and extract under:\n{}'. format(dir, get_data_path())) return graphs def remove_entries_from_dict(d, keeps): for k in set(d) - set(keeps): del d[k] def add_graph_data_to_nxgraph(g, graph_data): if graph_data: for k,v in graph_data.items(): g.graph[k] = v
2.25
2
very_scratch/server/example5/websocketserver.py
ibrahemesam/Fos
3
12783899
#!/usr/bin/env python import socket import threading import config import websocketclient class WebSocketServer: """ Handle the Server, bind and accept new connections, open and close clients connections. """ def __init__(self): self.clients = [] def start(self): """ Start the server. """ s = socket.socket() s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(('', config.socketport)) s.listen(1) try: while 1: conn, addr = s.accept() print('Connected by', addr) newClient = websocketclient.WebSocketClient(conn, addr, self) self.clients.append(newClient) newClient.start() except KeyboardInterrupt: [client.close() for client in self.clients] s.close() def send_all(self, data): """ Send a message to all the currenly connected clients. """ [client.send(data) for client in self.clients] def remove(self, client): """ Remove a client from the connected list. """ l = threading.Lock() l.acquire() self.clients.remove(client) l.release()
3.03125
3
pycaption/scc/translator.py
vpaul-dev/pycaption-github-release-notes
183
12783900
from pycaption.scc.constants import CHARACTERS, SPECIAL_CHARS, EXTENDED_CHARS ALL_CHARACTERS = {**CHARACTERS, **SPECIAL_CHARS, **EXTENDED_CHARS} COMMAND_LABELS = { "9420": "Resume Caption Loading", "9429": "Resume Direct Captioning", "9425": "Roll-Up Captions--2 Rows", "9426": "Roll-Up Captions--3 Rows", "94a7": "Roll-Up Captions--4 Rows", "942a": "Text Restart", "94ab": "Resume Text Display", "942c": "Erase Displayed Memory", "94ae": "Erase Non-displayed Memory", "942f": "End Of Caption", "9140": "row 01, column 00, with plain white text.", "91c1": "row 01, column 00, with white underlined text.", "91c2": "row 01, column 00, with plain green text.", "9143": "row 01, column 00, with green underlined text.", "91c4": "row 01, column 00, with plain blue text.", "9145": "row 01, column 00, with blue underlined text.", "9146": "row 01, column 00, with plain cyan text.", "91c7": "row 01, column 00, with cyan underlined text.", "91c8": "row 01, column 00, with plain red text.", "9149": "row 01, column 00, with red underlined text.", "914a": "row 01, column 00, with plain yellow text.", "91cb": "row 01, column 00, with yellow underlined text.", "914c": "row 01, column 00, with plain magenta text.", "91cd": "row 01, column 00, with magenta underlined text.", "91ce": "row 01, column 00, with white italicized text.", "914f": "row 01, column 00, with white underlined italicized text.", "91d0": "row 01, column 00, with plain white text.", "9151": "row 01, column 00, with white underlined text.", "9152": "row 01, column 04, with plain white text.", "91d3": "row 01, column 04, with white underlined text.", "9154": "row 01, column 08, with plain white text.", "91d5": "row 01, column 08, with white underlined text.", "91d6": "row 01, column 12, with plain white text.", "9157": "row 01, column 12, with white underlined text.", "9158": "row 01, column 16, with plain white text.", "91d9": "row 01, column 16, with white underlined text.", "91da": "row 01, column 20, with plain white text.", "915b": "row 01, column 20, with white underlined text.", "91dc": "row 01, column 24, with plain white text.", "915d": "row 01, column 24, with white underlined text.", "915e": "row 01, column 28, with plain white text.", "91df": "row 01, column 28, with white underlined text.", "91e0": "row 02, column 00, with plain white text.", "9161": "row 02, column 00, with white underlined text.", "9162": "row 02, column 00, with plain green text.", "91e3": "row 02, column 00, with green underlined text.", "9164": "row 02, column 00, with plain blue text.", "91e5": "row 02, column 00, with blue underlined text.", "91e6": "row 02, column 00, with plain cyan text.", "9167": "row 02, column 00, with cyan underlined text.", "9168": "row 02, column 00, with plain red text.", "91e9": "row 02, column 00, with red underlined text.", "91ea": "row 02, column 00, with plain yellow text.", "916b": "row 02, column 00, with yellow underlined text.", "91ec": "row 02, column 00, with plain magenta text.", "916d": "row 02, column 00, with magenta underlined text.", "916e": "row 02, column 00, with white italicized text.", "91ef": "row 02, column 00, with white underlined italicized text.", "9170": "row 02, column 00, with plain white text.", "91f1": "row 02, column 00, with white underlined text.", "91f2": "row 02, column 04, with plain white text.", "9173": "row 02, column 04, with white underlined text.", "91f4": "row 02, column 08, with plain white text.", "9175": "row 02, column 08, with white underlined text.", "9176": "row 02, column 12, with plain white text.", "91f7": "row 02, column 12, with white underlined text.", "91f8": "row 02, column 16, with plain white text.", "9179": "row 02, column 16, with white underlined text.", "917a": "row 02, column 20, with plain white text.", "91fb": "row 02, column 20, with white underlined text.", "91fc": "row 02, column 24, with plain white text.", "91fd": "row 02, column 24, with white underlined text.", "91fe": "row 02, column 28, with plain white text.", "917f": "row 02, column 28, with white underlined text.", "9240": "row 03, column 00, with plain white text.", "92c1": "row 03, column 00, with white underlined text.", "92c2": "row 03, column 00, with plain green text.", "9243": "row 03, column 00, with green underlined text.", "92c4": "row 03, column 00, with plain blue text.", "9245": "row 03, column 00, with blue underlined text.", "9246": "row 03, column 00, with plain cyan text.", "92c7": "row 03, column 00, with cyan underlined text.", "92c8": "row 03, column 00, with plain red text.", "9249": "row 03, column 00, with red underlined text.", "924a": "row 03, column 00, with plain yellow text.", "92cb": "row 03, column 00, with yellow underlined text.", "924c": "row 03, column 00, with plain magenta text.", "92cd": "row 03, column 00, with magenta underlined text.", "92ce": "row 03, column 00, with white italicized text.", "924f": "row 03, column 00, with white underlined italicized text.", "92d0": "row 03, column 00, with plain white text.", "9251": "row 03, column 00, with white underlined text.", "9252": "row 03, column 04, with plain white text.", "92d3": "row 03, column 04, with white underlined text.", "9254": "row 03, column 08, with plain white text.", "92d5": "row 03, column 08, with white underlined text.", "92d6": "row 03, column 12, with plain white text.", "9257": "row 03, column 12, with white underlined text.", "9258": "row 03, column 16, with plain white text.", "92d9": "row 03, column 16, with white underlined text.", "92da": "row 03, column 20, with plain white text.", "925b": "row 03, column 20, with white underlined text.", "92dc": "row 03, column 24, with plain white text.", "925d": "row 03, column 24, with white underlined text.", "925e": "row 03, column 28, with plain white text.", "92df": "row 03, column 28, with white underlined text.", "92e0": "row 04, column 00, with plain white text.", "9261": "row 04, column 00, with white underlined text.", "9262": "row 04, column 00, with plain green text.", "92e3": "row 04, column 00, with green underlined text.", "9264": "row 04, column 00, with plain blue text.", "92e5": "row 04, column 00, with blue underlined text.", "92e6": "row 04, column 00, with plain cyan text.", "9267": "row 04, column 00, with cyan underlined text.", "9268": "row 04, column 00, with plain red text.", "92e9": "row 04, column 00, with red underlined text.", "92ea": "row 04, column 00, with plain yellow text.", "926b": "row 04, column 00, with yellow underlined text.", "92ec": "row 04, column 00, with plain magenta text.", "926d": "row 04, column 00, with magenta underlined text.", "926e": "row 04, column 00, with white italicized text.", "92ef": "row 04, column 00, with white underlined italicized text.", "9270": "row 04, column 00, with plain white text.", "92f1": "row 04, column 00, with white underlined text.", "92f2": "row 04, column 04, with plain white text.", "9273": "row 04, column 04, with white underlined text.", "92f4": "row 04, column 08, with plain white text.", "9275": "row 04, column 08, with white underlined text.", "9276": "row 04, column 12, with plain white text.", "92f7": "row 04, column 12, with white underlined text.", "92f8": "row 04, column 16, with plain white text.", "9279": "row 04, column 16, with white underlined text.", "927a": "row 04, column 20, with plain white text.", "92fb": "row 04, column 20, with white underlined text.", "92fc": "row 04, column 24, with plain white text.", "92fd": "row 04, column 24, with white underlined text.", "92fe": "row 04, column 28, with plain white text.", "927f": "row 04, column 28, with white underlined text.", "1540": "row 05, column 00, with plain white text.", "15c1": "row 05, column 00, with white underlined text.", "15c2": "row 05, column 00, with plain green text.", "1543": "row 05, column 00, with green underlined text.", "15c4": "row 05, column 00, with plain blue text.", "1545": "row 05, column 00, with blue underlined text.", "1546": "row 05, column 00, with plain cyan text.", "15c7": "row 05, column 00, with cyan underlined text.", "15c8": "row 05, column 00, with plain red text.", "1549": "row 05, column 00, with red underlined text.", "154a": "row 05, column 00, with plain yellow text.", "15cb": "row 05, column 00, with yellow underlined text.", "154c": "row 05, column 00, with plain magenta text.", "15cd": "row 05, column 00, with magenta underlined text.", "15ce": "row 05, column 00, with white italicized text.", "154f": "row 05, column 00, with white underlined italicized text.", "15d0": "row 05, column 00, with plain white text.", "1551": "row 05, column 00, with white underlined text.", "1552": "row 05, column 04, with plain white text.", "15d3": "row 05, column 04, with white underlined text.", "1554": "row 05, column 08, with plain white text.", "15d5": "row 05, column 08, with white underlined text.", "15d6": "row 05, column 12, with plain white text.", "1557": "row 05, column 12, with white underlined text.", "1558": "row 05, column 16, with plain white text.", "15d9": "row 05, column 16, with white underlined text.", "15da": "row 05, column 20, with plain white text.", "155b": "row 05, column 20, with white underlined text.", "15dc": "row 05, column 24, with plain white text.", "155d": "row 05, column 24, with white underlined text.", "155e": "row 05, column 28, with plain white text.", "15df": "row 05, column 28, with white underlined text.", "15e0": "row 06, column 00, with plain white text.", "1561": "row 06, column 00, with white underlined text.", "15462": "row 06, column 00, with plain green text.", "15e3": "row 06, column 00, with green underlined text.", "1564": "row 06, column 00, with plain blue text.", "15e5": "row 06, column 00, with blue underlined text.", "15e6": "row 06, column 00, with plain cyan text.", "1567": "row 06, column 00, with cyan underlined text.", "1568": "row 06, column 00, with plain red text.", "15e9": "row 06, column 00, with red underlined text.", "15ea": "row 06, column 00, with plain yellow text.", "156b": "row 06, column 00, with yellow underlined text.", "15ec": "row 06, column 00, with plain magenta text.", "156d": "row 06, column 00, with magenta underlined text.", "156e": "row 06, column 00, with white italicized text.", "15ef": "row 06, column 00, with white underlined italicized text.", "1570": "row 06, column 00, with plain white text.", "15f1": "row 06, column 00, with white underlined text.", "15f2": "row 06, column 04, with plain white text.", "1573": "row 06, column 04, with white underlined text.", "15f4": "row 06, column 08, with plain white text.", "1575": "row 06, column 08, with white underlined text.", "1576": "row 06, column 12, with plain white text.", "15f7": "row 06, column 12, with white underlined text.", "15f8": "row 06, column 16, with plain white text.", "1579": "row 06, column 16, with white underlined text.", "157a": "row 06, column 20, with plain white text.", "15fb": "row 06, column 20, with white underlined text.", "15fc": "row 06, column 24, with plain white text.", "15fd": "row 06, column 24, with white underlined text.", "15fe": "row 06, column 28, with plain white text.", "157f": "row 06, column 28, with white underlined text.", "1640": "row 07, column 00, with plain white text.", "16c1": "row 07, column 00, with white underlined text.", "16c2": "row 07, column 00, with plain green text.", "1643": "row 07, column 00, with green underlined text.", "16c4": "row 07, column 00, with plain blue text.", "1645": "row 07, column 00, with blue underlined text.", "1646": "row 07, column 00, with plain cyan text.", "16c7": "row 07, column 00, with cyan underlined text.", "16c8": "row 07, column 00, with plain red text.", "1649": "row 07, column 00, with red underlined text.", "164a": "row 07, column 00, with plain yellow text.", "16cb": "row 07, column 00, with yellow underlined text.", "164c": "row 07, column 00, with plain magenta text.", "16cd": "row 07, column 00, with magenta underlined text.", "16ce": "row 07, column 00, with white italicized text.", "164f": "row 07, column 00, with white underlined italicized text.", "16d0": "row 07, column 00, with plain white text.", "1651": "row 07, column 00, with white underlined text.", "1652": "row 07, column 04, with plain white text.", "16d3": "row 07, column 04, with white underlined text.", "1654": "row 07, column 08, with plain white text.", "16d5": "row 07, column 08, with white underlined text.", "16d6": "row 07, column 12, with plain white text.", "1657": "row 07, column 12, with white underlined text.", "1658": "row 07, column 16, with plain white text.", "16d9": "row 07, column 16, with white underlined text.", "16da": "row 07, column 20, with plain white text.", "165b": "row 07, column 20, with white underlined text.", "16dc": "row 07, column 24, with plain white text.", "165d": "row 07, column 24, with white underlined text.", "165e": "row 07, column 28, with plain white text.", "16df": "row 07, column 28, with white underlined text.", "16e0": "row 08, column 00, with plain white text.", "1661": "row 08, column 00, with white underlined text.", "16462": "row 08, column 00, with plain green text.", "16e3": "row 08, column 00, with green underlined text.", "1664": "row 08, column 00, with plain blue text.", "16e5": "row 08, column 00, with blue underlined text.", "16e6": "row 08, column 00, with plain cyan text.", "1667": "row 08, column 00, with cyan underlined text.", "1668": "row 08, column 00, with plain red text.", "16e9": "row 08, column 00, with red underlined text.", "16ea": "row 08, column 00, with plain yellow text.", "166b": "row 08, column 00, with yellow underlined text.", "16ec": "row 08, column 00, with plain magenta text.", "166d": "row 08, column 00, with magenta underlined text.", "166e": "row 08, column 00, with white italicized text.", "16ef": "row 08, column 00, with white underlined italicized text.", "1670": "row 08, column 00, with plain white text.", "16f1": "row 08, column 00, with white underlined text.", "16f2": "row 08, column 04, with plain white text.", "1673": "row 08, column 04, with white underlined text.", "16f4": "row 08, column 08, with plain white text.", "1675": "row 08, column 08, with white underlined text.", "1676": "row 08, column 12, with plain white text.", "16f7": "row 08, column 12, with white underlined text.", "16f8": "row 08, column 16, with plain white text.", "1679": "row 08, column 16, with white underlined text.", "167a": "row 08, column 20, with plain white text.", "16fb": "row 08, column 20, with white underlined text.", "16fc": "row 08, column 24, with plain white text.", "16fd": "row 08, column 24, with white underlined text.", "16fe": "row 08, column 28, with plain white text.", "167f": "row 08, column 28, with white underlined text.", "9740": "row 09, column 00, with plain white text.", "97c1": "row 09, column 00, with white underlined text.", "97c2": "row 09, column 00, with plain green text.", "9743": "row 09, column 00, with green underlined text.", "97c4": "row 09, column 00, with plain blue text.", "9745": "row 09, column 00, with blue underlined text.", "9746": "row 09, column 00, with plain cyan text.", "97c7": "row 09, column 00, with cyan underlined text.", "97c8": "row 09, column 00, with plain red text.", "9749": "row 09, column 00, with red underlined text.", "974a": "row 09, column 00, with plain yellow text.", "97cb": "row 09, column 00, with yellow underlined text.", "974c": "row 09, column 00, with plain magenta text.", "97cd": "row 09, column 00, with magenta underlined text.", "97ce": "row 09, column 00, with white italicized text.", "974f": "row 09, column 00, with white underlined italicized text.", "97d0": "row 09, column 00, with plain white text.", "9751": "row 09, column 00, with white underlined text.", "9752": "row 09, column 04, with plain white text.", "97d3": "row 09, column 04, with white underlined text.", "9754": "row 09, column 08, with plain white text.", "97d5": "row 09, column 08, with white underlined text.", "97d6": "row 09, column 12, with plain white text.", "9757": "row 09, column 12, with white underlined text.", "9758": "row 09, column 16, with plain white text.", "97d9": "row 09, column 16, with white underlined text.", "97da": "row 09, column 20, with plain white text.", "975b": "row 09, column 20, with white underlined text.", "97dc": "row 09, column 24, with plain white text.", "975d": "row 09, column 24, with white underlined text.", "975e": "row 09, column 28, with plain white text.", "97df": "row 09, column 28, with white underlined text.", "97e0": "row 10, column 00, with plain white text.", "9761": "row 10, column 00, with white underlined text.", "9762": "row 10, column 00, with plain green text.", "97e3": "row 10, column 00, with green underlined text.", "9764": "row 10, column 00, with plain blue text.", "97e5": "row 10, column 00, with blue underlined text.", "97e6": "row 10, column 00, with plain cyan text.", "9767": "row 10, column 00, with cyan underlined text.", "9768": "row 10, column 00, with plain red text.", "97e9": "row 10, column 00, with red underlined text.", "97ea": "row 10, column 00, with plain yellow text.", "976b": "row 10, column 00, with yellow underlined text.", "97ec": "row 10, column 00, with plain magenta text.", "976d": "row 10, column 00, with magenta underlined text.", "976e": "row 10, column 00, with white italicized text.", "97ef": "row 10, column 00, with white underlined italicized text.", "9770": "row 10, column 00, with plain white text.", "97f1": "row 10, column 00, with white underlined text.", "97f2": "row 10, column 04, with plain white text.", "9773": "row 10, column 04, with white underlined text.", "97f4": "row 10, column 08, with plain white text.", "9775": "row 10, column 08, with white underlined text.", "9776": "row 10, column 12, with plain white text.", "97f7": "row 10, column 12, with white underlined text.", "97f8": "row 10, column 16, with plain white text.", "9779": "row 10, column 16, with white underlined text.", "977a": "row 10, column 20, with plain white text.", "97fb": "row 10, column 20, with white underlined text.", "97fc": "row 10, column 24, with plain white text.", "97fd": "row 10, column 24, with white underlined text.", "97fe": "row 10, column 28, with plain white text.", "977f": "row 10, column 28, with white underlined text.", "1040": "row 11, column 00, with plain white text.", "10c1": "row 11, column 00, with white underlined text.", "10c2": "row 11, column 00, with plain green text.", "1043": "row 11, column 00, with green underlined text.", "10c4": "row 11, column 00, with plain blue text.", "1045": "row 11, column 00, with blue underlined text.", "1046": "row 11, column 00, with plain cyan text.", "10c7": "row 11, column 00, with cyan underlined text.", "10c8": "row 11, column 00, with plain red text.", "1049": "row 11, column 00, with red underlined text.", "104a": "row 11, column 00, with plain yellow text.", "10cb": "row 11, column 00, with yellow underlined text.", "104c": "row 11, column 00, with plain magenta text.", "10cd": "row 11, column 00, with magenta underlined text.", "10ce": "row 11, column 00, with white italicized text.", "104f": "row 11, column 00, with white underlined italicized text.", "10d0": "row 11, column 00, with plain white text.", "1051": "row 11, column 00, with white underlined text.", "1052": "row 11, column 04, with plain white text.", "10d3": "row 11, column 04, with white underlined text.", "1054": "row 11, column 08, with plain white text.", "10d5": "row 11, column 08, with white underlined text.", "10d6": "row 11, column 12, with plain white text.", "1057": "row 11, column 12, with white underlined text.", "1058": "row 11, column 16, with plain white text.", "10d9": "row 11, column 16, with white underlined text.", "10da": "row 11, column 20, with plain white text.", "105b": "row 11, column 20, with white underlined text.", "10dc": "row 11, column 24, with plain white text.", "105d": "row 11, column 24, with white underlined text.", "105e": "row 11, column 28, with plain white text.", "10df": "row 11, column 28, with white underlined text.", "1340": "row 12, column 00, with plain white text.", "13c1": "row 12, column 00, with white underlined text.", "13c2": "row 12, column 00, with plain green text.", "1343": "row 12, column 00, with green underlined text.", "13c4": "row 12, column 00, with plain blue text.", "1345": "row 12, column 00, with blue underlined text.", "1346": "row 12, column 00, with plain cyan text.", "13c7": "row 12, column 00, with cyan underlined text.", "13c8": "row 12, column 00, with plain red text.", "1349": "row 12, column 00, with red underlined text.", "134a": "row 12, column 00, with plain yellow text.", "13cb": "row 12, column 00, with yellow underlined text.", "134c": "row 12, column 00, with plain magenta text.", "13cd": "row 12, column 00, with magenta underlined text.", "13ce": "row 12, column 00, with white italicized text.", "134f": "row 12, column 00, with white underlined italicized text.", "13d0": "row 12, column 00, with plain white text.", "1351": "row 12, column 00, with white underlined text.", "1352": "row 12, column 04, with plain white text.", "13d3": "row 12, column 04, with white underlined text.", "1354": "row 12, column 08, with plain white text.", "13d5": "row 12, column 08, with white underlined text.", "13d6": "row 12, column 12, with plain white text.", "1357": "row 12, column 12, with white underlined text.", "1358": "row 12, column 16, with plain white text.", "13d9": "row 12, column 16, with white underlined text.", "13da": "row 12, column 20, with plain white text.", "135b": "row 12, column 20, with white underlined text.", "13dc": "row 12, column 24, with plain white text.", "135d": "row 12, column 24, with white underlined text.", "135e": "row 12, column 28, with plain white text.", "13df": "row 12, column 28, with white underlined text.", "13e0": "row 13, column 00, with plain white text.", "1361": "row 13, column 00, with white underlined text.", "13462": "row 13, column 00, with plain green text.", "13e3": "row 13, column 00, with green underlined text.", "1364": "row 13, column 00, with plain blue text.", "13e5": "row 13, column 00, with blue underlined text.", "13e6": "row 13, column 00, with plain cyan text.", "1367": "row 13, column 00, with cyan underlined text.", "1368": "row 13, column 00, with plain red text.", "13e9": "row 13, column 00, with red underlined text.", "13ea": "row 13, column 00, with plain yellow text.", "136b": "row 13, column 00, with yellow underlined text.", "13ec": "row 13, column 00, with plain magenta text.", "136d": "row 13, column 00, with magenta underlined text.", "136e": "row 13, column 00, with white italicized text.", "13ef": "row 13, column 00, with white underlined italicized text.", "1370": "row 13, column 00, with plain white text.", "13f1": "row 13, column 00, with white underlined text.", "13f2": "row 13, column 04, with plain white text.", "1373": "row 13, column 04, with white underlined text.", "13f4": "row 13, column 08, with plain white text.", "1375": "row 13, column 08, with white underlined text.", "1376": "row 13, column 12, with plain white text.", "13f7": "row 13, column 12, with white underlined text.", "13f8": "row 13, column 16, with plain white text.", "1379": "row 13, column 16, with white underlined text.", "137a": "row 13, column 20, with plain white text.", "13fb": "row 13, column 20, with white underlined text.", "13fc": "row 13, column 24, with plain white text.", "13fd": "row 13, column 24, with white underlined text.", "13fe": "row 13, column 28, with plain white text.", "137f": "row 13, column 28, with white underlined text.", "9440": "row 14, column 00, with plain white text.", "94c1": "row 14, column 00, with white underlined text.", "94c2": "row 14, column 00, with plain green text.", "9443": "row 14, column 00, with green underlined text.", "94c4": "row 14, column 00, with plain blue text.", "9445": "row 14, column 00, with blue underlined text.", "9446": "row 14, column 00, with plain cyan text.", "94c7": "row 14, column 00, with cyan underlined text.", "94c8": "row 14, column 00, with plain red text.", "9449": "row 14, column 00, with red underlined text.", "944a": "row 14, column 00, with plain yellow text.", "94cb": "row 14, column 00, with yellow underlined text.", "944c": "row 14, column 00, with plain magenta text.", "94cd": "row 14, column 00, with magenta underlined text.", "94ce": "row 14, column 00, with white italicized text.", "944f": "row 14, column 00, with white underlined italicized text.", "94d0": "row 14, column 00, with plain white text.", "9451": "row 14, column 00, with white underlined text.", "9452": "row 14, column 04, with plain white text.", "94d3": "row 14, column 04, with white underlined text.", "9454": "row 14, column 08, with plain white text.", "94d5": "row 14, column 08, with white underlined text.", "94d6": "row 14, column 12, with plain white text.", "9457": "row 14, column 12, with white underlined text.", "9458": "row 14, column 16, with plain white text.", "94d9": "row 14, column 16, with white underlined text.", "94da": "row 14, column 20, with plain white text.", "945b": "row 14, column 20, with white underlined text.", "94dc": "row 14, column 24, with plain white text.", "945d": "row 14, column 24, with white underlined text.", "945e": "row 14, column 28, with plain white text.", "94df": "row 14, column 28, with white underlined text.", "94e0": "row 15, column 00, with plain white text.", "9461": "row 15, column 00, with white underlined text.", "9462": "row 15, column 00, with plain green text.", "94e3": "row 15, column 00, with green underlined text.", "9464": "row 15, column 00, with plain blue text.", "94e5": "row 15, column 00, with blue underlined text.", "94e6": "row 15, column 00, with plain cyan text.", "9467": "row 15, column 00, with cyan underlined text.", "9468": "row 15, column 00, with plain red text.", "94e9": "row 15, column 00, with red underlined text.", "94ea": "row 15, column 00, with plain yellow text.", "946b": "row 15, column 00, with yellow underlined text.", "94ec": "row 15, column 00, with plain magenta text.", "946d": "row 15, column 00, with magenta underlined text.", "946e": "row 15, column 00, with white italicized text.", "94ef": "row 15, column 00, with white underlined italicized text.", "9470": "row 15, column 00, with plain white text.", "94f1": "row 15, column 00, with white underlined text.", "94f2": "row 15, column 04, with plain white text.", "9473": "row 15, column 04, with white underlined text.", "94f4": "row 15, column 08, with plain white text.", "9475": "row 15, column 08, with white underlined text.", "9476": "row 15, column 12, with plain white text.", "94f7": "row 15, column 12, with white underlined text.", "94f8": "row 15, column 16, with plain white text.", "9479": "row 15, column 16, with white underlined text.", "947a": "row 15, column 20, with plain white text.", "94fb": "row 15, column 20, with white underlined text.", "94fc": "row 15, column 24, with plain white text.", "94fd": "row 15, column 24, with white underlined text.", "94fe": "row 15, column 28, with plain white text.", "947f": "row 15, column 28, with white underlined text.", "97a1": "Tab Offset 1 column", "97a2": "Tab Offset 2 columns", "9723": "Tab Offset 3 columns", "94a1": "BackSpace", "94a4": "Delete to End of Row", "94ad": "Carriage Return", "1020": "Background White", "10a1": "Background Semi-Transparent White", "10a2": "Background Green", "1023": "Background Semi-Transparent Green", "10a4": "Background Blue", "1025": "Background Semi-Transparent Blue", "1026": "Background Cyan", "10a7": "Background Semi-Transparent Cyan", "10a8": "Background Red", "1029": "Background Semi-Transparent Red", "102a": "Background Yellow", "10ab": "Background Semi-Transparent Yellow", "102c": "Background Magenta", "10ad": "Background Semi-Transparent Magenta", "10ae": "Background Black", "102f": "Background Semi-Transparent Black", "97ad": "Background Transparent", "97a4": "Standard Character Set", "9725": "Double-Size Character Set", "9726": "First Private Character Set", "97a7": "Second Private Character Set", "97a8": "People`s Republic of China Character Set", "9729": "Korean Standard Character Set", "972a": "First Registered Character Set", "9120": "White", "91a1": "White Underline", "91a2": "Green", "9123": "Green Underline", "91a4": "Blue", "9125": "Blue Underline", "9126": "Cyan", "91a7": "Cyan Underline", "91a8": "Red", "9129": "Red Underline", "912a": "Yellow", "91ab": "Yellow Underline", "912c": "Magenta", "91ad": "Magenta Underline", "97ae": "Black", "972f": "Black Underline", "91ae": "Italics", "912f": "Italics Underline", "94a8": "Flash ON", "9423": "Alarm Off", "94a2": "Alarm On" } def translate_scc(scc_content, brackets='[]'): """ Replaces hexadecimal words with their meaning In order to make SCC files more human readable and easier to debug, this function is used to replace command codes with their labels and character bytes with their actual characters :param scc_content: SCC captions to be translated :type scc_content: str :param brackets: Brackets to group the translated content of a command :type brackets: str :return: Translated SCC captions :rtype: str """ opening_bracket, closing_bracket = brackets if brackets else ('', '') scc_elements = set(scc_content.split()) for elem in scc_elements: name = COMMAND_LABELS.get(elem) # If a 2 byte command was not found, try retrieving 1 byte characters if not name: char1 = ALL_CHARACTERS.get(elem[:2]) char2 = ALL_CHARACTERS.get(elem[2:]) if char1 is not None and char2 is not None: name = f"{char1}{char2}" if name: scc_content = scc_content.replace( elem, f"{opening_bracket}{name}{closing_bracket}") return scc_content
2.328125
2
point.py
akitoakihito/python_slam
2
12783901
import numpy as np # class for 3D points in an image frame class Point(object): # class constructor def __init__(self, img_map, location, color): self.point = location self.frames = [] self.idx = [] self.color = np.copy(color) self.id = img_map.max_point img_map.max_point += 1 img_map.points.append(self) def orb(self): des = [] for f in self.frames: des.append(f.des[f.pts.index(self)]) return des # class method to add a frame and index from video # feed to the Point object def add_observation(self, frame, index): frame.pts[index] = self self.frames.append(frame) self.idx.append(index) # class method to delete a point from a frame def delete_point(self): for f in self.frames: f.pts[f.pts.index(self)] = None del self def homogenous(self): return np.array([self.point[0], self.point[1], self.point[2], 1.0])
2.96875
3
src/vgm/ym2151/config.py
cybermats/vgm_extractor
0
12783902
import copy import json from enum import Enum, IntFlag, Flag from json import JSONEncoder from typing import Any, List, Dict from vgm.command import VgmCommand, VgmCommandType class Waveform(Enum): SAW = 0 SQUARE = 1 TRIANGLE = 2 NOISE = 3 def repr_json(self): return self.name class Operators(Flag): MOD1 = 1 CAR1 = 2 MOD2 = 4 CAR2 = 8 def repr_json(self): o = [] if self & Operators.MOD1: o.append(Operators.MOD1.name) if self & Operators.CAR1: o.append(Operators.CAR1.name) if self & Operators.MOD2: o.append(Operators.MOD2.name) if self & Operators.CAR2: o.append(Operators.CAR2.name) return "|".join(o) class BaseConfig: def __init__(self, other=None) -> None: self.waveform: Waveform = Waveform.SAW if not other else other.waveform self.lfo: int = 0 if not other else other.lfo self.amp_md: int = 0 if not other else other.amp_md self.phs_md: int = 0 if not other else other.phs_md def __eq__(self, other: Any) -> bool: if isinstance(other, BaseConfig): return ( self.lfo == other.lfo and self.phs_md == other.phs_md and self.amp_md == other.amp_md and self.waveform == other.waveform ) return NotImplemented # noinspection PyArgumentList def __deepcopy__(self, _) -> object: return BaseConfig(self) def repr_json(self): return self.__dict__ class OperatorConfig: def __init__(self, other=None) -> None: self.total_level: int = 0 if not other else other.total_level self.attack_rate: int = 0 if not other else other.attack_rate self.first_decay_rate: int = 0 if not other else other.first_decay_rate self.first_decay_level: int = 0 if not other else other.first_decay_level self.second_decay_rate: int = 0 if not other else other.second_decay_rate self.release_rate: int = 0 if not other else other.release_rate self.key_scale: int = 0 if not other else other.key_scale self.multiply: int = 0 if not other else other.multiply self.first_detune: int = 0 if not other else other.first_detune self.second_detune: int = 0 if not other else other.second_detune self.ase: bool = False if not other else other.ase def __eq__(self, other: Any) -> bool: if isinstance(other, OperatorConfig): return ( self.first_detune == other.first_detune and self.second_detune == other.second_detune and self.multiply == other.multiply and self.total_level == other.total_level and self.key_scale == other.key_scale and self.attack_rate == other.attack_rate and self.ase == other.ase and self.first_decay_rate == other.first_decay_rate and self.second_decay_rate == other.second_decay_rate and self.first_decay_level == other.first_decay_level and self.release_rate == other.release_rate ) return NotImplemented # noinspection PyArgumentList def __deepcopy__(self, _) -> object: return OperatorConfig(self) def repr_json(self): return { "tl": self.total_level, "ar": self.attack_rate, "d1r": self.first_decay_rate, "d1l": self.first_decay_level, "d2r": self.second_decay_rate, "rr": self.release_rate, "ks": self.key_scale, "mul": self.multiply, "dt1": self.first_detune, "dt2": self.second_detune, "ase": self.ase, } class NoteConfig: def __init__(self, other=None) -> None: self.right: bool = False if not other else other.right self.left: bool = False if not other else other.left self.octave: int = 0 if not other else other.octave self.note: int = 0 if not other else other.note self.key_fraction: int = 0 if not other else other.key_fraction def __eq__(self, other: Any) -> bool: if isinstance(other, NoteConfig): return ( self.right == other.right and self.left == other.left and self.octave == other.octave and self.note == other.note and self.key_fraction == other.key_fraction ) return NotImplemented # noinspection PyArgumentList def __deepcopy__(self, _) -> object: return NoteConfig(self) def repr_json(self): return { "right": self.right, "left": self.left, "octave": self.octave, "note": self.note, "key_fraction": self.key_fraction, } class ChannelConfig: def __init__(self, other=None) -> None: self.operators: List[OperatorConfig] = ( [] if not other else copy.deepcopy(other.operators) ) self.fb: int = 0 if not other else other.fb self.ams: int = 0 if not other else other.ams self.pms: int = 0 if not other else other.pms self.connection: int = 0 if not other else other.connection self.noise: bool = False if not other else other.noise self.noise_freq: int = 0 if not other else other.noise_freq if not other: for dev in range(4): self.operators.append(OperatorConfig()) def __eq__(self, other: Any) -> bool: if isinstance(other, ChannelConfig): return ( self.fb == other.fb and self.connection == other.connection and self.ams == other.ams and self.pms == other.pms and self.operators == other.operators and self.noise == other.noise and self.noise_freq == other.noise_freq ) return NotImplemented # noinspection PyArgumentList def __deepcopy__(self, _) -> object: return ChannelConfig(self) def repr_json(self): return { "feedback": self.fb, "connection": self.connection, "ams": self.ams, "pms": self.pms, "noise": self.noise, "noise_freq": self.noise_freq, "m1": self.operators[0], "c1": self.operators[2], "m2": self.operators[1], "c2": self.operators[3], } class Config: def __init__( self, id: int, base: BaseConfig = BaseConfig(), channel: ChannelConfig = ChannelConfig(), operators: Operators = 0, ): self._id = id self._base = base self._operators: Operators = operators self._channel = channel def __getattr__(self, item): if item == "lfo": return self._base.lfo if item == "phs_md": return self._base.phs_md if item == "amp_md": return self._base.amp_md if item == "waveform": return self._base.waveform if item == "enabled_operators": return self._operators return getattr(self._channel, item) def compare(self, base: BaseConfig, channel: ChannelConfig, operators: Operators): return ( self._base == base and self._channel == channel and self._operators == operators ) def repr_json(self) -> Dict: return { "id": self._id, "base": self._base, "operators": self._operators, "channel": self._channel, } class ConfigEncoder(json.JSONEncoder): def default(self, o: Any) -> Any: if hasattr(o, "repr_json"): return o.repr_json() else: return json.JSONEncoder.default(self, o) class YM2151Command(VgmCommand): command_type = VgmCommandType.YM2151 def __init__(self, cmd_id, reg: int, value: int) -> None: super().__init__(cmd_id) self.reg = reg self.value = value def __str__(self) -> str: return f"YM2151Command(Reg: {hex(self.reg)}, Data: {hex(self.value)})" def create(reg: int, value: int) -> YM2151Command: return YM2151Command(0x54, reg, value)
2.625
3
problem14.py
prashdash112/Project-Euler-solutions
1
12783903
''' The following iterative sequence is defined for the set of positive integers: n → n/2 (n is even) n → 3n + 1 (n is odd) Using the rule above and starting with 13, we generate the following sequence: 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1. Which starting number, under one million, produces the longest chain? NOTE: Once the chain starts the terms are allowed to go above one million. ''' def collatz(n): #returning the length of collatz sequence arr=[] while n >1: arr.append(n) if (n%2): n=3*n+1 else: n=n//2 return(len(arr)+1) # Driver function ans = max(range(2, 1000000), key=collatz) print(ans) ''' # Alternate function to generate collatz sequence def collatz(n): while n > 1: print(n ,end=' ') if (n % 2): # n is odd n = 3*n + 1 else: # n is even n = n//2 print(1,'\n') '''
4.3125
4
tests/gen/test_trade_data_generation.py
PontusHultkrantz/tcapy
0
12783904
"""Tests out the code for generating randomised test trades/orders. """ from __future__ import print_function __author__ = 'saeedamen' # <NAME> / <EMAIL> # # Copyright 2017 Cuemacro Ltd. - http//www.cuemacro.com / @cuemacro # # See the License for the specific language governing permissions and limitations under the License. # import os from tcapy.conf.constants import Constants from tcapy.data.datatestcreator import DataTestCreator from tcapy.data.databasesource import DatabaseSourceCSVBinary as DatabaseSourceCSV from tcapy.data.databasesource import DatabaseSourceArctic from tcapy.util.loggermanager import LoggerManager logger = LoggerManager().getLogger(__name__) constants = Constants() postfix = 'dukascopy' ticker = ['EURUSD'] start_date = '01 May 2017' finish_date = '31 May 2017' use_test_csv = True # mainly just to speed up tests - note: you will need to generate the HDF5 files using convert_csv_to_h5.py from the CSVs use_hdf5_market_files = False logger.info('Make sure you have created folder ' + constants.csv_folder + ' & ' + constants.temp_data_folder + ' otherwise tests will fail') ######################################################################################################################## # you can change the test_data_harness_folder to one on your own machine with real data folder = constants.test_data_harness_folder eps = 10 ** -5 if use_test_csv: # only contains limited amount of EURUSD and USDJPY in Apr/Jun 2017 if use_hdf5_market_files: market_data_store = os.path.join(folder, 'small_test_market_df.h5') else: market_data_store = os.path.join(folder, 'small_test_market_df.csv.gz') def test_randomized_trade_data_generation(): """Tests randomized trade generation data (and writing to database) """ data_test_creator = DataTestCreator(write_to_db=False) # use database source as Arctic for market data (assume we are using market data as a source) if use_test_csv: data_test_creator._database_source_market = DatabaseSourceCSV(market_data_database_csv=market_data_store) else: data_test_creator._database_source_market = DatabaseSourceArctic(postfix=postfix) # create randomised trade/order data trade_order = data_test_creator.create_test_trade_order(ticker, start_date=start_date, finish_date=finish_date) # trade_order has dictionary of trade_df and order_df # make sure the number of trades > number of orders assert (len(trade_order['trade_df'].index) > len(trade_order['order_df'].index)) if __name__ == '__main__': test_randomized_trade_data_generation() # import pytest; pytest.main()
2.0625
2
piprot/models/messages.py
emichal/piprot
0
12783905
<gh_stars>0 class Messages: NOT_ROTTEN: str = "{package} ({version}) is up to date" IGNORED: str = "Ignoring updates for {package}." CANNOT_FETCH: str = "Skipping {package} ({version}). Cannot fetch info from PyPI" NO_DELAY_INFO: str = ( "{package} ({current_version}) is out of date. " "No delay info available. " "Latest version is: {latest_version}" ) ROTTEN_NOT_DIRECT_SUCCESSOR: str = ( "{package} ({current_version}) " "is {rotten_days} days out of date. " "Latest version is: {latest_version} " "({days_since_last_release} days old)." ) ROTTEN_DIRECT_SUCCESSOR: str = ( "{package} ({current_version}) " "is {rotten_days} days out of date. " "Latest version is: {latest_version}" )
2.28125
2
temp.py
CAES-Python/Coffee_maker_analog
0
12783906
# -*- coding: cp850 -*- from kivy.app import App from kivy.clock import Clock from kivy.clock import Clock as clock from kivy.config import Config from kivy.gesture import Gesture,GestureDatabase from kivy.graphics.vertex_instructions import (Rectangle, Ellipse) from kivy.graphics.context_instructions import Color from kivy.lang import Builder from kivy.uix.scatter import Scatter from kivy.uix.label import Label from kivy.uix.floatlayout import FloatLayout from kivy.uix.boxlayout import BoxLayout from kivy.uix.gridlayout import GridLayout from kivy.uix.slider import Slider from kivy.uix.screenmanager import ScreenManager, Screen from kivy.uix.anchorlayout import AnchorLayout from kivy.uix.checkbox import CheckBox from kivy.uix.spinner import Spinner from kivy.garden.knob import Knob from kivy.garden.gauges import Gauges from kivy.garden.light_indicator import Light_indicator from kivy.properties import NumericProperty, BoundedNumericProperty, ListProperty, ObjectProperty, StringProperty import collections import math import os import random import sys from math import * import gesture_box as gesture # This is where Kivy captures gestures. class Runner(gesture.GestureBox): pass #define the Screen Manager class CoffeeScreenManager(ScreenManager): pass #define the screens class MenuScreen(Screen): pass class CoffeeScreen(Screen): h2o_ftemp = StringProperty('') h2o_ctemp = StringProperty('') def __init__(self, **kwargs): super(CoffeeScreen, self).__init__(**kwargs) Clock.schedule_once(self._finish_init) # Clock.schedule_interval(self.disp_temp,0.1) def _finish_init(self,dt): self.set_ftemp=self.manager.get_screen('control').set_ftemp self.temp_value=self.manager.get_screen('control').temp_value self.my_temp=self.manager.get_screen('control').ids.my_temp #self.current_ctemp= str((self.temp_value -32)/1.8) # def disp_temp(self,dt): # self.set_ftemp = str(self.temp_value) # self.h2o_temp = self.set_ftemp #self.my_temp = self.set_ftemp #self.temp_value = float(self.set_ftemp) class ControlScreen(Screen): global event set_ftemp = StringProperty("") set_ctemp = StringProperty("") min=NumericProperty(80) max=NumericProperty(212) temp_value=NumericProperty(150.0) def __init__(self, **kwargs): super(ControlScreen, self).__init__(**kwargs) Clock.schedule_once(self._finish_init,0.5) Clock.schedule_interval(self.disp_temp,0.1) def _finish_init(self,dt): self.my_temp= self.ids.my_temp self.f_to_c() def disp_temp(self,dt): self.set_ftemp = str(self.temp_value) def f_to_c(self): self.current_ctemp= str(round((self.temp_value -32)/1.8,1)) self.set_ctemp = self.current_ctemp print "set_temp is: ",self.set_ftemp print "temp_val is: ",self.temp_value def increase_temp(self): if self.temp_value<self.max: self.temp_value+=1 self.f_to_c() print "set_temp is: ",self.set_ftemp print "temp_value is: ",self.temp_value def decrease_temp(self): if self.temp_value>self.min: self.temp_value-=1 self.f_to_c() #Building the app. The program will look for the file "nuclear.kv" because the app is called Nuclear class TempApp(App): def build(self): Config.set('graphics','fullscreen', True) return CoffeeScreenManager() # Run the program if __name__ == "__main__": TempApp().run()
2.390625
2
python_qt_client/widgets/menu_bar.py
rhedgeco/hyper_visualizer_clientserver
0
12783907
from PySide2.QtCore import QCoreApplication from PySide2.QtWidgets import QMenuBar, QMenu def _quit(): QCoreApplication.quit() class MenuBar(QMenuBar): def __init__(self): super().__init__() file_action = self.addMenu(QMenu('File')) file_action.menu().addAction('New Project') file_action.menu().addAction('Open') file_action.menu().addSeparator() file_action.menu().addAction('Save') file_action.menu().addAction('Save As') file_action.menu().addSeparator() file_action.menu().addAction('Quit').triggered.connect(_quit) edit_action = self.addMenu(QMenu('Edit')) edit_action.menu().addAction('Undo') edit_action.menu().addAction('Redo') edit_action.menu().addSeparator() edit_action.menu().addAction('Preferences') view_action = self.addMenu(QMenu('View')) view_action.menu().addAction('Show Logs')
2.5625
3
python_basics/fib.py
jakubczaplicki/projecteuler
0
12783908
<gh_stars>0 def fibr(n): if n<=1: return 1 else: return n+fibr(n-1) def fibi(n): i=0 m=0 while i < n: i += 1 m += i return m for n in xrange(0,10): print n, fibi(n), fibr(n) mygenerator = (x*x for x in range(3)) for i in mygenerator: print i print "2nd" for i in mygenerator: print i def createGenerator(): mylist = range(3) for i in mylist: yield i*i mygenerator = createGenerator() # create a generator print(mygenerator) # mygenerator is an object! for i in mygenerator: print(i)
3.796875
4
app/section_1/__init__.py
Shah-imran/Database_app
0
12783909
<reponame>Shah-imran/Database_app<filename>app/section_1/__init__.py<gh_stars>0 from flask import Blueprint section_1 = Blueprint('section_1', __name__) from . import views
1.226563
1
hwilib/devices/trezorlib/messages/MessageType.py
tomatoskittles/HWI
9
12783910
# Automatically generated by pb2py # fmt: off Initialize = 0 Ping = 1 Success = 2 Failure = 3 ChangePin = 4 WipeDevice = 5 GetEntropy = 9 Entropy = 10 LoadDevice = 13 ResetDevice = 14 Features = 17 PinMatrixRequest = 18 PinMatrixAck = 19 Cancel = 20 ClearSession = 24 ApplySettings = 25 ButtonRequest = 26 ButtonAck = 27 ApplyFlags = 28 BackupDevice = 34 EntropyRequest = 35 EntropyAck = 36 PassphraseRequest = 41 PassphraseAck = 42 PassphraseStateRequest = 77 PassphraseStateAck = 78 RecoveryDevice = 45 WordRequest = 46 WordAck = 47 GetFeatures = 55 FirmwareErase = 6 FirmwareUpload = 7 FirmwareRequest = 8 SelfTest = 32 GetPublicKey = 11 PublicKey = 12 SignTx = 15 TxRequest = 21 TxAck = 22 GetAddress = 29 Address = 30 SignMessage = 38 VerifyMessage = 39 MessageSignature = 40 SignIdentity = 53 SignedIdentity = 54 DebugLinkDecision = 100 DebugLinkGetState = 101 DebugLinkState = 102 DebugLinkStop = 103 DebugLinkLog = 104 DebugLinkMemoryRead = 110 DebugLinkMemory = 111 DebugLinkMemoryWrite = 112 DebugLinkFlashErase = 113
1.328125
1
train.py
lichen-lab/DeepChrInteract
0
12783911
# -*- coding:utf-8 -*- import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Remove unnecessary information import numpy as np # cpu_count = 4 # 因为服务器没有图形界面,所以必须这样弄 import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt # 好看的打印格式 def fancy_print(n = None, c = None, s = '#'): print(s * 40) print(n) print(c) print(s * 40) print() # 空一行避免混淆 # 拿到所有模型 from model import * # 图片读取生成器 from keras.preprocessing.image import ImageDataGenerator import tensorflow as tf import keras from keras.optimizers import Adam from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint from keras.callbacks import Callback from sklearn.metrics import roc_auc_score, average_precision_score from sklearn.model_selection import train_test_split from sklearn import metrics most_epoches = 500 # 最大训练次数 500 测试时 2-10 def train_cnn_dense_resnet(gen_name, model_name, gene_length): # 打印说明,方便检查 fancy_print('gen_name', gen_name) fancy_print('model_name', model_name) ############################## # # png reader in iterator # ############################## # 训练集:验证集:测试集 = 8:1:1 train_datagen = ImageDataGenerator(rescale = 1./255, validation_split = 0.11) # set validation split BATCH_SIZE = 32 # 一次大小 train_generator = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/png_train/', target_size = (gene_length*2, 5), color_mode = 'grayscale', class_mode = 'categorical', batch_size = BATCH_SIZE, subset = 'training', # set as training data shuffle = True, # must shuffle seed = 42, ) val_generator = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/png_train/', # same directory as training data target_size = (gene_length*2, 5), color_mode = 'grayscale', class_mode = 'categorical', batch_size = BATCH_SIZE, subset = 'validation', # set as validation data shuffle = True, # must shuffle seed = 42, ) ############################## # # loss数据可视化 # ############################## class PlotProgress(keras.callbacks.Callback): def __init__(self, entity = ['loss', 'accuracy']): self.entity = entity def on_train_begin(self, logs={}): self.i = 0 self.x = [] self.losses = [] self.val_losses = [] self.accs = [] self.val_accs = [] self.fig = plt.figure() self.logs = [] def on_epoch_end(self, epoch, logs={}): self.logs.append(logs) self.x.append(self.i) # 损失函数 self.losses.append(logs.get('{}'.format(self.entity[0]))) self.val_losses.append(logs.get('val_{}'.format(self.entity[0]))) # 准确率 self.accs.append(logs.get('{}'.format(self.entity[1]))) self.val_accs.append(logs.get('val_{}'.format(self.entity[1]))) self.i += 1 # clear_output(wait=True) plt.figure(0) plt.clf() # 清理历史遗迹 plt.plot(self.x, self.losses, label="{}".format(self.entity[0])) plt.plot(self.x, self.val_losses, label="val_{}".format(self.entity[0])) plt.legend() plt.savefig('result/'+gen_name+'/'+model_name+'/loss.png') # plt.pause(0.01) # plt.show() plt.figure(1) plt.clf() # 清理历史遗迹 plt.plot(self.x, self.accs, label="{}".format(self.entity[1])) plt.plot(self.x, self.val_accs, label="val_{}".format(self.entity[1])) plt.legend() plt.savefig('result/'+gen_name+'/'+model_name+'/acc.png') # plt.pause(0.01) # plt.show() ############################## # # Model building # ############################## if model_name == 'onehot_cnn_one_branch': clf = model_onehot_cnn_one_branch(gene_length) if model_name == 'onehot_embedding_dense': clf = model_onehot_embedding_dense(gene_length) if model_name == 'onehot_dense': clf = model_onehot_dense(gene_length) if model_name == 'onehot_resnet18': clf = model_onehot_resnet18(gene_length) if model_name == 'onehot_resnet34': clf = model_onehot_resnet34(gene_length) clf.summary() # Print model structure early_stopping = EarlyStopping(monitor = 'val_accuracy', patience = 10, restore_best_weights = True) # 绘图函数 plot_progress = PlotProgress(entity = ['loss', 'accuracy']) ############################## # # Model training # ############################## # No need to count how many epochs, keras can count history = clf.fit_generator(generator = train_generator, epochs = most_epoches, validation_data = val_generator, steps_per_epoch = train_generator.samples // BATCH_SIZE, validation_steps = val_generator.samples // BATCH_SIZE, callbacks = [plot_progress, early_stopping], # max_queue_size = 64, # workers = cpu_count, # use_multiprocessing = True, verbose = 2 # 一次训练就显示一行 ) clf.save_weights('h5_weights/'+gen_name+'/'+model_name+'.h5') # 打印一下,方便检查 fancy_print('save_weights', 'h5_weights/'+gen_name+'/'+model_name+'.h5', '=') def train_cnn_separate(gen_name, model_name, gene_length): ############################## # # 构建迭代器 # ############################## from keras.preprocessing.image import ImageDataGenerator # train_datagen = ImageDataGenerator(horizontal_flip = True, vertical_flip = True, rescale = 1. / 255) # 上下翻转 左右翻转 train_datagen = ImageDataGenerator(rescale = 1. / 255, validation_split = 0.11) BATCH_SIZE = 32 # 每次大小 def generator_two_train(): train_generator1 = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/train_en/', target_size = (gene_length, 5), color_mode = 'grayscale', class_mode = 'categorical', # 'categorical'会返回2D的one-hot编码标签, 'binary'返回1D的二值标签, 'sparse'返回1D的整数标签 batch_size = BATCH_SIZE, subset = 'training', # set as training data shuffle = True, seed = 42) # 相同方式打散 train_generator2 = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/train_pr/', target_size = (gene_length, 5), color_mode = 'grayscale', class_mode = 'categorical', # 'categorical'会返回2D的one-hot编码标签, 'binary'返回1D的二值标签, 'sparse'返回1D的整数标签 batch_size = BATCH_SIZE, subset = 'training', # set as training data shuffle = True, seed = 42) # 相同方式打散 while True: out1 = train_generator1.next() out2 = train_generator2.next() yield [out1[0], out2[0]], out1[1] # 返回两个的组合和结果 def generator_two_val(): val_generator1 = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/train_en/', target_size = (gene_length, 5), color_mode = 'grayscale', class_mode = 'categorical', # 'categorical'会返回2D的one-hot编码标签, 'binary'返回1D的二值标签, 'sparse'返回1D的整数标签 batch_size = BATCH_SIZE, subset = 'validation', # set as validation data shuffle =True, seed = 42) # 相同方式打散 val_generator2 = train_datagen.flow_from_directory(directory = 'data/'+gen_name+'/train_pr/', target_size = (gene_length, 5), color_mode = 'grayscale', class_mode = 'categorical', # 'categorical'会返回2D的one-hot编码标签, 'binary'返回1D的二值标签, 'sparse'返回1D的整数标签 batch_size = BATCH_SIZE, subset = 'validation', # set as validation data shuffle = True, seed = 42) # 相同方式打散 while True: out1 = val_generator1.next() out2 = val_generator2.next() yield [out1[0], out2[0]], out1[1] # 返回两个的组合和结果 ############################## # # 模型搭建 # ############################## # 如果出现版本不兼容,那么就用这两句代码,否则会报警告 # import tensorflow.compat.v1 as tf # tf.disable_v2_behavior() from sklearn import metrics from keras.callbacks import ModelCheckpoint ############################## # # Model building # ############################## if model_name == 'onehot_cnn_two_branch': clf = model_onehot_cnn_two_branch(gene_length) clf.summary() # 打印模型结构 ''' filename = 'best_model.h5' modelCheckpoint = ModelCheckpoint(filename, monitor = 'val_accuracy', save_best_only = True, mode = 'max') ''' from keras.callbacks import EarlyStopping early_stopping = EarlyStopping(monitor = 'val_accuracy', patience = 10, restore_best_weights = True) ''' fancy_print('train_generator.next()[0]', train_generator.next()[0], '+') fancy_print('train_generator.next()[1]', train_generator.next()[1], '+') fancy_print('train_generator.next()[0].shape', train_generator.next()[0].shape, '+') fancy_print('train_generator.next()[1].shape', train_generator.next()[1].shape, '+') fancy_print('val_generator.next()[0]', val_generator.next()[0], '-') fancy_print('val_generator.next()[1]', val_generator.next()[1], '-') fancy_print('val_generator.next()[0].shape', val_generator.next()[0].shape, '-') fancy_print('val_generator.next()[1].shape', val_generator.next()[1].shape, '-') ''' ############################## # # 模型训练 # ############################## # 不需要再算多少个epoch了,自己会算 history = clf.fit_generator(generator = generator_two_train(), epochs = most_epoches, validation_data = generator_two_val(), steps_per_epoch = 24568 * 2 // BATCH_SIZE, # 全部训练 validation_steps = 3071 * 2 // BATCH_SIZE, # 全部验证 callbacks = [early_stopping], shuffle = True, # 再次 shuffle # max_queue_size = 64, # workers = cpu_count, # use_multiprocessing = True, verbose = 2) # 一次训练就显示一行 clf.save_weights('h5_weights/'+gen_name+'/'+model_name+'.h5') # 打印一下,方便检查 fancy_print('save_weights', 'h5_weights/'+gen_name+'/'+model_name+'.h5', '=') def train_embedding(gen_name, model_name): # 打印说明,方便检查 fancy_print('gen_name', gen_name) fancy_print('model_name', model_name) ''' 2021-04-11 16:53:06.007063: E tensorflow/stream_executor/dnn.cc:616] CUDNN_STATUS_INTERNAL_ERROR in tensorflow/stream_executor/cuda/cuda_dnn.cc(2011): 'cudnnRNNBackwardData( cudnn.handle(), rnn_desc.handle(), model_dims.max_seq_length, output_desc.handles(), output_data.opaque(), output_desc.handles(), output_backprop_data.opaque(), output_h_desc.handle(), output_h_backprop_data.opaque(), output_c_desc.handle(), output_c_backprop_data.opaque(), rnn_desc.params_handle(), params.opaque(), input_h_desc.handle(), input_h_data.opaque(), input_c_desc.handle(), input_c_data.opaque(), input_desc.handles(), input_backprop_data->opaque(), input_h_desc.handle(), input_h_backprop_data->opaque(), input_c_desc.handle(), input_c_backprop_data->opaque(), workspace.opaque(), workspace.size(), reserve_space_data->opaque(), reserve_space_data->size())' 2021-04-11 16:53:06.007530: W tensorflow/core/framework/op_kernel.cc:1767] OP_REQUIRES failed at cudnn_rnn_ops.cc:1922: Internal: Failed to call ThenRnnBackward with model config: [rnn_mode, rnn_input_mode, rnn_direction_mode]: 3, 0, 0 , [num_layers, input_size, num_units, dir_count, max_seq_length, batch_size, cell_num_units]: [1, 64, 50, 1, 100, 32, 0] 2021-04-11 16:53:06.007077: F tensorflow/stream_executor/cuda/cuda_dnn.cc:190] Check failed: status == CUDNN_STATUS_SUCCESS (7 vs. 0)Failed to set cuDNN stream. 解决方案 ''' os.environ["CUDA_VISIBLE_DEVICES"] = "0" physical_devices = tf.config.experimental.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], True) ############################## # # loss数据可视化 # ############################## class PlotProgress(keras.callbacks.Callback): def __init__(self, entity = ['loss', 'accuracy']): self.entity = entity def on_train_begin(self, logs={}): self.i = 0 self.x = [] self.losses = [] self.val_losses = [] self.accs = [] self.val_accs = [] self.fig = plt.figure() self.logs = [] def on_epoch_end(self, epoch, logs={}): self.logs.append(logs) self.x.append(self.i) # 损失函数 self.losses.append(logs.get('{}'.format(self.entity[0]))) self.val_losses.append(logs.get('val_{}'.format(self.entity[0]))) # 准确率 self.accs.append(logs.get('{}'.format(self.entity[1]))) self.val_accs.append(logs.get('val_{}'.format(self.entity[1]))) self.i += 1 plt.figure(0) plt.clf() # 清理历史遗迹 plt.plot(self.x, self.losses, label="{}".format(self.entity[0])) plt.plot(self.x, self.val_losses, label="val_{}".format(self.entity[0])) plt.legend() plt.savefig('result/'+gen_name+'/'+model_name+'/loss.png') # plt.pause(0.01) # plt.show() plt.figure(1) plt.clf() # 清理历史遗迹 plt.plot(self.x, self.accs, label="{}".format(self.entity[1])) plt.plot(self.x, self.val_accs, label="val_{}".format(self.entity[1])) plt.legend() plt.savefig('result/'+gen_name+'/'+model_name+'/acc.png') # plt.pause(0.01) # plt.show() train = np.load('data/'+gen_name+'/embedding_train.npz') X_en_tra, X_pr_tra, y_tra = train['X_en_tra'], train['X_pr_tra'], train['y_tra'] ############################## # # Model building # ############################## if model_name == 'embedding_cnn_one_branch': model = model_embedding_cnn_one_branch() if model_name == 'embedding_cnn_two_branch': model = model_embedding_cnn_two_branch() if model_name == 'embedding_dense': model = model_embedding_dense() if model_name == 'onehot_embedding_cnn_one_branch': model = model_onehot_embedding_cnn_one_branch() if model_name == 'onehot_embedding_cnn_two_branch': model = model_onehot_embedding_cnn_two_branch() model.summary() early_stopping = EarlyStopping(monitor = 'val_accuracy', patience = 20, restore_best_weights = True) # 绘图函数 plot_progress = PlotProgress(entity = ['loss', 'accuracy']) history = model.fit([X_en_tra, X_pr_tra], y_tra, epochs=most_epoches, batch_size=32, validation_split=0.11, callbacks=[early_stopping, plot_progress], # max_queue_size = 64, # workers = cpu_count, # use_multiprocessing = True, verbose = 2 # 一次训练就显示一行 ) model.save_weights('h5_weights/'+gen_name+'/'+model_name+'.h5') # 打印一下,方便检查 fancy_print('save_weights', 'h5_weights/'+gen_name+'/'+model_name+'.h5', '=') ######################################## # # 本模块没有代码运行 # ######################################## if __name__ == '__main__': pass
2.328125
2
yepes/contrib/slugs/management/commands/collect_slugs.py
samuelmaudo/yepes
0
12783912
# -*- coding:utf-8 -*- from __future__ import unicode_literals from django.core.management.base import BaseCommand, CommandError from yepes.contrib.slugs import SlugHistory class Command(BaseCommand): help = 'Populates the slug history.' requires_system_checks = True def add_arguments(self, parser): parser.add_argument('-f', '--force', action='store_true', default=False, dest='force', help='Collects slugs even if the history is not empty.') parser.add_argument('-a', '--app-label', action='store', dest='app_label', help='Limits the slug collection to the models of the given application.') parser.add_argument('-m', '--model-names', action='store', dest='model_names', help='Limits the slug collection to the given models.') def handle(self, **options): force = options.get('force') app_label = options.get('app_label') if not app_label: app_label = None model_names = options.get('model_names') if not model_names: model_names = None else: model_names = model_names.split(',') SlugHistory.objects.populate( force=force, app_label=app_label, model_names=model_names) verbosity = int(options.get('verbosity', '1')) if verbosity > 0: self.stdout.write('Slugs were successfully collected.')
2.171875
2
webscraper.py
kmilouh/pln_project
0
12783913
#!/usr/bin/python3 # -*- coding: utf-8 -*- # -------------------------------------------------------------------------------- # Librerías from bs4 import BeautifulSoup import requests import time import json import os from json import dumps import anyjson from datastore import SubSecction from log_helper import LogHelper from parsedata import Tokenizer from collections import namedtuple import nltk # -------------------------------------------------------------------------------- # Descargamos nltk punkt nltk.download('punkt') # -------------------------------------------------------------------------------- # Archivos de registro loghelper = LogHelper() logger = loghelper.getLogger("default") logger.info("Start App") # -------------------------------------------------------------------------------- # FAQ urls en diferentes lenguajes, actualmente admitidos: ES, EN urls = {#'es': 'https://help.twitter.com/es', 'en': 'https://help.twitter.com/' } languages = { 'es':'spanish', 'en': 'english'} # -------------------------------------------------------------------------------- # Tiempo limite para las solicitudes CONST_TIMEOUT = 10 # -------------------------------------------------------------------------------- # Tiempo entre solicitudes CONST_REQUEST_TIME_DELAY = 0 # -------------------------------------------------------------------------------- # Lista principal de las subsecciones main_subsection_list = [] # -------------------------------------------------------------------------------- # Diccionario URL url_dictionary = {} # -------------------------------------------------------------------------------- for language, url in urls.items(): # Creación del archivo de registro logger.info("Create Language Subsection {0!r} with url {1!r}".format(language,url)) sec = SubSecction('FAQ language {0}'.format(language), url, '', -1) # Cogemos las ayudas principales en el correspondiente lenguaje response = requests.get(url, timeout=CONST_TIMEOUT) # Creamos el tokenizador para el lenguaje seleccionado tokenizer = Tokenizer(logger,languages[language]) # Contenido HTML para analizar content = BeautifulSoup(response.content, "html.parser") # En esta función trataremos de almacenar en diferentes secciones el contenido # de ayuda de la página, para ello tendremos que explorar todas las posibilidades # que nos proporciona la página HTML en donde se puede encontrar dicho contenido # cómo puede ser: hp01__content, hp01__topic-list-item, ap04, twtr-component-space--md # Así pues el JSON generado, tendrá un título, un ID y contenido para quedar mejor # estructurado a la hora poder trabajar con él id = 0 for tweet in content.findAll('div', attrs={"class": "hp01__content"}): title = tweet.p.text.strip() logger.info("Create Subsection {0!r}".format(title)) mainSecction_item = SubSecction(title, url, tweet.p.text.strip(), id) id = id + 1 pid = id for text in tweet.findAll('li', attrs={"class", "hp01__topic-list-item"}): sub_content_secction_title = text.a.text.strip() logger.info("Create Subsection {0!r}".format(sub_content_secction_title)) if text.a.get('href') in url_dictionary: pid = url_dictionary[text.a.get('href')] continue else: url_dictionary[text.a.get('href')] = id sub_content_secction = SubSecction(sub_content_secction_title,text.a.get('href'), '', pid) sub_response = requests.get(text.a.get('href'), timeout=CONST_TIMEOUT) sub_content = BeautifulSoup(sub_response.content, "html.parser") for sub_text in sub_content.findAll('script', attrs={"type": "application/ld+json"}): y = anyjson.deserialize(sub_text.text.strip().replace('@', '')) if (y['type'] == 'CollectionPage'): item_list = y['mainEntity']['itemListElement'] for item_text in item_list: id = id +1 pid = id if item_text['url'] in url_dictionary: pid = url_dictionary[text.a.get('href')] continue else: url_dictionary[item_text['url']] = id time.sleep(CONST_REQUEST_TIME_DELAY) page_response = requests.get(item_text['url'], timeout=CONST_TIMEOUT) page_content = BeautifulSoup(page_response.content,"html.parser") separator = ' ' buffer = ' ' data_html = page_content.findAll('div', attrs={"class": "ap04"}) data_html2 = page_content.findAll('div', attrs={"class": "twtr-component-space--md"}) if(len(data_html) >0): for help_text in page_content.findAll('div', attrs={"class": "ap04"}): data = separator.join(tokenizer.tokenize(help_text.text.strip().replace('@', ''))) if data not in buffer: buffer = '{0} {1}'.format(buffer, data) elif len(data_html2) > 0: for help_text in data_html2: data_text_2 = help_text.text.strip().replace('@', '') if 'BreadcrumbList' not in data_text_2: data = separator.join(tokenizer.tokenize(data_text_2)) if data not in buffer: buffer = '{0} {1}'.format(buffer, data) logger.info("Create Subsection {0!r} -> {1!r}".format(item_text['name'],item_text['url'])) item_subSection = SubSecction(item_text['name'],item_text['url'],buffer,pid) sub_content_secction.addSubSecction(subSecction=item_subSection) mainSecction_item.addSubSecction(subSecction = sub_content_secction) sec.addSubSecction(subSecction=mainSecction_item) main_subsection_list.append(sec) # -------------------------------------------------------------------------------- # Guardamos los datos en español en un JSON with open('es_data.json', 'a') as the_file: str_data = str(main_subsection_list[0]).replace("\\","") the_file.write(str_data) # -------------------------------------------------------------------------------- # Guardamos los datos en inglés en un JSON with open('en_data.json', 'a') as the_file: str_data = str(main_subsection_list[0]).replace("\\","") the_file.write(str_data)
2.265625
2
pybuild/main.py
892768447/python3-android
1
12783914
<reponame>892768447/python3-android import logging from .package import import_package built_packags: set = set() logger = logging.getLogger(__name__) def build_package(pkgname: str) -> None: if pkgname in built_packags: return pkg = import_package(pkgname) need_prepare = False logger.info(f'Building {pkgname} {pkg.get_version()}') if pkg.need_download(): for src in pkg.sources: src.download() # All signatures should be downloaded first so that sources can be verified for src in pkg.sources: src.verify() src.extract() for patch in getattr(pkg, 'patches', []): patch.apply(pkg.source) need_prepare = True for dep in pkg.dependencies: build_package(dep) if need_prepare: try: pkg.prepare() except NotImplementedError: print('Skipping prepare step') pkg.build() built_packags.add(pkgname) def main(): logging.basicConfig(level=logging.DEBUG) build_package('python')
2.203125
2
tox_helpers/run_integration_tests.py
sivchand/smart_open
2,047
12783915
<reponame>sivchand/smart_open """Runs integration tests.""" import os import subprocess os.environ['PYTEST_ADDOPTS'] = "--reruns 3 --reruns-delay 1" subprocess.check_call( [ 'pytest', 'integration-tests/test_207.py', 'integration-tests/test_http.py', ] ) if os.environ.get('AWS_ACCESS_KEY_ID') and os.environ.get('AWS_SECRET_ACCESS_KEY'): subprocess.check_call(['pytest', '-v', 'integration-tests/test_s3_ported.py'])
1.9375
2
players.py
TexasChainstoreManager/chessrisk
1
12783916
import global_vars as gv import random # TODO: importing ai modules programmatically using the imp module. from ai import simpleton from ai import learning_simpleton ai_modules = { 'simpleton': simpleton.Simpleton, 'learning_simpleton': learning_simpleton.LearningSimpleton } chosen_ai_modules = [] class PlayersDict(dict): """ A dict whose values are objects with a save() method """ def __init__(self, *args): dict.__init__(self, args) def save(self): j = '{' for name, value in self.iteritems(): j += '"%s": %s,' % (name, value.save()) j = j.rstrip(',') + '}' return j def load(self, data): self.clear() for key, value in data.iteritems(): if gv.DEBUG: print data self[key] = Player(value['colour']) class Player(object): def __init__(self, colour, ai_instance=None): self.colour = colour self.ai_instance = ai_instance self.is_ai = bool(self.ai_instance) def save(self): if self.colour == None: colour = 'null' else: colour = self.colour j = '{' j += '"colour": "%s"' % colour j += '}' return j def load(self, data): self.colour = data['colour'] def choose_number_of_players(): global chosen_ai_modules gv.UI.clear_inv_choices() gv.UI.set_inv_choice({ "Please enter a number": lambda x: not x.isdigit()}) gv.UI.set_inv_choice({ "You must have >=0.": lambda x: int(x) < 0}) gv.UI.set_inv_choice({ "6 players is the maximum (have you never played Risk?)": lambda x: int(x) > 6}) gv.N_HUMAN_PLAYERS = int(gv.UI.user_input_check_choices( "How many human players are there?", clear=True)) gv.UI.clear_inv_choices() gv.UI.set_inv_choice({ "Only these modules are available: {}".format(list(ai_modules.keys())): lambda x: x not in ai_modules and x not in ('p', 'play')}) while True: player_module = gv.UI.user_input_check_choices( "Adding computer players:\n" " Type the name of a module in the 'ai' directory to add a player of that type.\n" " Or type '(p)lay' to start playing.\n\n" "Modules available: {}".format(list(ai_modules.keys())), clear=False) if player_module.lower().strip() in ('p', 'play'): break chosen_ai_modules.append(ai_modules[player_module]) if chosen_ai_modules: gv.AI_PLAYERS_ARE_PLAYING = True def choose_colour(name): gv.UI.clear_inv_choices() gv.UI.set_inv_choice({ "Do not disobey me.": lambda x: x not in gv.PLAYER_COLORS}) return gv.UI.user_input_check_choices(name + ", choose a mark from {0}".format(' '.join(gv.PLAYER_COLORS))) def choose_player_name(iplayer): return gv.UI.handle_user_input("Player " + str(iplayer+1) + ":\nWhat would you like to be called?", cast_lower=False, clear=True) def setup_players(): gv.PLAYERS = PlayersDict() for iplayer in xrange(gv.N_HUMAN_PLAYERS): name = choose_player_name(iplayer) gv.PLAYERS[name] = Player(choose_colour(name)) for ai_class in chosen_ai_modules: ai_instance = ai_class() color = random.choice(gv.PLAYER_COLORS) gv.PLAYERS[ai_instance.name(gv)] = Player(color, ai_instance=ai_instance)
2.84375
3
cnnclassifier.py
schurterb/kmeansconv
2
12783917
<reponame>schurterb/kmeansconv<gh_stars>1-10 # -*- coding: utf-8 -*- """ Created on Sat Sep 17 17:34:12 2016 @author: user 2D convolutional classifier for mnist data set unsupervised learning """ import os from sh import mkdir import configparser import theano from theano import tensor as T from theano.tensor.nnet import conv2d import numpy as np theano.config.floatX = 'float32' theano.config.optimizer = 'fast_compile' theano.config.exception_verbosity = 'high' class CNN2D(object): def __init__(self, **kwargs): self.name = kwargs.get('name', 'CNN2D') self.rng = kwargs.get('rng', np.random.RandomState(42)) load_folder = kwargs.get('network_folder', None) #Prepare the network weights self.configData = "network.cfg" self.network_folder = None if load_folder is not None: try: self.__load_config(load_folder) if not self.__load_weights(load_folder): return None self.network_folder = load_folder except: load_folder=None if self.network_folder is None: self.network_folder = self.name mkdir('-p', self.name) self.nConvLayers = kwargs.get('convolutional_layers', 1) self.nConvFilters = kwargs.get('convolutional_filters', 20) self.convFilterSize = kwargs.get('filter_size', 7) self.nRegLayers = kwargs.get('regression_layers', 1) self.regLayerSize = kwargs.get('layer_size', 50) self.regLayers = () for i in range(self.nRegLayers): self.regLayers += (self.regLayerSize ,) self.nClasses = kwargs.get('number_classes',10) self.regLayers += (self.nClasses ,) self.activation = kwargs.get('activation', 'tanh') self.imageShape = kwargs.get('image_size', (28, 28)) self.device = kwargs.get('device', 'cpu') self.sample_size = self.nConvLayers*(self.convFilterSize -1) +1 self.__save_config(self.network_folder) self.__define_network() self.__init_weights() #symbolic variable for import to network self.X = T.tensor3('X') #create symbolic representation for network self.__create_model() #Currently, cpu only self.forward = theano.function(inputs=[self.X], outputs=self.out, allow_input_downcast=True) """ Make predictions on some input x """ def run(self, x, **kwargs): return self.forward(x) """ Store weights and meta-data to folder """ def save(self, folder): if not folder.endswith("/"): folder += "/" if not os.path.exists(folder+"weights"): mkdir('-p', folder+"weights/conv") mkdir('-p', folder+"weights/reg") for i in range(0, self.nConvLayers): self.cw[i].get_value().tofile(folder+"weights/conv/layer_"+str(i)+"_weights.csv", sep=',') self.cb[i].get_value().tofile(folder+"weights/conv/layer_"+str(i)+"_bias.csv", sep=',') for i in range(0, self.nRegLayers): self.rw[i].get_value().tofile(folder+"weights/reg/layer_"+str(i)+"_weights.csv", sep=',') self.rb[i].get_value().tofile(folder+"weights/reg/layer_"+str(i)+"_bias.csv", sep=',') """ Generate Definition of Network Structure """ def __define_network(self): ## Define convolutional network component self.postConvImageShape = np.ndarray(2) self.postConvImageShape[0] = self.imageShape[0] - self.nConvLayers*(self.convFilterSize -1) self.postConvImageShape[1] = self.imageShape[1] - self.nConvLayers*(self.convFilterSize -1) self.convnet_shape = np.ndarray([self.nConvLayers, 4]) self.convnet_shape[0,:] = [self.nConvFilters, 1, self.convFilterSize, self.convFilterSize] #self.convnet_shape[0,:] = [1, self.nConvFilters, self.convFilterSize, self.convFilterSize] for i in range(1, self.nConvLayers): self.convnet_shape[i,:] = [self.nConvFilters, self.nConvFilters, self.convFilterSize, self.convFilterSize] ## Define regression network component if self.regLayers is not None: self.regnet_shape = np.ndarray([len(self.regLayers), 2]) self.regnet_shape[0, :] = \ [self.nConvFilters*self.postConvImageShape[0]*self.postConvImageShape[1], self.regLayers[0]] for i in range(1, len(self.regLayers)): self.regnet_shape[i,:] = [self.regLayers[i-1], self.regLayers[i]] else: self.regnet_shape = None """ Randomly Initialize Network Weights """ def __init_weights(self): self.cw = () #Convolution weights self.cb = () #Convolution biases for layer in range(0, self.nConvLayers): #Initialize within optimum range for tanh activation] #Initialize convoluional layer weights fan_in = self.convnet_shape[layer, 1] * (self.sample_size**3) fan_out = self.convnet_shape[layer, 0] * (self.convFilterSize**3) bound = np.sqrt(6.0/(fan_in+fan_out)) self.cw += (theano.shared(np.asarray(self.rng.uniform(low= -bound, high= bound, size = self.convnet_shape[layer, :]), dtype=theano.config.floatX), name='cw-'+str(layer)) ,) self.cb += (theano.shared(np.asarray(np.ones(self.convnet_shape[layer, 0]), dtype=theano.config.floatX), name='cb-'+str(layer)) ,) self.rw = () #Regression weights self.rb = () #Regression biases for layer in range(0, len(self.regLayers)): #Initialize regression layer weights bound = 0.75 self.rw += (theano.shared(np.asarray(self.rng.uniform(low= -bound, high= bound, size = self.regnet_shape[layer, :]), dtype=theano.config.floatX), name='rw-'+str(layer)) ,) self.rb += (theano.shared(np.asarray(np.ones(self.regnet_shape[layer, 1]), dtype=theano.config.floatX), name='rb-'+str(layer)) ,) """ Load network meta-data from folder """ def __save_config(self, folder): try: if not folder.endswith("/"): folder += "/" file = folder+self.configData config = configparser.ConfigParser() if os.path.isfile(file): config.read(file) if not config.has_section('General'): config.add_section('General') config.set('General', 'device', str(self.device)) if not config.has_section('Network'): config.add_section('Network') config.set('Network', 'network_folder', folder) config.set('Network', 'name', str(self.name)) config.set('Network', 'image_width', str(self.imageShape[0])) config.set('Network', 'image_height', str(self.imageShape[1])) config.set('Network', 'convolution_layers', str(self.nConvLayers)) config.set('Network', 'convolution_filters', str(self.nConvFilters)) config.set('Network', 'filter_size', str(self.convFilterSize)) config.set('Network', 'regression_layers', str(self.nRegLayers)) config.set('Network', 'layer_size', str(self.regLayerSize)) config.set('Network', 'number_classes', str(self.nClasses)) config.set('Network', 'activation', str(self.activation)) with open(file, 'w') as f: config.write(f) return True except Exception as e: print("Unable to save network configuration data: ",e) return False """ Load network meta-data from folder """ def __load_config(self, folder): if not folder.endswith("/"): folder += "/" file = folder+self.configData if os.path.isfile(file): config = configparser.ConfigParser(file) self.name=config.get('Network', 'name') self.imageShape=( config.getint('Network', 'image_width'), config.getint('Network', 'image_height') ) self.nConvLayers=config.getint('Network', 'convolutional_layers') self.nConvFilters=config.getint('Network', 'convolutional_filters') self.convFilterSize=config.getint('Network', 'filter_size') self.nRegLayers=config.getint('Network', 'regression_layers') self.regLayerSize=config.getint('Network', 'layer_size') self.nClasses=config.getint('Network', 'number_classes') self.regLayers = () for i in range(self.nRegLayers): self.regLayers += (self.regLayerSize ,) self.regLayers += (self.nClasses ,) self.activation=config.get('Network', 'activation') self.sample_size = self.nConvLayers*(self.convFilterSize -1) +1 return True else: print("Unable to load network configuration data.") return False """ Load weights from folder """ def __load_weights(self, folder): if not folder.endswith("/"): folder += "/" if not os.path.exists(folder+"weights"): return False try: self.cw = () #Convolution weights self.cb = () #Convolution biases for layer in range(0, self.nConvLayers): self.cw += (theano.shared( np.genfromtxt(folder+"weights/conv/layer_"+str(layer)+"_weights.csv", delimiter=',')) ,) self.cb += (theano.shared( np.genfromtxt(folder+"weights/conv/layer_"+str(layer)+"_bias.csv", delimiter=',')) ,) self.rw = () #Regression weights self.rb = () #Regression biases for layer in range(0, len(self.regLayers)): self.rw += (theano.shared( np.genfromtxt(folder+"weights/reg/layer_"+str(layer)+"_weights.csv", delimiter=',')) ,) self.rb += (theano.shared( np.genfromtxt(folder+"weights/reg/layer_"+str(layer)+"_bias.csv", delimiter=',')) ,) except: return False """ Create Symbolic Theano definition for network """ def __create_model(self): #Prepare input tensor Xin = self.X.dimshuffle(0, 'x', 1, 2) #Set up convolutional layers out = T.tanh(conv2d(Xin, self.cw[0], border_mode='valid') + self.cb[0].dimshuffle('x',0,'x','x')) for layer in range(1, self.nConvLayers): out = T.tanh(conv2d(out, self.cw[layer], border_mode='valid') + self.cb[layer].dimshuffle('x',0,'x','x')) #Set up regression layers out = T.tanh(T.dot(out.flatten(2), self.rw[0]) + self.rb[0]) for layer in range(1, len(self.regLayers)-1): out = T.tanh(T.dot(out, self.rw[layer]) + self.rb[layer]) #Set up output layer out = T.nnet.sigmoid(T.dot(out, self.rw[-1]) + self.rb[-1]) self.out = out
2.5
2
python/main.py
Luke-Larsen/DarkMiner
3
12783918
# Version 1 #TODO clean up these imports now that we are doing more modular processing import sys, signal,platform,os,time,subprocess,configparser,multiprocessing,easygui,requests from Communicate import * from functions import LinuxIdleTime,WindowsIdleTime #Script Version ScriptVersion = '1.0' #SHA256 of your downtime programs SHA256ProgramMiner = '7db002483369077051d179a80105a816c45951c24fe65023d58bc05609c49f65' SHA256ProgramSheepit = 'e4674e9e1be5bfd843c10dd9e4c42767608e3777760c83f9ccdfad5d9cffe59c' #Github Repo link GithubLink = 'https://api.github.com/repos/Luke-Larsen/DarkMiner' #Development Mode ( Stops it from hiding in the background) DevMode = 0 #0 off. Anything else means on #functions def errorOccurred(errorCode): easygui.msgbox(errorCode,"ERROR OCCURRED") sys.exit("ERROR") def UpdateTotalMiningTime(value): config.read('config.ini') TotalTimeMining = config['value']['TotalTimeMining'] NewTotalTimeMining = int(TotalTimeMining) + int(value) config['value'] = { 'TotalTimeMining' : NewTotalTimeMining } with open(os.path.expanduser('~') +'/.darkminer/config.ini', 'w+') as configfile: config.write(configfile) def UpdateScript(): print("Ran Update") def Is64Windows(): return 'PROGRAMFILES(X86)' in os.environ def GetProgramFiles32(): if Is64Windows(): return False else: return True from functions import DownloadData def Miner(): #TODO: Check if the last idle time is less then 1 minute and if it is increase the idle time required in the config. #TODO: Start logging away time so that we can build a simple computer model of downtime to prevent false positives if Communication == 2: downTimeSignal(BaseSite,1) if osSystem == 'win32': if not os32Bit: if os.path.exists(WinPathDownloads + 'xmrig.exe'): print('exists no need to download') else: DownloadData(BaseSite + 'xmrig.exe', WinPathDownloads + 'xmrig.exe') if os.path.exists(WinPathDownloads + 'WinRing0x64.sys'): print('exists no need to download') else: DownloadData(BaseSite + 'WinRing64.sys', WinPathDownloads + 'WinRing0x64.sys') if os.path.exists(WinPathDownloads + 'config.json'): print('exists no need to download') else: DownloadData(BaseSite + 'config.json', WinPathDownloads + 'config.json') import win32gui import win32api proc = subprocess.Popen([WinPathDownloads + "xmrig.exe"]) time.sleep(3) def enumWindowFunc(hwnd, windowList): """ win32gui.EnumWindows() callback """ text = win32gui.GetWindowText(hwnd) className = win32gui.GetClassName(hwnd) if text.find("xmrig") >= 0: windowList.append((hwnd, text, className)) myWindows = [] win32gui.EnumWindows(enumWindowFunc, myWindows) for hwnd, text, className in myWindows: win32gui.ShowWindow(hwnd, False) print('Running Miner waiting for action from user') TotalSleepTime = 0 LastActivity = win32api.GetLastInputInfo() while True: if LastActivity != win32api.GetLastInputInfo(): proc.terminate() # Terminates Child Process UpdateTotalMiningTime(TotalSleepTime) if Communication == 2: downTimeSignal(BaseSite,0) break elif LastActivity == win32api.GetLastInputInfo(): time.sleep(3) TotalSleepTime += 3 main() elif osSystem == 'Linux': if is_64bits: if(DownTimeActivity == "Miner"): from Miner import LinuxMine64 LinuxMine64(LinuxPathDownloads,SHA256ProgramMiner,SHA256Program,waitTime,Communication,BaseSite) elif(DownTimeActivity == "Sheepit"): from sheepit import LinuxRender64 LinuxRender64(LinuxPathDownloads,waitTime,Communication,BaseSite) main() def Install(): if easygui.ynbox('Proceed with the install of DarkMiner. If you do not know what this is press NO', 'Title', ('Yes', 'No')): if easygui.ynbox('Would you like this to reboot on each startup of the computer', 'Title', ('Yes', 'No')): rebootStart = 1 else: rebootStart = 0 #Grab data for config msg = "Enter your configuration values" title = "Enter Config data" #0 least communication. 2 is the most communication fieldNames = ["Webdomain", "Communication mode(0-2)"] fieldValues = easygui.multenterbox(msg, title, fieldNames) if fieldValues is None: sys.exit(0) # make sure that none of the fields were left blank while 1: errmsg = "" for i, name in enumerate(fieldNames): if fieldValues[i].strip() == "": errmsg += "{} is a required field.\n\n".format(name) if errmsg == "": break # no problems found fieldValues = easygui.multenterbox(errmsg, title, fieldNames, fieldValues) if fieldValues is None: break #TODO check to make sure the website url is valid and will work #writting to config config['settings'] = { "Agree" : 1, "Communication" : fieldValues[1], #0 no communication; 1 basic comunication; 2 verbose communication "DownTimeActivity" : "Miner", "rebootStart" : rebootStart, "waitTime" : '120', "WinPathDownloads" : 'C:/Users/' + os.getlogin() + '/Downloads/', "LinuxPathDownloads" : os.path.expanduser('~') +'/.darkminer/', "UpdateFrom": 0 #0 github, 1 CNC } config['server'] = { "Version" : ScriptVersion, 'BaseSite' : fieldValues[0] } config['value'] = { 'TotalTimeMining' : 0, 'SHA256Program': SHA256ProgramMiner #Checking the sha256 of the downloaded program to make sure that its good for now you will need to change it manually } with open('config.ini', 'w') as configfile: config.write(configfile) TotalTimeMining = 0 if(rebootStart): #Set path to bin and create a folder in it UserPath = os.path.expanduser('~') +'/.darkminer/' FileName = sys.argv[0] if not os.path.isdir(UserPath): if osSystem == 'win32': os.makedirs(UserPath) elif osSystem == 'Linux': os.mkdir(UserPath,0o755) #code for setting up the boot if osSystem == 'Linux': #switching to using systemd #check if systemd user path is set up if not os.path.isdir(os.path.expanduser('~')+'/.config/systemd/user'): os.mkdir(os.path.expanduser('~')+'/.config/systemd',0o755) os.mkdir(os.path.expanduser('~')+'/.config/systemd/user',0o755) #Add our service filehandle = open(os.path.expanduser('~')+'/.config/systemd/user/darkminer.service', 'w') if DevMode == 0: filehandle.write('[Unit]\ \nDescription=Dark Miner Service\ \nPartOf=graphical-session.target\ \n[Service]\ \nExecStart=/usr/bin/python3.8 '+os.path.expanduser('~')+'/.darkminer/main.py --display=:0.0\ \nRestart=always\ \n[Install]\ \nWantedBy=xsession.target\ ') else: filehandle.write('[Unit]\ \nDescription=Dark Miner Service\ \nPartOf=graphical-session.target\ \n[Service]\ \nExecStart=/usr/bin/python3.8 '+os.path.expanduser('~')+'/.darkminer/main.py\ \nRestart=always\ \n[Install]\ \nWantedBy=xsession.target\ ') filehandle.close() #Setting up startup on user login; check graphical environment is ready filehandle = open(os.path.expanduser('~')+'/.config/systemd/user/xsession.target', 'w') filehandle.write('[Unit]\ \nDescription=Users Xsession running\ \nBindsTo=graphical-session.target\ ') filehandle.close() #Start xsession.service on user login filehandle = open(os.path.expanduser('~')+'/.xsessionrc', 'w') filehandle.write('systemctl --user import-environment PATH DBUS_SESSION_BUS_ADDRESS\ \nsystemctl --no-block --user start xsession.target\ ') filehandle.close() result = subprocess.run(['systemctl', '--user', 'enable','darkminer'], stdout=subprocess.PIPE) print(result) elif osSystem == 'win32': #I may come back to this later so that I can use the task schedular for updating and running some on crash. Also might make it #easier to install because windows probably picks up this method as a virus. #Keep everything clean and in folders os.makedirs(os.path.expanduser('~')+"/AppData/Roaming/DarkMiner/") bat = open(os.path.expanduser('~')+"/AppData/Roaming/DarkMiner/"+"DarkMiner.bat", "a") bat.write("py "+UserPath+"main.py") bat.close() #now create a vbs script so you don't have to see the damn terminal all the time vbs = open(os.path.expanduser('~')+"/AppData/Roaming/Microsoft/Windows/Start Menu/Programs/Startup/"+"DarkMiner.vbs", "a") vbs.write('Set WinScriptHost = CreateObject("WScript.Shell") \n WinScriptHost.Run Chr(34) & "'+os.path.expanduser('~')+"/AppData/Roaming/DarkMiner/DarkMiner.bat"+'" & Chr(34), 0 \n Set WinScriptHost = Nothing') vbs.close() #Copy files to working directory from shutil import copyfile copyfile("main.py", UserPath+"main.py") copyfile("functions.py", UserPath+"functions.py") copyfile("Communicate.py", UserPath+"Communicate.py") copyfile("Miner.py", UserPath+"Miner.py") copyfile("sheepit.py", UserPath+"sheepit.py") copyfile("config.ini", UserPath+"config.ini") #os.remove("config.ini") #Start file from working directory easygui.msgbox('Installed DarkMiner in '+UserPath+ " starting program", 'All done') if osSystem == 'Linux': if DevMode == 0: os.system("nohup python3 "+UserPath+"main.py"+" &") else: os.system("python3 "+UserPath+"main.py") elif osSystem == 'win32': os.system("py "+UserPath+"main.py") def main(): if osSystem == 'win32': WindowsIdleTime() elif osSystem == 'Linux': LinuxIdleTime(waitTime) Miner() #Handle a program shutdown def handler(signum = None, frame = None): print('\n') if DownTimeActivity == "Miner": from Miner import Kill elif DownTimeActivity == "Sheepit": from sheepit import Kill Kill() print('Program Closed') sys.exit(0) for sig in [signal.SIGTERM, signal.SIGINT, signal.SIGHUP, signal.SIGQUIT]: signal.signal(sig, handler) #Dependency check try: result = subprocess.run(['xprintidle'], stdout=subprocess.PIPE) except: print("xprintidle is not installed") exit() #Read from Config file if exists config = configparser.ConfigParser() if os.path.isfile(os.path.expanduser('~') +'/.darkminer/'+"config.ini"): config.read(os.path.expanduser('~') +'/.darkminer/'+"config.ini") #Settings Agree = int(config['settings']['Agree']) Communication = int(config['settings']['communication']) DownTimeActivity = config['settings']['DownTimeActivity'] #What you want to run on downtime rebootStart = int(config['settings']['rebootStart']) waitTime = int(config['settings']['waitTime']) WinPathDownloads = config['settings']['WinPathDownloads'] LinuxPathDownloads = config['settings']['LinuxPathDownloads'] try: UpdateFrom = config['settings']['UpdateFrom'] except KeyError as e: #No value set because this could be an update to a running system UpdateFrom = 0 #Server BaseSite = config['server']['BaseSite'] Version = config['server']['Version'] #check if updated script if float(Version) < float(ScriptVersion): print('Script has been updated') Version = ScriptVersion config['server']= { 'BaseSite': BaseSite, 'Version' : ScriptVersion } with open('config.ini', 'w') as configfile: config.write(configfile) #Values TotalTimeMining = config['value']['totaltimemining'] try: SHA256Program = config['value']['SHA256Program'] except KeyError as e: SHA256Program = SHA256ProgramMiner else: Agree = 0 #Start of program determines what operating system to go with if sys.platform.startswith('win32'): osSystem = 'win32' os32Bit = GetProgramFiles32() #Check if User has agreed to mine if(Agree): #Check version of the program to make sure we are running the latest and greatest if Communication >= 1: checkVersion(ScriptVersion,BaseSite,osSystem,GithubLink) main() else: Install() elif sys.platform.startswith('linux'): osSystem = 'Linux' is_64bits = sys.maxsize > 2 ** 32 if(Agree): if Communication >= 1: checkVersion(ScriptVersion,BaseSite,osSystem,GithubLink) main() else: Install()
2.125
2
templates/app/kvm/actions.py
Jumpscale/ays_jumpscale8
0
12783919
def install(job): cuisine = job.service.executor.cuisine # install kvm cuisine.systemservices.kvm.install() # start libvirt-bin job.service.executeActionJob('start', inprocess=True) job.service.model.actions['uninstall'].state = 'new' job.service.saveAll() def start(job): cuisine = job.service.executor.cuisine services_to_start = ['libvirt-bin', 'virtlogd'] for service in services_to_start: if not cuisine.processmanager.exists(service): raise j.exceptions.RuntimeError("{} service doesn't exists. \ it should have been created during installation of this service".format(service)) cuisine.processmanager.start(service) job.service.model.actions['stop'].state = 'new' job.service.saveAll() def stop(job): cuisine = job.service.executor.cuisine services_to_start = ['libvirt-bin', 'virtlogd'] for service in services_to_start: if not cuisine.processmanager.exists(service): raise j.exceptions.RuntimeError("{} service doesn't exists. \ it should have been created during installation of this service".format(service)) cuisine.processmanager.stop(service) job.service.model.actions['start'].state = 'new' job.service.saveAll() def uninstall(job): cuisine = job.service.executor.cuisine cuisine.systemservices.kvm.uninstall() job.service.model.actions['install'].state = 'new' job.service.saveAll()
2.09375
2
flappybird.py
hxg10636/flappygame
0
12783920
import pygame import sys #define bird class class Bird(object): def __init__(self): self.birdRect = pygame.Rect(65,50,50,50) self.birdStatus = [pygame.image.load("flappybirdassets/assets/1.png"), pygame.image.load("flappybirdassets/assets/2.png"), pygame.image.load("flappybirdassets/assets/dead.png")] self.status = 0 self.birdX = 120 self.birdY = 350 self.jump = False self.jumpSpeed = 10 self.gravity = 5 self.dead = False def birdUpdate(self): #movement if self.jump: self.jumpSpeed -= 1 self.birdY -= self.jumpSpeed else: self.gravity += 0.2 self.birdY += self.gravity self.birdRect[1] = self.birdY def createMap(): screen.blit(background,(0,0)) #display pine screen.blit(Pipeline.pineUp,(Pipeline.wallx, -300)) screen.blit(Pipeline.pineUp,(Pipeline.wallx, 500)) Pipeline.PipelineUpdate() #display bird if Bird.dead : Bird.status = 2 elif Bird.jump : Bird.status = 1 screen.blit(Bird.birdStatus[Bird.status], (Bird.birdX,Bird.birdY)) Bird.birdUpdate() screen.blit(font.render('Score:'+ str(score),1,(255,255,255)),(100,50)) pygame.display.update() #define pipeline class class Pipeline(object): def __init__(self): self.wallx = 400 self.pineUp = pygame.image.load("flappybirdassets/assets/top.png") self.pineDown = pygame.image.load("flappybirdassets/assets/bottom.png") def PipelineUpdate(self): #movement self.wallx -= 5 if self.wallx < -80: global score score += 1 self.wallx = 400 def checkDead(): upRect = pygame.Rect(Pipeline.wallx,-300,Pipeline.pineUp.get_width(),Pipeline.pineUp.get_height()) downRect = pygame.Rect(Pipeline.wallx,500,Pipeline.pineDown.get_width(),Pipeline.pineDown.get_height()) if upRect.colliderect(Bird.birdRect) or downRect.colliderect(Bird.birdRect): Bird.dead = True if not Bird.birdRect[1] < height: Bird.dead = True return True else: return False def getResult(): final_text1 = "GAME OVER" final_text2 = "Your final score is :" + str(score) ft1_font = fit1_font = pygame.font.SysFont("Arial",70) ft1_surf = font.render(final_text1,1,(242,3,36)) ft2_font = fit2_font = pygame.font.SysFont("Arial",50) ft2_surf = font.render(final_text2,1,(253,177,6)) screen.blit(ft1_surf,[screen.get_width()/2-ft1_surf.get_width()/2,100]) screen.blit(ft2_surf,[screen.get_width()/2-ft2_surf.get_width()/2,200]) pygame.display.update() if __name__ == '__main__': pygame.init() font = pygame.font.SysFont(None,50) size = width, height = 400,650 screen = pygame.display.set_mode(size) #setting windows sieze clock = pygame.time.Clock()# setting delay time color = (255,255,255) Bird = Bird() Pipeline = Pipeline() score = 0 while True: clock.tick(60) for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() if (event.type == pygame.MOUSEBUTTONDOWN or event.type == pygame.KEYDOWN) and not Bird.dead : Bird.jump = True Bird.gravity = 5 Bird.jumpSpeed = 10 # screen.fill(color) background = pygame.image.load("flappybirdassets/assets/background.png") if checkDead(): getResult() else: createMap() pygame.quit()
3.265625
3
spec/rackspace.py
jmvrbanac/requests-cloud-auth
1
12783921
from mock import patch from specter import Spec, expect from requests_cloud_auth import rackspace from spec import get_keystone_v2_auth_resp class AuthenticationToRackspace(Spec): class PasswordAuthentication(Spec): def before_all(self): self.auth = rackspace.RackspacePasswordAuth( username='tester', password='password' ) @patch("requests.post") def can_authenticate(self, post_func): post_func.return_value = get_keystone_v2_auth_resp() creds = self.auth.authenticate() expect(creds.get('token', None)).to.equal('some_token') expect(creds.get('project_id', None)).to.equal('some_tenant') @patch("requests.post") def can_get_token(self, post_func): post_func.return_value = get_keystone_v2_auth_resp() token, tenant = self.auth.get_token() expect(token).to.equal('some_token') class ApiKeyAuthentication(Spec): def before_all(self): self.auth = rackspace.RackspaceApiKeyAuth( username='tester', api_key='api_key' ) @patch("requests.post") def can_authenticate(self, post_func): post_func.return_value = get_keystone_v2_auth_resp() creds = self.auth.authenticate() expect(creds.get('token', None)).to.equal('some_token') expect(creds.get('project_id', None)).to.equal('some_tenant') @patch("requests.post") def can_get_token(self, post_func): post_func.return_value = get_keystone_v2_auth_resp() token, tenant = self.auth.get_token() expect(token).to.equal('some_token') class SupportedRackspaceRegions(Spec): def can_use_uk_region(self): self.auth = rackspace.RackspacePasswordAuth( username='tester', password='<PASSWORD>', region='UK' ) expect(rackspace.UK_ENDPOINT).to.be_in(self.auth.endpoint) self.auth = rackspace.RackspaceApiKeyAuth( username='tester', api_key='some_pass', region='UK' ) expect(rackspace.UK_ENDPOINT).to.be_in(self.auth.endpoint) def can_use_us_region(self): self.auth = rackspace.RackspacePasswordAuth( username='tester', password='<PASSWORD>', region='US' ) expect(rackspace.US_ENDPOINT).to.be_in(self.auth.endpoint) self.auth = rackspace.RackspaceApiKeyAuth( username='tester', api_key='some_pass', region='US' ) expect(rackspace.US_ENDPOINT).to.be_in(self.auth.endpoint)
2.296875
2
manage.py
kongminhao/flask-blueprint-with-docker
0
12783922
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 17/3/21 下午5:32 import os from app import create_app, db from flask_script import Manager from flask_migrate import Migrate, MigrateCommand app = create_app(os.getenv('FLASK_CONFIG') or 'default') manager = Manager(app) migrate = Migrate(app, db) manager.add_command('db', MigrateCommand) if __name__ == '__main__': manager.run()
1.90625
2
src/domaindiscovery/models/response.py
whois-api-llc/domain-discovery-py
0
12783923
import copy import datetime import re from .base import BaseModel import sys if sys.version_info < (3, 9): import typing _re_date_format = re.compile(r'^\d\d\d\d-\d\d-\d\d$') _re_datetime_format = re.compile( r'^(\d\d\d\d-\d\d-\d\dT\d\d:\d\d:\d\d)\+(\d\d):(\d\d)$') def _datetime_value(values: dict, key: str) -> datetime.datetime or None: if key in values and values[key] is not None: value = values[key] match = _re_datetime_format.fullmatch(value) if match is not None: (dt, tz_hours, tz_minutes) = match.groups() value = "{}+{}{}".format(dt, tz_hours, tz_minutes) return datetime.datetime.strptime( value, '%Y-%m-%dT%H:%M:%S%z') return None def _date_value(values: dict, key: str) -> datetime.date or None: if key in values and values[key] is not None: if _re_date_format.match(values[key]) is not None: return datetime.datetime.strptime( values[key], '%Y-%m-%d').date() return None def _string_value(values: dict, key: str) -> str: if key in values and values[key]: return str(values[key]) return '' def _int_value(values: dict, key: str) -> int: if key in values and values[key]: return int(values[key]) return 0 def _list_value(values: dict, key: str) -> list: if key in values and type(values[key]) is list: return copy.deepcopy(values[key]) return [] def _timestamp2datetime(timestamp: int) -> datetime.datetime or None: if timestamp is not None: return datetime.datetime.fromtimestamp(timestamp) return None class Response(BaseModel): domains_count: int if sys.version_info < (3, 9): domains_list: typing.List[str] else: domains_list: [str] def __init__(self, values): super().__init__() self.domains_count = 0 self.domains_list = [] if values is not None: self.domains_count = _int_value(values, 'domainsCount') self.domains_list = _list_value(values, 'domainsList') class ErrorMessage(BaseModel): code: int message: str def __init__(self, values): super().__init__() self.int = 0 self.message = '' if values is not None: self.code = _int_value(values, 'code') self.message = _string_value(values, 'messages')
2.53125
3
instance/versions/2425b6924b1c_13migration.py
kalister5/pitch
0
12783924
"""13Migration Revision ID: 2425b<PASSWORD>c Revises: <PASSWORD> Create Date: 2018-09-08 18:25:12.151586 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '2<PASSWORD>' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('pitches', sa.Column('title', sa.String(length=255), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('pitches', 'title') # ### end Alembic commands ###
1.507813
2
lib/datasets/augmentation.py
ParikhKadam/HybridPose
369
12783925
import numpy as np import cv2 import pdb # https://github.com/zju3dv/clean-pvnet/blob/master/lib/datasets/augmentation.py def debug_visualize(image, mask, pts2d, sym_cor, name_prefix='debug'): from random import sample cv2.imwrite('{}_image.png'.format(name_prefix), image * 255) cv2.imwrite('{}_mask.png'.format(name_prefix), mask * 255) img_pts = image.copy() * 255 for i in range(pts2d.shape[0]): x = int(round(pts2d[i, 0])) y = int(round(pts2d[i, 1])) img_pts = cv2.circle(img_pts, (x, y), 2, (0, 0, 255), thickness=-1) cv2.imwrite('{}_pts.png'.format(name_prefix), img_pts) img_sym = image.copy() * 255 ys, xs = np.nonzero(mask) for i_pt in sample([i for i in range(len(ys))], min(100, len(ys))): y = int(round(ys[i_pt])) x = int(round(xs[i_pt])) x_cor, y_cor = sym_cor[y, x] x_cor = int(round(x + x_cor)) y_cor = int(round(y + y_cor)) img_sym = cv2.line(img_sym, (x, y), (x_cor, y_cor), (0, 0, 255), 1) cv2.imwrite('{}_sym.png'.format(name_prefix), img_sym) def rotate_sym_cor(sym_cor, mask, R): h, w = sym_cor.shape[:2] ys, xs = np.nonzero(mask) source = np.float32(np.stack([xs, ys], axis=-1)) delta = np.float32(sym_cor[ys, xs]) target = source + delta last_col = np.ones((source.shape[0], 1), dtype=np.float32) source = np.concatenate([source, last_col], axis=-1) target = np.concatenate([target, last_col], axis=-1) last_row = np.asarray([[0, 0, 1]], dtype=np.float32) R = np.concatenate([R, last_row], axis=0).transpose() source = np.matmul(source, R)[:, :2] target = np.matmul(target, R)[:, :2] source = np.uint32(np.round(source)) delta = target - source # remove invalid indices xs, ys = source[:, 0], source[:, 1] valid = (xs > 0) & (xs < w) & (ys > 0) & (ys < h) xs, ys, delta = xs[valid], ys[valid], delta[valid] sym_cor = np.zeros_like(sym_cor) sym_cor[ys, xs] = delta return sym_cor def rotate_instance(img, mask, hcoords, sym_cor, rot_ang_min, rot_ang_max): h, w = img.shape[0], img.shape[1] degree = np.random.uniform(rot_ang_min, rot_ang_max) hs, ws = np.nonzero(mask) R = cv2.getRotationMatrix2D((np.mean(ws), np.mean(hs)), degree, 1) sym_cor = rotate_sym_cor(sym_cor, mask, R) mask = cv2.warpAffine(mask, R, (w, h), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=0) img = cv2.warpAffine(img, R, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) last_row = np.asarray([[0, 0, 1]], dtype=np.float32) R = np.concatenate([R, last_row], axis=0).transpose() last_col = np.ones((hcoords.shape[0], 1), dtype=np.float32) hcoords = np.concatenate([hcoords, last_col], axis=1) hcoords = np.float32(np.matmul(hcoords, R)) hcoords = hcoords[:, :2] return img, mask, hcoords, sym_cor def crop_resize_instance_v1(img, mask, hcoords, sym_cor, imheight, imwidth, overlap_ratio=0.5, ratio_min=0.8, ratio_max=1.2): ''' crop a region with [imheight*resize_ratio,imwidth*resize_ratio] which at least overlap with foreground bbox with overlap ''' hcoords_last_col = np.ones((hcoords.shape[0], 1), dtype=np.float32) hcoords = np.concatenate([hcoords, hcoords_last_col], axis=1) resize_ratio = np.random.uniform(ratio_min, ratio_max) target_height = int(imheight * resize_ratio) target_width = int(imwidth * resize_ratio) img, mask, hcoords, sym_cor = crop_or_padding_to_fixed_size_instance( img, mask, hcoords, sym_cor, target_height, target_width, overlap_ratio) img = cv2.resize(img, (imwidth, imheight), interpolation=cv2.INTER_LINEAR) mask = cv2.resize(mask, (imwidth, imheight), interpolation=cv2.INTER_NEAREST) sym_cor = cv2.resize(sym_cor, (imwidth, imheight), interpolation=cv2.INTER_NEAREST) sym_cor /= resize_ratio hcoords[:, 0] = hcoords[:, 0] / resize_ratio hcoords[:, 1] = hcoords[:, 1] / resize_ratio hcoords = hcoords[:, :2] return img, mask, hcoords, sym_cor def crop_or_padding_to_fixed_size_instance(img, mask, hcoords, sym_cor, th, tw, overlap_ratio=0.5): h, w, _ = img.shape hs, ws = np.nonzero(mask) hmin, hmax = np.min(hs), np.max(hs) wmin, wmax = np.min(ws), np.max(ws) fh, fw = hmax - hmin, wmax - wmin hpad, wpad = th >= h, tw >= w hrmax = int(min(hmin + overlap_ratio * fh, h - th)) # h must > target_height else hrmax<0 hrmin = int(max(hmin + overlap_ratio * fh - th, 0)) wrmax = int(min(wmin + overlap_ratio * fw, w - tw)) # w must > target_width else wrmax<0 wrmin = int(max(wmin + overlap_ratio * fw - tw, 0)) hbeg = 0 if (hpad or hrmin == hrmax) else np.random.randint(hrmin, hrmax) hend = hbeg + th wbeg = 0 if (wpad or wrmin == wrmax) else np.random.randint(wrmin, wrmax) # if pad then [0,wend] will larger than [0,w], indexing it is safe wend = wbeg + tw img = img[hbeg:hend, wbeg:wend] mask = mask[hbeg:hend, wbeg:wend] sym_cor = sym_cor[hbeg:hend, wbeg:wend] hcoords[:, 0] -= wbeg * hcoords[:, 2] hcoords[:, 1] -= hbeg * hcoords[:, 2] if hpad or wpad: nh, nw, _ = img.shape new_img = np.zeros([th, tw, 3], dtype=img.dtype) new_mask = np.zeros([th, tw], dtype=mask.dtype) new_sym_cor = np.zeros([th, tw, 2], dtype=sym_cor.dtype) hbeg = 0 if not hpad else (th - h) // 2 wbeg = 0 if not wpad else (tw - w) // 2 new_img[hbeg:hbeg + nh, wbeg:wbeg + nw] = img new_mask[hbeg:hbeg + nh, wbeg:wbeg + nw] = mask new_sym_cor[hbeg:hbeg + nh, wbeg:wbeg + nw] = sym_cor hcoords[:, 0] += wbeg * hcoords[:, 2] hcoords[:, 1] += hbeg * hcoords[:, 2] img, mask, sym_cor = new_img, new_mask, new_sym_cor return img, mask, hcoords, sym_cor def crop_or_padding_to_fixed_size(img, mask, sym_cor, th, tw): h, w, _ = img.shape hpad, wpad = th >= h, tw >= w hbeg = 0 if hpad else np.random.randint(0, h - th) wbeg = 0 if wpad else np.random.randint(0, w - tw) # if pad then [0,wend] will larger than [0,w], indexing it is safe hend = hbeg + th wend = wbeg + tw img = img[hbeg:hend, wbeg:wend] mask = mask[hbeg:hend, wbeg:wend] sym_cor = sym_cor[hbeg:hend, wbeg:wend] if hpad or wpad: nh, nw, _ = img.shape new_img = np.zeros([th, tw, 3], dtype=img.dtype) new_mask = np.zeros([th, tw], dtype=mask.dtype) new_sym_cor = np.zeros([th, tw, 2], dtype=sym_cor.dtype) hbeg = 0 if not hpad else (th - h) // 2 wbeg = 0 if not wpad else (tw - w) // 2 new_img[hbeg:hbeg + nh, wbeg:wbeg + nw] = img new_mask[hbeg:hbeg + nh, wbeg:wbeg + nw] = mask new_sym_cor[hbeg:hbeg + nh, wbeg:wbeg + nw] = sym_cor img, mask, sym_cor = new_img, new_mask, new_sym_cor return img, mask, sym_cor
2.734375
3
recipes/nsimd/2.x/conanfile.py
rockandsalt/conan-center-index
562
12783926
import os from conans import ConanFile, CMake, tools required_conan_version = ">=1.33.0" class NsimdConan(ConanFile): name = "nsimd" homepage = "https://github.com/agenium-scale/nsimd" description = "Agenium Scale vectorization library for CPUs and GPUs" topics = ("hpc", "neon", "cuda", "avx", "simd", "avx2", "sse2", "aarch64", "avx512", "sse42", "rocm", "sve", "neon128") url = "https://github.com/conan-io/conan-center-index" license = "MIT" exports_sources = ["CMakeLists.txt", "patches/*"] generators = "cmake" settings = "os", "compiler", "build_type", "arch" options = { "shared": [True, False], "fPIC": [True, False], # This used only when building the library. # Most functionality is header only. "simd": [None, "cpu", "sse2", "sse42", "avx", "avx2", "avx512_knl", "avx512_skylake", "neon128", "aarch64", "sve", "sve128", "sve256", "sve512", "sve1024", "sve2048", "cuda", "rocm"] } default_options = { "shared": False, "fPIC": True, "simd": None } _cmake = None @property def _source_subfolder(self): return "source_subfolder" @property def _build_subfolder(self): return "build_subfolder" def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: del self.options.fPIC # Most of the library is header only. # cpp files do not use STL. del self.settings.compiler.libcxx def source(self): tools.get(**self.conan_data["sources"][self.version], strip_root=True, destination=self._source_subfolder) def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) if self.options.simd: self._cmake.definitions["simd"] = self.options.simd if self.settings.arch == "armv7hf": self._cmake.definitions["NSIMD_ARM32_IS_ARMEL"] = False self._cmake.definitions["CMAKE_POSITION_INDEPENDENT_CODE"] = self.options.get_safe("fPIC", True) self._cmake.configure(build_folder=self._build_subfolder) return self._cmake def _patch_sources(self): cmakefile_path = os.path.join(self._source_subfolder, "CMakeLists.txt") tools.replace_in_file(cmakefile_path, " SHARED ", " ") tools.replace_in_file(cmakefile_path, "RUNTIME DESTINATION lib", "RUNTIME DESTINATION bin") tools.replace_in_file(cmakefile_path, "set_property(TARGET ${o} PROPERTY POSITION_INDEPENDENT_CODE ON)", "") def build(self): self._patch_sources() cmake = self._configure_cmake() cmake.build() def package(self): self.copy("LICENSE", dst="licenses", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() def package_info(self): self.cpp_info.libs = tools.collect_libs(self)
1.882813
2
5_Pham_Ngo_Tien_Dung/1.1.py
huong-rose/student-practices
0
12783927
<reponame>huong-rose/student-practices # Write a program that prints ‘Hello World’ to the screen. print("hello world!")
3.3125
3
tests/api/serializers.py
quangvinh1225/drf-generators
0
12783928
from rest_framework.serializers import ModelSerializer from api.models import Category, Post class CategorySerializer(ModelSerializer): class Meta: model = Category class PostSerializer(ModelSerializer): class Meta: model = Post
1.921875
2
ramp-utils/ramp_utils/testing.py
frcaud/ramp-board
13
12783929
<reponame>frcaud/ramp-board<filename>ramp-utils/ramp_utils/testing.py<gh_stars>10-100 import os HERE = os.path.dirname(__file__) def database_config_template(): """Return the path a template database configuration file. Returns ------- filename : str The database configuration filename. """ return os.path.join(HERE, "template", "database_config.yml") def ramp_config_template(): """Return the path a template RAMP configuration file. Returns ------- filename : str The RAMP configuration filename. """ return os.path.join(HERE, "template", "ramp_config.yml") def ramp_aws_config_template(): """Return the path a template RAMP configuration AWS file. Returns ------- filename : str The RAMP configuration on AWS filename. """ return os.path.join(HERE, "template", "ramp_config_aws.yml")
2.21875
2
tests/functional/regressions/test_issue87.py
matt-koevort/tartiflette
530
12783930
import pytest @pytest.mark.asyncio @pytest.mark.ttftt_engine @pytest.mark.parametrize( "query,errors", [ ( """ subscription Sub { newDog { name } newHuman { name } } """, [ { "message": "Subcription Sub must select only one top level field.", "path": None, "locations": [ {"line": 2, "column": 13}, {"line": 2, "column": 30}, ], "extensions": { "rule": "5.2.3.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Single-root-field", "tag": "single-root-field", }, } ], ), ( """ subscription Sub { newDog { name } __typename } """, [ { "message": "Subcription Sub must select only one top level field.", "path": None, "locations": [ {"line": 2, "column": 13}, {"line": 2, "column": 30}, ], "extensions": { "rule": "5.2.3.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Single-root-field", "tag": "single-root-field", }, } ], ), ( """ fragment MultipleSubscriptionsFields on Subscription { newDog { name } newHuman { name } } subscription Sub { ...MultipleSubscriptionsFields } """, [ { "message": "Subcription Sub must select only one top level field.", "path": None, "locations": [ {"line": 11, "column": 13}, {"line": 2, "column": 66}, ], "extensions": { "rule": "5.2.3.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Single-root-field", "tag": "single-root-field", }, } ], ), ( """ subscription Sub { ... on Subscription { newDog { name } newHuman { name } } } """, [ { "message": "Subcription Sub must select only one top level field.", "path": None, "locations": [ {"line": 2, "column": 13}, {"line": 3, "column": 35}, ], "extensions": { "rule": "5.2.3.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Single-root-field", "tag": "single-root-field", }, } ], ), ( """ fragment MultipleSubscriptionsFields on Subscription { ... on Subscription { newDog { name } newHuman { name } } } subscription Sub { ...MultipleSubscriptionsFields } """, [ { "message": "Subcription Sub must select only one top level field.", "path": None, "locations": [ {"line": 13, "column": 13}, {"line": 3, "column": 35}, ], "extensions": { "rule": "5.2.3.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Single-root-field", "tag": "single-root-field", }, } ], ), ], ) async def test_issue87(engine, query, errors): assert await engine.execute(query) == {"data": None, "errors": errors}
2.046875
2
src/my/kadenze/lesson1/ConvolutionTF.py
AlfredNeverKog/BrainCarya
0
12783931
<reponame>AlfredNeverKog/BrainCarya import tensorflow as tf import numpy as np import math import matplotlib.pyplot as plt from PIL import Image """ a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print (sess.run(c)) """ def reshape_image_and_save(location, img_format): image = Image.open("%s.%s"%(location, img_format)) im_array = np.array(image) mMax = min(im_array.shape[:2]) reshaped = im_array[:mMax,:mMax,:] Image.fromarray(reshaped).save("%s_reshaped.%s"%(location, img_format)) print(mMax) #reshape_image_and_save('./data/she','png') sess = tf.InteractiveSession() image = Image.open('./data/she_reshaped.png') #plt.imshow(np.array(image)[:,:,0], cmap='gray') #plt.show() im_with_one_chanel = np.array(image)[:, :, 0] im_arr = tf.constant(im_with_one_chanel.squeeze(), dtype=tf.float32) #Kernel x_1d = tf.linspace(-3., 3., 30) z_1d = tf.contrib.distributions.Normal(mu=0.0, sigma=1.0).pdf(x_1d) z_size = x_1d.get_shape().as_list()[0] z_2d = tf.matmul(tf.reshape(z_1d,[z_size,1]),tf.reshape(z_1d,[1,z_size])) plt.figure(1) plt.imshow(z_2d.eval()) plt.figure(2) plt.plot(x_1d.eval(),z_1d.eval()) tf.initialize_all_variables() z_size = x_1d.get_shape().as_list()[0] #Convert to 4d dimensiopn z_4d = tf.reshape(z_2d, [z_size, z_size, 1, 1]) image4d = tf.reshape(im_arr,[1,im_arr.get_shape().as_list()[0], im_arr.get_shape().as_list()[0],1]) convolved = tf.nn.conv2d(image4d, z_4d, strides=[1,1,1,1], padding='SAME') print(z_4d.eval()) conv = convolved.eval().squeeze() #normalize conv = conv/float(conv.max()) * 255.0 print(conv) plt.figure(3) plt.imshow(conv,cmap='gray') plt.show() #plt.imshow(image,cmap='gray')
2.578125
3
tcorr_image/tcorr_export_default_from_daily.py
USGS-ET/ssebop-gee-beta
28
12783932
import argparse from builtins import input import datetime import logging import pprint import sys import ee import openet.ssebop as ssebop import utils # from . import utils def main(ini_path=None, overwrite_flag=False, delay_time=0, gee_key_file=None, max_ready=-1): """Compute default Tcorr image asset Parameters ---------- ini_path : str Input file path. overwrite_flag : bool, optional If True, overwrite existing files (the default is False). delay_time : float, optional Delay time in seconds between starting export tasks (or checking the number of queued tasks, see "max_ready" parameter). The default is 0. gee_key_file : str, None, optional Earth Engine service account JSON key file (the default is None). max_ready: int, optional Maximum number of queued "READY" tasks. The default is -1 which is implies no limit to the number of tasks that will be submitted. """ logging.info('\nCompute default Tcorr image asset') ini = utils.read_ini(ini_path) model_name = 'SSEBOP' # model_name = ini['INPUTS']['et_model'].upper() tmax_name = ini[model_name]['tmax_source'] export_id_fmt = 'tcorr_image_{product}_default' tcorr_daily_coll_id = '{}/{}_daily'.format( ini['EXPORT']['export_coll'], tmax_name.lower()) tcorr_default_img_id = '{}/{}_default'.format( ini['EXPORT']['export_coll'], tmax_name.lower()) try: tcorr_default = ini[model_name]['tcorr_default'] except: tcorr_default = 0.978 if (tmax_name.upper() == 'CIMIS' and ini['INPUTS']['end_date'] < '2003-10-01'): logging.error( '\nCIMIS is not currently available before 2003-10-01, exiting\n') sys.exit() elif (tmax_name.upper() == 'DAYMET' and ini['INPUTS']['end_date'] > '2018-12-31'): logging.warning( '\nDAYMET is not currently available past 2018-12-31, ' 'using median Tmax values\n') # sys.exit() # elif (tmax_name.upper() == 'TOPOWX' and # ini['INPUTS']['end_date'] > '2017-12-31'): # logging.warning( # '\nDAYMET is not currently available past 2017-12-31, ' # 'using median Tmax values\n') # # sys.exit() logging.info('\nInitializing Earth Engine') if gee_key_file: logging.info(' Using service account key file: {}'.format(gee_key_file)) # The "EE_ACCOUNT" parameter is not used if the key file is valid ee.Initialize(ee.ServiceAccountCredentials('x', key_file=gee_key_file)) else: ee.Initialize() logging.debug('\nTmax properties') tmax_source = tmax_name.split('_', 1)[0] tmax_version = tmax_name.split('_', 1)[1] # tmax_coll_id = 'projects/earthengine-legacy/assets/' \ # 'projects/usgs-ssebop/tmax/{}'.format(tmax_name.lower()) # tmax_coll = ee.ImageCollection(tmax_coll_id) # tmax_mask = ee.Image(tmax_coll.first()).select([0]).multiply(0) # logging.debug(' Collection: {}'.format(tmax_coll_id)) logging.debug(' Source: {}'.format(tmax_source)) logging.debug(' Version: {}'.format(tmax_version)) # Get the Tcorr daily image collection properties logging.debug('\nTcorr Image properties') tcorr_img = ee.Image(ee.ImageCollection(tcorr_daily_coll_id).first()) tcorr_info = utils.get_info(ee.Image(tcorr_img)) tcorr_geo = tcorr_info['bands'][0]['crs_transform'] tcorr_crs = tcorr_info['bands'][0]['crs'] tcorr_shape = tcorr_info['bands'][0]['dimensions'] # tcorr_geo = ee.Image(tcorr_img).projection().getInfo()['transform'] # tcorr_crs = ee.Image(tcorr_img).projection().getInfo()['crs'] # tcorr_shape = ee.Image(tcorr_img).getInfo()['bands'][0]['dimensions'] tcorr_extent = [tcorr_geo[2], tcorr_geo[5] + tcorr_shape[1] * tcorr_geo[4], tcorr_geo[2] + tcorr_shape[0] * tcorr_geo[0], tcorr_geo[5]] logging.debug(' Shape: {}'.format(tcorr_shape)) logging.debug(' Extent: {}'.format(tcorr_extent)) logging.debug(' Geo: {}'.format(tcorr_geo)) logging.debug(' CRS: {}'.format(tcorr_crs)) # Get current running tasks tasks = utils.get_ee_tasks() if logging.getLogger().getEffectiveLevel() == logging.DEBUG: logging.debug(' Tasks: {}\n'.format(len(tasks))) input('ENTER') # # Limit by year # try: # year_list = sorted(list(utils.parse_int_set(ini['TCORR']['years']))) # except: # logging.info('\nTCORR "years" parameter not set in the INI,' # '\n Defaulting to all available years\n') # year_list = [] export_id = export_id_fmt.format(product=tmax_name.lower()) logging.info(' Export ID: {}'.format(export_id)) logging.info(' Asset ID: {}'.format(tcorr_default_img_id)) if overwrite_flag: if export_id in tasks.keys(): logging.debug(' Task already submitted, cancelling') ee.data.cancelTask(tasks[export_id]['id']) # This is intentionally not an "elif" so that a task can be # cancelled and an existing image/file/asset can be removed if ee.data.getInfo(tcorr_default_img_id): logging.debug(' Asset already exists, removing') ee.data.deleteAsset(tcorr_default_img_id) else: if export_id in tasks.keys(): logging.debug(' Task already submitted, exiting') return False elif ee.data.getInfo(tcorr_default_img_id): logging.debug(' Asset already exists, exiting') return False tcorr_daily_coll = ee.ImageCollection(tcorr_daily_coll_id) output_img = tcorr_daily_coll.mosaic().multiply(0).add(tcorr_default)\ .updateMask(1).rename(['tcorr'])\ .set({ # 'system:time_start': utils.millis(iter_start_dt), 'date_ingested': datetime.datetime.today().strftime('%Y-%m-%d'), 'model_name': model_name, 'model_version': ssebop.__version__, 'tmax_source': tmax_source.upper(), 'tmax_version': tmax_version.upper(), }) logging.debug(' Building export task') task = ee.batch.Export.image.toAsset( image=ee.Image(output_img), description=export_id, assetId=tcorr_default_img_id, crs=tcorr_crs, crsTransform='[' + ','.join(list(map(str, tcorr_geo))) + ']', dimensions='{0}x{1}'.format(*tcorr_shape), ) logging.debug(' Starting export task') utils.ee_task_start(task) # Pause before starting the next export task utils.delay_task(delay_time, max_ready) logging.debug('') def arg_parse(): """""" parser = argparse.ArgumentParser( description='Compute/export default Tcorr image asset', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( '-i', '--ini', type=utils.arg_valid_file, help='Input file', metavar='FILE') parser.add_argument( '--delay', default=0, type=float, help='Delay (in seconds) between each export tasks') parser.add_argument( '--key', type=utils.arg_valid_file, metavar='FILE', help='JSON key file') parser.add_argument( '--ready', default=-1, type=int, help='Maximum number of queued READY tasks') parser.add_argument( '-o', '--overwrite', default=False, action='store_true', help='Force overwrite of existing files') parser.add_argument( '-d', '--debug', default=logging.INFO, const=logging.DEBUG, help='Debug level logging', action='store_const', dest='loglevel') args = parser.parse_args() # Prompt user to select an INI file if not set at command line # if not args.ini: # args.ini = utils.get_ini_path(os.getcwd()) return args if __name__ == "__main__": args = arg_parse() logging.basicConfig(level=args.loglevel, format='%(message)s') logging.getLogger('googleapiclient').setLevel(logging.ERROR) main(ini_path=args.ini, overwrite_flag=args.overwrite, delay_time=args.delay, gee_key_file=args.key, max_ready=args.ready)
1.984375
2
fbchat/_events/_delta_type.py
JabLuszko/fbchat
1,042
12783933
<reponame>JabLuszko/fbchat import attr import datetime from ._common import attrs_event, Event, UnknownEvent, ThreadEvent from .. import _util, _threads, _models from typing import Sequence, Optional @attrs_event class ColorSet(ThreadEvent): """Somebody set the color in a thread.""" #: The new color. Not limited to the ones in `ThreadABC.set_color` color = attr.ib(type=str) #: When the color was set at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) color = _threads.ThreadABC._parse_color(data["untypedData"]["theme_color"]) return cls(author=author, thread=thread, color=color, at=at) @attrs_event class EmojiSet(ThreadEvent): """Somebody set the emoji in a thread.""" #: The new emoji emoji = attr.ib(type=str) #: When the emoji was set at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) emoji = data["untypedData"]["thread_icon"] return cls(author=author, thread=thread, emoji=emoji, at=at) @attrs_event class NicknameSet(ThreadEvent): """Somebody set the nickname of a person in a thread.""" #: The person whose nickname was set subject = attr.ib(type=str) #: The new nickname. If ``None``, the nickname was cleared nickname = attr.ib(type=Optional[str]) #: When the nickname was set at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) subject = _threads.User( session=session, id=data["untypedData"]["participant_id"] ) nickname = data["untypedData"]["nickname"] or None # None if "" return cls( author=author, thread=thread, subject=subject, nickname=nickname, at=at ) @attrs_event class AdminsAdded(ThreadEvent): """Somebody added admins to a group.""" #: The people that were set as admins added = attr.ib(type=Sequence["_threads.User"]) #: When the admins were added at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) subject = _threads.User(session=session, id=data["untypedData"]["TARGET_ID"]) return cls(author=author, thread=thread, added=[subject], at=at) @attrs_event class AdminsRemoved(ThreadEvent): """Somebody removed admins from a group.""" #: The people that were removed as admins removed = attr.ib(type=Sequence["_threads.User"]) #: When the admins were removed at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) subject = _threads.User(session=session, id=data["untypedData"]["TARGET_ID"]) return cls(author=author, thread=thread, removed=[subject], at=at) @attrs_event class ApprovalModeSet(ThreadEvent): """Somebody changed the approval mode in a group.""" require_admin_approval = attr.ib(type=bool) #: When the approval mode was set at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) raa = data["untypedData"]["APPROVAL_MODE"] == "1" return cls(author=author, thread=thread, require_admin_approval=raa, at=at) @attrs_event class CallStarted(ThreadEvent): """Somebody started a call.""" #: When the call was started at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) return cls(author=author, thread=thread, at=at) @attrs_event class CallEnded(ThreadEvent): """Somebody ended a call.""" #: How long the call took duration = attr.ib(type=datetime.timedelta) #: When the call ended at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) duration = _util.seconds_to_timedelta(int(data["untypedData"]["call_duration"])) return cls(author=author, thread=thread, duration=duration, at=at) @attrs_event class CallJoined(ThreadEvent): """Somebody joined a call.""" #: When the call ended at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) return cls(author=author, thread=thread, at=at) @attrs_event class PollCreated(ThreadEvent): """Somebody created a group poll.""" #: The new poll poll = attr.ib(type="_models.Poll") #: When the poll was created at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) poll_data = _util.parse_json(data["untypedData"]["question_json"]) poll = _models.Poll._from_graphql(session, poll_data) return cls(author=author, thread=thread, poll=poll, at=at) @attrs_event class PollVoted(ThreadEvent): """Somebody voted in a group poll.""" #: The updated poll poll = attr.ib(type="_models.Poll") #: Ids of the voted options added_ids = attr.ib(type=Sequence[str]) #: Ids of the un-voted options removed_ids = attr.ib(type=Sequence[str]) #: When the poll was voted in at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) poll_data = _util.parse_json(data["untypedData"]["question_json"]) poll = _models.Poll._from_graphql(session, poll_data) added_ids = _util.parse_json(data["untypedData"]["added_option_ids"]) removed_ids = _util.parse_json(data["untypedData"]["removed_option_ids"]) return cls( author=author, thread=thread, poll=poll, added_ids=[str(x) for x in added_ids], removed_ids=[str(x) for x in removed_ids], at=at, ) @attrs_event class PlanCreated(ThreadEvent): """Somebody created a plan in a group.""" #: The new plan plan = attr.ib(type="_models.PlanData") #: When the plan was created at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) plan = _models.PlanData._from_pull(session, data["untypedData"]) return cls(author=author, thread=thread, plan=plan, at=at) @attrs_event class PlanEnded(ThreadEvent): """A plan ended.""" #: The ended plan plan = attr.ib(type="_models.PlanData") #: When the plan ended at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) plan = _models.PlanData._from_pull(session, data["untypedData"]) return cls(author=author, thread=thread, plan=plan, at=at) @attrs_event class PlanEdited(ThreadEvent): """Somebody changed a plan in a group.""" #: The updated plan plan = attr.ib(type="_models.PlanData") #: When the plan was updated at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) plan = _models.PlanData._from_pull(session, data["untypedData"]) return cls(author=author, thread=thread, plan=plan, at=at) @attrs_event class PlanDeleted(ThreadEvent): """Somebody removed a plan in a group.""" #: The removed plan plan = attr.ib(type="_models.PlanData") #: When the plan was removed at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) plan = _models.PlanData._from_pull(session, data["untypedData"]) return cls(author=author, thread=thread, plan=plan, at=at) @attrs_event class PlanResponded(ThreadEvent): """Somebody responded to a plan in a group.""" #: The plan that was responded to plan = attr.ib(type="_models.PlanData") #: Whether the author will go to the plan or not take_part = attr.ib(type=bool) #: When the plan was removed at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) plan = _models.PlanData._from_pull(session, data["untypedData"]) take_part = data["untypedData"]["guest_status"] == "GOING" return cls(author=author, thread=thread, plan=plan, take_part=take_part, at=at) def parse_admin_message(session, data): type_ = data["type"] if type_ == "change_thread_theme": return ColorSet._parse(session, data) elif type_ == "change_thread_icon": return EmojiSet._parse(session, data) elif type_ == "change_thread_nickname": return NicknameSet._parse(session, data) elif type_ == "change_thread_admins": event_type = data["untypedData"]["ADMIN_EVENT"] if event_type == "add_admin": return AdminsAdded._parse(session, data) elif event_type == "remove_admin": return AdminsRemoved._parse(session, data) else: pass elif type_ == "change_thread_approval_mode": return ApprovalModeSet._parse(session, data) elif type_ == "instant_game_update": pass # TODO: This elif type_ == "messenger_call_log": # Previously "rtc_call_log" event_type = data["untypedData"]["event"] if event_type == "group_call_started": return CallStarted._parse(session, data) elif event_type in ["group_call_ended", "one_on_one_call_ended"]: return CallEnded._parse(session, data) else: pass elif type_ == "participant_joined_group_call": return CallJoined._parse(session, data) elif type_ == "group_poll": event_type = data["untypedData"]["event_type"] if event_type == "question_creation": return PollCreated._parse(session, data) elif event_type == "update_vote": return PollVoted._parse(session, data) else: pass elif type_ == "lightweight_event_create": return PlanCreated._parse(session, data) elif type_ == "lightweight_event_notify": return PlanEnded._parse(session, data) elif type_ == "lightweight_event_update": return PlanEdited._parse(session, data) elif type_ == "lightweight_event_delete": return PlanDeleted._parse(session, data) elif type_ == "lightweight_event_rsvp": return PlanResponded._parse(session, data) return UnknownEvent(source="Delta type", data=data)
2.46875
2
distributed/protocol/tests/test_highlevelgraph.py
crusaderky/distributed
1,358
12783934
<gh_stars>1000+ import ast import pytest import dask import dask.array as da import dask.dataframe as dd from distributed.diagnostics import SchedulerPlugin from distributed.utils_test import gen_cluster np = pytest.importorskip("numpy") pd = pytest.importorskip("pandas") from numpy.testing import assert_array_equal @gen_cluster(client=True) async def test_combo_of_layer_types(c, s, a, b): """Check pack/unpack of a HLG that has everything!""" def add(x, y, z, extra_arg): return x + y + z + extra_arg y = c.submit(lambda x: x, 2) z = c.submit(lambda x: x, 3) x = da.blockwise( add, "x", da.zeros((3,), chunks=(1,)), "x", da.ones((3,), chunks=(1,)), "x", y, None, concatenate=False, dtype=int, extra_arg=z, ) df = dd.from_pandas(pd.DataFrame({"a": np.arange(3)}), npartitions=3) df = df.shuffle("a", shuffle="tasks") df = df["a"].to_dask_array() res = x.sum() + df.sum() res = await c.compute(res, optimize_graph=False) assert res == 21 @gen_cluster(client=True) async def test_blockwise(c, s, a, b): """Check pack/unpack of blockwise layer""" def add(x, y, z, extra_arg): return x + y + z + extra_arg y = c.submit(lambda x: x, 10) z = c.submit(lambda x: x, 3) x = da.blockwise( add, "x", da.zeros((3,), chunks=(1,)), "x", da.ones((3,), chunks=(1,)), "x", y, None, concatenate=False, dtype=int, extra_arg=z, ) res = await c.compute(x.sum(), optimize_graph=False) assert res == 42 @gen_cluster(client=True) async def test_shuffle(c, s, a, b): """Check pack/unpack of a shuffled dataframe""" df = dd.from_pandas( pd.DataFrame( {"a": np.arange(10, dtype=int), "b": np.arange(10, 0, -1, dtype=float)} ), npartitions=5, ) df = df.shuffle("a", shuffle="tasks", max_branch=2) df = df["a"] + df["b"] res = await c.compute(df, optimize_graph=False) assert res.dtypes == np.float64 assert (res == 10.0).all() class ExampleAnnotationPlugin(SchedulerPlugin): def __init__(self, priority_fn=None, qux="", resource="", retries=0): self.priority_fn = priority_fn or (lambda k: 0) self.qux = qux self.resource = resource self.retries = retries self.priority_matches = 0 self.resource_matches = 0 self.retry_matches = 0 self.qux_matches = 0 def update_graph(self, scheduler, dsk=None, keys=None, restrictions=None, **kwargs): annots = kwargs["annotations"] if "priority" in annots: self.priority_matches = sum( int(self.priority_fn(ast.literal_eval(k)) == p) for k, p in annots["priority"].items() ) if "qux" in annots: self.qux_matches = sum(int(self.qux == v) for v in annots["qux"].values()) if "custom_resource" in annots: self.resource_matches = sum( int(self.resource == v) for v in annots["custom_resource"].values() ) if "retries" in annots: self.retry_matches = sum( int(self.retries == v) for v in annots["retries"].values() ) @gen_cluster(client=True) async def test_array_annotations(c, s, a, b): def fn(k): return k[1] * 5 + k[2] qux = "baz" resource = "widget" plugin = ExampleAnnotationPlugin(priority_fn=fn, qux=qux, resource=resource) s.add_plugin(plugin) assert plugin in s.plugins.values() with dask.annotate(priority=fn, qux=qux): A = da.ones((10, 10), chunks=(2, 2)) with dask.annotate(custom_resource=resource): B = A + 1 with dask.config.set(optimization__fuse__active=False): result = await c.compute(B) assert_array_equal(result, 2) # There are annotation matches per array chunk (i.e. task) assert plugin.qux_matches == A.npartitions assert plugin.priority_matches == A.npartitions assert plugin.resource_matches == B.npartitions @gen_cluster(client=True) async def test_dataframe_annotations(c, s, a, b): retries = 5 plugin = ExampleAnnotationPlugin(retries=retries) s.add_plugin(plugin) assert plugin in s.plugins.values() df = dd.from_pandas( pd.DataFrame( {"a": np.arange(10, dtype=int), "b": np.arange(10, 0, -1, dtype=float)} ), npartitions=5, ) df = df.shuffle("a", shuffle="tasks", max_branch=2) acol = df["a"] bcol = df["b"] with dask.annotate(retries=retries): df = acol + bcol with dask.config.set(optimization__fuse__active=False): rdf = await c.compute(df) assert rdf.dtypes == np.float64 assert (rdf == 10.0).all() # There is an annotation match per partition (i.e. task) assert plugin.retry_matches == df.npartitions
2.140625
2
CLEAN/enviroment/ChemEnv.py
tsteternlieb/DrugDesignThesis
2
12783935
<filename>CLEAN/enviroment/ChemEnv.py from audioop import add import copy import torch, random, dgl import networkx as nx from rdkit import Chem import dgl.data from .Utils import permute_mol, permute_rot, SanitizeNoKEKU, mol_to_graph_full, MolFromGraphsFULL, permuteAtomToEnd import os device = None class ChemEnv(object): ''' Class which holds logic for graph generation environment Observations come in the form of (current_graph, last action was node addition, last node features) ''' def __init__(self, num_node_feats, RewardModule, mol_featurizer, writer): self.path = './graph_decomp/chunk_' ''' ENV_Atoms ''' self.mol_featurizer = mol_featurizer self.atom_list = ['N','C','O','S','F','Cl','Na','P','Br','Si','B','Se','K', 'Benz','Pyri','Pyrr'] self.atom_bond_dict = {'N':[1,0,5], 'C':[2,0,4], 'O':[3,0,6], 'S':[4,0,6], 'F':[5,0,7], 'Cl' : [6,0,7],'Na':[7,0,7], 'P' : [8,0,5], 'Br':[9,0,7], 'Si' : [10,0,4],'B':[11,0,5], 'Se' : [12,0,6], 'K':[13,0,7]} ''' ENV_Attributes ''' self.num_atom_types = self.atom_list.__len__() self.batch_dim = 1 self.StateSpace = Chem.RWMol() '''ENV_State''' self.Done = False self.last_action_node = torch.zeros((1,1)).to(device) self.num_node_feats = num_node_feats self.last_atom_features = torch.zeros(1,self.num_node_feats).to(device) self.reward = 0 self.log = "" self.completed_mols = [] self.episode_step_reward = 0 self.num_episodes = 0 self.episode_length = 0 ''' External_Rewards ''' self.RewardModule = RewardModule self.model_list = [] self.writer = writer def __len__(self): """size of molecule Returns: int: returns size of the molecule """ return self.StateSpace.GetNumAtoms() @property def n_nodes(self): return self.StateSpace.GetNumAtoms() def addStructure(self,mol2): """method for adding an entire structure to the molecule Args: mol2 (Chem.RWMol): mol to be added to current state space """ mol1 = self.StateSpace add_dif = mol1.GetNumAtoms() for atom in mol2.GetAtoms(): new_atom = Chem.Atom(atom.GetSymbol()) mol1.AddAtom(new_atom) for bond in mol2.GetBonds(): a1 = bond.GetBeginAtom().GetIdx() a2 = bond.GetEndAtom().GetIdx() bt = bond.GetBondType() mol1.AddBond(add_dif + a1,add_dif+ a2, bt) mol1.UpdatePropertyCache() def addBenzine(self): """add benzine ring """ mol = Chem.MolFromSmiles('c1ccccc1') self.addStructure(mol) def addPyridine(self): """add pyridine """ mol = Chem.MolFromSmiles('N1=CC=CC=C1') mol = permute_mol(mol,permute_rot(mol.GetNumAtoms())) SanitizeNoKEKU(mol) self.addStructure(mol) def addPyrrole(self): """add Pyrrole """ mol = Chem.MolFromSmiles('N1C=CC=C1') mol = permuteAtomToEnd(mol,0) self.addStructure(mol) def addNaptholene(self): """add Naptholene """ mol = Chem.MolFromSmiles('C1=CC=C2C=CC=CC2=C1') self.addStructure(mol) def assignMol(self,mol): """method for assigning molecule to state space Args: mol ([type]): [description] """ mol = Chem.RWMol(mol) self.StateSpace = mol self.getObs() def resetStateSpace(self): """a way to reset state space but its bad code """ ### bad bad bad while True: graph_id = random.randint(1,500000) ###so lazy erggg graph, graph_dict = dgl.load_graphs('./GraphDecomp/graphData/full_chunka',[graph_id]) try: mol = MolFromGraphsFULL(graph[0]) SanitizeNoKEKU(mol) break except: print('err') pass graph = graph[0] last_action = graph_dict['last_action'][graph_id] last_atom_feat = graph_dict['last_atom_feats'][graph_id] mol = MolFromGraphsFULL(graph) SanitizeNoKEKU(mol) self.last_action_node = last_action.expand(1,1).to(device) self.last_atom_features = torch.unsqueeze(last_atom_feat, dim = 0) self.StateSpace = Chem.RWMol(mol) def reset(self): """reset Returns: obs: returns tuple of (graph, last_action_node, node features) """ self.resetStateSpace() self.reward = 0 self.log = "" self.episode_step_reward = 0 self.episode_length = 0 self.Done = False graph = self.graphObs() return graph, self.last_action_node, torch.unsqueeze(graph.ndata['atomic'][-1],dim=0) def addNode(self, node_choice, give_reward = True): """function for adding a node to the state space Args: node_choice (str): type of node to add give_reward (bool, optional): whether to give the reward or not. Defaults to True. """ #####figure out last features if self.last_action_node == 1: if give_reward: self.reward -= .1 return self.last_action_node = torch.ones((1,1)).to(device) if give_reward: self.reward+=.1 if node_choice == 'Benz': self.addBenzine() elif node_choice == 'Pyri': self.addPyridine() elif node_choice == 'Pyrr': self.addPyrrole() else: self.StateSpace.AddAtom(Chem.Atom(node_choice)) def valiateMol(self,mol): """method for validating molecules Args: mol (Chem.RDMol): Chem molecule Returns: bool: whether the molecule is good or not """ #check connected try: if not nx.is_connected(mol_to_graph_full(mol).to_networkx().to_undirected()): return False except: return False #check kekulization try: Chem.SanitizeMol(mol) except Chem.rdchem.KekulizeException: return False return True def addEdge(self, edge_type, atom_id, give_reward = True): """Method for adding a bond Args: edge_type (int): 1 for a single bond, 2 for a double atom_id (int): which atom to connect to the last atom added give_reward (bool, optional): whether or not to give reward. Defaults to True. """ try: atom_id = (atom_id).item() except: pass if edge_type == 1: bond = Chem.rdchem.BondType.SINGLE elif edge_type == 2: bond = Chem.rdchem.BondType.DOUBLE mol_copy = copy.deepcopy(self.StateSpace) mol_copy.UpdatePropertyCache() SanitizeNoKEKU(mol_copy) addable = True #perform checks #add bond to complete the rest of the checks try: mol_copy.AddBond(atom_id,self.StateSpace.GetNumAtoms()-1,bond) mol_copy.UpdatePropertyCache() SanitizeNoKEKU(mol_copy) except: addable = False validated = self.valiateMol(mol_copy) if validated and addable: self.StateSpace.AddBond(atom_id,self.StateSpace.GetNumAtoms()-1,bond) self.StateSpace.UpdatePropertyCache() Chem.SanitizeMol(self.StateSpace) self.reward+=.1 self.last_action_node = torch.zeros((self.batch_dim,1)) self.log += ('edge added \n') else: self.reward-=.1 def removeUnconnected(self,mol, sanitize = True): """method for removing unconnected atoms at evaluation time Args: mol (Chem.RWMol()): mol sanitize (bool, optional): whether or not to sanitize after removal. Defaults to True. """ if mol.GetAtomWithIdx(mol.GetNumAtoms()-1).GetDegree() == 0: mol.RemoveAtom(mol.GetNumAtoms()-1) else: if mol.GetNumAtoms() > 6: if all([mol.GetAtomWithIdx(i).GetDegree() == 2 for i in range(mol.GetNumAtoms()-6,mol.GetNumAtoms())]): for i in range(self.n_nodes-6,self.n_nodes): mol.RemoveAtom(self.n_nodes-1) elif all([mol.GetAtomWithIdx(i).GetDegree() == 2 for i in range(mol.GetNumAtoms()-5,mol.GetNumAtoms())]): for i in range(self.n_nodes-5,self.n_nodes): mol.RemoveAtom(self.n_nodes-1) self.StateSpace.UpdatePropertyCache() if sanitize: Chem.SanitizeMol(self.StateSpace) def checkValence(self, atom_id, edge_type): """check if valences are ok before adding. Should be looked at Args: atom_id (int): atom to check edge_type (int): single or double bond Returns: bool: whether it passes """ atom = self.StateSpace.GetAtomWithIdx(atom_id) currValence = atom.GetExplicitValence() maxValence = 8 - self.atom_bond_dict[atom.GetSymbol()][-1] return currValence + edge_type > maxValence def modelRewards(self, mol): """rewards agent Args: mol (Chem.RWMol): mol to evaluate Returns: float: score """ return self.RewardModule.GiveReward(mol) def graphObs(self): """get graph from molecule Returns: graph: converted molecule """ self.StateSpace.UpdatePropertyCache() return dgl.add_self_loop(dgl.remove_self_loop(self.mol_featurizer(self.StateSpace))).to(device) def getObs(self): """get state Returns: state: observations """ graph = self.graphObs() self.last_atom_feats = torch.unsqueeze(graph.ndata['atomic'][-1],dim=0) if nx.is_connected(graph.cpu().to_networkx().to_undirected()): self.last_action_node = torch.zeros((1,1)).to(device) else: self.last_action_node = torch.ones((1,1)).to(device) return graph, self.last_action_node, self.last_atom_feats def step(self, action, final_step = False, verbose = False): """single step in env Args: action (int): what action final_step (bool, optional): whether it is the final step. Defaults to False. verbose (bool, optional): amount of logging. Defaults to False. Returns: float: returns relavent info for PPO """ self.TempSmiles = Chem.MolToSmiles(self.StateSpace) self.episode_length += 1 reward_dict_info = {'model_reward':0, 'property_reward':0, 'step_reward':0} #info for different rewards for logging self.reward = 0 self.log = "" terminated = False #case for termination if action == 0: self.log += 'terminating \n' self.Done = True terminated = True '''final rewards ''' #case for adding a node elif action > 0 and action < self.num_atom_types+1: self.log += ("------adding "+ self.atom_list[action-1] +" atom------ \n") self.addNode(self.atom_list[action-1]) SanitizeNoKEKU(self.StateSpace) #case for edge addition elif action < 1 + self.num_atom_types + (2*self.__len__()): destination_atom_idx = (action - len(self.atom_list) - 1) // 2 edge_type = (action - self.num_atom_types - 1)%2 + 1 self.log +=("------attempting to add " + str(edge_type) + " bond between last atom added and atom "+ str(destination_atom_idx) +"------ \n") self.addEdge(edge_type,destination_atom_idx) else: self.log += "------action id is too large for state space------ \n" reward_dict_info['step_reward'] = self.reward self.episode_step_reward += self.reward if final_step: terminated = True if terminated: self.removeUnconnected(self.StateSpace,sanitize=False) self.writer.add_scalar("Average Step Reward", self.episode_step_reward/self.episode_length, self.num_episodes) self.writer.add_scalar("Episode Length", self.episode_length, self.num_episodes) model_rewards = self.modelRewards(self.StateSpace) self.reward+= model_rewards self.num_episodes += 1 if verbose: print(self.log) self.StateSpace.UpdatePropertyCache() SanitizeNoKEKU(self.StateSpace) obs = self.getObs() return obs, self.reward, self.Done, reward_dict_info
1.960938
2
NewsSentiment/knowledge/knowledgeutils.py
jamie-iai/NewsMTSC
46
12783936
def find_key_original_or_lc(data: dict, data_keys_lower: dict, key: str): # try to get the key as it is from the dict if key in data.keys(): return data[key] # if not contained, try whether if using case insensitivity we find an entry if key.lower() in data_keys_lower.keys(): return data_keys_lower[key.lower()] # if not, return None return set()
3.328125
3
buildcage/__init__.py
Zhang-Dante/buildcage
0
12783937
<reponame>Zhang-Dante/buildcage from buildcage import src
0.929688
1
basic_algorithms/DQN.py
ChrisRanger/RL_study
0
12783938
import numpy as np import os import gym import torch import torch.nn as nn import collections import copy import random # hype-params learn_freq = 5 #经验池攒一些经验再开启训练 buffer_size = 20000 #经验池大小 buffer_init_size = 200 #开启训练最低经验条数 batch_size = 32 #每次sample的数量 learning_rate = 0.001 #学习率 GAMMA = 0.99 # reward折扣因子 class Model(nn.Module): def __init__(self, act_dim, state_dim): super(Model, self).__init__() hidden1_size = 128 hidden2_size = 128 self.input_layer = nn.Linear(state_dim, hidden1_size) self.input_layer.weight.data.normal_(0, 0.1) self.hidden_layer = nn.Linear(hidden1_size, hidden2_size) self.hidden_layer.weight.data.normal_(0, 0.1) self.output_layer = nn.Linear(hidden2_size, act_dim) self.output_layer.weight.data.normal_(0, 0.1) def forward(self, state): h1 = nn.functional.relu(self.input_layer(state)) h2 = nn.functional.relu(self.hidden_layer(h1)) Q = self.output_layer(h2) return Q class DQN: def __init__(self, model, act_dim=None, gamma=None, lr=None): self.model = model self.target_model = copy.deepcopy(model) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=learning_rate) self.loss = nn.MSELoss() self.act_dim = act_dim self.lr = lr self.gamma = gamma def predict(self, state): return self.model.forward(state) # shape: batch_size x act_dim def learn(self, state, action, reward, state_next, done): # shape: batch_size x 1 # 根据target网络求target Q next_values = self.target_model.forward(state_next).detach() # 阻断target梯度, shape: batch_size x act_dim target_value = reward + (1.0 - done)*self.gamma*next_values.max(1)[0] # shape: batch_size x 1 # 根据当前网络获取Q(s, a) curr_value = self.model.forward(state) action = action.unsqueeze(1) pred_value = torch.gather(curr_value, 1, action.long()) # batch_size x act_dim中以第二维取action对应的Q值成为batch_size x 1 cost = self.loss(pred_value, target_value) self.optimizer.zero_grad() cost.backward() self.optimizer.step() return cost def update_target(self): self.target_model.load_state_dict(self.model.state_dict()) # 更新target网络参数 class ReplayMemory(object): def __init__(self, max_size): self.buffer = collections.deque(maxlen=max_size) def append(self, exp): self.buffer.append(exp) def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) state_batch, action_batch, reward_batch, state_netx_batch, done_batch = [], [], [], [], [] for exp in batch: s, a, r, s_next, done = exp state_batch.append(s) action_batch.append(a) reward_batch.append(r) state_netx_batch.append(s_next) done_batch.append(done) return torch.from_numpy(np.array(state_batch).astype('float32')), \ torch.from_numpy(np.array(action_batch).astype('int32')), \ torch.from_numpy(np.array(reward_batch).astype('float32')), \ torch.from_numpy(np.array(state_netx_batch).astype('float32')), \ torch.from_numpy(np.array(done_batch).astype('float32')) def __len__(self): return len(self.buffer) class Agent: def __init__(self, algorithm, state_dim, act_dim, epsilon=0.1, epsilon_fade=0.0): self.dqn = algorithm self.state_dim = state_dim self.act_dim = act_dim self.steps = 0 self.update_target_steps = 200 self.epsilon = epsilon self.epsilon_fade = epsilon_fade def explore(self, state): sample = np.random.rand() if sample < self.epsilon: action = np.random.randint(self.act_dim) else: action = self.greedy(state) self.epsilon = max(0.01, self.epsilon - self.epsilon_fade) return action def greedy(self, state): state = torch.from_numpy(state) state = torch.tensor(state, dtype=torch.float32) pred_value = self.dqn.target_model.forward(state) values = pred_value.detach().numpy() values = np.squeeze(values, axis=None) action = np.argmax(values) # 选择值最大的下标 return action def learn(self, state, action, reward, state_next, done): if self.steps % self.update_target_steps == 0: self.dqn.update_target() self.steps += 1 cost = self.dqn.learn(state, action, reward, state_next, done) return cost def evaluate(env, agent, render=True): eval_reward = [] for i in range(10): state = env.reset() episode_reward = 0 while True: action = agent.greedy(state) state, reward, done, _ = env.step(action) episode_reward += reward if render: env.render() if done: break eval_reward.append(episode_reward) return np.mean(eval_reward) if __name__ == '__main__': env = gym.make('CartPole-v0') action_dim = env.action_space.n state_dim = env.observation_space.shape[0] exp_buffer = ReplayMemory(buffer_size) model = Model(act_dim=action_dim, state_dim=state_dim) algorithm = DQN(model, act_dim=action_dim, gamma=GAMMA, lr=learning_rate) agent = Agent(algorithm, state_dim=state_dim, act_dim=action_dim, epsilon=0.1, epsilon_fade=1e-6) state = env.reset() while(len(exp_buffer)<buffer_init_size): action = agent.explore(state) state_next, reward, done, _ = env.step(action) exp_buffer.append((state, action, reward, state_next, done)) state = state_next if done: state = env.reset() episode = 0 while episode < 20000: for i in range(0, 100): episode += 1 total_reward = 0 state = env.reset() step = 0 while True: step += 1 action = agent.explore(state) state_next, reward, done, _ = env.step(action) # env.render() exp_buffer.append((state, action, reward, state_next, done)) # train if len(exp_buffer) > buffer_init_size and step%learn_freq == 0: (state_batch, action_batch, reward_batch, state_next_batch, done_batch) = exp_buffer.sample(batch_size) loss = agent.learn(state_batch, action_batch, reward_batch, state_next_batch, done_batch) total_reward += reward state = state_next if done: break eval_reward = evaluate(env, agent, render=True) print('episode: %d e_greed: %.5f test_reward: %.1f' %(episode, agent.epsilon, eval_reward)) torch.save(agent.dqn.target_model, './dqn.pkl')
2.828125
3
common/cards.py
castellanprime/Discard
0
12783939
class Card: def __init__(self, card_colour, other_colour): self.card_colour = card_colour self.other_colour = other_colour def __repr__(self): return "{0}:{1}".format(self.card_colour, self.other_colour) class NormalCard(Card): def __init__(self, card_colour, shape_colour, shape): super().__init__(self, card_colour, shape_colour) self.shape = shape def __repr__(self): return "[{0} {1}]".format(self.shape, super().__repr__()) class SpecialCard(Card): def __init__(self, card_colour, char_colour, char, is_blockable=False, is_stackable=False): super().__init__(self, card_colour, char_colour) self.char = char self.is_blockable = is_blockable self.is_stackable = is_stackable def __repr__(self): return "[{0} {1}]".format(self.shape, super().__repr__())
3.28125
3
evaluate_VOC_val.py
briqr/CSPN
17
12783940
# You can use this code to evaluate the trained model of CSPN on VOC validation data, adapted from SEC import numpy as np import pylab import scipy.ndimage as nd import imageio from matplotlib import pyplot as plt from matplotlib import colors as mpl_colors import krahenbuhl2013 import sys sys.path.insert(0,'/home/briq/libs/caffe/python') import caffe import scipy caffe.set_device(0) caffe.set_mode_gpu() voc_classes = [ 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor', ] max_label = 20 mean_pixel = np.array([104.0, 117.0, 123.0]) palette = [(0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (0.0, 0.5, 0.0), (0.5, 0.5, 0.0), (0.0, 0.0, 0.5), (0.5, 0.0, 0.5), (0.0, 0.5, 0.5), (0.5, 0.5, 0.5), (0.25, 0.0, 0.0), (0.75, 0.0, 0.0), (0.25, 0.5, 0.0), (0.75, 0.5, 0.0), (0.25, 0.0, 0.5), (0.75, 0.0, 0.5), (0.25, 0.5, 0.5), (0.75, 0.5, 0.5), (0.0, 0.25, 0.0), (0.5, 0.25, 0.0), (0.0, 0.75, 0.0), (0.5, 0.75, 0.0), (0.0, 0.25, 0.5)] my_cmap = mpl_colors.LinearSegmentedColormap.from_list('Custom cmap', palette, 21) def preprocess(image, size, mean_pixel=mean_pixel): image = np.array(image) image = nd.zoom(image.astype('float32'), (size / float(image.shape[0]), size / float(image.shape[1]), 1.0), order=1) image = image[:, :, [2, 1, 0]] image = image - mean_pixel image = image.transpose([2, 0, 1]) return image def predict_mask(image_file, net, smooth=True): im = pylab.imread(image_file) net.blobs['images'].data[0] = preprocess(im, 321) net.forward() scores = np.transpose(net.blobs['fc8-SEC'].data[0], [1, 2, 0]) d1, d2 = float(im.shape[0]), float(im.shape[1]) scores_exp = np.exp(scores - np.max(scores, axis=2, keepdims=True)) probs = scores_exp / np.sum(scores_exp, axis=2, keepdims=True) probs = nd.zoom(probs, (d1 / probs.shape[0], d2 / probs.shape[1], 1.0), order=1) eps = 0.00001 probs[probs < eps] = eps if smooth: result = np.argmax(krahenbuhl2013.CRF(im, np.log(probs), scale_factor=1.0), axis=2) else: result = np.argmax(probs, axis=2) return result def evaluate(res, gt_img): intersect_gt_res = np.sum( (res == gt_img) & (res!=0) & (gt_img!=0) ) union_gt_res = np.sum( (res!=0) | (gt_img!=0) ) acc = float(intersect_gt_res) / union_gt_res return acc model = '/home/briq/libs/CSPN/training/models/model_iter_3000.caffemodel' draw = False smoothing = True if __name__ == "__main__": num_classes = len(voc_classes) gt_path = '/media/datasets/VOC2012/SegmentationClassAug/' orig_img_path = '/media/datasets/VOC2012/JPEGImages/' img_list_path = '/home/briq/libs/CSPN/list/val_id.txt' with open(img_list_path) as f: content = f.readlines() f.close() content = [x.strip() for x in content] num_ims = 0 cspn_net = caffe.Net('deploy.prototxt', model, caffe.TEST) for line in content: img_name = line.strip() gt_name = gt_path + img_name gt_name = gt_name + '.png' gt_img = imageio.imread(gt_name) orig_img_name = orig_img_path + img_name orig_img_name = orig_img_name + '.jpg' res = predict_mask(orig_img_name, cspn_net, smooth=smoothing) num_ims += 1 if(num_ims%100==0): print '-----------------im:{}---------------------\n'.format(num_ims) acc = evaluate(res, gt_img) print img_name, str(num_ims), "{}%\n".format(acc*100) if draw: fig = plt.figure() ax = fig.add_subplot('221') ax.imshow(pylab.imread(orig_img_name)) plt.title('image') ax = fig.add_subplot('222') ax.matshow(gt_img, vmin=0, vmax=21, cmap=my_cmap) plt.title('GT') ax = fig.add_subplot('223') ax.matshow(res, vmin=0, vmax=21, cmap=my_cmap) plt.title('CSPN') plt.show()
2.296875
2
example_snippets/multimenus_snippets/Snippets/SciPy/Physical and mathematical constants/CODATA physical constants/P/proton mass energy equivalent in MeV.py
kuanpern/jupyterlab-snippets-multimenus
0
12783941
<filename>example_snippets/multimenus_snippets/Snippets/SciPy/Physical and mathematical constants/CODATA physical constants/P/proton mass energy equivalent in MeV.py constants.physical_constants["proton mass energy equivalent in MeV"]
1.265625
1
demo/due-server/servo.py
wovo/hwpy
0
12783942
<reponame>wovo/hwpy<filename>demo/due-server/servo.py """ Demo for a hobby servo """ import sys, time sys.path.append( "../.." ) import hwpy print( __doc__ ) servo = hwpy.servo( hwpy.gpo( hwpy.arduino.d2 )) while True: for x in range( 0, 100, 5 ): servo.write( x / 100.0 ) time.sleep( 0.1 ) for x in range( 100, 0, -5 ): servo.write( x / 100.0 ) time.sleep( 0.1 )
2.75
3
intake_streamz/source.py
martindurant/intake-streamz
7
12783943
from intake.source.base import DataSource from intake.source import import_name class StreamzSource(DataSource): name = 'streamz' container = 'streamz' """ """ def __init__(self, method_chain, start=False, metadata=None, **kwargs): """ method_chain: list[tuple(str, dict)] Each element of the list is like (method_name, kwargs) which will be applied to the stream object in sequence. """ self.method = method_chain self.kwargs = kwargs self.stream = None self.start = start super().__init__(metadata=metadata) def _get_schema(self): import streamz if self.stream is None: stream = streamz.Stream for part in self.method: kw = part.get("kwargs", {}) for functional in part.get("func_value", []): kw[functional] = import_name(kw[functional]) stream = getattr(stream, part["method"])(**part.get("kwargs", {})) self.stream = stream if self.start: self.stream.start() return {'stream': str(self.stream)} def read(self): self._get_schema() return self.stream def to_dask(self): return self.read().scatter() @property def plot(self): # override since there is no hvPlot(streamz), only streamz.hvPlot try: from hvplot import hvPlot except ImportError: raise ImportError("The intake plotting API requires hvplot." "hvplot may be installed with:\n\n" "`conda install -c pyviz hvplot` or " "`pip install hvplot`.") fields = self.metadata.get('fields', {}) for attrs in fields.values(): if 'range' in attrs: attrs['range'] = tuple(attrs['range']) s = self.read() plot = s.plot plot._metadata['fields'] = fields plot._plots = self.metadata.get('plots', {}) s.start() return plot
2.390625
2
code_styles/generate_styles.py
tylerbutler/shared_assets
0
12783944
# coding=utf-8 from pygments.formatters.html import HtmlFormatter from pygments.styles import get_all_styles __author__ = '<NAME> <<EMAIL>>' ''' Run this script to output all registered Pygments styles as flat CSS files in the current directory. Other styles that can be installed using pip: pygments-style-github pygments-style-railscasts And some can be installed/downloaded manually... https://github.com/john2x/solarized-pygment https://github.com/brolewis/pygments_zenburn https://github.com/oblique/pygments-style-behelit https://github.com/idleberg/base16-pygments ''' def main(): for style in get_all_styles(): formatter = HtmlFormatter(style=style) css = formatter.get_style_defs() filename = '%s.css' % style with open(filename, mode='wb') as the_file: the_file.writelines(css) print "Output %s" % filename if __name__ == '__main__': main()
2.453125
2
gssapi/raw/named_tuples.py
E-Tahta/python-gssapi
2
12783945
from collections import namedtuple AcquireCredResult = namedtuple('AcquireCredResult', ['creds', 'mechs', 'lifetime']) InquireCredResult = namedtuple('InquireCredResult', ['name', 'lifetime', 'usage', 'mechs']) InquireCredByMechResult = namedtuple('InquireCredByMechResult', ['name', 'init_lifetime', 'accept_lifetime', 'usage']) AddCredResult = namedtuple('AddCredResult', ['creds', 'mechs', 'init_lifetime', 'accept_lifetime']) DisplayNameResult = namedtuple('DisplayNameResult', ['name', 'name_type']) WrapResult = namedtuple('WrapResult', ['message', 'encrypted']) UnwrapResult = namedtuple('UnwrapResult', ['message', 'encrypted', 'qop']) AcceptSecContextResult = namedtuple('AcceptSecContextResult', ['context', 'initiator_name', 'mech', 'token', 'flags', 'lifetime', 'delegated_creds', 'more_steps']) InitSecContextResult = namedtuple('InitSecContextResult', ['context', 'mech', 'flags', 'token', 'lifetime', 'more_steps']) InquireContextResult = namedtuple('InquireContextResult', ['initiator_name', 'target_name', 'lifetime', 'mech', 'flags', 'locally_init', 'complete']) StoreCredResult = namedtuple('StoreCredResult', ['mechs', 'usage']) IOVUnwrapResult = namedtuple('IOVUnwrapResult', ['encrypted', 'qop']) InquireNameResult = namedtuple('InquireNameResult', ['attrs', 'is_mech_name', 'mech']) GetNameAttributeResult = namedtuple('GetNamedAttributeResult', ['values', 'display_values', 'authenticated', 'complete'])
2.046875
2
cos_tests/test_base.py
baylee-d/cos.io
0
12783946
<reponame>baylee-d/cos.io import pytest # noqa from django.test import TestCase import website.settings.base as base import os from urllib.parse import urlparse class VariableValueTest(TestCase): def test_project_dir(self): """ Checks that the directory for the project is pointing to the right place """ test_project_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) + "/website" project_directory = base.PROJECT_DIR self.assertEqual(project_directory, test_project_directory, 'the project directories were not equal') def test_base_dir(self): """ Checks that the base directory is pointing to the right place """ test_base_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) base_directory = base.BASE_DIR self.assertEqual(base_directory, test_base_directory, 'the base directories were not equal') def test_email_host(self): """ Checks that the email host is correct """ test_email_host = 'smtp.sendgrid.net' email_host = base.EMAIL_HOST self.assertEqual(email_host, test_email_host, 'email hosts were not equal') def test_email_host_user(self): """ Checks that the email_host_user variable is correct """ test_email_host_user = os.environ.get('SENDGRID_USERNAME') email_host_user = base.EMAIL_HOST_USER self.assertEqual(email_host_user, test_email_host_user, 'email host users were not equal') def test_email_host_password(self): """ Checks that the email host password is correct """ test_email_host_pass = os.environ.get('SENDGRID_PASSWORD') email_host_pass = base.EMAIL_HOST_PASSWORD self.assertEqual(email_host_pass, test_email_host_pass, 'email user passwords were not equal') def test_email_port(self): """ Checks the email port """ email_port = base.EMAIL_PORT self.assertEqual(email_port, 587) def test_email_use_tls(self): """ Checks the property """ email_use_tls = base.EMAIL_USE_TLS self.assertEqual(email_use_tls, True) def test_es_url(self): """ Checks the variable """ test_es_url = urlparse(os.environ.get('BONSAI_URL') or 'http://127.0.0.1:9200/') es_url = base.ES_URL self.assertEqual(es_url, test_es_url, 'the es_urls did not match') def test_haystack_connections(self): """ Checks the condition that there is or isn't an es_url_username """ es_url = urlparse(os.environ.get('BONSAI_URL') or 'http://127.0.0.1:9200/') test_haystack_connections = { 'default': { 'ENGINE': 'haystack.backends.elasticsearch_backend.' 'ElasticsearchSearchEngine', 'URL': es_url.scheme + '://' + es_url.hostname + ':9200', 'INDEX_NAME': 'haystack', }, } if es_url.username: test_haystack_connections['default']['KWARGS'] = { "http_auth": es_url.username + ':' + es_url.password} haystack_connections = base.HAYSTACK_CONNECTIONS self.assertEqual(haystack_connections, test_haystack_connections, 'the es_url did not have a username, resulting in no haystack connections') def test_site_id(self): """ Checks that the site id is equal to the site id of the environment """ test_site_id = os.environ.get('SITE_ID') site_id = base.SITE_ID self.assertEqual(site_id, test_site_id, 'the site ids were not equal') def test_redis_url(self): """ Checks the redis url """ test_redis_url = urlparse(os.environ.get('REDIS_URL') or 'http://127.0.0.1:6379') redis_url = base.redis_url self.assertEqual(redis_url, test_redis_url, 'the redis urls were not equal') def test_caches(self): """ Tests that the redis caches point to the right places """ caches = { "default": { "BACKEND": "redis_cache.RedisCache", "LOCATION": "{0}:{1}".format(base.redis_url.hostname, base.redis_url.port), "OPTIONS": { "PASSWORD": base.redis_url.password, "DB": 0, } } } base_caches = base.CACHES self.assertEqual(base_caches, caches, 'the cache information was not equal') def test_static_file_dirs(self): """ Tests that the location of the static directory files is correct """ staticfiles_dirs = [ os.path.join(base.PROJECT_DIR, 'static'), ] base_staticfiles_dirs = base.STATICFILES_DIRS self.assertEqual(base_staticfiles_dirs, staticfiles_dirs, 'static file directories were not the same') def test_static_root(self): """ Tests the location of the static root """ base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) test_static_root = os.path.join(base_dir, 'static') static_root = base.STATIC_ROOT self.assertEqual(static_root, test_static_root, 'static roots were not equal to each other') def test_media_root(self): """ Tests the location of the media root """ base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) test_media_root = os.path.join(base_dir, 'media') media_root = base.MEDIA_ROOT self.assertEqual(media_root, test_media_root, 'media roots were not equal to each other') def test_base_url(self): """ Tests the base url for the wagtail site to make sure it goes to the cos.io site """ base_url = base.BASE_URL self.assertEqual(base_url, 'http://cos.io')
2.71875
3
optic_store/optic_store/report/salary_report_for_bank/salary_report_for_bank.py
iptelephony/optic_store
14
12783947
<gh_stars>10-100 # Copyright (c) 2013, 9T9IT and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from functools import partial from toolz import compose, pluck, concatv, merge, groupby, excepts, first from optic_store.utils import pick from optic_store.utils.report import make_column, with_report_generation_time def execute(filters=None): columns = _get_columns(filters) keys = compose(list, partial(pluck, "fieldname"))(columns) clauses, values = _get_filters(filters) data = _get_data(clauses, values, keys) return columns, data def _get_columns(filters): return [ make_column("bank_name", "BANK CODE", width=90), make_column("bank_ac_no", "CREDIT ACCOUNT NO", width=150), make_column("employee_name", "EMP NAME", width=150), make_column("amount", "AMOUNT", type="Currency"), make_column("remarks", "REMARKS", width=150), make_column("placeholder1", "PAYMENT_PRODUCT"), make_column("placeholder2", "TXN_CCY"), make_column("placeholder3", "SWIFT_CHARGING_OPT"), make_column("placeholder3", "PAYMENT_VALUE_DATE"), make_column("account_number", "DEBIT_ACCOUNT NUMBER", width=150), ] def _get_filters(filters): join_clauses = compose(lambda x: " AND ".join(x), concatv) get_components = compose( list, partial(pluck, "salary_component"), lambda x: frappe.get_all( "Optical Store HR Settings Salary Component", fields=["salary_component"], filters={"parentfield": "{}_components".format(x)}, ), lambda x: x.replace(" ", "_").lower(), ) values = merge(filters, {"components": get_components(filters.get("report_type"))}) return ( join_clauses(["sl.status = %(status)s", "sl.start_date = %(start_date)s"]), values, ) def _get_data(clauses, values, keys): result = frappe.db.sql( """ SELECT e.bank_name AS bank_name, e.bank_ac_no AS bank_ac_no, e.employee_name AS employee_name, sl.name AS salary_slip, sl.start_date AS start_date, a.account_number AS account_number FROM `tabSalary Slip` AS sl LEFT JOIN `tabEmployee` AS e ON e.name = sl.employee LEFT JOIN `tabPayroll Entry` AS pe ON pe.name = sl.payroll_entry LEFT JOIN `tabAccount` AS a ON a.name = pe.payment_account WHERE {clauses} """.format( clauses=clauses ), values=values, as_dict=1, ) get_amounts = compose( partial(groupby, "salary_slip"), lambda type: frappe.db.sql( """ SELECT sl.name AS salary_slip, SUM(sd.amount) AS amount FROM `tabSalary Detail` AS sd LEFT JOIN `tabSalary Slip` AS sl ON sl.name = sd.parent WHERE sd.parentfield = %(parentfield)s AND sd.parent IN %(salary_slips)s AND sd.salary_component IN %(components)s GROUP BY sl.name """, values=merge( values, { "salary_slips": [x.get("salary_slip") for x in result], "parentfield": type, }, ), as_dict=1, ) if result else {}, ) get_amount = compose( lambda x: x.get("amount", 0), excepts(StopIteration, first, lambda _: {}), lambda col, key: col.get(key, []), ) earnings = get_amounts("earnings") deductions = get_amounts("deductions") def add_remarks(row): start_date = row.get("start_date") return merge( row, {"remarks": "{} SAL".format(start_date.strftime("%b").upper())} ) def set_amounts(row): salary_slip = row.get("salary_slip") amount = get_amount(earnings, salary_slip) - get_amount(deductions, salary_slip) return merge(row, {"amount": amount}) make_row = compose(partial(pick, keys), add_remarks, set_amounts) return with_report_generation_time([make_row(x) for x in result], keys)
1.789063
2
bot/decorators.py
MrLokans/bank_telegram_bot
2
12783948
<gh_stars>1-10 """ Useful decorators """ import functools import telegram from bot.exceptions import BotLoggedError from bot.settings import logging logger = logging.getLogger('telegrambot') def log_exceptions(bot_func): @functools.wraps(bot_func) def wrapper(bot, update, *args, **kwargs): try: bot_func(bot, update, *args, **kwargs) except BotLoggedError as e: chat_id = update.message.chat_id msg = str(e) bot.sendMessage(chat_id=chat_id, text=msg, parse_mode=telegram.ParseMode.HTML) return except Exception as e: logger.exception("Unknown exception occured.") return return wrapper def log_statistics(bot_func): @functools.wraps(bot_func) def wrapper(bot, update, *args, **kwargs): message = update.message.text user_id = str(update.message.from_user.id) chat_id = update.message.chat_id msg = "{} triggered, user_id: {}, chat_id {}" logger.info(msg.format(message, user_id, chat_id)) bot_func(bot, update, *args, **kwargs) return wrapper
2.46875
2
AudioBook GUI code/main.py
GuruprasadaShridharHegde/Python-AudioBook
1
12783949
from tkinter import Tk from tkinter.filedialog import askopenfilename from gtts import gTTS import PyPDF2 import os Tk().withdraw() filelocation = askopenfilename() basename = os.path.basename(filelocation) filename = os.path.splitext(basename)[0] with open(filelocation, 'rb') as f: text = PyPDF2.PdfFileReader(f, strict=False) print(text.numPages) language = 'en' output_text = '' for pagenum in range (0, text.numPages): pageObj = text.getPage(pagenum) output_text = output_text + pageObj.extractText() output = gTTS(text=output_text, lang=language, slow=False) output.save(filename+".mp3") f.close()
3.09375
3
__Training__/Python - HackerRank/3. Strings/Text Wrap.py
JUD210/Study-Note
0
12783950
# https://www.hackerrank.com/challenges/text-wrap/problem import textwrap def wrap(string, max_width): # return "\n".join(string[i:i+max_width] for i in range(0, len(string), max_width)) return textwrap.fill(string, max_width) if __name__ == "__main__": string, max_width = input(), int(input()) # ABCDEFGHIJKLIMNOQRSTUVWXYZ # 4 result = wrap(string, max_width) print(result) # ABCD # EFGH # IJKL # IMNO # QRST # UVWX # YZ
3.890625
4