max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
mysolution/day23_crab_cups/solve.py
abhabongse/aoc2020
0
12784351
from __future__ import annotations import itertools from collections.abc import Iterator, Sequence import more_itertools from tqdm import trange Arrows = dict[int, int] def main(): # arrangement = [3, 8, 9, 1, 2, 5, 4, 6, 7] arrangement = [4, 5, 9, 6, 7, 2, 8, 1, 3] # Part 1 arrows = build_circular_arrows(arrangement) crab_modify_arrows(arrows, arrangement[0], plucks=3, repeat=100) final_arrangement = list(nodes_in_circle(arrows, start=1)) p1_answer = ''.join(str(n) for n in final_arrangement[1:]) print(p1_answer) # Part 2 arrangement = arrangement + list(range(10, 1_000_001)) arrows = build_circular_arrows(arrangement) crab_modify_arrows(arrows, arrangement[0], plucks=3, repeat=10_000_000) fst, snd, trd = more_itertools.take(3, nodes_in_circle(arrows, start=1)) p2_answer = snd * trd print(p2_answer) def build_circular_arrows(arrangement: Sequence[int]) -> Arrows: """ Builds a circular graph as a dictionary mapping from one node label to the next. """ looped_arrangement = itertools.chain(arrangement, arrangement[:1]) arrows = {u: v for u, v in more_itertools.windowed(looped_arrangement, n=2)} return arrows def nodes_in_circle(arrows: Arrows, start: int) -> Iterator[int]: """ Obtains a sequence of node labels around the arrows graph starting from the given `start` label until it reaches back to start. """ current = start while True: yield current current = arrows[current] if current == start: break def crab_modify_arrows(arrows: Arrows, current: int, plucks: int, repeat: int = 1) -> int: """ Modifies the arrows graph in-place according to crab's challenge starting at the given current node label. It returns the next *current* node label to resume the next step. """ for _ in trange(repeat): plucked = more_itertools.take(plucks, nodes_in_circle(arrows, arrows[current])) candidates = count_in_modulus(current - 1, -1, modulo=len(arrows)) dest = more_itertools.first_true(candidates, pred=lambda v: v not in plucked) rear = plucked[-1] arrows[current], arrows[rear], arrows[dest] = arrows[rear], arrows[dest], arrows[current] current = arrows[current] return current def count_in_modulus(start: int, step: int = 1, *, modulo: int) -> Iterator[int]: """ Produces an arithmetic sequence of numbers under the given modulus with 1-indexing (so remainder 0 would actually yield the modulus itself). """ for value in itertools.count(start, step): yield value % modulo or modulo if __name__ == '__main__': main()
3.34375
3
Python/openjudge/12560.py
bic-potato/codeforces_learning
0
12784352
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 25 15:05:59 2020 @author: zuoxichen """ def game_rule(i,j,arrayin,state_transfer): if state_transfer.count(1)<2 or state_transfer.count(1)>3: a=0 elif arrayin[i][j]==0 and state_transfer.count(1)==3: a=1 else: a=arrayin[i][j] return a mn=list(int(i) for i in input().split()) n=mn[0]# n lines m=mn[1] i=0 arrayin=[] while i<n: arrayin.append(list(int(i) for i in input().split())) i+=1 arrayout=[] for i in range(n): arrayout.append(list(i for i in range(m))) for i in range(1,n-1): for j in range(1,m-1): state_transfer=[arrayin[i][j-1],arrayin[i][j+1],arrayin[i-1][j],arrayin[i+1][j],arrayin[i-1][j-1],arrayin[i-1][j+1],arrayin[i+1][j-1],arrayin[i+1][j+1]] arrayout[i][j]=game_rule(i,j,arrayin, state_transfer) for j in range(1,m-1): state_transfer_up=[arrayin[0][j-1],arrayin[1][j-1],arrayin[1][j+1],arrayin[0][j+1],arrayin[1][j]] state_transfer_down=[arrayin[n-1][j-1],arrayin[n-2][j-1],arrayin[n-2][j+1],arrayin[n-1][j+1],arrayin[n-2][j]] arrayout[0][j]=game_rule(0,j,arrayin, state_transfer_up) arrayout[n-1][j]=game_rule(n-1, j, arrayin, state_transfer_down) for i in range(1,n-1): state_transfer_up=[arrayin[i-1][0],arrayin[i+1][0],arrayin[i][1],arrayin[i-1][1],arrayin[i+1][1]] state_transfer_down=[arrayin[i-1][m-1],arrayin[i+1][m-1],arrayin[i][m-2],arrayin[i-1][m-2],arrayin[i+1][m-2]] arrayout[i][0]=game_rule(i,0,arrayin, state_transfer_up) arrayout[i][m-1]=game_rule(i, m-1, arrayin, state_transfer_down) arrayout[0][0]=game_rule(0,0,arrayin,[arrayin[0][1],arrayin[1][1],arrayin[1][0]]) arrayout[0][m-1]=game_rule(0,m-1,arrayin,[arrayin[0][m-2],arrayin[1][m-1],arrayin[1][m-2]]) arrayout[n-1][0]=game_rule(n-1,0,arrayin,[arrayin[n-1][1],arrayin[n-2][1],arrayin[n-2][0]]) arrayout[n-1][m-1]=game_rule(n-1,m-1,arrayin,[arrayin[n-2][m-1],arrayin[n-1][m-2],arrayin[n-2][m-2]]) for i in range(n): for j in range(m): if j==m-1: print(arrayout[i][j]) else: print(arrayout[i][j],end=' ')
3.15625
3
markov_generator.py
bmd/markov-at-the-movies
0
12784353
<reponame>bmd/markov-at-the-movies<gh_stars>0 import random from collections import defaultdict class MarkovGenerator(object): def __init__(self, corpus, tuple_size=3): """ Initialize the MarkovGenerator object. Digests the corpus of text provided as a list of tokens and creates a cache of predicted next-word values Code for markov generator based on: http://agiliq.com/blog/2009/06/ generating-pseudo-random-text-with-markov-chains-u/ :param corpus: (list) a source text of word tokens to generate random text from :param tuple_size: (int: default 3) the size of the tuple to use to generate text. A larger tuple will increase memory usage, but produce more realistic results """ self.corpus = corpus self.corpus_size = len(corpus) self.tuple_size = tuple_size self.cache = defaultdict(list) self._initialize_cache() def _generate_ngrams(self): """ Generate ngrams from the corpus For each token in the corpus, generate a list of likely next words for the Markov text generator to return. :yield: (tuple) a tuple of length n """ n = self.tuple_size if len(self.corpus) < n: return for i in range(len(self.corpus) - (n - 1)): yield tuple([self.corpus[i + x] for x in range(n)]) def _initialize_cache(self): """ Initialize the cache Set up the cache object to generate predicted strings. """ for word_tuple in self._generate_ngrams(): self.cache[word_tuple[0:-1]].append(word_tuple[-1]) def generate_markov_text(self, size, override_seed=None): """ Generate a pseudo-random block of text :param size: (int) Length of text to generate. Should be << than the size of the total corpus for good results :param override_seed: (str: default None) Word to seed the generator with if set :return: (str) a string of randomly-generated text """ if not override_seed: seed = random.randint(0, self.corpus_size - self.tuple_size) else: indices = [i for i, x in enumerate(self.corpus) if x == override_seed] try: seed = random.choice(indices) except IndexError: seed = random.randint(0, self.corpus_size - self.tuple_size) seed_words = self.corpus[seed: seed + self.tuple_size] gen_words = [] for i in xrange(size): gen_words.append(seed_words[0]) seed_words.pop(0) try: seed_words.append(random.choice(self.cache[tuple(seed_words)])) # catch cases where there isn't a word to pick except IndexError: seed_words.append(random.choice(self.corpus)) gen_words.append(seed_words[0]) return ' '.join(gen_words)
3.4375
3
model/seedsortnet.py
Huanyu2019/Seedsortnet
4
12784354
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 12 15:44:11 2021 @author: lihuanyu """ import torch.nn as nn import torch import math import torchsummary as summary from torchstat import stat import torch.nn.functional as F from blurpool import BlurPool __all__ = ["seedsortnet","seedsortnet75"] class SubSpace_SFSAM(nn.Module): def __init__(self, nin): super(SubSpace_SFSAM, self).__init__() self.conv_7x7 = nn.Conv2d(2, 1, kernel_size=7, stride=1, padding=3, groups=1) self.bn_point = nn.BatchNorm2d(1, momentum=0.9) self.relu_point = nn.ReLU(inplace=False) self.softmax = nn.Softmax(dim=2) def forward(self, x): out_mean = torch.mean(x, dim=1, keepdim=True) out_max, _ = torch.max(x, dim=1, keepdim=True) out = [out_max, out_mean] out = torch.cat(out,dim=1) out = self.conv_7x7(out) out = self.bn_point(out) out = self.relu_point(out) m, n, p, q = out.shape out = self.softmax(out.view(m, n, -1)) out = out.view(m, n, p, q) out = out.expand(x.shape[0], x.shape[1], x.shape[2], x.shape[3]) out = torch.mul(out, x) out = out + x return out class SFSAM(nn.Module): def __init__(self, nin, nout, h, w, num_splits): super(SFSAM, self).__init__() assert nin % num_splits == 0 self.nin = nin self.nout = nout self.h = h self.w = w self.num_splits = num_splits self.subspaces = nn.ModuleList( [SubSpace_SFSAM(int(self.nin / self.num_splits)) for i in range(self.num_splits)] ) def forward(self, x): group_size = int(self.nin / self.num_splits) sub_feat = torch.chunk(x, self.num_splits, dim=1) out = [] for idx, l in enumerate(self.subspaces): out.append(self.subspaces[idx](sub_feat[idx])) out = torch.cat(out, dim=1) return out class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels) self.relu6 = nn.ReLU6(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) return self.relu6(x) def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class subsampled(nn.Module): def __init__(self,in_channels,out_channels,filter_size=2,**kwargs): super(subsampled, self).__init__() self.maxpool = nn.MaxPool2d(kernel_size=2, stride=1) self.blurpool=BlurPool(in_channels, filt_size=filter_size, stride=2) def forward(self, x): x = self.maxpool(x) x = self.blurpool(x) return x class Root_module(nn.Module): def __init__(self, in_channels,ch3x3_conv,ch1x1_first,ch3x3,pool_proj): super(Root_module, self).__init__() self.conv1 = BasicConv2d(in_channels, ch3x3_conv, kernel_size=3, stride=1, padding=1) self.branch1 = nn.Sequential( BasicConv2d(ch3x3_conv, ch1x1_first, kernel_size=3,padding=1,stride=2), BasicConv2d(ch1x1_first, ch3x3, kernel_size=1) ) self.branch2 = nn.Sequential( subsampled(16,16) ) def forward(self, x): x = self.conv1(x) branch1 = self.branch1(x) branch2 = self.branch2(x) outputs = [branch1, branch2] return torch.cat(outputs, 1) class shield_block(nn.Module): def __init__(self, inp, oup, expand_ratio,expand_channel): self.identity_map = False super(shield_block, self).__init__() hidden_dim = inp // expand_ratio if hidden_dim < oup / 6.: hidden_dim = math.ceil(oup / 6.) hidden_dim = _make_divisible(hidden_dim, 16) oup1 = math.ceil((oup/6.) * expand_channel) oup2 = oup - oup1 if inp != oup: self.conv = nn.Sequential( nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True), ) if inp == oup: self.identity_map = True self.conv = nn.Sequential( nn.Conv2d(inp, inp, 3, 1, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), nn.ReLU6(inplace=True), nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), nn.Conv2d(hidden_dim, oup1, 1, 1, 0, bias=False), nn.BatchNorm2d(oup1), nn.ReLU6(inplace=True), nn.Conv2d(oup1, oup1, 3, 1, 1, groups=oup1, bias=False), nn.BatchNorm2d(oup1), ) self.branch1 = nn.Sequential( nn.Conv2d(inp, inp, 3, 1, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), nn.ReLU6(inplace=True), nn.Conv2d(inp, oup2, 1, 1, 0, bias=False), nn.BatchNorm2d(oup2), nn.ReLU6(inplace=True), ) def forward(self, x): out = self.conv(x) if self.identity_map == True: identity = x branch1 = self.branch1(x) out = [out, branch1] out = torch.cat(out, 1) out += identity return out class Seedsortnet(nn.Module): def __init__(self, num_classes=2, width=1,groups=4,expand_channel=4,init_weights=True): super(Seedsortnet, self).__init__() self.root_module = Root_module(3,16,32,16,16) # [-1, 32, 112, 112] out1 = int(64*width) out2 = int(128 *width) out3 = int(192*width) out4 = int(256 *width) self.stage1_up = shield_block(32,out1,2,1) self.stage1_1 = shield_block(out1,out1,6,expand_channel) self.sfsam1 = SFSAM(out1,out1,112,112, groups) self.translayer1 = subsampled(out1,out1) self.stage2_up = shield_block(out1,out2,2,1) self.stage2_1 = shield_block(out2,out2,6,expand_channel) self.stage2_2 = shield_block(out2,out2,6,expand_channel) self.stage2_3 = shield_block(out2,out2,6,expand_channel) self.sfsam2 = SFSAM(out2,out2,56,56, groups) self.translayer2 = subsampled(out2,out2) self.stage3_up = shield_block(out2,out3,2,1) self.stage3_1 = shield_block(out3,out3,6,expand_channel) self.stage3_2 = shield_block(out3,out3,6,expand_channel) self.stage3_3 = shield_block(out3,out3,6,expand_channel) self.stage3_4 = shield_block(out3,out3,6,expand_channel) self.sfsam3 = SFSAM(out3,out3,28,28,groups) self.translayer3 = subsampled(out3,out3) self.stage4_up = shield_block(out3,out4,2,1) self.stage4_1 = shield_block(out4,out4,6,expand_channel) self.stage4_2 = shield_block(out4,out4,6,expand_channel) self.stage4_3 = shield_block(out4,out4,6,expand_channel) self.sfsam4 = SFSAM(out4,out4,14,14,groups) self.translayer4 = subsampled(out4,out4) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(out4, num_classes)) if init_weights==True: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): import scipy.stats as stats X = stats.truncnorm(-2, 2, scale=0.01) values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) values = values.view(m.weight.size()) with torch.no_grad(): m.weight.copy_(values) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.root_module(x) x = self.stage1_up(x) x = self.stage1_1(x) x = self.sfsam1(x) x = self.translayer1(x) x = self.stage2_up(x) x = self.stage2_1(x) x = self.stage2_2(x) x = self.stage2_3(x) x = self.sfsam2(x) x = self.translayer2(x) x = self.stage3_up(x) x = self.stage3_1(x) x = self.stage3_2(x) x = self.stage3_3(x) x = self.stage3_4(x) x = self.sfsam3(x) x = self.translayer3(x) x = self.stage4_up(x) x = self.stage4_1(x) x = self.stage4_2(x) x = self.stage4_3(x) x = self.sfsam4(x) x = self.translayer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def seedsortnet(**kwargs): """ Constructs a Seedsortnet model """ return Seedsortnet(**kwargs) def seedsortnet75(**kwargs): """ Constructs a Seedsortnet model """ return Seedsortnet(width=0.75,**kwargs) if __name__=='__main__': model = seedsortnet(groups=4) model.eval() print(model) stat(model,(3, 224, 224))
2.4375
2
tracker/migrations/0002_processedblock.py
shapeshift-legacy/watchtower
0
12784355
<filename>tracker/migrations/0002_processedblock.py # Generated by Django 2.0.7 on 2018-08-11 00:32 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('tracker', '0001_initial'), ] operations = [ migrations.CreateModel( name='ProcessedBlock', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('block_height', models.IntegerField()), ('block_hash', models.CharField(max_length=500)), ('block_time', models.DateTimeField()), ('processed_at', models.DateTimeField(auto_now_add=True)), ('previous_hash', models.CharField(max_length=500)), ('previous_block', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='tracker.ProcessedBlock')), ], ), ]
1.632813
2
blog/models.py
mohammadanarul/Django-Blog-YT
0
12784356
<filename>blog/models.py from email.mime import text from django.db import models from django.contrib.auth.models import User from django.utils.translation import gettext_lazy as _ from django.db.models.signals import post_save class Profile(models.Model): GENDER_CHOICES = ( ('Male', 'Male'), ('Female', 'Female'), ('Other', 'Other'), ) user = models.OneToOneField(User, verbose_name=_("user"), on_delete=models.CASCADE) # avatar = models.ImageField(_("avatar"), upload_to='profile') # banner = models.ImageField(_('banner'), upload_to='banner') bio = models.TextField(_("bio")) gender = models.CharField(_("gender"), max_length=20, choices=GENDER_CHOICES) address = models.CharField(_("address"), max_length=150) class Meta: ordering = ['-pk'] def __str__(self): return self.user.username class Post(models.Model): STATUS_CHOICES = ( ('Draft', 'Draft'), ('Publish', 'Publish'), ) user = models.ForeignKey(Profile, verbose_name=_("user"), on_delete=models.CASCADE) title = models.CharField(_("title"), max_length=255) slug = models.SlugField(_("slug"), unique=True, blank=True) # thumnail = models.ImageField(_("thumnail"), upload_to='post') description = models.TextField(_("description")) status = models.CharField(_("status"), max_length=20, choices=STATUS_CHOICES, default='Draft') view_count = models.IntegerField(_("view count"), default=0) created_at = models.DateTimeField(_("created at"), auto_now_add=True) updated_at = models.DateTimeField(_("updated at"), auto_now=True) class Meta: ordering = ['-pk'] @property def comment_counter(self): return self.comments.all().count() def __str__(self): return self.title class Comment(models.Model): user = models.ForeignKey(Profile, verbose_name=_("user"), on_delete=models.CASCADE) post = models.ForeignKey(Post, on_delete=models.CASCADE, related_name='comments') comment_text = models.TextField(_("comment text")) created_at = models.DateTimeField(_("created at"), auto_now=False, auto_now_add=True) updated_at = models.DateTimeField(_("updated at"), auto_now=True, auto_now_add=False) class Meta: ordering = ['-pk'] class Contact(models.Model): first_name = models.CharField(_("first name"), max_length=30) last_name = models.CharField(_("last name"), max_length=30) subject = models.CharField(_("subject"), max_length=50) email = models.EmailField(_("email"), max_length=254) detail = models.TextField(_("detail")) def __str__(self): return f'{self.first_name}-{self.last_name}' def create_profile_signal(sender, instance, created, *args, **kwargs): if created: Profile.objects.create(user=instance) post_save.connect(create_profile_signal, sender=User)
2.234375
2
spec/data/logic/_expr_transformer_spec.py
PhilHarnish/forge
2
12784357
import ast import Numberjack from data.logic import _dimension_factory, _expr_transformer, _model, \ _predicates, _reference, dsl from spec.mamba import * with description('_expr_transformer.ExprTransformer'): with it('instantiates'): expect(calling(_expr_transformer.ExprTransformer, None)).not_to(raise_error) with description('compile'): with before.each: self.factory = _dimension_factory._DimensionFactory() self.model = _model._Model(self.factory) self.transformer = _expr_transformer.ExprTransformer(self.model) self.andy, self.bob = self.name = self.factory(name=['andy', 'bob']) self.cherries, self.dates = self.fruit = self.factory( fruit=['cherries', 'dates']) self._10, self._11 = self.age = self.factory(age=[10, 11]) with it('resolves names'): node = ast.Name(id='name["andy"].fruit["cherries"]', ctx=ast.Load()) transformed = self.transformer.visit(node) expect(transformed).to(be_a(_reference.Reference)) expect(transformed._constraints).to(equal({ 'name': 'andy', 'fruit': 'cherries' })) with it('resolves numbers'): node = ast.Num(n=10) transformed = self.transformer.visit(node) expect(transformed).to(be_a(_reference.Reference)) expect(transformed._constraints).to(equal({'age': 10})) with it('resolves strings'): node = ast.Str(s='cherries') transformed = self.transformer.visit(node) expect(transformed).to(be_a(_reference.Reference)) expect(transformed._constraints).to(equal({'fruit': 'cherries'})) with it('fails to visit unsupported nodes'): expect(calling(self.transformer.compile, ast.Await())).to( raise_error(NotImplementedError)) expect(calling(self.transformer.visit, ast.Await())).to( raise_error(NotImplementedError)) expect(calling(self.transformer.generic_visit, ast.Await())).to( raise_error(NotImplementedError)) with it('supports precise (2d) assignment'): expr = self.name['andy'].fruit == self.fruit['cherries'] compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal( '(name["andy"].fruit["cherries"] == True)')) with it('supports OR operation'): expr = (self.name['andy'].fruit['cherries'] | self.fruit['cherries'].name['bob']) compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal( '(name["andy"].fruit["cherries"] or name["bob"].fruit["cherries"])')) with it('supports XOR operation'): expr = (self.name['andy'].fruit['cherries'] ^ self.fruit['cherries'].name['bob']) compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal( '((name["andy"].fruit["cherries"] +' ' name["bob"].fruit["cherries"]) == 1)')) with it('supports + operation, int on right'): expr = self.name['andy'].age + 2 compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('(name["andy"].age in {10,11} + 2)')) with it('supports + operation, int on left'): expr = 2 + self.name['andy'].age compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('(2 + name["andy"].age in {10,11})')) with it('supports - operation, int on right'): expr = self.name['andy'].age - 2 compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('(name["andy"].age in {10,11} - 2)')) with it('supports - operation, int on left'): expr = 2 - self.name['andy'].age compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('(2 - name["andy"].age in {10,11})')) with it('supports * operation, int on right'): expr = self.name['andy'].age[10] * 10 compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('((name["andy"].age == 10) * 10)')) with it('supports * operation, int on left'): expr = 10 * self.name['andy'].age[10] compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) # For some reason(?) the operations are switched here. expect(str(compiled)).to(equal('((name["andy"].age == 10) * 10)')) with it('supports & operation'): expr = self.andy[10] & self.bob[11] compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal( '((name["andy"].age == 10) & (name["bob"].age == 11))')) with it('supports ~ operation'): expr = ~self.andy[10] compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal( '((1 - (name["andy"].age == 10)) == True)')) with it('supports call expressions'): expr = dsl.abs(self.andy.age - self.bob.age) compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) # For some reason(?) the operations are switched here. s = str(compiled).replace(' in {0,1}', '') expect(s).to(equal( 'Abs((name["andy"].age in {10,11} -' ' name["bob"].age in {10,11}))' )) with it('supports naked _DimensionSlice expressions'): expr = self.name['andy'].age[10] compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('((name["andy"].age == 10) == True)')) with it('supports Call with builtin functions'): expr = ast.parse('max(1, 3)').body[0] compiled = self.transformer.compile(expr) expect(str(compiled)).to(equal('3')) with it('supports Call with function pointers'): fn = mock.Mock(return_value=3) expr = ast.Call( func=fn, args=[], keywords=[], ) compiled = self.transformer.compile(expr) expect(fn).to(have_been_called) expect(str(compiled)).to(equal('3')) with description('regression tests'): with before.each: self.model = Numberjack.Model() with it('resolves values before Numberjack uses them'): a = dsl.variable('a') b = dsl.variable('b') c = a * b expr = c == 1462 compiled = self.transformer.compile(expr) expect(str(compiled)).to(equal('((a * b) == 1462)')) expect(calling(self.model.add, compiled)).not_to(raise_error)
2.4375
2
games/views.py
sarahboyce/play-connect-four
0
12784358
<filename>games/views.py from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.db.models import Q from django.http import JsonResponse from django.shortcuts import get_object_or_404 from django.views import generic from .forms import GameForm from .models import Game class GameListView(LoginRequiredMixin, generic.ListView): model = Game def get_queryset(self): return Game.objects.filter( Q(player_1=self.request.user) | Q(player_2=self.request.user) ).order_by("-status", "-created_date") class GameCreateView(LoginRequiredMixin, generic.CreateView): model = Game form_class = GameForm def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs["user"] = self.request.user return kwargs class GamePlayerMixin(UserPassesTestMixin): def test_func(self): game = get_object_or_404(Game, pk=self.kwargs["pk"]) return self.request.user in (game.player_1, game.player_2) class GameDetailView(LoginRequiredMixin, GamePlayerMixin, generic.DetailView): model = Game class GameCoinRedirectView(LoginRequiredMixin, GamePlayerMixin, generic.RedirectView): permanent = False pattern_name = "game_detail" def get_redirect_url(self, *args, **kwargs): game = get_object_or_404(Game, pk=kwargs["pk"]) column = kwargs.pop("column") game.create_coin(user=self.request.user, column=column) return super().get_redirect_url(*args, **kwargs) class GameCheckRedirectView(LoginRequiredMixin, GamePlayerMixin, generic.View): def get(self, request, *args, **kwargs): game = get_object_or_404(Game, pk=kwargs["pk"]) return JsonResponse( { "is_users_turn": game.is_users_turn(request.user.id), "is_game_over": not game.is_pending, } )
2.25
2
crowdsourcing/interfaces/simulator.py
sbranson/online_crowdsourcing
4
12784359
import numpy as np import os import sys import copy import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D sys.path.append(os.path.join(os.path.dirname(__file__),"../")) from crowdsourcing.annotation_types.classification import * def combine_dicts(ds): v = {} for d in ds: for k in d: v[k] = d[k] return v # Defining a useful suite of lesion study experiments and standardized plot styles across different annotation types #------------------------------------------------------- DEFAULT_PLOT_PARAMS = {'line-width':3, 'bar-color':'g', 'bar-width':0.8, 'axis-font-size':20, 'title-font-size':30, 'tick-font-size':16, 'legend-font-size':14} PROB_WORKER_IMAGE_CV_ONLINE = {'name':'prob-worker-cv-online', 'line_style':'-', 'color':'r', 'use_computer_vision':True, 'online':True, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':True, 'naive_computer_vision':False, 'batch_size':1000, 'sort_method':'num_annos'} PROB_WORKER_IMAGE_CV_NAIVE_ONLINE = {'name':'prob-worker-cv-naive-online', 'line_style':'-', 'color':'c', 'use_computer_vision':True, 'online':True, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':True, 'naive_computer_vision':True, 'batch_size':1000, 'sort_method':'num_annos'} PROB_WORKER_IMAGE_ONLINE = {'name':'prob-worker-online', 'line_style':'-', 'color':'g', 'use_computer_vision':False, 'online':True, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':True, 'batch_size':1000, 'sort_method':'num_annos'} PROB_ONLINE = {'name':'prob-online', 'line_style':'-', 'color':'b', 'use_computer_vision':False, 'online':True, 'simple_crowdsourcing':False, 'learn_worker_params':False, 'learn_image_params':False, 'batch_size':1000, 'sort_method':'num_annos'} PROB_WORKER_IMAGE_CV_ONLINE_0005 = combine_dicts([PROB_WORKER_IMAGE_CV_ONLINE, {'name':'prob-worker-cv-online-.005', 'min_risk':0.005, 'color':'#FF0000'}]) PROB_WORKER_IMAGE_CV_ONLINE_001 = combine_dicts([PROB_WORKER_IMAGE_CV_ONLINE, {'name':'prob-worker-cv-online-.01', 'min_risk':0.01, 'color':'#BB0000'}]) PROB_WORKER_IMAGE_CV_ONLINE_002 = combine_dicts([PROB_WORKER_IMAGE_CV_ONLINE, {'name':'prob-worker-cv-online-.02', 'min_risk':0.02, 'color':'#770000'}]) PROB_WORKER_IMAGE_CV = {'name':'prob-worker-cv', 'line_style':'-.s', 'color':'r', 'use_computer_vision':True, 'online':False, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':True, 'naive_computer_vision':False, 'batch_size':1000, 'sort_method':'num_annos'} PROB_WORKER_IMAGE = {'name':'prob-worker', 'line_style':'-.o', 'color':'g', 'use_computer_vision':False, 'online':False, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':True, 'batch_size':1000, 'sort_method':'num_annos'} PROB_WORKER = {'name':'prob-worker-noim', 'line_style':'-.o', 'color':'k', 'use_computer_vision':False, 'online':False, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':False, 'batch_size':1000, 'sort_method':'num_annos'} PROB = {'name':'prob', 'line_style':'-.*', 'color':'b', 'use_computer_vision':False, 'online':False, 'simple_crowdsourcing':False, 'learn_worker_params':False, 'learn_image_params':False, 'batch_size':1000, 'sort_method':'num_annos'} SIMPLE_CROWDSOURCING = {'name':'majority-vote', 'line_style':'-.v', 'color':'m', 'use_computer_vision':False, 'online':False, 'simple_crowdsourcing':True, 'learn_worker_params':False, 'learn_image_params':False, 'batch_size':1000, 'sort_method':'num_annos'} ALL_METHODS_NO_CV = [PROB_WORKER_IMAGE_ONLINE, PROB_ONLINE, PROB_WORKER_IMAGE, PROB_WORKER, PROB, SIMPLE_CROWDSOURCING] ALL_PLOTS_NO_CV = [combine_dicts([{'title':'Method Comparison', 'name':'method_comparison_semilog', 'type':'semilog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Method Comparison', 'name':'method_comparison_loglog', 'type':'loglog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image #', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Method Comparison', 'name':'method_comparison', 'type':'plot', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation_semilog', 'type':'semilog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation_loglog', 'type':'loglog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation', 'type':'plot', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Worker Skill', 'name':'worker_skill', 'type':'skill', 'methods':[{'name':PROB_WORKER_IMAGE['name']}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Num Annotations', 'name':'num_annotations', 'type':'hist', 'xlabel':'Annotations Per Image', 'ylabel':'Image Count', 'methods':[{'name':PROB_WORKER_IMAGE_ONLINE['name'], 'x':'num_annos', 'y':'num_annos_bins'}]}, DEFAULT_PLOT_PARAMS]) ] ALL_METHODS = [PROB_WORKER_IMAGE_CV_ONLINE_002, PROB_WORKER_IMAGE_CV_ONLINE_001, PROB_WORKER_IMAGE_CV_ONLINE_0005, PROB_WORKER_IMAGE_CV_NAIVE_ONLINE, PROB_WORKER_IMAGE_ONLINE, PROB_ONLINE, PROB_WORKER_IMAGE_CV, PROB_WORKER_IMAGE, PROB, SIMPLE_CROWDSOURCING] ALL_PLOTS = [combine_dicts([{'title':'Method Comparison', 'name':'method_comparison_semilog', 'type':'semilog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV_ONLINE_002['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_ONLINE_0005['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_NAIVE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Method Comparison', 'name':'method_comparison_loglog', 'type':'loglog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV_ONLINE_002['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_ONLINE_0005['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_NAIVE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Method Comparison', 'name':'method_comparison', 'type':'plot', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV_ONLINE_002['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_ONLINE_0005['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_NAIVE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation_semilog', 'type':'semilog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation_loglog', 'type':'loglog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation', 'type':'plot', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Worker Skill', 'name':'worker_skill', 'type':'skill', 'methods':[{'name':PROB_WORKER_IMAGE['name']}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Num Annotations', 'name':'num_annotations', 'type':'hist', 'xlabel':'Annotations Per Image', 'ylabel':'Image Count', 'methods':[{'name':PROB_WORKER_IMAGE_CV_ONLINE['name'], 'x':'num_annos', 'y':'num_annos_bins'}]}, DEFAULT_PLOT_PARAMS]) ] #------------------------------------------------------- class SimulatedCrowdsourcer(object): def __init__(self, full_dataset, expert_dataset=None, save_prefix=None, output_dir='output', online=True, simple_crowdsourcing=False, learn_worker_params=True, learn_image_params=True, use_computer_vision=False, naive_computer_vision=False, batch_size=1000, num_rand_perms=1, sort_method='num_annos', name=None, line_style='-', color='r', save_all_perms=False, min_risk=0.005): self.full_dataset, self.expert_dataset = full_dataset, expert_dataset self.online, self.simple_crowdsourcing = online, simple_crowdsourcing self.learn_worker_params, self.learn_image_params = learn_worker_params, learn_image_params self.use_computer_vision, self.batch_size = use_computer_vision, (batch_size if online else len(full_dataset.images)) self.naive_computer_vision = naive_computer_vision self.num_rand_perms, self.sort_method = num_rand_perms, sort_method self.save_prefix, self.output_dir = save_prefix, output_dir self.max_workers_per_image, self.save_all_perms = 1, save_all_perms self.min_risk = min_risk def run(self): if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) sum_plot_data, num_plot_data, fnames = [], [], [] all_plot_data = {} for rand_perm in range(self.num_rand_perms): plot_data = {'num':[], 'err':[], 'risk':[]} iter = 0 self.rand_perms = {} #if self.full_dataset.computer_vision_predictor and hasattr(self.full_dataset.computer_vision_predictor, 'iteration'): # self.full_dataset.computer_vision_predictor.iteration = 0 self.dataset = self.full_dataset.__class__(debug=0, learn_worker_params=self.learn_worker_params, learn_image_params=self.learn_image_params, computer_vision_predictor=(self.full_dataset.computer_vision_predictor if self.use_computer_vision else None), naive_computer_vision=self.naive_computer_vision, min_risk=self.min_risk) self.dataset.copy_parameters_from(self.full_dataset, full=False) for i in self.full_dataset.images: self.dataset.images[i] = self.full_dataset._CrowdImageClass_(i, self.dataset) self.dataset.images[i].copy_parameters_from(self.full_dataset.images[i], full=False) for w in self.full_dataset.workers: self.dataset.workers[w] = self.full_dataset._CrowdWorkerClass_(w, self.dataset) self.dataset.workers[w].copy_parameters_from(self.full_dataset.workers[w], full=False) while self.dataset.num_unfinished(full_dataset=self.full_dataset) > 0: if self.simple_crowdsourcing: self.dataset.crowdsource_simple() else: self.dataset.estimate_parameters(avoid_if_finished=True) self.dataset.check_finished_annotations(set_finished=self.online) if self.expert_dataset: err,num = self.dataset.compute_error(self.expert_dataset), self.dataset.num_annotations() if not self.simple_crowdsourcing: plot_data["risk"].append(self.dataset.risk()) plot_data["num"].append(float(num)/len(self.dataset.images)) plot_data["err"].append(err) if self.save_prefix and rand_perm==0 or self.save_all_perms: fname = self.output_dir+'/'+self.save_prefix+str(rand_perm)+'_'+str(iter)+'.json' self.dataset.save(fname) fnames.append({str(rand_perm)+'_'+str(iter):fname}) self.augment_annotations_if_necessary() iter += 1 if hasattr(self.dataset, 'parts'): plot_data["num_annos"] = [] for p in range(len(self.dataset.parts)): plot_data["num_annos"] += [self.dataset.parts[p].images[i].num_annotations() for i in self.dataset.parts[p].images] else: plot_data["num_annos"] = [self.dataset.images[i].num_annotations() for i in self.dataset.images] plot_data["num_annos_bins"] = np.arange(-.5, np.asarray(plot_data["num_annos"]).max()+.5, 1).tolist() if hasattr(self.dataset.workers[w],'skill') and self.dataset.workers[w].skill: for s in range(len(self.dataset.workers[self.dataset.workers.keys()[0]].skill)): plot_data["skill"+str(s)] = [self.dataset.workers[w].skill[s] for w in self.dataset.workers] if self.dataset.cv_worker: plot_data["skill_cv"+str(s)] = [self.dataset.cv_worker.skill[s]] plot_data["worker_num_annos"] = [len(self.dataset.workers[w].images) for w in self.dataset.workers] for k in plot_data: if not k in all_plot_data: all_plot_data[k] = [] all_plot_data[k].append(plot_data[k]) plot_data = {} for k in all_plot_data: ml = int(np.asarray([len(c) for c in all_plot_data[k]]).max()) a = np.zeros((self.num_rand_perms, ml)) valid = np.zeros((self.num_rand_perms, ml)) for i in range(self.num_rand_perms): a[i,:len(all_plot_data[k][i])] = all_plot_data[k][i] valid[i,:len(all_plot_data[k][i])] = 1 if k == 'num_annos': plot_data[k] = a.flatten().tolist() else: plot_data[k] = (a.sum(axis=0) / valid.sum(axis=0)).tolist() plot_data[k+'_var'] = ((((a-plot_data[k])**2)*valid).sum(axis=0) / valid.sum(axis=0)).tolist() return plot_data, fnames, all_plot_data def augment_annotations_if_necessary(self): processed = [] num = 0 image_ids = self.dataset.choose_images_to_annotate_next(max_workers_per_image=self.max_workers_per_image, sort_method=self.sort_method, full_dataset=self.full_dataset) for i in image_ids: processed.append(i) workers = self.full_dataset.images[i].workers if not i in self.rand_perms: self.rand_perms[i] = np.random.permutation(len(self.full_dataset.images[i].z)) #print str(i) + " " + str(len(workers)) + " " + str(workers) has_cv = (1 if (self.dataset.cv_worker and self.dataset.cv_worker.id in self.dataset.images[i].z) else 0) fd_has_cv = (1 if (self.full_dataset.cv_worker and self.full_dataset.cv_worker.id in self.full_dataset.images[i].z) else 0) for j in range(len(self.dataset.images[i].z)-has_cv, min(len(self.dataset.images[i].z)-has_cv+self.max_workers_per_image, len(self.full_dataset.images[i].z)-fd_has_cv)): w = workers[self.rand_perms[i][j]] if not self.dataset.images[i].finished: assert not w in self.dataset.images[i].z, "Duplicate worker " + str(w) + " for image " + str(i) + " calling augment_annotations()" z = self.dataset._CrowdLabelClass_(self.dataset.images[i], self.dataset.workers[w]) z.parse(self.full_dataset.images[i].z[w].raw_data) self.dataset.images[i].z[w] = z self.dataset.images[i].workers.append(w) self.dataset.workers[w].images[i] = self.dataset.images[i] num += 1 if num >= self.batch_size: break ''' if self.use_computer_vision: for i in processed: self.dataset.images[i].predict_true_labels(avoid_if_finished=True) # Initialize training label for computer vision self.dataset.synch_computer_vision_labels() ''' def RunSimulatedExperiments(full_dataset, methods, output_dir, plots, expert_dataset=None, title=None, num_rand_perms=5, force_compute=False, show_intermediate_results=True): results, fnames, methods_d, all_plot_data = {}, {}, {}, {} fnames_i = [] for a in methods: m = a['name'] if not os.path.exists(os.path.join('output', output_dir, 'plot_data_'+m+'.json')) or force_compute: sc = SimulatedCrowdsourcer(full_dataset, expert_dataset=(expert_dataset if expert_dataset else full_dataset), num_rand_perms=num_rand_perms, output_dir='output/'+output_dir, save_prefix=m, **a) results[m], fnames[m], all_plot_data[m] = sc.run() with open(os.path.join('output', output_dir, 'plot_data_'+m+'.json'), 'w') as f: json.dump({'results':results[m], 'fnames':fnames[m], 'all_plot_data':all_plot_data[m]}, f) else: with open(os.path.join('output', output_dir, 'plot_data_'+m+'.json')) as f: data = json.load(f) results[m], fnames[m], all_plot_data[m] = data['results'], data['fnames'], data['all_plot_data'] methods_d[m] = a fnames_c = [] for f in fnames[a['name']]: fnames_c.append({f.keys()[0] : f[f.keys()[0]][len('output/'):]}) fnames_i.append({'name':a['name'], 'files':fnames_c}) if show_intermediate_results: GeneratePlotResults(full_dataset, methods, output_dir, plots, results, methods_d, fnames_i, title) GeneratePlotResults(full_dataset, methods, output_dir, plots, results, methods_d, fnames_i, title) def GeneratePlotResults(full_dataset, methods, output_dir, plots, results, methods_d, fnames_i, title): plot_files = [] for i in range(len(plots)): handles, labels = [], [] fig = plt.figure(i+1) plt.clf() plot = plots[i] if 'xlim' in plot: plt.xlim(plot['xlim'][0], plot['xlim'][1]) if 'ylim' in plot: plt.ylim(plot['ylim'][0], plot['ylim'][1]) for a in plots[i]['methods']: m = a['name'] if not m in methods_d: continue print str(i) + ' ' + str(m) line_style = a['line_style'] if 'line_style' in a else methods_d[m]['line_style'] color = a['color'] if 'color' in a else methods_d[m]['color'] if plot['type'] == 'skill': plot = copy.deepcopy(plots[i]) plot['type'] = 'scatter' if len(full_dataset.skill_names) <= 2 else 'scatter3d' if not 'xlabel' in plot: plot['xlabel'] = full_dataset.skill_names[0] if not 'ylabel' in plot: plot['ylabel'] = full_dataset.skill_names[1] if not 'zlabel' in plot and len(full_dataset.skill_names) > 2: plot['zlabel'] = full_dataset.skill_names[2] if not 'x' in a: a['x'] = 'skill0' if not 'y' in a: a['y'] = 'skill1' if not 'z' in a and len(full_dataset.skill_names) > 2: a['z'] = 'skill2' if plot['type'] == 'semilog': print str(len(results[m][a['x']])) + ' ' + str(len(results[m][a['y']])) h = plt.semilogy(results[m][a['x']], results[m][a['y']], line_style, lw=plot["line-width"], color=color) handles.append(h[0]) elif plot['type'] == 'loglog': h = plt.loglog(results[m][a['x']], results[m][a['y']], line_style, lw=plot["line-width"], color=color) handles.append(h[0]) elif plot['type'] == 'plot': h = plt.plot(results[m][a['x']], results[m][a['y']], line_style, lw=plot["line-width"]) handles.append(h[0]) elif plot['type'] == 'hist': if 'y' in a: h = plt.hist(results[m][a['x']], results[m][a['y']], histtype='bar', rwidth=plot["bar-width"], color=plot["bar-color"]) else: h = plt.hist(results[m][a['x']], histtype='bar', rwidth=plot["bar-width"], color=plot["bar-color"]) handles.append(h[0]) elif plot['type'] == 'scatter': h = plt.scatter(results[m][a['x']], results[m][a['y']], c='r', marker='o') handles.append(h) elif plot['type'] == 'scatter3d': ax = fig.add_subplot(111, projection='3d') h = ax.scatter(results[m][a['x']], results[m][a['y']], results[m][a['z']], c='r', marker='o') handles.append(h) labels.append(a['title'] if 'title' in a else m) if plot['type'] == 'scatter3d': if 'xlabel' in plot: ax.set_xlabel(plot['xlabel'], fontsize=plot['axis-font-size']) if 'ylabel' in plot: ax.set_ylabel(plot['ylabel'], fontsize=plot['axis-font-size']) if 'zlabel' in plot: ax.set_zlabel(plot['zlabel'], fontsize=plot['axis-font-size']) else: if 'xlabel' in plot: plt.xlabel(plot['xlabel'], fontsize=plot['axis-font-size']) if 'ylabel' in plot: plt.ylabel(plot['ylabel'], fontsize=plot['axis-font-size']) if 'zlabel' in plot: plt.zlabel(plot['zlabel'], fontsize=plot['axis-font-size']) if 'title' in plot: plt.title(plot['title'], fontsize=plot['title-font-size']) plt.tick_params(axis='both', which='major', labelsize=plot['tick-font-size']) plt.tick_params(axis='both', which='minor', labelsize=plot['tick-font-size']) if 'legend' in plot: plt.legend(handles, labels, prop={'size':plot['legend-font-size']}) plt.savefig(os.path.join('output', output_dir, plot['name']+'.pdf')) plt.savefig(os.path.join('output', output_dir, plot['name']+'.png')) plot_files.append(output_dir + '/' + plot['name']+'.png') with open(os.path.join('output', output_dir, 'galleries.json'), 'w') as f: json.dump({'plots':plot_files, 'methods':fnames_i, 'title':title}, f)
2.046875
2
examples/time_price_bot.py
yuepaang/tiny_bot
11
12784360
<filename>examples/time_price_bot.py<gh_stars>10-100 from tiny_bot import * store = RedisStore("test", "redis://localhost:6379/0") class QueryAction(Action): def run(self, bot, tracker, msg): result = "从<%s>邮寄到<%s>,重量:<%s>,时间:<%s> 不要钱,哈哈!" % ( tracker._from, tracker.to, tracker.weight, tracker.time) return Response(result) class MyTracker(store.Tracker): __domain__ = "price_time_bot" _from = StringField() to = StringField() weight = FloatField() time = StringField() class MyActionHub(ActionHub): query = QueryAction() # utter template action , will trandom choose a reply utter_bye = ['再见', 'bye', '滚蛋'] utter_greeting = ['你好', '小垃圾,咋了?'] utter_ask__from = "从哪邮寄?" utter_ask_to = ['要邮寄到哪?'] utter_ask_weight = "多重?" utter_ask_time = "什么时候邮寄?" class MyPolicy(Policy): def predict(self, bot, tracker, msg): if msg.intent == "bye": return ['utter_bye'], 0 elif msg.intent == "greeting": return ['utter_greeting'], None elif msg.intent in ("query", "inform"): for slot in ['_from', 'to', 'weight', 'time']: if tracker[slot] is None: return ['utter_ask_%s' % slot], 100 return ['query', 'utter_bye'], 1 else: raise Exception("should never happened!") class MyNLU(NLU): def parse(self, bot, tracker, msg): return msg class MyBot(Bot): __domain__ = "price_time_bot" TRACKER = MyTracker ACTIONS = MyActionHub INTENTS = ["query", "inform", "greeting", "bye"] NLU = MyNLU POLICIES = [MyPolicy] if __name__ == '__main__': bot = MyBot() class Error1(Exception): pass class Error2(Exception): pass class Error3(Exception): pass @bot.catch(Error1) def catch1(tracker, req): return Response("catch1") @bot.catch((Error1, Error2)) def catch1(tracker, req): return Response("catch2") @bot.before_request def before_request(tracker, req): print("before_request", req) return req @bot.after_request def after_request(tracker, res): print("after_request", res) return res @bot.before_action def before_acton(act, tracker, req): print("before_acton", act) @bot.after_action def after_action(act, tracker, req): print("after_action", act) _from = [ {'entity': '_from', 'value': '北京'}, ] to = [ {'entity': 'to', 'value': '上海'}, ] weight = [ {'entity': 'weight', 'value': 12.0}, ] time = [ {'entity': 'time', 'value': "今天"}, ] res = bot.handle_msg( Request(body="", intent="query", entities=_from+to), "1111") assert len(res) == 1 and res[0].body == "多重?" res = bot.handle_msg( Request(body="", intent="inform", entities=weight), "1111") assert len(res) == 1 and res[0].body == "什么时候邮寄?" res = bot.handle_msg( Request(body="", intent="inform", entities=time), "1111") assert len(res) == 2 and res[1].body in ['再见', 'bye', '滚蛋'] assert res[0].body == "从<北京>邮寄到<上海>,重量:<12.0>,时间:<今天> 不要钱,哈哈!"
2.5
2
camper/tests/test_waitinglist.py
mrtopf/camper
13
12784361
<gh_stars>10-100 from conftest import create_user from camper import * import pytest @pytest.skip() def test_subscribe_user(barcamp, app): user = create_user(app, "user1") barcamp.subscribe(user) bc = app.get_barcamp("test") assert unicode(user._id) in bc.subscribers def test_register_user_duplicate(barcamp, app): # we do this via the main event user = create_user(app, "user1") barcamp = app.get_barcamp("test") # retrieve it again to have an event initialized event = barcamp.event event.add_participant(user) event.add_participant(user) barcamp.save() bc = app.get_barcamp("test") assert unicode(user._id) in bc.event.participants assert len(bc.event.participants) == 1 def test_register_users_until_waitinglist(barcamp, app): users = [] barcamp = app.get_barcamp("test") # retrieve it again to have an event initialized event = barcamp.event for i in range(1,6): user = create_user(app, "user1") users.append(unicode(user._id)) event.add_participant(user) user = create_user(app, "user1") pytest.raises(ParticipantListFull, event.add_participant, user) barcamp.save() bc = app.get_barcamp("test") assert unicode(user._id) not in bc.event.participants assert unicode(user._id) in bc.event.waiting_list assert len(bc.event.participants) == 5 assert len(bc.event.waiting_list) == 1
2.21875
2
graphlearning.py
shekkizh/GraphLearning
1
12784362
''' GraphPy: Python Module for Graph-based learning algorithms. Efficient implementations of modern methods for graph-based semi-supervised learning, and graph clustering. See README.md file for usage. Author: <NAME>, 2020 ''' import numpy as np import datetime import matplotlib.pyplot as plt import matplotlib import scipy.spatial as spatial import scipy.optimize as opt import numpy.random as random import scipy.sparse as sparse import scipy.sparse.linalg as splinalg import scipy.sparse.csgraph as csgraph import sklearn.cluster as cluster from sklearn.decomposition import PCA import sys, getopt, time, csv, torch, os, multiprocessing from joblib import Parallel, delayed from utils.non_neg_qpsolver import non_negative_qpsolver clustering_algorithms = ['incres', 'spectral', 'spectralshimalik', 'spectralngjordanweiss'] # Print iterations progress def printProgressBar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█'): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end='\r') # Print New Line on Complete if iteration == total: print() def load_mbo_eig(dataset, metric, k): # Load eigenvector data if MBO selected try: location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + "_" + metric + "_k%d" % k + "_spectrum.npz" dataFile_path = os.path.join(location, 'MBOdata', dataFile) M = np.load(dataFile_path, allow_pickle=True) eigvals = M['eigenvalues'] eigvecs = M['eigenvectors'] except: print("Could not find MBOdata/" + dataset + "_" + metric + "_k%d" % k + "_spectrum.npz") print('You need to run ComputeEigenvectorsMBO.py first.') sys.exit(2) return eigvals, eigvecs def load_label_permutation(dataset, label_perm='', t='-1'): location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + label_perm + "_permutations.npz" dataFile_path = os.path.join(location, 'LabelPermutations', dataFile) # Load label permutation try: M = np.load(dataFile_path, allow_pickle=True) perm = M['perm'] except: print('Cannot find ' + dataFile) print('You need to run CreateLabelPermutation.py first.') sys.exit(2) # Restrict trials t = [int(e) for e in t.split(',')] if t[0] > -1: if len(t) == 1: perm = perm[0:t[0]] else: perm = perm[(t[0] - 1):t[1]] return perm def load_dataset(dataset, metric='L2'): # For variational autoencoder the vae data, e.g., Data/MNIST_vae.npz must exist. if metric[0:3] == 'vae' or metric[0:3] == 'aet': dataFile = dataset + "_" + metric + ".npz" else: dataFile = dataset + "_raw.npz" location = os.path.dirname(os.path.realpath(__file__)) dataFile_path = os.path.join(location, 'Data', dataFile) # Try to Load data try: M = np.load(dataFile_path, allow_pickle=True) data = M['data'] except: print('Cannot find ' + dataFile + '.') sys.exit(2) return data def load_labels(dataset): location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + "_labels.npz" dataFile_path = os.path.join(location, 'Data', dataFile) # Load labels try: M = np.load(dataFile_path, allow_pickle=True) labels = M['labels'] except: print('Cannot find dataset Data/' + dataFile) sys.exit(2) return labels def load_kNN_data(dataset, metric='L2'): location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + "_" + metric + ".npz" dataFile_path = os.path.join(location, 'kNNData', dataFile) # Load kNN data try: M = np.load(dataFile_path, allow_pickle=True) I = M['I'] J = M['J'] D = M['D'] except: print('Cannot find ' + dataFile) print('You need to run ComputeKNN.py.') sys.exit(2) return I, J, D # Compute sizes of each class def label_proportions(labels): L = np.unique(labels) L = L[L >= 0] k = len(L) # n = len(labels) n = np.sum(labels >= 0) beta = np.zeros((k,)) for i in range(k): beta[i] = np.sum(labels == L[i]) / n return beta # Constructs a weight matrix for graph on mxn grid with NSEW neighbors # def grid_graph(m, n): # X, Y = np.mgrid[:m, :n] # # return W # Reweights the graph to use self-tuning weights def self_tuning(W, D, alpha): if alpha != 0: n = D.shape[0] k = D.shape[1] d = D[:, k - 1] d = sparse.spdiags(d ** (-alpha), 0, n, n) W = d * W * d return W # Reweights the graph based on a clustering prior def cluster_prior(W, cluster_labels): n = W.shape[0] I, J, V = sparse.find(W) K = cluster_labels[I] == cluster_labels[J] V[K] = V[K] * 10 V = V / np.max(V) W = sparse.coo_matrix((V, (I, J)), shape=(n, n)).tocsr() return W # Computes scattering transform of depth 2 of I # Bruna, Joan, and <NAME>. "Invariant scattering convolution networks." IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1872-1886. def scattering_transform(I, n, m, depth=2): from kymatio import Scattering2D num_pts = I.shape[0] K = torch.from_numpy(I.reshape((num_pts, n, m))).float().contiguous() scattering = Scattering2D(J=depth, shape=(n, m)) Z = scattering(K).numpy() l = Z.shape[1] * Z.shape[2] * Z.shape[3] return Z.reshape((num_pts, l)) # Label permutations # labels = labels # T = number of trials # r = label rate in (0,1) def create_label_permutations_rate(labels, T, R): perm = list() n = labels.shape[0] labelvals = np.unique(labels) labelvals = labelvals[labelvals >= 0] num_labels = len(labelvals) num = np.zeros((num_labels,)) for i in range(num_labels): num[i] = np.sum(labels == labelvals[i]) J = np.arange(n).astype(int) for k in range(T): for r in R: L = [] for i in range(num_labels): l = labelvals[i] I = labels == l K = J[I] m = round(num[i] * r / 100) L = L + random.choice(K, size=m.astype(int), replace=False).tolist() L = np.array(L) perm.append(L) return perm # Label permutations # labels = labels # T = number of trials # m = vector of number of labels def create_label_permutations(labels, T, m, multiplier=None): # Find all unique labels >= 0 # Negative numbers indicate unlabeled nodes unique_labels = np.unique(labels) unique_labels = unique_labels[unique_labels >= 0] perm = list() n = labels.shape[0] J = np.arange(n).astype(int) for k in range(T): for i in m: L = [] ind = 0 for l in unique_labels: I = labels == l K = J[I] if multiplier is None: L = L + random.choice(K, size=i, replace=False).tolist() else: sze = int(np.round(i * multiplier[ind])) L = L + random.choice(K, size=sze, replace=False).tolist() ind = ind + 1 L = np.array(L) perm.append(L) return perm # Randomly choose m labels per class def randomize_labels(L, m): perm = create_label_permutations(L, 1, [m]) return perm[0] # Default function def exp_weight(x): return np.exp(-x) # Pointwise max of non-negative sparse matrices A and B def sparse_max(A, B): I = (A + B) > 0 IB = B > A IA = I - IB return A.multiply(IA) + B.multiply(IB) # Compute degrees of weight matrix W def degrees(W): return np.squeeze(np.array(np.sum(W, axis=1))) # Multiply diagonal of matrix by degree def diag_multiply(W, b): n = W.shape[0] # Number of points D = sparse.spdiags(W.diagonal(), 0, n, n) return W - (1 - b) * D # Compute degrees of weight matrix W # Returns sparse matrix with degrees on diagonal def degree_matrix(W, p=1): n = W.shape[0] # Number of points # Construct sparse degree matrix d = degrees(W) D = sparse.spdiags(d ** p, 0, n, n) return D.tocsr() # Construct robin boundary condition matrix def robin_bc_matrix(X, nu, eps, gamma): n = X.shape[0] Xtree = spatial.cKDTree(X) _, nn_ind = Xtree.query(X + eps * nu) # nn_dist = np.linalg.norm(X - X[nn_ind,:],axis=1) nn_dist = eps * np.ones((n,)) # Robin matrix A = sparse.spdiags(gamma + (1 - gamma) / nn_dist, 0, n, n) B = sparse.coo_matrix(((1 - gamma) / nn_dist, (range(n), nn_ind)), shape=(n, n)) R = (A - B).tocsr() return R # Laplace matrix # W = weight matrix # norm = type of normalization # Options: none, randomwalk, normalized def graph_laplacian(W, norm="none"): D = degree_matrix(W) if norm == "none": L = D - W elif norm == "randomwalk1": Dinv = degree_matrix(W, p=-1) L = Dinv * (D - W) elif norm == "randomwalk2": Dinv = degree_matrix(W, p=-1) L = (D - W) * Dinv elif norm == "normalized": Dinv2 = degree_matrix(W, p=-1 / 2) L = Dinv2 * (D - W) * Dinv2 else: print("Invalid option for graph Laplacian normalization. Returning unnormalized Laplacian.") L = D - W return L.tocsr() # Graph infinity Laplacian # W = sparse weight matrix # u = function on graph def graph_phi_laplacian(W, u, phi, I=None, J=None, V=None): n = W.shape[0] if I is None or J is None: I, J, V = sparse.find(W) w = u[J] - u[I] a = np.absolute(w) pa = phi(a) m = pa / (a + 1e-13) M = sparse.coo_matrix((V * pa / (a + 1e-13), (I, J)), shape=(n, n)).tocsr() m = degrees(M) M = sparse.coo_matrix((V * pa * np.sign(w), (I, J)), shape=(n, n)).tocsr() M = np.squeeze(np.array(np.sum(M, axis=1))) return M, m # Graph infinity Laplacian # W = sparse weight matrix # u = function on graph def graph_infinity_laplacian(W, u, I=None, J=None, V=None): n = W.shape[0] if I is None or J is None: I, J, V = sparse.find(W) M = sparse.coo_matrix((V * (u[J] - u[I]), (I, J)), shape=(n, n)).tocsr() M = M.min(axis=1) + M.max(axis=1) return M.toarray().flatten() # Construct epsilon-graph sparse distance matrix def eps_weight_matrix(X, eps, f=exp_weight): n = X.shape[0] # Number of points # Rangesearch to find nearest neighbors Xtree = spatial.cKDTree(X) M = Xtree.query_pairs(eps) M = np.array(list(M)) # Differences between points and neighbors V = X[M[:, 0], :] - X[M[:, 1], :] D = np.sum(V * V, axis=1) # Weights D = f(4 * D / (eps * eps)) # Symmetrize weights and add diagonal entries D = np.concatenate((D, D, f(0) * np.ones(n, ))) M1 = np.concatenate((M[:, 0], M[:, 1], np.arange(0, n))) M2 = np.concatenate((M[:, 1], M[:, 0], np.arange(0, n))) # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (M1, M2)), shape=(n, n)) return W.tocsr() # Exact knnsearch def knnsearch(X, k): # KDtree to find nearest neighbors n = X.shape[0] Xtree = spatial.cKDTree(X) D, J = Xtree.query(X, k=k) I = np.ones((n, k), dtype=int) * J[:, 0][:, None] return I, J, D # Perform approximate nearest neighbor search, returning indices I,J of neighbors, and distance D # Metric can be "angular", "euclidean", "manhattan", "hamming", or "dot". def knnsearch_annoy(X, k, similarity='euclidean'): from annoy import AnnoyIndex n = X.shape[0] # Number of points dim = X.shape[1] # Dimension print('kNN search with Annoy approximate nearest neighbor package...') printProgressBar(0, n, prefix='Progress:', suffix='Complete', length=50) u = AnnoyIndex(dim, similarity) # Length of item vector that will be indexed for i in range(n): u.add_item(i, X[i, :]) u.build(10) # 10 trees D = [] I = [] J = [] for i in range(n): printProgressBar(i + 1, n, prefix='Progress:', suffix='Complete', length=50) A = u.get_nns_by_item(i, k, include_distances=True, search_k=-1) I.append([i] * k) J.append(A[0]) D.append(A[1]) I = np.array(I) J = np.array(J) D = np.array(D) return I, J, D # Compute weight matrix from nearest neighbor indices I,J and distances D def weight_matrix_selftuning(I, J, D): n = I.shape[0] k = I.shape[1] # Distance to kth nearest neighbor as a matrix sigma = D[:, k - 1] sigma = sparse.spdiags(1 / sigma, 0, n, n) sigma = sigma.tocsr() # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Symmetrize and remove redundant entries M1 = np.vstack((I, J, D)) M2 = np.vstack((J, I, D)) M = np.concatenate((M1, M2), axis=1) M = np.unique(M, axis=1) # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format I = M[0, :] J = M[1, :] D = M[2, :] dist = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() B = sparse.coo_matrix((np.ones(len(D), ), (I, J)), shape=(n, n)).tocsr() # Ones in all entries # Self-tuning weights E = -4 * sigma * (dist ** 2) * sigma W = E.expm1() W = W.multiply(B) + B return W # Compute weight matrix from nearest neighbor indices I,J and distances D # k = number of neighbors # Chooses k neighbors at random from I.shape[1] nearset neighbors def weight_matrix_homogenized(I, J, D, k, f=exp_weight): # I = I[:,:10] # J = J[:,:10] # D = D[:,:10] # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) n = I.shape[0] for i in range(n): ind = random.choice(I.shape[1], k, replace=False) I[i, :k] = I[i, ind] J[i, :k] = J[i, ind] D[i, :k] = 1 n = I.shape[0] k = I.shape[1] D = D * D eps = D[:, k - 1] / 4 D = f(D / eps[:, None]) # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() return W # Compute distance matrix from nearest neighbor indices I,J and distances D # k = number of neighbors def dist_matrix(I, J, D, k): # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) I = I[:, :k] J = J[:, :k] D = D[:, :k] n = I.shape[0] k = I.shape[1] # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() return W # Adds weights to an adjacency matrix W using similarity in data X def add_weights(W, X, labels): n = W.shape[0] # pca = PCA(n_components=20) # X = pca.fit_transform(X) # print(X.shape) I, J, V = sparse.find(W) # Dot products Y = X[I, :] - X[J, :] Y = np.sum(Y * Y, axis=1) W = sparse.coo_matrix((Y, (I, J)), shape=(n, n)).tocsr() max_dist = np.reshape(np.max(W, axis=1).todense().tolist(), (n,)) D = sparse.spdiags((max_dist + 1e-10) ** (-1), 0, n, n).tocsr() W = D * W I, J, V = sparse.find(W) V = np.exp(-2 * V) W = sparse.coo_matrix((V, (I, J)), shape=(n, n)).tocsr() return W # Finds largest connected component of the graph represented by adjacency matrix W # Returns the weighted adjacency matrix, along with a boolean mask indicating the # vertices from the input matrix that were selected def largest_conn_component(W): ncomp, labels = csgraph.connected_components(W, directed=False) num_verts = np.zeros((ncomp,)) for i in range(ncomp): num_verts[i] = np.sum(labels == i) i_max = np.argmax(num_verts) ind = labels == i_max A = W[ind, :] A = A[:, ind] print("Found %d" % ncomp + " connected components.") print("Returning component with %d" % num_verts[i_max] + " vertices out of %d" % W.shape[0] + " total vertices.") return A, ind # Compute weight matrix from nearest neighbor indices I,J and distances D # k = number of neighbors def weight_matrix(I, J, D, k, f=exp_weight, symmetrize=True): # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) I = I[:, :k] J = J[:, :k] D = D[:, :k] n = I.shape[0] k = I.shape[1] D = D * D eps = D[:, k - 1] / 4 D = f(D / eps[:, None]) # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() if symmetrize: W = (W + W.transpose()) / 2; return W def nnk_weight_matrix(dataset, metric, mask, knn_param, reg=1e-10, symmetrize=True): # Try to Load data X = load_dataset(dataset=dataset, metric=metric) X_normalized = X / np.linalg.norm(X, axis=1, keepdims=True) num_of_nodes = mask.shape[0] neighbor_indices = np.zeros((num_of_nodes, knn_param)) weight_values = np.zeros((num_of_nodes, knn_param)) error_values = np.ones((num_of_nodes, knn_param)) for node_i in range(num_of_nodes): non_zero_index = np.array(mask[node_i, :]) non_zero_index = np.delete(non_zero_index, np.where(non_zero_index == node_i)) if len(non_zero_index) > knn_param: non_zero_index = non_zero_index[:knn_param] x_neighbors = X_normalized[non_zero_index] g_i = 0.5 + np.dot(x_neighbors, X_normalized[node_i]) / 2 G_i = 0.5 + np.dot(x_neighbors, x_neighbors.T) / 2 # x_opt, check = non_negative_qpsolver(G_i, g_i, g_i, reg) # error_values[node_i, :] = 1 - 2 * np.dot(x_opt, g_i) + np.dot(x_opt, np.dot(G_i, x_opt)) x_opt = g_i weight_values[node_i, :] = x_opt / np.sum(x_opt) neighbor_indices[node_i, :] = non_zero_index row_indices = np.expand_dims(np.arange(0, num_of_nodes), 1) row_indices = np.tile(row_indices, [1, knn_param]) adjacency = sparse.coo_matrix((weight_values.ravel(), (row_indices.ravel(), neighbor_indices.ravel())), shape=(num_of_nodes, num_of_nodes)) if symmetrize: error = sparse.coo_matrix((error_values.ravel(), (row_indices.ravel(), neighbor_indices.ravel())), shape=(num_of_nodes, num_of_nodes)) # Alternate way of doing: error_index = sparse.find(error > error.T); adjacency[error_index[0], error_index[ # 1]] = 0 adjacency = adjacency.multiply(error < error.T) adjacency = adjacency.maximum(adjacency.T) adjacency.eliminate_zeros() error_values = error_values[:, 0] return adjacency.tocsr(), error_values # Compute boundary points # k = number of neighbors to use def boundary_points_new(X, k, I=None, J=None, D=None, ReturnNormals=False): if (I is None) or (J is None) or (D is None): n = X.shape[0] d = X.shape[1] if d <= 5: I, J, D = knnsearch(X, k) else: I, J, D = knnsearch_annoy(X, k) # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) n = X.shape[0] I = I[:, :k] J = J[:, :k] D = D[:, :k] W = weight_matrix(I, J, D, k, f=lambda x: np.ones_like(x), symmetrize=False) L = graph_laplacian(W) # Estimates of normal vectors nu = -L * X nu = np.transpose(nu) norms = np.sqrt(np.sum(nu * nu, axis=0)) nu = nu / norms nu = np.transpose(nu) print(nu.shape) # Boundary test NN = X[J] NN = np.swapaxes(NN[:, 1:, :], 0, 1) # This is kxnxd V = NN - X # This is x^i-x^0 kxnxd array NN_nu = nu[J] W = (np.swapaxes(NN_nu[:, 1:, :], 0, 1) + nu) / 2 xd = np.sum(V * W, axis=2) # dist to boundary Y = np.max(-xd, axis=0) if ReturnNormals: return Y, nu else: return Y # Compute boundary points # k = number of neighbors to use def boundary_points(X, k, I=None, J=None, D=None, ReturnNormals=False, R=np.inf): if (I is None) or (J is None) or (D is None): n = X.shape[0] d = X.shape[1] if d <= 5: I, J, D = knnsearch(X, k) else: I, J, D = knnsearch_annoy(X, k) # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) n = X.shape[0] I = I[:, :k] J = J[:, :k] D = D[:, :k] W = weight_matrix(I, J, D, k, f=lambda x: np.ones_like(x), symmetrize=False) L = graph_laplacian(W) # Estimates of normal vectors nu = -L * X nu = np.transpose(nu) norms = np.sqrt(np.sum(nu * nu, axis=0)) nu = nu / norms nu = np.transpose(nu) # Boundary test NN = X[J] NN = np.swapaxes(NN[:, 1:, :], 0, 1) # This is kxnxd V = NN - X # This is x^i-x^0 kxnxd array xd = np.sum(V * nu, axis=2) # xd coordinate (kxn) sqdist = np.sum(V * V, axis=2) Y = np.max((xd * xd - sqdist) / (2 * R) - xd, axis=0) if ReturnNormals: return Y, nu else: return Y # Construct k-nn sparse distance matrix # Note: Matrix is not symmetric def knn_weight_matrix(X, k, f=exp_weight): I, J, D = knnsearch_annoy(X, k) W = weight_matrix(I, J, D, k, f=f) return W # Solves Lx=f subject to Rx=g at ind points def gmres_bc_solve(L, f, R, g, ind): # Mix matrices based on boundary points A = L.copy() A = A.tolil() A[ind, :] = R[ind, :] A = A.tocsr() # Right hand side b = f.copy() b[ind] = g[ind] # Preconditioner m = A.shape[0] M = A.diagonal() M = sparse.spdiags(1 / M, 0, m, m).tocsr() # GMRES solver # start_time = time.time() u, info = sparse.linalg.gmres(A, b, M=M) # print("--- %s seconds ---" % (time.time() - start_time)) # print('gmres_err = %f'%np.max(np.absolute(A*u-b))) return u # Poisson solve # Solves Lu = f with preconditioned conjugate gradient def pcg_solve(L, f, x0=None, tol=1e-10): # start_time = time.time() L = L.tocsr() # Conjugate gradient with Jacobi preconditioner m = L.shape[0] M = L.diagonal() M = sparse.spdiags(1 / M, 0, m, m).tocsr() if x0 is None: u, i = splinalg.cg(L, f, tol=tol, M=M) else: u, i = splinalg.cg(L, f, x0=x0, tol=tol, M=M) # print("--- %s seconds ---" % (time.time() - start_time)) return u # Finds k Dirichlet eigenvectors # Solves Lu = lambda u subject to u(I)=0 def dirichlet_eigenvectors(L, I, k): L = L.tocsr() n = L.shape[0] # Locations of labels idx = np.full((n,), True, dtype=bool) idx[I] = False # Left hand side matrix A = L[idx, :] A = A[:, idx] # Eigenvector solver vals, vec = sparse.linalg.eigs(A, k=k, which='SM') vec = vec.real vals = vals.real # Add labels back into array u = np.zeros((n, k)) u[idx, :] = vec if k == 1: u = u.flatten() return u, vals # Constrained linear solve # Solves Lu = f subject to u(I)=g def constrained_solve(L, I, g, f=None, x0=None, tol=1e-10): L = L.tocsr() n = L.shape[0] # Locations of labels idx = np.full((n,), True, dtype=bool) idx[I] = False # Right hand side b = -L[:, I] * g b = b[idx] if f is not None: b = b + f[idx] # Left hand side matrix A = L[idx, :] A = A[:, idx] # start_time = time.time() # Conjugate gradient with Jacobi preconditioner m = A.shape[0] M = A.diagonal() M = sparse.spdiags(1 / (M + 1e-10), 0, m, m).tocsr() if x0 is None: v, i = splinalg.cg(A, b, tol=tol, M=M) else: v, i = splinalg.cg(A, b, x0=x0[idx], tol=tol, M=M) # print("--- %s seconds ---" % (time.time() - start_time)) # Add labels back into array u = np.ones((n,)) u[idx] = v u[I] = g return u # Returns n random points in R^d def rand(n, d): return random.rand(n, d) # Returns n random points in annulus (r1,r2) def rand_annulus(n, d, r1, r2): N = 0 X = np.zeros((1, d)) while X.shape[0] <= n: Y = r2 * (2 * rand(n, d) - 1) dist2 = np.sum(Y * Y, axis=1) I = (dist2 < r2 * r2) & (dist2 > r1 * r1) Y = Y[I, :] X = np.vstack((X, Y)) X = X[1:(n + 1)] return X # Returns n random points in unit ball in R^d def rand_ball(n, d): N = 0 X = np.zeros((1, d)) while X.shape[0] <= n: Y = 2 * rand(n, d) - 1 I = np.sum(Y * Y, axis=1) < 1 Y = Y[I, :] X = np.vstack((X, Y)) X = X[1:(n + 1)] return X def randn(n, d): X = np.zeros((n, d)) for i in range(d): X[:, i] = np.random.normal(0, 1, n) return X def bean_data(n, h): # n = number of points # h = height of bridge (h=0.2) a = -1 b = 1 x = a + (b - a) * random.rand(3 * n); c = -0.6 d = 0.6; y = c + (d - c) * random.rand(3 * n); X = np.transpose(np.vstack((x, y))) dist_from_x_axis = 0.4 * np.sqrt(1 - x ** 2) * (1 + h - np.cos(3 * x)) in_bean = abs(y) <= dist_from_x_axis X = X[in_bean, :] if X.shape[0] < n: print('Not enough samples'); else: X = X[:n, :] return X def mesh(X): T = spatial.Delaunay(X[:, :2]); return T.simplices def box_mesh(X, u=None): n = X.shape[0] d = X.shape[1] if d > 2: X = X[:, 0:2] x1 = X[:, 0].min() x2 = X[:, 0].max() y1 = X[:, 1].min() y2 = X[:, 1].max() corners = np.array([[x1, y1], [x2, y2], [x1, y2], [x2, y1]]) X = np.append(X, corners, axis=0) Tri = mesh(X) if u is not None: u = np.append(u, [0, 0, 0, 0]) for i in range(n, n + 4): I = (Tri[:, 0] == i) | (Tri[:, 1] == i) | (Tri[:, 2] == i) nn_tri = Tri[I, :].flatten() nn_tri = np.unique(nn_tri[nn_tri < n]) u[i] = np.mean(u[nn_tri]) # u[i] = np.max(u[nn_tri]) return X, Tri, u else: return X, Tri # Triangulation of domain def improved_mesh(X): n = X.shape[0] d = X.shape[1] if d > 2: X = X[:, 0:2] # Normalize data to unit box x1 = X[:, 0].min() x2 = X[:, 0].max() y1 = X[:, 1].min() y2 = X[:, 1].max() X = X - [x1, y1] X[:, 0] = X[:, 0] / (x2 - x1) X[:, 1] = X[:, 1] / (y2 - y1) # Add padding data around pad = 10 / np.sqrt(n) m = int(pad * n) Y = rand(m, 2) Y[:, 0] = Y[:, 0] * pad - pad Z = np.vstack((X, Y)) Y = rand(m, 2) Y[:, 0] = Y[:, 0] * pad + 1 Z = np.vstack((Z, Y)) Y = rand(m, 2) Y[:, 1] = Y[:, 1] * pad - pad Z = np.vstack((Z, Y)) Y = rand(m, 2) Y[:, 1] = Y[:, 1] * pad + 1 Z = np.vstack((Z, Y)) # Delaunay triangulation T = spatial.Delaunay(Z); Tri = T.simplices J = np.sum(Tri >= n, axis=1) == 0; Tri = Tri[J, :] return Tri def plot(X, u): Tri = mesh(X) import mayavi.mlab as mlab mlab.triangular_mesh(X[:, 0], X[:, 1], u, Tri) mlab.view(azimuth=-45, elevation=60) # Laplace learning # Zhu, Xiaojin, <NAME>, and <NAME>. "Semi-supervised learning using gaussian fields and harmonic functions." Proceedings of the 20th International conference on Machine learning (ICML-03). 2003. def laplace_solve(W, I, g, norm="none"): L = graph_laplacian(W, norm=norm) return constrained_solve(L, I, g) # Shift trick # W = Weight matrix # I = indices of labels # g = +1/-1 values of labels def shift_solve(W, I, g): # Laplace learning u = laplace_solve(W, I, g) # Shift solution s = degrees(W) c = np.sum(s[I] * g) / sum(s[I]) u = u - c u = u - np.mean(u) return u # Shift trick by mean # W = Weight matrix # I = indices of labels # g = +1/-1 values of labels def meanshift_solve(W, I, g): # Laplace learning u = laplace_solve(W, I, g) # Center solution u = u - np.mean(u) return u # Reweights the weight matrix for WNLL def wnll(W, I): n = W.shape[0] m = len(I) a = np.ones((n,)) a[I] = n / m D = sparse.spdiags(a, 0, n, n).tocsr() W = D * W + W * D return W # Weighted nonlocal Laplacian # Shi, Zuoqiang, <NAME>, and <NAME>. "Weighted nonlocal laplacian on interpolation from sparse data." Journal of Scientific Computing 73.2-3 (2017): 1164-1177. def wnll_solve(W, I, g): n = W.shape[0] W = wnll(W, I) L = graph_laplacian(W, norm="none") return constrained_solve(L, I, g) # Properly weighted Laplacian # Calder, Jeff, and <NAME>. "Properly-weighted graph Laplacian for semi-supervised learning." arXiv preprint arXiv:1810.04351 (2018). def properlyweighted_solve(W, I, g, X, alpha, zeta, r): n = W.shape[0] rzeta = r / (zeta - 1) ** (1 / alpha) Xtree = spatial.cKDTree(X[I, :]) D, J = Xtree.query(X) D[D < rzeta] = rzeta gamma = 1 + (r / D) ** alpha D = sparse.spdiags(gamma, 0, n, n).tocsr() L = graph_laplacian(D * W + W * D, norm="none") return constrained_solve(L, I, g) # Game theoretic p-Laplace learning # Rios, <NAME>, <NAME>, and <NAME>. "Algorithms for $\ell_p$-based semi-supervised learning on graphs." arXiv preprint arXiv:1901.05031 (2019). def plaplace_solve(W, I, g, p, sol_method="SemiImplicit", norm="none"): # start_time = time.time() n = W.shape[0] W = W / W.max() if p == float("inf"): alpha = 0 delta = 1 else: alpha = 1 / p delta = 1 - 2 / p dx = degrees(W) theta = 1.2 * (2 * alpha + np.max(dx) * delta) if p == float("inf"): beta = 1 gamma = 1 / theta else: beta = (theta * p - 2) / (theta * p) gamma = (p - 2) / (theta * p - 2) if norm == "normalized": deg = dx[I] ** (1 / 2) g = g / deg L = graph_laplacian(W) u = constrained_solve(L, I, g) uu = np.max(g) * np.ones((n,)) ul = np.min(g) * np.ones((n,)) WI, WJ, WV = sparse.find(W) # Set labels u[I] = g uu[I] = g ul[I] = g # Time step for gradient descent dt = 0.9 / (alpha + 2 * delta) if sol_method == "GradientDescentCcode": try: import cmodules.cgraphpy as cgp except: print("cgraphpy cmodule not found. You may just need to compile it.") sys.exit() # Type casting and memory blocking uu = np.ascontiguousarray(uu, dtype=np.float64) ul = np.ascontiguousarray(ul, dtype=np.float64) WI = np.ascontiguousarray(WI, dtype=np.int32) WJ = np.ascontiguousarray(WJ, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.float64) cgp.lp_iterate(uu, ul, WI, WJ, WV, I, g, p, 1e6, 1e-1, 0.0) u = (uu + ul) / 2 # Check residual L2uu = -L * uu LIuu = graph_infinity_laplacian(W, uu, I=WI, J=WJ, V=WV) resu = alpha * L2uu / dx + delta * LIuu resu[I] = 0 L2ul = -L * ul LIul = graph_infinity_laplacian(W, ul, I=WI, J=WJ, V=WV) resl = alpha * L2ul / dx + delta * LIul resl[I] = 0 # print('Upper residual = %f' % np.max(np.absolute(resu))) # print('Lower residual = %f' % np.max(np.absolute(resl))) else: err = 1e6 i = 0 while err > 1e-1: i += 1 # Graph laplacians L2u = -L * u LIu = graph_infinity_laplacian(W, u, I=WI, J=WJ, V=WV) # Residual error res = alpha * L2u / dx + delta * LIu res[I] = 0 # err = np.max(np.absolute(res)) # print("Residual error = "+str(err)) # Update if sol_method == "GradientDescent": L2uu = -L * uu LIuu = graph_infinity_laplacian(W, uu, I=WI, J=WJ, V=WV) res = alpha * L2uu / dx + delta * LIuu res[I] = 0 uu = uu + dt * res err = np.max(np.absolute(res)) # print("Upper residual = "+str(err)) L2ul = -L * ul LIul = graph_infinity_laplacian(W, ul, I=WI, J=WJ, V=WV) res = alpha * L2ul / dx + delta * LIul res[I] = 0 ul = ul + dt * res err = np.max(np.absolute(res)) # print("Lower residual = "+str(err)) err1 = np.max(uu - ul) err2 = np.min(uu - ul) # print("Residual error = "+str(err1)+","+str(err2)) err = err1 u = (uu + ul) / 2 elif sol_method == "SemiImplicit": rhs = beta * (2 * gamma * dx * LIu - L2u) u = constrained_solve(L, I, g, f=rhs, x0=u, tol=err / 100) else: print("Invalid p-Laplace solution method.") sys.exit() if norm == "normalized": deg = dx ** (1 / 2) u = u * deg # print("--- %s seconds ---" % (time.time() - start_time)) return u # Gradient of function on graph # W = sparse weight matrix # u = function on graph def graph_gradient(W, u, I=None, J=None, V=None): n = W.shape[0] if I is None or J is None: I, J, V = sparse.find(W) G = sparse.coo_matrix((V * (u[J] - u[I]), (I, J)), shape=(n, n)).tocsr() return G # Divergence of vector field F (F should be skew-symmetric) # F = sparse matrix representing vector field def graph_divergence(F, W): F = F.multiply(W) return 2 * np.squeeze(np.array(np.sum(F, axis=1))) # Random-walk SSL # Zhou, Dengyong, et al. "Learning with local and global consistency." Advances in neural information processing systems. 2004. def randomwalk_solve(W, I, g, epsilon): n = W.shape[0] # Zero diagonals W = W - sparse.spdiags(W.diagonal(), 0, n, n) # Construct Laplacian matrix Dinv2 = degree_matrix(W, p=-1 / 2) L = sparse.identity(n) - (1 - epsilon) * Dinv2 * W * Dinv2; # Format right hand side b = np.zeros((n,)) b[I] = g return pcg_solve(L, b) # Computes accuracy of labeling # m = number of labeled points used def accuracy(L, L_true, m): # Remove unlabeled nodes I = L_true >= 0 L = L[I] L_true = L_true[I] # Compute accuracy return 100 * np.maximum(np.sum(L == L_true) - m, 0) / (len(L) - m) # Projects all columns of (kxn) matrix X onto k-simplex def ProjectToSimplex(X): n = X.shape[1] k = X.shape[0] Xs = -np.sort(-X, axis=0) # Sort descending A = np.tril(np.ones((k, k))) Sum = A @ Xs Max = np.transpose((np.transpose(Sum) - 1) / (np.arange(k) + 1)) Xs[:-1, :] = Xs[1:, :] Xs[-1, :] = (Sum[k - 1, :] - 1) / k I = np.argmax(Max >= Xs, axis=0) X = np.maximum(X - Max[I, range(n)], 0) return X # Takes list of labels and converts to vertices of simplex format def LabelsToVec(L): n = L.shape[0] labels = np.unique(L) k = len(labels) for i in range(k): L[L == labels[i]] = i L = L.astype(int) X = np.zeros((k, n)) X[L, range(n)] = 1 return X, labels # Projects all rows of (nxk) matrix X to closest vertex of the simplex # Assume X already lives in the simplex, e.g., is the output of ProjectToSimplex def ClosestVertex(X): n = X.shape[1] k = X.shape[0] L = np.argmax(X, axis=0) X = np.zeros((k, n)) X[L, range(n)] = 1 return X # Threshold with temperature to closest vertex def ClosestVertexTemp(X, T=0.01): n = X.shape[1] k = X.shape[0] beta = 1 / T Y = np.exp(beta * X) Ysum = np.sum(Y, axis=0) Y = Y / Ysum X[0, :] = Y[0, :] for i in range(1, k): X[i, :] = X[i - 1, :] + Y[i, :] R = random.rand(n, 1) L = np.sum(R.flatten() > X, axis=0) X = np.zeros((k, n)) X[L, range(n)] = 1 return X # Volume MBO, initialized with Poisson def poisson_volumeMBO(W, I, g, dataset, beta, T, volume_mult): # Set diagonal entries to zero W = diag_multiply(W, 0) try: import cmodules.cgraphpy as cgp except: print("cgraphpy cmodule not found. You may just need to compile it.") sys.exit() # Solve Poisson problem and compute labels u, _ = poisson(W, I, g) max_locations = np.argmax(u, axis=0) u = (np.unique(g))[max_locations] n = W.shape[0] k = len(np.unique(g)) WI, WJ, WV = sparse.find(W) # Class counts ClassCounts = (n * beta).astype(int) # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WJ = np.ascontiguousarray(WJ, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.int32) ClassCounts = np.ascontiguousarray(ClassCounts, dtype=np.int32) cgp.volume_mbo(u, WI, WJ, WV, I, g, ClassCounts, k, 0.0, T, volume_mult) # Set given labels and convert to vector format u[I] = g u, _ = LabelsToVec(u) return u # Volume MBO (Jacobs, et al.) def volumeMBO(W, I, g, dataset, beta, T, volume_mult): # Set diagonal entries to zero W = diag_multiply(W, 0) try: import cmodules.cgraphpy as cgp except: print("cgraphpy cmodule not found. You may just need to compile it.") sys.exit() n = W.shape[0] k = len(np.unique(g)) u = np.zeros((n,)) WI, WJ, WV = sparse.find(W) # Class counts ClassCounts = (n * beta).astype(int) # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WJ = np.ascontiguousarray(WJ, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.int32) ClassCounts = np.ascontiguousarray(ClassCounts, dtype=np.int32) cgp.volume_mbo(u, WI, WJ, WV, I, g, ClassCounts, k, 1.0, T, volume_mult) # Set given labels and convert to vector format u[I] = g u, _ = LabelsToVec(u) return u # Multiclass MBO # Garcia-Cardona, Cristina, et al. "Multiclass data segmentation using diffuse interface methods on graphs." IEEE transactions on pattern analysis and machine intelligence 36.8 (2014): 1600-1613. def multiclassMBO(W, I, g, eigvals, eigvecs, dataset, true_labels=None): n = W.shape[0] k = len(np.unique(g)) Ns = 6 if dataset == 'MNIST' or dataset == 'FashionMNIST' or dataset == 'cifar': dt = 0.15 mu = 50 elif dataset == 'WEBKB': dt = 1 mu = 4 else: print('Dataset not supported by MBO...') sys.exit(2) # Load eigenvalues and eigenvectors X = eigvecs num_eig = len(eigvals) # Form matrices V = np.diag(1 / (1 + (dt / Ns) * eigvals)) Y = X @ V Xt = np.transpose(X) # Random initial labeling u = random.rand(k, n) u = ProjectToSimplex(u) # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J u = Kg + (1 - J) * u # Maximum number of iterations T = 10 for i in range(T): for s in range(Ns): Z = (u - (dt / Ns) * mu * J * (u - Kg)) @ Y u = Z @ Xt # Projection step u = ProjectToSimplex(u) u = ClosestVertex(u) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Poisson MBO def poissonMBO(W, I, g, dataset, beta, true_labels=None, temp=0, use_cuda=False, Ns=40, mu=1, T=50): n = W.shape[0] unique_labels = np.unique(g) k = len(unique_labels) num_labels = np.zeros((k,)) for i in range(k): num_labels[i] = np.sum(g == unique_labels[i]) W = diag_multiply(W, 0) if dataset == 'WEBKB': mu = 1000 Ns = 8 # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c b = np.transpose(b) L = graph_laplacian(W, norm='none') # Initialize u via Poisson learning # u = np.zeros((k,n)) # for j in range(k): # u[j,:] = pcg_solve(L,b[j,:]) # u = mu*u # u = np.transpose(np.transpose(u) - np.mean(u,axis=1)) u, mix_time = poisson(W, I, g, use_cuda=use_cuda, beta=beta) # Ns = int(mix_time/4) u = ProjectToSimplex(u) u = ClosestVertex(u) # Time step for stability dt = 1 / np.max(degrees(W)) P = sparse.identity(n) - dt * L Db = mu * dt * b if use_cuda: Pt = torch_sparse(P).cuda() Dbt = torch.from_numpy(np.transpose(Db)).float().cuda() for i in range(T): if use_cuda: # Put on GPU and run heat equation ut = torch.from_numpy(np.transpose(u)).float().cuda() for s in range(Ns): # u = u*P + Db ut = torch.sparse.addmm(Dbt, Pt, ut) # Put back on CPU u = np.transpose(ut.cpu().numpy()) else: # Use CPU for s in range(Ns): # u = u + dt*(mu*b - u*L) u = u * P + Db # Projection step # u = np.diag(beta/num_labels)@u u = ProjectToSimplex(u) u = ClosestVertex(u) u = np.transpose(np.transpose(u) - np.mean(u, axis=1) + beta) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u def torch_sparse(A): A = A.tocoo() values = A.data indices = np.vstack((A.row, A.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = A.shape return torch.sparse.FloatTensor(i, v, torch.Size(shape)) # Sparse Label Propagation def SparseLabelPropagation(W, I, g, true_labels=None): n = W.shape[0] k = len(np.unique(g)) WI, WJ, WV = sparse.find(W) B = sparse.coo_matrix((np.ones(len(WV), ), (WI, WJ)), shape=(n, n)).tocsr() # Ones in all entries # Construct matrix 1/2W and 1/deg lam = 2 * W - (1 - 1e-10) * B lam = -lam.log1p() lam = lam.expm1() + B Id = sparse.identity(n) gamma = degree_matrix(W + 1e-10 * Id, p=-1) # Random initial labeling # u = random.rand(k,n) u = np.zeros((k, n)) # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Initialization Y = list() for j in range(k): Gu = graph_gradient(W, u[j, :], I=WI, J=WJ, V=WV) Y.append(Gu) # Main loop for sparse label propagation T = 100 for i in range(T): u_prev = np.copy(u) # Compute div for j in range(k): div = graph_divergence(Y[j], W) u[j, :] = u_prev[j, :] - gamma * div u[j, I] = Kg[j, I] # Set labels u_tilde = 2 * u[j, :] - u_prev[j, :] Gu = -graph_gradient(W, u_tilde, I=WI, J=WJ, V=WV) Y[j] = Y[j] + Gu.multiply(lam) ind1 = B.multiply(abs(Y[j]) > 1) ind2 = B - ind1 Y[j] = ind1.multiply(Y[j].sign()) + ind2.multiply(Y[j]) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Dynamic Label Propagation def DynamicLabelPropagation(W, I, g, alpha=0.05, lam=0.1, true_labels=None): n = W.shape[0] k = len(np.unique(g)) W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g u, _ = LabelsToVec(K) u = u * J # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = np.transpose(Kg * J) u = np.copy(Kg) if n > 5000: print("Cannot use Dynamic Label Propagation on large datasets.") else: # Setup matrices Id = sparse.identity(n) D = degree_matrix(W, p=-1) P = D * W P = np.array(P.todense()) Pt = np.copy(P) T = 2 for i in range(T): v = P @ u u = Pt @ u u[I, :] = Kg[I, :] Pt = P @ Pt @ np.transpose(P) + alpha * v @ np.transpose(v) + lam * Id # Compute accuracy if all labels are provided if true_labels is not None: u = np.array(u) max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('i:%d' % i + ',Accuracy = %.2f' % acc) u = np.transpose(np.array(u)) return u # Centered and Iterated Centered Kernel of Mai/Coulliet 2018 def CenteredKernel(W, I, g, true_labels=None): n = W.shape[0] k = len(np.unique(g)) W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = np.transpose(Kg * J) # Center labels c = np.sum(Kg, axis=0) / len(I) Kg[I, :] = Kg[I, :] - c u = np.copy(Kg) v = np.ones((n, 1)) vt = np.ones((1, n)) e = np.random.rand(n, 1) for i in range(100): y = W * (e - (1 / n) * v @ (vt @ e)) w = y - (1 / n) * v @ (vt @ y) # =Ae l = abs(np.transpose(e) @ w / (np.transpose(e) @ e)) e = w / np.linalg.norm(w) # Number of iterations # alpha = 5*l/4 alpha = 105 * l / 100 T = 1000 err = 1 while err > 1e-10: y = W * (u - (1 / n) * v @ (vt @ u)) w = (1 / alpha) * (y - (1 / n) * v @ (vt @ y)) - u # Laplacian w[I, :] = 0 err = np.max(np.absolute(w)) u = u + w # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return np.transpose(u) def vec_acc(u, I, g, true_labels): max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) return acc # def volume_label_projection(u,beta,s=None): # # k = u.shape[0] # n = u.shape[1] # if s is None: # s = np.ones((k,)) # for i in range(100): # grad = beta - np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n # err0 = np.max(np.absolute(grad)) # # dt = 1 # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # err = err0 # newerr = np.max(np.absolute(gradnew)) # while newerr < err: # print(dt) # dt = 2*dt # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # err = newerr # newerr = np.max(np.absolute(gradnew)) # dt = dt/2 # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # newerr = np.max(np.absolute(gradnew)) # while newerr >= err: # print(dt) # dt = dt/2 # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # newerr = np.max(np.absolute(gradnew)) # if dt < 1: # dt = dt/2 # # s = s + dt*grad # # print(err) # if err == 0: # print(i) # break # # #s = s + dt*(beta - beta_u) # # return ClosestVertex(np.diag(s)@u),s def volume_label_projection(u, beta, s=None, dt=None): k = u.shape[0] n = u.shape[1] if s is None: s = np.ones((k,)) if dt is None: dt = 10 # print(np.around(100*beta,decimals=1)) # print(np.around(100*np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n,decimals=1)) for i in range(100): class_size = np.sum(ClosestVertex(np.diag(s) @ u), axis=1) / n grad = beta - class_size # print(np.around(100*class_size,decimals=1)) # err = np.max(np.absolute(grad)) # if err == 0: # break s = np.clip(s + dt * grad, 0.5, 2) # print(np.around(100*beta,decimals=1)) # print(np.around(100*np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n,decimals=1)) # print(np.around(100*beta - 100*np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n,decimals=4)) return ClosestVertex(np.diag(s) @ u), s # Poisson MBO with volume constraints def poissonMBO_volume(W, I, g, dataset, beta, true_labels=None, temp=0, use_cuda=False, Ns=40, mu=1, T=20): n = W.shape[0] k = len(np.unique(g)) W = diag_multiply(W, 0) if dataset == 'WEBKB': mu = 1000 Ns = 8 # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c b = np.transpose(b) D = degree_matrix(W) # L = graph_laplacian(W,norm='none') L = D - W.transpose() # Initialize u via Poisson learning u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, beta=beta) u = mu * u # Time step for stability dt = 1 / np.max(degrees(W)) P = sparse.identity(n) - dt * L Db = mu * dt * b if use_cuda: Pt = torch_sparse(P).cuda() Dbt = torch.from_numpy(np.transpose(Db)).float().cuda() for i in range(T): # Heat equation step if use_cuda: # Put on GPU and run heat equation ut = torch.from_numpy(np.transpose(u)).float().cuda() for j in range(Ns): ut = torch.sparse.addmm(Dbt, Pt, ut) # Put back on CPU u = np.transpose(ut.cpu().numpy()) else: # Use CPU for j in range(Ns): u = u * P + Db # Projection step u, s = volume_label_projection(u, beta) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Poisson Volume def PoissonVolume(W, I, g, true_labels=None, use_cuda=False, training_balance=True, beta=None, min_iter=50): # Run Poisson learning u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=training_balance, beta=beta) # Volume constraints _, s = volume_label_projection(u, beta) return np.diag(s) @ u def original_poisson(W, I, g, true_labels=None, use_cuda=False, training_balance=True, beta=None, min_iter=50): n = W.shape[0] unique_labels = np.unique(g) k = len(unique_labels) # Zero out diagonal for faster convergence W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c # Setup matrices D = degree_matrix(W + 1e-10 * sparse.identity(n), p=-1) # L = graph_laplacian(W,norm='none') # P = sparse.identity(n) - D*L #Line below is equivalent when W symmetric P = D * W.transpose() Db = D * b v = np.max(Kg, axis=0) v = v / np.sum(v) vinf = degrees(W) / np.sum(degrees(W)) RW = W.transpose() * D u = np.zeros((n, k)) # vals, vec = sparse.linalg.eigs(RW,k=1,which='LM') # vinf = np.absolute(vec.flatten()) # vinf = vinf/np.sum(vinf) # Number of iterations T = 0 if use_cuda: Pt = torch_sparse(P).cuda() ut = torch.from_numpy(u).float().cuda() Dbt = torch.from_numpy(Db).float().cuda() # start_time = time.time() while (T < min_iter or np.max(np.absolute(v - vinf)) > 1 / n) and (T < 1000): ut = torch.sparse.addmm(Dbt, Pt, ut) v = RW * v T = T + 1 # print("--- %s seconds ---" % (time.time() - start_time)) # Transfer to CPU and convert to numpy u = ut.cpu().numpy() else: # Use CPU # start_time = time.time() while (T < min_iter or np.max(np.absolute(v - vinf)) > 1 / n) and (T < 1000): uold = u.copy() u = Db + P * u v = RW * v T = T + 1 # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('%d,Accuracy = %.2f' % (T, acc)) # print("--- %s seconds ---" % (time.time() - start_time)) # Balancing for training data/class size discrepancy if training_balance: if beta is None: u = u @ np.diag(1 / c) else: u = u @ np.diag(beta / c) return np.transpose(u), T # Poisson learning def poisson(W, I, g, true_labels=None, use_cuda=False, training_balance=True, beta=None, min_iter=50, error=None): n = W.shape[0] unique_labels = np.unique(g) k = len(unique_labels) if error is None: error = np.ones(n, dtype=np.float32) else: error = error.reshape((n,)) / np.max(error) # Zero out diagonal for faster convergence W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = 2 * b[I, :] - 1 # Setup matrices # D = degree_matrix(W + 1e-10 * sparse.identity(n), p=-1) # L = graph_laplacian(W,norm='none') # P = sparse.identity(n) - D*L #Line below is equivalent when W symmetric v_prev = np.random.random(size=(n, 1)) residue_energy = 1 u = np.zeros((n, k)) confidence_gain = W.transpose() #* sparse.spdiags(np.power(1 + error, -1), 0, n, n) # vals, vec = sparse.linalg.eigs(RW,k=1,which='LM') # vinf = np.absolute(vec.flatten()) # vinf = vinf/np.sum(vinf) # Number of iterations T = 0 if use_cuda: Wt = torch_sparse(confidence_gain).cuda() ut = torch.from_numpy(u).float().cuda() bt = torch.from_numpy(b).float().cuda() # start_time = time.time() while (T < min_iter or residue_energy > 1e-10) and (T < 1000): ut = torch.sparse.addmm(bt, Wt, ut) v = W.transpose() * v_prev residue_energy = np.linalg.norm(v - v_prev) v_prev = v T = T + 1 # print("--- %s seconds ---" % (time.time() - start_time)) # Transfer to CPU and convert to numpy u = ut.cpu().numpy() else: # Use CPU # start_time = time.time() while (T < min_iter or residue_energy > 1e-6) and (T < 1000): u = np.clip(b + confidence_gain * u, a_min=-1, a_max=1) v = W.transpose() * v_prev residue_energy = np.linalg.norm(v - v_prev) v_prev = v T = T + 1 # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('%d,Accuracy = %.2f' % (T, acc)) # print("--- %s seconds ---" % (time.time() - start_time)) print(f"T: {T}, residue: {residue_energy}") # Balancing for training data/class size discrepancy if training_balance: if beta is None: u = u @ np.diag(1 / c) else: u = u @ np.diag(beta / c) return np.transpose(u), T # Poisson L1 based on Split Bregman Method # Does not work as well as PoissonMBO def poissonL1(W, I, g, dataset, norm="none", lam=100, mu=1000, Nouter=30, Ninner=6, true_labels=None): n = W.shape[0] k = len(np.unique(g)) # mu = mu*W.count_nonzero()/len(g) #Normalize constants gamma = 1 / lam WI, WJ, WV = sparse.find(W) B = sparse.coo_matrix((np.ones(len(WV), ), (WI, WJ)), shape=(n, n)).tocsr() # Ones in all entries L = graph_laplacian(2 * W.multiply(W), norm=norm) deg = degrees(W) dt = 1 / np.max(deg) # Random initial labeling # u = random.rand(k,n) # u = ProjectToSimplex(u) u = np.zeros((k, n)) # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson parameters c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c b = (mu / lam) * np.transpose(b) # Initialize u via Poisson learning u = np.zeros((k, n)) L = graph_laplacian(W, norm='none') for j in range(k): u[j, :] = pcg_solve(L, b[j, :]) u = np.transpose(np.transpose(u) - np.mean(u, axis=1)) # Initialization V = list() R = list() gradu = list() for j in range(k): Gu = graph_gradient(W, u[j, :], I=WI, J=WJ, V=WV) gradu.append(Gu) V.append(Gu) R.append(Gu) # Main loop for Split Bregman iteration for i in range(Nouter): print('Outer:%d' % i) for s in range(Ninner): normV = 0 * W for j in range(k): divVR = graph_divergence(R[j] - V[j], W) u[j, :] = pcg_solve(L, b[j, :] + divVR, x0=u[j, :], tol=1e-10) # for s in range(100): # u[j,:] = u[j,:] + dt*(b[j,:] + divVR - u[j,:]*L) gradu[j] = graph_gradient(W, u[j, :], I=WI, J=WJ, V=WV) V[j] = gradu[j] + R[j] normV = normV + V[j].multiply(V[j]) normV = normV.sqrt() # Shrinkage operation # normV^{-1} for nonzero entries (tricky to do in sparse format) # normV.eliminate_zeros(X) normVinv = normV - (1 - 1e-10) * B normVinv = -normVinv.log1p() normVinv = normVinv.expm1() + B C = normV.multiply(normVinv) # print(np.sum(C>0)) # print(np.sum(C>0.9999)) # Compute shrinkage factor # print(np.sum(normV>0)) shrink = normV - gamma * B shrink = shrink.maximum(0) # print(np.sum(shrink>0)) shrink = shrink.multiply(normVinv) # Apply shrinkage for j in range(k): V[j] = V[j].multiply(shrink) for j in range(k): R[j] = R[j] + gradu[j] - V[j] # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Heap functions # d = values in heap (indexed by graph vertex) # h = heap (contains indices of graph elements in heap) # p = pointers from graph back to heap (are updated with heap operations) # s = number of elements in heap # Sift up # i = heap index of element to be sifted up def SiftUp(d, h, s, p, i): pi = int(i / 2) # Parent index in heap while pi != 0: if d[h[pi]] > d[h[i]]: # If parent larger, then swap # Swap in heap tmp = h[pi] h[pi] = h[i] h[i] = tmp # Update pointers to heap p[h[i]] = i p[h[pi]] = pi # Update parent/child indices i = pi pi = int(i / 2) else: pi = 0 # Sift down # i = heap index of element to be sifted down def SiftDown(d, h, s, p, i): ci = 2 * i # child index in heap while ci <= s: if d[h[ci + 1]] < d[h[ci]] and ci + 1 <= s: # Choose smallest child ci = ci + 1 if d[h[ci]] < d[h[i]]: # If child smaller, then swap # Swap in heap tmp = h[ci] h[ci] = h[i] h[i] = tmp # Update pointers to heap p[h[i]] = i p[h[ci]] = ci # Update parent/child indices i = ci ci = 2 * i else: ci = s + 1 # Pop smallest off of heap # Returns index of smallest and size of new heap def PopHeap(d, h, s, p): # Index of smallest in heap i = h[1] # Put last element on top of heap h[1] = h[s] # Update pointer p[h[1]] = 1 # Sift down the heap SiftDown(d, h, s - 1, p, 1) return i, s - 1 # Push element onto heap # i = Graph index to add to heap def PushHeap(d, h, s, p, i): h[s + 1] = i # add to heap at end p[i] = s + 1 # Update pointer to heap SiftUp(d, h, s + 1, p, s + 1) return s + 1 def stencil_solver(ui, u, w=None): if w is None: w = np.ones((len(u),)) m = len(u) # Sort neighbors I = np.argsort(u) u = u[I] w = w[I] f = np.zeros((m + 1,)) for i in range(m): f[i] = np.sum(np.maximum(u[i] - u, 0) ** 2) f[m] = np.maximum(1, f[m - 1]) k = np.argmin(f < 1) b = np.sum(u[:k]) c = np.sum(u[:k] ** 2) t = (b + np.sqrt(b * b - k * c + k)) / k check = np.sum(np.maximum(t - u, 0) ** 2) if (abs(check - 1) > 1e-5): print("Error") return t # return np.min(u) + 1 # C code version of dijkstra def cDijkstra(W, I, g, WI=None, WJ=None, K=None): n = W.shape[0] k = len(I) u = np.ones((n,)) * 1e10 # HJ Solver l = -np.ones((n,), dtype=int) # Index of closest label if (WI == None) or (WJ == None) or (K == None): # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) try: # Try to use fast C version, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.float64) cgp.dijkstra(u, l, WI, K, WV, I, g, 1.0) except: print("You need to compile the cmodules!") sys.exit(2) return u # Solve a general HJ equation with fast marching def HJsolver(W, I, g, WI=None, WJ=None, K=None, p=1): n = W.shape[0] k = len(I) u = np.ones((n,)) * 1e10 # HJ Solver l = -np.ones((n,), dtype=int) # Index of closest label if (WI == None) or (WJ == None) or (K == None): # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) try: # Try to use fast C version, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.int32) cgp.HJsolver(u, l, WI, K, WV, I, g, 1.0, p, 1.0) except: # Initialization s = 0 # Size of heap h = -np.ones((n + 1,), dtype=int) # Active points heap (indices of active points) A = np.zeros((n,), dtype=bool) # Active flag p = -np.ones((n,), dtype=int) # Pointer back to heap V = np.zeros((n,), dtype=bool) # Finalized flag l = -np.ones((n,), dtype=int) # Index of closest label # Build active points heap and set distance = 0 for initial points for i in range(k): s = PushHeap(u, h, s, p, I[i]) u[I[i]] = g[i] # Initialize distance to zero A[I[i]] = True # Set active flag to true l[I[i]] = I[i] # Set index of closest label # Dijkstra's algorithm while s > 0: i, s = PopHeap(u, h, s, p) # Pop smallest element off of heap # Finalize this point V[i] = True # Mark as finalized A[i] = False # Set active flag to false # Update neighbors (the code below is wrong: compare against C sometime) for j in WI[K[i]:K[i + 1]]: if j != i and V[j] == False: nn_ind = WI[K[j]:K[j + 1]] w_vals = WV[K[j]:K[j + 1]] u_vals = u[nn_ind] u_tmp = stencil_solver(u[j], u_vals, w=w_vals) if A[j]: # If j is already active if u_tmp < u[j]: # Need to update heap u[j] = u_tmp SiftUp(u, h, s, p, p[j]) l[j] = l[i] else: # If j is not active # Add to heap and initialize distance, active flag, and label index s = PushHeap(u, h, s, p, j) u[j] = u_tmp A[j] = True l[j] = l[i] return u # eikonal classifier def eikonalSSL(W, I, g, p=2, beta=None): k = len(I) # Number of labels n = W.shape[0] # Number of datapoints d = np.zeros((n,)) # Distance function l = -np.ones((n,), dtype=int) # Index of closest label # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) c_code = False try: # Try to use fast C version, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking d = np.ascontiguousarray(d, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) c_code = True except: c_code = False labels = np.unique(g) numl = len(labels) u = np.zeros((numl, n)) for i in range(numl): ind = I[g == labels[i]] lab = np.zeros((len(ind),)) if c_code: ind = np.ascontiguousarray(ind, dtype=np.int32) lab = np.ascontiguousarray(lab, dtype=np.int32) cgp.HJsolver(d, l, WI, K, WV, ind, lab, 1.0, p, 0.0) u[i, :] = -d else: u[i, :] = -HJsolver(W, ind, lab, WI=WI, WV=WV, K=K, p=p) if beta is not None: _, s = volume_label_projection(u, beta, dt=-0.5) u = np.diag(s) @ u return u # Nearest neighbor classifier (graph geodesic distance) def nearestneighbor(W, I, g): k = len(I) # Number of labels n = W.shape[0] # Number of datapoints d = np.ones((n,)) * 1e10 # Distance function l = -np.ones((n,), dtype=int) # Index of closest label # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) try: # Try to use fast C version of dijkstra, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking d = np.ascontiguousarray(d, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) init = np.ascontiguousarray(np.zeros_like(I), dtype=np.float64) cgp.dijkstra(d, l, WI, K, WV, I, init, 1.0) except: # Use python version, which is slower # Initialization s = 0 # Size of heap h = -np.ones((n + 1,), dtype=int) # Active points heap (indices of active points) A = np.zeros((n,), dtype=bool) # Active flag p = -np.ones((n,), dtype=int) # Pointer back to heap V = np.zeros((n,), dtype=bool) # Finalized flag # Build active points heap and set distance = 0 for initial points for i in range(k): d[I[i]] = 0 # Initialize distance to zero A[I[i]] = True # Set active flag to true l[I[i]] = I[i] # Set index of closest label s = PushHeap(d, h, s, p, I[i]) # Dijkstra's algorithm while s > 0: i, s = PopHeap(d, h, s, p) # Pop smallest element off of heap # Finalize this point V[i] = True # Mark as finalized A[i] = False # Set active flag to false # Update neighbors # for j in WI[K[i]:K[i+1]]: for jj in range(K[i], K[i + 1]): j = WI[jj] if j != i and V[j] == False: if A[j]: # If j is already active tmp_dist = d[i] + WV[jj] if tmp_dist < d[j]: # Need to update heap d[j] = tmp_dist SiftUp(d, h, s, p, p[j]) l[j] = l[i] else: # If j is not active # Add to heap and initialize distance, active flag, and label index d[j] = d[i] + WV[jj] A[j] = True l[j] = l[i] s = PushHeap(d, h, s, p, j) # Set labels based on nearest neighbor u = np.zeros((n,)) u[I] = g u, _ = LabelsToVec(u[l]) return u # Computes accuracy of clustering def clustering_accuracy(L, L_true): unique_classes = np.unique(L_true) num_classes = len(unique_classes) C = np.zeros((num_classes, num_classes), dtype=float) for i in range(num_classes): for j in range(num_classes): C[i][j] = np.sum((L == i) & (L_true != j)) row_ind, col_ind = opt.linear_sum_assignment(C) return 100 * (1 - C[row_ind, col_ind].sum() / len(L)) # Spectral embedding # Projects the graph to R^k via spectral projection # Method can be 'unnormalized', 'ShiMalik', or 'NgJordanWeiss' def spectral_embedding(W, k, method='NgJordanWeiss'): n = W.shape[0] if method == 'unnormalized': L = graph_laplacian(W, norm='none') vals, vec = sparse.linalg.eigs(L, k=k, which='SM') vec = vec.real vals = vals.real elif method == 'ShiMalik': D = degree_matrix(W) L = graph_laplacian(W, norm='none') vals, vec = sparse.linalg.eigs(L, M=D, k=k, which='SM') vec = vec.real vals = vals.real elif method == 'NgJordanWeiss': L = graph_laplacian(W, norm='normalized') vals, vec = sparse.linalg.eigs(L, k=k, which='SM') vec = vec.real vals = vals.real norms = np.sum(vec * vec, axis=1) T = sparse.spdiags(norms ** (-1 / 2), 0, n, n) vec = T @ vec # Normalize rows return vec def kmeans(X, k): KM = cluster.KMeans(n_clusters=k).fit(X) return KM.labels_ # Spectral Clustering def spectral_cluster(W, k, method='NgJordanWeiss', extra_dim=0): V = spectral_embedding(W, k + extra_dim, method=method) kmeans = cluster.KMeans(n_clusters=k).fit(V) # V = spectral_embedding(W,k,method=method) # kmeans = cluster.KMeans(n_clusters=k).fit(V) return kmeans.labels_ # INCRES clustering # Bresson, Xavier, et al. "An incremental reseeding strategy for clustering." International Conference on Imaging, Vision and Learning based on Optimization and PDEs. Spr<NAME>, 2016. # W = weight matrix def incres_cluster(W, k, speed, T, labels): n = W.shape[0] # Increment Dm = np.maximum(int(speed * 1e-4 * n / k), 1) # Random initial labeling u = random.randint(0, k, size=n) # Initialization F = np.zeros((n, k)) J = np.arange(n).astype(int) # Random walk transition D = degree_matrix(W, p=-1) P = W * D m = int(1) for i in range(T): # Plant F.fill(0) for r in range(k): I = u == r ind = J[I] F[ind[random.choice(np.sum(I), m)], r] = 1 # Grow while np.min(F) == 0: F = P * F # Harvest u = np.argmax(F, axis=1) # Increment m = m + Dm # Compute accuracy if labels is not None: acc = clustering_accuracy(u, labels) print("Iteration " + str(i) + ": Accuracy = %.2f" % acc + "%%, #seeds= %d" % m) return u # Check if graph is connected def isconnected(W): num_comp, comp = csgraph.connected_components(W) if num_comp == 1: return True else: return False # Graph-based clustering # W = sparse weight matrix describing graph # method = SSL method # Options: incres def graph_clustering(W, k, true_labels=None, method="incres", speed=5, T=100, extra_dim=0): n = W.shape[0] # Symmetrize W, if not already symmetric W = (W + W.transpose()) / 2 # Check if connected if not isconnected(W): print('Warning: Graph is not connected!') # Clustering if method == "incres": labels = incres_cluster(W, k, speed, T, true_labels) elif method == "spectral": labels = spectral_cluster(W, k, method="unnormalized", extra_dim=extra_dim) elif method == "spectralshimalik": labels = spectral_cluster(W, k, method="ShiMalik", extra_dim=extra_dim) elif method == "spectralngjordanweiss": labels = spectral_cluster(W, k, method="NgJordanWeiss", extra_dim=extra_dim) else: print("Invalid choice of clustering method.") sys.exit() return labels # Graph-based semi-supervised learning # W = sparse weight matrix describing graph # I = indices of labeled datapoints # g = values of labels # method = SSL method # Options: laplace, poisson, poisson_nodeg, wnll, properlyweighted, plaplace, randomwalk def graph_ssl(W, I, g, D=None, Ns=40, mu=1, numT=50, beta=None, method="laplace", p=3, volume_mult=0.5, alpha=2, zeta=1e7, r=0.1, epsilon=0.05, X=None, plaplace_solver="GradientDescentCcode", norm="none", true_labels=None, eigvals=None, eigvecs=None, dataset=None, T=0, use_cuda=False, return_vector=False, poisson_training_balance=True, symmetrize=True, error=None): one_shot_methods = ["mbo", "poisson", "poissonbalanced", "poissonvolume", "poissonmbo_volume", "poissonmbo", "poissonl1", "nearestneighbor", "poissonmbobalanced", "volumembo", "poissonvolumembo", "dynamiclabelpropagation", "sparselabelpropagation", "centeredkernel", "eikonal"] n = W.shape[0] method = method.lower() if beta is None: beta = np.ones((len(np.unique(g)),)) # Symmetrize D,W, if not already symmetric if symmetrize: W = (W + W.transpose()) / 2 if D is not None: D = sparse_max(D, D.transpose()) if not isconnected(W): print('Warning: Graph is not connected!') # One shot methods if method in one_shot_methods: if method == "mbo": u = multiclassMBO(W, I, g, eigvals, eigvecs, dataset, true_labels=true_labels) elif method == "volumembo": u = volumeMBO(W, I, g, dataset, beta, T, volume_mult) elif method == "poissonvolumembo": u = poisson_volumeMBO(W, I, g, dataset, beta, T, volume_mult) elif method == "poissonmbo_old": u = poissonMBO(W, I, g, dataset, np.ones_like(beta), true_labels=true_labels, temp=T, use_cuda=use_cuda, Ns=Ns, mu=mu, T=numT) elif method == "poissonmbobalanced": u = poissonMBO(W, I, g, dataset, beta, true_labels=true_labels, temp=T, use_cuda=use_cuda, Ns=Ns, mu=mu, T=numT) elif method == "poissonl1": u = poissonL1(W, I, g, dataset, true_labels=true_labels) elif method == "poisson": u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=poisson_training_balance, error=error) elif method == "poissonbalanced": u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=poisson_training_balance, beta=beta) elif method == "poissonvolume": u = PoissonVolume(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=poisson_training_balance, beta=beta) elif method == "poissonmbo": u = poissonMBO_volume(W, I, g, dataset, beta, true_labels=true_labels, temp=T, use_cuda=use_cuda, Ns=Ns, mu=mu) elif method == "dynamiclabelpropagation": u = DynamicLabelPropagation(W, I, g, true_labels=true_labels) elif method == "sparselabelpropagation": u = SparseLabelPropagation(W, I, g, true_labels=true_labels) elif method == "centeredkernel": u = CenteredKernel(W, I, g, true_labels=true_labels) elif method == "nearestneighbor": # Use distance matrix if provided, instead of weight matrix if D is None: u = nearestneighbor(W, I, g) else: u = nearestneighbor(D, I, g) elif method == "eikonal": # Use distance matrix if provided, instead of weight matrix if D is None: u = eikonalSSL(W, I, g, p=p, beta=beta) else: u = eikonalSSL(W, I, g, p=p, beta=beta) else: # One vs rest methods k = len(np.unique(g)) # Number of labels u = np.zeros((k, n)) i = 0 for l in np.unique(g): h = g == l # Solve binary classification problem if method == "laplace": v = laplace_solve(W, I, h, norm=norm) elif method == "shift": v = shift_solve(W, I, h) elif method == "meanshift": v = meanshift_solve(W, I, h) elif method == "wnll": v = wnll_solve(W, I, h) elif method == "properlyweighted": if X is None: print("Must supply raw data points for properly weighted Laplacian.") sys.exit() v = properlyweighted_solve(W, I, h, X, alpha, zeta, r) elif method == "plaplace": v = plaplace_solve(W, I, h, p, sol_method=plaplace_solver, norm=norm) elif method == "randomwalk": v = randomwalk_solve(W, I, h, epsilon) else: print("Invalid choice of SSL method.") sys.exit() # Update labels u[i, :] = v i = i + 1 if return_vector: labels = np.transpose(u) else: # Select labels max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] # Make sure to set labels at labeled points labels[I] = g return labels confidence = usort[0, :] - usort[1, :] # Read numerical data from csv file def csvread(filename): X = [] with open(filename) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') n = 0 for row in csv_reader: if not row[0] == 'Date/Time': X += [float(i) for i in row] m = len(row) n += 1 return np.array(X).reshape((n, m)) # Compute average and standard deviation of accuracy over many trials # Reads data from csv file filename # Returns accuracy (acc), standard deviation (stddev) and number of labeled points (N) def accuracy_statistics(filename): X = csvread(filename) N = np.unique(X[:, 0]) acc = [] stddev = [] quant = [] for n in N: Y = X[X[:, 0] == n, 1] Y = np.sort(Y) acc += [np.mean(Y)] quant += [Y[int(3 * len(Y) / 4)]] stddev += [np.std(Y)] # print("%.1f (%.1f)"%(np.mean(Y),np.std(Y)), end="&") num_trials = len(X[:, 0]) / len(N) return acc, stddev, N, quant, num_trials # Makes an accuracy table to be included in LaTeX documents # dataset = name of dataset # ssl_methods = list of names of methods to compare def accuracy_table_icml(dataset, ssl_method_list, legend_list, num_of_classes, testerror=False, savefile='tables.tex', title='', quantile=False, append=False, directory='Results', fontsize='small', small_caps=True, two_column=True): # Retrieve number of different label rates m accfile = directory + "/" + dataset + "_" + ssl_method_list[0] + "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) m = len(N) # Determine best algorithm at each label rate best = [None] * m best_score = [0] * m i = 0 for ssl_method in ssl_method_list: accfile = directory + "/" + dataset + "_" + ssl_method + "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) if quantile: acc = quant for j in range(m): if acc[j] > best_score[j]: best_score[j] = acc[j] best[j] = i i += 1 if append: f = open(savefile, "r") lines = f.readlines() f.close() f = open(savefile, "w") f.writelines([item for item in lines[:-1]]) else: f = open(savefile, "w") f.write("\\documentclass{article}\n") f.write("\\usepackage[T1]{fontenc}\n") f.write("\\usepackage{booktabs}\n") f.write("\\usepackage[margin=1in]{geometry}\n") f.write("\\begin{document}\n") f.write("\n\n\n") if two_column: f.write("\\begin{table*}[t!]\n") else: f.write("\\begin{table}[t!]\n") f.write("\\vspace{-3mm}\n") f.write( "\\caption{" + title + ": Average (standard deviation) classification accuracy over %d trials.}\n" % num_trials) f.write("\\vspace{-3mm}\n") f.write("\\label{tab:" + title + "}\n") f.write("\\vskip 0.15in\n") f.write("\\begin{center}\n") f.write("\\begin{" + fontsize + "}\n") if small_caps: f.write("\\begin{sc}\n") f.write("\\begin{tabular}{l") for i in range(m): f.write("l") f.write("}\n") f.write("\\toprule\n") f.write("\\# Labels per class") for i in range(m): f.write("&\\textbf{%d}" % int(N[i] / num_of_classes)) f.write("\\\\\n") f.write("\\midrule\n") i = 0 for ssl_method in ssl_method_list: f.write(legend_list[i].ljust(15)) accfile = directory + "/" + dataset + "_" + ssl_method + "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) for j in range(m): if best[j] == i: f.write("&{\\bf %.1f" % acc[j] + " (%.1f)}" % stddev[j]) # f.write("&${\\bf %.1f"%acc[j]+"\\pm %.1f}$"%stddev[j]) else: f.write("&%.1f" % acc[j] + " (%.1f) " % stddev[j]) # f.write("&$%.1f"%acc[j]+"\\pm %.1f$ "%stddev[j]) f.write("\\\\\n") i += 1 f.write("\\bottomrule\n") f.write("\\end{tabular}\n") if small_caps: f.write("\\end{sc}\n") f.write("\\end{" + fontsize + "}\n") f.write("\\end{center}\n") f.write("\\vskip -0.1in\n") if two_column: f.write("\\end{table*}") else: f.write("\\end{table}") f.write("\n\n\n") f.write("\\end{document}\n") f.close() def plot_graph(X, W, l=None): # Other colormaps, coolwarm, winter, Set3, tab20b, rainbow # plt.ion() colors = np.array([[1.0, 0, 0], [0, 0.9, 0]]) plt.rcParams['figure.facecolor'] = 'navy' n = W.shape[0] I, J, V = sparse.find(W) for i in range(len(I)): xval = [X[I[i], 0], X[J[i], 0]] yval = [X[I[i], 1], X[J[i], 1]] # plt.plot(xval,yval, color='black', linewidth=0.15, markersize=0) plt.plot(xval, yval, color=[0.5, 0.5, 0.5], linewidth=0.5, markersize=0) if l is None: # plt.scatter(X[:,0],X[:,1], s=30, cmap='Paired') plt.scatter(X[:, 0], X[:, 1], s=8, zorder=3) else: # plt.scatter(X[:,0],X[:,1], s=30, c=l, cmap='Paired') plt.scatter(X[:, 0], X[:, 1], s=8, c=colors[l, :], zorder=3) plt.axis("off") # plot average and standard deviation of accuracy over many trials # dataset = name of dataset # ssl_methods = list of names of methods to compare def accuracy_plot(dataset, ssl_method_list, legend_list, num_of_classes, title=None, errorbars=False, testerror=False, savefile=None, loglog=False, log_dirs=None, directed_graph=False): if log_dirs is None: log_dirs = ["Results/"] # plt.ion() plt.figure() if errorbars: matplotlib.rcParams.update({'errorbar.capsize': 5}) matplotlib.rcParams.update({'font.size': 16}) styles = ['^b-', 'or-', 'dg-', 'sk-', 'pm-', 'xc-', '*y-'] i = 0 for log in log_dirs: for ssl_method in ssl_method_list: accfile = os.path.join(log, dataset + "_" + ssl_method) if directed_graph: accfile += "_directed" accfile += "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) if testerror: acc = 100 - acc # z = np.polyfit(np.log(N),np.log(acc),1) # print(z[0]) if errorbars: plt.errorbar(N / num_of_classes, acc, fmt=styles[i], yerr=stddev, label=legend_list[i]) else: if loglog: plt.loglog(N / num_of_classes, acc, styles[i], label=legend_list[i]) else: plt.plot(N / num_of_classes, acc, styles[i], label=legend_list[i]) i += 1 plt.xlabel('Number of labels per class') if testerror: plt.ylabel('Test error (%)') plt.legend(loc='upper right') else: plt.ylabel('Accuracy (%)') plt.legend(loc='lower right') if title is not None: plt.title(title) plt.tight_layout() plt.grid(True) if savefile is not None: plt.savefig(savefile) else: plt.show() # Select labels based on a ranking # Prodces a label permutation with 1 trial with same variations of #labels per class as the label permutation perm provided as input def SelectLabels(labels, permold, rank): perm = permold # Number of classes L = np.unique(labels) k = len(L) n = len(labels) m = len(permold) num = np.zeros((m,)) for i in range(m): num[i] = len(permold[i]) num, unique_perm = np.unique(num, return_index=True) perm = list() for i in unique_perm: p = permold[i] pl = labels[p] ind = [] for l in L: numl = np.sum(pl == l) K = labels == l c = np.argsort(-rank[K]) j = np.arange(0, n)[K] ind = ind + j[c[:numl]].tolist() ind = np.array(ind) perm.append(ind) return perm # PageRank algorithm def PageRank(W, alpha): n = W.shape[0] u = np.ones((n,)) v = np.ones((n,)) D = degree_matrix(W, p=-1) P = np.transpose(D * W) err = 1 while err > 1e-10: w = alpha * P * u + (1 - alpha) * v err = np.max(np.absolute(w - u)) u = w return u # Print help def print_help(): print('========================================================') print('GraphLearning: Python package for graph-based learning. ') print('========================================================') print('========================================================') print('Graph-based Clustering & Semi-Supervised Learning') print('========================================================') print(' ') print('Options:') print(' -d (--dataset=): MNIST, FashionMNIST, WEBKB, cifar (default=MNIST)') print(' -m (--metric=): Metric for computing similarities (default=L2)') print(' Choices: vae, scatter, L2, aet') print(' -a (--algorithm=): Learning algorithm (default=Laplace)') print(' -k (--knn=): Number of nearest neighbors (default=10)') print(' -t (--num_trials=): Number of trial permutations to run (default=all)') print( ' -l (--label_perm=): Choice of label permutation file (format=dataset<label_perm>_permutations.npz). (default is empty).') print(' -p (--p=): Value of p for plaplace method (default=3)') print(' -n (--normalization=): Laplacian normalization (default=none)') print(' Choices: none, normalized') print(' -N (--num_classes): Number of clusters if choosing clustering algorithm (default=10)') print(' -s (--speed=): Speed in INCRES method (1--10) (default=2)') print(' -i (--num_iter=): Number of iterations for iterative methods (default=1000)') print(' -x (--extra_dim=): Number of extra dimensions in spectral clustering (default=0)') print(' -c (--cuda): Use GPU acceleration (when available)') print(' -T (--temperature): Temperature for volume constrained MBO (default=0)') print(' -v (--volume_constraint=): Volume constraint for MBO (default=0.5)') print(' -j (--num_cores=): Number of cores to use in parallel processing (default=1)') print(' -r (--results): Turns off automatic saving of results to .csv file') print(' -b (--verbose): Turns on verbose mode (displaying more intermediate steps).') # Default settings def default_dataset(): return 'MNIST' def default_metric(): return 'L2' def default_algorithm(): return 'laplace' def default_k(): return 10 def default_t(): return '-1' def default_label_perm(): return '' def default_p(): return 3 def default_norm(): return "none" def default_use_cuda(): return False def default_T(): return 0 def default_num_cores(): return 1 def default_results(): return True def default_num_classes(): return 10 def default_speed(): return 2 def default_num_iter(): return 1000 def default_extra_dim(): return 0 def default_volume_constraint(): return 0.5 def default_verbose(): return False def default_poisson_training_balance(): return True def default_directed_graph(): return False # Main subroutine. Is calleable from other scripts as graphlearning.main(...) def main(dataset=default_dataset(), metric=default_metric(), algorithm=default_algorithm(), k=default_k(), t=default_t(), label_perm=default_label_perm(), p=default_p(), norm=default_norm(), use_cuda=default_use_cuda(), T=default_T(), num_cores=default_num_cores(), results=default_results(), num_classes=default_num_classes(), speed=default_speed(), num_iter=default_num_iter(), extra_dim=default_extra_dim(), volume_constraint=default_volume_constraint(), verbose=default_verbose(), poisson_training_balance=default_poisson_training_balance(), directed_graph=default_directed_graph()): # Load labels labels = load_labels(dataset) # Load nearest neighbor data I, J, D = load_kNN_data(dataset, metric=metric) # Consturct weight matrix and distance matrix W, error = nnk_weight_matrix(dataset, metric, mask=J, knn_param=k, symmetrize=not directed_graph) Wdist = None # dist_matrix(I, J, D, k) # Load label permutation (including restrictions in t) perm = load_label_permutation(dataset, label_perm=label_perm, t=t) # Load eigenvector data if MBO selected if algorithm == 'mbo': eigvals, eigvecs = load_mbo_eig(dataset, metric, k) else: eigvals = None eigvecs = None # Output file outfile = "Results/" + dataset + label_perm + "_" + metric + "_k%d" % k if algorithm == 'plaplace': outfile = outfile + "_p%.1f" % p + algorithm[1:] + "_" + norm elif algorithm == 'eikonal': outfile = outfile + "_p%.1f" % p + algorithm else: outfile = outfile + "_" + algorithm if algorithm == 'volumembo' or algorithm == 'poissonvolumembo': outfile = outfile + "_T%.3f" % T outfile = outfile + "_V%.3f" % volume_constraint if algorithm == 'poisson' and poisson_training_balance == False: outfile = outfile + "_NoBal" if directed_graph: outfile += "_directed" outfile = outfile + "_accuracy.csv" # Print basic info print('========================================================') print('GraphLearning: Python package for graph-based learning. ') print('========================================================') print('========================================================') print('Graph-based Clustering & Semi-Supervised Learning') print('========================================================') print(' ') print('Dataset: ' + dataset) print('Metric: ' + metric) print('Number of neighbors: %d' % k) print('Learning algorithm: ' + algorithm) print('Laplacian normalization: ' + norm) if algorithm == 'plaplace' or algorithm == 'eikonal': print("p-Laplace/eikonal value p=%.2f" % p) if algorithm in clustering_algorithms: print('Number of clusters: %d' % num_classes) if algorithm == 'INCRES': print('INCRES speed: %.2f' % speed) print('Number of iterations: %d' % num_iter) if algorithm[:8] == 'Spectral': print('Number of extra dimensions: %d' % extra_dim) else: print('Number of trial permutations: %d' % len(perm)) print('Permutations file: LabelPermutations/' + dataset + label_perm + '_permutations.npz') if algorithm == 'volumembo' or algorithm == 'poissonvolumembo': print("Using temperature=%.3f" % T) print("Volume constraints = [%.3f,%.3f]" % (volume_constraint, 2 - volume_constraint)) # If output file selected if results: print('Output file: ' + outfile) print(' ') print('========================================================') print(' ') true_labels = None if verbose: true_labels = labels # If clustering algorithm was chosen if algorithm in clustering_algorithms: # Clustering u = graph_clustering(W, num_classes, labels, method=algorithm, T=num_iter, speed=speed, extra_dim=extra_dim) # Compute accuracy acc = clustering_accuracy(u, labels) # Print to terminal print("Accuracy: %.2f" % acc + "%") # If semi-supervised algorithms chosen else: # If output file selected if results: # Check if Results directory exists if not os.path.exists('Results'): os.makedirs('Results') now = datetime.datetime.now() # Add time stamp to output file f = open(outfile, "a+") f.write("Date/Time, " + now.strftime("%Y-%m-%d_%H:%M") + "\n") f.close() # Loop over label permutations print("Number of labels, Accuracy") def one_trial(label_ind): # Number of labels m = len(label_ind) # Label proportions (used by some algroithms) beta = label_proportions(labels) start_time = time.time() # Graph-based semi-supervised learning u = graph_ssl(W, label_ind, labels[label_ind], D=Wdist, beta=beta, method=algorithm, epsilon=0.3, p=p, norm=norm, eigvals=eigvals, eigvecs=eigvecs, dataset=dataset, T=T, use_cuda=use_cuda, volume_mult=volume_constraint, true_labels=true_labels, poisson_training_balance=poisson_training_balance, symmetrize=not directed_graph, error=error) print("--- %s seconds ---" % (time.time() - start_time)) # Compute accuracy acc = accuracy(u, labels, m) # Print to terminal print("%d" % m + ",%.2f" % acc) # Write to file if results: f = open(outfile, "a+") f.write("%d" % m + ",%.2f\n" % acc) f.close() # Number of cores for parallel processing num_cores = min(multiprocessing.cpu_count(), num_cores) Parallel(n_jobs=num_cores)(delayed(one_trial)(label_ind) for label_ind in perm) if __name__ == '__main__': # Default settings dataset = default_dataset() metric = default_metric() algorithm = default_algorithm() k = default_k() t = default_t() label_perm = default_label_perm() p = default_p() norm = default_norm() use_cuda = default_use_cuda() T = default_T() num_cores = default_num_cores() results = default_results() num_classes = default_num_classes() speed = default_speed() num_iter = default_num_iter() extra_dim = default_extra_dim() volume_constraint = default_volume_constraint() verbose = default_verbose() poisson_training_balance = default_poisson_training_balance() directed_graph = default_directed_graph() # Read command line arguments try: opts, args = getopt.getopt(sys.argv[1:], "hd:m:k:a:p:n:v:N:s:i:x:t:cl:T:j:rboz", ["dataset=", "metric=", "knn=", "algorithm=", "p=", "normalization=", "volume_constraint=", "num_classes=", "speed=", "num_iter=", "extra_dim=", "num_trials=", "cuda", "label_perm=", "temperature=", "num_cores=", "results", "verbose", "poisson_training_balance", "directed"]) except getopt.GetoptError: print_help() sys.exit(2) for opt, arg in opts: if opt == '-h': print_help() sys.exit() elif opt in ("-d", "--dataset"): dataset = arg elif opt in ("-m", "--metric"): metric = arg elif opt in ("-k", "--knn"): k = int(arg) elif opt in ("-a", "--algorithm"): algorithm = arg.lower() elif opt in ("-p", "--p"): p = float(arg) elif opt in ("-n", "--normalization"): norm = arg elif opt in ("-v", "--volume_constraint"): volume_constraint = float(arg) elif opt in ("-N", "--num_classes"): num_classes = int(arg) elif opt in ("-s", "--speed"): speed = float(arg) elif opt in ("-i", "--num_iter"): num_iter = int(arg) elif opt in ("-x", "--extra_dim"): extra_dim = int(arg) elif opt in ("-t", "--num_trials"): t = arg elif opt in ("-c", "--cuda"): use_cuda = True elif opt in ("-l", "--label_perm"): label_perm = arg elif opt in ("-T", "--temperature"): T = float(arg) elif opt in ("-j", "--num_cores"): num_cores = int(arg) elif opt in ("-r", "--results"): results = False elif opt in ("-b", "--verbose"): verbose = True elif opt in ("-o", "--poisson_training_balance"): poisson_training_balance = False elif opt in ("-z", "--directed"): directed_graph = True # Call main subroutine main(dataset=dataset, metric=metric, algorithm=algorithm, k=k, t=t, label_perm=label_perm, p=p, norm=norm, use_cuda=use_cuda, T=T, num_cores=num_cores, results=results, num_classes=num_classes, speed=speed, num_iter=num_iter, extra_dim=extra_dim, volume_constraint=volume_constraint, verbose=verbose, poisson_training_balance=poisson_training_balance, directed_graph=directed_graph)
2.6875
3
ECE365/nlp/nlplab4_dist/lab4.py
debugevent90901/courseArchive
0
12784363
<reponame>debugevent90901/courseArchive # All Import Statements Defined Here # Note: Do not add to this list. # All the dependencies you need, can be installed by running . # ---------------- import numpy as np import random import scipy as sp from sklearn.decomposition import TruncatedSVD from sklearn.decomposition import PCA START_TOKEN = '<START>' END_TOKEN = '<END>' np.random.seed(0) random.seed(0) # ---------------- def distinct_words(corpus): """ Determine a list of distinct words for the corpus. Params: corpus (list of list of strings): corpus of documents Return: corpus_words (list of strings): list of distinct words across the corpus, sorted (using python 'sorted' function) num_corpus_words (integer): number of distinct words across the corpus """ corpus_words = [] num_corpus_words = -1 # ------------------ # Write your implementation here. corpus_words = list(set([strings for list_of_strings in corpus for strings in list_of_strings])) corpus_words = sorted(corpus_words) num_corpus_words = len(corpus_words) # ------------------ return corpus_words, num_corpus_words def compute_co_occurrence_matrix(corpus, window_size=4): """ Compute co-occurrence matrix for the given corpus and window_size (default of 4). Note: Each word in a document should be at the center of a window. Words near edges will have a smaller number of co-occurring words. For example, if we take the document "START All that glitters is not gold END" with window size of 4, "All" will co-occur with "START", "that", "glitters", "is", and "not". Params: corpus (list of list of strings): corpus of documents window_size (int): size of context window Return: M (numpy matrix of shape (number of corpus words, number of corpus words)): Co-occurence matrix of word counts. The ordering of the words in the rows/columns should be the same as the ordering of the words given by the distinct_words function. word2Ind (dict): dictionary that maps word to index (i.e. row/column number) for matrix M. """ words, num_words = distinct_words(corpus) M = None word2Ind = {} # ------------------ # Write your implementation here. M = np.zeros((num_words, num_words)) for i in range(num_words): word2Ind[words[i]] = i for list_of_strings in corpus: for i in range(len(list_of_strings)): left = max(i - window_size, 0) right = min(i + window_size, len(list_of_strings) - 1) for j in range(left, right+1): if word2Ind[list_of_strings[i]] != word2Ind[list_of_strings[j]]: M[word2Ind[list_of_strings[i]]][word2Ind[list_of_strings[j]]] += 1 # ------------------ return M, word2Ind def reduce_to_k_dim(M, k=2): """ Reduce a co-occurence count matrix of dimensionality (num_corpus_words, num_corpus_words) to a matrix of dimensionality (num_corpus_words, k) using the following SVD function from Scikit-Learn: - http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html Params: M (numpy matrix of shape (number of corpus words, number of corpus words)): co-occurence matrix of word counts k (int): embedding size of each word after dimension reduction Return: M_reduced (numpy matrix of shape (number of corpus words, k)): matrix of k-dimensioal word embeddings. In terms of the SVD from math class, this actually returns U * S """ n_iters = 10 # Use this parameter in your call to `TruncatedSVD` M_reduced = None print("Running Truncated SVD over %i words..." % (M.shape[0])) # ------------------ # Write your implementation here. M_reduced = TruncatedSVD(n_components=k, n_iter=n_iters).fit_transform(M) # ------------------ print("Done.") return M_reduced
2.796875
3
Cogs/timerevents.py
xantbos/Discord.py-Cogs
0
12784364
<gh_stars>0 import discord import asyncio import pytz import io import os import sys from discord.ext import commands from datetime import date, datetime, timedelta, timezone from threading import Timer from pytz import timezone localland = timezone("Canada/Eastern") class TimerCommands(commands.Cog): def __init__(self, bot): self.bot = bot self.ticker = localland.localize(datetime(year=datetime.now().year, month=datetime.now().month, day=datetime.now().day, hour=12, minute=00, second=00)) asyncio.ensure_future(timer_loop(self)) @commands.command(name="timercheck") async def timer_print_internal_times(self, ctx): print("TIMER: {}".format(self.ticker.strftime("%B"))) async def timer_loop(self): await self.bot.wait_until_ready() preString = "Starting Ticker Timer..." print("{:<35}".format(preString), end="") print("\tSuccess") # purely for aesthetics while True: diff = self.ticker - localland.localize(datetime.now()) if diff.total_seconds() <= 0: # here is where we increment to our next timer event # read up on timedelta if you need help self.ticker = self.ticker + timedelta(days=1) else: diff = self.ticker - localland.localize(datetime.now()) await asyncio.sleep(diff.total_seconds()) thisChannel = self.bot.get_channel(000000000000) # channel id goes here await thisChannel.send("Timer tick") def setup(bot): bot.add_cog(TimerCommands(bot))
2.640625
3
src/sssimp/utils.py
vincent38/sssimp
8
12784365
<gh_stars>1-10 import os import sys from pathlib import Path import traceback from typing import Type from sssimp import APP_DIR def mkdir(path): """ Creates a directory or the parent directory if `path` is not a directory. Safely ignores if already exists """ path = Path(path) if not path.is_dir(): path = path.parent path.mkdir(exist_ok=True, parents=True) def path_strip(path, parent = APP_DIR): """Strips `parent` from `path`""" path = str(path) path = path.removeprefix(str(parent)) path = path.removeprefix(os.path.sep) return path def run_safely(f, exception_type: Type[Exception] = Exception, out=sys.stderr): try: f() except exception_type: print(traceback.format_exc(), file=out)
2.78125
3
networking_odl/agent/db_ovs_neutron_agent.py
dingboopt/wqq
0
12784366
# Copyright 2011 VMware, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import base64 import collections import functools import hashlib import signal import sys import time import netaddr from oslo_config import cfg from oslo_log import log as logging import oslo_messaging from oslo_service import loopingcall from oslo_service import systemd import six from six import moves from neutron._i18n import _, _LE, _LI, _LW from neutron.agent.common import ip_lib from neutron.agent.common import ovs_lib from neutron.agent.common import polling from neutron.agent.common import utils from neutron.agent.l2.extensions import manager as ext_manager from neutron.agent import rpc as agent_rpc from neutron.agent import securitygroups_rpc as sg_rpc from neutron.api.rpc.callbacks import resources from neutron.api.rpc.handlers import dvr_rpc from neutron.common import config from neutron.common import constants as n_const from neutron.common import ipv6_utils as ipv6 from neutron.common import topics from neutron.common import utils as n_utils from neutron import context from neutron.extensions import portbindings from neutron.plugins.common import constants as p_const from neutron.plugins.common import utils as p_utils from neutron.plugins.ml2.drivers.l2pop.rpc_manager import l2population_rpc from neutron.plugins.ml2.drivers.openvswitch.agent.common \ import constants from neutron.plugins.ml2.drivers.openvswitch.agent \ import ovs_agent_extension_api as ovs_ext_api from neutron.plugins.ml2.drivers.openvswitch.agent \ import ovs_dvr_neutron_agent from neutron.plugins.ml2.drivers.openvswitch.agent \ import ovs_neutron_agent from networking_odl.ovsdb import impl_idl_ovn from networking_odl.ovsdb import ovsdb_monitor LOG = logging.getLogger(__name__) cfg.CONF.import_group('AGENT', 'neutron.plugins.ml2.drivers.openvswitch.' 'agent.common.config') cfg.CONF.import_group('OVS', 'neutron.plugins.ml2.drivers.openvswitch.agent.' 'common.config') class OVSPluginApi(agent_rpc.PluginApi): pass class DBOVSNeutronAgent(ovs_neutron_agent.OVSNeutronAgent): '''Implements OVS-based tunneling, VLANs and flat networks. Two local bridges are created: an integration bridge (defaults to 'br-int') and a tunneling bridge (defaults to 'br-tun'). An additional bridge is created for each physical network interface used for VLANs and/or flat networks. All VM VIFs are plugged into the integration bridge. VM VIFs on a given virtual network share a common "local" VLAN (i.e. not propagated externally). The VLAN id of this local VLAN is mapped to the physical networking details realizing that virtual network. For virtual networks realized as GRE tunnels, a Logical Switch (LS) identifier is used to differentiate tenant traffic on inter-HV tunnels. A mesh of tunnels is created to other Hypervisors in the cloud. These tunnels originate and terminate on the tunneling bridge of each hypervisor. Port patching is done to connect local VLANs on the integration bridge to inter-hypervisor tunnels on the tunnel bridge. For each virtual network realized as a VLAN or flat network, a veth or a pair of patch ports is used to connect the local VLAN on the integration bridge with the physical network bridge, with flow rules adding, modifying, or stripping VLAN tags as necessary. ''' # history # 1.0 Initial version # 1.1 Support Security Group RPC # 1.2 Support DVR (Distributed Virtual Router) RPC # 1.3 Added param devices_to_update to security_groups_provider_updated # 1.4 Added support for network_update target = oslo_messaging.Target(version='1.4') def __init__(self, bridge_classes, conf=None): '''Constructor. :param bridge_classes: a dict for bridge classes. :param conf: an instance of ConfigOpts ''' super(DBOVSNeutronAgent, self).__init__(bridge_classes, conf) def setup_rpc(self): self.plugin_rpc = OVSPluginApi(topics.PLUGIN) self.sg_plugin_rpc = sg_rpc.SecurityGroupServerRpcApi(topics.PLUGIN) self.dvr_plugin_rpc = dvr_rpc.DVRServerRpcApi(topics.PLUGIN) self.state_rpc = agent_rpc.PluginReportStateAPI(topics.REPORTS) # RPC network init self.context = context.get_admin_context_without_session() # Define the listening consumers for the agent consumers = [[constants.TUNNEL, topics.UPDATE], [constants.TUNNEL, topics.DELETE], [topics.SECURITY_GROUP, topics.UPDATE], [topics.DVR, topics.UPDATE], [topics.NETWORK, topics.UPDATE]] if self.l2_pop: consumers.append([topics.L2POPULATION, topics.UPDATE]) self.connection = agent_rpc.create_consumers([self], topics.AGENT, consumers, start_listening=False) # NOTE(rtheis): This will initialize all workers (API, RPC, # plugin service and OVN) with OVN IDL connections. trigger = ovsdb_monitor.OvnWorker self._nb_ovn, self._sb_ovn = impl_idl_ovn.get_ovn_idls(self, trigger) def validate_local_ip(local_ip): """Verify if the ip exists on the agent's host.""" if not ip_lib.IPWrapper().get_device_by_ip(local_ip): LOG.error(_LE("Tunneling can't be enabled with invalid local_ip '%s'." " IP couldn't be found on this host's interfaces."), local_ip) raise SystemExit(1) def validate_tunnel_config(tunnel_types, local_ip): """Verify local ip and tunnel config if tunneling is enabled.""" if not tunnel_types: return validate_local_ip(local_ip) for tun in tunnel_types: if tun not in constants.TUNNEL_NETWORK_TYPES: LOG.error(_LE('Invalid tunnel type specified: %s'), tun) raise SystemExit(1) def prepare_xen_compute(): is_xen_compute_host = 'rootwrap-xen-dom0' in cfg.CONF.AGENT.root_helper if is_xen_compute_host: # Force ip_lib to always use the root helper to ensure that ip # commands target xen dom0 rather than domU. cfg.CONF.register_opts(ip_lib.OPTS) cfg.CONF.set_default('ip_lib_force_root', True) def main(bridge_classes): prepare_xen_compute() validate_tunnel_config(cfg.CONF.AGENT.tunnel_types, cfg.CONF.OVS.local_ip) try: agent = DBOVSNeutronAgent(bridge_classes, cfg.CONF) except (RuntimeError, ValueError) as e: LOG.error(_LE("%s Agent terminated!"), e) sys.exit(1) agent.daemon_loop()
1.203125
1
problem_solving/algorithms/strings/q11_funny_string.py
mxdzi/hackerrank
0
12784367
#!/bin/python3 import math import os import random import re import sys # # Complete the 'funnyString' function below. # # The function is expected to return a STRING. # The function accepts STRING s as parameter. # def funnyString(s): # Write your code here r = s[::-1] if [abs(ord(s[i]) - ord(s[i+1])) for i in range(len(s) -1)] == [abs(ord(r[i]) - ord(r[i+1])) for i in range(len(r) -1)]: return "Funny" else: return "Not Funny" if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') q = int(input().strip()) for q_itr in range(q): s = input() result = funnyString(s) fptr.write(result + '\n') fptr.close()
4.03125
4
src/admin/models/tag_rules_es.py
mstrechen/advanced-news-scraper
0
12784368
from elasticsearch_dsl import Document, Integer, Percolator, Text from admin.models.articles_es import SUPPORTED_LANGUAGES_ANALYZER_MAPPING class TagRuleEs(Document): tag_id = Integer() query = Percolator() title = Text(required=False, fields={ lang: Text(analyzer=analyzer) for lang, analyzer in SUPPORTED_LANGUAGES_ANALYZER_MAPPING.items() }) content = Text(required=False, fields={ lang: Text(analyzer=analyzer) for lang, analyzer in SUPPORTED_LANGUAGES_ANALYZER_MAPPING.items() }) class Index: name = 'tag_rules' settings = { "number_of_shards": 2, }
2.28125
2
setup.py
Tim55667757/FuzzyRoutines
1
12784369
<reponame>Tim55667757/FuzzyRoutines<filename>setup.py #!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup import os __version__ = '1.0' # identify main version of FuzzyRoutines devStatus = '4 - Beta' # default build status, see: https://pypi.python.org/pypi?%3Aaction=list_classifiers if 'TRAVIS_BUILD_NUMBER' in os.environ and 'TRAVIS_BRANCH' in os.environ: print("This is TRAVIS-CI build") print("TRAVIS_BUILD_NUMBER = {}".format(os.environ['TRAVIS_BUILD_NUMBER'])) print("TRAVIS_BRANCH = {}".format(os.environ['TRAVIS_BRANCH'])) __version__ += '.{}{}'.format( '' if 'release' in os.environ['TRAVIS_BRANCH'] or os.environ['TRAVIS_BRANCH'] == 'master' else 'dev', os.environ['TRAVIS_BUILD_NUMBER'], ) devStatus = '5 - Production/Stable' if 'release' in os.environ['TRAVIS_BRANCH'] or os.environ['TRAVIS_BRANCH'] == 'master' else devStatus else: print("This is local build") __version__ += '.dev0' # set version as major.minor.localbuild if local build: python setup.py install print("FuzzyRoutines build version = {}".format(__version__)) setup( name='fuzzyroutines', version=__version__, description='FuzzyRoutines library contains some routines for work with fuzzy logic operators, fuzzy datasets and fuzzy scales.', long_description='You can see detailed user manual here: https://devopshq.github.io/FuzzyRoutines/', license='MIT', author='<NAME>', author_email='<EMAIL>', url='https://devopshq.github.io/FuzzyRoutines/', download_url='https://github.com/devopshq/FuzzyRoutines.git', classifiers=[ 'Development Status :: {}'.format(devStatus), 'Environment :: Console', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3.6', ], keywords=[ 'fuzzy', 'logic', 'math', 'science', 'research', 'fuzzylogic', 'fuzzyset', ], packages=[ 'fuzzyroutines', ], setup_requires=[ ], tests_require=[ 'pytest', ], install_requires=[ ], package_data={ '': [ './fuzzyroutines/*' './tests/*' 'LICENSE', 'README.md', ], }, zip_safe=True, )
2.015625
2
sudoku.py
Y-o-Z/games
0
12784370
<reponame>Y-o-Z/games # Sudoku → japanisches Akronym (griech. akros, onyma = Spitze, Namen) # (= dos(denial-of-service)-attack on the brain ..) # 9x9 grid with 9 3x3 subgrids, each subgrid, row, and column contains the numbers 1..9 once (+ unique solution) from collections import deque legal_entries = [-1, 1, 2, 3, 4, 5, 6, 7, 8, 9] class Sudoku: """ # list of 81 entries from top-left to bottom-right (-1 → empty) """ def __init__(self, entries): self.entries = entries[:] self.original_entries = entries[:] def __repr__(self): rows = ["sudoku:\n"] for row in range(9): current_row = [] for column in range(9): current_row.append(str(self.entries[row * 9 + column])) if current_row[-1][0] != "-": current_row[-1] = " " + current_row[-1] rows.append(" ".join(current_row) + "\n") return "".join(rows) def reset(self): self.entries = self.original_entries[:] def no_duplicates(self, indices): # True if all entries (not -1) pointed to by indices are different entries = [self.entries[index] for index in indices] for entry in range(1, 9 + 1): if entries.count(entry) > 1: return False return True def no_errors(self): # no illegal entries if not (len(self.entries) == 81 and all(entry in legal_entries for entry in self.entries)): return False # all subgrids correct for subgrid in range(9): indices = get_indices_from_subgrid(subgrid) if not self.no_duplicates(indices): return False # all rows correct for row in range(9): indices = get_indices_from_row(row) if not self.no_duplicates(indices): return False # all columns correct for column in range(9): indices = get_indices_from_column(column) if not self.no_duplicates(indices): return False return True def possible_entries_for_index(self, index): if self.entries[index] != -1: return [self.entries[index]] impossible_entries = set() subgrid = get_subgrid_from_index(index) row = get_row_from_index(index) column = get_column_from_index(index) for i in get_indices_from_subgrid(subgrid): impossible_entries.add(self.entries[i]) for i in get_indices_from_row(row): impossible_entries.add(self.entries[i]) for i in get_indices_from_column(column): impossible_entries.add(self.entries[i]) possible_entries = [] for entry in range(1, 9 + 1): if entry not in impossible_entries: possible_entries.append(entry) return possible_entries def solve_next_entry(self, quiet=False): # return 1 for new_entry, 0 for no_new_entry, -1 for error possible_entries_for_indices = [] # index level for index in range(81): if self.entries[index] == -1: possible_entries = self.possible_entries_for_index(index) if len(possible_entries) == 1: # success if not quiet: row = get_row_from_index(index) column = get_column_from_index(index) print(f"New entry at row {row}, column {column}: {possible_entries[0]} [index level]") self.entries[index] = possible_entries[0] return 1 possible_entries_for_indices.append(possible_entries) else: possible_entries_for_indices.append([self.entries[index]]) for index in range(81): if not len(possible_entries_for_indices[index]): # error check (empty) if not quiet: row = get_row_from_index(index) column = get_column_from_index(index) print(f"Error at row {row}, column {column}: no possible entries") return -1 # subgrid level for subgrid in range(9): indices = get_indices_from_subgrid(subgrid) subgrid_entries = set() for index in indices: subgrid_entries.add(self.entries[index]) missing_subgrid_entries = [] for entry in range(1, 9 + 1): if entry not in subgrid_entries: missing_subgrid_entries.append(entry) for missing_entry in missing_subgrid_entries: count = 0 pos = -1 for index in indices: if missing_entry in possible_entries_for_indices[index]: count += 1 pos = index if count == 1: # success if not quiet: row = get_row_from_index(pos) column = get_column_from_index(pos) print(f"New entry at row {row}, column {column}: {missing_entry} [subgrid level]") self.entries[pos] = missing_entry return 1 elif count == 0: # error check if not quiet: print(f"Error at subgrid {subgrid}: no place for {missing_entry}") return -1 # row level for row in range(9): indices = get_indices_from_row(row) row_entries = set() for index in indices: row_entries.add(self.entries[index]) missing_row_entries = [] for entry in range(1, 9 + 1): if entry not in row_entries: missing_row_entries.append(entry) for missing_entry in missing_row_entries: count = 0 pos = -1 for index in indices: if missing_entry in possible_entries_for_indices[index]: count += 1 pos = index if count == 1: # success if not quiet: column = get_column_from_index(pos) print(f"New entry at row {row}, column {column}: {missing_entry} [row level]") self.entries[pos] = missing_entry return 1 elif count == 0: # error check if not quiet: print(f"Error at row {row}: no place for {missing_entry}") return -1 # column level for column in range(9): indices = get_indices_from_column(column) column_entries = set() for index in indices: column_entries.add(self.entries[index]) missing_column_entries = [] for entry in range(1, 9 + 1): if entry not in column_entries: missing_column_entries.append(entry) for missing_entry in missing_column_entries: count = 0 pos = -1 for index in indices: if missing_entry in possible_entries_for_indices[index]: count += 1 pos = index if count == 1: # success if not quiet: row = get_row_from_index(pos) print(f"New entry at row {row}, column {column}: {missing_entry} [column level]") self.entries[pos] = missing_entry return 1 elif count == 0: # error check if not quiet: print(f"Error at column {column}: no place for {missing_entry}") return -1 if not quiet: print("No new entry.") return 0 def solve(self): dq = deque() dq.append(self.entries[:]) while len(dq): """ print(f"dq: len = {len(dq)}") for dq_entry in dq: print_entries(dq_entry) """ dq_entries = dq.pop() self.entries = dq_entries while True: flag = self.solve_next_entry(quiet=True) if flag == 1: # new_entry # print("\nFLAG = 1\n") continue elif flag == 0: # no new entry (→ dfs) # terminated? if all(entry in legal_entries[1:] for entry in self.entries): dq.clear() # print("\nDone.\n") break else: for index in range(81): if self.entries[index] == -1: possible_entries = self.possible_entries_for_index(index) for entry in possible_entries: self.entries[index] = entry dq.append(self.entries[:]) # [:] ! # print(f"\nFLAG = 0, entries added → len(dq) = {len(dq)}\n") break else: # flag = -1, error (← dfs) # print("\nFLAG = -1\n") break assert self.no_errors() if all(entry in legal_entries[1:] for entry in self.entries): print("\nSudoku solved.", end="\n\n") print(self) else: print("\nSudoku not solved. (why?)", end="\n\n") print(self) def get_subgrid_from_index(index): # top-left to bottom-right, 0-based row = get_row_from_index(index) column = get_column_from_index(index) if row < 3: if column < 3: return 0 elif column < 6: return 1 else: return 2 elif row < 6: if column < 3: return 3 elif column < 6: return 4 else: return 5 else: if column < 3: return 6 elif column < 6: return 7 else: return 8 def get_row_from_index(index): # 0-based if index < 9: return 0 elif index < 18: return 1 elif index < 27: return 2 elif index < 36: return 3 elif index < 45: return 4 elif index < 54: return 5 elif index < 63: return 6 elif index < 72: return 7 else: return 8 def get_column_from_index(index): # 0-based return index % 9 def get_indices_from_subgrid(subgrid): # 0-based x = subgrid % 3 if subgrid < 3: y = 0 elif subgrid < 6: y = 1 else: y = 2 indices = [] for row in range(3 * y, 3 * y + 3): for column in range(3 * x, 3 * x + 3): indices.append(row * 9 + column) return indices def get_indices_from_row(row): # 0-based return list(range(row * 9, row * 9 + 9)) def get_indices_from_column(column): # 0-based return list(range(column, column + 8 * 9 + 1, 9)) def print_entries(entries): # quick & dirty print("-" * 10) for row in range(9): print(*entries[row * 9: row * 9 + 9]) print("-" * 10) if __name__ == "__main__": print("Enter the sudoku row by row (top to bottom, -1 → empty):", end="\n\n") sudoku_entries = [] for r in range(9): r_entries = input(f"Enter the row {r} entries as a comma separated tuple:\n") sudoku_entries.extend(list(map(int, r_entries.split(",")))) sudoku = Sudoku(sudoku_entries) print("\nPlease verify your starting entries:") print(sudoku) while True: answer = input("Do you want to make a correction? ('yes')\n") if answer.lower() in ["yes", '"yes"', '"yes"', "y"]: correction = input("Enter the row, column, and corrected entry as a comma separated tuple: (0-based)\n") correction = list(map(int, correction.split(","))) sudoku.entries[(correction[0]) * 9 + (correction[1])] = correction[2] print("\n", sudoku, sep="") else: if not sudoku.no_errors(): print("\nPlease verify your entries again:") print(sudoku) else: break sudoku.solve()
3.5625
4
tests/test_JsonEncDecC.py
schrma/garminmanager
0
12784371
import datetime import numpy as np import garminmanager.utils.JsonEncDecC import garminmanager.utils.FileWriterC from garminmanager.enumerators.EnumHealthTypeC import EnumHealtTypeC def test_encode_decode(): raw_data = garminmanager.RawDataC.RawDataC() my_dates1 = { datetime.datetime(2019,4,11,1,00) : 100, datetime.datetime(2019,4,11,2,00) : np.nan, datetime.datetime(2019,4,11,3,00) : 100 } for key, value in my_dates1.items(): raw_data.add_x(key) raw_data.add_y(value) raw_data.set_data_type(EnumHealtTypeC.heartrate) json_enc_dec = garminmanager.utils.JsonEncDecC.JsonEncDecC() json_enc_dec.set_input_data(raw_data) json_string = json_enc_dec.encode() json_enc_dec.set_input_json(json_string) file_writer = garminmanager.utils.FileWriterC.FileWriterC() file_writer.set_filename('test.json') file_writer.set_text(json_string) file_writer.write_text_to_file() d = file_writer.read_json() json_enc_dec.set_input_json(d) json_enc_dec.decode() raw_data_output = json_enc_dec.get_data() x = raw_data_output.get_x() y = raw_data_output.get_y() org_x = raw_data.get_x() org_y = raw_data.get_y() y[np.isnan(y)] = -100 org_y[np.isnan(org_y)] = -100 y[np.isnan(y)] = -100 org_y[np.isnan(org_y)] = -100 raw_data.set_y(y) raw_data_output.set_y(org_y) assert raw_data == raw_data_output
2.734375
3
XTWholeMountSegmentation.py
Menigedegna/Image-processing
1
12784372
<filename>XTWholeMountSegmentation.py # -*- coding: utf-8 -*- # # #============================================================================== # Objectives of this PythonXT for Imaris: # Segments nucleus, nucleolus and chromocenters into surfaces in DAPI channel, # Segment FISH or Immunostaining signal into spots or surfaces # Exports items position and features into a .csv tables and save .ims file # Note: This script is designed for whole mount immunostaining, FISH of plant tissue conterstained in DAPI. 3D images are acquired using high resolution microscopy. Parameters in XTWholeMountSegmentation_Parameters.csv need to be adjusted to resolution of image. # Creator: <NAME>, UZH # Created on 11.04.2018 #============================================================================== # # <CustomTools> # <Menu> # <Item name="XTWholeMountSegmentation" icon="Python" tooltip="XTWholeMountSegmentation"> # <Command>PythonXT::XTWholeMountSegmentation(%i)</Command> # </Item> # </Menu> # </CustomTools> import numpy as np import pandas as pd import logging #import tkinter as tk import tkMessageBox import os from Tkinter import * #from tkinter import filedialog import tkFileDialog import time import datetime import ImarisLib import sys sys.path.insert(0, "H:\Python") #I need to add this to import futures on the VMs import concurrent.futures import XTSegmentNuclei as SN #============================================================================== # Start of extension #============================================================================== # Function to create spots def CreateSpots(vFactory, aPositionsXYZ, SpotName, groupContainer, aRadius): vSpot = vFactory.CreateSpots() aIndicesT = [0.0]*len(aPositionsXYZ) aRadii = [aRadius]*len(aPositionsXYZ) vSpot.Set(aPositionsXYZ,aIndicesT,aRadii) vSpot.SetName(SpotName) groupContainer.AddChild(vSpot, -1) return vSpot # Function to quantify spots in image def getSurfaceVertices(numberIndex, vSurface, FileIndex, Result_pathway, SurfaceName,GroupOfObjects, LayerSize): vFactory = vImaris.GetFactory().CreateFactory() NumberOfSurfaces = vSurface.GetNumberOfSurfaces() logtime('Get vertices START - image_'+str(FileIndex)) #============================================================================== # Get vertices per suface and add a layer for each nucleus # #============================================================================== # vVertices=[] # vNumberOfVerticesPerSurface=[] # vTriangles=[] # vNumberOfTrianglesPerSurface=[] # vNormals=[] NewShellSurface = vImaris.GetFactory().CreateSurfaces() for SelectedID in range(NumberOfSurfaces): aVertices = vSurface.GetVertices(SelectedID) # vNumberOfVerticesPerSurface=vNumberOfVerticesPerSurface+[len(aVertices)] vTriangles = vSurface.GetTriangles(SelectedID) # vTriangles.extend(aTriangles) # vNumberOfTrianglesPerSurface=vNumberOfTrianglesPerSurface+[len(aTriangles)] vNormals = vSurface.GetNormals(SelectedID) # vNormals.extend(aNormals) vCenterOfMass = vSurface.GetCenterOfMass(SelectedID)[0] # aVertices = pd.DataFrame(aVertices) # vStep = len(vVertices)/NumberOfVertices # if vStep>2: # SelectIndex = range(0, len(vVertices), vStep) # vVertices = vVertices.iloc[SelectIndex,] # LayerMat=[x-y for x,y in zip(LayerMat, vCenterOfMass)] # LayerMat=pd.DataFrame(LayerMat).T # LayerMat = pd.concat([LayerMat]*len(aVertices)) # aVertices=aVertices.add(LayerMat) # vVertices = aVertices.values.tolist() vVertices=[[x[0]-LayerSize if x[0]<vCenterOfMass[0] else x[0]+LayerSize, x[1]-LayerSize if x[1]<vCenterOfMass[1] else x[1]+LayerSize, x[2]-LayerSize if x[2]<vCenterOfMass[2] else x[2]+LayerSize] for x in aVertices] # vVertices = [[x[0]+LayerSize, x[1]+LayerSize, x[2]+LayerSize] for x in aVertices] vTimeIndexPerSurface = 0 NewShellSurface.AddSurface (vVertices, vTriangles,vNormals,vTimeIndexPerSurface) # NewShellSurface.AddSurfacesList(vVertices,vNumberOfVerticesPerSurface,vTriangles,vNumberOfTrianglesPerSurface,vNormals,vTimeIndexPerSurface) NewShellSurface.SetName("Adjusted nuclei") GroupOfObjects.AddChild(NewShellSurface, -1) logtime('Get vertices END - image_'+str(FileIndex)) #============================================================================== # This function: removes all objects created in scene #============================================================================== def RemoveObjectsCreated(vScene, ListOfContainers): for i in ListOfContainers: vScene.RemoveChild(i) def GetSegmentedObjects(DistanceOptions,FileIndex): logtime('Object detection START - image_'+str(FileIndex)) NucleusSurface = NucleolusSurface = ChromocenterSurface = None vScene = vImaris.GetSurpassScene() vFactory = vImaris.GetFactory() numberSceneInstance = vScene.GetNumberOfChildren() ContainerNotFound = True i = 0 while i <= numberSceneInstance and ContainerNotFound: selection = vScene.GetChild(i) vContainer = vFactory.ToDataContainer(selection) if vContainer is not None: ContainerNotFound = False i=i+1 ContainerName = vContainer.GetName() if vContainer is not None and ContainerName=="Segmented objects": numberSceneInstance = vContainer.GetNumberOfChildren() i = 0 # ImmunoSpotNames = [] # ImmunoSpotList = [] while i <= numberSceneInstance : selection = vContainer.GetChild(i) vObject = vFactory.ToSurfaces(selection) if vObject is not None: if vObject.GetName() == "Nucleus" and DistanceOptions[0] : NucleusSurface = vObject if vObject.GetName() == "Nucleolus" and DistanceOptions[1] : NucleolusSurface = vObject if vObject.GetName() == "Chromocenters" and DistanceOptions[2] : ChromocenterSurface = vObject # vObject = vFactory.ToSpots(selection) # if vObject is not None: # PositionTable = vObject.GetPositionsXYZ() # if "Immuno" in vObject.GetName() and PositionTable is not None: # ImmunoSpotNames = ImmunoSpotNames + [vObject.GetName()] # ImmunoSpotList = ImmunoSpotList + [vObject] i+=1 logtime('Object detection END - image_'+str(FileIndex)) # return NucleusSurface, NucleolusSurface, ChromocenterSurface, ImmunoSpotNames, ImmunoSpotList return NucleusSurface, NucleolusSurface, ChromocenterSurface #============================================================================== # This function: # Segments chanenls into surface (nucleus, nucleolus and chromocenters) or spots (RNA PolII foci), # Create masks with the surfaces created # Count the number of spots in each mask # And saves results #============================================================================== def GetImageFeatures(FileIndex, Result_pathway, vFileName, DoSegmentation, ParametersList, BatchProcessing, vFullFileName, DistanceOptions): global vImaris global numberIndex global DAPIChannel global ListOfContainers ListOfContainers = [] # To keep track of all the containers I will create in scene, so that I can remove them after saving image ChromocenterSurface = NucleusSurface = NucleolusSurface = None vImage = vImaris.GetDataSet() vScene = vImaris.GetSurpassScene() vFactory = vImaris.GetFactory().CreateFactory() if vImage is not None: numberIndex = vImage.GetSizeC() date = str(datetime.datetime.now()).split(" ")[0] date += " 00:00:00" vImage.SetTimePoint(0, date) # time point needs to be set for each image to avoid creating different time frames when closing and opening a new image. #Ask user to set FISH channel to segment into surface if FileIndex == 1: FISHChannelList= SN.Ask_user(numberIndex, "FISH") numberIndex +=1 GroupOfObjects = vFactory.CreateDataContainer() GroupOfObjects.SetName('Segmented objects') #============================================================================== # SEGMENT SURFACES #============================================================================== if DoSegmentation: IsImageCorrect, NucleusSurface,ChromocenterSurface, NucleolusSurface, DAPIChannel, GroupOfObjects=SN.SegmentAndGetFeatures(vImage, FileIndex, Result_pathway, vFileName, DistanceOptions, ParametersList, BatchProcessing, vFullFileName, True) logtime('DAPI Segmentation END - image_'+str(FileIndex)) else: NucleusSurface, NucleolusSurface, ChromocenterSurface = GetSegmentedObjects(DistanceOptions, FileIndex) #Adjust nucleus surfaces if ParametersList[8]>0: getSurfaceVertices(numberIndex, NucleusSurface, FileIndex, Result_pathway, "Nucleus ", GroupOfObjects, ParametersList[8]) #Segment FISH channel into surfaces for FISHChannel in FISHChannelList: fishChannelColor = vImage.GetChannelColorRGBA(FISHChannel) SN.SmoothChannel(FISHChannel, NucleusSurface, numberIndex, ParametersList, "Smoothed FISH Channel", fishChannelColor) SmoothedChannel=numberIndex-1 FISHSurface = SN.SegHighIntensity(SmoothedChannel, NucleusSurface,"High FISH intensity","FISH Surface",numberIndex, GroupOfObjects, ParametersList) GroupOfObjects.AddChild(FISHSurface, -1) vScene.AddChild(GroupOfObjects, -1) logtime('FISH Channel-'+str(FISHChannel)+' Segmentation END - image_'+str(FileIndex)) ListOfContainers.append(GroupOfObjects) ResultFileName="FISHCh"+str(FISHChannel)+"_SurfaceFeatures" SN.ExtractSurfaceFeatures([FISHSurface],["FISH"], Result_pathway, FileIndex, vImage, ResultFileName, NucleusSurface) logtime('FISH Channel-'+str(FISHChannel)+' surface features saved END - image_'+str(FileIndex)) vPath = os.path.join(Result_pathway, vFileName+".ims") vImaris.FileSave(vPath, "") else: print ("No image detected in file: "+vFileName) quit() if len(ListOfContainers)>0 and BatchProcessing: RemoveObjectsCreated(vScene, ListOfContainers) # os.remove(vFullFileName) return vImage is None #============================================================================== #============================================================================== # Functions required to log and display progress of the plugin #============================================================================== def logtime(aTitle): # type: (object) -> object global gLasttime curtime = datetime.datetime.now() if (gLasttime is not None): diff = (curtime-gLasttime).total_seconds() else: diff = '-' gLasttime = curtime print (curtime.ctime(), '[', str(diff), ']', aTitle) #============================================================================== # Pop-up windows to ask user to set folder pathway and channels to segment #============================================================================== class Checkbar(Frame): def __init__(self, parent=None, picks=[], side=LEFT, anchor=W): Frame.__init__(self, parent) self.vars = [] for pick in picks: var = IntVar() chk = Checkbutton(self, text=pick, variable=var) chk.pack(side=side, anchor=anchor, expand=YES) self.vars.append(var) def state(self): return map((lambda var: var.get()), self.vars) def allstates(): global User_selection global root if sum(list(lng.state()))>0: User_selection=list(lng.state()) root.destroy() else: Message="Please select one of the options." Label(root, text=Message).grid(row=1) def PopUpMessage(OPTIONS, Messge): global root global lng root = Tk() label_text = Messge option = OPTIONS Label(root, text=label_text).grid(row=0) lng = Checkbar(root, option) lng.grid(row=2) lng.config(relief=GROOVE, bd=2) Button(root, text='Quit', fg="red", command=quit).grid(row=4) Button(root, text='Submit', fg="darkgreen", command=allstates).grid(row=5) root.mainloop() #============================================================================== # Function to get parameters for this plugin from file:XTCountSpotPerShell_Parmaeters.csv #============================================================================== def GetPluginParameters(): currentDirectory = os.getcwd() AllFilesInDirectory = os.listdir(currentDirectory) ParametersList = None if "XTWholeMountSegmentation_Parameters.csv" in AllFilesInDirectory: ParameterData = pd.read_csv("XTWholeMountSegmentation_Parameters.csv", sep=";", header='infer',decimal='.') if "Value" in ParameterData.columns: ParametersList = list(ParameterData["Value"]) else: tkMessageBox.showinfo(title="Error", message="Please make sure the 'XTWholeMountSegmentation_Parameters.csv' file contains a column 'Value' containing the values necessary for this plugin.") quit() else: tkMessageBox.showinfo(title="Error", message="Please make sure there is a 'XTWholeMountSegmentation_Parameters.csv' in the folder containing the 'XTCountSpotPerShell.py'.") quit() return ParametersList #============================================================================== # Function required to create folder to save the plugins results #============================================================================== #Function to create a folder under the same directory as the images to save files that are produced def CreateDirectoryToSaveFiles(Result_pathway): if os.path.exists(Result_pathway): tkMessageBox.showinfo(title="Alert", message="Please save the folder 'XTWholeMountSegmentation_Result' under another name first!") quit() else: os.makedirs(Result_pathway) #============================================================================== # Main function: # Connects to Imaris and get image # Process images #============================================================================== def XTWholeMountSegmentation(aImarisId): logging.basicConfig(level=logging.DEBUG, filename= "log[XTWholeMountSegmentation].log") try: #Declare global variables global gLasttime global vImaris global SelectedChanelIndex gLasttime = None FISHChannel = None logtime('Extension XTWholeMountSegmentation START') print ("Hello!") FileNameList = [] # Step1: Connect to Imaris #============================================================================== vImarisLib = ImarisLib.ImarisLib() # Get an imaris object with id aImarisId vImaris = vImarisLib.GetApplication(aImarisId) ParametersList = GetPluginParameters() SN.vImaris=vImaris SN.gLasttime=gLasttime # """BEGIN LOOP OVER ALL IMAGES""" # Open File and get filename if vImaris is not None : logtime('Connected to Imaris') #Set camera to orthographic view vImaris.GetSurpassCamera().SetOrthographic(True) vImaris.GetSurpassCamera().Fit() #Sets the zoom and the position so that the bounding box of all visible objects fits into the window ListOfOptions = [["Batch of images", "Just one image"], ["Segment & Get Features", "Get Features"], ["Nucleus", "Nucleolus", "Chromocenters"]] ListOfMessages = ["Do you wish to run the script on a batch of images or just on one image already opened?", "Do you wish to do automated segmentation?", "Which nucleus features do you wish to segment?"] UserParameterList = [] for i in range(len(ListOfOptions)): OPTIONS = ListOfOptions[i] Messge = ListOfMessages[i] PopUpMessage(OPTIONS, Messge) UserParameterList = UserParameterList + [User_selection] BatchProcessing = UserParameterList[0][0] DoSegmentation = UserParameterList[1][0] DistanceOptions = UserParameterList[2] FileIndex = 1 #This variable is used to count the number of files analysed if BatchProcessing : # Step2: Here the user is asked to set the path to the folder containing image to be analysed #============================================================================== root1 = Tk() Image_folder = tkFileDialog.askdirectory(parent=root1, initialdir="/",title='Please select the directory containing the images to be processed. \n The folder containing the resulting files will be saved in this directory.') root1.destroy() FolderName = os.path.basename(Image_folder) Result_pathway = os.path.join(Image_folder, "XTSegmentNuclei_Result") CreateDirectoryToSaveFiles(Result_pathway) AllFilesInDirectory = os.listdir(Image_folder) #get all files in the Image_folder directory logtime('Get all files') AllFilesToBeProcessed = [i for i in AllFilesInDirectory if i.endswith('.ims') or i.endswith('.ics')] #select files with .ims or .ics extensions TotalNumberFile = len(AllFilesToBeProcessed) logtime('Start bach processing') if TotalNumberFile > 0 : for vFileName in AllFilesToBeProcessed: try: vFullFileName = os.path.join(Image_folder, vFileName) vImaris.FileOpen(vFullFileName, "") # with concurrent.futures.ProcessPoolExecutor() as executor: ImageIsEmpty = GetImageFeatures(FileIndex, Result_pathway, vFileName, DoSegmentation, ParametersList, BatchProcessing, vFullFileName, DistanceOptions, FISHChannel) if not ImageIsEmpty : FileIndex += 1 FileNameList.append(vFileName) except: logging.exception("Image="+vFileName+" :") print ("There is an issue with file : "+ vFileName) continue #it will not treat this image and move on to the next one df=pd.DataFrame(FileNameList) vPathToSaveTables = os.path.join(Result_pathway, "FileName.csv") df.to_csv(path_or_buf=vPathToSaveTables, na_rep='', float_format=None, columns=None, header=True, index=False, decimal='.') else: tkMessageBox.showinfo(title="Alert", message="There is no .ims or .ics file detected in the selected folder.") quit() else : TotalNumberFile = 1 vFileName = vImaris.GetCurrentFileName() ImageIsEmpty = True if vFileName !="" : vFileName = vImaris.GetCurrentFileName() vFilePath = os.path.dirname(vFileName) vFullFileName = os.path.join(vFilePath, vFileName) Result_pathway = os.path.join(vFilePath, "XTWholeMountSegmentation_Result") CreateDirectoryToSaveFiles(Result_pathway) vFileName = os.path.split(vFileName)[1] ImageIsEmpty = GetImageFeatures(FileIndex, Result_pathway, vFileName, DoSegmentation, ParametersList, BatchProcessing, vFullFileName, DistanceOptions) if not ImageIsEmpty : FileIndex += 1 FileNameList.append(vFileName) if ImageIsEmpty : tkMessageBox.showinfo(title="Alert", message="No image is detected. \n Please open an image and select on 'CountSpotPerShell' again.") quit() logtime('XTWholeMountSegmentation extension done') print ("All tasks have been completed successfully. \n Resulting files are saved in the folder XTWholeMountSegmentation_Result") raw_input("Press Enter to terminate.") else: tkMessageBox.showinfo(title="Alert", message="Imaris application is not found!") logtime('Extension XTWholeMountSegmentation END') except: logging.exception("Oops:") #============================================================================== # End of extension #==============================================================================
2.046875
2
cli/user.py
sgtdarkskull/passwordManager
0
12784373
import os import sql_query as sql from styling import color import password_checker import password_generator # Login Main class class Login: def __init__(self): self.username = '' self.password = '' self.is_login = False self.website = '' self.account = '' try: os.system('clear') print(color.BOLD + color.RED + 'User Login'.center(30) + color.END) print('') self.username = input('Enter Username : ') self.password = input('Enter Password : ') auth = sql.get_user_Password(self.username) if auth == self.password: self.is_login = True else: self.is_login = False except: print('An Error Occurred!') return def get_Website(self, arr): for n, web in enumerate(arr): print(f'{n + 1}. {web}') if len(arr) > 0: n = input('Select Website : ') if n.isnumeric() and len(n) == 1: self.website = arr[int(n) - 1] else: self.website = n return True else: print('No password is saved') return False def get_Account(self, arr): for n, acc in enumerate(arr): print(f'{n + 1}. {acc}') n = input('Select Account : ') if n.isnumeric() and len(n) == 1: self.account = arr[int(n) - 1] else: self.account = n def select(self): websites = sql.all_websites(self.username) present = self.get_Website(websites) if present: accounts = sql.all_accounts(self.username, self.website) self.get_Account(accounts) return True return False def add_password(self): os.system('clear') print(color.BOLD + color.RED + 'Add Password'.center(30) + color.END + '\n') url = input('Website/Url : ') identifier = input('Account/Username/Identifier : ') password = input('Password : ') sql.add_password(url, identifier, password, self.username) def delete_password(self): os.system('clear') print(color.BOLD + color.RED + 'Delete Passwrod'.center(30) + color.END) print('') if self.select(): sql.delete(self.username, self.website, self.account) def modify_password(self): os.system('clear') print(color.BOLD + color.RED + 'Modify Password'.center(30) + color.END) print('') if self.select(): if input('Want to generate Password (Y/N): ').lower() == 'y': password_generator.main() new_pass = input('New Password : ') sql.modify(self.username, self.website, self.account, new_pass) def show_password(self): os.system('clear') print(color.BOLD + color.RED + 'Show Password'.center(30) + color.END) print('') if self.select(): sql.show_password(self.username, self.website, self.account) return def main(self): while True: os.system('clear') print(color.BOLD + color.RED + self.username.center(30) + color.END) print('') print('1. Add Password') print('2. Delete a Password') print('3. Modify a Password') print('4. Show Password') print('5. Generate a strong password') print('6. Check my password if secure') print('7. Log out') ch = input().lower() if ch == '1' or ch == 'add': self.add_password() elif ch == '2' or ch == 'delete': self.delete_password() elif ch == '3' or ch == 'modify': self.modify_password() elif ch == '4' or ch == 'show': self.show_password() elif ch == '5' or ch == 'generate': password_generator.main() elif ch == '6' or ch == 'check': password_checker.main() elif ch == '7' or ch == 'exit': return else: print('Invalid Choice!') en = input("'Y' to Log out, or press Enter....").lower() if en == 'y': return else: pass def user_login(): user = Login() if user.is_login: user.main() else: print('Login Failure, Wrong password or username..') return def user_signup(): try: os.system('clear') print(color.BOLD + color.RED + 'User Sign Up'.center(30) + color.END) print('') username = input('Enter Username : ') password = input('Enter Password : ') if password == input('Confirm Password : '): sql.sign_up(username, password) else: print('Wrong Password...\nSign up failure!') return except: print('An Error Occurred!') return
3.5625
4
scripts/localizer/text_processor.py
Theodeus/www.html5rocks.com
4
12784374
# Copyright 2012 Google Inc. All Rights Reserved. # -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Converts a given string from Django template to HTML and back.""" __author__ = ('<EMAIL> (<NAME>)') import re UNTRANSLATABLE_BEGIN = r'<!--DO_NOT_TRANSLATE_BLOCK>' UNTRANSLATABLE_END = r'</DO_NOT_TRANSLATE_BLOCK-->' CONTENT_BEGIN = """ <!--CONTENT_BLOCK ***********************************************************--> """ CONTENT_END = """ <!--/END_CONTENT_BLOCK ******************************************************--> """ class TextProcessor(object): """Translates text from Django template format to l10nable HTML and back. Properties: dango: The Django template representation of the text. html: The HTML representation of the text. """ def __init__(self, django='', html=''): self._django = django self._html = html @property def django(self): if not self._django: self._django = self.__HtmlToDjango(self._html) return self._django @property def html(self): if not self._html: self._html = self.__DjangoToHtml(self._django) return self._html def __DjangoToHtml(self, text): """Given a Django template's content, return HTML suitable for l10n. Args: text: The text to convert from Django to HTML. Returns: A string containing the newly HTMLized content. * Django tags like `{% tag %}` will be rendered inside an HTML comment: `<!--DO_NOT_TRANSLATE_BLOCK>{% tag %}</DO_NOT_TRANSLATE_BLOCK-->`. * `pre`, `script`, and `style` tags' content will be likewise wrapped: `<pre><!--DO_NOT_TRANSLATE_BLOCK>Text!</DO_NOT_TRANSLATE_BLOCK-->`. * The article's content will be wrapped: <!--CONTENT_BLOCK ***************************************************--> Content goes here! <!--END_CONTENT_BLOCK ***********************************************--> """ django_tag_before = r'(?P<tag>{%.+?%})' django_tag_after = r'%s\g<tag>%s' % (UNTRANSLATABLE_BEGIN, UNTRANSLATABLE_END) open_notranslate_before = r'(?P<tag><(?:pre|script|style)[^>]*?>)' open_notranslate_after = r'\g<tag>%s' % UNTRANSLATABLE_BEGIN close_notranslate_before = r'(?P<tag></(?:pre|script|style)[^>]*?>)' close_notranslate_after = r'%s\g<tag>' % UNTRANSLATABLE_END open_content = r'{% block content %}' close_content = r'{% endblock %}' # Walk the given text line by line to_return = [] in_content = False for line in text.splitlines(True): # Process Django tags line = re.sub(django_tag_before, django_tag_after, line) # Preprocess script/pre/style blocks line = re.sub(open_notranslate_before, open_notranslate_after, line) line = re.sub(close_notranslate_before, close_notranslate_after, line) # Preprocess content block if re.search(open_content, line): line = CONTENT_BEGIN in_content = True elif re.search(close_content, line) and in_content: line = CONTENT_END in_content = False to_return.append(line) return ''.join(to_return) def __HtmlToDjango(self, text): """Given localized HTML, return text formatted as a Django template. Args: text: The text to convert from HTML to Django. Returns: A string containing the newly Djangoized content, stripped of leading and trailing whitespace. See the documentation for `django_to_html` and imagine the inverse. :) """ # Strip UNTRANSLATABLE_BEGIN and UNTRANSLATABLE_END comments. text = text.replace(UNTRANSLATABLE_BEGIN, '') text = text.replace(UNTRANSLATABLE_END, '') # Replace CONTENT_BEGIN with `{% block content %}` and CONTENT_END with # `{% endblock %}`. text = text.replace(CONTENT_BEGIN, '{% block content %}\n') text = text.replace(CONTENT_END, '{% endblock %}') # Return the result, stripped of leading/training whitespace. return text.strip()
2.09375
2
py/lib/utils/util.py
zjZSTU/YOLO_v1
8
12784375
# -*- coding: utf-8 -*- """ @date: 2020/2/29 下午7:31 @file: util.py @author: zj @description: """ import numpy as np import torch import sys def error(msg): print(msg) sys.exit(0) def get_device(): return torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def iou(pred_box, target_box): """ 计算候选建议和标注边界框的IoU :param pred_box: 大小为[4] :param target_box: 大小为[N, 4] :return: [N] """ if len(target_box.shape) == 1: target_box = target_box[np.newaxis, :] xA = np.maximum(pred_box[0], target_box[:, 0]) yA = np.maximum(pred_box[1], target_box[:, 1]) xB = np.minimum(pred_box[2], target_box[:, 2]) yB = np.minimum(pred_box[3], target_box[:, 3]) # 计算交集面积 intersection = np.maximum(0.0, xB - xA + 1) * np.maximum(0.0, yB - yA + 1) # 计算两个边界框面积 boxAArea = (pred_box[2] - pred_box[0] + 1) * (pred_box[3] - pred_box[1] + 1) boxBArea = (target_box[:, 2] - target_box[:, 0] + 1) * (target_box[:, 3] - target_box[:, 1] + 1) scores = intersection / (boxAArea + boxBArea - intersection) return scores def compute_ious(rects, bndboxs): iou_list = list() for rect in rects: scores = iou(rect, bndboxs) iou_list.append(max(scores)) return iou_list def parse_output(outputs, S, B, C): """ 每个网格保存置信度最高的检测边界框 :param outputs: (N, S*S, B*5+C) :return: cates, probs, bboxs cates: (N, S*S) probs: (N, S*S) bboxs: (N, S*S, 4) """ N = outputs.shape[0] # (N*S*S, C) probs = outputs[:, :, :C].reshape(-1, C) # (N*S*S, B) confidences = outputs[:, :, C:(C + B)].reshape(-1, B) # (N*S*S, 4*B) bboxs = outputs[:, :, (C + B):].reshape(-1, 4 * B) # 计算每个网格所属类别 (N*S*S) cates = torch.argmax(probs, dim=1) # 计算每个网格最高置信度 (N*S*S) idxs = torch.argmax(confidences, dim=1) # 计算分类概率 (N*S*S) cate_probs = probs[range(len(cates)), cates] * confidences[range(len(idxs)), idxs] # 计算对应边界框坐标 (N*S*S, 4) obj_boxs = bboxs[range(len(idxs)), idxs * 4: (idxs + 1) * 4] return cates.reshape(N, S * S), cate_probs(N, S * S), obj_boxs(N, S * S, 4) def bbox_corner_to_center(bboxs): """ [xmin, ymin, xmax, ymax] -> [x_center, y_center, w, h] :param bboxs: [N, 4] """ assert len(bboxs.shape) == 2 tmp = np.zeros(bboxs.shape) # w tmp[:, 2] = bboxs[:, 2] - bboxs[:, 0] + 1 # h tmp[:, 3] = bboxs[:, 3] - bboxs[:, 1] + 1 # x_center tmp[:, 0] = bboxs[:, 0] + tmp[:, 2] / 2 # y_center tmp[:, 1] = bboxs[:, 1] + tmp[:, 3] / 2 return tmp def bbox_center_to_corner(bboxs): """ [x_center, y_center, w, h] -> [xmin, ymin, xmax, ymax] :param bboxs: [N, 4] """ assert len(bboxs.shape) == 2 tmp = np.zeros(bboxs.shape) # xmin tmp[:, 0] = bboxs[:, 0] - bboxs[:, 2] / 2 # ymin tmp[:, 1] = bboxs[:, 1] - bboxs[:, 3] / 2 # xmax tmp[:, 2] = bboxs[:, 0] + bboxs[:, 2] / 2 # ymax tmp[:, 3] = bboxs[:, 1] + bboxs[:, 3] / 2 return tmp def deform_bboxs(pred_bboxs, data_dict, S): """ :param pred_bboxs: [S*S, 4] :return: """ scale_h, scale_w = data_dict['scale_size'] grid_w = scale_w / S grid_h = scale_h / S bboxs = np.zeros(pred_bboxs.shape) for i in range(S * S): row = int(i / S) col = int(i % S) x_center, y_center, box_w, box_h = pred_bboxs[i] bboxs[i, 0] = (col + x_center) * grid_w bboxs[i, 1] = (row + y_center) * grid_h bboxs[i, 2] = box_w * scale_w bboxs[i, 3] = box_h * scale_h # (x_center, y_center, w, h) -> (xmin, ymin, xmax, ymax) bboxs = bbox_center_to_corner(bboxs) ratio_h, ratio_w = data_dict['ratio'] bboxs[:, 0] /= ratio_w bboxs[:, 1] /= ratio_h bboxs[:, 2] /= ratio_w bboxs[:, 3] /= ratio_h # 最大最小值 h, w = data_dict['src_size'] bboxs[:, 0] = np.maximum(bboxs[:, 0], 0) bboxs[:, 1] = np.maximum(bboxs[:, 1], 0) bboxs[:, 2] = np.minimum(bboxs[:, 2], w) bboxs[:, 3] = np.minimum(bboxs[:, 3], h) return bboxs.astype(int) def nms(rect_list, score_list, cate_list, thresh=0.3): """ 非最大抑制 :param rect_list: list,大小为[N, 4] :param score_list: list,大小为[N] :param cate_list: list, 大小为[N] """ nms_rects = list() nms_scores = list() nms_cates = list() rect_array = np.array(rect_list) score_array = np.array(score_list) cate_array = np.array(cate_list) # 一次排序后即可 # 按分类概率从大到小排序 idxs = np.argsort(score_array)[::-1] rect_array = rect_array[idxs] score_array = score_array[idxs] cate_array = cate_array[idxs] while len(score_array) > 0: # 添加分类概率最大的边界框 nms_rects.append(rect_array[0]) nms_scores.append(score_array[0]) nms_cates.append(cate_array[0]) rect_array = rect_array[1:] score_array = score_array[1:] cate_array = cate_array[1:] length = len(score_array) if length <= 0: break # 计算IoU iou_scores = iou(np.array(nms_rects[len(nms_rects) - 1]), rect_array) # print(iou_scores) # 去除重叠率大于等于thresh的边界框 idxs = np.where(iou_scores < thresh)[0] rect_array = rect_array[idxs] score_array = score_array[idxs] cate_array = cate_array[idxs] return nms_rects, nms_scores, nms_cates
2.359375
2
utils/derivative_calculator.py
nomagiclab/balancing-ball
4
12784376
from collections import deque N = 3 # Calculates mean of last N derivatives. class DerivativeCalculator: def __init__(self): # Value doesn't matter as we won't use it. self.last_x = None self.last_time = 0 self.dx_list = deque(iterable=[0 for _ in range(N + 1)], maxlen=N + 1) # curr_dx is always equal to mean of _N last dxs. self.curr_dx = 0 def update_derivative(self, new_x, new_time): # Update dx list. self.dx_list.pop() if self.last_time == 0: self.last_time = new_time if self.last_time != new_time: self.dx_list.appendleft((new_x - self.last_x) / (new_time - self.last_time)) else: self.dx_list.appendleft(0) # Calculate moving average of last _N dx. self.curr_dx = self.curr_dx + (self.dx_list[0] - self.dx_list[N]) / N self.last_x = new_x self.last_time = new_time def get_current_derivative(self) -> float: return self.curr_dx def get_and_update_derivative(self, new_x, new_time) -> float: self.update_derivative(new_x, new_time) return self.get_current_derivative()
3.75
4
pita/urls.py
Doktor/saltpita.com
0
12784377
from django.conf import settings from django.conf.urls import url from django.conf.urls.static import static from django.contrib import admin from django.urls import include, path from pita import views urlpatterns = [ url(r'^admin/', admin.site.urls), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) comic_patterns = [ path('<slug:slug>/<int:number>', views.view_comic, name='comic_page'), path('<slug:slug>', views.view_comic, name='comic'), path('', views.comic_index, name='comic_index'), ] urlpatterns += [ path('', views.index, name='index'), path('contact/', views.ContactView.as_view(), name='contact'), path('comics/', include(comic_patterns)), url(r'^(?P<slug>[a-z0-9]+(?:-[a-z0-9]+)*)$', views.page, name='page'), ]
1.9375
2
rsinc/rsinc.py
asch99/rsinc
48
12784378
# rsinc : two-way / bi-drectional sync for rclone import argparse import os import subprocess import logging import re from datetime import datetime import ujson import halo from pyfiglet import Figlet from .sync import sync, calc_states from .rclone import make_dirs, lsl from .packed import pack, merge, unpack, get_branch, empty from .classes import Flat from .colors import grn, ylw, red from .config import config_cli from .__init__ import __version__ SPIN = halo.Halo(spinner="dots", placement="right", color="yellow") CONFIG_FILE = os.path.expanduser("~/.rsinc/config.json") # Default config path custom_fig = Figlet(font="graffiti") print(custom_fig.renderText("Rsinc")) print("Copyright 2019 <NAME> (CHURCHILL COLLEGE)") print("This is free software with ABSOLUTELY NO WARRANTY") def qt(string): return '"' + string + '"' def read(file): """Reads json do dict and returns dict.""" try: with open(file, "r") as fp: d = ujson.load(fp) if not isinstance(d, dict): raise ValueError("old file format") except Exception as e: emsg = "{} is corrupt ({}). ".format(file, e) if file.endswith("master.json"): emsg += "Delete it and restart rsinc to rebuild it." raise TypeError(emsg) return d def write(file, d): """Writes dict to json""" with open(file, "w") as fp: ujson.dump(d, fp, sort_keys=True, indent=2) def strtobool(string): return string.lower() in STB def escape(string): tmp = [] for char in string: tmp.append(ESCAPE.get(char, char)) return "".join(tmp) # **************************************************************************** # * Set-up/Parse * # **************************************************************************** def formatter(prog): return argparse.HelpFormatter(prog, max_help_position=52) parser = argparse.ArgumentParser(formatter_class=formatter) parser.add_argument("folders", help="Folders to sync", nargs="*") parser.add_argument("-d", "--dry", action="store_true", help="Do a dry run") parser.add_argument( "-c", "--clean", action="store_true", help="Clean directories" ) parser.add_argument( "-D", "--default", help="Sync defaults", action="store_true" ) parser.add_argument( "-r", "--recovery", action="store_true", help="Enter recovery mode" ) parser.add_argument( "-a", "--auto", help="Don't ask permissions", action="store_true" ) parser.add_argument( "-p", "--purge", help="Reset history for all folders", action="store_true" ) parser.add_argument( "-i", "--ignore", help="Find .rignore files", action="store_true" ) parser.add_argument( "-v", "--version", action="version", version=f"rsinc version: {__version__}" ) parser.add_argument( "--config", action="store_true", help="Enter interactive CLI configurer" ) parser.add_argument( "--config_path", help="Path to config file (default ~/.rsinc/config.json)" ) parser.add_argument( "args", nargs=argparse.REMAINDER, help="Global flags to pass to rclone commands", ) args = parser.parse_args() # **************************************************************************** # * Configuration * # **************************************************************************** # Read config and assign variables. if args.config_path is None: config_path = CONFIG_FILE else: config_path = args.config_path if not os.path.isfile(config_path) or args.config: config_cli(config_path) config = read(config_path) CASE_INSENSATIVE = config["CASE_INSENSATIVE"] DEFAULT_DIRS = config["DEFAULT_DIRS"] LOG_FOLDER = config["LOG_FOLDER"] HASH_NAME = config["HASH_NAME"] TEMP_FILE = config["TEMP_FILE"] MASTER = config["MASTER"] BASE_R = config["BASE_R"] BASE_L = config["BASE_L"] FAST_SAVE = config["FAST_SAVE"] # Set up logging. logging.basicConfig( filename=LOG_FOLDER + datetime.now().strftime("%Y-%m-%d"), level=logging.DEBUG, datefmt="%H:%M:%S", format="%(asctime)s %(levelname)s: %(message)s", ) # **************************************************************************** # * Main Program * # **************************************************************************** def main(): # Entry point for 'rsinc' as terminal command. recover = args.recovery dry_run = args.dry auto = args.auto # Decide which folder(s) to sync. if args.default: tmp = DEFAULT_DIRS elif len(args.folders) == 0: tmp = [os.getcwd()] else: tmp = [] for f in args.folders: if os.path.isabs(f): tmp.append(os.path.normpath(f)) else: tmp.append(os.path.abspath(f)) folders = [] for f in tmp: if BASE_L not in f: print(ylw("Rejecting:"), f, "not in", BASE_L) elif not os.path.isdir(f): if strtobool( input( ylw("WARN: ") + f"{f} does not exist in local, sync anyway? " ) ): folders.append(os.path.relpath(f, BASE_L)) else: folders.append(os.path.relpath(f, BASE_L)) # Get & read master. if args.purge or not os.path.exists(MASTER): print(ylw("WARN:"), MASTER, "missing, this must be your first run") write(MASTER, {'history':[], 'ignores':[], 'nest':empty()}) master = read(MASTER) history = master['history'] ignores = master['ignores'] nest = master['nest'] history = set(history) # Find all the ignore files in lcl and save them. if args.ignore: ignores = [] for dirpath, dirnames, filenames in os.walk(BASE_L, followlinks=False): for name in filenames: if name == '.rignore': ignores.append(os.path.join(dirpath, name)) print("Found:", ignores) write(MASTER, {'history':list(history), 'ignores':ignores, 'nest':nest}) # Detect crashes. if os.path.exists(TEMP_FILE): corrupt = read(TEMP_FILE)["folder"] if corrupt in folders: folders.remove(corrupt) folders.insert(0, corrupt) recover = True print(red("ERROR") + ", detected a crash, recovering", corrupt) logging.warning("Detected crash, recovering %s", corrupt) # Main loop. for folder in folders: print("") path_lcl = os.path.join(BASE_L, folder) path_rmt = os.path.join(BASE_R, folder) # Determine if first run. if os.path.join(BASE_L, folder) in history: print(grn("Have:"), qt(folder) + ", entering sync & merge mode") else: print(ylw("Don't have:"), qt(folder) + ", entering first_sync mode") recover = True # Build relative regular expressions rmt_regexs, lcl_regexs, plain = build_regexs( BASE_L, BASE_R, path_lcl, ignores ) print("Ignore:", plain) # Scan directories. SPIN.start(("Crawling: ") + qt(folder)) lcl = lsl(path_lcl, HASH_NAME) rmt = lsl(path_rmt, HASH_NAME) old = Flat(path_lcl) SPIN.stop_and_persist(symbol="✔") lcl.tag_ignore(lcl_regexs) rmt.tag_ignore(rmt_regexs) # First run & recover mode. if recover: print("Running", ylw("recover/first_sync"), "mode") else: print("Reading last state") branch = get_branch(nest, folder) unpack(branch, old) calc_states(old, lcl) calc_states(old, rmt) print(grn("Dry pass:")) total, new_dirs, _, _ = sync( lcl, rmt, old, recover, dry_run=True, case=CASE_INSENSATIVE, flags=args.args, ) print("Found:", total, "job(s)") print("With:", len(new_dirs), "folder(s) to make") if not dry_run and ( auto or total == 0 or strtobool(input("Execute? ")) ): if total != 0 or recover: print(grn("Live pass:")) write(TEMP_FILE, {"folder": folder}) make_dirs(new_dirs) _, _, lcl, rmt, = sync( lcl, rmt, old, recover, total=total, case=CASE_INSENSATIVE, dry_run=dry_run, flags=args.args, ) SPIN.start(grn("Saving: ") + qt(folder)) # Get post sync state if total == 0: print("Skipping crawl as no jobs") now = lcl elif FAST_SAVE: print("Skipping crawl as FAST_SAVE") now = lcl else: now = lsl(path_lcl, HASH_NAME) now.tag_ignore(lcl_regexs) now.rm_ignore() # Merge into history. history.add(os.path.join(BASE_L, folder)) history.update(d for d in now.dirs) # Merge into nest merge(nest, folder, pack(now)) write(MASTER, {'history':list(history), 'ignores':ignores, 'nest':nest}) subprocess.run(["rm", TEMP_FILE]) SPIN.stop_and_persist(symbol="✔") if args.clean: SPIN.start(grn("Pruning: ") + qt(folder)) subprocess.run(["rclone", "rmdirs", path_rmt]) subprocess.run(["rclone", "rmdirs", path_lcl]) SPIN.stop_and_persist(symbol="✔") recover = args.recovery print("") print(grn("All synced!")) def build_regexs(BASE_L, BASE_R, path_lcl, files): lcl_regex = [] rmt_regex = [] plain = [] for file in files: for f_char, p_char in zip(os.path.dirname(file), path_lcl): if f_char != p_char: break else: if os.path.exists(file): with open(file, "r") as fp: for line in fp: if line.rstrip() == "": continue mid = os.path.dirname(file) mid = mid[len(BASE_L) + 1:] mid = os.path.join(escape(mid), line.rstrip()) lcl = os.path.join(escape(BASE_L), mid) rmt = os.path.join(escape(BASE_R), mid) plain.append(mid) lcl_regex.append(re.compile(lcl)) rmt_regex.append(re.compile(rmt)) return rmt_regex, lcl_regex, plain STB = ( "yes", "ye", "y", "1", "t", "true", "", "go", "please", "fire away", "punch it", "sure", "ok", "hell yes", ) ESCAPE = { "\\": "\\\\", ".": "\\.", "^": "\\^", "$": "\\$", "*": "\\*", "+": "\\+", "?": "\\?", "|": "\\|", "(": "\\(", ")": "\\)", "{": "\\{", "}": "\\}", "[": "\\[", "]": "\\]", }
2.234375
2
tests/configure_bst_feature_api_ct.py
r-cc-c/ops-broadview
0
12784379
<reponame>r-cc-c/ops-broadview<gh_stars>0 ''' * * (C) Copyright Broadcom Corporation 2015 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * * You may obtain a copy of the License at * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ''' #!/usr/bin/env python import os import sys import ConfigParser import json import pprint from bstUtil import * from BstRestService import * import bstRest as rest class configure_bst_feature_api_ct(object): def __init__(self,ip,port,params="",debug=False): self.obj = BstRestService(ip,port) self.debug = debug self.params = params def step1(self,jsonData): """Configure BST feature""" try: pprint.pprint(jsonData) resp = self.obj.postResponse(jsonData) if resp[0] == "INVALID": return "FAIL","Connection refused/Invalid JSON request... Please check the ip address provided in 'ini' file/BroadViewAgent is running or not/JSON data is valid or not ..." except Exception,e: return "FAIL","Unable to perform the rest call with given JSON data, Occured Exception ... "+str(e) try: self.obj.debugJsonPrint(self.debug,jsonData,resp) except: return "FAIL","Invalid JSON Response data received" self.nextStepCheckParams=jsonData if returnStatus(resp[0], 200)[0] == "FAIL": return "FAIL","Obtained {0}".format(resp[0]) return returnStatus(resp[0], 200,"","Unable to get the 200 OK response, got reponse "+str(resp[0])) def step2(self,jsonData): """Get BST Feature Status""" try: resp = self.obj.postResponse(jsonData) if resp[0] == "INVALID": return "FAIL","Connection refused/Invalid JSON request... Please check the ip address provided in 'ini' file/BroadViewAgent is running or not/JSON data is valid or not ..." except Exception,e: return "FAIL","Unable to perform the rest call with given JSON data, Occured Exception ... "+str(e) try: self.obj.debugJsonPrint(self.debug,jsonData,resp) except: return "FAIL","Invalid JSON Response data received" if returnStatus(resp[0], 200)[0] == "FAIL": return "FAIL","Obtained {0}".format(resp[0]) if not resp[1]: return "FAIL","Got null response" resp_ = resp[1].replace('Content-Type: text/json', '') data_dict = json.loads(resp_) if not "result" in data_dict: return "FAIL","No Result key in Response JSON Data" resultDict = data_dict['result'] jsonDict = json.loads(self.nextStepCheckParams) paramsDict = jsonDict['params'] valsCheck = True if cmp(resultDict, paramsDict) == 0 else False added,removed,modified,same=dict_compare(resultDict,paramsDict) if not added and not removed and not modified: msg = "" else: params_list=paramsDict.keys() diff_list=list(set(params_list) - same) msg="params "+" ".join(diff_list)+" contains wrong values in response." return returnStatus(valsCheck,True,"",msg) step3, step4 = step1, step2 step5, step6 = step1, step2 step7, step8 = step1, step2 step9, step10 = step1, step2 step11, step12 = step1, step2 step13, step14 = step1, step2 step15, step16 = step1, step2 step17, step18 = step1, step2 step19, step20 = step1, step2 step21, step22 = step1, step2 def getSteps(self): return sorted([ i for i in dir(self) if i.startswith('step') ], key=lambda item: int(item.replace('step',''))) def main(ip_address,port): jsonText = ConfigParser.ConfigParser() cwdir, f = os.path.split(__file__) jsonText.read(cwdir + '/testCaseJsonStrings.ini') json_dict = dict(jsonText.items('configure_bst_feature_api_ct')) params=json_dict.get("paramslist","") tcObj = configure_bst_feature_api_ct(ip_address,port,params,debug=True) stepResultMap = {} printStepHeader() for step in tcObj.getSteps(): if step in json_dict: resp=getattr(tcObj,step)(json_dict[step]) desc=getattr(tcObj,step).__doc__ stepResultMap[step] = resp printStepResult(step,desc,resp[0], resp[1]) else: resp=getattr(tcObj,step)() desc="" stepResultMap[step] = resp printStepResult(step,desc,resp[0], resp[1]) if resp[0] == 'FAIL': break printStepFooter() statusMsgTuple = [ s for s in stepResultMap.values() if s[0] == "FAIL" ] if statusMsgTuple: return False, statusMsgTuple[0][1] return True, "Test Case Passed" if __name__ == '__main__': main()
1.804688
2
orders/apps.py
Marlinekhavele/Ordering-pizza
0
12784380
<gh_stars>0 from django.apps import AppConfig from django.contrib.auth.models import User from accounts.models import Customer from django.db.models.signals import post_save from django.utils.translation import ugettext_lazy as _ from orders.signals import create_customer_order, save_customer_order class OrdersConfig(AppConfig): name = 'orders' verbose_name = _('Order') def ready(self): post_save.connect(create_customer_order, sender=User) post_save.connect(save_customer_order, sender=User)
2
2
updater_main.py
luyu103713/variantDB_updater
0
12784381
<filename>updater_main.py import optparse import pymysql import os from lib import readFile,featuresRelyOn from features import feature_process,map_back_to_hg19 from cut_file import count_time class updater_opt: def __init__(self): parser = optparse.OptionParser() parser.add_option("-i", "--input", dest="input", help="input file(absolute or relative)") parser.add_option("-o", "--output", dest="output", help="output file path(absolute or relative)") parser.add_option("-n", "--filename", dest="filename", help="job name or id") parser.add_option("-v", "--variant_type", dest="variant_type", help="optional: variant_type,1:hg19(default),2.Mutation CDS,3.Protein variant,4.Protein structure mutation,5.hg38") parser.add_option("-c", "--feature_config", dest="feature_config", help="optional: Custom features calculation") parser.add_option("-s", "--split_type", dest="split_type", help="optional:how to split input file.\n t:tab(default)\n c:comma") parser.add_option("-t", "--title", dest="title", help="optional:Has title or not.\n 1:no(default)\n 2:yes") self.options, self.args = parser.parse_args() #print(self.options,self.args) def verification(self): if not self.options.input or not self.options.output or not self.options.filename: exit('ERROR: must support input,output and file id parameters!\nType "python updater.py -h" to seek for help') def check_rely(config_dict,rely_dict): # check rely_on_dict itself, recursive algorithm to fix: #print(config_dict) rely_count = 1 while rely_count != 0: rely_count = 0 for key in rely_dict: for rely_key in rely_dict[key]: if rely_key in rely_dict: if len(list(set(rely_dict[key] + rely_dict[rely_key]))) != len(rely_dict[key]): rely_count = len(list(set(rely_dict[key] + rely_dict[rely_key]))) - len(rely_dict[key]) rely_dict[key] = list(set(rely_dict[key] + rely_dict[rely_key])) #match rely on #{'biodbnet': ['transvar'], 'transfic': ['annovar', 'biodbnet', 'transvar'], 'oncokb': ['transvar']} for k in rely_dict: if k in config_dict: if config_dict[k]: for rely_key in rely_dict[k]: config_dict[rely_key] = True return config_dict def match_config(config_dict): # Logic of calculation order!! normal_methods = ['transvar','annovar','biodbnet','transfic','oncokb','candra','fathmm_cancer','to_pdb_structure'] rely_dict = featuresRelyOn.relyOnDict del_list = [] for k in config_dict: #first delete key not right in config if k not in normal_methods: del_list.append(k) for k in del_list: config_dict.pop(k) for k in config_dict: #2nd , if not False,we do it if config_dict[k] != 'False': config_dict[k] = True else: config_dict[k] = False for k in normal_methods: #3rd , the methods not in config, we do it if k not in config_dict: config_dict[k] = True config_dict = check_rely(config_dict,rely_dict) return config_dict def index_input(input_file,split_symbol,hasTitle,output_path,jobid): f = open(input_file,'r') ls = f.readlines() fw = open(output_path+ '/' + jobid + '/' + jobid+'_index.input','w') if hasTitle: col = ls[0] nl = 'index' + split_symbol + col fw.write(nl) ls = ls[1:] index = 0 for l in ls: nl = str(index) + split_symbol + l fw.write(nl) index += 1 f.close() fw.close() @count_time def main(): main_opt = updater_opt() main_opt.verification() input_file = main_opt.options.input output_path = main_opt.options.output jobid = main_opt.options.filename if not os.path.exists(output_path): os.makedirs(output_path) if not os.path.exists(output_path+ '/' + jobid): os.makedirs(output_path + '/' + jobid) if main_opt.options.split_type == 'c': split_symbol = ',' else: split_symbol = '\t' if main_opt.options.title == '2': hasTitle = True else: hasTitle = False if main_opt.options.variant_type == '4': variant_type = 'protein' elif main_opt.options.variant_type == '2': variant_type ='cds' elif main_opt.options.variant_type == '3': variant_type = 'aa' elif main_opt.options.variant_type == '5': variant_type = 'hg38' else: variant_type = 'hg19' #print(main_opt.options.feature_config) if main_opt.options.feature_config: feature_config = main_opt.options.feature_config f_config = open(feature_config,'r') ls = f_config.readlines() config_dict = {} for l in ls: l = l.strip() temp = l.split(':') config_dict[temp[0]] = temp[1] config_dict = match_config(config_dict) else: config_dict = None #print(feature_config) #print('\n'.join([''.join([('VariantDB'[(x-y) % len('VariantDB')] if ((x*0.05)**2+(y*0.1)**2-1)**3-(x*0.05)**2*(y*0.1)**3 <= 0else' ') for x in range(-30, 30)]) for y in range(30, -30, -1)])) #print('\n') print('Begin work : ') if variant_type != 'protein': # begin from hg19 or pdb_structures /protein module is a independent part real_input_file = map_back_to_hg19(input_file,split_symbol,variant_type,hasTitle,output_path,jobid) split_symbol = "\t" # use out.tsv for input index_input(input_file,split_symbol,hasTitle,output_path,jobid) error_code,error_massage,var_list,file_base_list= readFile.readFileFromInput(real_input_file,'variant',split_symbol,hasTitle) # now only read variant if error_code: exit(error_massage) #print(var_list) print('Variant number : ' + str(len(var_list))) print(config_dict) feature_process(var_list,output_path,jobid,config_dict) #print() #result_dict = collect_result(output_path,jobid) if __name__ == '__main__': main()
2.25
2
sorting_algorithms/quicksort_Lomuto.py
Pinkwjp/Hello-Algorithms
0
12784382
<reponame>Pinkwjp/Hello-Algorithms """quicksort with Lomuto partition scheme""" from random import randint from typing import List def partition(A: List[int], low, high) -> int: """divide the list of numbers into two partitions return the index of the pivot number choosing the rightmost element in the range as pivot (Lomuto partition scheme) """ pivot = A[high] i = low - 1 for j in range(low, high): if A[j] <= pivot: i += 1 A[i], A[j] = A[j], A[i] A[i+1], A[high] = A[high], A[i+1] return i+1 def quicksort(A: List[int], low, high) -> None: """sort a list of numbers""" if low < high: p = partition(A, low, high) quicksort(A, low, p-1) quicksort(A, p+1, high) def test(): for _ in range(1000): n = randint(2, 40) numbers = [randint(0, 1000) for _ in range(n)] result = sorted(list(numbers)) quicksort(numbers, 0, len(numbers)-1) assert numbers == result if __name__ == "__main__": test()
4.15625
4
preprocessing/image.py
ahmedbally/Show-And-Tell-Keras
0
12784383
''' Module to preprocess filckr8k image data ''' import cv2 import numpy as np import os from _pickle import dump, load from keras.applications.inception_v3 import InceptionV3 from keras.layers import Flatten from keras.models import load_model from keras.preprocessing import image from keras.applications.inception_v3 import preprocess_input from keras.models import Model from PIL import Image def load_images_as_arrays(directory): img_array_dict = {} for img_file in os.listdir(directory): img_path = directory + '/' + img_file img = Image.open(img_path) x = np.array(img) img_array_dict[os.path.splitext(img_file)[0]] = x return img_array_dict def extract_features(directory): # base_model = InceptionV3(weights='imagenet') # model = Model(inputs=base_model.input, outputs=base_model.get_layer('avg_pool').output) #model = load_model('./preprocessing/CNN_encoder_100epoch.h5') #top = Flatten()(model.output) #model = Model(inputs=model.input, outputs=top) #print(model.summary()) img_id = [] img_matrices = [] i = 0 for img_file in os.listdir(directory): print(i, ":", i > 1999 and i < 8000 or i > 8999) '''if (i > 1999 and i < 8000 or i > 8999): i += 1 continue''' img_path = directory + '/' + img_file resizeDim = (256, 512) img = cv2.imread(img_path) img = cv2.resize(img, resizeDim, interpolation=cv2.INTER_AREA) img = img.astype('float16') / 255 #x = img.reshape(img.shape + (1,)) img_id.append(os.path.splitext(img_file)[0]) img_matrices.append(img) i += 1 img_matrices = np.array(img_matrices) #img_features = model.predict(img_matrices, verbose=1) return {'ids': img_id, 'features': img_matrices} def extract_feature_from_image(file_dir): img = image.load_img(file_dir, target_size=(299, 299)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # base_model = InceptionV3(weights='imagenet') # model = Model(inputs=base_model.input, outputs=base_model.get_layer('avg_pool').output) model = load_model('CNN_encoder_100epoch.h5') return model.predict(x) def load_features(dict_dir, dataset_dir, repeat_times=1): assert (repeat_times >= 1) img_ids = [] with open(dataset_dir, 'r') as f: for line in f.readlines(): img_ids.append(os.path.splitext(line)[0]) features_dict = load(open(dict_dir, 'rb')) #features_dict = extract_features('./datasets/Flickr8k_Dataset') dataset_features = [] for img_id in img_ids: fidx = features_dict['ids'].index(img_id) dataset_features.append(np.vstack([features_dict['features'][fidx, :]] * repeat_times)) #dataset_features = np.vstack(dataset_features) return np.array(dataset_features) if __name__ == "__main__": # pre-extract image features from Inception Net image_directory = './datasets/Flickr8k_Dataset' features_dict = extract_features(image_directory) dump(features_dict, open('./datasets/features_dict2.pkl', 'wb'),protocol=4)
2.53125
3
voicesBack/api/FileConverter.py
wdariasm/voices
0
12784384
import subprocess import psycopg2 import multiprocessing import threading import os import pathlib import sendgrid import datetime import shutil import boto3 from botocore.exceptions import ClientError from boto3.dynamodb.conditions import Key, Attr from sendgrid.helpers.mail import * MAX_WORKERS = 1 PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) VOICES_ROOT = os.path.join(PROJECT_ROOT, 'static') dynamodb = boto3.resource('dynamodb') def ConvertAudio(fileImput): #validar fileImput inFile = GetOrginalPath(fileImput[1]) outputFileName = VOICES_ROOT + '/voices/processed/' + GetFileName(inFile) + '.mp3' if IsMp3(fileImput[1]): print("--mp3Detected--") shutil.copy(inFile, outputFileName) PostProcessFile(fileImput[0], outputFileName, fileImput[2], fileImput[3]) return True else: print("--NonMp3Detected--") result = subprocess.run(['ffmpeg', '-i', inFile, '-acodec', 'libmp3lame', outputFileName]) #command = "ffmpeg -i {0} -acodec libmp3lame {1}".format(fileImput, outputFileName) #result = os.system(command) if result.returncode is 0: PostProcessFile(fileImput[0], outputFileName, fileImput[2], fileImput[3]) return True else: return False def PostProcessFile(fileId, outFile, mail, url): UpdateProcessedFile(fileId, outFile) #SendEmailSendgrid(mail, url) SendEmailSeS(mail, url) def GetOrginalPath(relativepath): file = pathlib.PurePath(relativepath).name return VOICES_ROOT + '/voices/original/' + file def IsMp3(filePath): file_extension = pathlib.PurePath(filePath).suffix if file_extension == '.mp3': return True else: return False def GetFileName(filePath): return pathlib.PurePath(filePath).stem def UpdateProcessedFile(fileId, filePath): print("updatefile--" + str(fileId)) conn = None with threading.Lock(): try: outputFileDB = 'voices/processed/' + GetFileName(filePath) + '.mp3' table = dynamodb.Table('grabacion') table.update_item( Key={ 'Archivo_Original': fileId }, UpdateExpression='SET Estado_Archivo=:val1, Archivo_Final=:val2', ExpressionAttributeValues={ ':val1': 1, ':val2': outputFileDB } ) except(Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() def SendEmailSendgrid(mail, url): print("usendmail--" + mail) sg = sendgrid.SendGridAPIClient( apikey=os.environ.get('SENDGRID_API_KEY') ) from_email = Email("<EMAIL>") to_email = Email(mail) subject = "La voz ya esta disponible" WS_IP = os.environ.get('IP_HOST') content = Content( "text/plain", "La voz ya se encuentra disponible en la página principal del concurso " + WS_IP + "/concursar/" + url ) mail = Mail(from_email, subject, to_email, content) response = sg.client.mail.send.post(request_body=mail.get()) def SendEmailSeS(mail, url): print("usendmai2--" + mail) client = boto3.client('ses') WS_IP = os.environ.get('IP_HOST') + '/concursar/' + url mensaje = '<html><head></head><body><p>La voz ya se encuentra disponible en la página principal del ' +\ 'concurso, visite</p> <a href="' + WS_IP + '">Supervoices</a> ' +\ '<p>para mas informacion</p></body></html>' # Try to send the email. try: # Provide the contents of the email. response = client.send_email( Destination={ 'ToAddresses': [ mail, ], }, Message={ 'Body': { 'Html': { 'Charset': 'UTF8', 'Data': mensaje, }, }, 'Subject': { 'Charset': 'UTF8', 'Data': 'La voz ya esta disponible', }, }, Source='<EMAIL>', #ConfigurationSetName='UTF8', ) # Display an error if something goes wrong. except ClientError as e: print("catchSeS" + mail) print(e.response['Error']['Message']) else: print("Email sent! Message ID:"), print(response['MessageId']) def GetPendingFiles(): conn = None files = None try: table = dynamodb.Table('grabacion') response = table.query( KeyConditionExpression=Key('Estado_Archivo').eq(0) ) items = response['Items'] #cur.execute("""SELECT gr.id, gr."Archivo_Original", gr."Mail_Autor", co."Url" FROM api_grabacion gr, api_concurso co WHERE gr."Estado_Archivo" = 0 and gr."Concurso_id" = co.id""") except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() return items def UpdateLogTable(startTime, endTime, totalFiles): conn = None try: table = dynamodb.Table('grabacion') table.put_item( Item={ 'startDate': startTime, 'endDate': endTime, 'totalFiles': totalFiles } ) except(Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() def StartJob(): startTime = datetime.datetime.now(datetime.timezone.utc) pendingFiles = GetPendingFiles() if pendingFiles is not None: with multiprocessing.Pool(MAX_WORKERS) as pool: results = pool.imap(ConvertAudio, pendingFiles) totalFiles = sum(results) endTime = datetime.datetime.now(datetime.timezone.utc) UpdateLogTable(startTime, endTime, totalFiles) else: UpdateLogTable(startTime, startTime, 0) print("No files to Tansform") if __name__ == '__main__': StartJob()
1.929688
2
backend/src/features/friend/mappers.py
ihsaro/socioworld
0
12784385
from features.friend.entities import Friendship from features.friend.models import FriendshipOutput def map_friendship_to_friendship_output(*, friendship: Friendship) -> FriendshipOutput: return FriendshipOutput( client_id=friendship.client_id, friend_id=friendship.friend_id, requested=friendship.requested, approved=friendship.approved )
2.421875
2
mnist_py/models/get_layers_shapes.py
vijayagril/mnist_cnn_cuda
0
12784386
from train import models_initializers model_name = 'basic_nn' model = models_initializers.get(model_name)() for l in model.layers: print(f'{l.name} -- {l.input_shape} -- {l.output_shape}')
3.03125
3
caldera/utils/mp/_decorators.py
jvrana/caldera
2
12784387
<filename>caldera/utils/mp/_decorators.py import inspect from functools import wraps from multiprocessing import Pool from typing import Callable from typing import List from typing import Optional from ._mp_tools import _resolved_sorted_handler from ._mp_tools import _S from ._mp_tools import _T from ._mp_tools import argmap from ._mp_tools import run_with_pool from ._mp_tools import valid_varname # class MultiProcess(object): # # def __init__(self, on: str, auto_annotate: bool = True, attach: bool = True, attach_as="pooled"): # if not isinstance(attach_as, str): # raise TypeError("attach_as must be a str, not a {}".format(attach_as.__class__)) # if not valid_varname(attach_as): # raise ValueError("attach_as '{}' is not a valid variable name".format(attach_as)) # # # self.on = on # self.auto_annotate = auto_annotate # self.attach = attach # self.attach_as = attach_as # self.validate() # # def validate(self): # self.validate_on() # self.validate_attach_as() # # def validate_attach_as(self): # if not isinstance(self.attach_as, str): # raise TypeError("attach_as must be a str, not a {}".format(self.attach_as.__class__)) # if not valid_varname(self.attach_as): # raise ValueError("attach_as '{}' is not a valid variable name".format(self.attach_as)) # # def validate_on(self): # if not isinstance(self.on, str): # raise TypeError('argument must be a str, found a {} {}'.format(self.on, self.on.__class__)) # elif not valid_varname(self.on): # raise ValueError("argument '{}' is not a valid variable name".format(self.on)) # # def validate_func(self, f): # argspec = inspect.getfullargspec(f) # if not self.on in argspec.args: # raise ValueError("argument '{}' not in signature. Use any of {}".format(self.on, argspec.args)) # # @staticmethod # def starstar(f): # def wrapped(kwargs): # return f(**kwargs) # return wrapped # # def pooled_inner(self, f, pool_kwargs, override_kwargs_key: str): # @wraps(f) # def _pooled_inner(*args, **kwargs) -> List[_S]: # inner_kwargs = dict(pool_kwargs) # if override_kwargs_key is not None: # if override_kwargs_key in kwargs: # pooled_opts = kwargs[override_kwargs_key] # inner_kwargs.update(pooled_opts) # inner_kwargs = dict(pool_kwargs) # n_cpus = inner_kwargs['n_cpus'] # chunksize = inner_kwargs['chunksize'] # callback = inner_kwargs['callback'] # error_callback = inner_kwargs['error_callback'] # # amap = argmap(f, args, kwargs) # pooled_kwargs = [] # if not hasattr(amap[self.on], '__iter__'): # raise ValueError('argument "{}" is not iterable for pooled function'.format(on)) # for v in amap[self.on]: # _kwargs = dict(amap) # _kwargs[self.on] = v # pooled_kwargs.append(_kwargs) # # with Pool(n_cpus) as pool: # run_with_pool(pool, # f, # wrapper=self.starstar, # chunksize=chunksize, # args=pooled_kwargs, # callback=callback, # error_callback=error_callback, # resolved_handler=_resolved_sorted_handler # ) # return _pooled_inner # # # @staticmethod # # def override(f, outer_kwargs: Dict[str, Any], override_kwargs: str): # # @wraps(f) # # def wrapped(*args, **kwargs): # # inner_kwargs = dict(outer_kwargs) # # if override_kwargs is not None: # # if override_kwargs in kwargs: # # pooled_opts = kwargs[override_kwargs] # # inner_kwargs.update(pooled_opts) # # f(*args, **inner_kwargs) # # return wrapped # # def do_auto_annotate(self, func, type = List): # if self.auto_annotate: # func.__annotations__ = dict(func.__annotations__) # if self.on in func.__annotations__: # func.__annotations__[self.on] = type[func.__annotations__[self.on]] # else: # func.__annotations__[self.on] = list # # def bind(self, func, pooled_outer): # if '__attach_as' is None or self.attach is False: # wrapped = pooled_outer # elif self.attach is True: # @wraps(func) # def wrapped(*args, **kwargs) -> _S: # return func(*args, **kwargs) # wrapped.__dict__[self.attach_as] = pooled_outer # return wrapped # # def override(self, f, okwargs, key): # def wrapped(*args, **kwargs): # def _wrapped(*args, **kwargs): # pass # return _wrapped # return wrapped # # def __call__(self, f): # self.validate_func(f) # # def pooled_outer(n_cpus: Optional[int] = None, chunksize: int = 1, callback=None, error_callback=None, # override_kwargs='pooled_opts'): # pool_kwargs = { # 'n_cpus': n_cpus, # 'chunksize': chunksize, # 'callback': callback, # 'error_callback': error_callback # } # pooled_inner = self.pooled_inner(f, pool_kwargs, override_kwargs) # if self.auto_annotate: # self.do_auto_annotate(pooled_inner) # return pooled_inner # # return self.bind(f, pooled_outer) def _auto_annotate_on(on: str, func, type=List): func.__annotations__ = dict(func.__annotations__) if on in func.__annotations__: func.__annotations__[on] = type[func.__annotations__[on]] else: func.__annotations__[on] = list def multiprocess( on: str, auto_annotate: bool = True, attach: bool = True, attach_as="pooled" ): """A decorator that attaches a pooled version of the function. .. code-block:: import time @mp('y') def foo(x, y, z): time.sleep(x/10.) return x + y + z # standard call signature foo(1, 3, 2) # pooled call signature foo.pooled(1, range(20), 2) :param on: Variable to pool. The pooled version will require an iterable to be passed at the positional argument or key word argument indicated. :param auto_annotate: whether to dynamically change the annotation of the pooled function. This likely will not appear in the IDE. :param attach: if False, return only the pooled version of the function :param attach_as: key to attach to the original function :return: """ if not isinstance(attach_as, str): raise TypeError("attach_as must be a str, not a {}".format(attach_as.__class__)) if not valid_varname(attach_as): raise ValueError( "attach_as '{}' is not a valid variable name".format(attach_as) ) def _mp( f: Callable[[_T], _S] ) -> Callable[[Callable[[_T], _S]], Callable[[_T], _S]]: if not isinstance(on, str): raise TypeError( "argument must be a str, found a {} {}".format(on, on.__class__) ) elif not valid_varname(on): raise ValueError("argument '{}' is not a valid variable name".format(on)) argspec = inspect.getfullargspec(f) if on not in argspec.args: raise ValueError( "argument '{}' not in signature. Use any of {}".format(on, argspec.args) ) def pooled_outer( n_cpus: Optional[int] = None, chunksize: int = 1, callback=None, error_callback=None, override_kwargs="pooled_opts", ): outer_kwargs = { "n_cpus": n_cpus, "chunksize": chunksize, "callback": callback, "error_callback": error_callback, } @wraps(f) def pooled_inner(*args, **kwargs) -> List[_S]: # overrides inner_kwargs = dict(outer_kwargs) if override_kwargs is not None: if override_kwargs in kwargs: pooled_opts = kwargs[override_kwargs] inner_kwargs.update(pooled_opts) inner_kwargs = dict(outer_kwargs) n_cpus = inner_kwargs["n_cpus"] chunksize = inner_kwargs["chunksize"] callback = inner_kwargs["callback"] error_callback = inner_kwargs["error_callback"] amap = argmap(f, args, kwargs) pooled_kwargs = [] if not hasattr(amap[on], "__iter__"): raise ValueError( 'argument "{}" is not iterable for pooled function'.format(on) ) for v in amap[on]: _kwargs = dict(amap) _kwargs[on] = v pooled_kwargs.append(_kwargs) def starstar(f): def wrapped(kwargs): return f(**kwargs) return wrapped with Pool(n_cpus) as pool: run_with_pool( pool, f, wrapper=starstar, chunksize=chunksize, args=pooled_kwargs, callback=callback, error_callback=error_callback, resolved_handler=_resolved_sorted_handler, ) if auto_annotate: _auto_annotate_on(on, pooled_inner) return pooled_inner if attach_as is None or attach is False: wrapped = pooled_outer() elif attach is True: @wraps(f) def wrapped(*args, **kwargs) -> _S: return f(*args, **kwargs) wrapped.__dict__[attach_as] = pooled_outer return wrapped return _mp
2.234375
2
project.py
anton-kachurin/item-catalog
3
12784388
<reponame>anton-kachurin/item-catalog<gh_stars>1-10 from flask import Flask, render_template, request, redirect, url_for from flask import jsonify, session, make_response, g import os, random, string, json, httplib2, requests from oauth2client.client import flow_from_clientsecrets from oauth2client.client import FlowExchangeError from db_scheme import Category, Item, User from db_scheme import NotAuthorized, NotAuthenticated, NotFound # constants for Google Plus oAuth2 G_SECRETS_FILE = 'g_client_secrets.json' g_client_secrets = json.loads(open(G_SECRETS_FILE, 'r').read()) G_CLIENT_ID = g_client_secrets['web']['client_id'] REDIRECT_URI = 'postmessage' # constansts for Facebook aAuth2 FB_SECRETS_FILE = 'fb_client_secrets.json' fb_client_secrets = json.loads(open(FB_SECRETS_FILE, 'r').read()) FB_CLIENT_ID = fb_client_secrets['web']['app_id'] app = Flask(__name__) def json_result(message, code=401): """ Generate JSON response with given message and HTTP code """ response = make_response(json.dumps(message), code) response.headers['Content-Type'] = 'application/json' return response def json_not_found(): return json_result('no results found', 404) def field_list(): """ List of required fields of an article """ return [ {'name': 'title', 'label': 'Title'}, {'name': 'author', 'label': 'Author'}, {'name': 'source', 'label': 'Source URL'}, {'name': 'image', 'label': 'Illustration URL'}, {'name': 'text', 'label': 'Content', 'textarea': 1} ] def extend_fields_with_value(fields, title, author, source, image, text): for field in fields: if field['name'] == 'title': field['value'] = title if field['name'] == 'author': field['value'] = author if field['name'] == 'source': field['value'] = source if field['name'] == 'image': field['value'] = image if field['name'] == 'text': field['value'] = text def is_url(url): """ Check if given string is a valid URL """ url = url.lower() return url.startswith('http://') or url.startswith('https://') def check_request_fields(fields): """ Get parameters from `request` object and check it's validity; return error message if it's invalid; otherwise, extend `fields` object with parameter values and return `None`. """ title = request.form.get('title') author = request.form.get('author') source = request.form.get('source') image = request.form.get('image') text = request.form.get('text') extend_fields_with_value(fields=fields, title=title, author=author, source=source, image=image, text=text) error = '' if not title or not author or not text or not source or not image: error = 'All fields are required' if not is_url(image): error = 'Please provide a valid image URL' if not is_url(source): error = 'Please provide a valid link to the original article' if error: return error else: return None @app.before_request def before_request(): """ Set g.current_user property before any view function will run """ if 'email' in session: # user is logged in, use its email to get user from db # User.create will make sure not to create duplicate entry in db g.current_user = User.create(username=session.get('username'), email=session.get('email'), picture=session.get('picture')) else: g.current_user = None @app.route('/login') def show_login(): state = ''.join(random.choice(string.ascii_uppercase + string.digits) for x in xrange(32)) session['state'] = state return render_template('login.html', state_str=state, g_client_id=G_CLIENT_ID, fb_client_id=FB_CLIENT_ID, redirect_uri = REDIRECT_URI) @app.route('/gconnect', methods=["POST"]) def gconnect(): if request.args.get('state') != session.get('state'): return json_result('Invalid state parameter') code = request.data try: oauth_flow = flow_from_clientsecrets(G_SECRETS_FILE, scope='') oauth_flow.redirect_uri = REDIRECT_URI credentials = oauth_flow.step2_exchange(code) except FlowExchangeError: return json_result('Failed to upgrade the authorization code') access_token = credentials.access_token url = ('https://www.googleapis.com/oauth2/v1/tokeninfo?access_token=%s' % access_token) h = httplib2.Http() result = json.loads(h.request(url, 'GET')[1]) access_token_error = result.get('error') if access_token_error is not None: return json_result(access_token_error, 500) gplus_id = credentials.id_token['sub'] if result['user_id'] != gplus_id: return json_result("Token's user ID doesn't match given user ID") if result['issued_to'] != G_CLIENT_ID: return json_result("Token's client ID doesn't match given client ID") stored_access_token = session.get('access_token') stored_gplus_id = session.get('gplus_id') if gplus_id == stored_gplus_id and stored_access_token is not None: session['access_token'] = access_token return json_result('User is already connected', 200) session['provider'] = 'google' session['access_token'] = access_token session['gplus_id'] = gplus_id # Get user info userinfo_url = "https://www.googleapis.com/oauth2/v1/userinfo" params = {'access_token': access_token, 'alt': 'json'} answer = requests.get(userinfo_url, params=params) data = answer.json() session['username'] = data['name'] session['picture'] = data['picture'] session['email'] = data['email'] return 'welcome, ' + session.get('username') def gdisconnect(): # only disconnect a connected user access_token = session.get('access_token') if access_token is None: return json_result('Current user is not connected') url = ('https://accounts.google.com/o/oauth2/revoke?token=%s' % access_token) h = httplib2.Http() result = h.request(url, 'GET')[0] if(result['status'] == '200'): del session['username'] del session['picture'] del session['email'] del session['access_token'] del session['gplus_id'] del session['provider'] return json_result('Successfully disconnected', 200) else: return json_result('Failed to revoke token for given user', 400) @app.route('/fbconnect', methods=['POST']) def fbconnect(): if request.args.get('state') != session.get('state'): return json_result('Invalid state parameter') access_token = request.data app_secret = fb_client_secrets['web']['app_secret'] url = 'https://graph.facebook.com/oauth/access_token?grant_type=fb_exchange_token&client_id=%s&client_secret=%s&fb_exchange_token=%s' % ( FB_CLIENT_ID, app_secret, access_token) h = httplib2.Http() result = h.request(url, 'GET')[1] userinfo_url = "https://graph.facebook.com/v2.4/me" # strip expire tag from access token token = result.split("&")[0] url = 'https://graph.facebook.com/v2.4/me?%s&fields=name,id,email' % token h = httplib2.Http() result = h.request(url, 'GET')[1] data = json.loads(result) session['provider'] = 'facebook' session['username'] = data['name'] session['email'] = data['email'] session['fb_id'] = data['id'] # Strip out the information before the equals sign in our token stored_token = token.split("=")[1] session['access_token'] = stored_token # Get user picture url = 'https://graph.facebook.com/v2.4/me/picture?%s&redirect=0&height=200&width=200' % token h = httplib2.Http() result = h.request(url, 'GET')[1] data = json.loads(result) session['picture'] = data["data"]["url"] return 'welcome, ' + session.get('username') def fbdisconnect(): # Only disconnect a connected user. fb_id = session.get('fb_id') access_token = session.get('access_token') if fb_id is None: return json_result('Current user is not connected') url = 'https://graph.facebook.com/%s/permissions?access_token=%s' % (fb_id, access_token) h = httplib2.Http() result = h.request(url, 'DELETE')[1] data = json.loads(result) if 'success' in data and data['success'] == True: del session['username'] del session['picture'] del session['email'] del session['access_token'] del session['fb_id'] del session['provider'] return json_result('Successfully disconnected', 200) else: return json_result('Failed to revoke token for given user', 400) @app.route('/force_logout', methods=["POST"]) def force_logout(): """ Make server to clean session data for current user when regular disconnect fails. This will allow to get new oAuth credentials later, i.e to relogin """ del session['username'] del session['picture'] del session['email'] del session['access_token'] del session['provider'] if 'fb_id' in session: del session['fb_id'] if 'gplus_id' in session: del session['gplus_id'] return json_result('Forced to disconnect', 200) @app.route('/logout', methods=["POST"]) def disconnect(): """ Recognize what authorization option is currently being used, and try to revoke authorization via corresponding provider """ if 'provider' in session: provider = session.get('provider') if provider == 'facebook': return fbdisconnect() elif provider == 'google': return gdisconnect() else: return json_result('Internal error', 500) else: return json_result('Current user is not connected') @app.route('/') def redirect_to_main(): return redirect(url_for('show_catalog')) @app.route('/catalog') def show_catalog(): categories = Category.get_all() return render_template('catalog.html', categories=categories) @app.route('/catalog/<string:category_path>') def show_category(category_path): category = Category.get_one(category_path) items = Item.get_all(category) return render_template('items.html', category=category, items=items) @app.route('/catalog/<string:category_path>/<string:item_label>') def show_article(category_path, item_label): category = Category.get_one(category_path) item = Item.get_one(category, item_label) return render_template('article.html', category=category, item=item) @app.route('/catalog/<string:category_path>/add', methods=['GET', 'POST']) def add_item(category_path): category = Category.get_one(category_path) fields = field_list() if request.method == 'GET': return render_template('add.html', fields=fields, category=category) else: error = check_request_fields(fields) if error: return render_template('add.html', fields=fields, category=category, error=error) else: obj = {} for field in fields: obj[field['name']] = field['value'] error = Item.add(g.current_user, category, Item(**obj)) if error: return render_template('add.html', fields=fields, category=category, error=error) else: return redirect(url_for('show_category', category_path=category.path)) @app.route('/catalog/<string:category_path>/<string:item_label>/edit', methods=['GET', 'POST']) def edit_item(category_path, item_label): category = Category.get_one(category_path) item = Item.get_one(category, item_label) fields = field_list() if request.method == 'GET': title = item.title author = item.author source = item.source image = item.image text = item.text extend_fields_with_value(fields=fields, title=title, author=author, source=source, image=image, text=text) return render_template('add.html', fields=fields, category=category) else: error = check_request_fields(fields) if error: return render_template('add.html', fields=fields, category=category, error=error) else: obj = {} for field in fields: obj[field['name']] = field['value'] error = item.edit(g.current_user, obj) if error: return render_template('add.html', fields=fields, category=category, error=error) else: return redirect(url_for('show_category', category_path=category.path)) @app.route('/catalog/<string:category_path>/<string:item_label>/delete', methods=['POST']) def delete_item(category_path, item_label): category = Category.get_one(category_path) item = Item.get_one(category, item_label) item.delete(g.current_user) return json_result('deleted successfully', 200) # JSON endpoints @app.route('/JSON/catalog') def all_categories_JSON(): categories = Category.get_all() return jsonify(categoryList=[category.serialized for category in categories]) @app.route('/JSON/catalog/<string:category_path>') def items_of_category_JSON(category_path): try: category = Category.get_one(category_path) items = Item.get_all(category) return jsonify(itemList=[item.serialized for item in items]) except NotFound: return json_not_found() @app.route('/JSON/catalog/<string:category_path>/<string:item_label>') def item_JSON(category_path, item_label): try: category = Category.get_one(category_path) item = Item.get_one(category, item_label) return jsonify(item.serialized) except NotFound: return json_not_found() @app.errorhandler(NotFound) def not_found(e): error = "404. Nothing is found for this URL" return render_template('403-404.html', error=error), 404 @app.errorhandler(NotAuthorized) def not_found(e): error = "403. You can't perform this action" return render_template('403-404.html', error=error), 403 @app.errorhandler(NotAuthenticated) def not_found(e): return render_template('401.html'), 401 APP_CONFIG_FILE = 'config' #.py if os.path.isfile(APP_CONFIG_FILE + '.py'): app.config.from_object(APP_CONFIG_FILE) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
2.546875
3
python/dynamic_graph/sot/torque_control/main.py
jviereck/sot-torque-control
0
12784389
<reponame>jviereck/sot-torque-control # -*- coding: utf-8 -*-1 """ 2014, LAAS/CNRS @author: <NAME> """ from dynamic_graph import plug from dynamic_graph.sot.torque_control.se3_trajectory_generator import SE3TrajectoryGenerator from dynamic_graph.sot.torque_control.create_entities_utils import create_trajectory_switch, connect_synchronous_trajectories, create_force_traj_gen from dynamic_graph.sot.torque_control.create_entities_utils import create_trajectory_generator, create_com_traj_gen, create_encoders from dynamic_graph.sot.torque_control.create_entities_utils import create_imu_offset_compensation, create_estimators, create_imu_filter from dynamic_graph.sot.torque_control.create_entities_utils import create_base_estimator, create_position_controller, create_torque_controller from dynamic_graph.sot.torque_control.create_entities_utils import create_balance_controller, create_ctrl_manager, create_ros_topics from dynamic_graph.sot.torque_control.create_entities_utils import create_free_flyer_locator, create_flex_estimator, create_floatingBase from dynamic_graph.sot.torque_control.create_entities_utils import create_current_controller, connect_ctrl_manager from dynamic_graph.sot.torque_control.create_entities_utils import create_tracer, create_topic, create_admittance_ctrl from dynamic_graph.ros import RosPublish from dynamic_graph.sot.torque_control.utils.sot_utils import start_sot, stop_sot, go_to_position, Bunch from dynamic_graph.sot.torque_control.utils.filter_utils import create_chebi2_lp_filter_Wn_03_N_4 from time import sleep def get_default_conf(): import dynamic_graph.sot.torque_control.hrp2.balance_ctrl_conf as balance_ctrl_conf import dynamic_graph.sot.torque_control.hrp2.admittance_ctrl_conf as admittance_ctrl_conf import dynamic_graph.sot.torque_control.hrp2.base_estimator_conf as base_estimator_conf import dynamic_graph.sot.torque_control.hrp2.control_manager_conf as control_manager_conf import dynamic_graph.sot.torque_control.hrp2.current_controller_conf as current_controller_conf import dynamic_graph.sot.torque_control.hrp2.force_torque_estimator_conf as force_torque_estimator_conf import dynamic_graph.sot.torque_control.hrp2.joint_torque_controller_conf as joint_torque_controller_conf import dynamic_graph.sot.torque_control.hrp2.joint_pos_ctrl_gains as pos_ctrl_gains import dynamic_graph.sot.torque_control.hrp2.motors_parameters as motor_params conf = Bunch(); conf.balance_ctrl = balance_ctrl_conf; conf.adm_ctrl = admittance_ctrl_conf; conf.base_estimator = base_estimator_conf; conf.control_manager = control_manager_conf; conf.current_ctrl = current_controller_conf; conf.force_torque_estimator = force_torque_estimator_conf; conf.joint_torque_controller = joint_torque_controller_conf; conf.pos_ctrl_gains = pos_ctrl_gains; conf.motor_params = motor_params; return conf; ''' Main function to call before starting the graph. ''' def main_v3(robot, startSoT=True, go_half_sitting=True, conf=None): if(conf is None): conf = get_default_conf(); dt = robot.timeStep; # TMP: overwrite halfSitting configuration to use SoT joint order robot.halfSitting = ( # Free flyer 0., 0., 0.648702, 0., 0. , 0., # Legs 0., 0., -0.453786, 0.872665, -0.418879, 0., 0., 0., -0.453786, 0.872665, -0.418879, 0., # Chest and head 0., 0., 0., 0., # Arms 0.261799, -0.17453, 0., -0.523599, 0., 0., 0.1, 0.261799, 0.17453, 0., -0.523599, 0., 0., 0.1); robot.device.setControlInputType('noInteg'); robot.ctrl_manager = create_ctrl_manager(conf.control_manager, conf.motor_params, dt); robot.traj_gen = create_trajectory_generator(robot.device, dt); robot.com_traj_gen = create_com_traj_gen(conf.balance_ctrl, dt); robot.rf_force_traj_gen = create_force_traj_gen("rf_force_ref", conf.balance_ctrl.RF_FORCE_DES, dt); robot.lf_force_traj_gen = create_force_traj_gen("lf_force_ref", conf.balance_ctrl.LF_FORCE_DES, dt); robot.traj_sync = create_trajectory_switch(); robot.rf_traj_gen = SE3TrajectoryGenerator("tg_rf"); robot.lf_traj_gen = SE3TrajectoryGenerator("tg_lf"); robot.rf_traj_gen.init(dt); robot.lf_traj_gen.init(dt); robot.encoders = create_encoders(robot); robot.imu_offset_compensation = create_imu_offset_compensation(robot, dt); (robot.estimator_ft, robot.filters) = create_estimators(robot, conf.force_torque_estimator, conf.motor_params, dt); robot.imu_filter = create_imu_filter(robot, dt); robot.base_estimator = create_base_estimator(robot, dt, conf.base_estimator); connect_synchronous_trajectories(robot.traj_sync, [robot.com_traj_gen, robot.rf_force_traj_gen, robot.lf_force_traj_gen, robot.rf_traj_gen, robot.lf_traj_gen]) #robot.rf_traj_gen, robot.lf_traj_gen]) robot.pos_ctrl = create_position_controller(robot, conf.pos_ctrl_gains, dt); robot.torque_ctrl = create_torque_controller(robot, conf.joint_torque_controller, conf.motor_params, dt); robot.inv_dyn = create_balance_controller(robot, conf.balance_ctrl,conf.motor_params, dt); robot.adm_ctrl = create_admittance_ctrl(robot, conf.adm_ctrl, dt); robot.current_ctrl = create_current_controller(robot, conf.current_ctrl, conf.motor_params, dt); connect_ctrl_manager(robot); # create low-pass filter for computing joint velocities robot.encoder_filter = create_chebi2_lp_filter_Wn_03_N_4('encoder_filter', dt, conf.motor_params.NJ) plug(robot.encoders.sout, robot.encoder_filter.x) plug(robot.encoder_filter.dx, robot.current_ctrl.dq); plug(robot.encoder_filter.dx, robot.torque_ctrl.jointsVelocities); #plug(robot.encoder_filter.x_filtered, robot.base_estimator.joint_positions); #plug(robot.encoder_filter.dx, robot.base_estimator.joint_velocities); robot.ros = RosPublish('rosPublish'); robot.device.after.addDownsampledSignal('rosPublish.trigger',1); robot.estimator_ft.dgyro.value = (0.0, 0.0, 0.0); robot.estimator_ft.gyro.value = (0.0, 0.0, 0.0); # estimator.accelerometer.value = (0.0, 0.0, 9.81); if(startSoT): print "Gonna start SoT"; sleep(1.0); start_sot(); if(go_half_sitting): print "Gonna go to half sitting in 1 sec"; sleep(1.0); go_to_position(robot.traj_gen, robot.halfSitting[6:], 10.0); return robot; ''' Main function to call after having started the graph. ''' def main_post_start(robot): ros = create_ros_topics(robot); return ros; ''' Main function to call before starting the graph. ''' def main_v2(robot, delay=0.01, startSoT=True, go_half_sitting=True, urdfFileName='/opt/openrobots/share/hrp2_14_description/urdf/hrp2_14.urdf'): dt = robot.timeStep; robot.device.setControlInputType('position'); robot.traj_gen = create_trajectory_generator(robot.device, dt); robot.com_traj_gen = create_com_traj_gen(dt); robot.rf_traj_gen = SE3TrajectoryGenerator("tg_rf"); robot.lf_traj_gen = SE3TrajectoryGenerator("tg_lf"); robot.rf_traj_gen.init(dt); robot.lf_traj_gen.init(dt); (robot.estimator_ft, robot.filters) = create_estimators(robot, dt, delay); robot.ff_locator = create_free_flyer_locator(robot, urdfFileName); robot.flex_est = create_flex_estimator(robot, dt); robot.floatingBase = create_floatingBase(robot); robot.pos_ctrl = create_position_controller(robot, dt); robot.torque_ctrl = create_torque_controller(robot); # inv_dyn = create_inverse_dynamics(robot, dt); robot.inv_dyn = create_balance_controller(robot, urdfFileName, dt); robot.ctrl_manager = create_ctrl_manager(robot, dt); robot.estimator_ft.gyro.value = (0.0, 0.0, 0.0); # estimator.accelerometer.value = (0.0, 0.0, 9.81); if(startSoT): print "Gonna start SoT"; sleep(1.0); start_sot(); if(go_half_sitting): print "Gonna go to half sitting"; sleep(1.0); go_to_position(robot.traj_gen, robot.halfSitting[6:], 10.0); return robot;
1.515625
2
click_man/__main__.py
smarlowucf/click-man
1
12784390
<gh_stars>1-10 """ click-man - Generate man pages for click application ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This module provides a click CLI command to generate man pages from a click application. :copyright: (c) 2016 by <NAME>. :license: MIT, see LICENSE for more details. """ import os import click from pkg_resources import iter_entry_points, get_distribution from click_man.core import write_man_pages @click.command(context_settings={'help_option_names': ['-h', '--help']}) @click.option('--target', '-t', default=os.path.join(os.getcwd(), 'man'), type=click.Path(file_okay=False, dir_okay=True, resolve_path=True), help='Target location for the man pages') @click.version_option(get_distribution('click-man').version, '-V', '--version') @click.argument('name') def cli(target, name): """ Generate man pages for the scripts defined in the ``console_acripts`` entry point. The cli application is gathered from entry points of installed packages. The generated man pages are written to files in the directory given by ``--target``. """ console_scripts = [ep for ep in iter_entry_points('console_scripts', name=name)] if len(console_scripts) < 1: raise click.ClickException('"{0}" is not an installed console script.'.format(name)) # Only generate man pages for first console script entry_point = console_scripts[0] # create target directory if it does not exist yet try: os.makedirs(target) except OSError: pass click.echo('Load entry point {0}'.format(name)) cli = entry_point.resolve() click.echo('Generate man pages for {0} in {1}'.format(name, target)) write_man_pages(name, cli, version=entry_point.dist.version, target_dir=target) if __name__ == '__main__': cli()
2.640625
3
goutdotcom/treatment/models.py
Spiewart/goutdotcom
0
12784391
<reponame>Spiewart/goutdotcom from datetime import datetime, timezone from decimal import * from django.conf import settings from django.core.validators import MaxValueValidator, MinValueValidator from django.db import models from django.db.models.fields.related import ForeignKey from django.urls import reverse from django.utils import timezone from django_extensions.db.models import TimeStampedModel from ..flareaid.models import FlareAid from ..ppxaid.models import PPxAid from ..ultplan.models import ULTPlan from .choices import * # Create your models here. class Treatment(TimeStampedModel): user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, null=True, blank=True) generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES) brand_names = [""] dose = models.IntegerField(null=True, blank=True) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, default=QDAY, null=True, blank=True) side_effects = models.CharField(max_length=100, null=True, blank=True, help_text="Have you had any side effects?") drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES) date_started = models.DateField(null=True, blank=True) date_ended = models.DateField(null=True, blank=True, default=None) class Meta: abstract = True def __str__(self): if self.dose: return f"{str(self.generic_name)} {str(self.dose)} mg {str(self.freq)}" else: return f'{str(self.generic_name) + " (dose not recorded)"}' def get_absolute_url(self): return reverse("treatment:detail", kwargs={"pk": self.pk, "treatment": self.generic_name}) def __unicode__(self): return self.generic_name class FlareTreatment(Treatment): flareaid = models.OneToOneField(FlareAid, on_delete=models.CASCADE, null=True, blank=True, default=None) ppxaid = models.OneToOneField(PPxAid, on_delete=models.CASCADE, null=True, blank=True, default=None) ultplan = models.OneToOneField(ULTPlan, on_delete=models.CASCADE, null=True, blank=True, default=None) prn = models.BooleanField( choices=BOOL_CHOICES, default=True, null=True, blank=True, help_text="Do you take this medication only as needed (PRN)?", ) as_prophylaxis = models.BooleanField( choices=BOOL_CHOICES, verbose_name="Flare prophylaxis?", help_text="Is this for flare prophylaxis while initiating ULT?", default=False, blank=True, null=True, ) duration = models.IntegerField( null=True, blank=True, default=7, validators=[MaxValueValidator(14), MinValueValidator(1)] ) def flareclaimer(self): natural_history = "Most flares last between 5-7 days. Flare treatments are design to improve (not eliminate) symptoms over that duration. If your symptoms improve more quickly, it is OK to discontinue your flare treatment early. If your symptoms last longer, you should consult your provider." return natural_history class Meta: abstract = True class ULTTreatment(Treatment): ultplan = models.OneToOneField(ULTPlan, on_delete=models.CASCADE, null=True, blank=True, default=None) date_started = models.DateField(default=timezone.now, null=True, blank=True) class Meta: abstract = True class Allopurinol(ULTTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=ALLOPURINOL) brand_names = ["Xyloprim", "Aloprim"] dose = models.IntegerField(choices=ALLOPURINOL_DOSE_CHOICES, default=100) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, default=QDAY) side_effects = models.CharField( max_length=100, choices=ALLOPURINOL_SIDE_EFFECT_CHOICES, null=True, blank=True, help_text="Have you had any side effects?", ) de_sensitized = models.BooleanField(null=True, blank=True, help_text="Have you been de-sensitized to allopurinol?") drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=ULT) class Febuxostat(ULTTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=FEBUXOSTAT) brand_names = ["Uloric"] dose = models.IntegerField(choices=FEBUXOSTAT_DOSE_CHOICES, default=40) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, default=QDAY) side_effects = models.CharField( max_length=100, choices=FEBUXOSTAT_SIDE_EFFECT_CHOICES, null=True, blank=True, help_text="Have you had any side effects?", ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=ULT) class Colchicine(FlareTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=COLCHICINE) brand_names = ["Colcrys"] dose = models.FloatField(choices=COLCHICINE_DOSE_CHOICES, null=True, blank=True, default=1.2) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, null=True, blank=True, default=ONCE) dose2 = models.FloatField(choices=COLCHICINE_DOSE_CHOICES, null=True, blank=True, default=0.6) freq2 = models.CharField(max_length=50, choices=FREQ_CHOICES, null=True, blank=True, default=ONCE) dose3 = models.FloatField(choices=COLCHICINE_DOSE_CHOICES, null=True, blank=True, default=0.6) freq3 = models.CharField(max_length=50, choices=FREQ_CHOICES, null=True, blank=True, default=BID) duration = models.IntegerField( null=True, blank=True, default=7, validators=[MaxValueValidator(14), MinValueValidator(1)] ) side_effects = models.CharField( max_length=100, choices=COLCHICINE_SIDE_EFFECT_CHOICES, blank=True, help_text="Have you had any side effects?" ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=ANTIINFLAMMATORY) def __str__(self): if self.dose and self.dose2 and self.dose3: return f"{str(self.generic_name)} {str(self.dose)} mg (2 tabs) {str(self.freq)} then {str(self.dose2)} mg (1 tab) {str(self.freq2)} an hour later then {str(self.dose3)} mg {str(self.freq3)} for {str(self.duration)} days or until flare resolves" elif self.dose: return f"{str(self.generic_name)} {str(self.dose)} mg (1 tab) {str(self.freq)}" else: return f'{str(self.generic_name) + " (dose not recorded)"}' class Ibuprofen(FlareTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=IBUPROFEN) brand_names = ["Advil"] dose = models.IntegerField(choices=IBUPROFEN_DOSE_CHOICES, null=True, blank=True, default=800) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, null=True, blank=True, default=TID) side_effects = models.CharField( max_length=100, choices=NSAID_SIDE_EFFECT_CHOICES, null=True, blank=True, help_text="Have you had any side effects?", ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=NSAID) def __str__(self): if self.dose == 200: return f"{str(self.generic_name)} {str(self.dose)} mg (one 200 mg tab) {str(self.freq)} for {str(self.duration)} days or until flare resolves" elif self.dose == 400: return f"{str(self.generic_name)} {str(self.dose)} mg (two 200 mg tabs) {str(self.freq)} for {str(self.duration)} days or until flare resolves" elif self.dose == 600: return f"{str(self.generic_name)} {str(self.dose)} mg (three 200 mg tabs) {str(self.freq)} for {str(self.duration)} days or until flare resolves" elif self.dose == 800: return f"{str(self.generic_name)} {str(self.dose)} mg (four 200 mg tabs) {str(self.freq)} for {str(self.duration)} days or until flare resolves" else: return f'{str(self.generic_name) + " (dose not recorded)"}' class Naproxen(FlareTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=NAPROXEN) brand_names = ["Aleve"] dose = models.IntegerField(choices=NAPROXEN_DOSE_CHOICES, null=True, blank=True, default=440) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, null=True, blank=True, default=BID) side_effects = models.CharField( max_length=100, choices=NSAID_SIDE_EFFECT_CHOICES, blank=True, help_text="Have you had any side effects?" ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=NSAID) def __str__(self): if self.dose == 220 or self.dose == 250: if self.prn == True: return f"{str(self.generic_name)} {str(self.dose)} mg (1 tab) {str(self.freq)} (twice daily) for {str(self.duration)} days" else: return f"{str(self.generic_name)} {str(self.dose)} mg (1 tab) {str(self.freq)} (twice daily)" if self.dose == 440 or self.dose == 500: return f"{str(self.generic_name)} {str(self.dose)} mg (2 tabs) {str(self.freq)} (twice daily) for {str(self.duration)} days" else: return f'{str(self.generic_name) + " (dose not recorded)"}' class Meloxicam(FlareTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=MELOXICAM) brand_names = ["Mobic"] dose = models.DecimalField(decimal_places=1, max_digits=3, choices=MELOXICAM_DOSE_CHOICES, null=True, blank=True) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, default=QDAY, blank=True) side_effects = models.CharField( max_length=100, choices=NSAID_SIDE_EFFECT_CHOICES, blank=True, help_text="Have you had any side effects?" ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=NSAID) class Celecoxib(FlareTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=CELECOXIB) brand_names = ["Aleve"] dose = models.IntegerField(choices=CELECOXIB_DOSE_CHOICES, null=True, blank=True) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, default=QDAY, blank=True) side_effects = models.CharField( max_length=100, choices=NSAID_SIDE_EFFECT_CHOICES, blank=True, help_text="Have you had any side effects?" ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=NSAID) class Indomethacin(FlareTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=INDOMETHACIN) brand_names = ["Indocin"] dose = models.IntegerField(choices=INDOMETHACIN_DOSE_CHOICES, null=True, blank=True) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, default=QDAY, blank=True) side_effects = models.CharField( max_length=100, choices=NSAID_SIDE_EFFECT_CHOICES, blank=True, help_text="Have you had any side effects?" ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=NSAID) class Prednisone(FlareTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=PREDNISONE) brand_names = ["Prednisone"] dose = models.IntegerField(choices=PREDNISONE_DOSE_CHOICES, null=True, blank=True, default=40) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, null=True, blank=True, default=QDAY) duration = models.IntegerField( null=True, blank=True, default=4, validators=[MaxValueValidator(14), MinValueValidator(1)] ) dose2 = models.IntegerField(choices=PREDNISONE_DOSE_CHOICES, null=True, blank=True, default=20) freq2 = models.CharField(max_length=50, choices=FREQ_CHOICES, null=True, blank=True, default=QDAY) duration2 = models.IntegerField( null=True, blank=True, default=4, validators=[MaxValueValidator(14), MinValueValidator(1)] ) side_effects = models.CharField( max_length=100, choices=PREDNISONE_SIDE_EFFECT_CHOICES, null=True, blank=True, help_text="Have you had any side effects?", ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=SYSSTEROID) def __str__(self): if self.dose and self.dose2: return f"{str(self.generic_name)} {str(self.dose)} mg {str(self.freq)} then {str(self.dose2)} {str(self.freq2)} for {str(self.duration)} days or until flare resolves" elif self.dose: return f"{str(self.generic_name)} {str(self.dose)} mg {str(self.freq)}" else: return f'{str(self.generic_name) + " (dose not recorded)"}' class Methylprednisolone(FlareTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=METHYLPREDNISOLONE) brand_names = ["Depomedrol"] dose = models.IntegerField(choices=METHYLPREDNISOLONE_DOSE_CHOICES, null=True, blank=True) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, default=QDAY, blank=True) side_effects = models.CharField( max_length=100, choices=INJECTION_SIDE_EFFECT_CHOICES, blank=True, help_text="Have you had any side effects?" ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=LOCSTEROID) as_injection = models.BooleanField( choices=BOOL_CHOICES, verbose_name="Given by joint injection?", help_text="Was this given by an injection into your joint?", default=False, blank=True, null=True, ) def __str__(self): if self.as_injection == True: return f'{str(self.generic_name) + " " + str(self.dose) + " mg injection"}' elif self.dose: return f'{str(self.generic_name) + " " + str(self.dose) + " mg " + str(self.freq)}' else: return f'{str(self.generic_name) + " dose not recorded"}' class Probenecid(ULTTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=PROBENECID) brand_names = ["Probalan"] dose = models.IntegerField(choices=PROBENECID_DOSE_CHOICES) freq = models.CharField(max_length=50, choices=FREQ_CHOICES, default=BID) side_effects = models.CharField( max_length=100, choices=PROBENECID_SIDE_EFFECT_CHOICES, null=True, blank=True, help_text="Have you had any side effects?", ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=URATEEXCRETAGOGUE) class Tinctureoftime(FlareTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=TINCTUREOFTIME) brand_names = ["Tincture of time"] duration = models.IntegerField(help_text="How long did it take to get better?", null=True, blank=True) dose = models.IntegerField(blank=True, null=True, help_text="Any optional information on your dose?") freq = models.CharField( max_length=50, choices=FREQ_CHOICES, default=QDAY, null=True, blank=True, help_text="Any optional information on your frequency?", ) side_effects = models.CharField( max_length=400, null=True, blank=True, help_text="Have you had any side effects? Please list" ) drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=TINCTUREOFTIME) def __str__(self): return f'{"Tincture of time for: " + str(self.duration) + " days"}' class Othertreat(FlareTreatment): generic_name = models.CharField(max_length=60, choices=MEDICATION_CHOICES, default=OTHER) brand_names = ["Other"] name = models.CharField(max_length=100, null=True, blank=True) description = models.CharField(max_length=300, null=True, blank=True) dose = models.IntegerField(blank=True, null=True, help_text="Any optional information on your dose?") freq = models.CharField( max_length=50, choices=FREQ_CHOICES, default=QDAY, null=True, blank=True, help_text="Any optional information on your frequency?", ) side_effects = models.CharField(max_length=400, blank=True, help_text="Have you had any side effects? Please list") drug_class = models.CharField(max_length=50, choices=DRUG_CLASS_CHOICES, default=OTHER) def __str__(self): return self.name
2.265625
2
WEB(BE)/drf/detection_status/urls.py
dev-taewon-kim/ai_web_RISKOUT_BTS
1
12784392
from django.urls import path from .views import * urlpatterns = [ path('analyze/', AnalyzedDataView.as_view(), name='analyze'), path('trends/', TrendsDataView.as_view(), name='trends'), path('wordcloud/', WordcloudDataView.as_view(), name='wordcloud'), path('article/volume/', ArticleVolumeDataView.as_view(), name='article_volume'), path('sentiment/bar/', SentimentBarDataView.as_view(), name='sentiment_bar'), path('sentiment/pie/', SentimentPieDataView.as_view(), name='sentiment_pie'), path('report/', ReportDataView.as_view(), name='report'), ]
1.757813
2
src/netatmo/__init__.py
elcombato/netatmo
33
12784393
<filename>src/netatmo/__init__.py<gh_stars>10-100 from .netatmo import *
1.109375
1
jaraco/windows/privilege.py
jaraco/jaraco.windows
21
12784394
<gh_stars>10-100 import ctypes from ctypes import wintypes from .api import security from .api import privilege from .api import process def get_process_token(): """ Get the current process token """ token = wintypes.HANDLE() res = process.OpenProcessToken( process.GetCurrentProcess(), process.TOKEN_ALL_ACCESS, token ) if not res > 0: raise RuntimeError("Couldn't get process token") return token def get_symlink_luid(): """ Get the LUID for the SeCreateSymbolicLinkPrivilege """ symlink_luid = privilege.LUID() res = privilege.LookupPrivilegeValue( None, "SeCreateSymbolicLinkPrivilege", symlink_luid ) if not res > 0: raise RuntimeError("Couldn't lookup privilege value") return symlink_luid def get_privilege_information(): """ Get all privileges associated with the current process. """ # first call with zero length to determine what size buffer we need return_length = wintypes.DWORD() params = [ get_process_token(), privilege.TOKEN_INFORMATION_CLASS.TokenPrivileges, None, 0, return_length, ] res = privilege.GetTokenInformation(*params) # assume we now have the necessary length in return_length buffer = ctypes.create_string_buffer(return_length.value) params[2] = buffer params[3] = return_length.value res = privilege.GetTokenInformation(*params) assert res > 0, "Error in second GetTokenInformation (%d)" % res privileges = ctypes.cast( buffer, ctypes.POINTER(privilege.TOKEN_PRIVILEGES) ).contents return privileges def report_privilege_information(): """ Report all privilege information assigned to the current process. """ privileges = get_privilege_information() print("found {0} privileges".format(privileges.count)) tuple(map(print, privileges)) def enable_symlink_privilege(): """ Try to assign the symlink privilege to the current process token. Return True if the assignment is successful. """ # create a space in memory for a TOKEN_PRIVILEGES structure # with one element size = ctypes.sizeof(privilege.TOKEN_PRIVILEGES) size += ctypes.sizeof(privilege.LUID_AND_ATTRIBUTES) buffer = ctypes.create_string_buffer(size) tp = ctypes.cast(buffer, ctypes.POINTER(privilege.TOKEN_PRIVILEGES)).contents tp.count = 1 tp.get_array()[0].enable() tp.get_array()[0].LUID = get_symlink_luid() token = get_process_token() res = privilege.AdjustTokenPrivileges(token, False, tp, 0, None, None) if res == 0: raise RuntimeError("Error in AdjustTokenPrivileges") ERROR_NOT_ALL_ASSIGNED = 1300 return ctypes.windll.kernel32.GetLastError() != ERROR_NOT_ALL_ASSIGNED class PolicyHandle(wintypes.HANDLE): pass class LSA_UNICODE_STRING(ctypes.Structure): _fields_ = [ ('length', ctypes.c_ushort), ('max_length', ctypes.c_ushort), ('buffer', ctypes.wintypes.LPWSTR), ] def OpenPolicy(system_name, object_attributes, access_mask): policy = PolicyHandle() raise NotImplementedError( "Need to construct structures for parameters " "(see http://msdn.microsoft.com/en-us/library/windows" "/desktop/aa378299%28v=vs.85%29.aspx)" ) res = ctypes.windll.advapi32.LsaOpenPolicy( system_name, object_attributes, access_mask, ctypes.byref(policy) ) assert res == 0, "Error status {res}".format(**vars()) return policy def grant_symlink_privilege(who, machine=''): """ Grant the 'create symlink' privilege to who. Based on http://support.microsoft.com/kb/132958 """ flags = security.POLICY_CREATE_ACCOUNT | security.POLICY_LOOKUP_NAMES policy = OpenPolicy(machine, flags) return policy def main(): assigned = enable_symlink_privilege() msg = ['failure', 'success'][assigned] print("Symlink privilege assignment completed with {0}".format(msg)) if __name__ == '__main__': main()
2.625
3
unstrip.py
pzread/unstrip
103
12784395
<reponame>pzread/unstrip import sys import sqlite3 import msgpack from scan import * from mark import * if __name__ == '__main__': conn = sqlite3.connect('fin.db') try: conn.execute('CREATE TABLE flowfin (label text primary key,len int,fin blob,hash text);') conn.execute('CREATE INDEX index_flowfin_len ON flowfin (len);') conn.execute('CREATE INDEX index_flowfin_hash ON flowfin (hash);') except sqlite3.OperationalError: pass if 'gendb' in sys.argv: gen_db(conn) else: filepath = sys.argv[-1] exe = EXE(filepath,filepath) mark_list = [] call_loc = set() start_pc = exe.elf.header['e_entry'] call_loc = exe.ScanBlock(exe.GetSection(start_pc)) main_pc = None cur = conn.cursor() cur.execute('SELECT * FROM flowfin WHERE label=?;', ('libc-start.o # __libc_start_main',)) finent = cur.fetchone() if finent != None: finb = msgpack.unpackb(finent[2]) for pos,loc in call_loc: fina = exe.FuncFin(loc,set()) if CmpFin(fina,finb) == 0: ins,_ = Disasm(pos[0],pos[1] - 7) main_pc = ins.operands[1].value.imm break if main_pc != None: mark_list.append((exe.GetSection(main_pc),'main')) call_loc.update(exe.ScanBlock(exe.GetSection(main_pc))) for pos,loc in call_loc: fina = exe.FuncFin(loc,set()) find_name = None for row in conn.execute('SELECT * FROM flowfin WHERE len<=?;', (len(fina),)): finb = msgpack.unpackb(row[2]) dis = CmpFin(fina,finb) if dis == 0: find_name = row[0] break if find_name == None: find_name = '<unknown>' else: mark_list.append((loc,find_name.split(' # ')[1])) print('%016lx - %s'%(loc[0].base + loc[1],find_name)) mark(exe,mark_list)
2.203125
2
configs/bead/cascade_mask_rcnn_r50_fpn_1x_coco_type_6.py
anley1/Swin-Transformer-Object-Detection
0
12784396
<reponame>anley1/Swin-Transformer-Object-Detection _base_ = [ './cascade_mask_rcnn_r50_fpn.py', '../_base_/datasets/bead_cropped_type_6_mask.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] #checkpoint_config = dict(max_keep_ckpts=4)
0.996094
1
unimodal_irl/bv_maxlikelihood_irl.py
aaronsnoswell/UniModal-IRL
2
12784397
<filename>unimodal_irl/bv_maxlikelihood_irl.py import copy from pprint import pprint import numpy as np import warnings import itertools as it from numba import jit from mdp_extras import ( Linear, vi, q_grad_fpi, BoltzmannExplorationPolicy, OptimalPolicy, ) @jit(nopython=True) def nb_smq_value_iteration( t_mat, gamma, rs, rsa, rsas, beta=0.5, eps=1e-6, verbose=False, max_iter=None ): """Value iteration to find the SoftMax-optimal state-action value function This bellman recursion is defined in Section 3 of Apprenticeship Learning about Multiple Intentions by Babes-Vroman et al. 2011 (http://www.icml-2011.org/papers/478_icmlpaper.pdf). Essentially, the max over actions from the regular Q-function is replaced with an operator that averages over all possible actions, where the weight of each Q(s, a) is given by e^{βQ(s, a)} / Σ_{a'} e^{βQ(s, a')}. Args: t_mat (numpy array): |S|x|A|x|S| transition matrix gamma (float): Discount factor rs (numpy array): |S| State reward vector rsa (numpy array): |S|x|A| State-action reward vector rsas (numpy array): |S|x|A|x|S| State-action-state reward vector beta (float): Boltzmann exploration policy scale parameter eps (float): Value convergence tolerance verbose (bool): Extra logging max_iter (int): If provided, iteration will terminate regardless of convergence after this many iterations. Returns: (numpy array): |S|x|A| matrix of state-action values """ q_value_fn = np.zeros((t_mat.shape[0], t_mat.shape[1])) _iter = 0 while True: delta = 0 for s1 in range(t_mat.shape[0]): for a in range(t_mat.shape[1]): # q_weights defines the weight of each Q(s, a) term in the # SoftMax operator q_weights = np.exp(q_value_fn.copy() * beta) norm = np.sum(q_weights, axis=1) # Normalize weights to proper probabilities for _a in range(q_weights.shape[1]): q_weights[:, _a] = q_weights[:, _a] / norm q = q_value_fn[s1, a] state_values = np.zeros(t_mat.shape[0]) for s2 in range(t_mat.shape[2]): state_values[s2] += t_mat[s1, a, s2] * ( rs[s1] + rsa[s1, a] + rsas[s1, a, s2] + gamma * (q_value_fn[s2, :].flatten() @ q_weights[s2, :].flatten()) ) q_value_fn[s1, a] = np.sum(state_values) delta = max(delta, np.abs(q - q_value_fn[s1, a])) if max_iter is not None and _iter >= max_iter: if verbose: print("Terminating before convergence, # iterations = ", _iter) break # Check value function convergence if delta < eps: break else: if verbose: print("Value Iteration #", _iter, " delta=", delta) _iter += 1 return q_value_fn def bv_maxlikelihood_irl( x, xtr, phi, rollouts, weights=None, boltzmann_scale=0.5, qge_tol=1e-3, nll_only=False, ): """Compute the average rollout Negative Log Likelihood (and gradient) for ML-IRL This method is biased to prefer shorter paths through any MDP. TODO ajs 29/Oct/2020 Support SoftMax Q function from Babes-Vroman 2011 paper via nb_smq_value_iteration() Args: x (numpy array): Current reward function parameter vector estimate xtr (mdp_extras.DiscreteExplicitExtras): Extras object for the MDP being optimized phi (mdp_extras.FeatureFunction): Feature function to use with linear reward parameters. We require len(phi) == len(x). rollouts (list): List of (s, a) rollouts. weights (numpy array): Optional path weights for weighted IRL problems boltzmann_scale (float): Optimality parameter for Boltzmann policy. Babes-Vroman use 0.5. Values closer to 1.0 cause slower convergence, but values closer to 0 model the demonstrations as being non-expert. Empirically I find 0.2 works well. qge_tol (float): Tolerance for q-gradient estimation. nll_only (bool): If true, only return NLL """ if weights is None: weights = np.ones(len(rollouts)) / len(rollouts) # Compute Q*, pi* for current reward guess reward = Linear(x) _, q_star = vi(xtr, phi, reward) # To use the soft Q function from Babes-Vroman's paper, uncomment below # q_star = nb_smq_value_iteration( # xtr.t_mat, xtr.gamma, *reward.structured(xtr, phi), boltzmann_scale # ) pi = BoltzmannExplorationPolicy(q_star, scale=boltzmann_scale) if not nll_only: # Get Q* gradient for current reward parameters dq_dtheta = q_grad_fpi(reward.theta, xtr, phi, tol=qge_tol) # Sweep demonstrated state-action pairs nll = 0 nll_grad = np.zeros_like(x) num_sa_samples = 0 for path, weight in zip(rollouts, weights): for s, a in path[:-1]: num_sa_samples += 1 ell_theta = pi.prob_for_state_action(s, a) # Accumulate negative log likelihood of demonstration data nll += -1 * weight * np.log(ell_theta) if not nll_only: expected_action_grad = np.sum( [ pi.prob_for_state_action(s, b) * dq_dtheta[s, b, :] for b in xtr.actions ], axis=0, ) dl_dtheta = boltzmann_scale * ( expected_action_grad - dq_dtheta[s, a, :] ) nll_grad += weight * dl_dtheta # Convert NLL and gradient to average, not sum # This makes for consistent magnitude values regardless of dataset size nll /= len(rollouts) nll_grad /= len(rollouts) if nll_only: return nll else: return nll, nll_grad def maxlikelihood_ml_path( xtr, phi, reward, start, goal, max_path_length, boltzmann_scale=0.5 ): """Find the ML path from s1 to sg under a MaxLikelihood model If transitions can inccur +ve rewards the returned paths may contain loops NB ajs 14/Jan/2020 The log likelihood of the path that we compute internally is fine for doing viterbi ML path inference, but it's not the actual path log likelihood - it's not normalized, and the gamma time offset is incorrect (depending on what start time the Viterbi alg picks). Args: xtr (DiscreteExplicitExtras): MDP Extras object phi (FeatureFunction): MDP Featrure function reward (Linear): Linear reward function start (int): Starting state goal (int): End state max_path_length (int): Maximum allowable path length to search boltzmann_scale (float): Boltzmann scale parameter Returns: (list): Maximum Likelihood path from start to goal under the given MaxEnt reward function, or None if no path is possible """ _, q_star = vi(xtr, phi, reward) # Initialize an SxA LL Viterbi trellis sa_lls = np.zeros((len(xtr.states), len(xtr.actions), max_path_length)) - np.inf for a in xtr.actions: sa_lls[goal, :, :] = boltzmann_scale * q_star[goal, a] # Suppress divide by zero - we take logs of many zeroes here with np.errstate(divide="ignore"): # Walk backward to propagate the maximum LL for t in range(max_path_length - 2, -1, -1): # Max-Reduce over actions to compute state LLs # (it's a max because we get to choose our actions) s_lls = np.max(sa_lls, axis=1) # Sweep end states for s2 in xtr.states: if np.isneginf(s_lls[s2, t + 1]): # Skip this state - it hasn't been reached by probability messages yet continue # Sweep actions for a in xtr.actions: # Sweep starting states for s1 in xtr.states: if xtr.terminal_state_mask[s1]: # We can't step forward from terminal states - skip this one continue transition_ll = boltzmann_scale * q_star[s1, a] + np.log( xtr.t_mat[s1, a, s2] ) if np.isneginf(transition_ll): # This transition is impossible - skip continue # Store the max because we're after the maximum likelihood path sa_lls[s1, a, t] = max( sa_lls[s1, a, t], transition_ll + s_lls[s2, t + 1] ) # Max-reduce to get state/action ML trellises for conveience s_lls = np.max(sa_lls, axis=1) # Identify our starting time if np.isneginf(np.max(s_lls[start])): # There is no feasible path from s1 to sg less or equal to than max_path_length return None start_time = np.argmax(s_lls[start, :]) # Walk forward from start state, start time to re-construct path state = start time = start_time ml_path = [] while state != goal: action = np.argmax(sa_lls[state, :, time]) ml_path.append((state, action)) successor_states = [s for (a, s) in xtr.children[state] if a == action] # Choose successor state with highest log likelihood at time + 1 ml = -np.inf next_state = None for s2 in successor_states: s2_ll = s_lls[s2, time + 1] if s2_ll >= ml: next_state = s2 ml = s2_ll state = next_state time = time + 1 # Add final (goal) state ml_path.append((state, None)) return ml_path def main(): """Main function""" # Test BV on PuddleWorld from scipy.optimize import minimize # from multimodal_irl.envs import CanonicalPuddleWorldEnv, puddle_world_extras from multimodal_irl.envs import ElementWorldEnv, element_world_extras # env = CanonicalPuddleWorldEnv(wind=0.0) # xtr, phi, gt_rewards = puddle_world_extras(env) # reward = gt_rewards["dry"] env = ElementWorldEnv(wind=0.1, num_elements=3) xtr, phi, gt_rewards = element_world_extras(env) reward = gt_rewards[0] print(reward.theta) scale = 2.0 _, q_star = vi(xtr, phi, reward) pi_star = BoltzmannExplorationPolicy(q_star, scale=scale) demo_star = pi_star.get_rollouts(env, 10) phi_bar_star = phi.demo_average(demo_star, xtr.gamma) print(phi_bar_star) x0 = np.zeros(len(phi)) bounds = np.array([(-10.0, 0.0) for _ in range(len(phi))]) res = minimize( bv_maxlikelihood_irl, x0, args=(xtr, phi, demo_star, None, scale), jac=True, bounds=bounds, options=dict(disp=True), ) print(res) pass if __name__ == "__main__": main()
2.359375
2
routes/case.py
SimoneCff/TW6-PJ-PAPC
2
12784398
from bson.json_util import dumps from flask import request, render_template from app import Carrello, app from complements.db import SearchIntoDb, SearchviaAttributesCASE from complements.forms import Searchfor, CaseSelect @app.route('/case', methods=['POST', 'GET']) def case(): form1 = Searchfor() form2 = CaseSelect() qir = list() if request.method == 'POST': if request.form.get('submit'): query = SearchIntoDb("CASE", request.form.get('search')).findquery() for x in query: qir.insert(1, [dumps(x['name']), dumps(x['marca']), dumps(x['COSTO']), dumps(x['_id'])]) return render_template("case.html", form=form1, form2=form2, queri=qir) if request.form.get('val'): x = str(request.form.get('val')) x = x.split('"$oid": "', 1)[1] x = x.split('"', 1)[0] Carrello.Insert(x, 6, "CASE") if request.form.get("submitf"): marche = list() model = list() if request.form.get("Col"): marche.append("Cooler Master") if request.form.get("Shark"): marche.append("Sharkoon") if request.form.get("Therm"): marche.append("Thermaltake") if request.form.get("ATX"): model.append("ATX") if request.form.get("mATX"): model.append("mATX") if request.form.get('minmonet'): min = request.form.get('minmonet') else: min = "0" if request.form.get('maxmonet'): max = request.form.get('maxmonet') else: max = "10000" query = SearchviaAttributesCASE("CASE", " ".join(marche), min, max, " ".join(model) ).findqueryattr() for x in query: qir.insert(1, [dumps(x['name']), dumps(x['marca']), dumps(x['COSTO']), dumps(x['_id'])]) return render_template("case.html", form=form1, form2=form2, queri=qir) return render_template("case.html", form=form1, form2=form2)
2.21875
2
Part 2/Chapter 02/Exercises/excercise_13.py
phuycke/Practice-of-computing-using-Python
1
12784399
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME> email: <EMAIL> GitHub: phuycke """ #%% asked = str(input('Input an integer: ')) while not asked.isdigit(): asked = str(input('Error: try again. Input an integer: ')) else: print('The integer is : {}'.format(asked))
3.765625
4
pbc_utils.py
DrSuiunbek/pbc
0
12784400
<reponame>DrSuiunbek/pbc import json import rlp from Crypto.Hash import keccak def generate(): data = { 'Producers': ['P1', 'P2', 'P3'], 'Freighters': ['F1', 'F2'], 'Shops': ['S1', 'S2'], 'Miners': ['M1'], 'NetworkID': '2003', 'Password': '<PASSWORD>' } jstr = json.dumps(data, indent=4) print(jstr) def read_config(filename): with open(filename) as inputfile: data = json.load(inputfile) if not 'Producers' in data: print('Producers input is missing.') return None if not 'Freighters' in data: print('Freighters input is missing.') return None if not 'Shops' in data: print('Shops input is missing.') return None if not 'Miners' in data: print('Miners input is missing.') return None if not 'NetworkID' in data: print('NetworkID input is missing.') return None if not 'Password' in data: print('Password input is missing.') return None return data def normalize_address(x, allow_blank=False): if allow_blank and x == '': return '' if len(x) in (42, 50) and x[:2] == '0x': x = x[2:] if len(x) in (40, 48): x = rlp.utils.decode_hex(x) if len(x) != 20: raise Exception("Invalid address format: %r" % x) return x def mk_contract_address(sender, nonce): keccak_hash = keccak.new(digest_bits=256) keccak_hash.update(rlp.encode([normalize_address(sender), nonce])) return keccak_hash.hexdigest()[24:]
2.796875
3
datazen/targets.py
vkottler/datazen
2
12784401
<filename>datazen/targets.py """ datazen - An interface for parsing and matching targets. """ # built-in from collections import defaultdict from copy import deepcopy import re from typing import Dict, Tuple, List, NamedTuple # internal from datazen.paths import ( advance_dict_by_path, unflatten_dict, format_resolve_delims, ) from datazen.parsing import merge KW_OPEN = "{" KW_CLOSE = "}" KW_PATTERN = "[a-zA-Z0-9-_.]+" def target_is_literal(name: str) -> bool: """ Determine if a named target has keywords or not (is otherwise literal). """ return name.count(KW_OPEN) == name.count(KW_CLOSE) == 0 class ParseResult(NamedTuple): """ An encapsulation for a regular expression and the in-order keywords that can be mapped to 'group' indices. """ pattern: re.Pattern keys: List[str] def parse_target(name: str) -> ParseResult: """ From a target name, provide a compiled pattern and an in-order list of the names of the keyword arguments that will appear (group order). """ open_len = name.count(KW_OPEN) assert open_len == name.count(KW_CLOSE) pattern = "^" keys = [] for _ in range(open_len): start = name.index(KW_OPEN) + 1 end = name.index(KW_CLOSE) pattern += name[: start - 1] pattern += f"({KW_PATTERN})" keys.append(name[start:end]) name = name[end + 1 :] pattern += name + "$" assert len(keys) == open_len return ParseResult(re.compile(pattern), keys) def parse_targets( targets: List[dict], ) -> Tuple[Dict[str, dict], Dict[str, dict]]: """ From a list of target structures, parse them into a dictionary with keys as target names and data initialization to support future interaction. """ literals: Dict[str, dict] = {} patterns: Dict[str, dict] = {} for target in targets: data: dict = {} assert "name" in target data["literal"] = target_is_literal(target["name"]) dest_set = literals if data["literal"] else patterns data["data"] = target parsed = parse_target(target["name"]) data["pattern"] = parsed.pattern data["keys"] = parsed.keys dest_set[target["name"]] = data return literals, patterns MatchData = Dict[str, str] class TargetMatch(NamedTuple): """ An encapsulation of results when attempting to patch a target name to a pattern. If a target was matched and had keyword substitutions, the actual values used will be set as match data. """ found: bool substitutions: MatchData def match_target( name: str, pattern: re.Pattern, keys: List[str] ) -> TargetMatch: """ From a target name, attempt to match against a pattern and resolve a set of key names. """ data: MatchData = defaultdict(str) result = pattern.fullmatch(name) if result is None: return TargetMatch(False, data) for idx, key in enumerate(keys): data[key] = result.group(1 + idx) return TargetMatch(True, data) def resolve_target_list(target_list: list, match_data: MatchData) -> list: """ Resovle matched-target data into a list form of target data from a manifest. """ result: list = [] for value in target_list: if isinstance(value, dict): result.append(resolve_target_data(value, match_data)) elif isinstance(value, list): result.append(resolve_target_list(value, match_data)) elif isinstance(value, str): result.append(format_resolve_delims(value, match_data)) else: result.append(value) assert len(result) == len(target_list) return result def resolve_dep_data(entry: dict, data: dict) -> dict: """ Implements the business logic for applying match data to manifest entries. """ if "overrides" in entry and "override_path" in entry: data = deepcopy(data) to_update = advance_dict_by_path( entry["override_path"].split("."), data ) if isinstance(to_update, dict): merge( to_update, unflatten_dict(entry["overrides"]), expect_overwrite=True, ) return data def resolve_target_data(target_data: dict, match_data: MatchData) -> dict: """Resolve matched-target data into a target's data from a manifest.""" result: dict = {} for key, value in target_data.items(): if isinstance(value, dict): result[key] = resolve_target_data(value, match_data) elif isinstance(value, list): result[key] = resolve_target_list(value, match_data) elif isinstance(value, str): result[key] = format_resolve_delims(value, match_data) else: result[key] = value assert len(result.keys()) == len(target_data.keys()) return result
2.734375
3
test.py
chensteven/sec-edgar
0
12784402
from secedgar.filings import Filing, FilingType # This will download the past 15 10-Q filings made by Apple. import pandas as pd path = '/Users/schen/sec-scraper/data/cik_ticker.csv' df = pd.read_csv(path, sep='|') def run(df): cik = list(df['CIK']) names = list(df['Name']) for c, n in zip(cik, names): if len(str(c)) < 10: missing = 10 - len(str(c)) temp = ("0" * missing) + str(c) print("SCRAPING {} ...".format(temp)) my_filings = Filing(cik=temp, filing_type=FilingType.FILING_10K) # 10-Q filings for Apple (NYSE: AAPL) try: my_filings.save('./filings/') # Saves last 15 10Q reports from AAPL to ~/path/to/dir except ValueError: print("No {}".format(n)) run(df)
3.109375
3
taskbooks/custom1.py
no-such-anthony/net-run
1
12784403
<filename>taskbooks/custom1.py #from connections import get_connection, close_connection def custom1(device, **kwargs): # pop out any additional kwargs you may have passed #tasks = kwargs.pop('tasks', []) #connection_type = kwargs.pop('connection_type', '') #connection_key = kwargs.pop('connection_key', '') # connect to device #device['nc'] = get_connection(device, connection_type, connection_key) print('device = ', device['name']) #close_connection(device['nc'], connection_type) # return either a dictionary with at least a 'result' key/value pair, or simply a string/integer output = {} output['result'] = "it's evolving!" return output taskbook = {} # need at least a primary_task pointing to a callable function taskbook['name'] = "Custom, example 1!" taskbook['primary_task'] = custom1 taskbook['kwargs'] = {} #taskbook['kwargs']['connection_type'] = None #taskbook['kwargs']['connection_key'] = None #taskbook['kwargs']['tasks'] = []
2.8125
3
src/trainers/__init__.py
pomelyu/ML_HW
0
12784404
from .classification_trainer import ClassificationTrainer from .gan_trainer import GANTrainer from .regression_trainer import RegressionTrainer from .trainer import Trainer from .hw3_trainer import HW3Trainer
1.054688
1
adafruit_picam/camera/__init__.py
avirshup/adafruit-pi-cam
0
12784405
import typing as _t from .base import Camera from .mock import MockCamera try: from .pi import RaspberryPiCamera except ImportError as exc: assert exc.name == "picamera" _rpi_exc = exc RaspberryPiCamera = None else: _rpi_exc = None def get_cls(fake: bool = False) -> _t.Type[Camera]: if fake: return MockCamera elif _rpi_exc is not None: raise _rpi_exc else: return RaspberryPiCamera
2.34375
2
kata/07/string_end_with.py
vyahello/upgrade-python-kata
0
12784406
""" Complete the solution so that it returns true if the first argument(string) passed in ends with the 2nd argument (also a string). """ def solution(string: str, ending: str) -> bool: """Checks if given string ends with specific string. Examples: >>> assert solution("abcb", "cb") >>> assert not solution("abcb", "d") """ return string.endswith(ending) if __name__ == "__main__": print(solution("abcb", "cb"))
4.25
4
codesmith/CodeCommit/PipelineTrigger/test_pipline_trigger.py
codesmith-gmbh/forge
0
12784407
import unittest import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt import json import io import zipfile COMMIT_REFERENCE = { "commit": "5<PASSWORD>", "ref": "refs/heads/master" } TAG_REFERENCE = { "commit": "<PASSWORD>", "ref": "refs/tags/v1.1.0" } class PipelineTriggerTest(unittest.TestCase): def test_extract_repository_name(self): self.assertEqual('my-repo', pt.extract_repository_name('arn:aws:codecommit:eu-west-1:123456789012:my-repo')) self.assertEqual('', pt.extract_repository_name('')) self.assertEqual('anything', pt.extract_repository_name('anything')) def test_is_commit(self): self.assertTrue(pt.is_commit(COMMIT_REFERENCE)) self.assertFalse(pt.is_commit(TAG_REFERENCE)) def test_is_tag(self): self.assertTrue(pt.is_tag(TAG_REFERENCE)) self.assertFalse(pt.is_tag(COMMIT_REFERENCE)) def test_extract_tag(self): self.assertEqual('v1.1.0', pt.extract_tag(TAG_REFERENCE)) def test_event(self): with open('code_commit_event.json') as f: event = json.load(f) pipeline_trigger = pt.derive_trigger(event['Records'][0]) self.assertEqual('eu-west-1', pipeline_trigger.aws_region) self.assertEqual('my-repo', pipeline_trigger.repository) self.assertEqual('git checkout 5<PASSWORD>0<PASSWORD>', pipeline_trigger.checkout_command) buf = io.BytesIO(pipeline_trigger.generate_zip_file()) with zipfile.ZipFile(buf) as zf: given_files = [file.filename for file in zf.filelist] expected_files = ['buildspec.yaml', 'chechkout.sh'] self.assertEqual(expected_files, given_files) given_checkout_text = pipeline_trigger.generate_files()['chechkout.sh'] expected_checkout_text = '''#!/bin/bash git config --global credential.helper '!aws codecommit credential-helper $@' git config --global credential.UseHttpPath true git clone --shallow-submodules https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/my-repo repo cd repo git checkout 5<PASSWORD> cd ''' self.assertEqual(expected_checkout_text, given_checkout_text) if __name__ == '__main__': unittest.main()
2.3125
2
diediedie/brick_lvm.py
WaltHP/hpe-openstack-tools
1
12784408
<reponame>WaltHP/hpe-openstack-tools<gh_stars>1-10 #!/usr/bin/python # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """ Sample script to dump out the initiator connector dictionary on the current system. """ import sys from oslo_config import cfg from oslo_log import log from diediedie import auth_args from diediedie import utils from os_brick.local_dev import lvm parser = auth_args.parser parser.add_argument("-g", "--group", metavar="<lvm-volume-group>", default=None, help='LVM volume group') CONF = cfg.CONF log.register_options(CONF) CONF([], project='brick', version='1.0') log.setup(CONF, 'brick') LOG = log.getLogger(__name__) def main(): """The main.""" args = parser.parse_args() vg_name = args.group #vg = lvm.LVM(vg_name, 'sudo') root_helper = 'sudo' groups = lvm.LVM.get_all_volume_groups(root_helper, vg_name=vg_name) for group in groups: utils.print_dict(group, value_align='l', disable_unicode=True) vols = lvm.LVM.get_lv_info(root_helper, vg_name=group['name']) for vol in vols: utils.print_dict(vol) if __name__ == "__main__": main()
1.90625
2
handroll/date.py
iter8ve/handroll
17
12784409
# Copyright (c) 2017, <NAME> from datetime import datetime import time def convert(date): """Convert a date string into a datetime instance. Assumes date string is RfC 3339 format.""" time_s = time.strptime(date, '%Y-%m-%dT%H:%M:%S') return datetime.fromtimestamp(time.mktime(time_s))
3.84375
4
src/network_utils_test.py
omid55/dynamic_sparse_balance_theory
0
12784410
# Omid55 # Test module for network_utils. from __future__ import division from __future__ import print_function from __future__ import absolute_import import networkx as nx import pandas as pd import numpy as np import unittest import datetime import re from parameterized import parameterized import utils import network_utils class MyTestClass(unittest.TestCase): @classmethod def setUpClass(cls): cls.triad_map, cls.triad_list = ( network_utils.generate_all_possible_sparse_triads()) @classmethod def tearDownClass(cls): del cls.triad_map del cls.triad_list # ========================================================================= # ==================== extract_graph ====================================== # ========================================================================= @parameterized.expand([ ["latest_multiple_edge_weight", False], ["sum_of_multiple_edge_weights", True]]) def test_extract_graph(self, name, sum_multiple_edge): matrix_edges = [ [1, 2, +1, datetime.datetime(2017, 1, 1)], [1, 2, +5, datetime.datetime(2017, 1, 2)], [2, 3, +3, datetime.datetime(2017, 1, 4)], [3, 1, +1, datetime.datetime(2017, 2, 5)], [2, 3, -2, datetime.datetime(2017, 1, 6)], [1, 4, -1, datetime.datetime(2017, 2, 13)], [4, 3, -5, datetime.datetime(2017, 2, 22)], [4, 3, -5, datetime.datetime(2017, 2, 24)]] sample_edge_list = pd.DataFrame( matrix_edges, columns=['source', 'target', 'weight', 'edge_date']) expected = nx.DiGraph() expected.add_nodes_from([1, 2, 3, 4]) if sum_multiple_edge: expected.add_edge(1, 2, weight=6) else: expected.add_edge(1, 2, weight=5) if sum_multiple_edge: expected.add_edge(2, 3, weight=1) else: expected.add_edge(2, 3, weight=-2) expected.add_edge(3, 1, weight=1) expected.add_edge(1, 4, weight=-1) if sum_multiple_edge: expected.add_edge(4, 3, weight=-10) else: expected.add_edge(4, 3, weight=-5) computed = network_utils.extract_graph( sample_edge_list, sum_multiple_edge=sum_multiple_edge) self.assertTrue( utils.graph_equals( expected, computed, weight_column_name='weight')) # ========================================================================= # ==================== extract_graphs ===================================== # ========================================================================= def test_extract_graphs_raises_with_missing_columns(self): sample_edge_list = pd.DataFrame({'source': [1, 2], 'target': [5, 6]}) with self.assertRaises(ValueError): network_utils.extract_graphs(edge_list=sample_edge_list) @parameterized.expand( [["seperated graphs", False], ["accumulative graphs", True]]) def test_extract_graphs(self, name, accumulative): # source, target, weight, edge_date matrix_edges = [[1, 2, +1, datetime.datetime(2017, 1, 1)], [2, 3, +3, datetime.datetime(2017, 1, 4)], [3, 1, +1, datetime.datetime(2017, 2, 5)], [1, 4, -1, datetime.datetime(2017, 2, 13)], [4, 3, -5, datetime.datetime(2017, 2, 24)], [-1, -1, -1, datetime.datetime(2017, 2, 28)]] # The last one is going to be ignored because fall into another period # which is neglected. sample_edge_list = pd.DataFrame( matrix_edges, columns=['source', 'target', 'weight', 'edge_date']) g1 = nx.DiGraph() g1.add_nodes_from([1, 2, 3]) g1.add_edge(1, 2, weight=1) g1.add_edge(2, 3, weight=3) g2 = nx.DiGraph() g2.add_nodes_from([1, 3, 4]) g2.add_edge(3, 1, weight=1) g2.add_edge(1, 4, weight=-1) g2.add_edge(4, 3, weight=-5) g3 = nx.DiGraph() g3.add_nodes_from([1, 2, 3, 4]) g3.add_edge(1, 2, weight=1) g3.add_edge(2, 3, weight=3) g3.add_edge(3, 1, weight=1) g3.add_edge(1, 4, weight=-1) g3.add_edge(4, 3, weight=-5) if not accumulative: expected = [g1, g2] else: expected = [g1, g3] computed = network_utils.extract_graphs( edge_list=sample_edge_list, weeks=4, accumulative=accumulative) for expected_graph, computed_graph in zip(expected, computed): self.assertTrue( utils.graph_equals( expected_graph, computed_graph, weight_column_name='weight')) # ========================================================================= # ====================== get_all_degrees ================================== # ========================================================================= def test_get_all_degrees(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 1, weight=6) dg.add_edge(1, 2, weight=1) dg.add_edge(1, 4, weight=-5) dg.add_edge(2, 2, weight=-1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-4) dg.add_edge(3, 2, weight=4) dg.add_edge(4, 4, weight=-10) computed = network_utils.get_all_degrees(dg) expected = ( {1: {'self': 6, 'out': -4, 'in': -4}, 2: {'self': -1, 'out': 1, 'in': 5}, 3: {'self': 0, 'out': 0, 'in': 1}, 4: {'self': -10, 'out': 0, 'in': -5}, 5: {'self': 0, 'out': 0, 'in': 0}}) self.assertDictEqual(computed, expected) # ========================================================================= # ===================== get_just_periods ================================== # ========================================================================= def test_get_just_periods(self): matrix_edges = [[1, 2, +1, datetime.datetime(2017, 1, 1)], [2, 3, +3, datetime.datetime(2017, 1, 4)], [3, 1, +1, datetime.datetime(2017, 2, 5)], [1, 4, -1, datetime.datetime(2017, 2, 13)], [4, 3, -5, datetime.datetime(2017, 2, 24)], [-1, -1, -1, datetime.datetime(2017, 2, 28)]] sample_edge_list = pd.DataFrame( matrix_edges, columns=['source', 'target', 'weight', 'edge_date']) expected = [['2017-01-01', '2017-01-29'], ['2017-01-29', '2017-02-26']] computed = network_utils.get_just_periods( sample_edge_list, weeks=4, accumulative=False) self.assertEqual(expected, computed) # ========================================================================= # ==================== get_metrics_for_network ============================ # ========================================================================= def test_get_metrics_for_network(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) dg.add_edge(1, 3, weight=-1) computed = network_utils.get_metrics_for_network(dg) expected = { '#edges': 4, '#edges/#nodes': 1, '#gcc edges': 3, '#gcc neg edges': 1, '#gcc nodes': 3, '#gcc pos edges': 2, '#neg edges': 2, '#nodes': 4, '#pos edges': 2, 'algebraic connectivity': 0, 'average (und) clustering coefficient': 0.75, 'average betweenness': 0.0833, 'average closeness': 0.3888, 'average degree': 2, 'average eigenvector': 0.4222, 'average harmonic': 1.25, 'average in degree': 1, 'average w in degree': 0, 'average w out degree': 0, 'average load': 0.0833, 'average out degree': 1, 'gcc algebraic connectivity': 2.9999, 'gcc diameter': 1, 'unbalanced cycles 3 ratio': 1, 'weights max': 1, 'weights average': 0, 'weights min': -1, 'weights std': 1 } # utils.print_dict_pretty(computed) # self.assertDictEqual(computed, expected) for key, value in expected.items(): self.assertAlmostEqual(value, computed[key], places=3) # ========================================================================= # ====================== cartwright_harary_balance_ratio ================== # ========================================================================= def test_cartwright_harary_balance_ratio_notbalanced_graph1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) self.assertEqual(network_utils.cartwright_harary_balance_ratio(dg), 0) def test_cartwright_harary_balance_ratio_notbalanced_graph2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) self.assertEqual(network_utils.cartwright_harary_balance_ratio(dg), 0) def test_cartwright_harary_balance_ratio_balanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) self.assertEqual(network_utils.cartwright_harary_balance_ratio(dg), 1) def test_cartwright_harary_balance_ratio_halfbalanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 1, weight=-1) dg.add_edge(2, 1, weight=1) self.assertEqual( network_utils.cartwright_harary_balance_ratio(dg), 0.5) # ========================================================================= # ========================= sprase_balance_ratio ========================== # ========================================================================= def test_sparse_balance_ratio_raises_when_incorrect_balance_type(self): with self.assertRaises(ValueError): network_utils.sprase_balance_ratio( dgraph=nx.DiGraph(), balance_type=0) @parameterized.expand([ ['CartwrightHarary', 1, [0.3, 3, 7]], ['Clustering', 2, [0.5, 5, 5]], ['Transitivity', 3, [0.9, 9, 1]]]) def test_sprase_balance_ratio( self, name, balance_type, expected_values): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=5) dg.add_edge(2, 3, weight=-4) dg.add_edge(3, 1, weight=-7) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-2) dg.add_edge(1, 5, weight=9) dg.add_edge(5, 1, weight=-11) dg.add_edge(2, 1, weight=100) computed = network_utils.sprase_balance_ratio( dgraph=dg, balance_type=balance_type) np.testing.assert_array_almost_equal( computed, expected_values, decimal=2) # ========================================================================= # ======================= fullyconnected_balance_ratio ==================== # ========================================================================= def test_fullyconnected_balance_ratio_raises_when_incorrect_balance_type( self): with self.assertRaises(ValueError): network_utils.fullyconnected_balance_ratio( dgraph=nx.DiGraph(), balance_type=0) def test_fullyconnected_balance_ratio_raises_when_negative_in_dgraph(self): with self.assertRaises(ValueError): dg = nx.DiGraph() dg.add_nodes_from([1, 2]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=-1) network_utils.fullyconnected_balance_ratio( dgraph=dg, balance_type=1) @parameterized.expand([ ['Classical', 1, [0.4, 4, 6]], ['Clustering', 2, [0.7, 7, 3]], ['Transitivity', 3, [0.8, 8, 2]]]) def test_fullyconnected_balance_ratio( self, name, balance_type, expected_values): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(5, 1, weight=1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 2, weight=1) dg.add_edge(2, 5, weight=1) dg.add_edge(5, 3, weight=1) dg.add_edge(2, 3, weight=1) computed = network_utils.fullyconnected_balance_ratio( dgraph=dg, balance_type=balance_type) np.testing.assert_array_almost_equal( computed, expected_values, decimal=2) # ========================================================================= # ====================== count_different_signed_edges ===================== # ========================================================================= def test_count_different_signed_edges(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(3, 1, weight=-5) dg.add_edge(1, 3, weight=-2) self.assertEqual(network_utils.count_different_signed_edges(dg), 0) def test_count_different_signed_edges1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=3) dg.add_edge(2, 1, weight=4) dg.add_edge(3, 1, weight=1) dg.add_edge(1, 3, weight=-1) self.assertEqual(network_utils.count_different_signed_edges(dg), 1) def test_count_different_signed_edges2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 1, weight=1) dg.add_edge(3, 1, weight=9) dg.add_edge(1, 3, weight=-2) self.assertEqual(network_utils.count_different_signed_edges(dg), 2) # ========================================================================= # ==================== terzi_sprase_balance_ratio ========================= # ========================================================================= def test_terzi_sprase_balance_ratio_notbalanced_graph1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_terzi_sprase_balance_ratio_notbalanced_graph2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_terzi_sprase_balance_ratio_balanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 1 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_terzi_sprase_balance_ratio_halfbalanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 1, weight=-1) dg.add_edge(2, 1, weight=1) expected = 0.5 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) # ========================================================================= # ================= kunegis_sprase_balance_ratio ========================== # ========================================================================= def test_kunegis_sprase_balance_ratio_notbalanced_graph1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_kunegis_sprase_balance_ratio_notbalanced_graph2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_kunegis_sprase_balance_ratio_balanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 1 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_kunegis_sprase_balance_ratio_halfbalanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 1, weight=-1) dg.add_edge(2, 1, weight=1) expected = 0.6 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected, decimal=1) # ========================================================================= # ====================== compute_vanderijt_edge_balance =================== # ========================================================================= def test_compute_vanderijt_edge_balance_small_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(2, 3, weight=-5) dg.add_edge(3, 1, weight=-2) expected = {(2, 1): {'#nodes3': 1, '#balanced_node3': 1}} computed = network_utils.compute_vanderijt_edge_balance(dg) self.assertDictEqual(computed, expected) def test_compute_vanderijt_edge_balance_allnegative_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(1, 3, weight=-1) dg.add_edge(2, 4, weight=-1) dg.add_edge(4, 2, weight=-1) dg.add_edge(2, 1, weight=1) dg.add_edge(3, 2, weight=1) dg.add_edge(3, 1, weight=-1) dg.add_edge(4, 1, weight=-5) dg.add_edge(1, 4, weight=-5) dg.add_edge(4, 3, weight=-2) dg.add_edge(3, 4, weight=1) expected = { (1, 2): {'#balanced_node3': 1, '#nodes3': 2}, (3, 2): {'#balanced_node3': 1, '#nodes3': 2}, (1, 3): {'#balanced_node3': 0, '#nodes3': 2}, (3, 4): {'#balanced_node3': 1, '#nodes3': 2}, (3, 1): {'#balanced_node3': 1, '#nodes3': 2}, (1, 4): {'#balanced_node3': 1, '#nodes3': 2}, (2, 3): {'#balanced_node3': 1, '#nodes3': 2}, (2, 1): {'#balanced_node3': 2, '#nodes3': 2}, (4, 3): {'#balanced_node3': 0, '#nodes3': 2}, (4, 2): {'#balanced_node3': 1, '#nodes3': 2}, (4, 1): {'#balanced_node3': 1, '#nodes3': 2}, (2, 4): {'#balanced_node3': 2, '#nodes3': 2}} computed = network_utils.compute_vanderijt_edge_balance(dg) self.assertDictEqual(computed, expected) # @parameterized.expand( # [["no_isomorph_cycles", False], ["no_isomorph_cycles", True]]) # def test_compute_vanderijt_edge_balance_small_graph( # self, name, no_isomorph_cycles): # dg = nx.DiGraph() # dg.add_nodes_from([1, 2, 3]) # dg.add_edge(1, 2, weight=1) # dg.add_edge(2, 1, weight=1) # dg.add_edge(2, 3, weight=-5) # dg.add_edge(3, 1, weight=-2) # if no_isomorph_cycles: # expected = { # (1, 2): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 9, # 'as_expected_sign': True}} # else: # expected = { # (1, 2): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 9, # 'as_expected_sign': True}, # (3, 1): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 3, # 'as_expected_sign': True}, # (2, 3): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 3, # 'as_expected_sign': True}} # computed = network_utils.compute_vanderijt_edge_balance( # dg, no_isomorph_cycles=no_isomorph_cycles) # self.assertDictEqual(computed, expected) # @parameterized.expand( # [["no_isomorph_cycles", False], # ["no_isomorph_cycles", True]]) # def test_compute_vanderijt_edge_balance_allnegative_graph( # self, name, no_isomorph_cycles): # dg = nx.DiGraph() # dg.add_nodes_from([1, 2, 3, 4]) # dg.add_edge(1, 2, weight=-1) # dg.add_edge(2, 3, weight=-1) # dg.add_edge(3, 1, weight=-1) # dg.add_edge(1, 4, weight=-5) # dg.add_edge(4, 3, weight=-2) # if no_isomorph_cycles: # expected = { # (1, 2): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 2, # 'as_expected_sign': False}, # (1, 4): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 7, # 'as_expected_sign': False}} # else: # expected = { # (1, 2): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 2, # 'as_expected_sign': False}, # (1, 4): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 7, # 'as_expected_sign': False}, # (2, 3): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 2, # 'as_expected_sign': False}, # (3, 1): { # '#balanced': 0, # '#cycle3': 2, # 'weight_distance': 13, # 'as_expected_sign': False}, # (4, 3): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 7, # 'as_expected_sign': False}} # computed = network_utils.compute_vanderijt_edge_balance( # dg, no_isomorph_cycles=no_isomorph_cycles) # self.assertDictEqual(computed, expected) # ========================================================================= # ====================== compute_fairness_goodness ======================== # ========================================================================= def test_compute_fairness_goodness(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1.0) dg.add_edge(2, 3, weight=1.0) dg.add_edge(3, 1, weight=1.0) dg.add_edge(1, 4, weight=2.0) dg.add_edge(4, 3, weight=-1.0) expected = {'fairness': {1: 1.0, 2: 0.95, 3: 1.0, 4: 0.95}, 'goodness': {1: 1.0, 2: 1.0, 3: 0.0, 4: 2.0}} computed = network_utils.compute_fairness_goodness(dg, verbose=False) self.assertDictEqual(computed, expected) # ========================================================================= # ====================== is_sparsely_transitive_balanced ================== # ========================================================================= def test_is_sparsely_transitive_balanced_raises_when_self_loops(self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_sparsely_transitive_balanced(triad_with_self_loop) @parameterized.expand([ ["120U", np.array( [[0, 1, 1], [1, 0, 1], [-1, -1, 0]]), True], ["120D", np.array( [[0, 1, -1], [1, 0, -1], [1, 1, 0]]), True], ["0122Z", np.array( [[0, 0, -1], [-1, 0, 0], [1, -1, 0]]), True], ["030TZ", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["003", np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), True], ["0032Z", np.array( [[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]), True], ["030T", np.array( [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]), True], ["021C", np.array( [[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]), False], ["030T2negZ", np.array( [[0, 1, -1], [0, 0, -1], [0, 0, 0]]), True], ["021UnegZ", np.array( [[0, 1, 0], [0, 0, 0], [0, -1, 0]]), True], ["021DZ", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["210", np.array( [[0, 1, -1], [1, 0, 1], [1, 1, 0]]), False], ["210Z", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False], ["003Z", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["102Z", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["102negZ", np.array( [[0, -1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["102posnegZ", np.array( [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["012Z", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["012", np.array( [[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]), True]] ) def test_is_sparsely_transitive_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_sparsely_transitive_balanced(triad), expected_balance) # ========================================================================= # ====================== is_sparsely_cartwright_harary_balanced =========== # ========================================================================= def test_is_sparsely_cartwright_harary_balanced_raises_when_self_loops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_sparsely_cartwright_harary_balanced( triad_with_self_loop) @parameterized.expand([ ["120U", np.array( [[0, 1, 1], [1, 0, 1], [-1, -1, 0]]), False], ["120D", np.array( [[0, 1, -1], [1, 0, -1], [1, 1, 0]]), False], ["0122Z", np.array( [[0, 0, -1], [-1, 0, 0], [1, -1, 0]]), False], ["030TZ", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["003", np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), False], ["0032Z", np.array( [[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]), False], ["030T", np.array( [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]), False], ["021C", np.array( [[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]), False], ["030T2negZ", np.array( [[0, 1, -1], [0, 0, -1], [0, 0, 0]]), True], ["021UnegZ", np.array( [[0, 1, 0], [0, 0, 0], [0, -1, 0]]), True], ["021DZ", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["210", np.array( [[0, 1, -1], [1, 0, 1], [1, 1, 0]]), False], ["210Z", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False], ["003Z", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["102Z", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["102negZ", np.array( [[0, -1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["102posnegZ", np.array( [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["012Z", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["012", np.array( [[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]), False]] ) def test_is_sparsely_cartwright_harary_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_sparsely_cartwright_harary_balanced(triad), expected_balance) # ========================================================================= # ====================== is_sparsely_clustering_balanced ================== # ========================================================================= def test_is_sparsely_clustering_balanced_raises_when_self_loops(self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_sparsely_clustering_balanced( triad_with_self_loop) @parameterized.expand([ ["120U", np.array( [[0, 1, 1], [1, 0, 1], [-1, -1, 0]]), False], ["120D", np.array( [[0, 1, -1], [1, 0, -1], [1, 1, 0]]), False], ["0122Z", np.array( [[0, 0, -1], [-1, 0, 0], [1, -1, 0]]), True], ["030TZ", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["003", np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), True], ["0032Z", np.array( [[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]), True], ["030T", np.array( [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]), False], ["021C", np.array( [[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]), False], ["030T2negZ", np.array( [[0, 1, -1], [0, 0, -1], [0, 0, 0]]), True], ["021UnegZ", np.array( [[0, 1, 0], [0, 0, 0], [0, -1, 0]]), True], ["021DZ", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["210", np.array( [[0, 1, -1], [1, 0, 1], [1, 1, 0]]), False], ["210Z", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False], ["003Z", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["102Z", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["102negZ", np.array( [[0, -1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["102posnegZ", np.array( [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["012Z", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["012", np.array( [[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]), True]] ) def test_is_sparsely_clustering_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_sparsely_clustering_balanced(triad), expected_balance) # ========================================================================= # ========= is_fullyconnected_cartwright_harary_balance =================== # ========================================================================= def test_is_fullyconnected_cartwright_harary_balance_raises_when_selfloops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_fullyconnected_cartwright_harary_balance( triad_with_self_loop) def test_is_fullyconnected_cartwright_harary_balance_raises_when_negative( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [-1, 0, 0]]) network_utils.is_fullyconnected_cartwright_harary_balance( triad_with_self_loop) @parameterized.expand([ ["300", np.array( [[0, 1, 1], [1, 0, 1], [1, 1, 0]]), True], ["102", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["003", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), False], ["120D", np.array( [[0, 0, 1], [1, 0, 1], [1, 0, 0]]), False], ["120U", np.array( [[0, 1, 1], [0, 0, 0], [1, 1, 0]]), False], ["030T", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), False], ["021D", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), False], ["021U", np.array( [[0, 1, 0], [0, 0, 0], [0, 1, 0]]), False], ["012", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), False], ["021C", np.array( [[0, 1, 0], [0, 0, 1], [0, 0, 0]]), False], ["111U", np.array( [[0, 1, 0], [1, 0, 1], [0, 0, 0]]), False], ["111D", np.array( [[0, 1, 0], [1, 0, 0], [0, 1, 0]]), False], ["030C", np.array( [[0, 1, 0], [0, 0, 1], [1, 0, 0]]), False], ["201", np.array( [[0, 1, 1], [1, 0, 0], [1, 0, 0]]), False], ["120C", np.array( [[0, 1, 0], [1, 0, 1], [1, 0, 0]]), False], ["210", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False]] ) def test_is_fullyconnected_cartwright_harary_balance( self, name, triad, expected_balance): self.assertEqual( network_utils.is_fullyconnected_cartwright_harary_balance(triad), expected_balance) # ========================================================================= # =============== is_fullyconnected_clustering_balanced =================== # ========================================================================= def test_is_fullyconnected_clustering_balanced_raises_when_self_loops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_fullyconnected_clustering_balanced( triad_with_self_loop) def test_is_fullyconnected_clustering_balanced_raises_when_negative( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [-1, 0, 0]]) network_utils.is_fullyconnected_clustering_balanced( triad_with_self_loop) @parameterized.expand([ ["300", np.array( [[0, 1, 1], [1, 0, 1], [1, 1, 0]]), True], ["102", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["003", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["120D", np.array( [[0, 0, 1], [1, 0, 1], [1, 0, 0]]), False], ["120U", np.array( [[0, 1, 1], [0, 0, 0], [1, 1, 0]]), False], ["030T", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), False], ["021D", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), False], ["021U", np.array( [[0, 1, 0], [0, 0, 0], [0, 1, 0]]), False], ["012", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["021C", np.array( [[0, 1, 0], [0, 0, 1], [0, 0, 0]]), False], ["111U", np.array( [[0, 1, 0], [1, 0, 1], [0, 0, 0]]), False], ["111D", np.array( [[0, 1, 0], [1, 0, 0], [0, 1, 0]]), False], ["030C", np.array( [[0, 1, 0], [0, 0, 1], [1, 0, 0]]), False], ["201", np.array( [[0, 1, 1], [1, 0, 0], [1, 0, 0]]), False], ["120C", np.array( [[0, 1, 0], [1, 0, 1], [1, 0, 0]]), False], ["210", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False]] ) def test_is_fullyconnected_clustering_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_fullyconnected_clustering_balanced(triad), expected_balance) # ========================================================================= # ============= is_fullyconnected_transitivity_balanced =================== # ========================================================================= def test_is_fullyconnected_transitivity_balanced_raises_when_self_loops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_fullyconnected_transitivity_balanced( triad_with_self_loop) def test_is_fullyconnected_transitivity_balanced_raises_when_negative( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [-1, 0, 0]]) network_utils.is_fullyconnected_transitivity_balanced( triad_with_self_loop) @parameterized.expand([ ["300", np.array( [[0, 1, 1], [1, 0, 1], [1, 1, 0]]), True], ["102", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["003", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["120D", np.array( [[0, 0, 1], [1, 0, 1], [1, 0, 0]]), True], ["120U", np.array( [[0, 1, 1], [0, 0, 0], [1, 1, 0]]), True], ["030T", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["021D", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["021U", np.array( [[0, 1, 0], [0, 0, 0], [0, 1, 0]]), True], ["012", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["021C", np.array( [[0, 1, 0], [0, 0, 1], [0, 0, 0]]), False], ["111U", np.array( [[0, 1, 0], [1, 0, 1], [0, 0, 0]]), False], ["111D", np.array( [[0, 1, 0], [1, 0, 0], [0, 1, 0]]), False], ["030C", np.array( [[0, 1, 0], [0, 0, 1], [1, 0, 0]]), False], ["201", np.array( [[0, 1, 1], [1, 0, 0], [1, 0, 0]]), False], ["120C", np.array( [[0, 1, 0], [1, 0, 1], [1, 0, 0]]), False], ["210", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False]] ) def test_is_fullyconnected_transitivity_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_fullyconnected_transitivity_balanced(triad), expected_balance) # # ======================================================================= # # =================== is_sparsely_ranked_clustering_balanced ============ # # ======================================================================= # def test_is_sparsely_ranked_clustering_balanced_raises_when_self_loops( # self): # with self.assertRaises(ValueError): # triad_with_self_loop = np.array( # [[0, 1, 0], # [0, 1, 1], # [0, 0, 0]]) # network_utils.is_sparsely_ranked_clustering_balanced( # triad_with_self_loop) # @parameterized.expand([ # ["120U", np.array( # [[0, 1, 1], # [1, 0, 1], # [-1, -1, 0]]), True], # ["120D", np.array( # [[0, 1, -1], # [1, 0, -1], # [1, 1, 0]]), True], # ["0122Z", np.array( # [[0, 0, -1], # [-1, 0, 0], # [1, -1, 0]]), True], # ["030TZ", np.array( # [[0, 1, 1], # [0, 0, 1], # [0, 0, 0]]), True], # ["003", np.array( # [[0, -1, -1], # [-1, 0, -1], # [-1, -1, 0]]), True], # ["0032Z", np.array( # [[0, 0, -1], # [-1, 0, 0], # [-1, -1, 0]]), True], # ["030T", np.array( # [[0, 1, 1], # [-1, 0, 1], # [-1, -1, 0]]), False], # ["021C", np.array( # [[0, 1, -1], # [-1, 0, 1], # [-1, -1, 0]]), False], # ["030T2negZ", np.array( # [[0, 1, -1], # [0, 0, -1], # [0, 0, 0]]), True], # ["021UnegZ", np.array( # [[0, 1, 0], # [0, 0, 0], # [0, -1, 0]]), True], # ["021DZ", np.array( # [[0, 0, 0], # [1, 0, 1], # [0, 0, 0]]), True], # ["210", np.array( # [[0, 1, -1], # [1, 0, 1], # [1, 1, 0]]), False], # ["210Z", np.array( # [[0, 1, 0], # [1, 0, 1], # [1, 1, 0]]), False], # ["003Z", np.array( # [[0, 0, 0], # [0, 0, 0], # [0, 0, 0]]), True], # ["102Z", np.array( # [[0, 1, 0], # [1, 0, 0], # [0, 0, 0]]), True], # ["102negZ", np.array( # [[0, -1, 0], # [-1, 0, 0], # [0, 0, 0]]), True], # ["102posnegZ", np.array( # [[0, 1, 0], # [-1, 0, 0], # [0, 0, 0]]), True], # ["012Z", np.array( # [[0, 1, 0], # [0, 0, 0], # [0, 0, 0]]), True], # ["012", np.array( # [[0, 1, -1], # [-1, 0, -1], # [-1, -1, 0]]), True]] # ) # def test_is_sparsely_ranked_clustering_balanced( # self, name, triad, expected_balance): # self.assertEqual( # network_utils.is_sparsely_ranked_clustering_balanced(triad), # expected_balance) # ========================================================================= # ====================== get_all_triad_permutations ======================= # ========================================================================= def test_get_all_triad_permutations(self): triad_adj_matrix = np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]) expected = set([ '[[0 1 1]\n [1 0 1]\n [1 0 0]]', '[[0 0 1]\n [1 0 1]\n [1 1 0]]', '[[0 1 1]\n [0 0 1]\n [1 1 0]]', '[[0 1 1]\n [1 0 1]\n [0 1 0]]', '[[0 1 1]\n [1 0 0]\n [1 1 0]]', '[[0 1 0]\n [1 0 1]\n [1 1 0]]']) computed = network_utils._get_all_triad_permutations(triad_adj_matrix) self.assertEqual(expected, computed) # ========================================================================= # ====================== generate_all_possible_sparse_triads ============== # ========================================================================= def test_generate_all_possible_sparse_triads(self): computed_triad_map, computed_triad_list = ( network_utils.generate_all_possible_sparse_triads()) # Testing triad_list self.assertTrue( len(computed_triad_list) == 138, 'Length of triad_list is not correct.') np.testing.assert_array_equal( computed_triad_list[0], np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), 'First triad_list is incorrect.') np.testing.assert_array_equal( computed_triad_list[-1], np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), 'Last triad_list is incorrect.') np.testing.assert_array_equal( computed_triad_list[69], np.array( [[0, 0, 1], [1, 0, -1], [1, 0, 0]]), 'Middle triad_list is incorrect.') # Testing triad_map. expected_key1 = '[[0 0 0]\n [1 0 0]\n [0 0 0]]' expected_value1 = 1 expected_key2 = '[[ 0 1 1]\n [-1 0 1]\n [-1 -1 0]]' expected_value2 = 129 self.assertTrue( expected_key1 in computed_triad_map, 'First key was not found in computed_triad_map.') self.assertTrue( expected_key2 in computed_triad_map, 'Second key was not found in computed_triad_map.') self.assertEqual( computed_triad_map[expected_key1], expected_value1, 'First value was not found in computed_triad_map.') self.assertEqual( computed_triad_map[expected_key2], expected_value2, 'Second value was not found in computed_triad_map.') # ========================================================================= # ====================== detect_triad_type_for_all_subgraph3 ============== # ========================================================================= def test_detect_triad_type_for_all_subgraph3(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=1) dg.add_edge(1, 4, weight=2) dg.add_edge(4, 3, weight=-5) expected = { '(1, 2, 3)': 55, # [[0, 0, 1], # [1, 0, 0], # [0, 1, 0]] '(1, 2, 4)': 3, # [[0, 0, 0], # [0, 0, 0], # [1, 1, 0]] '(1, 3, 4)': 56, # [[0, 0, 1], # [1, 0, 0], # [0,-1, 0]] '(2, 3, 4)': 24 # [[0, 0, 0], # [1, 0, 0], # [-1, 0, 0]] } computed = network_utils._detect_triad_type_for_all_subgraph3( dgraph=dg, triad_map=self.triad_map) self.assertDictEqual(expected, computed) def test_detect_triad_type_for_all_subgraph3_nodes_with_str_name(self): dg = nx.DiGraph() dg.add_nodes_from(['b', 'c', 'a', 'd']) dg.add_edge('b', 'c', weight=1) dg.add_edge('c', 'a', weight=1) dg.add_edge('a', 'b', weight=1) dg.add_edge('b', 'd', weight=2) dg.add_edge('d', 'a', weight=-5) expected = { "('a', 'b', 'c')": 55, "('a', 'b', 'd')": 56, "('a', 'c', 'd')": 24, "('b', 'c', 'd')": 3 } computed = network_utils._detect_triad_type_for_all_subgraph3( dgraph=dg, triad_map=self.triad_map) self.assertDictEqual(expected, computed) def test_detect_triad_type_for_all_subgraph3_has_unique_keys(self): dg = nx.DiGraph() dg.add_nodes_from(['b', 'c', 'a', 'd']) dg.add_edge('b', 'c', weight=1) dg.add_edge('c', 'a', weight=1) dg.add_edge('a', 'b', weight=1) dg.add_edge('b', 'd', weight=2) dg.add_edge('d', 'a', weight=-5) computed = network_utils._detect_triad_type_for_all_subgraph3( dgraph=dg, triad_map=self.triad_map) truncated_keys = [] for key in list(computed.keys()): key = re.sub(r'[^\w]', ' ', key) key = key.replace(" ", "") truncated_keys.append(''.join(sorted(key))) self.assertEqual(len(truncated_keys), len(np.unique(truncated_keys))) # ========================================================================= # ====================== compute_transition_matrix ======================== # ========================================================================= def test_compute_transition_matrix(self): dg1 = nx.DiGraph() dg1.add_nodes_from([1, 2, 3, 4]) dg1.add_edge(1, 2, weight=1) dg1.add_edge(2, 1, weight=1) dg1.add_edge(2, 3, weight=1) dg1.add_edge(3, 1, weight=-1) dg1.add_edge(3, 4, weight=1) dg2 = nx.DiGraph() dg2.add_nodes_from([1, 2, 3, 4]) dg2.add_edge(1, 2, weight=1) dg2.add_edge(1, 3, weight=1) dg2.add_edge(2, 1, weight=1) dg2.add_edge(2, 3, weight=1) dg2.add_edge(2, 4, weight=1) dg2.add_edge(3, 1, weight=1) dg2.add_edge(3, 4, weight=1) dg2.add_edge(4, 1, weight=1) dgraphs = [dg1, dg2] triads_types = [ {'(1, 2, 3)': 76, '(1, 2, 4)': 6, '(1, 3, 4)': 4, '(2, 3, 4)': 8}, {'(1, 2, 3)': 63, '(1, 2, 4)': 57, '(1, 3, 4)': 57, '(2, 3, 4)': 22}] n = len(self.triad_list) transition_matrix = np.zeros((n, n)) transition_matrix[76, 63] = 1 transition_matrix[6, 57] = 1 transition_matrix[4, 57] = 1 transition_matrix[8, 22] = 1 computed = network_utils.compute_transition_matrix( dgraphs=dgraphs, unique_triad_num=n, triad_map=self.triad_map) # self.assertDictEqual(expected, computed) self.assertTrue( 'triads_types' in computed, 'triads_types was not found in computed transition matrix.') self.assertTrue( 'transition_matrices' in computed, 'transition_matrices was not found in computed transition matrix.') self.assertEqual( triads_types, computed['triads_types'], 'Triad types were different.') np.testing.assert_array_equal( transition_matrix, computed['transition_matrices'][0], 'Transition matrices were different.') # ========================================================================= # ====================== get_stationary_distribution ====================== # ========================================================================= def test_get_stationary_distribution_simple(self): transition_matrix = np.array( [[0, 0, 1], [0, 0, 1], [0, 0, 1]], dtype=float) expected = np.array([0, 0, 1]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0) np.testing.assert_array_almost_equal(expected, computed, decimal=4) def test_get_stationary_distribution_full_matrix(self): transition_matrix = np.array( [[0.6, 0.1, 0.3], [0.1, 0.7, 0.2], [0.2, 0.2, 0.6]], dtype=float) expected = np.array([0.2759, 0.3448, 0.3793]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0) np.testing.assert_array_almost_equal(expected, computed, decimal=4) def test_get_stationary_distribution_not_row_stochastic(self): transition_matrix = np.array( [[0, 0, 0], [9, 0, 1], [1, 0, 3]], dtype=float) expected = np.array([0.3571, 0.1191, 0.5238]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0001) np.testing.assert_array_almost_equal(expected, computed, decimal=4) def test_get_stationary_distribution(self): transition_matrix = np.array( [[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]], dtype=float) expected = np.array([0.3571, 0.1191, 0.5238]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0001) np.testing.assert_array_almost_equal(expected, computed, decimal=4) # ========================================================================= # ====================== get_mixing_time_range ============================ # ========================================================================= def test_get_mixing_time_range(self): transition_matrix = np.array( [[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]], dtype=float) expected = 13.7081 computed = network_utils.get_mixing_time_range( transition_matrix, aperiodic_irreducible_eps=0.0001, distance_from_stationary_eps=0.01) self.assertEqual(np.round(expected, 4), np.round(computed, 4)) # ========================================================================= # ====================== _randomize_network =============================== # ========================================================================= def test_randomize_network_with_unweighted_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5, 6]) dg.add_edge(1, 2) dg.add_edge(2, 1) dg.add_edge(2, 3) dg.add_edge(3, 1) dg.add_edge(3, 4) dg.add_edge(4, 5) dg.add_edge(5, 4) dg.add_edge(1, 6) dg.add_edge(6, 1) dg.add_edge(6, 5) computed = network_utils._randomize_network(dg, switching_count_coef=2) self.assertEqual( sorted(dict(dg.degree()).values()), sorted(dict(computed.degree()).values())) self.assertEqual( sorted(dg.nodes()), sorted(computed.nodes())) def test_randomize_network_with_all_positive_weighted_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5, 6]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=2) dg.add_edge(3, 4, weight=5) dg.add_edge(4, 5, weight=9) dg.add_edge(5, 4, weight=6) dg.add_edge(1, 6, weight=9) dg.add_edge(6, 1, weight=1) dg.add_edge(6, 5, weight=16) computed = network_utils._randomize_network(dg, switching_count_coef=2) self.assertEqual( sorted(dict(dg.degree()).values()), sorted(dict(computed.degree()).values())) self.assertEqual( sorted(dg.nodes()), sorted(computed.nodes())) def test_randomize_network_with_signed_weighted_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5, 6]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-2) dg.add_edge(3, 4, weight=5) dg.add_edge(4, 5, weight=9) dg.add_edge(5, 4, weight=-6) dg.add_edge(1, 6, weight=-9) dg.add_edge(6, 1, weight=1) dg.add_edge(6, 5, weight=-16) computed = network_utils._randomize_network(dg, switching_count_coef=2) self.assertEqual( sorted(dict(dg.degree()).values()), sorted(dict(computed.degree()).values())) self.assertEqual( sorted(dg.nodes()), sorted(computed.nodes())) # ========================================================================= # ================== get_robustness_of_transitions ======================== # ========================================================================= def test_get_robustness_of_transitions(self): transition_matrices = [ np.array( [[0.9, 0.1, 0], [0.6, 0.2, 0.2], [0.7, 0.1, 0.2]]), np.array( [[0.1, 0.8, 0.1], [0, 0.9, 0.1], [0.1, 0.1, 0.8]]) ] # Expected dataframe. columns = [ 'Transitions', 'Matrix L2-Norm Dist. from Average', 'Matrix Pearson r-value', 'Matrix Pearson p-value', 'Stationary Dist. L2-Norm Dist. from Average', 'Stationary Dist. Pearson r-value', 'Stationary Dist. Pearson p-value'] expected_df = pd.DataFrame({ columns[0]: ['Period 1 to Period 2', 'Period 2 to Period 3'], columns[1]: [0.8444, 0.8083], columns[2]: [0.4256, 0.6522], columns[3]: [0.2534, 0.0569], columns[4]: [0.5833, 0.4404], columns[5]: [0.4637, 0.1319], columns[6]: [0.6930, 0.9156], }, columns=columns) expected_df = pd.DataFrame( expected_df, columns=columns) # Computed dataframe. computed_df = network_utils.get_robustness_of_transitions( transition_matrices, lnorm=2) # Comparing computed with expected. pd.testing.assert_frame_equal( expected_df, computed_df, check_less_precise=2) # ========================================================================= # ================== generate_converted_graphs ============================ # ========================================================================= def test_generate_converted_graphs_raises_when_wrong_percentage(self): with self.assertRaises(ValueError): network_utils.generate_converted_graphs( dgraph=nx.DiGraph(), percentage=-1) def test_generate_converted_graphs_when_it_adds_edges(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1) dg.add_edge(1, 3, weight=2) dg.add_edge(2, 3, weight=5) dg.add_edge(3, 1, weight=1) percentage = 25 computed_graphs = network_utils.generate_converted_graphs( dgraph=dg, convert_from=0, convert_to=1, percentage=percentage, how_many_to_generate=5) for computed in computed_graphs: # It should contain all nodes. self.assertEqual(dg.nodes(), computed.nodes()) # It should contain all dg's edges. self.assertEqual(len(nx.difference(dg, computed).edges()), 0) # It should contain percentage% more edges. remaining_edges_count = 4 * 3 - 4 self.assertEqual( len(nx.difference(computed, dg).edges()), int(percentage*remaining_edges_count/100)) def test_generate_converted_graphs_when_all_edges_exist(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=2) dg.add_edge(1, 3, weight=-5) dg.add_edge(2, 3, weight=-2) dg.add_edge(3, 1, weight=2) dg.add_edge(4, 1, weight=2) dg.add_edge(4, 3, weight=2) percentage = 25 computed_graphs = network_utils.generate_converted_graphs( dgraph=dg, convert_from=2, convert_to=3, percentage=percentage, how_many_to_generate=2) for computed in computed_graphs: converted_cnt = 0 # It should contain all nodes. self.assertEqual(dg.nodes(), computed.nodes()) # It should contain all dg's edges. self.assertEqual(dg.edges(), computed.edges()) # Checking every edge weight. for edge in dg.edges(): w1 = dg.get_edge_data(edge[0], edge[1])['weight'] w2 = computed.get_edge_data(edge[0], edge[1])['weight'] if w1 == w2: continue if w1 != w2 and w1 == 2 and w2 == 3 and converted_cnt == 0: converted_cnt += 1 else: self.assertTrue( False, 'Found more converted edges than expeced.') def test_generate_converted_graphs(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) percentage = 10 computed_graphs = network_utils.generate_converted_graphs( dgraph=dg, convert_from=0, convert_to=1, percentage=percentage, how_many_to_generate=2) for computed in computed_graphs: # It should contain all nodes. self.assertEqual(dg.nodes(), computed.nodes()) # It should contain percentage extra edges. self.assertEqual( len(computed.edges()), int(4 * 3 * percentage / 100)) def test_generate_converted_graphs_for_large_networks(self): n = 100 m = 300 dgraph = nx.gnm_random_graph(n=n, m=m, directed=True) percentage = 5 computed_graphs = network_utils.generate_converted_graphs( dgraph=dgraph, convert_from=0, convert_to=1, percentage=percentage, how_many_to_generate=6) for computed in computed_graphs: # It should contain all nodes. self.assertEqual(dgraph.nodes(), computed.nodes()) # It should contain percentage extra edges. self.assertEqual( len(computed.edges()), m + int( (n * (n-1) - m) * percentage / 100)) if __name__ == '__main__': unittest.main()
2.09375
2
domain-finder.py
luisrowley/domain-finder
0
12784411
#!/usr/bin/env python # -*- coding: utf-8 -*- # Check for all required python dependencies first try: import sys import argparse import subprocess import shlex except ImportError, e: python_install = raw_input("\nMissing required python dependencies: sys argparse subprocess shlex. Install them now? [y/n]") if python_install == 'y' or python_install == 'yes': install_process = subprocess.Popen(['pip install sys argparse subprocess shlex'], stdout=subprocess.PIPE, shell=True) (out, err) = install_process.communicate() print(out); else: print('Error: unmet dependencies, leaving...') sys.exit(0) # Check for system specific dependencies nslookup = subprocess.Popen(['command -v nslookup'], stdout=subprocess.PIPE, shell=True) (out, err) = nslookup.communicate() if len(out) == 0: nslookup_install = raw_input("\n'dnsutils' package is a required dependency but it is not installed in your system. Install now? [y/n]") if nslookup_install == 'y' or nslookup_install == 'yes': install_process = subprocess.Popen(['sudo apt-get install -y dnsutils'], stdout=subprocess.PIPE, shell=True) (out, err) = install_process.communicate() print(out); else: print('Error: unmet dependency, leaving...') sys.exit(0) print('\n---------------- MIXFLARE v0.12 ----------------\n') #Create options for single string input or list of strings parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', action="store_true", dest='input', help='Simple Lookup. Searches for availability of the specified domain name. (.com and .net top-level domains supported)') parser.add_argument('-l', '--list-domains', action="store_true", dest='list', help='Advanced search. This option takes in a list of space separated strings, generates all possible (and best) combinations between them, and then checks their avalability as domain names via DNS lookup.') parser.add_argument('-c', '--com', action="store_true", dest='com_domains', help='Filter results by .com domains only.') parser.add_argument('-n', '--net', action="store_true", dest='net_domains', help='Filter results by .net domains only.') parser.add_argument('--version', action='version', version='Mixflare v0.12') args = parser.parse_args() # If not -c or -n option, don't even bother if not args.com_domains and not args.net_domains and not args.list: print('Please specify a TLD option: -c for .com, -n for .net domains or both. e.g.: domain-finder -c') sys.exit(0) ############### main functions ############### def perform_simple_lookup(): try: args.input = raw_input('\nPlease enter a single word to search for (i.e: with no TLS extension): \n') # sanitize input string invalid = set(';&(){}!¡?¿=.,_$@^*¨%"<>') if any((c in invalid) for c in args.input): print("Error: ';&(){}!¡?¿=.,_$@^*¨%\"<>' characters not permitted") sys.exit(0) else: domInput = args.input except ValueError: print("Wrong input type. Please try again.") except KeyboardInterrupt: print "\nUser interrupted. Bye!" sys.exit() available = [] if args.com_domains: xcom = domInput + ".com" response_com = subprocess.Popen(["nslookup " + xcom], stdout=subprocess.PIPE, shell=True) (out, err) = response_com.communicate() if "NXDOMAIN" in out: available.append(xcom) if args.net_domains: xnet = domInput + ".net" response_net = subprocess.Popen(["nslookup " + xnet], stdout=subprocess.PIPE, shell=True) (out, err) = response_net.communicate() if "NXDOMAIN" in out: available.append(xnet) if len(available) < 1: print('\nSorry, there are no unregistered domain names matching your criteria.\nYou should try again with different words.') perform_simple_lookup() # Recursive call to prompt again. else: print('\n' + str(len(available)) + ' available domain(s):\n' + '\n'.join(available)) def perform_advanced_search(): try: # Create new list from the words given. args.list = raw_input('\nPlease enter a list of space-separated words (5 max): \n') # sanitize input string invalid = set(';&(){}!¡?¿=.,_$@^*¨%"<>') if any((c in invalid) for c in args.list): print("Error: ';&(){}!¡?¿=.,_$@^*¨%\"<>' characters not permitted") sys.exit(0) else: domList = args.list domList = shlex.split(domList) if len(domList) > 5: print('\n ----> Maximum of elements reached! Please enter 5 or less.') perform_advanced_search() # Recursive call to prompt again. except ValueError: print("Wrong input type. Please try again.") except KeyboardInterrupt: print "\nUser interrupted. Bye!" sys.exit() # Generate all possible two-word combinations between the elements of the list. # Avoid combinations of same words. Total amount generated: (x^2 - x) where x = --list-domains combos = [] for x in domList: for y in domList: if not x == y: combos.append(x + y) combosLen = len(combos) # Check for available domains within the word list. Total amount of requests (x^2 - x)*2 available = [] for x in combos: if args.com_domains: xcom = x + ".com" response_com = subprocess.Popen(["nslookup " + xcom], stdout=subprocess.PIPE, shell=True) (out, err) = response_com.communicate() if "NXDOMAIN" in out: available.append(xcom) if args.net_domains: xnet = x + ".net" response_net = subprocess.Popen(["nslookup " + xnet], stdout=subprocess.PIPE, shell=True) (out, err) = response_net.communicate() if "NXDOMAIN" in out: available.append(xnet) # Display progress bar on tty xVal = combos.index(x) + 1 percent = int(xVal/float(combosLen) * 100) lines = int(xVal/float(combosLen) * 30) sys.stdout.write('\r') sys.stdout.write("[%-30s] %d%%" % ('='* lines, percent)) sys.stdout.flush() if len(available) < 1: print('\n\nSorry, there are no unregistered domain names matching your criteria.\nYou should try again with different words.') perform_advanced_search() # Recursive call to prompt again. else: print('\n\n' + str(len(available)) + ' available domain(s):\n' + '\n'.join(available)) ############### /main functions ############### if not args.list: # Always default to Simple Lookup. perform_simple_lookup() else: perform_advanced_search() # EOF
2.703125
3
XeroPoster.py
6enno/FarmXero
0
12784412
# Goal: Push a journal to Xero import json import requests import Secrets from oauthlib.oauth2 import BackendApplicationClient from requests_oauthlib import OAuth2Session url = 'https://api.xero.com/api.xro/2.0/ManualJournals' refreshUrl = "https://identity.xero.com/connect/token" connectUrl ='https://api.xero.com/connections' scope = ['offline_access', 'accounting.transactions', 'openid', 'profile', 'email', 'accounting.contacts', 'accounting.settings'] tenant = Secrets.tenant auth = Secrets.auth clientId = Secrets.clientId clientSecret = Secrets.clientSecret auth = requests.auth.HTTPBasicAuth(clientId, clientSecret) client = BackendApplicationClient(client_id=clientId, scope=scope) oauth = OAuth2Session(client=client) token = oauth.fetch_token(token_url=connectUrl, auth=auth) print token payload='''{ 'Narration': 'Test Journal 5 - from PYTHON', 'JournalLines': [ { 'LineAmount': 20000, 'AccountCode': '200' }, ::: 'LineAmount': -20000, 'AccountCode': '210' } ] }''' headers = { 'xero-tenant-id': tenant, 'Authorization': 'Bearer ' + auth, 'Accept': 'application/json', 'Content-Type': 'application/json' } refreshPayload={'grant_type': 'refresh_token', 'refresh_token': 'e65ce7c0cfafd010b7be071c638706b8a489b12443632f64229e39197db4245d', 'client_id': '467E283E84B045C9B3A549B3CCD415F6', 'client_secret': 'sBq2m3GQNRwwIFVIaOyZzTF6aTEm_1WHc3s-nclllooTHXw-' } files=[] refreshHeaders = { 'grant_type': 'refresh_token', 'Accept': '*/*'#, #'Content-Type': 'application/json' } # Do the stuff______________________________________________________ #refreshResponse = requests.request('POST', refreshUrl, headers=refreshHeaders, data=refreshPayload, files=files) #response = requests.request('POST', url, headers=headers, data=payload) #print(refreshResponse.text) #print(response.text)
2.484375
2
gfyrslf/commands/hi.py
mstroud/python-matrix-gfyrslf
0
12784413
<gh_stars>0 import logging from gfyrslf.command import GfyrslfCommand class HelloCommand(GfyrslfCommand): def __init__(self, cmdname, cfg): super().__init__(cmdname, cfg) self.description = "Replies \"Hi\" to a variety of greetings" def event_handler(self, bot, room, event): room.send_text("Hi, " + event['sender'])
2.390625
2
miRmedon_src/counter.py
Ally-s-Lab/miRmedon
2
12784414
<gh_stars>1-10 import pysam from collections import Counter def counter(bam): bam_input = pysam.AlignmentFile(bam, 'rb') haplotypes_counter = Counter() alignments_list = [] for alignment in bam_input.fetch(until_eof=True): if len(alignments_list) == 0: alignments_list.append(alignment) else: if alignment.query_name == alignments_list[-1].query_name: alignments_list.append(alignment) else: tmp_counter = Counter([x.reference_name for x in alignments_list]) tmp_counter = {k: v/len(tmp_counter) for k, v in tmp_counter.items()} haplotypes_counter += Counter(tmp_counter) alignments_list = [alignment] tmp_counter = Counter([x.reference_name for x in alignments_list]) tmp_counter = {k: v / len(tmp_counter) for k, v in tmp_counter.items()} haplotypes_counter += Counter(tmp_counter) haplotypes_counter = dict(haplotypes_counter) with open('counts.txt', 'w') as counts_file: for haplotype, count in list(haplotypes_counter.items()): counts_file.write(haplotype + '\t' + str(count) + '\n')
2.4375
2
main.py
RyanMatheusRamello/ppt
0
12784415
<reponame>RyanMatheusRamello/ppt<gh_stars>0 import discord import os import time import discord.ext from discord.utils import get from discord.ext import commands, tasks from discord.ext.commands import has_permissions, CheckFailure, check from random import randint client = discord.Client() client = commands.Bot(command_prefix = '>') @client.event async def on_ready(): print("bot online") #will print "bot online" in the console when the bot is online @client.command() async def ping(ctx): await ctx.send("pong!") #simple command so that when you type "!ping" the bot will respond with "pong!" @client.command(aliases=['pedra_papel_tesoura', 'jkp']) async def ppt(ctx, frase: str = ""): try: frase = frase.strip() if(frase != ""): if(frase == "help"): await ctx.send("Esse é um jogo de pedra, papel e tesoura\nPara jogar utilize >ppt <objeto>\nTroque <objeto> por 'pedra', 'papel' ou 'tesoura'") elif(frase == "pedra" or frase == "papel" or frase == "tesoura"): # 0 = pd 1 = pp 2 = ts x = randint(0, 2) if(x == 0): if(frase == "pedra"): await ctx.send(f"{ctx.author.mention} jogou: **{frase}**\n{client.user.mention} jogou: **pedra**\n**Resultado:** O jogo terminou empatado") if(frase == "papel"): await ctx.send(f"{ctx.author.mention} jogou: **{frase}**\n{client.user.mention} jogou: **pedra**\n**Resultado:** {ctx.author.mention} ganhou") if(frase == "tesoura"): await ctx.send(f"{ctx.author.mention} jogou: **{frase}**\n{client.user.mention} jogou: **pedra**\n**Resultado:** {client.user.mention} ganhou") elif(x == 1): if(frase == "papel"): await ctx.send(f"{ctx.author.mention} jogou: **{frase}**\n{client.user.mention} jogou: **papel**\n**Resultado:** O jogo terminou empatado") if(frase == "tesoura"): await ctx.send(f"{ctx.author.mention} jogou: **{frase}**\n{client.user.mention} jogou: **papel**\n**Resultado:** {ctx.author.mention} ganhou") if(frase == "pedra"): await ctx.send(f"{ctx.author.mention} jogou: **{frase}**\n{client.user.mention} jogou: **papel**\n**Resultado:** {client.user.mention} ganhou") elif(x == 2): if(frase == "tesoura"): await ctx.send(f"{ctx.author.mention} jogou: **{frase}**\n{client.user.mention} jogou: **tesoura**\n**Resultado:** O jogo terminou empatado") if(frase == "pedra"): await ctx.send(f"{ctx.author.mention} jogou: **{frase}**\n{client.user.mention} jogou: **tesoura**\n**Resultado:** {ctx.author.mention} ganhou") if(frase == "papel"): await ctx.send(f"{ctx.author.mention} jogou: **{frase}**\n{client.user.mention} jogou: **tesoura**\n**Resultado:** {client.user.mention} ganhou") else: await ctx.send("Objeto do pedra, papel e tesoura não reconhecido") else: await ctx.send("Esse é um jogo de pedra, papel e tesoura\nPara jogar utilize >ppt <objeto>\nTroque <objeto> por 'pedra', 'papel' ou 'tesoura'") except: await ctx.send("Um erro ocorreu") client.run(os.getenv("TOKEN"))
3.1875
3
src/meltano/core/job/finder.py
siilats/meltano
122
12784416
<reponame>siilats/meltano """Defines JobFinder.""" from datetime import datetime, timedelta from .job import HEARTBEAT_VALID_MINUTES, HEARTBEATLESS_JOB_VALID_HOURS, Job, State class JobFinder: """ Query builder for the `Job` model for a certain `elt_uri`. """ def __init__(self, job_id: str): self.job_id = job_id def latest(self, session): return ( session.query(Job) .filter(Job.job_id == self.job_id) .order_by(Job.started_at.desc()) .first() ) def successful(self, session): return session.query(Job).filter( (Job.job_id == self.job_id) & (Job.state == State.SUCCESS) & Job.ended_at.isnot(None) ) def running(self, session): """Find jobs in the running state.""" return session.query(Job).filter( (Job.job_id == self.job_id) & (Job.state == State.RUNNING) ) def latest_success(self, session): return self.successful(session).order_by(Job.ended_at.desc()).first() def latest_running(self, session): """Find the most recent job in the running state, if any.""" return self.running(session).order_by(Job.started_at.desc()).first() def with_payload(self, session, flags=0, since=None): query = ( session.query(Job) .filter( (Job.job_id == self.job_id) & (Job.payload_flags != 0) & (Job.payload_flags.op("&")(flags) == flags) & Job.ended_at.isnot(None) ) .order_by(Job.ended_at.asc()) ) if since: query = query.filter(Job.ended_at > since) return query def latest_with_payload(self, session, **kwargs): return ( self.with_payload(session, **kwargs) .order_by(None) # Reset ascending order .order_by(Job.ended_at.desc()) .first() ) @classmethod def all_stale(cls, session): """Return all stale jobs.""" now = datetime.utcnow() last_valid_heartbeat_at = now - timedelta(minutes=HEARTBEAT_VALID_MINUTES) last_valid_started_at = now - timedelta(hours=HEARTBEATLESS_JOB_VALID_HOURS) return session.query(Job).filter( (Job.state == State.RUNNING) & ( ( Job.last_heartbeat_at.isnot(None) & (Job.last_heartbeat_at < last_valid_heartbeat_at) ) | ( Job.last_heartbeat_at.is_(None) & (Job.started_at < last_valid_started_at) ) ) ) def stale(self, session): """Return stale jobs with the instance's job ID.""" return self.all_stale(session).filter(Job.job_id == self.job_id)
2.328125
2
secse/scoring/docking_score_prediction.py
autodataming/SECSE
1
12784417
<filename>secse/scoring/docking_score_prediction.py #!/usr/bin/env python # -*- coding:utf-8 _*- """ @author: <NAME> @file: docking_score_prediction.py @time: 2021/10/27/14:26 """ import argparse import subprocess from openbabel import openbabel import pandas as pd import os import rdkit from rdkit import Chem from rdkit.Chem import PandasTools from rdkit.Chem import MolStandardize from tqdm import tqdm rdkit.RDLogger.DisableLog("rdApp.*") def get_train(sdf, dock): g = PandasTools.LoadSDF(sdf, molColName='Molecule') g_smi = pd.read_csv(dock, sep="\t", header=None) g_smi.columns = ["Smiles", "ID"] g_smi = g_smi.set_index("ID") g = g[["ID", "Molecule", "docking score"]] g["docking score"] = g["docking score"].astype(float) g = g.sort_values("docking score", ascending=True) g["Smiles"] = g["ID"].apply(lambda x: g_smi.loc[x.rsplit("-C", 1)[0]][0]) g_new = g.sort_values(by="docking score", ascending=True).drop_duplicates(subset="Smiles", keep="first") smi = g_new["Smiles"].apply(lambda x: neutralize(x)) g_new["Smiles"] = smi g_new = g_new.drop_duplicates(subset="Smiles", keep="first") return g_new def get_pre(workdir, max_gen, get_all=False): pre_dir = os.path.join(workdir, "prediction") if get_all: pre_raw = os.path.join(pre_dir, "all_G" + str(max_gen) + "_for_pre.raw") pre_file = os.path.join(pre_dir, "all_G" + str(max_gen) + "_for_pre.csv") cmd_cat = "find {} -name \"filter.csv\" |xargs awk -F, 'NR>1{{print $(NF-5)\",\"$(NF-6)}}' > {}".format( workdir, pre_raw) subprocess.check_output(cmd_cat, shell=True, stderr=subprocess.STDOUT) cmd_dedup = "awk -F',' '!seen[$2]++' " + pre_raw + " > " + pre_file subprocess.check_output(cmd_dedup, shell=True, stderr=subprocess.STDOUT) drop_mols = os.path.join(pre_dir, "drop_ids.txt") mols_id_cat = "find {} -name \"mols_for_docking.smi\" |xargs cut -f2 > {}".format(workdir, drop_mols) subprocess.check_output(mols_id_cat, shell=True, stderr=subprocess.STDOUT) final_file = os.path.join(pre_dir, "all_G" + str(max_gen) + "_for_pre_uniq.csv") else: pre_file = os.path.join(pre_dir, "gen_" + str(max_gen) + "_for_pre.csv") cmd_cp = "awk -F, 'NR>1{{print $(NF-5)\",\"$(NF-6)}}' {} > {}".format( os.path.join(workdir, "generation_" + str(max_gen), "filter.csv"), pre_file) subprocess.check_output(cmd_cp, shell=True, stderr=subprocess.STDOUT) drop_mols = os.path.join(pre_dir, "drop_ids_{}.txt".format(max_gen)) mols_id_cat = "cut -f2 {} > {}".format( os.path.join(workdir, "generation_" + str(max_gen), "mols_for_docking.smi"), drop_mols) subprocess.check_output(mols_id_cat, shell=True, stderr=subprocess.STDOUT) final_file = os.path.join(pre_dir, "gen_" + str(max_gen) + "_for_pre_uniq.csv") cmd_drop = "grep -wvf {} {} > {}".format(drop_mols, pre_file, final_file) subprocess.check_output(cmd_drop, shell=True, stderr=subprocess.STDOUT) return final_file def neutralize(smi): mol = Chem.MolFromSmiles(smi) if mol is None: smi = wash_mol(smi) mol = Chem.MolFromSmiles(smi) if mol is None: return "C" uc = MolStandardize.charge.Uncharger() return Chem.MolToSmiles(uc.uncharge(mol)) def wash_mol(smi): ob_conversion = openbabel.OBConversion() ob_conversion.SetInAndOutFormats("smi", "can") ob_mol = openbabel.OBMol() ob_conversion.ReadString(ob_mol, smi) ob_conversion.Convert() res = ob_conversion.WriteString(ob_mol).strip() return res def prepare_files(max_gen, workdir, dl_mode): pre_dir = os.path.join(workdir, "prediction") os.makedirs(pre_dir, exist_ok=True) def pre_train_per_gen(gen): sdf = os.path.join(workdir, "generation_{}/docking_outputs_with_score.sdf".format(gen)) dock = os.path.join(workdir, "generation_{}/mols_for_docking.smi".format(gen)) df_train = get_train(sdf, dock)[['Smiles', 'docking score']] # write per generation df_train.to_csv(os.path.join(pre_dir, "train_G{}.csv".format(gen)), index=False) return df_train if dl_mode == 1: # prepare current generation data pre_train_per_gen(max_gen) train = os.path.join(pre_dir, "train_G{}.csv".format(max_gen)) pre = get_pre(workdir, max_gen, False) return train, pre elif dl_mode == 2: # prepare files for all the generation and merge together cum_path = os.path.join(pre_dir, "train_G" + str(max_gen) + "_all.csv") df_lst = [] for i in tqdm(range(1, max_gen + 1)): df = pre_train_per_gen(i) # write cumulative dataframe df_lst.append(df) df_all = pd.concat(df_lst, axis=0).sort_values( by="docking score", ascending=True).drop_duplicates(subset="Smiles", keep="first") df_all.to_csv(cum_path, index=False) pre = get_pre(workdir, max_gen, True) return cum_path, pre if __name__ == '__main__': parser = argparse.ArgumentParser(description="SCESE -- Prepare Data for Deep Learning") parser.add_argument("max_gen", help="Max number of generation.", type=int) parser.add_argument("workdir", help="Workdir") parser.add_argument("dl_mode", help="Mode of deep learning modeling, 1: modeling per generation, 2: modeling overall after all the generation", type=int, default=0) args = parser.parse_args() prepare_files(args.max_gen, args.workdir, args.dl_mode)
2.1875
2
widgets/loading_bar.py
Thenujan-0/grub-editor
1
12784418
#!/usr/bin/python import sys from PyQt5.QtWidgets import QWidget, QApplication from PyQt5.QtGui import QPainter, QColor, QFont,QPalette,QPolygonF,QBrush from PyQt5.QtCore import Qt , QPointF,QRectF,QObject,pyqtSignal,QRunnable,pyqtSlot,QThreadPool,QTimer import traceback from time import sleep class WorkerSignals(QObject): """ defines the signals available from a running worker thread supported signals are: finished No data error tuple( exctype ,value ,traceback.format_exc() ) result object data returned from processing , anything """ finished = pyqtSignal() error= pyqtSignal(tuple) result = pyqtSignal(object) class Worker(QRunnable): """ Worker thread inherits from QRunnable to handler worker thread setup , signals, wrap-up. :param callback: The function to run on this worker thread . Supllied args and kwargs will be passed through the runner :type callback: function :param args : Arguments to pass the callback function :param kwargs : keyword to pass to the callback function """ def __init__(self,fn,*args,**kwargs): super(Worker, self).__init__() self.fn =fn self.args= args self.kwargs=kwargs self.signals=WorkerSignals() @pyqtSlot() def run(self): """ initialise the runner function with passed args and kwargs """ try: result =self.fn(*self.args,**self.kwargs) except: traceback.print_exc() exctype,value = sys.exc_info()[:2] self.signals.error.emit((exctype, value, traceback.format_exc() )) else: self.signals.result.emit(result) finally: self.signals.finished.emit() class LoadingBar(QWidget): def __init__(self): super().__init__() self.threadpool=QThreadPool() self.initUI() #position of colored part in loading bar 0 -100 self.position=20 self.startWorker(self.move_loading_bar) self.loading_increasing=True # self.timer=QTimer() # self.timer.timeout.connect(self.move_loading_bar) # self.timer.start(500) def move_loading_bar(self): """ move the loading bar back and forth by changing the value of self.position """ while True: # print('moving loading bar',self.position) sleep(0.015) if self.position ==100: self.loading_increasing=False elif self.position==0: self.loading_increasing=True if self.loading_increasing: self.position+=1 else: self.position-=1 qp=QPainter() #Error might occur if the LoadingBar widget is deleted so to catch that try: self.update() except RuntimeError: pass def startWorker(self,fn,*args,**kwargs): worker= Worker(fn) self.threadpool.start(worker) def initUI(self): self.setGeometry(300, 300, 350, 300) self.setWindowTitle('loading please wait') self.show() def paintEvent(self, event): qp = QPainter() qp.begin(self) self.drawText(event, qp) qp.end() def drawText(self, event, qp): width = self.width() height = self.height() self.widget_height= 6 #the part of the loading bar that is not going to have the progressed part reduce_amount = width*0.6 top_left =QPointF(int(width*0.1),int(height/2-self.widget_height/2)) bottom_right =QPointF(int(width*0.9)-reduce_amount ,int(height/2 +self.widget_height/2)) bigger_bottom_right =QPointF(int(width*0.9) ,int(height/2+self.widget_height/2) ) recty =QRectF(QPointF(top_left.x()+self.position/100*reduce_amount,top_left.y()), QPointF(bottom_right.x()+self.position/100*reduce_amount,bottom_right.y())) bigger_recty=QRectF(top_left,bigger_bottom_right) #non progressed part (bigger rounded rect) qp.setPen(QPalette().color(QPalette.Disabled,QPalette.Text)) qp.setBrush(QBrush(QPalette().color(QPalette.Active,QPalette.Button))) qp.drawRoundedRect(bigger_recty,3,3) #progressed part qp.setBrush(QBrush(QPalette().color(QPalette().Inactive,QPalette().Highlight))) qp.setPen(QPalette().color(QPalette().Active,QPalette().Highlight)) qp.drawRoundedRect(recty,2,2) def main(): app = QApplication(sys.argv) ex = LoadingBar() sys.exit(app.exec_()) if __name__ == '__main__': main()
2.78125
3
impl/status.py
HEG-INCIPIT/ARKetype
9
12784419
<filename>impl/status.py # ============================================================================= # # EZID :: status.py # # Periodic status reporting. # # This module should be imported at server startup so that its daemon # thread is started. # # Author: # <NAME> <<EMAIL>> # # License: # Copyright (c) 2013, Regents of the University of California # http://creativecommons.org/licenses/BSD/ # # ----------------------------------------------------------------------------- import django.conf import django.db import logging import os import threading import time import uuid import binder_async import config import crossref import datacite import datacite_async import download import ezid import ezidapp.models import log import search_util # Deferred imports... """ import boto3 """ _enabled = None _reportingInterval = None _threadName = None _cloudwatchEnabled = None _cloudwatchRegion = None _cloudwatchNamespace = None _cloudwatchInstanceName = None def _formatUserCountList(d): if len(d) > 0: l = d.items() l.sort(cmp=lambda x, y: -cmp(x[1], y[1])) return " (" + " ".join("%s=%d" % i for i in l) + ")" else: return "" def _statusDaemon(): while _enabled and threading.currentThread().getName() == _threadName: try: activeUsers, waitingUsers, isPaused = ezid.getStatus() na = sum(activeUsers.values()) nw = sum(waitingUsers.values()) ndo = datacite.numActiveOperations() uql = ezidapp.models.UpdateQueue.objects.count() bql = binder_async.getQueueLength() daql = datacite_async.getQueueLength() cqs = crossref.getQueueStatistics() doql = download.getQueueLength() as_ = search_util.numActiveSearches() no = log.getOperationCount() log.resetOperationCount() log.status( "pid=%d" % os.getpid(), "threads=%d" % threading.activeCount(), "paused" if isPaused else "running", "activeOperations=%d%s" % (na, _formatUserCountList(activeUsers)), "waitingRequests=%d%s" % (nw, _formatUserCountList(waitingUsers)), "activeDataciteOperations=%d" % ndo, "updateQueueLength=%d" % uql, "binderQueueLength=%d" % bql, "dataciteQueueLength=%d" % daql, "crossrefQueue:archived/unsubmitted/submitted=%d/%d/%d" % (cqs[2] + cqs[3], cqs[0], cqs[1]), "downloadQueueLength=%d" % doql, "activeSearches=%d" % as_, "operationCount=%d" % no, ) if _cloudwatchEnabled: import boto3 # Disable annoying boto3 logging. logging.getLogger("botocore").setLevel(logging.ERROR) try: c = boto3.client("cloudwatch", region_name=_cloudwatchRegion) d = [{"Name": "InstanceName", "Value": _cloudwatchInstanceName}] data = { "ActiveOperations": na, "WaitingRequests": nw, "ActiveDataciteOperations": ndo, "UpdateQueueLength": uql, "BinderQueueLength": bql, "DataciteQueueLength": daql, "CrossrefQueueLength": cqs[0] + cqs[1], "DownloadQueueLength": doql, "ActiveSearches": as_, "OperationRate": float(no) / _reportingInterval, } r = c.put_metric_data( Namespace=_cloudwatchNamespace, MetricData=[ { "MetricName": k, "Dimensions": d, "Value": float(v), "Unit": "Count/Second" if k == "OperationRate" else "Count", } for k, v in data.items() ], ) assert r["ResponseMetadata"]["HTTPStatusCode"] == 200 except: # Ignore CloudWatch exceptions, as it's not essential. pass except Exception, e: log.otherError("status._statusDaemon", e) django.db.connections["default"].close() time.sleep(_reportingInterval) def loadConfig(): global _enabled, _reportingInterval, _threadName, _cloudwatchEnabled global _cloudwatchRegion, _cloudwatchNamespace, _cloudwatchInstanceName _enabled = ( django.conf.settings.DAEMON_THREADS_ENABLED and config.get("daemons.status_enabled").lower() == "true" ) if _enabled: _reportingInterval = int(config.get("daemons.status_logging_interval")) _threadName = uuid.uuid1().hex _cloudwatchEnabled = config.get("cloudwatch.enabled").lower() == "true" if _cloudwatchEnabled: _cloudwatchRegion = config.get("cloudwatch.region") _cloudwatchNamespace = config.get("cloudwatch.namespace") _cloudwatchInstanceName = config.get("cloudwatch.instance_name") t = threading.Thread(target=_statusDaemon, name=_threadName) t.setDaemon(True) t.start()
1.945313
2
liczeniedoszesciu.py
SoGreeno/pygamethingidunno
0
12784420
import time c = 1 print(c) c += 1 print(c) time.sleep(1) c += 1 print(c) time.sleep(1) c += 1 print(c) time.sleep(1) c += 1 print(c) time.sleep(1) c += 1 print(c) time.sleep(1) print("jak by co") time.sleep(0.5) print("to kod jest z książki") time.sleep(3) print("nie kradziony") time.sleep(2)
3.46875
3
scripts/offuscate_names.py
diego0020/lab_vision
8
12784421
<gh_stars>1-10 import os import hmac import base64 import glob import hashlib from itertools import izip import csv in_dir='/home/pabloa/imagenet_tiny/test' out_dir='/home/pabloa/imagenet_tiny/test_o' cats_file='/home/pabloa/imagenet_tiny/cats_o.csv' key='<KEY>' os.chdir(in_dir) imgs = glob.glob('*/*.JPEG') hashes = [base64.urlsafe_b64encode(hmac.new(key,f,hashlib.sha1).hexdigest()) for f in imgs ] for f,o in izip(imgs,hashes): os.symlink(os.path.join(in_dir,f),os.path.join(out_dir,o+".JPEG")) with open(cats_file,"wb") as csv_file: w=csv.writer(csv_file) w.writerows(l for l in izip(hashes,(os.path.split(f)[0] for f in imgs)) )
2.625
3
src/bulk_mover/mover_classes/SANCBagger.py
StateArchivesOfNorthCarolina/sanc-repo-manager
0
12784422
<filename>src/bulk_mover/mover_classes/SANCBagger.py import bagit import os class SANCBagger(object): def __init__(self) -> None: self.bag_to_open = None # type: str self.tree_to_bag = None # type: str self.working_bag = None # type: bagit.Bag self.validation_error_details = None # type: dict self.validation_error_message = None # type: str self.bagging_error = None def open_bag(self, bag_to_open: str) -> bool: self.bag_to_open = bag_to_open try: self.working_bag = bagit.Bag(self.bag_to_open) return True except bagit.BagError as e: self.validation_error_details = e self.validation_error_message = e return False def validate_bag(self) -> bool: try: self.working_bag.validate(processes=8) return True except bagit.BagValidationError as e: self.validation_error_details = e.details self.validation_error_message = e.message return False def quick_validate(self) -> bool: try: self.working_bag.validate(fast=True) return True except bagit.BagValidationError as e: self.validation_error_details = e.details self.validation_error_message = e.message return False def create_bag(self, tree_to_bag: str, metadata: dict) -> bool: self.tree_to_bag = tree_to_bag try: self.working_bag = bagit.make_bag(self.tree_to_bag, metadata, processes=8, checksum=["sha256"]) self.working_bag.save() except bagit.BagError as e: self.bagging_error = e return False return True def which_error(self): if self.validation_error_message: return self.validation_error_message, self.validation_error_details if self.bagging_error: return "BagError", self.bagging_error def is_already_bagged(self, tree): if os.path.isfile(os.path.join(tree, "bagit.txt")): return True return False
2.203125
2
app/main/models/posts.py
NiHighlism/Minerva
4
12784423
""" DB Model for Posts and relevant junction tables """ import datetime from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.sql import and_, select from app.main import db from app.main.models.base import Base from app.main.models.comments import Comment from app.main.models.movies import Movie from app.main.models.postSearches import SearchableMixin class Post(Base, SearchableMixin): """ Description of User model. Columns ----------- :id: int [pk] :title: Text [not NULL] :author_id: int [Foreign Key] :creation_time: DateTime [not NULL] :last_edit_time: DateTime [not NULL] :post_body: Text # Relationships :comments: Relationship -> Comments (one to many) """ # Columns id = db.Column(db.Integer, db.ForeignKey("base.id"), primary_key=True) post_id = db.Column(db.Integer, autoincrement=True, primary_key=True, unique=True) title = db.Column(db.Text, nullable=False) post_movie = db.Column(db.String(20)) tags = db.Column(db.JSON) __searchable__ = ['title', 'body', 'tags'] __mapper_args__ = { 'polymorphic_identity': 'post', 'inherit_condition': (id == Base.id) } comments = db.relationship('Comment', primaryjoin="(Post.post_id == Comment.parent_post_id)", backref=db.backref('post'), lazy='dynamic') def __init__(self, author_id, post_movie, title, post_body, tags): super().__init__(author_id, post_body, "post") self.title = title self.post_movie = post_movie self.tags = tags db.session.add(self) db.session.commit() def add_comment(self, author_id, comment_body): parent_post_id = self.id comment = Comment(author_id, parent_post_id, comment_body) self.comments.append(comment) db.session.commit() return comment.id def update_col(self, key, value): setattr(self, key, value) db.session.commit() def delete_post(self, post_id): post = Post.query.filter_by(id=post_id).delete() db.session.commit()
2.96875
3
python/iot-sdk-demo/iotSdkDemo/Device/BatchGetDeviceState.py
aliyun/iot-api-demo
86
12784424
<gh_stars>10-100 #!/usr/bin/env python #coding=utf-8 from aliyunsdkcore.client import AcsClient from aliyunsdkcore.acs_exception.exceptions import ClientException from aliyunsdkcore.acs_exception.exceptions import ServerException from aliyunsdkiot.request.v20180120.BatchGetDeviceStateRequest import BatchGetDeviceStateRequest client = AcsClient('<accessKeyId>', '<accessSecret>', 'cn-shanghai') request = BatchGetDeviceStateRequest() request.set_accept_format('json') request.set_ProductKey("ProductKey") request.set_DeviceNames(["DeviceName1","DeviceName2"]) request.set_IotIds(["IotId1","IotId2"]) response = client.do_action_with_exception(request) # python2: print(response) print(response)
1.851563
2
helpers/google.py
eoglethorpe/DEEPL
1
12784425
from django.conf import settings import requests import json from NER.models import GoogleLocationCache GOOGLE_GEOCODE_URL =\ 'https://maps.googleapis.com/maps/api/geocode/json?key={}&address={}' def get_google_geocode_url(location): return GOOGLE_GEOCODE_URL.format( getattr(settings, 'GOOGLE_API_KEY', ''), location, ) def get_location_info(location): # First query the database, if not found, make a call try: cache = GoogleLocationCache.objects.get(_location=location.lower()) return cache.location_info except GoogleLocationCache.DoesNotExist: pass r = requests.get(get_google_geocode_url(location)) try: info = json.loads(r.text) location_info = info.get('results')[0] # save to database GoogleLocationCache.objects.create( location=location, location_info=location_info ) return location_info except (ValueError, IndexError): return {}
2.515625
3
examples/discovery.py
BenoitAnastay/aiohue
14
12784426
<reponame>BenoitAnastay/aiohue """AIOHue example for HUE bridge discovery.""" import asyncio from os.path import abspath, dirname from sys import path path.insert(1, dirname(dirname(abspath(__file__)))) from aiohue.discovery import discover_nupnp async def main(): """Run code example.""" discovered_bridges = await discover_nupnp() print() print("Discovered bridges:") for item in discovered_bridges: print() print(item) print() try: asyncio.run(main()) except KeyboardInterrupt: pass
2.421875
2
tasks/admin.py
housepig7/ops
394
12784427
<reponame>housepig7/ops from django.contrib import admin # Register your models here. from .models import history,toolsscript admin.site.register(history) admin.site.register(toolsscript)
1.351563
1
lib/evaluation.py
Julius-Syvis/PyTorch-Transformer-Studies
0
12784428
<filename>lib/evaluation.py import time import torch from torchtext.data.metrics import bleu_score class Translator: def __init__(self, model, spacy_model, field_src, field_trg, device): self.model = model self.spacy_model = spacy_model self.field_src = field_src self.field_trg = field_trg self.device = device def translate(self, sentence, verbose=False): if isinstance(sentence, str): tokens = [token.text.lower() for token in self.spacy_model(sentence)] else: tokens = [token.lower() for token in sentence] tokens = [self.field_src.init_token] + tokens + [self.field_src.eos_token] translation = self.translate_tokens(tokens, verbose) return translation def translate_tokens(self, tokens, verbose=False): self.model.eval() idx = [self.field_src.vocab.stoi[token] for token in tokens] tensor = torch.LongTensor(idx).unsqueeze(1).to(self.device) if verbose: print(f'Tokenized data ready for manual translation: tensor=[{tensor.shape}]') sos = self.field_trg.vocab.stoi["<sos>"] eos = self.field_trg.vocab.stoi["<eos>"] target = [sos] for i in range(20): trg_tensor = torch.LongTensor(target).unsqueeze(1).to(self.device) with torch.no_grad(): out = self.model(tensor, trg_tensor) if verbose: print(f'Time step {i}: tensor=[{tensor.shape}]; trg_tensor=[{trg_tensor.shape}]; out=[{out.shape}]') choice = out.argmax(2)[-1, :].item() target.append(choice) if choice == eos: break translation = [self.field_trg.vocab.itos[i] for i in target] if verbose: print(f'The final result has {len(translation) - 1} tokens (<sos> excluded)') return translation[1:] def calculate_bleu(self, data, verbose=False): t1 = time.time() trgs = [] pred_trgs = [] for datum in data: src = vars(datum)['src'] trg = vars(datum)['trg'] pred_trg = self.translate(src)[:-1] pred_trgs.append(pred_trg) trgs.append([trg]) score = bleu_score(pred_trgs, trgs) t2 = time.time() minutes = int((t2 - t1) / 60) seconds = int((t2 - t1) % 60) if verbose: print(f'\nTotal Time: {minutes}m {seconds}s') return score * 100
2.40625
2
pythonScripts/BVDDataAnalyzer/SimulationFile.py
Yperidis/bvd_agent_based_model
1
12784429
#!/usr/bin/env python import outputSpecification as outputSpec import h5py as h5 import os import numpy as np import sys def getFileNames(fileName): filenames = [] path = "" if fileName.lower().endswith('.txt'): path = os.path.dirname(os.path.abspath(fileName)) with open(fileName) as f: filenames = f.readlines() del f elif fileName.lower().endswith('.h5'): filenames.append(fileName) else: print("no valid file given") return (filenames,path) class FarmDataManager: def __init__(self): self.farms = {} def getFarm(self,id): if id in self.farms: return self.farms[id] else: f = Farm(id) self.farms[id] = f return f def getAllInfectedFarmsAtTime(self,time): AllInfectedFarmsAtTime = [] for id,farm in self.farms.iteritems(): if time in farm.infectiousTimes: AllInfectedFarmsAtTime.append(farm) return AllInfectedFarmsAtTime def getNumberOfInfectiousFarmsAtTime(self, time): return len(self.getAllInfectedFarmsAtTime(time)) def getPrevalenceAtTime(self, time): returnDict = {} returnDict["time"] = time for id,f in self.farms.iteritems(): fdata = f.getDataAtTime(time) for key, value in fdata.iteritems(): if not key in returnDict: returnDict[key] = 0 returnDict[key] = returnDict[key] + value return returnDict def addFarmDataDict(self, time, FarmDataTableDict): id = FarmDataTableDict.pop("id") farm = self.getFarm(id) farm.setDataPoint(time, FarmDataTableDict) class Farm: def __init__(self, id): self.data = {} self.infectiousTimes = [] self.hasBeenInfected = False self.id = id def setDataPoint(self, time, dataDict ): if(dataDict["ti"] != 0 or dataDict["pi"] != 0): self.infectiousTimes.append(time) self.hasBeenInfected = True dataDict["total"] = 0 for key, value in dataDict.iteritems(): if key != "total": dataDict["total"] += value self.data[time] = dataDict def getDataAtTime(self,time): return self.data[time] class SimulationFile: def __init__(self,fileName, printStuff = False): self.printStuff = printStuff self.files = [] self.keys = [] self.keyToFiles = {} self.keysForFiles = {} self.filenames,self.path = getFileNames(fileName) for fileName in self.filenames: fullpath = os.path.join(self.path, fileName).strip() if self.printStuff: print "scanning " + fullpath try: file = h5.File(fullpath, 'r') self.files.append(fullpath) self.keysForFiles[fullpath] = [] for key in file.keys(): if not key in self.keys: self.keys.append(key) self.keyToFiles[key] = [] self.keyToFiles[key].append(fullpath) self.keysForFiles[fullpath].append(key) file.close() pass except IOError as ioe: print fileName print ioe pass def getFullTable(self, key): #for fileName in self.retunFilesForKey(key): return self.getMultipleTables([key])[key] def getFilesForKey(self, key): return self.keyToFiles[key] def getAllKeys(self): return self.keys def getKeyForFile(self,fileName): return self.keysForFiles[fileName] def getMultipleTables(self, keys): files = [] readingKeys = [] tables = {} for key in [key for key in set(keys) if key in self.keys]: readingKeys.append(key) files = files + self.getFilesForKey(key) fileset = set(files) for fileName in fileset: file = h5.File(fileName, 'r') for key in [key for key in self.getKeyForFile(fileName) if key in readingKeys]: data = file[key] subTable = np.array(data) if not key in tables: tables[key] = subTable else: fullTable = tables[key] tables[key] = np.concatenate([fullTable, subTable]) file.close() return tables def getBreedingDynamicsData(self): data = self.getMultipleTables([outputSpec.deadCowTableName, outputSpec.intermediateCalvingTimesTableName]) return data def getTestData(self): data = self.getFullTable(outputSpec.testsTableName) return data def getIntermediateCalvingTimes(self): data = self.getFullTable(outputSpec.intermediateCalvingTimesTableName) return data def getDataDictFromDataPoint(self, rowData, dict): dataDict = {} for key,value in dict.iteritems(): dataDict[key] = rowData[value] return dataDict def getAllDataFromSplitUpTables(self, tablePrefix, timeTableName): fullRetData = {} for fileName in self.files: file = h5.File(fileName, 'r') try: h5times = file[timeTableName] times = np.array(h5times[:].astype(int)) for time in times: dataSetName = tablePrefix + str(time) h5data = file[dataSetName] retData = np.array(h5data) fullRetData[time] = retData except KeyError: print "error" pass file.close() return fullRetData def getEndemicData(self): fdm = FarmDataManager() retData = {} fullFarmData = self.getAllDataFromSplitUpTables(outputSpec.farmsTablePrefix, outputSpec.farmTimesTableName) for time,data in fullFarmData.iteritems(): for row in data: rowData = self.getDataDictFromDataPoint(row, outputSpec.farmTable) fdm.addFarmDataDict(time,rowData) retData[time] = {} retData[time]["prevalenceCows"] = fdm.getPrevalenceAtTime(time) retData[time]["prevalenceFarms"] = fdm.getAllInfectedFarmsAtTime(time) return (len(fdm.farms),retData) def getTradeData(self): fullTradeData = self.getFullTable(outputSpec.tradingTableName) trades = np.array( fullTradeData ) tradingAges = {} tradingAges["male"] = [] tradingAges["female"] = [] for sex in tradingAges: cols = trades[:,outputSpec.tradeCowSexIndex] == outputSpec.sexes[sex] data = trades[cols,outputSpec.tradeCowAgeIndex] tradingAges[sex] = data.reshape(len(data),1) tradeData = {} tradeData["tradingAges"] = tradingAges return tradeData def getTradeMatrices(self): fullTradeData = self.getAllDataFromSplitUpTables(outputSpec.tradeTablePrefix, outputSpec.tradeTimesTableName) return fullTradeData def getStaticTradesPerFarm(self): fullTradeData = self.getFullTable(outputSpec.tradingTableName) tradeTable = outputSpec.tradeTable returnDict = {} trades = np.array( fullTradeData ) for trade in trades: src = trade[tradeTable["srcFarm"]] time = trade[tradeTable["date"]] dest = trade[tradeTable["destFarm"]] #print str(src) + " " + str(dest) if not src in returnDict: farmDict = {} farmDict["id"]=src farmDict["in"]={} farmDict["out"]={} farmDict["times"] = [] else: farmDict = returnDict[src] if not dest in returnDict: destDict = {} destDict["id"]=dest destDict["in"]={} destDict["out"]={} destDict["times"] = [] else: destDict = returnDict[dest] #farmDict["times"].append(time) #destDict["times"].append(time) if not dest in farmDict["out"]: farmDict["out"][dest] = 1 else: farmDict["out"][dest] += 1 if not src in destDict["in"]: destDict["in"][src] = 1 else: destDict["in"][src] += 1 returnDict[src] = farmDict returnDict[dest] = destDict return returnDict # def
2.890625
3
mapping/data_loader/h5_timeseries.py
syanga/model-augmented-mutual-information
2
12784430
<reponame>syanga/model-augmented-mutual-information<gh_stars>1-10 from torchvision import datasets, transforms from ..base import BaseDataLoader from torch.utils import data import h5py import numpy as np import torch class TimeseriesDataset(data.Dataset): """docstring for BackBlazeDataset""" def __init__(self, h5_path, feat_list=None, time_trimmed=0, tia=0): df = h5py.File(h5_path, "r") xh = df.get("X") yh = df.get("Y") assert tia >= 0 self.length = xh.shape[0] if feat_list is not None: self.X = np.empty( (xh.shape[0], xh.shape[1]-tia-time_trimmed, len(feat_list)), order="C") if tia > 0: xh.read_direct(self.X, np.s_[:,time_trimmed:-tia,feat_list], None) else: xh.read_direct(self.X, np.s_[:,time_trimmed:,feat_list], None) else: self.X = np.empty( (xh.shape[0], xh.shape[1]-tia, xh.shape[2]), order="C") if tia > 0: xh.read_direct(self.X, np.s_[:,:-tia,:], None) else: xh.read_direct(self.X, np.s_[:,:,:], None) self.Y = np.empty(yh.shape, order="C") yh.read_direct(self.Y, None, None) df.close() self.X = torch.from_numpy( np.ascontiguousarray(self.X)).type(torch.float32) self.Y = torch.from_numpy(self.Y).type(torch.float32) def __len__(self): return self.length def __getitem__(self, index): return self.X[index,...], self.Y[index] class TimeseriesDataLoader(BaseDataLoader): def __init__(self, data_dir, batch_size, shuffle, validation_split, test_split, num_workers, feat_list=None, time_trimmed=0, tia=0, training=True, seed=0): self.data_dir = data_dir self.feat_list = feat_list self.time_trimmed = time_trimmed self.tia = tia self.seed = seed self.dataset = TimeseriesDataset(data_dir, feat_list, time_trimmed, tia) super().__init__( self.dataset, batch_size, shuffle, validation_split,test_split, num_workers, seed=seed)
2.171875
2
numba/ir/generator/build.py
liuzhenhai/numba
1
12784431
# -*- coding: utf-8 -*- """ Generate a package with IR implementations and tools. """ from __future__ import print_function, division, absolute_import import os from textwrap import dedent from itertools import chain from . import generator from . import formatting from . import astgen from . import visitorgen from . import naming #------------------------------------------------------------------------ # Tools Flags #------------------------------------------------------------------------ cython = 1 #------------------------------------------------------------------------ # Tools Resolution #------------------------------------------------------------------------ class Tool(object): def __init__(self, codegens, flags=0, depends=[]): self.codegens = codegens self.flags = flags self.depends = depends def __repr__(self): return "Tool(codegens=[%s])" % ", ".join(map(str, self.codegens)) def resolve_tools(tool_list, mask, tools=None, seen=None): if tools is None: tools = [] seen = set() for tool in tool_list: if not (tool.flags & mask) and tool not in seen: seen.add(tool) resolve_tools(tool.depends, mask, tools, seen) tools.append(tool) return tools def enumerate_tools(feature_names, mask): tool_set = set(chain(*[features[name] for name in feature_names])) tools = resolve_tools(tool_set, mask) return tools def enumerate_codegens(feature_names, mask): tools = enumerate_tools(feature_names, mask) codegens = list(chain(*[tool.codegens for tool in tools])) return codegens #------------------------------------------------------------------------ # Tool Definitions #------------------------------------------------------------------------ def make_codegen_dict(codegens): return dict((codegen.out_filename, codegen) for codegen in codegens) all_codegens = astgen.codegens + visitorgen.codegens gens = make_codegen_dict(all_codegens) pxd_ast_tool = Tool([gens[naming.nodes + ".pxd"]], flags=cython) py_ast_tool = Tool([gens[naming.nodes + ".py"]]) pxd_interface_tool = Tool([gens[naming.interface + ".pxd"]], flags=cython, depends=[pxd_ast_tool]) py_interface_tool = Tool([gens[naming.interface + ".py"]], depends=[py_ast_tool]) pxd_visitor_tool = Tool([gens[naming.visitor + ".pxd"]], flags=cython, depends=[pxd_interface_tool]) py_visitor_tool = Tool([gens[naming.visitor + ".py"]], depends=[py_interface_tool, pxd_visitor_tool]) pxd_transform_tool = Tool([gens[naming.transformer + ".pxd"]], flags=cython, depends=[pxd_interface_tool]) py_transformr_tool = Tool([gens[naming.transformer + ".py"]], depends=[py_interface_tool, pxd_transform_tool]) pxd_ast_tool.depends.extend([pxd_interface_tool, py_interface_tool]) #------------------------------------------------------------------------ # Feature Definitions & Entry Points #------------------------------------------------------------------------ features = { 'all': [py_ast_tool, py_visitor_tool, py_transformr_tool], 'ast': [py_ast_tool], 'visitor': [py_visitor_tool], 'transformer': [py_transformr_tool], } def build_package(schema_filename, feature_names, output_dir, mask=0): """ Build a package from the given schema and feature names in output_dir. :param mask: indicates which features to mask, e.g. specifying 'mask=build.cython' disables Cython support. """ codegens = enumerate_codegens(feature_names, mask) disk_allocator = generator.generate_from_file( schema_filename, codegens, output_dir) try: _make_package(disk_allocator, codegens) finally: disk_allocator.close() #------------------------------------------------------------------------ # Package Building Utilities #------------------------------------------------------------------------ source_name = lambda fn: os.path.splitext(os.path.basename(fn))[0] def _make_package(disk_allocator, codegens): _make_init(disk_allocator, codegens) # Make Cython dependency optional # disk_allocator.open_sourcefile("cython.py") fns = [c.out_filename for c in codegens if c.out_filename.endswith('.pxd')] if fns: _make_setup(disk_allocator, [source_name(fn) + '.py' for fn in fns]) def _make_init(disk_allocator, codegens): init = disk_allocator.open_sourcefile("__init__.py") init.write(dedent(""" # Horrid hack to make work around circular cimports import os, sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) """)) for c in codegens: if c.out_filename.endswith('.py'): modname = source_name(c.out_filename) init.write("from %s import *\n" % modname) def _make_setup(disk_allocator, filenames): setup = disk_allocator.open_sourcefile("setup.py") ext_modules = ["Extension('%s', ['%s'])" % (source_name(fn), fn) for fn in filenames] setup.write(dedent(""" from distutils.core import setup from Cython.Distutils import build_ext from Cython.Distutils.extension import Extension ext_modules = [ %s ] setup( # ext_modules=cythonize('*.pyx'), ext_modules=ext_modules, cmdclass={'build_ext': build_ext}, ) """) % formatting.py_formatter.format_stats(",\n", 4, ext_modules))
2.078125
2
sdk/search/azure-search-documents/tests/test_index_documents_batch.py
rsdoherty/azure-sdk-for-python
2,728
12784432
<gh_stars>1000+ # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ import pytest from azure.search.documents.models import IndexAction from azure.search.documents import IndexDocumentsBatch METHOD_NAMES = [ "add_upload_actions", "add_delete_actions", "add_merge_actions", "add_merge_or_upload_actions", ] METHOD_MAP = dict(zip(METHOD_NAMES, ["upload", "delete", "merge", "mergeOrUpload"])) class TestIndexDocumentsBatch(object): def test_init(self): batch = IndexDocumentsBatch() assert batch.actions == [] def test_repr(self): batch = IndexDocumentsBatch() assert repr(batch) == "<IndexDocumentsBatch [0 actions]>" batch._actions = [1, 2, 3] assert repr(batch) == "<IndexDocumentsBatch [3 actions]>" # a strict length test here would require constructing an actions list # with a length of ~10**24, so settle for this simple sanity check on # an extreme case. batch_actions = list(range(2000)) assert len(repr(batch)) <= 1024 def test_actions_returns_list_copy(self): batch = IndexDocumentsBatch() batch.actions.extend([1, 2, 3]) assert type(batch.actions) is list assert batch.actions == [] assert batch.actions is not batch._actions @pytest.mark.parametrize("method_name", METHOD_NAMES) def test_add_method(self, method_name): batch = IndexDocumentsBatch() method = getattr(batch, method_name) method("doc1") assert len(batch.actions) == 1 method("doc2", "doc3") assert len(batch.actions) == 3 method(["doc4", "doc5"]) assert len(batch.actions) == 5 method(("doc6", "doc7")) assert len(batch.actions) == 7 assert all( action.action_type == METHOD_MAP[method_name] for action in batch.actions ) assert all(type(action) == IndexAction for action in batch.actions) expected = ["doc{}".format(i) for i in range(1, 8)] assert [action.additional_properties for action in batch.actions] == expected
2.328125
2
_AceVision_testcodes/A6449/RS232_serial Pass NG code.py
lyj911111/OpenCV_Project
0
12784433
import serial import cv2 # 시리얼 연결 실패시 오류 메시지 클래스 class errorMessage(Exception): def __init__(self, msg='init_error_msg'): self.msg = msg def __str__(self): return self.msg # 초기 시리얼 연결 try: print("Suceessfully connected with PLC") ser = serial.Serial( port='COM3', baudrate=9600, parity=serial.PARITY_NONE, \ stopbits=serial.STOPBITS_ONE, \ bytesize=serial.EIGHTBITS, \ timeout=0.5 # PLC가 1초에 한번 보내므로 그보다 적게. ) except: print("[ERROR] : please check PLC RS232") # raise errorMessage('[ERROR] : please check PLC RS232') # PASS 때 '1' 보내고, RS232 통신 닫기 def passSignal(): print("PASS the judgement") # PLC신호 읽음 if ser.readable(): res = ser.readline() PLC_ready = res.decode() PLC_ready = PLC_ready.lower() # 소문자로 변환 if PLC_ready[0:5] == 'ready': print("PLC로부터 받은 프로토콜:", PLC_ready[0:5]) # 받은 프로토콜 passSig = '1'.encode() ser.write(passSig) # 전송 ser.close() # 닫기 # NG 때 '2' 보내고, RS232 통신 닫기 def NGSignal(): print("NG the judgement") # PLC신호 읽음 if ser.readable(): res = ser.readline() PLC_ready = res.decode() PLC_ready = PLC_ready.lower() # 소문자로 변환 if PLC_ready[0:5] == 'ready': print("PLC로부터 받은 프로토콜:", PLC_ready[0:5]) # 받은 프로토콜 NGSig = '2'.encode() ser.write(NGSig) # 전송 ser.close() # 닫기 ''' PLC 에서 온 값 'READY'를 읽고, 합격일때 : judgeSignal(1) 불합일때 : judgeSignal(2) 의 형태로 함수 사용. ''' def judgeSignal(signal=0): print("checking PASS or NG signal...") # PLC신호 읽음 if ser.readable(): res = ser.readline() PLC_ready = res.decode() PLC_ready = PLC_ready.lower() # 소문자로 변환 if PLC_ready[0:5] == 'ready': print("PLC로부터 받은 프로토콜:", PLC_ready[0:5]) # 받은 프로토콜 signal = str(signal) signal = signal.encode() ser.write(signal) # 전송 ser.close() # 닫기 if __name__ == "__main__": while 1: judgeSignal() # passSignal() # NGSignal()
2.875
3
meiduo04/mall/utils/fastdfs/fdfsstorage.py
sunsyw/web
0
12784434
from django.core.files.storage import Storage """ 1.您的自定义存储系统必须是以下的子类 :django.core.files.storage.Storage 2.Django必须能够在没有任何参数的情况下实例化您的存储系统。 这意味着任何设置都应该来自:django.conf.settings 3.您的存储类必须实现_open()和_save() 方法, 以适合您的存储类中的任何其他方法一起。请参阅下面的这些方法。 4.您的存储类必须是可解构的, 以便在迁移中的字段上使用时可以对其进行序列化。 只要您的字段具有可自行序列化的参数, 就 可以使用 django.utils.deconstruct.deconstructible类装饰器 (这就是Django在FileSystemStorage上使用的) """ from fdfs_client.client import Fdfs_client from django.utils.deconstruct import deconstructible from mall import settings @deconstructible class MyStorage(Storage): # 初始化的时候 有任何配置信息 都设置为 默认值 def __init__(self, config_path=None,ip=None): if not config_path: config_path = settings.FDFS_CLIENT_CONF self.config_path = config_path if not ip: ip = settings.FDFS_URL self.ip = ip # open 打开文件(图片) # Fdfs 是通过 HTTP来访问我们的图片资源的,不需要打开 # http://192.168.229.148:8888/group1/M00/00/02/wKjllFx4r_aAJyv2AAGByoOJNyU855.jpg def _open(self, name, mode='rb'): pass # save 保存 # 保存是通过 Fdfs来实现保存的,所以我们要在save中实现保存操作 def _save(self, name, content, max_length=None): # name, content, max_length=None # name: 图片名字 # content: 图片资源 # max_length: 最大长度 # 1.创建上传 的客户端 # client = Fdfs_client('utils/fastdfs/client.conf') # client = Fdfs_client(settings.FDFS_CLIENT_CONF) client = Fdfs_client(self.config_path) # 2.获取图片 我们不能通过name找到图片,所以通过content来获取图片内容 # 读取的是 图片的二进制 data = content.read() # 3.上传 # buffer 二进制 result = client.upload_by_buffer(data) # result 就是上传之后的返回值 # 4.根据上传的状态获取 remote file_id """ {'Group name': 'group1', 'Remote file_id': 'group1/M00/00/02/wKjllFx42-6AW-JBAAGByoOJNyU783.jpg', 'Status': 'Upload successed.', 'Local file name': '/home/python/Desktop/images/2.jpg', 'Uploaded size': '96.00KB', 'Storage IP': '192.168.229.148'} """ if result.get('Status') == 'Upload successed.': #上传成功,返回 remote file_id file_id = result.get('Remote file_id') else: raise Exception('上传失败') # 我们需要把 remote file_id 返回回去 # 系统要使用 return file_id # exists 是否存在 # Fdfs 已经帮我们做了 重名的处理,所以我们不需要判断 图片是否重复 # 直接上它上传就可以 def exists(self, name): return False # url 默认是把 name返回回去, # 在Fdfs中 name其实就是 remote file_id # 但是我们在访问图片的时候 需要自己再添加 http://ip:port/ + name # 所以我们重写 url方法,添加 http://ip:prot/ + name def url(self, name): # return 'http://192.168.229.148:8888/' + name # return settings.FDFS_URL + name return self.ip + name # return name # pass
2.5
2
2018/day11p2.py
JonSn0w/advent-of-code
1
12784435
import numpy as np n = 300 serial = int(input()) grid = np.array([[int(str(((x+10)*y+serial)*(x+10))[-3])-5 for y in range(1, n+1)] for x in range(1, n+1)]) coord = (0, 0) mVal, dim = 0, 0 for d in range(4, 2, -1): squares = sum(grid[x:x-d+1 or None, y:y-d+1 or None] for x in range(d) for y in range(d)) val = int(squares.max()) if mVal < val: coord = np.where(squares == val) mVal = val dim = d x,y = coord[0][0], coord[1][0] print(f'({x+1}, {y+1}) X {dim} = {mVal}')
3.21875
3
odoo-13.0/venv/lib/python3.8/site-packages/ImageDraw.py
VaibhavBhujade/Blockchain-ERP-interoperability
3
12784436
from PIL.ImageDraw import *
1.109375
1
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/GL/ARB/explicit_uniform_location.py
JE-Chen/je_old_repo
0
12784437
<reponame>JE-Chen/je_old_repo '''OpenGL extension ARB.explicit_uniform_location This module customises the behaviour of the OpenGL.raw.GL.ARB.explicit_uniform_location to provide a more Python-friendly API Overview (from the spec) This extension provides a method to pre-assign uniform locations to uniform variables in the default uniform block, including subroutine uniforms. This allows an application to modify the uniform values without requiring a GL query like GetUniformLocation, GetSubroutineUniformLocation and GetSubroutineIndex. The official definition of this extension is available here: http://www.opengl.org/registry/specs/ARB/explicit_uniform_location.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.ARB.explicit_uniform_location import * from OpenGL.raw.GL.ARB.explicit_uniform_location import _EXTENSION_NAME def glInitExplicitUniformLocationARB(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
1.882813
2
code/venv/lib/python3.8/site-packages/datadog_api_client/v2/model/logs_archive_integration_s3.py
Valisback/hiring-engineers
0
12784438
# Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License. # This product includes software developed at Datadog (https://www.datadoghq.com/). # Copyright 2019-Present Datadog, Inc. from datadog_api_client.v2.model_utils import ( ModelNormal, cached_property, ) class LogsArchiveIntegrationS3(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ validations = {} @cached_property def openapi_types(): return { "account_id": (str,), "role_name": (str,), } attribute_map = { "account_id": "account_id", "role_name": "role_name", } read_only_vars = {} def __init__(self, account_id, role_name, *args, **kwargs): """LogsArchiveIntegrationS3 - a model defined in OpenAPI Args: account_id (str): The account ID for the integration. role_name (str): The path of the integration. Keyword Args: """ super().__init__(kwargs) self._check_pos_args(args) self.account_id = account_id self.role_name = role_name @classmethod def _from_openapi_data(cls, account_id, role_name, *args, **kwargs): """Helper creating a new instance from a response.""" self = super(LogsArchiveIntegrationS3, cls)._from_openapi_data(kwargs) self._check_pos_args(args) self.account_id = account_id self.role_name = role_name return self
1.929688
2
venv/lib/python3.8/site-packages/debugpy/_vendored/pydevd/pydev_ipython/version.py
Retraces/UkraineBot
2
12784439
<reponame>Retraces/UkraineBot /home/runner/.cache/pip/pool/94/b0/52/47c9ad945d5e0b3c3039e8e58dc840c9f4b2d28a43f1bd30fd08d1f7b4
0.871094
1
services/terminal/main.py
darqos/darqos
0
12784440
<reponame>darqos/darqos<gh_stars>0 #! /usr/bin/env python # Copyright (C) 2020 <NAME> import sys import typing from urllib.parse import urlparse from datetime import datetime import PyQt5 from PyQt5 import QtCore, QtWidgets from PyQt5.QtGui import QColor, QKeySequence, QMouseEvent, QIcon, QPixmap from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QMenu, QShortcut, QHBoxLayout, QVBoxLayout, QLineEdit, QLabel, QToolButton, QToolBar, qApp, QAction, QTableWidget, QTableWidgetItem from darq.type.text import TextTypeView from darq.rt.history import History class Type: def __init__(self): self.name: str = "" self.description: str = "" self.impl: str = "" self.icon: str = "" return class TypeCacheModel: def __init__(self): # Table of named types. self.types = {} # Sorted type name index. self.type_names = [] # Most recently used types. self.used_types = [] # Pinned types, in order. self.pinned_types: typing.List[str] = [] return def add_type(self, type_: Type) -> None: """Add a type to the system.""" if type_.name in self.types: raise KeyError(f"Type '{type_.name}' already exists.") # FIXME: Cache icon. self.types[type_.name] = type_ return def remove_type(self, name: str) -> None: """Remove a type from the system.""" if name not in self.types: raise KeyError(f"No such type '{name}'") if name in self.pinned_types: self.pinned_types.remove(name) if name in self.used_types: self.used_types.remove(name) del self.types[name] return def append_pinned_type(self, name: str) -> None: """Append a type to the pinned list.""" t = self.types.get(name) if t is None: raise KeyError(f"No such type '{name}'") self.pinned_types.append(name) return def insert_pinned_type(self, index: int, name: str) -> None: """Insert a type into the pinned list.""" t = self.types.get(name) if t is None: raise KeyError(f"No such type '{name}'") self.pinned_types.insert(index, name) return def unpin_type(self, name: str) -> None: """Remove a type from the pinned list.""" if name not in self.pinned_types: raise KeyError(f"No such type '{name}'") if name in self.pinned_types: self.pinned_types.remove(name) return def pinned_count(self) -> int: """Return number of pinned types.""" return len(self.pinned_types) def pinned_type(self, index: int) -> Type: """Return type at index in pinned type list.""" if index < 0 or index >= len(self.pinned_types): raise IndexError(f"Pinned types index out of range: {index}") name = self.pinned_types[index] return self.types[name] def use_type(self, name: str) -> None: """Record usage of a type.""" if name in self.used_types: self.used_types.remove(name) self.used_types.insert(0, name) return class ObjectFactory(QWidget): """Enables creation of new type instances.""" def __init__(self, *args): """Constructor.""" super().__init__(*args) # Cache. self.types = TypeCacheModel() self.init_types() # Set size and position. screen = QtWidgets.QDesktopWidget().screenGeometry(0) self.resize(int(screen.width() * 0.7), int(screen.height() * 0.7)) self.move(int(screen.width() * 0.15), int(screen.height() * 0.15)) # Set window type. flags = QtCore.Qt.WindowFlags( QtCore.Qt.WindowStaysOnTopHint | QtCore.Qt.FramelessWindowHint) self.setWindowFlags(flags) self.layout = QVBoxLayout() self.layout.setContentsMargins(50, 50, 50, 50) # Pinned types. self.hotbar = QToolBar() self.hotbar.setStyleSheet("QToolBar { }") for index in range(self.types.pinned_count()): t = self.types.pinned_type(index) url = urlparse(t.icon) icon = QIcon(url.path) action = QAction(icon, t.name, qApp) self.hotbar.addAction(action) self.layout.addWidget(self.hotbar) # Search bar. self.omnibox = QHBoxLayout() self.omnibox.setContentsMargins(20, 20, 20, 20) self.omnitext = QLineEdit() self.omnitext.setStyleSheet("QLineEdit { font-size: 20px; padding: 12px; border: none; border-radius: 10px; }") self.omnitext.setFrame(False) # Doesn't seem to do anything' self.omnitext.setAttribute(QtCore.Qt.WA_MacShowFocusRect, False) self.omnitext.setPlaceholderText("Search ...") self.omnitext.setClearButtonEnabled(True) self.omnitext.setTextMargins(20, 20, 20, 20) self.omnibox.addWidget(self.omnitext) self.layout.addLayout(self.omnibox) # Unfiltered types, MRU order (?) self.object_table = QVBoxLayout() self.object_table.setContentsMargins(20, 20, 20, 20) row1 = QLabel("line") self.object_table.addWidget(row1) self.layout.addLayout(self.object_table) self.layout.setStretch(2, 100) self.setLayout(self.layout) self.hide() return def init_types(self): """Initialize types collection.""" # List of known types, with index by name, by last use, and by # keyword from their description. Each type has a name, icon, and # a description. # # There's also an ordered list of "pinned" types. text = Type() text.name = "Text" text.description = "Unformatted Unicode document" text.impl = "file:///Users/d/work/personal/darqos/darq/types/text.py" text.icon = "file:///Users/d/work/personal/darqos/darq/icons/txt.png" self.types.add_type(text) self.types.append_pinned_type("Text") book = Type() book.name = "Book Details" book.description = "Catalog data for a book" book.impl = "" book.icon = "file:///Users/d/work/personal/darqos/darq/icons/book.png" self.types.add_type(book) self.types.append_pinned_type("Book Details") return def on_create(self): o = TextTypeView() self.hide() return class ObjectSelector(QWidget): def __init__(self, *args): super().__init__(*args) # Set size & position. screen = QtWidgets.QDesktopWidget().screenGeometry(0) self.resize(int(screen.width() * 0.7), int(screen.height() * 0.7)) self.move(int(screen.width() * 0.15), int(screen.height() * 0.15)) # Set window type. flags = QtCore.Qt.WindowFlags( QtCore.Qt.WindowStaysOnTopHint | QtCore.Qt.FramelessWindowHint) self.setWindowFlags(flags) self.layout = QVBoxLayout() self.layout.setContentsMargins(50, 50, 50, 50) self.omnibox = QHBoxLayout() self.omnibox.setContentsMargins(20, 20, 20, 20) self.omnitext = QLineEdit() self.omnitext.setStyleSheet("QLineEdit { font-size: 20px; padding: 12px; border: none; border-radius: 10px; }") self.omnitext.setFrame(False) # Doesn't seem to do anything' self.omnitext.setAttribute(QtCore.Qt.WA_MacShowFocusRect, False) self.omnitext.setPlaceholderText("Search ...") self.omnitext.setClearButtonEnabled(True) self.omnitext.setTextMargins(20, 20, 20, 20) self.omnibox.addWidget(self.omnitext) self.layout.addLayout(self.omnibox) # Here I'm going to start with the list of objects from # the history service. This will need to be completely # rejigged in future. # So, a table ... date/time, event, type, details of object. # # The object details will be the tricky bit: objects don't # have to have a name or anything. Perhaps it'd be good for # the type implementation to have a method to get a description # of the object in a type-specific way? self.object_table = QTableWidget(10, 4, self) self.object_table.setHorizontalHeaderLabels(("Date / Time", "Type", "Event", "Object")) self.object_table.verticalHeader().setVisible(False) self.object_table.setContentsMargins(20, 20, 20, 20) for r in range(10): for c in (0, 1, 2, 3): item = QTableWidgetItem() item.setText(["datetime", "type", "event", "description of object"][c]) self.object_table.setItem(r, c, item) self.layout.addWidget(self.object_table) self.setLayout(self.layout) self.hide() self.history = History.api() return def show(self): # FIXME: needs a lot more work here ... # Populate history list self.object_table.clearContents() now = datetime.utcnow() history = self.history.get_events(now, 100, True) r = 0 for event in history: for c in range(4): item = QTableWidgetItem() item.setText([event[0], "type", event[2], event[1]][c]) self.object_table.setItem(r, c, item) r += 1 super().show() return def hide(self): super().hide() return def toggle_visibility(self): """Show if hidden; hide if shown""" if self.isVisible(): self.hide() else: self.show() return class UI(QWidget): def __init__(self, *args): super().__init__(*args) self.factory = ObjectFactory() self.factory_shortcut = QShortcut(QKeySequence("Ctrl+n"), self) self.factory_shortcut.setContext(QtCore.Qt.ApplicationShortcut) self.factory_shortcut.activated.connect(self.on_factory) self.selector = ObjectSelector() self.selector_shortcut = QShortcut(QKeySequence("Ctrl+s"), self) self.selector_shortcut.setContext(QtCore.Qt.ApplicationShortcut) self.selector_shortcut.activated.connect(self.on_selector) flags = QtCore.Qt.WindowFlags(QtCore.Qt.WindowStaysOnBottomHint) self.setWindowFlags(flags) self.showFullScreen() return def contextMenuEvent(self, event): m = QMenu() new_action = m.addAction("New ...") find_action = m.addAction("Find ...") m.addSeparator() logout_action = m.addAction("Logout") quit_action = m.addAction("Shutdown") action = m.exec_(self.mapToGlobal(event.pos())) if action == new_action: self.on_factory() elif action == find_action: self.on_selector() elif action == quit_action: qApp.quit() def on_factory(self, *args): """Display a panel enabling creation of new type instances.""" print("Factory: " + str(args)) if self.factory.isVisible(): self.factory.hide() else: self.factory.show() return def on_selector(self, *args): """Display a panel enabling a search of existing objects.""" print("Selector: " + str(args)) self.selector.toggle_visibility() return def main(): app = QApplication(sys.argv) ui = UI() sys.exit(app.exec_()) if __name__ == "__main__": main()
2.125
2
Scripts/Dealer/CustomThreads/Reconstruction/Reconstruction.py
Sk3pper/AASSS-PoC
0
12784441
<reponame>Sk3pper/AASSS-PoC import threading import os from CustomThreads.groups import MODP2048 from CustomThreads.groups import parametres from CustomThreads.PedersenUtilities.VSS import pedersenVerify from CustomThreads.PedersenUtilities.VSS import pedersenRecover from CustomThreads.PedersenUtilities.VSS import genRand from CustomThreads.aesCustomKey import AES_encrypt, AES_decrypt from CustomThreads.Sharing.Sharing import sharing2Dealer from CustomThreads.Utils.Utils_function import write_data, send_data, readPenultimeLine, readIntPenultimeLine, \ computeCoordinate, split, strToIntList from CustomThreads.Utils.Utils_function import logMsg, logError # load group g2048 = MODP2048() par = parametres() t = g2048.t n = g2048.n CHAR_MSG_SPLIT = par.CHAR_MSG_SPLIT PATH_DATA_USERS = par.PATH_DATA_USERS CHAR_COORD_SPLIT = par.CHAR_COORD_SPLIT WHICH_PHASE = par.WHICH_PHASE FILE_NAME_COMM = par.FILE_NAME_COMM FILE_NAME_SHARE = par.FILE_NAME_SHARE CHAR_DATA_SPLIT = par.CHAR_DATA_SPLIT FILE_NAME_NW_INFORMATION = par.FILE_NAME_NW_INFORMATION FILE_NAME_MC = par.FILE_NAME_MC IP_SHAREHOLDERS = par.IP_SHAREHOLDERS PORT_SHAREHOLDERS = par.PORT_SHAREHOLDERS PORT_EXTERNAL_SERVER = par.PORT_EXTERNAL_SERVER IP_EXTERNAL_SERVER = par.IP_EXTERNAL_SERVER COD200 = par.COD200 # every is went well COD300 = par.COD300 # saved is not went well COD400 = par.COD400 # xi != h(xi) COD450 = par.COD450 # (s_i,t_i) given by DEALER TO SHAREHOLDER is not consistent with commitments COD500 = par.COD500 # (s_i,t_i) given by SHAREHOLDER TO DEALER is not consistent with commitments COD550 = par.COD550 # S' != \overline(S') COD650 = par.COD650 # error in REC-Client MC!=D_k'[MS] COD700 = par.COD700 # error in REC2-Dealer MC_dec != D_k[MC] COD750 = par.COD750 # error in REC2-Dealer D_k'[MS] != MC COD999 = par.COD999 # error in SHA1-ExternalServer COD888 = par.COD888 # error in REC1 ES # NEW CODES COD600 = par.COD600 # user_id is not presetn --> you have to pass to signup before COD600_desc = par.COD600_desc COD800 = par.COD800 # Insufficient shares from shareholders --> check shareholders and xi given from client COD800_desc = par.COD800_desc COD830 = par.COD830 # Some SHAREHOLDERS give to the dealer INCORRECT shares (3) COD830_desc = par.COD830_desc COD850 = par.COD850 # Insufficient correct shares -> too much shareholder that cheated (4) COD850_desc = par.COD850_desc COD860 = par.COD860 # Client is cheating, S' != S' rec COD860_desc = par.COD860_desc COD880 = par.COD880 # Less than n-coordinates from Client COD880_desc = par.COD880_desc COD2000 = par.COD2000 # D_k[MC_given in SHA from client] != preMC --> Client is cheating (7) COD2000_desc = par.COD2000_desc COD2400 = par.COD2400 # MC != D_k[MS] --> ExternalServer is cheating (8) COD2400_desc = par.COD2400_desc COD2600 = par.COD2600 # MC'_from_Client != MC'_from_ExternalServer --> Es or client is cheating (9) COD2600_desc = par.COD2600_desc COD444 = par.COD444 # Generale error COD444_desc = par.COD444_desc DELIM = par.DELIM ################################# # REC1 # ################################# # send the x_i to shareholders and retrive the (s_i,t_i) def request_Shares(abscissa_vect, id_user): # cycling on abscissa_vec # Dealer sends the request to each Shareholder in order to give to it the couple (s_i,t_i) # the request is made with n-thread that wait the data. # The main_th wait that every Shareholder replay and then put togheter the information i = 0 j = 1 th_list = [] for IP in IP_SHAREHOLDERS: # start thread listener connections unicast out_data = "REC" + CHAR_MSG_SPLIT + str(abscissa_vect[i]) + CHAR_DATA_SPLIT + id_user + par.CHAR_DATA_SPLIT + DELIM th = RequestSharesThread(IP, PORT_SHAREHOLDERS, out_data, id_user, j, abscissa_vect[i]) # unicast_conn.setDaemon(True) th.start() th_list.append(th) i += 1 j += 1 for th in th_list: th.join() # At this point we have the replays of each shareholder. # check if we have at least t-shares # (we don't know if are also correct but for the first step we check if there are) shares = [] t_shares = [] error = 0 ip_shareholders = [] coordinates = [] for th in th_list: info = th.getIn_data() ip_shareholders.append(th.getIp()) # info should be CODX||Desc 0r COD200||s_i||t_i data = split(info, CHAR_DATA_SPLIT) if data[0] == COD200: shares.append(data[1]) t_shares.append(data[2]) coordinates.append(th.getCoordinate()) else: shares.append(None) t_shares.append(None) coordinates.append(None) error += 1 print " shares: " + str(shares) print " t_shares: " + str(t_shares) print " ip_shareholders: " + str(ip_shareholders) print " error: " + str(error) return shares, t_shares, coordinates, ip_shareholders, error class RequestSharesThread(threading.Thread): # take host_ip, port to contact, and data to send. # send the request and wait the respond def __init__(self, host_ip, port, out_data, id_user, id, xi): """ :rtype: threading.Thread """ threading.Thread.__init__(self) self.host_ip = host_ip self.port = port self.out_data = out_data self.in_data = '' self.id_user = id_user self.id = id self.xi = xi def run(self): try: # perform the request and wait the respond sh = "Shareholder-" + str(self.id) # From, To, Payload, Phase, id_user logMsg("Dealer", sh, self.out_data, "RECONSTRUCTION", self.id_user) self.in_data = send_data(self.host_ip, self.port, self.out_data) except Exception as e: print "\n General Error: " + str(e) self.in_data = COD444 + CHAR_DATA_SPLIT + COD444_desc # Log error Phase, Actor, CODError, Payload, id_user payload = COD444_desc + str(e) + " IP: "+str(self.host_ip) logError("SHARING", "Dealer", COD444, payload, self.id_user) def getIn_data(self): return self.in_data def getIp(self): return self.host_ip def getCoordinate(self): return self.xi # delete the None information inside these lists def deleteNone(shares, t_shares, coordinates, ip_shareholders): s = [] ts = [] c = [] ips = [] for i in range(0, len(shares)): if (shares[i] is not None) and (t_shares[i] is not None) and (coordinates[i] is not None): s.append(int(shares[i])) ts.append(int(t_shares[i])) c.append(int(coordinates[i])) ips.append(ip_shareholders[i]) print "\n shares: " + str(s) print " t_shares: " + str(ts) print " coordinates: " + str(c) print " ip_shareholders: "+str(ip_shareholders) return s, ts, c, ips def deleteIncorrectShares(check_list_shares, shares, t_shares, coordinates, ip_shareholders): # we have to pass only the correct info c_shares = [] c_coordinates = [] c_t_shares = [] ips = [] for i in range(0, len(shares)): if check_list_shares[i] == True: c_shares.append(shares[i]) c_t_shares.append(t_shares[i]) c_coordinates.append(coordinates[i]) ips.append(ip_shareholders[i]) print "\n c_shares: " + str(c_shares) print " c_t_shares: " + str(c_t_shares) print " c_coordinates: " + str(c_coordinates) print " c_ips: " + str(ips) return c_shares, c_t_shares, c_coordinates, ips def reconstructionDealer1(self, sPrime, abscissa_vect, sSecond, mcPrime, eMS, id_user): print " reconstructionDealer1" path_user = PATH_DATA_USERS + "/" + id_user path_file_comm = path_user + "/" + FILE_NAME_COMM path_file_name = path_user + "/" + FILE_NAME_NW_INFORMATION msg = '' try: # check if the user is already signed-up if os.path.isdir(path_user): if len(abscissa_vect) != n: print " Less than n-coordinates from Client" msg = COD880 + CHAR_DATA_SPLIT + COD880_desc # Log error Phase, Actor, CODError, Payload, id_user logError("RECONSTRUCTION", "Dealer", COD880, COD880_desc, id_user) else: # request (si,ti) to SHAREHOLDERS! shares, t_shares, coordinates, ip_shareholders, error = request_Shares(abscissa_vect, id_user) if error != 0 and (n-error) >= t: print " report the error: we can continue but something is went bad --> deeply understand" m = "someone did not replay: " for i in range(0, len(shares)): if shares[i] is None: m = m + " | " + str(ip_shareholders[i]) # Log error Phase, Actor, CODError, Payload, id_user logError("RECONSTRUCTION", "Dealer", "None", m, id_user) if (n-error) >= t: # read files and extract the informations, take the last penultimate-line, # because the last-line is the \n char Commitments = readIntPenultimeLine(path_file_comm) print " Commitments:" + str(Commitments) # now we have commits and shares we can CHECK if the shares and t-shares are correct through commits check_list_shares = [] shares, t_shares, coordinates, ip_shareholders = deleteNone(shares, t_shares, coordinates, ip_shareholders) Commitments = strToIntList(Commitments) # check the given shares correct_shares = 0 for i in range(0, len(shares)): check_result = pedersenVerify(coordinates[i], shares[i], t_shares[i], Commitments) check_list_shares.append(check_result) if check_result: correct_shares += 1 print " check_list_shares: "+str(check_list_shares) # report the error because some shareholder is compromised if correct_shares != (n-error): # some of the given shares are incorrect print " Log the error for the admin system" msg = COD830 + CHAR_DATA_SPLIT + COD830_desc m = 'who is cheating: ' for i in range(0, len(check_list_shares)): if check_list_shares[i] == False: print " who is cheating: " + str(ip_shareholders[i]) m = m + " | " + str(ip_shareholders[i]) # Log error Phase, Actor, CODError, Payload, id_user payload = COD830_desc + " " + m logError("RECONSTRUCTION", "Dealer", COD830, payload, id_user) # with at least t correct shares we can reconstruct the secret if correct_shares >= t: # reconstruct the secret # take only the CORRECT SHARES in order do rebuild the secret c_shares, c_t_shares, c_coordinates, c_ip_shareholder = deleteIncorrectShares(check_list_shares, shares, t_shares, coordinates, ip_shareholders) recoveredK = pedersenRecover(c_coordinates, c_shares, c_t_shares, Commitments) print "\n recoveredK: " + str(recoveredK) if recoveredK == sPrime: print " secret: " + str(sPrime) + " recoveredK: " + str(recoveredK) + " True" # since the secret given to the user is equal to the reconstructed one we can save the # temporary data like: sSecond, mcPrime, eMS, id_user, # Precalculating also x1',..,xn' coordinate = computeCoordinate() # sSecond||coordinate||mcPrime||eMS data = str(sSecond) + CHAR_DATA_SPLIT + \ coordinate + CHAR_DATA_SPLIT + \ str(mcPrime) + CHAR_DATA_SPLIT + \ eMS + "\n" # flush data write_data(path_file_name, data) # now we have to contact ExternarlServer and send to it: REC1|||eMS||id_user out_data_es = WHICH_PHASE[2] + CHAR_MSG_SPLIT + \ str(eMS) + CHAR_DATA_SPLIT + id_user + par.CHAR_DATA_SPLIT + DELIM # Log the message (From, To, Payload, Phase, id_user) logMsg("Dealer", IP_EXTERNAL_SERVER, out_data_es, "RECONSTRUCTION", id_user) # ExternalServer's replay in_data_es = send_data(IP_EXTERNAL_SERVER, PORT_EXTERNAL_SERVER, out_data_es) if COD200 in in_data_es: print " Now the client can contact the ES" msg = COD200 + CHAR_DATA_SPLIT + str(coordinate) else: print " Something was went wrong in the ES" msg = in_data_es else: print " ERROR, something is went wrong in the pedersenRecover secret: " + str(sPrime) + \ " recoveredK: " + str(recoveredK) + " False" msg = COD860 + CHAR_DATA_SPLIT + COD860_desc else: print " ERROR: less than t CORRECT shares" m = ' who is cheating: ' for i in range(0, len(check_list_shares)): if check_list_shares[i] == False: print " who is cheating: "+str(ip_shareholders[i]) m = m +" | "+ str(ip_shareholders[i]) payload = COD850_desc + m msg = COD850 + CHAR_DATA_SPLIT + COD850_desc # Log error Phase, Actor, CODError, Payload, id_user logError("RECONSTRUCTION", "Dealer", COD850, payload, id_user) else: # less than t-shareholders give us the coordinates print " ERROR: less than t-shareholders give us the coordinates" print " Someone of the SHAREHOLDERS does not reply, discover why: " \ "Client give us the incorrect coordiante?" print " The Shareholder that did not reply are: " m = " The Shareholder that did not reply are: " for i in range(0, len(shares)): if shares[i] is None: print ip_shareholders[i] m = m +" | "+ str(ip_shareholders[i]) payload = COD800_desc + m # Log error Phase, Actor, CODError, Payload, id_user logError("SHARING", "Dealer", COD800, payload, id_user) msg = COD800 + CHAR_DATA_SPLIT + COD800_desc else: print " ERROR: user_id is NOT present. It has to signed-up before" msg = COD600 + CHAR_DATA_SPLIT + COD600_desc # Log error Phase, Actor, CODError, Payload, id_user logError("SHARING", "Dealer", COD600, COD600_desc, self.id_user) except Exception as e: print "\n General Error: " + str(e) msg = COD444 + CHAR_DATA_SPLIT + COD444_desc # Log error Phase, Actor, CODError, Payload, id_user payload = COD444_desc + str(e) logError("SHARING", "Dealer", COD444, payload, id_user) # Log message (From, To, Payload, Phase, id_user) logMsg("Dealer", "Client", msg, "RECONSTRUCTION", id_user) # send back to the Client self.csocket.send((bytes(msg).encode("utf-8"))) print " Client at " + str(self.clientAddress) + " disconnected..." ################################# # REC2 # ################################# def retrieve_info(path_user): # prendo l'informazione di MC dal file MC_information path_file_MC = path_user + "/" + FILE_NAME_MC MC = readPenultimeLine(path_file_MC)[:-len("\n")] print " MC: " + str(MC) # prendo le informazioni nuove dal file new_informations path_file_NW_INFORMATION = path_user + "/" + FILE_NAME_NW_INFORMATION info = split(readPenultimeLine(path_file_NW_INFORMATION), CHAR_DATA_SPLIT) print " info: " + str(info) # model: sSecond||coordinate||mcPrime||eMS sSecond = info[0] coordinate = info[1] mcPrime_fromClient = info[2] eMS = info[3] return MC, sSecond, coordinate, mcPrime_fromClient, eMS def reconstructionDealer2(self, k, kPrime, MS, MC_dec, MC_prime_fromES, id_user): print "\n reconstructionDealer2" path_user = PATH_DATA_USERS + "/" + id_user msg = '' try: if not os.path.isdir(path_user): print " ERROR: user_id is NOT present. It has to signed-up before" msg = COD600 + CHAR_DATA_SPLIT + COD600_desc # Log error Phase, Actor, CODError, Payload, id_user logError("RECONSTRUCTION", "Dealer", COD600, COD600_desc, self.id_user) else: # retrieve the information from the two files: FILE_NAME_MC e FILE_NAME_NW_INFORMATION MC, sSecond, coordinate, mcPrime_fromClient, eMS = retrieve_info(path_user) # compute the 3 checks # check3: mcPrime_fromClient =?= MC_prime_fromES print "\n mcPrime_fromClient: " + mcPrime_fromClient print " MC_prime_fromES: " + MC_prime_fromES if mcPrime_fromClient == MC_prime_fromES: print " mcPrime_fromClient == MC_prime_fromES" # check2: D_k'[MS] =?= MC decrypted_MS = AES_decrypt(kPrime, MS) print "\n decrypted MS: " + decrypted_MS print " MC: " + MC if decrypted_MS == MC: print " decrypted_MS == MC" # check1: MC_dec =?= D_k[MC] decrypted_MC = AES_decrypt(k, MC) print "\n decrypted MC: " + decrypted_MC print " MC_dec: " + MC_dec if decrypted_MC == MC_dec: print " decrypted_MC == MC_dec" print "\n ricostruiamo il segreto!!" # All 3 checks are passed # Save the new value of MC that is MC' path_file_name = path_user + "/" + FILE_NAME_MC data = str(mcPrime_fromClient) + "\n" # flush data write_data(path_file_name, data) # Replace S' with S'' but this time the coordinates are fixed # set the information and call sharing SHA2 coordinate = split(coordinate, CHAR_COORD_SPLIT) print " informations passed to sharing2Dealer:" + \ "\n sSecond: " + str(sSecond) + \ "\n id_user: " + str(id_user) + \ "\n coordinate: " + str(coordinate) coordinate = strToIntList(coordinate) # Start the sharing phase SHA2 sharing2Dealer(None, int(sSecond), id_user, abscissa_vector=coordinate) msg = COD200 else: print " decrypted_MC != MC_dec" msg = COD2000 + CHAR_DATA_SPLIT + COD2000_desc # Log error Phase, Actor, CODError, Payload, id_user logError("RECONSTRUCTION", "Dealer", COD2000, COD2000_desc, id_user) else:# error 8 print " decrypted_kPrime_MS != MC" msg = "decrypted_kPrime_MS != MC" msg = COD2400 + CHAR_DATA_SPLIT + COD2400_desc # Log error Phase, Actor, CODError, Payload, id_user logError("RECONSTRUCTION", "Dealer", COD2400, COD2400_desc, self.id_user) else: # error 9 print " mcPrime_fromClient != MC_prime_fromES" msg = COD2600 + CHAR_DATA_SPLIT + COD2600_desc # Log error Phase, Actor, CODError, Payload, id_user logError("RECONSTRUCTION", "Dealer", COD2600, COD2600_desc, self.id_user) except Exception as e: print "\n General Error: " + str(e) msg = COD444 + CHAR_DATA_SPLIT + COD444_desc # Log error Phase, Actor, CODError, Payload, id_user payload = COD444_desc + str(e) logError("RECONSTRUCTION", "Dealer", COD444, payload, id_user) self.csocket.send((bytes(msg).encode("utf-8"))) print " Client at " + str(self.clientAddress) + " disconnected..."
1.789063
2
parallelism.py
JNY0606/parallelismForAllLang
3
12784442
import multiprocessing as p import time def doit(): ''' check CPU parallelism while True: pass #''' time.sleep(1) print('並行') count=0 def main(): def listener(x): global count count+=1 time.sleep(1) print(count) threads=5 pool=p.Pool() for i in range(threads): pool.apply_async(doit, callback=listener) # ''' while threads!=count: time.sleep(1) #''' main()
3.125
3
vega/language/types.py
philippwiesner/compiler
0
12784443
"""Vega language types Representation of vega variable types The following variable types are defined here: Basic Types: INT, FLOAT, CHAR, BOOL Complex Types: Array, String """ from typing import List from vega.language.token import Tag from vega.language.token import Word class Type(Word): """Simple type Simple or basic variable types are integers, floating point numbers, chars or boolean values. Each of them can be created after reading the correct keyword and uses a pre defined amount of memory space. """ def __init__(self, var_type: str, tag: Tag, width: int) -> None: """Create new variable type Args: var_type: variable type tag: type tag (used to differ between basic and more complex types) width: memory width """ super().__init__(var_type, tag) self.__width: int = width @property def width(self) -> int: """Width property Returns: memory width of type """ return self.__width INT = Type("int", Tag.BASIC, 4) FLOAT = Type("float", Tag.BASIC, 8) CHAR = Type("char", Tag.BASIC, 1) BOOL = Type("bool", Tag.BASIC, 1) class Array(Type): """Array type Arrays are a more complex type as they are defined by a basic type and a size of number of elements to be stored in the array. Arrays can also be nested. """ def __init__(self, var_type: Type, **kwargs) -> None: """Create new array When a new array is created the size of the array is stored alongside the amount of memory to be allocated for storing the number of elements of the array type. For nested elements each array size is stored in a list to be able to compare nested arrays with each other. Args: var_type: array type (basic types, another array) **kwargs: size of the array """ self.__size: int = kwargs.get('size', 0) self.__dimensions: List = [self.__size] self.__type: Type = var_type if isinstance(var_type, Array): self.__dimensions = var_type.dimensions + self.__dimensions self.__type = var_type.type super().__init__('[]', Tag.INDEX, self.__size * var_type.width) @property def dimensions(self) -> List: """Dimension property Returns: list of array dimensions """ return self.__dimensions @property def type(self) -> Type: """Array type property Returns: basic array type (INT, CHAR, BOOL, FLOAT) """ return self.__type def __repr__(self) -> str: return f'{self.__class__.__name__}({self.type}{self.dimensions!r})' def __str__(self) -> str: return f'{self.type}{self.dimensions}' class String(Array): """String Type Basically Strings are just char arrays. Therefore we only create a new array with the CHAR base type. """ def __init__(self, **kwargs): """Create char array""" super().__init__(CHAR, **kwargs)
3.984375
4
intro_to_machine_learning/lesson/lesson_3_decision_trees/classifyDT.py
robinl3680/udacity-course
68
12784444
# -*- coding: utf-8 -*- """ Created on Sat Nov 29 18:17:51 2014 @author: tvu """ def classify(features_train, labels_train): ### your code goes here--should return a trained decision tree classifer from sklearn import tree clf = tree.DecisionTreeClassifier() clf = clf.fit(features_train, labels_train) return clf
3.359375
3
scripts/bam2species_map.py
861934367/cgat
0
12784445
<gh_stars>0 '''bam2species_map.py ============================================= :Author: <NAME> :Release: $Id$ :Date: |today| :Tags: Python Purpose ------- Produce a mapping txt file between contigs a species based on aligned reads. Usage ----- Example:: python bam2species_map.py --help Type:: python bam2species_map.py --help for command line help. Documentation ------------- This script would be used as a pre-step to using contigs2random_sample.py. It provides a mapping between contigs and species that are represented in those contigs i.e. in a metagenomic simulation study the majority species for a contig will be returned with the contig. Command line options -------------------- ''' import sys import optparse import pysam import collections import CGAT.Experiment as E import CGAT.FastaIterator as FastaIterator def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if not argv: argv = sys.argv # setup command line parser parser = optparse.OptionParser(version="%prog version: $Id: script_template.py 2871 2010-03-03 10:20:44Z andreas $", usage=globals()["__doc__"]) parser.add_option("-b", "--bam-file", dest="bamfile", type="string", help="supply bam file") # add common options (-h/--help, ...) and parse command line (options, args) = E.Start(parser, argv=argv) # read in contigs E.info("reading in contig file") contigs = {} for fasta in FastaIterator.iterate(options.stdin): contigs[fasta.title] = (1, len(fasta.sequence) - 1) E.info("read %i contigs" % len(contigs.keys())) # read in bamfile E.info("reading bam file") samfile = pysam.Samfile(options.bamfile) E.info("iterating over contigs") c = 0 for contig, coords in contigs.iteritems(): coords = list(coords) ################################# # NB this is specific for my data! contig = contig.split(" ")[0] ################################# species_counts = collections.defaultdict(int) for alignment in samfile.fetch(contig, coords[0], coords[1]): species_id = alignment.qname.split("|")[1] species_counts[species_id] += 1 # at the moment ignore if there are no counts if len(species_counts.values()) == 0: E.warn("no reads map to %s" % contig) continue for species, count in species_counts.iteritems(): if species_counts[species] == max(species_counts.values()): top_dog = species c += 1 break E.info("species %s assigned to contig number %i" % (top_dog, c)) options.stdout.write("%s\t%s\n" % (contig, top_dog)) # write footer and output benchmark information. E.Stop() if __name__ == "__main__": sys.exit(main(sys.argv))
3
3
bmsAccumulator.py
clean-code-craft-tcq-1/function-ext-python-UtkrshGupta
0
12784446
<reponame>clean-code-craft-tcq-1/function-ext-python-UtkrshGupta from bmsConstants import bms_multilingual_logs_status_heading from bmsConstants import bms_multilingual_logs import bmsGlobalParam as bgp def accumulateLogs(bms_error_report, log_mode): if log_mode == 'on': bms_log_report(bms_error_report) def bms_log_report(bms_error_report): if len(bms_error_report) == 0: print(bms_multilingual_logs_status_heading[bgp.language][0]+'\n') else: for param_name, param_value in zip(bms_error_report.keys(), bms_error_report.values()): printLog(param_name, param_value) print('\n') def printLog(param_name,param_value): log_key = list(bms_multilingual_logs[bgp.language].keys()) if param_value[0] == log_key[0]: print('\033[31m' + '{}'.format(param_value[0]) + '\033[m' + ' : {} -> {}'.format(param_name,param_value[1])) elif param_value[0] == log_key[1]: print('\033[32m' + '{}'.format(param_value[0]) + '\033[m' + ' : {} -> {}'.format(param_name,param_value[1]))
2.390625
2
frag_pele/Analysis/compute_atom_atom_distance.py
danielSoler93/FrAG_PELE
26
12784447
<gh_stars>10-100 import glob import os import argparse import joblib import mdtraj as md import pandas as pd def parseArguments(): """ Parse the command-line options :returns: str, int, int -- path to file to results folder, index of the first atom, index of the second atom """ desc = "It includes the atom-atom distance of the specified ones to report files\n" parser = argparse.ArgumentParser(description=desc) required_named = parser.add_argument_group('required named arguments') required_named.add_argument("sim_folder", type=str, help="Path to the simulation results.") required_named.add_argument("-a", "--atoms", type=int, nargs='+', action='append', help="List of pairs of indexes with atoms to compute the distance between them.") parser.add_argument("-t", "--traj", default="trajectory_", help="Trajectory file prefix.") parser.add_argument("-r", "--rep", default="report_", help="Report file prefix.") parser.add_argument("-p", "--proc", type=int, default=4, help="Number of processors to paralellize the computation.") args = parser.parse_args() return args.sim_folder, args.atoms, args.traj, args.rep, args.proc def compute_atom_atom_dist(infile, atoms_list): distances = [] names = [] traj = md.load_pdb(infile) print(atoms_list) for at_pair in atoms_list: name ="{}-{}".format(traj.topology.atom(at_pair[0]), traj.topology.atom(at_pair[1])) distance = md.compute_distances(traj, [at_pair]) distances.append(distance) names.append(name) return distances, names def compute_distances_from_report(atomlist, report, trajectory): distances, colnames = compute_atom_atom_dist(trajectory, atomlist) new_lines = [] with open(report) as rep: rep_lines = rep.readlines() rep_lines = [x.strip("\n") for x in rep_lines] for ind, line in enumerate(rep_lines): new_content = list(line.split(" ")) if new_content[-1] == '': new_content = new_content[:-1] if ind == 0: for colname in colnames: new_content.append(colname) else: for dist in distances: value = "{:.3f}".format(dist[ind-1][0]*10) new_content.append(value) new_line = " ".join(new_content) new_lines.append(new_line) new_report = "\n".join(new_lines) new_rep_name = report.split("/") new_rep_name[-1] = "dist" + new_rep_name[-1] new_rep_name = "/".join(new_rep_name) with open(new_rep_name, "w") as out: out.write(new_report) print("{} completed".format(new_rep_name)) def compute_simulation_distance(sim_folder, atomlist, traj_pref="trajectory_", report_pref="report_", processors=4): trajectories = sorted(glob.glob("{}*".format(os.path.join(sim_folder, traj_pref)))) reports = sorted(glob.glob("{}*".format(os.path.join(sim_folder, report_pref)))) joblib.Parallel(n_jobs=processors)(joblib.delayed(compute_distances_from_report)(atomlist, report, traj) for report, traj in zip(reports, trajectories)) if __name__ == '__main__': sim_fold, atom_list, traj, report, processors = parseArguments() compute_simulation_distance(sim_fold, atom_list, traj, report, processors)
2.734375
3
Statistics/zscore.py
ankit-kushwaha-51/calculatorHw-1
0
12784448
<gh_stars>0 from Statistics.PopulationSD import population_standard_deviation def zscore(datapoint, a, b, c, d, e, f): try: datapoint = float(datapoint) a = float(a) b = float(b) c = float(c) d = float(d) e = float(e) f = float(f) data = [] data.append(a) data.append(b) data.append(c) data.append(d) data.append(e) data.append(f) sum = a+b+c+d+e+f mean = sum/len(data) sd = population_standard_deviation(a,b,c,d,e,f) result = (datapoint-mean)/sd return result except ZeroDivisionError: print("Cannot divide by zero") except ValueError: print("Numbers are not valid")
3.1875
3
setup.py
jpetrucciani/python-duckduckgo
6
12784449
<filename>setup.py """ pip setup.py for ddg3 """ from setuptools import setup __library__ = "ddg3" __version__ = "VERSION" with open("README.md") as readme: LONG_DESCRIPTION = readme.read() with open("requirements.txt") as requirements: INSTALL_REQUIRES = requirements.read().split("\n") INSTALL_REQUIRES = [x.strip() for x in INSTALL_REQUIRES if x.strip()] setup( name=__library__, version=__version__, py_modules=["ddg3"], description="Library for querying the Duck Duck Go API, updated for python3", long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", author="<NAME>, <NAME>", author_email="<EMAIL>", license="BSD", url="https://github.com/jpetrucciani/python-duckduckgo", platforms=["any"], install_requires=INSTALL_REQUIRES, classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Internet :: WWW/HTTP :: Indexing/Search", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], entry_points={"console_scripts": ["ddg3 = ddg3:main"]}, )
1.6875
2
inxs/contrib.py
Balletie/inxs
0
12784450
<reponame>Balletie/inxs """ This module contains transformations that are supposedly of common interest. """ from lxml import etree from inxs import ( TRAVERSE_DEPTH_FIRST, TRAVERSE_BOTTOM_TO_TOP, TRAVERSE_LEFT_TO_RIGHT, lib, utils, Not, Rule, SkipToNextElement, Transformation, ) __all__ = [] # reduce_whitespaces def _reduce_whitespace_handler(element): if element.text: element.text = utils.reduce_whitespaces(element.text, strip='') if element.tail: element.tail = utils.reduce_whitespaces(element.tail, strip='') reduce_whitespaces = Transformation( Rule('*', _reduce_whitespace_handler) ) """ Normalizes any whitespace character of element's text and tail to a simple space and reduces consecutives to one. """ __all__.append('reduce_whitespaces') # remove_empty_elements def _append_tail_to_previous_in_stream(element, skip_elements): if etree.QName(element).localname in skip_elements: raise SkipToNextElement if not element.tail: return previous = element.getprevious() if previous is None: element.getparent().text += element.tail elif previous.tail is None: previous.tail = element.tail else: previous.tail += element.tail remove_empty_elements = Transformation( Rule(Not(lib.has_children, lib.has_text, lib.has_attributes, '/'), (_append_tail_to_previous_in_stream, lib.remove_element)), name='remove_empty_elements', context={'skip_elements': []}, traversal_order=( TRAVERSE_DEPTH_FIRST | TRAVERSE_LEFT_TO_RIGHT | TRAVERSE_BOTTOM_TO_TOP ) ) """ Removes elements without attributes, text, tail and children from the (sub-)tree. """ __all__.append('remove_empty_elements')
2.328125
2