max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
bigdatacloudapi/client.py
robertreist/python-api-client
6
12784951
<gh_stars>1-10 import requests import re import json class Client: def __init__( self, apiKey, nameSpace='data', server='api.bigdatacloud.net' ): self.apiKey=apiKey self.nameSpace=nameSpace self.server=server def __getattr__(self,p): def mm(params): def conversion(m): return "-"+m.group(1).lower() key = re.sub('([A-Z])',conversion,p) segs = key.split('-') method = segs.pop(0).upper() return self.communicate('-'.join(segs),method,params) return mm def communicate(self,endpoint,method,payload): url='https://'+self.server+'/'+self.nameSpace+'/'+endpoint headers={'X-BDC-Key':self.apiKey} if (method=='POST' or method=='PUT' or method=='PATCH'): headers['content-type']='application/x-www-form-urlencoded' r=getattr(requests,method.lower())(url,headers=headers,params=payload,data=payload) return [r.json(),r.status_code]
2.765625
3
BoManifolds/pymanopt_addons/tools/autodiff/__init__.py
NoemieJaquier/GaBOtorch
21
12784952
from ._theano import TheanoBackend from ._autograd import AutogradBackend from ._tensorflow import TensorflowBackend from ._pytorch import PytorchBackend __all__ = ["AutogradBackend", "PytorchBackend", "TensorflowBackend", "TheanoBackend"]
1.296875
1
pylps/plan.py
astraldawn/pylps
1
12784953
<gh_stars>1-10 import copy from collections import deque from ordered_set import OrderedSet from pylps.config import CONFIG from pylps.constants import * from pylps.utils import * class Proposed(object): def __init__(self): self._actions = OrderedSet() self._fluents = OrderedSet() def __repr__(self): ret = "Proposed Actions: %s\n" % (str( [a for a in self._actions if a.BaseClass is ACTION])) ret += "Proposed Fluents: %s\n" % (str(self._fluents)) return ret def __eq__(self, other): return self._to_tuple() == other._to_tuple() def __hash__(self): return hash(self.to_tuple()) def to_tuple(self): return ( tuple(a.to_tuple() for a in self.actions), tuple(f.to_tuple() for f in self.fluents), ) @property def actions(self): return self._actions def add_action(self, action): self._actions.add(action) def add_actions(self, actions): self._actions.update(actions) def clear_actions(self): self._actions = OrderedSet() @property def fluents(self): return self._fluents def add_fluent(self, fluent): self._fluents.add(fluent) def clear_fluents(self): self._fluents = OrderedSet() def reset(self): self.clear_actions() self.clear_fluents() class Solution(object): def __init__(self, proposed: Proposed, states): self._proposed = proposed self._states = states self._solved = 0 self._process() def __repr__(self): ret = "Solution\n" ret += "Solved: %s\n" % (self.solved) ret += "States: %s\n" % (str(self.states)) return ret def __eq__(self, other): return self.proposed == other.proposed def __hash__(self): return hash(self.proposed) @property def proposed(self): return self._proposed @property def states(self): return self._states @property def solved(self): return self._solved def add_state(self, state): self._states.append(state) if state.result is G_SOLVED: self._solved += 1 def _process(self): for state in self.states: if state.result is G_SOLVED: self._solved += 1 class Plan(object): def __init__(self, goals=[], subs={}, proposed=Proposed(), from_reactive=False, result=G_NPROCESSED): self._goals = deque(goals) self._subs = subs self._proposed = proposed self._temporal_used = False self._goal_pos = 0 self._result = result self._counter = 0 self._reactive_id = None self.reactive_only = True if from_reactive: self._reactive_id = CONFIG.reactive_id CONFIG.reactive_id += 1 def __repr__(self): ret = "STATE\n" ret += "Reactive ID %s\n" % self.reactive_id ret += "Goal pos: %s Result: %s Reactive only: %s\n" % ( str(self.goal_pos), self.result, self.reactive_only) for item, goal in enumerate(self.goals): t_goal = goal if isinstance(goal, tuple): t_goal = goal[0] if t_goal.BaseClass is ACTION: r_goal = reify_action(t_goal, self.subs) else: r_goal = reify_obj_args(t_goal, self.subs) ret += "Goal %d\n" % (item) ret += "N%d: %s\nR%d: %s\n" % (item, str(goal), item, str(r_goal)) ret += "Subs:\n" for item in self.subs.items(): ret += str(item) + '\n' ret += "Temporal used: %s\n" % self._temporal_used ret += "Counter %s\n" % self._counter ret += "%s\n" % (str(self._proposed)) return ret # IDENTITY @property def reactive_id(self): return self._reactive_id # COMPARISON def __eq__(self, other): return self.to_tuple() == other.to_tuple() def __hash__(self): return hash(self.to_tuple()) def to_tuple(self): convert = tuple(goal for goal in self.goals) + \ tuple((sub, val) for sub, val in self.subs.items()) # convert = tuple(goal for goal in self.goals) return convert @property def actions(self): return self._proposed.actions def add_action(self, action): self._proposed.add_action(action) def clear_actions(self): self._proposed.clear_actions() @property def counter(self): return self._counter @property def fluents(self): return self._proposed.fluents def add_fluent(self, fluent): self._proposed.add_fluent(fluent) def clear_fluents(self): self._proposed.clear_fluents() @property def goals(self): return self._goals def replace_event(self, event, outcome, reqs): # Workaround for now n_reqs = [] for req in reqs: if isinstance(req, tuple): n_reqs.append(req) else: n_reqs.append((req, outcome)) new_goals = deque() for goal in self.goals: goal_obj = goal if isinstance(goal, tuple): goal_obj = goal[0] if goal_obj == event: new_goals.extend(n_reqs) # REMOVED_DEEPCOPY if CONFIG.experimental: goal_obj.completed = True new_goals.append(goal) # handle the event continue new_goals.append(goal) self._goals = new_goals # Reduce due to the replacement self._goal_pos -= 1 def add_to_goals(self, goal): self._goals.appendleft(goal) # REMOVED_DEEPCOPY def compress(self, cpos=0): # cpos = self._goal_pos for i in range(self._goal_pos - cpos): self._goals.popleft() self._goal_pos = cpos @property def goal_pos(self): return self._goal_pos def get_next_goal(self, reactive=False): try: cur_goal = self.goals[self.goal_pos] self._goal_pos += 1 return cur_goal except IndexError: return None @property def subs(self): return self._subs def update_subs(self, subs): self._subs.update(subs) @property def result(self): return self._result def set_result(self, new_result): self._result = new_result @property def temporal_used(self): return self._temporal_used def set_temporal_used(self, new_temporal_used): self._temporal_used = new_temporal_used def temporal_used_true(self): self._temporal_used = True
2.671875
3
machine_learning/Preprocessing.py
jbofill10/House-Prices-Kaggle-Competition
1
12784954
<reponame>jbofill10/House-Prices-Kaggle-Competition<gh_stars>1-10 from sklearn.preprocessing import RobustScaler import pandas as pd def preprocess(train_test_df, train_df, test_df): train_test_encoded = pd.get_dummies(train_test_df) train_encoded = train_test_encoded.iloc[:len(train_df)] test_encoded = train_test_encoded.iloc[len(test_df)+1:] print(train_encoded.shape) print(test_encoded.shape) scaler = RobustScaler() train_scaled = scaler.fit_transform(train_encoded) test_scaled = scaler.transform(test_encoded) return train_scaled, test_scaled
3.15625
3
saleor/product/urls.py
YunazGilang/saleor-custom
2
12784955
from django.conf.urls import url from . import views urlpatterns = [ url(r'^(?P<slug>[a-z0-9-_]+?)-(?P<product_id>[0-9]+)/$', views.product_details, name='details'), url(r'^category/(?P<path>[a-z0-9-_/]+?)-(?P<category_id>[0-9]+)/$', views.category_index, name='category'), url(r'^brand/(?P<path>[a-z0-9-_/]+?)-(?P<brand_id>[0-9]+)/$', views.brand_index, name='brand'), url(r'^tags/(?P<path>[a-z0-9-_/]+?)-(?P<tag_id>[0-9]+)/$', views.tags_index, name='tags'), url(r'^tags/render/$', views.tags_render, name='tags_render'), url(r'^sale/$', views.get_all_discounted_product, name='sale_product'), url(r'^sale/render/$', views.render_discounted_product, name='sale_render'), url(r'(?P<product_id>[0-9]+)/similar/$', views.render_similar_product, name="similar-products"), url(r'(?P<product_id>[0-9]+)/similar/all/$', views.all_similar_product, name="all-similar-products"), url(r'(?P<product_id>[0-9]+)/similar/all/render/$', views.render_all_similar_product, name="render-all-similar-products"), url(r'^recommendation/all/$', views.all_recommendation, name="all-recommended-products"), url(r'^recommendation/all/render/$', views.get_render_all_recommendation, name="render-all-recommended-products"), url(r'(?P<slug>[a-z0-9-_]+?)-(?P<product_id>[0-9]+)/add/$', views.product_add_to_cart, name="add-to-cart"), url(r'^collection/(?P<slug>[a-z0-9-_/]+?)-(?P<pk>[0-9]+)/$', views.collection_index, name='collection')] api_urlpatterns = [ url(r'^product/similar/(?P<product_id>[0-9]+)/$', views.get_similar_product, name='similarproduct'), url(r'^update/rating/$', views.update_product_rating, name='update_rating'), url(r'^recommender/arc/(?P<mode>[a-z0-9-_/]+?)/(?P<limit>[0-9]+)/$', views.get_arc_recommendation, name='arcrecommendaion'), url(r'^recommendation/hybrid/$', views.get_recommendation, name='hybridrecommendation'), url(r'^recommendation/partial/render/$', views.render_recommendation, name='renderhomerecommendation'), url(r'^recommendation/evaluate/$', views.evaluate_recommendation, name="evaluate_recommendation"), ]
1.96875
2
distributed_social_network/posts/migrations/0005_auto_20190327_0252.py
leevtori/CMPUT404-project
0
12784956
<gh_stars>0 # Generated by Django 2.1.7 on 2019-03-27 02:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('posts', '0004_auto_20190317_2154'), ] operations = [ migrations.AlterField( model_name='post', name='categories', field=models.ManyToManyField(blank=True, to='posts.Categories'), ), ]
1.484375
1
python-news_aggregator/tests/libs/feed_utils_test.py
hanakhry/Crime_Admin
0
12784957
import unittest from jarr.controllers.feed_builder import FeedBuilderController as FBC from jarr.lib.enums import FeedType class ConstructFeedFromTest(unittest.TestCase): @property def jdh_feed(self): return {'icon_url': 'https://www.journalduhacker.net/assets/jdh-ico-31' '1c23d65a3a9928889718838e2626c0665d83712d488713c9a' '6c2ba2c676c0e.ico', 'link': 'https://www.journalduhacker.net/rss', 'links': ['https://www.journalduhacker.net/rss', 'https://www.journalduhacker.net/comments.rss'], 'site_link': 'https://www.journalduhacker.net/', 'title': 'Journal du hacker', 'feed_type': FeedType.classic} def test_url(self): jh = FBC('https://www.journalduhacker.net/').construct() self.assertEqual(self.jdh_feed, jh) def test_url_non_https(self): jh = FBC('http://journalduhacker.net/').construct() self.assertEqual(self.jdh_feed, jh) def test_url_rss(self): jdh_feed = self.jdh_feed jh = FBC('http://journalduhacker.net/rss').construct() self.assertEqual(jdh_feed, jh) def test_joies_du_code(self): self.maxDiff = None joi = FBC('https://lesjoiesducode.fr/feed').construct() joi.pop('icon_url') self.assertEqual( {'feed_type': FeedType.classic, 'link': 'https://lesjoiesducode.fr/feed', 'site_link': 'https://lesjoiesducode.fr', 'title': 'Les Joies du Code – Humour de développeurs ' ': gifs, memes, blagues'}, joi) def test_apod_from_site(self): nasa = FBC('http://apod.nasa.gov/').construct() self.assertEqual( {'icon_url': 'https://apod.nasa.gov/favicon.ico', 'feed_type': FeedType.classic, 'site_link': 'https://apod.nasa.gov/apod/astropix.html', 'title': 'Astronomy Picture of the Day'}, nasa) def test_apod_from_feed(self): nasa = FBC('http://apod.nasa.gov/apod.rss').construct() self.assertEqual( {'description': 'Astronomy Picture of the Day', 'feed_type': FeedType.classic, 'icon_url': 'https://apod.nasa.gov/favicon.ico', 'link': 'https://apod.nasa.gov/apod.rss', 'site_link': 'https://apod.nasa.gov/', 'title': 'APOD'}, nasa) def test_reddit_from_site(self): reddit = FBC('https://www.reddit.com/r/france/').construct() self.assertEqual({ 'description': 'La France et les Français.', 'feed_type': FeedType.reddit, 'icon_url': 'https://www.redditstatic.com/desktop2x/' 'img/favicon/android-icon-192x192.png', 'site_link': 'https://www.reddit.com/r/france/', 'link': 'https://www.reddit.com/r/france/.rss', 'title': 'France'}, reddit) def test_reddit_from_feed(self): reddit = FBC('https://www.reddit.com/r/france/.rss').construct() self.assertEqual( {'description': 'La France et les Français.', 'feed_type': FeedType.reddit, 'icon_url': 'https://www.redditstatic.com/desktop2x/' 'img/favicon/android-icon-192x192.png', 'link': 'https://www.reddit.com/r/france/.rss', 'site_link': 'https://www.reddit.com/r/france/', 'title': 'France'}, reddit) def test_instagram(self): insta = FBC('http://www.instagram.com/jaesivsm/').construct() self.assertEqual('jaesivsm', insta['link']) self.assertEqual(FeedType.instagram, insta['feed_type']) def test_twitter(self): feed = FBC('http://twitter.com/jaesivsm/').construct() self.assertEqual('jaesivsm', feed['link']) self.assertEqual(FeedType.twitter, feed['feed_type']) def test_soundcloud(self): soundcloud = FBC('//soundcloud.com/popotes-podcast/').construct() self.assertEqual({ 'feed_type': FeedType.soundcloud, 'icon_url': 'https://a-v2.sndcdn.com/assets/' 'images/sc-icons/favicon-2cadd14bdb.ico', 'link': 'popotes-podcast', 'site_link': 'https://soundcloud.com/popotes-podcast/', 'title': 'SoundCloud'}, soundcloud) def test_youtube(self): yt_channel = 'www.youtube.com/channel/UCOWsWZTiXkbvQvtWO9RA0gA' feed = FBC(yt_channel).construct() self.assertEqual(FeedType.classic, feed['feed_type']) self.assertEqual('https://www.youtube.com/feeds/videos.xml' '?channel_id=UCOWsWZTiXkbvQvtWO9RA0gA', feed['link']) self.assertEqual('BenzaieLive', feed['title']) def test_json(self): feed = FBC('https://daringfireball.net/feeds/json').construct() self.assertEqual({'feed_type': FeedType.json, 'icon_url': 'https://daringfireball.net/' 'graphics/favicon-64.png', 'link': 'https://daringfireball.net/feeds/json', 'links': ['https://daringfireball.net/feeds/main', 'https://daringfireball.net/feeds/json'], 'site_link': 'https://daringfireball.net/', 'title': 'Daring Fireball'}, feed)
2.46875
2
data_structures/tree.py
claudiogar/learningPython
0
12784958
class Tree: def __init__(self, value): self.rootValue = value self.children = [] pass def addChild(self, value): node = Tree(value) self.children.append(node) return node def removeChild(self, node): for subChild in node.children: self.children.append(subChild) self.children.remove(node) pass def getChildren(self): return self.children def countNodes(self): sum = 1 for child in self.getChildren(): sum = sum + child.countNodes() return sum def depth(self): if len(self.children) == 0 : return 1 max = 0 for child in self.children: depth = 1 + child.depth() if depth > max: max = depth return max def __str__(self) -> str: s = self.rootValue s = str(s)+ '\n' for child in self.children: print(child.rootValue) s = s+child.__str__() return s
3.765625
4
mcse/libmpi/check.py
manny405/mcse
5
12784959
<reponame>manny405/mcse # -*- coding: utf-8 -*- import os,shutil from mcse.io import read,write from mcse.io import check_dir,check_struct_dir from mcse.libmpi.base import _NaiveParallel from mpi4py import MPI def null_check_fn(struct_path): """ Checking Structure from input directory will always return False. """ return False def check_properties(struct_path, key="RSF"): """ Basic check function. Check functions take a path as the first argument followed by any number of keyword arguments that may change the behavior of the check function. The function will return True or False. This will indicate whether the structure needs to be calculated or not. """ struct = read(struct_path) if struct.properties.get(key): return True else: return False class Check(_NaiveParallel): """ SUMMARY: - USE FOR RESTARTABLE MPI PARALLELIZED ANALYSIS OF STRUCTURES. - USE TO PERFORM PARALLEL IO, DECREASING THE TIME TO CHECK IF CALCULATIONS HAVE COMPLETED FOR LARGE NUMBERS OF CALCULATIONS. Results for simple test of parallel io scaling for setting up calculations for 50 structures: Cores Time x100 Iterations 1 11.13 2 6.367 3 4.982 4 3.987 5 3.664 6 3.704 cores = [1,2,3,4,5,6] time = [11.13, 6.367, 4.982, 3.987, 3.664, 3.704] optimal = [11.13, 5.565, 3.71, 2.7825, 2.226, 1.855] Results for simple test of parallel io scaling for setting up calculations for 5000 structures: Cores Time x5 Iterations 1 66.714 2 43.423 3 26.495 4 22.245 5 19.183 6 18.175 cores = [1,2,3,4,5,6] time = [66.714, 43.423, 26.495, 22.245, 19.183, 18.175] optimal = [66.6714, 33.3357, 22.2238, 16.66785, 13.33428, 11.1119] Large, parallel analysis may get interrupted unexpectedly. The advantage of using this function is that it will enable the ability to check in parallel what structures have been calculated and what still needs to be done if the analysis is very large. The function may also be used to check if larger calculations, such as FHI-aims calculations, have been completed or need to be restarted. Basic operation is as follows: - There is a structure directory that you would like to perform a calculation on. - The calculation will be performed in a temporary calculation directory. - The results from the calculation will be written to an output directory. This directory can be the same as the input structure directory by overwriting the original files with the new information. Arguments --------- struct_dir: str Path to the directory of structures to use. output_dir: str Path to the directory to place finished structures file_format: str File format for writing resulting structures. calc_dir: str Path to the directory where calculations should take place. check_fn: callable(path, **check_fn_kw) Callable function that takes in the path as the first argument and then any keyword arguments the user would like to provide. check_fn_kw: dict Dictionary of the keyword functions to pass to check_fn calculator: callable(Structure, **calculator_kw) If the user would like to use the check function to also initialize or perform a calculation, a calculator can be set. calculator_kw: dict If keywork arguments to the dictionary need to be passed in at runtime, this can be done with this argument. TODO: CHANGE THE CHECK_FN TO JUST A CLASS THAT TAKES IN THE STRUCTURE AND RETURNS THE TRUE OR FALSE. THIS IS MUCH MORE FLEXIBLE. """ def __init__(self, struct_dir, output_dir="", file_format="json", calc_dir = "temp", check_fn=check_properties, check_fn_kw={"key": "RSF"}, calculator=None, calculator_kw={}, comm=None, ): if comm == None: comm = MPI.COMM_WORLD self.comm = comm self.size = comm.Get_size() self.rank = comm.Get_rank() self.struct_dir = struct_dir ## Make sure that struct_dir is a proper structure directory if not check_struct_dir(self.struct_dir): raise Exception("Input {} was not recogized ".format(struct_dir)+ "as a valid structure directory.") if len(output_dir) == 0: self.output_dir = self.struct_dir else: self.output_dir = output_dir self.file_format = file_format self.calc_dir = calc_dir self.check_fn = check_fn self.check_fn_kw = check_fn_kw self.calculator = calculator self.calculator_kw = calculator_kw ## Setup calc and output dir if they don't already exist if self.comm.rank == 0: check_dir(self.calc_dir) check_dir(self.output_dir) self.comm.Barrier() ## Storage self.my_files = [] def calc(self): """ Main function that manages checking of the struct_dir and calc_dir """ ## Start by building list of files that this rank needs to calculate self.my_files = self.get_files(self.struct_dir) self.construct_filename_dict() ## Check to see what's already in the output dir self.check_dir(self.output_dir, move=False) ## Reconstruct filename_dict with modified my_files self.construct_filename_dict() ## Check if anything is finished from calc_dir that should be moved ## to the output dir. Otherwise, since it is already in the calc ## directory, then should be removed from self.my_files as to not ## overwrite anything in the calc_dir self.check_dir(self.calc_dir, delete=True, move=True) ## Reconstruct filename_dict with modified my_files self.construct_filename_dict() ## Now setup files for calculation in the calc_dir self.setup_calc() self.comm.Barrier() ## And calculate if calculator was attached self.calculate() def construct_filename_dict(self): ## Create dict for fast checking and indexing purposes my_file_names = [] for file in self.my_files: s = read(file) my_file_names.append(s.struct_id) self.my_filename_dict = {} self.my_filename_dict.update( zip(my_file_names, [idx for idx in range(len(my_file_names))])) def calculate(self): """ Simple calculate function using mcse style calculators. In addition, the calculator could be as simple as creating a Slurm submission script and submitting it. """ if self.calculator != None: ## Get files for calc_dir self.my_files = self.get_files(self.calc_dir) for calc_dir in self.my_files: s = read(calc_dir) if len(s) == 1: struct = [x for x in s.values()][0] self.calculator.calc(struct) self.calculator.write(self.output_dir, file_format=self.file_format, overwrite=True) else: self.calculator.calc(s) self.calculator.write(self.output_dir, file_format=self.file_format, overwrite=True) shutil.rmtree(calc_dir) def check_dir(self, path, delete=False, move=False): """ Argumnets --------- path: str Path to the direcrtory to check delete: str If one of my_files is even found, then delete it from self.my_files. This is necessary when checking the temp directory. move: bool If the structure is identified as being finished, then move to the output directory. """ ## Get iterator path_file_iter = os.scandir(path) ## No need to check if len(self.my_files) == 0: return del_list = [] for file_direntry in path_file_iter: file_name = file_direntry.name file_path = os.path.join(path, file_name) ## If it's a file_path, assume it's a structure file if os.path.isfile(file_path): s = read(file_path) file_name = s.struct_id ## Otherwise it's a directory already named as a struct_id ## So set file_path equal to path of structure file inside the ## directory path else: file_path = os.path.join(file_path, file_name+".json") ## Check if this rank is responsible for this file if self.my_filename_dict.get(file_name) != None: ## Get idx w.r.t. self.my_files my_files_idx = self.my_filename_dict[file_name] if self.check_fn(file_path, **self.check_fn_kw): ## Always delete from my_files if it passes del_list.append(my_files_idx) ## Move to output dir if checking calc_dir if move: calc_dir = os.path.join(path, file_name) ## Write structure file to output directory s = read(file_path) temp_dict = {s.struct_id: s} write(self.output_dir, temp_dict, file_format=self.file_format) shutil.rmtree(calc_dir) else: if delete: del_list.append(my_files_idx) ## Otherwise, file should stay in self.my_files because ## it needs to be calculated pass ## Delete all indicies that have been collected in reverse order so ## that index to be deleted is always correct for idx in sorted(del_list, reverse=True): del(self.my_files[idx]) def setup_calc(self): """ Sets up files for calculation in the calculation directory. In the calculation directory, there will be a directory for each structure that needs to be calculated. Inside will be the Structure.json file for each structure. """ for file in self.my_files: s = read(file) temp_dict = {s.struct_id: s} output = os.path.join(self.calc_dir, s.struct_id) write(output, temp_dict, file_format=self.file_format)
2.453125
2
junospyez_ossh_server/__init__.py
jeremyschulman/junospyez-ossh-server
3
12784960
from .ossh_server import OutboundSSHServer
1.03125
1
ssd_liverdet/data/data_custom_v2.py
L0SG/Liver_segmentation
0
12784961
<reponame>L0SG/Liver_segmentation # NEW impl for 1904 dataset: things are getting too big, use online data loading from disk! # for arbitrary image dataset # courtesy of https://github.com/amdegroot/ssd.pytorch/issues/72 # # for debugging perf hotspot # from line_profiler import LineProfiler # from utils import augmentations import os import os.path import sys import torch import torch.utils.data as data import torchvision.transforms as transforms from PIL import Image, ImageDraw, ImageFont # import cv2 import numpy as np # if sys.version_info[0] == 2: # import xml.etree.cElementTree as ET # else: # import xml.etree.ElementTree as ET LABELS = ['lesion'] LABELS_2_IND = { 'lesion': 0 } # for making bounding boxes pretty COLORS = ((255, 0, 0, 128), (0, 255, 0, 128), (0, 0, 255, 128), (0, 255, 255, 128), (255, 0, 255, 128), (255, 255, 0, 128)) class DataSplitter(): def __init__(self, data_path, cross_validation=5, num_test_subject=10): # self.root = root self.data_path = data_path self.metadata_path = os.path.join(self.data_path, "metadata.txt") self.data = [] self.subjects = [] with open(self.metadata_path, 'r') as f: lines = f.readlines() for line in lines: line = line.strip().split("|") self.data.append(line) # append subject only self.subjects.append(line[1]) self.subjects = sorted(list(set(self.subjects))) self.cross_validation = cross_validation self.num_test_subject = num_test_subject self.subjects_train = self.subjects[:-num_test_subject] self.subjects_test = self.subjects[-num_test_subject:] self.subjects_cv_eval = [] self.subjects_cv_train = [] if cross_validation != 1: divider = int(len(self.subjects_train) / cross_validation) elif cross_validation == 1: print("INFO: cross_validation set to 0. splitting data into single train-val set... (val defaults to 0.2)") divider = int(len(self.subjects_train) * 0.2) for i_cv in range(self.cross_validation): self.subjects_cv_eval.append(self.subjects_train[divider * i_cv: min(divider * (i_cv+1), len(self.subjects_train))]) self.subjects_cv_train.append(list(filter(lambda x: x not in self.subjects_cv_eval[i_cv], self.subjects_train))) self.data_train = list(filter(lambda x: x[1] in self.subjects_train, self.data)) self.data_test = list(filter(lambda x: x[1] in self.subjects_test, self.data)) self.data_cv_eval = [] self.data_cv_train = [] for i_cv in range(self.cross_validation): self.data_cv_eval.append(list(filter(lambda x: x[1] in self.subjects_cv_eval[i_cv], self.data_train))) self.data_cv_train.append(list(filter(lambda x: x[1] in self.subjects_cv_train[i_cv], self.data_train))) # self.data_mean = self.get_data_mean() # print("calculated data_mean: {}".format(self.data_mean)) def get_data_mean(self): print("calculating data mean...") # calcaulte mean pixel value of data by iterating through all "training" dataset mean_pixel = [] for index in range(len(self.data_train)): img = np.load(os.path.join(self.data_path, self.data_train[index][0] + "_ct.npy")) * 255. mean = img.mean() mean_pixel.append(mean) mean_pixel = np.array(mean_pixel).mean() return mean_pixel class FISHdetectionV2(data.Dataset): """VOC Detection Dataset Object input is image, target is annotation Arguments: root (string): filepath to VOCdevkit folder. image_set (string): imageset to use (eg. 'train', 'val', 'test') transform (callable, optional): transformation to perform on the input image target_transform (callable, optional): transformation to perform on the target `annotation` (eg: take in caption string, return tensor of word indices) dataset_name (string, optional): which dataset to load (default: 'VOC2007') """ def __init__(self, data_path, data, transform=None, dataset_name='fish_detection', load_data_to_ram=False, debug=False, use_pixel_link=False): # self.data_path will recieve root absolute path of the dataset self.data_path = data_path # self.data will receive partitioned list of paths from DataSplitter self.data = [x[0] for x in data] self.load_data_to_ram = load_data_to_ram if self.load_data_to_ram: print("loading data to ram...") self.data_img = [] self.data_target = [] self.data_phase = [] for i in range(len(data)): img = np.load(os.path.join(self.data_path, self.data[i] + "_ct.npy")) # convert to [phase, H, W, C] img = np.transpose(img, [0, 2, 3, 1]) # make it 0~255 uint8 img = (img * 255).astype(np.uint8) # target = ET.parse(self._annopath % img_id).getroot() target = np.load(os.path.join(self.data_path, self.data[i] + "_bbox.npy")) # cast to float32 for proper scaling target = target.astype(np.float32) phase = np.load(os.path.join(self.data_path, self.data[i] + "_phase.npy")) self.data_img.append(img) self.data_target.append(target) self.data_phase.append(phase) if debug: import cv2 import torchvision.utils as vutils img_middle = img[:, :, :, 1] # consider single image as [N, 1, H, W] image_for_vis = torch.tensor(img_middle).unsqueeze(1) img_out = [] target_for_vis = torch.tensor(target) for j in range(image_for_vis.shape[0]): img_rgb = np.repeat(image_for_vis[j, :, :], 3, axis=0).permute(1, 2, 0).numpy().copy() for k in range(target_for_vis.shape[0]): xmin, ymin, xmax, ymax = (target_for_vis[k][:4]).long().numpy() cv2.rectangle(img_rgb, (xmin, ymin), (xmax, ymax), (255, 0, 0), 1) img_out.append(torch.tensor(img_rgb)) img_out = torch.stack(img_out).permute(0, 3, 1, 2) input_visual = vutils.make_grid(img_out.float(), normalize=True, scale_each=True) print("test") self.transform = transform # self.target_transform = target_transform self.name = dataset_name # self._annopath = os.path.join('%s', 'Annotations', '%s.xml') # self._imgpath = os.path.join('%s', 'JPEGImages', '%s.jpg') # self.ids = list() # for (year, name) in image_sets: # rootpath = os.path.join(self.root, 'VOC' + year) # for line in open(os.path.join(rootpath, 'ImageSets', 'Main', name + '.txt')): # self.ids.append((rootpath, line.strip())) self.use_pixel_link = use_pixel_link if self.use_pixel_link: print("INFO: using pixel_link version of dataset!") def __getitem__(self, index): im, gt, h, w = self.pull_item(index) return im, gt def __len__(self): return len(self.data) def pull_item(self, index): # TODO: double-check new implementations are corrent # img_id = self.ids[index] if self.load_data_to_ram: img = self.data_img[index] target = self.data_target[index] else: #img_path = self.image_paths[index] img = np.load(os.path.join(self.data_path, self.data[index] + "_ct.npy")) # convert to [phase, H, W, C] img = np.transpose(img, [0, 2, 3, 1]) # make it 0~255 uint8 img = (img * 255).astype(np.uint8) # target = ET.parse(self._annopath % img_id).getroot() target = np.load(os.path.join(self.data_path, self.data[index] + "_bbox.npy")) # cast to float32 for proper scaling target = target.astype(np.float32) # target = np.asarray(target).reshape(-1, 5) try: #img = cv2.imread(img_path) # input img_path is already numpy # this is unnecessary overhead # img = img_path # single phase image if len(img.shape) == 3: height, width, channels = img.shape # multi-phase image: discard phase info elif len(img.shape) == 4: _, height, width, channels = img.shape except: raise NotImplementedError # img = cv2.imread('random_image.jpg') # height, width, channels = img.shape # if self.target_transform is not None: # target = self.target_transform(target, width, height) if self.transform is not None: #target = np.array(target) """ # multi-phase data have 4 ground truth # randomly select one target # TODO: fix this if the data is multi-class target since this assumes that all labels are the same rng = np.random.randint(low=0, high=target.shape[0]+1) target = target[rng] """ """ # TODO: fix this later, generic dataset have multiple lesions # currently data have only 1 lesion, unsqueeze first dim target = np.expand_dims(target, 0) """ # scale each coord from absolute pixels to 0~1 for idx in range(target.shape[0]): """ x_center, y_center, h, w, cls = target[idx] x_center /= height y_center /= width h /= height w /= width # WARNING: SSDAugmentation uses y_center as first elem, change it properly target[idx] = np.array([y_center, x_center, w, h, cls]) """ x_min, y_min, x_max, y_max, cls = target[idx] x_min, x_max = x_min/width, x_max/width y_min, y_max = y_min/height, y_max/height target[idx] = np.array([x_min, y_min, x_max, y_max, cls]) # # debug hotspot # lp = LineProfiler() # lp.add_function(augmentations.ConvertFromInts.__call__) # lp.add_function(augmentations.ToAbsoluteCoords.__call__) # lp.add_function(augmentations.PixelJitter.__call__) # lp.add_function(augmentations.PhotometricDistort.__call__) # lp.add_function(augmentations.Expand.__call__) # lp.add_function(augmentations.RandomSampleCrop.__call__) # lp.add_function(augmentations.RandomMirror.__call__) # lp.add_function(augmentations.ToPercentCoords.__call__) # lp.add_function(augmentations.Resize.__call__) # lp.add_function(augmentations.SubtractMeans.__call__) # lp_wrapper = lp(self.transform.__call__) # lp_wrapper(img, target[:, :4], target[:, 4]) # lp.print_stats() # exit() img, boxes, labels = self.transform(img, target[:, :4], target[:, 4]) """ our data is not rgb # to rgb img = img[:, :, (2, 1, 0)] # img = img.transpose(2, 0, 1) """ if self.use_pixel_link: target = np.hstack((boxes, np.expand_dims(labels["labels"], axis=1))) labels["boxes"] = target target = labels else: target = np.hstack((boxes, np.expand_dims(labels, axis=1))) # single-phase case if len(img.shape) == 3: return torch.from_numpy(img).permute(2, 0, 1), target, height, width # multi-phase case if len(img.shape) == 4: img_torch = torch.from_numpy(img).permute(0, 3, 1, 2) """ contiguous call for CPU seems slow, collapse after CUDA instead img_torch = torch.from_numpy(img).permute(0, 3, 1, 2).contiguous() # collapse phase & channel img_torch = img_torch.view(-1, img_torch.shape[2], img_torch.shape[3]) """ return img_torch, target, height, width # return torch.from_numpy(img), target, height, width def pull_image(self, index): '''Returns the original image object at index in PIL form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: PIL img ''' # img_id = self.ids[index] if self.load_data_to_ram: img = self.data_img[index] else: img = np.load(os.path.join(self.data_path, self.data[index] + "_ct.npy")) # convert to [phase, H, W, C] img = np.transpose(img, [0, 2, 3, 1]) # make it 0~255 uint8 img = (img * 255).astype(np.uint8) # ct data is already numpy #return cv2.imread(img_path, cv2.IMREAD_COLOR) return img def pull_anno(self, index): '''Returns the original annotation of image at index Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to get annotation of Return: list: [img_id, [(label, bbox coords),...]] eg: ('001718', [('dog', (96, 13, 438, 332))]) ''' # img_id = self.ids[index] # anno = ET.parse(self._annopath % img_id).getroot() # gt = self.target_transform(anno, 1, 1) #img_path = self.image_paths[index] # target = ET.parse(self._annopath % img_id).getroot() if self.load_data_to_ram: target = self.data_target[index] else: target = np.load(os.path.join(self.data_path, self.data[index] + "_bbox.npy")) # cast to float32 for proper scaling target = target.astype(np.float32) #return img_path, target return target def pull_phase(self, index): phase = np.load(os.path.join(self.data_path, self.data[index] + "_phase.npy")) return phase def pull_tensor(self, index): '''Returns the original image at an index in tensor form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: tensorized version of img, squeezed ''' return torch.Tensor(self.pull_image(index)).unsqueeze_(0) def detection_collate_v2(batch, p_only=False): """Custom collate fn for dealing with batches of images that have a different number of associated object annotations (bounding boxes). Arguments: batch: (tuple) A tuple of tensor images and lists of annotations Return: A tuple containing: 1) (tensor) batch of images stacked on their 0 dim 2) (list of tensors) annotations for a given image are stacked on 0 dim """ targets = [] imgs = [] for sample in batch: imgs.append(sample[0]) targets.append(torch.FloatTensor(sample[1])) return torch.stack(imgs, 0), targets def detection_collate_v2_pixel_link(batch, p_only=False): """Custom collate fn for dealing with batches of images that have a different number of associated object annotations (bounding boxes). Arguments: batch: (tuple) A tuple of tensor images and lists of annotations Return: A tuple containing: 1) (tensor) batch of images stacked on their 0 dim 2) (list of tensors) annotations for a given image are stacked on 0 dim """ targets = [] pixel_mask, neg_pixel_mask, labels, pixel_pos_weight, link_mask, boxes = [], [], [], [], [], [] imgs = [] for sample in batch: imgs.append(sample[0]) sample_1 = sample[1] pixel_mask.append(torch.LongTensor(sample_1["pixel_mask"])) neg_pixel_mask.append(torch.LongTensor(sample_1["neg_pixel_mask"])) labels.append(torch.FloatTensor(sample_1["labels"])) pixel_pos_weight.append(torch.FloatTensor(sample_1["pixel_pos_weight"])) link_mask.append(torch.LongTensor(sample_1["link_mask"])) boxes.append(torch.FloatTensor(sample_1["boxes"])) imgs = torch.stack(imgs, 0) pixel_mask = torch.stack(pixel_mask, 0) neg_pixel_mask = torch.stack(neg_pixel_mask, 0) pixel_pos_weight = torch.stack(pixel_pos_weight, 0) link_mask = torch.stack(link_mask, 0) # no stacking for labels and boxes: variable number of lesions targets = {'pixel_mask': pixel_mask, 'neg_pixel_mask': neg_pixel_mask, 'pixel_pos_weight': pixel_pos_weight, 'link_mask': link_mask, 'lables': labels, 'boxes': boxes} return imgs, targets if __name__ == "__main__": from utils.augmentations import SSDAugmentation data_path = "/home/tkdrlf9202/Datasets/liver_year1_dataset_extended_1904_preprocessed/ml_ready" debug_dataset = DataSplitter(data_path, cross_validation=1, num_test_subject=10) debug_dataset_cv0_train = debug_dataset.data_cv_train[0] debug_dataset_cv0_eval = debug_dataset.data_cv_eval[0] debug_fishdataset = FISHdetectionV2(data_path, debug_dataset_cv0_train, SSDAugmentation(), load_data_to_ram=True, debug=True) test_batch = next(iter(debug_fishdataset))
2.15625
2
data_collection/ts/indonesia_timeseries/download_indonesia_prices.py
f4bD3v/humanitas
6
12784962
#!/usr/bin/env python2 import urllib2 import shutil import re import sys import datetime from lxml import etree usage_str = """ This scripts downloads daily food prices from http://m.pip.kementan.org/index.php (Indonesia). Provide date in DD/MM/YYYY format. Example: ./download_indonesia_prices.py 15/03/2013 """ def download_table(date): """Download price table for a given date""" main_url = 'http://m.pip.kementan.org/index.php' params = 'laporan=LHK-01&tanggal=%s&bulan=%s&tahun=%s&pilihlaporan=View+Laporan' % (date.day, date.month, date.year) req = urllib2.Request(main_url, params) response = urllib2.urlopen(req) html_code = response.read() regex = re.compile(r'<div id="content" align="center">.*(<table.+</table>)', re.DOTALL) match = regex.search(html_code) if not match: print "ERROR: table not detected" sys.exit(1) table_html = match.group(1) # Remove commas table_html = re.sub(r'(?<=\d),(?=\d)', '', table_html) table = etree.XML(table_html) rows = iter(table) actual_headers = [col.text for col in next(rows)] # TODO: translate this bullshit ;) headers = ['Dried Grain Harvest', 'Dry unhusked', 'Rice Medium', 'Rice Premium', 'Corn', 'Local soybean', 'Local Peanuts', 'Green Beans', 'Cassava', 'Sweet potato', 'Cassava spindles'] print "; ".join(headers), "\n" # Print table for row in rows: if all(v.text is None for v in row): continue print ('''"%s"''') % row[0].text, for col in row[1:]: print col.text, print def parse_date(date_string): """Check date""" match = re.match(r'(\d{2})/(\d{2})/(\d{4})', date_string) if not match: sys.exit("ERROR: invalid date") day, month, year = int(match.group(1)), int(match.group(2)), int(match.group(3)) return datetime.date(year, month, day) def usage(): print usage_str if __name__ == "__main__": if len(sys.argv) == 1 or sys.argv[1] in ['-h', '--help']: usage() sys.exit(0) date_string = sys.argv[1] date = parse_date(date_string) download_table(date)
3.390625
3
Seq2Seq/seq2seq_advanced.py
STHSF/DeepNaturallanguageprocessing
15
12784963
# coding=utf-8 import tensorflow as tf import numpy as np import helpers tf.reset_default_graph() sess = tf.InteractiveSession() PAD = 0 EOS = 1 vocab_size = 10 input_embedding_size = 20 encoder_hidden_units = 512 decoder_hidden_units = encoder_hidden_units * 2 # define inputs encoder_input = tf.placeholder(shape=(None, None), dtype=tf.int32, name='encoder_inputs') # encoder_input_length = tf.placeholder(shape=(None,), dtype=tf.int32, name='encoder_input_length') decoder_targets = tf.placeholder(shape=(None, None), dtype=tf.int32, name='decoder_target') decoder_input = tf.placeholder(shape=(None, None), dtype=tf.int32, name='decoder_input') # define embedding layer embedding = tf.Variable(tf.random_uniform([vocab_size, input_embedding_size], -1.0, 1.0), dtype=tf.float32) encoder_inputs_embedded = tf.nn.embedding_lookup(embedding, encoder_input, name='encoder_inputs_embedded') decoder_inputs_embedded = tf.nn.embedding_lookup(embedding, decoder_input, name='decoder_inputs_embedded') encoder_cell_fw = tf.contrib.rnn.LSTMCell(encoder_hidden_units) encoder_cell_bw = tf.contrib.rnn.LSTMCell(encoder_hidden_units) ((encoder_fw_outputs, encoder_bw_outputs), (encoder_fw_final_state, encoder_bw_final_state)) = (tf.nn.bidirectional_dynamic_rnn(cell_fw=encoder_cell_fw, cell_bw=encoder_cell_bw, inputs=encoder_inputs_embedded, dtype=tf.float32, time_major=False)) encoder_outputs = tf.concat((encoder_fw_outputs, encoder_bw_outputs), 2) encoder_final_state_c = tf.concat((encoder_fw_final_state.c, encoder_bw_final_state.c), 1) encoder_final_state_h = tf.concat((encoder_fw_final_state.h, encoder_bw_final_state.h), 1) encoder_final_state = tf.contrib.rnn.LSTMStateTuple(c=encoder_final_state_c, h=encoder_final_state_h) decoder_cell = tf.contrib.rnn.LSTMCell(decoder_hidden_units) encoder_max_time, batch_size = tf.unstack(tf.shape(encoder_input)) print(encoder_max_time) print(batch_size) # decoder_length = encoder_input_length + 3 decoder_outputs, decoder_final_state = tf.nn.dynamic_rnn(decoder_cell, encoder_outputs, initial_state=encoder_final_state, dtype=tf.float32) decoder_logits = tf.contrib.layers.linear(decoder_outputs, vocab_size) decoder_prediction = tf.argmax(decoder_logits, 2) stepwise_cross_entropy = tf.nn.softmax_cross_entropy_with_logits( labels=tf.one_hot(decoder_targets, depth=vocab_size, dtype=tf.float32), logits=decoder_logits) loss = tf.reduce_mean(stepwise_cross_entropy) train_op = tf.train.AdamOptimizer().minimize(loss) sess.run(tf.global_variables_initializer()) batch_ = [[6], [3, 4], [9, 8, 7]] batch_, batch_length_ = helpers.batch(batch_) print('batch_encoded:\n' + str(batch_)) din_, dlen_ = helpers.batch(np.ones(shape=(3, 1), dtype=np.int32), max_sequence_length=4) print('decoder inputs:\n' + str(din_)) pred_ = sess.run(decoder_prediction, feed_dict={ encoder_input: batch_, decoder_input: din_,}) print('decoder predictions:\n' + str(pred_))
2.34375
2
data/states/lobby/lobby_screen.py
iminurnamez/Python_Arcade_Collab
2
12784964
import math import pygame as pg from collections import OrderedDict from data.core import tools, constants from data.components.labels import Button, ButtonGroup from data.components.special_buttons import GameButton, NeonButton from data.components.animation import Animation from data.components.state_machine import _State class LobbyScreen(_State): """ This state represents the lobby where the player can choose which game they want to play or view their high scores. This is also the exit point for the game. """ per_page = 6 def __init__(self, controller): super(LobbyScreen, self).__init__(controller) self.animations = pg.sprite.Group() def update_screen_buttons(self, games): screen_rect = pg.Rect((0, 0), constants.RENDER_SIZE) number_of_pages = int(math.ceil(len(games) / float(self.per_page))) self.loop_length = constants.RENDER_SIZE[0] * number_of_pages self.game_buttons = self.make_game_pages(games, screen_rect, self.per_page) nav_buttons = self.make_navigation_buttons(screen_rect) main_buttons = self.make_main_buttons(screen_rect) self.buttons = ButtonGroup(nav_buttons, main_buttons) def make_game_pages(self, games, screen_rect, per): games_list = list(games.keys()) groups = (games_list[i:i+per] for i in range(0, len(games), per)) columns = 3 width, height = GameButton.width, GameButton.height spacer_x, spacer_y = 50, 80 start_x = (screen_rect.w - width * columns - spacer_x * (columns-1))//2 start_y = screen_rect.top + 105 step_x, step_y = width + spacer_x, height + spacer_y buttons = ButtonGroup() for offset,group in enumerate(groups): offset *= constants.RENDER_SIZE[0] for i,game in enumerate(group): y, x = divmod(i, columns) pos = (start_x + step_x * x + offset, start_y + step_y * y) GameButton(pos, game, games[game], self.change_state, buttons) return buttons def make_navigation_buttons(self, screen_rect): sheet = constants.GFX["nav_buttons"] size = (53, 50) y = 530 from_center = 15 icons = tools.strip_from_sheet(sheet, (0, 0), size, 4) buttons = ButtonGroup() l_kwargs = {"idle_image" : icons[0], "hover_image" : icons[1], "call" : self.scroll_page, "args" : 1, "bindings" : [pg.K_LEFT, pg.K_KP4]} r_kwargs = {"idle_image" : icons[2], "hover_image" : icons[3], "call" : self.scroll_page, "args" : -1, "bindings" : [pg.K_RIGHT, pg.K_KP6]} left = Button(((0, y), size), buttons, **l_kwargs) left.rect.right = screen_rect.centerx - from_center right = Button(((0, y), size), buttons, **r_kwargs) right.rect.x = screen_rect.centerx + from_center return buttons def make_main_buttons(self, screen_rect): buttons = ButtonGroup() pos = (9, screen_rect.bottom-(NeonButton.height+11)) NeonButton(pos, "Credits", 32, self.change_state, "credits", buttons) pos = (screen_rect.right-(NeonButton.width+10), screen_rect.bottom-(NeonButton.height+11)) NeonButton(pos, "High Scores", 28, self.change_state, "high_scores", buttons) pos = (screen_rect.centerx-(NeonButton.width//2), screen_rect.bottom-(NeonButton.height+11)) NeonButton(pos, "Exit", 32, self.exit_game, None, buttons, bindings=[pg.K_ESCAPE]) rect_style = (screen_rect.left, screen_rect.top, 150, 95) return buttons def scroll_page(self, mag): if not self.animations and len(self.game_buttons) > self.per_page: for game in self.game_buttons: self.normalize_scroll(game, mag) fx, fy = game.rect.x+constants.RENDER_SIZE[0]*mag, game.rect.y ani = Animation(x=fx, y=fy, duration=350.0, transition='in_out_quint', round_values=True) ani.start(game.rect) self.animations.add(ani) constants.SFX["cardplace4"].play() def normalize_scroll(self, game, mag): if game.rect.x < 0 and mag == -1: game.rect.x += self.loop_length elif game.rect.x >= constants.RENDER_SIZE[0] and mag == 1: game.rect.x -= self.loop_length def startup(self, persistent): super(LobbyScreen, self).startup(persistent) games = self.controller.game_thumbs self.update_screen_buttons(games) def exit_game(self, *args): self.done = True self.quit = True def change_state(self, next_state): self.done = True self.next = next_state def get_event(self, event, scale=(1,1)): if event.type == pg.QUIT: self.exit_game() else: self.buttons.get_event(event) self.game_buttons.get_event(event) def update(self, surface, keys, current_time, dt, scale): mouse_pos = tools.scaled_mouse_pos(scale) self.buttons.update(mouse_pos) self.game_buttons.update(mouse_pos) self.animations.update(dt) self.draw(surface) def draw(self, surface): rect = surface.get_rect() surface.fill(constants.BACKGROUND_BASE) self.buttons.draw(surface) for button in self.game_buttons: if button.rect.colliderect(rect): button.draw(surface)
2.671875
3
DIYgod/0006/a.py
saurabh896/python-1
3,976
12784965
<gh_stars>1000+ f = open('a.txt', 'rb') lines = f.readlines() for line in lines: pass f.close() f = open('a.txt', 'rb') for line in f: pass f.close() f = open('a.txt', 'rb') while true: line = f.readline() if not line: break pass f.close()
2.921875
3
torchpruner/torchpruner/pruner/opt_pruner.py
germanenik/CS231N-Pruning
0
12784966
<gh_stars>0 import torch class OptimizerPruner: @staticmethod def prune(optimizer, param, axis, keep_indices, device): if isinstance(optimizer, torch.optim.SGD): return OptimizerPruner._prune_sgd(optimizer, param, axis, keep_indices, device) elif isinstance(optimizer, torch.optim.Adam): return OptimizerPruner._prune_adam(optimizer, param, axis, keep_indices, device) @staticmethod def _prune_sgd(optimizer, param, axis, keep_indices, device): for p in optimizer.param_groups[0]["params"]: if id(p) == id(param): pass # if "momentum_buffer" in optimizer.state_dict()["state"][id(p)]: # momentum = optimizer.state_dict()["state"][id(p)]["momentum_buffer"] # momentum.data = momentum.data.index_select( # axis, torch.tensor(keep_indices).to(device) # ) @staticmethod def _prune_adam(optimizer, param, axis, keep_indices, device): for p in optimizer.param_groups[0]["params"]: if id(p) == id(param): pass # if "momentum_buffer" in optimizer.state_dict()["state"][id(p)]: # momentum = optimizer.state_dict()["state"][id(p)]["momentum_buffer"] # momentum.data = momentum.data.index_select( # axis, torch.tensor(keep_indices).to(device) # )
2.1875
2
jsk_rqt_plugins/src/jsk_rqt_plugins/label.py
ShunjiroOsada/jsk_visualization_package
5
12784967
<reponame>ShunjiroOsada/jsk_visualization_package<gh_stars>1-10 from rqt_gui_py.plugin import Plugin import python_qt_binding.QtGui as QtGui from python_qt_binding.QtGui import (QAction, QIcon, QMenu, QWidget, QPainter, QColor, QFont, QBrush, QPen, QMessageBox, QSizePolicy, QLabel, QComboBox) from python_qt_binding.QtCore import Qt, QTimer, qWarning, Slot, QEvent, QSize from threading import Lock import rospy import roslib import rqt_plot import python_qt_binding.QtCore as QtCore from std_msgs.msg import Bool, Time import math from resource_retriever import get_filename import yaml import os, sys from std_msgs.msg import String from .util import get_slot_type_field_names from .hist import ROSData from .button_general import LineEditDialog class StringLabel(Plugin): """ rqt plugin to provide simple label """ def __init__(self, context): super(StringLabel, self).__init__(context) self.setObjectName("StringLabel") self._widget = StringLabelWidget() context.add_widget(self._widget) def save_settings(self, plugin_settings, instance_settings): self._widget.save_settings(plugin_settings, instance_settings) def restore_settings(self, plugin_settings, instance_settings): self._widget.restore_settings(plugin_settings, instance_settings) def trigger_configuration(self): self._widget.trigger_configuration() class StringLabelWidget(QWidget): def __init__(self): super(StringLabelWidget, self).__init__() self.lock = Lock() vbox = QtGui.QVBoxLayout(self) self.label = QLabel() self.label.setAlignment(Qt.AlignLeft) self.label.setSizePolicy(QSizePolicy(QSizePolicy.Ignored, QSizePolicy.Ignored)) font = QFont("Helvetica", 14) self.label.setFont(font) self.label.setWordWrap(True) vbox.addWidget(self.label) self.string_sub = None self._string_topics = [] self._update_topic_timer = QTimer(self) self._update_topic_timer.timeout.connect(self.updateTopics) self._update_topic_timer.start(1000) self._active_topic = None # to update label visualization self._dialog = LineEditDialog() self._rosdata = None self._start_time = rospy.get_time() self._update_label_timer = QTimer(self) self._update_label_timer.timeout.connect(self.updateLabel) self._update_label_timer.start(40) def trigger_configuration(self): self._dialog.exec_() self.setupSubscriber(self._dialog.value) def updateLabel(self): if not self._rosdata: return try: _, data_y = self._rosdata.next() except rqt_plot.rosplot.RosPlotException, e: self._rosdata = None return if len(data_y) == 0: return latest = data_y[-1] # get latest data # supports std_msgs/String as well as string data nested in rosmsg if type(latest) == String: self.string = latest.data else: self.string = latest try: self.label.setText(self.string) except TypeError, e: rospy.logwarn(e) def updateTopics(self): need_to_update = False for (topic, topic_type) in rospy.get_published_topics(): msg = roslib.message.get_message_class(topic_type) field_names = get_slot_type_field_names(msg, slot_type='string') for field in field_names: string_topic = topic + field if string_topic not in self._string_topics: self._string_topics.append(string_topic) need_to_update = True if need_to_update: self._string_topics = sorted(self._string_topics) self._dialog.combo_box.clear() for topic in self._string_topics: self._dialog.combo_box.addItem(topic) if self._active_topic: if self._active_topic not in self._string_topics: self._string_topics.append(self._active_topic) self._dialog.combo_box.addItem(self._active_topic) self._dialog.combo_box.setCurrentIndex(self._string_topics.index(self._active_topic)) def setupSubscriber(self, topic): if not self._rosdata: self._rosdata = ROSData(topic, self._start_time) else: if self._rosdata != topic: self._rosdata.close() self._rosdata = ROSData(topic, self._start_time) else: rospy.logwarn("%s is already subscribed", topic) self._active_topic = topic def onActivated(self, number): self.setupSubscriber(self._string_topics[number]) def save_settings(self, plugin_settings, instance_settings): if self._active_topic: instance_settings.set_value("active_topic", self._active_topic) def restore_settings(self, plugin_settings, instance_settings): if instance_settings.value("active_topic"): topic = instance_settings.value("active_topic") self._dialog.combo_box.addItem(topic) self.setupSubscriber(topic)
1.921875
2
PythonExercicios/ex032.py
gabjohann/python_3
0
12784968
<filename>PythonExercicios/ex032.py # Faça um programa que leia um ano qualquer e mostre se ele é bissexto # ----------------------------errado---------------------------- ano = int(input('Digite o ano que deseja saber se é bissexto: ')) bissexto = ano % 4 if bissexto == 0: print('O ano {} é bissexto.'.format(ano)) else: print('O ano não é bissexto.') # ----------------------------errado---------------------------- # Resolução da aula # ano = int(input('Que ano quer analisar? ')) # if ano % 4 == 0 and ano % 100 != 0 or ano % 400 == 0: # print('O ano {} é BISSEXTO'.format(ano)) # else: # print('O ano {} NÃO É BISSEXTO'.format(ano)) # outra resolução # from datetime import date # ano = int(input('Que ano quer analisar? Coloque 0 para analisar o ano atual: ')) # if ano == 0: # ano = date.today().year # if ano % 4 == 0 and ano % 100 != 0 or ano % 400 == 0: # print('O ano {} é BISSEXTO'.format(ano)) # else: # print('O ano {} NÃO É BISSEXTO'.format(ano))
4.125
4
mat/mat1.py
vhmercadoo/pytrail
0
12784969
<reponame>vhmercadoo/pytrail var = 1 print (var)
0.964844
1
stitch.py
TheShrug/advanced_cartography
2
12784970
# Copyright (c) 2020 <NAME> # This software is released under the MIT License. # https://opensource.org/licenses/MIT from os import listdir, path from time import sleep, strftime from PIL import Image, ImageDraw from threading import Thread from math import floor class pic: def __init__(self, fpath, cropFactor, featherFactor): self.name = path.basename(fpath) self.fpath = fpath self.im = Image.open(fpath) self.size = self.im.size self.coords = self.name.lstrip('0123456789_') self.coords = self.coords.lstrip('(') self.coords = self.coords.rstrip(').jpg') self.coords = self.coords.split(',') self.coords = [float(i) for i in self.coords] self.mtime = path.getmtime(fpath) self.featherFactor = featherFactor self.cTuple = (round((self.size[0]-self.size[0]*cropFactor)/2), # LEFT round((self.size[1]-self.size[1]*cropFactor)/2), # TOP round((self.size[0]+self.size[0]*cropFactor)/2), # RITE round((self.size[1]+self.size[1]*cropFactor)/2)) # BOTM self.cSize = (self.cTuple[2]-self.cTuple[0], self.cTuple[3]-self.cTuple[1]) self.cim = self.im.crop(self.cTuple) def getFMask(self): """ Returns an edge feather mask to be used in paste function. """ if self.featherFactor < 0.01: mask = Image.new('L', self.cSize, color=255) return mask mask = Image.new('L', self.cSize, color=255) draw = ImageDraw.Draw(mask) x0, y0 = 0, 0 x1, y1 = self.cSize # print(f'Crop Tuple: {(x1, y1)}') feather = round(self.cSize[1] * self.featherFactor) # print(f'Feather Pixels: {feather}') for i in range(round(self.cSize[1]/2)): x1, y1 = x1-1, y1-1 alpha = 255 if i > feather else round(255*(feather/(i+1))**(-1)) draw.rectangle([x0, y0, x1, y1], outline=alpha) x0, y0 = x0+1, y0+1 return mask def closePIL(self): """closes the im and cim PIL objects """ self.im.close() self.cim.close() def getSkull(self): """adds a semi-transparent 8-bit image (skull) to cropped PIL image. For use on last pic in list when fPath is marked with [DEAD] """ skull = Image.open('.\\files\\gfx\\skull.png') skull = skull.resize(self.cSize) self.cim.paste(skull, mask=skull) def getYAH(self): """adds a semi-transparent 8-bit image ("you are here" marker) to cropped PIL image. For use on last pic in list when fPath is NOT marked with [DEAD] """ yah = Image.open('.\\files\\gfx\\yah.png') yah = yah.resize(self.cSize) self.cim.paste(yah, mask=yah) def stitch2(rawPath, destPath='', cropFactor=0.75, featherFactor=0.15, marks=True): piclist = [] batches = listdir(rawPath) cnt = 0 tooBig = False dstPath = destPath if dstPath == '': dstPath = rawPath.replace('raws', 'maps', 1) fullPath = dstPath + '\\' + '[MAP]_' + strftime("%Y%m%d-%H%M%S") + '.png' print(f'Getting images from {rawPath}') for i in batches: names = listdir(rawPath + '\\' + i) paths = [rawPath + '\\' + i + '\\' + j for j in names] for k in range(len(names)): cnt += 1 print(f'Images found: {cnt}', end='\r') piclist.append(pic(paths[k], cropFactor, featherFactor)) piclist.sort(key=lambda i: i.mtime) if rawPath.find('DEAD') != -1 and marks: piclist[-1].getSkull() elif marks: piclist[-1].getYAH() # This next section calculates the bounds of the final map. It # may run into trouble in the future with image overwrites, as # currently I'm not doing anything to prevent them. xCoordMax = max(i.coords[0] for i in piclist) xCoordMin = min(i.coords[0] for i in piclist) yCoordMax = max(i.coords[1] for i in piclist) yCoordMin = min(i.coords[1] for i in piclist) xMaxPad = round(next( ((i.size[0]/2) for i in piclist if i.coords[0] == xCoordMax) )) xMinPad = round(next( ((i.size[0]/2) for i in piclist if i.coords[0] == xCoordMin) )) yMaxPad = round(next( ((i.size[1]/2) for i in piclist if i.coords[1] == yCoordMax) )) yMinPad = round(next( ((i.size[1]/2) for i in piclist if i.coords[1] == yCoordMin) )) mapWidth = round(xCoordMax - xCoordMin) + xMaxPad + xMinPad mapHeight = round(yCoordMax - yCoordMin) + yMaxPad + yMinPad print(f'\nYou have explored an area {mapWidth} pixels wide ' + f'and {mapHeight} pixels deep.') sleep(1) if mapWidth > 65535 or mapHeight > 65535: tooBig = True ratio = 65535 / max(mapWidth, mapHeight) mapWidth = floor(mapWidth*ratio-10) # subtract 10 just to be sure mapHeight = floor(mapHeight*ratio-10) print(f"That's too many, downscaling by {round(ratio*100, 3)}%") print('(Limit is 65535px on either axis)') sleep(1) print(f'New output dimensions: {mapWidth} x {mapHeight}') sleep(1) print('Building canvas') bigMap = Image.new('RGB', (mapWidth, mapHeight), color=0) if tooBig: for i in piclist: print(f'Applying image {piclist.index(i)+1} of {len(piclist)}', end='\r') nWidth = round(i.cSize[0]*ratio) nHeight = round(i.cSize[1]*ratio) resized = i.cim.resize((nWidth, nHeight)) resizedMask = i.getFMask().resize((nWidth, nHeight)) targ = (round((i.coords[0]-xCoordMin) * ratio), round((i.coords[1]-yCoordMin) * ratio)) bigMap.paste(resized, targ, resizedMask) i.closePIL() else: for i in piclist: print(f'Applying image {piclist.index(i)+1} of {len(piclist)}', end='\r') targ = (round(i.coords[0] - xCoordMin), round(i.coords[1] - yCoordMin)) bigMap.paste(i.cim, targ, i.getFMask()) i.closePIL() # Main thread to save map saver = Thread( target=bigMap.save, args=(fullPath,), kwargs={'subsampling': 0, 'quality': 100}) def fEllipsis(): """makes the ellipsis move while file is being saved, so user doesn't get bored. """ print('\n', end='\r') while saver.is_alive(): print('Drawing map ', end='\r') sleep(0.3) print('Drawing map. ', end='\r') sleep(0.3) print('Drawing map.. ', end='\r') sleep(0.3) print('Drawing map...', end='\r') sleep(0.3) ellipsis = Thread(target=fEllipsis) saver.start() ellipsis.start() saver.join() ellipsis.join() print('\nMap Complete') print(f'Path: {fullPath}') return(fullPath)
2.375
2
harvester/server/expiring_queue.py
Nisthar/CaptchaHarvester
545
12784971
<reponame>Nisthar/CaptchaHarvester from queue import Empty, Queue, SimpleQueue from threading import Timer from typing import Any class ExpiringQueue(Queue): def __init__(self, timeout: int, maxsize=0): super().__init__(maxsize) self.timeout = timeout self.timers: 'SimpleQueue[Timer]' = SimpleQueue() def put(self, item: Any) -> None: thread = Timer(self.timeout, self.expire) thread.start() self.timers.put(thread) super().put(item) def get(self, block=True, timeout=None) -> Any: thread = self.timers.get(block, timeout) thread.cancel() return super().get(block, timeout) def expire(self): self.get() def to_list(self): with self.mutex: return list(self.queue) if __name__ == '__main__': import time eq = ExpiringQueue(timeout=1) print(eq) eq.put(1) time.sleep(.5) eq.put(2) print(eq.to_list()) time.sleep(.6) print(eq.get_nowait()) print(eq.get_nowait())
2.84375
3
ExceptionHandling/getints.py
Vashesh08/Learn-Python-Programming-Masterclass
0
12784972
<gh_stars>0 import sys def get_int(prompt): while True: try: number = int(input(prompt)) return number except EOFError: sys.exit(1) except: # Should be except ValueError: print("Invalid Number Entered. Please Try Again:") finally: print("The finally clause always execute") def divide_numbers(a, b): # while True: try: print(a/b) except ZeroDivisionError: print("Cannot Divide by Zero.") sys.exit(2) # b = get_int("Please Enter Valid Second Number:") else: print("Division performed successfully") first_number = get_int("Please Enter First Number:") second_number = get_int("Please Enter Second Number:") divide_numbers(first_number, second_number)
3.6875
4
wikipediabase/resolvers/term.py
fakedrake/WikipediaBase
1
12784973
<reponame>fakedrake/WikipediaBase # -*- coding: utf-8 -*- import re from wikipediabase.provider import provide from wikipediabase.resolvers.base import BaseResolver from wikipediabase.lispify import lispify from wikipediabase.util import get_infoboxes, get_article, totext, markup_unlink class TermResolver(BaseResolver): """ A resolver that can resolve a fixed set of simple attributes. """ priority = 11 # TODO: add provided methods for SHORT-ARTICLE # as described in the WikipediaBase InfoLab wiki page def _should_resolve(self, cls): return cls == 'wikibase-term' @provide(name="coordinates") def coordinates(self, article, _): for ibox in get_infoboxes(article): src = ibox.html_source() if src is None: return None xpath = ".//span[@id='coordinates']" lat = src.find(xpath + "//span[@class='latitude']") lon = src.find(xpath + "//span[@class='longitude']") if lat is None or lon is None: return None nlat = self._dton(totext(lat)) nlon = self._dton(totext(lon)) return lispify([nlat, nlon], typecode='coordinates') @provide(name="image-data") def image(self, article, attribute): # Make sure we are not getting back a LispType. infoboxes = get_infoboxes(article) imgs = [ibx.get('image') for ibx in infoboxes] if not imgs: return None img = imgs[0] fnam = img.replace(" ", "_") if "File:" in img: fnam = fnam.split("File:")[1] # TODO : is this a temporary fix? investigate what this annotation means # see '<NAME>' for an example if "{{!}}border" in img: fnam = fnam.split("{{!}}border")[0] caps = [ibx.get('caption') for ibx in infoboxes] caps = filter(lambda x: x, caps) # remove None values return lispify([0, fnam] + ([markup_unlink(caps[0])] if caps else [])) @provide(name='number') def number(self, article, _): """ True if it is plural. """ # First paragraph refers more often to the symbol itself # rather than things related to it. txt = get_article(article).first_paragraph() nay = sum(map(txt.count, [' is ', ' was ', ' has '])) yay = sum(map(txt.count, [' are ', ' were ', ' have '])) # inequality because there are many more nays return lispify(yay > nay, typecode='calculated') @provide(name='proper') def proper(self, article, _): """ Get a quick boolean answer based on the symbol text and the article text. """ # Blindly copied by the ruby version a = re.sub(r"\s*\(.*\)\s*", "", article.replace("_", " ")) txt = totext(get_article(article).html_source()) ret = (txt.count(a.lower()) - txt.count(". " + a.lower()) < txt.count(a)) return lispify(ret, typecode='calculated') @provide(name='short-article') def short_article(self, symbol, _): """ The first paragraph of the article, or if the first paragraph is shorter than 350 characters, then returns the first paragraphs such that the sum of the rendered characters is at least 350. """ # TODO: check if the first paragraph is shorter than 350 characters first_paragraph = get_article(symbol).first_paragraph(keep_html=True) return lispify(first_paragraph, typecode='html') @provide(name='url') def url(self, article, _): """ Note that this url is the wikipedia.org url. NOT the place where we got the page. """ # Will also teake care of redirections. article = get_article(article) url = article.url() return lispify(url, typecode='url') @provide(name="word-count") def word_count(self, article, attribute): self.log().info("Trying 'word-count' tag from static resolver.") self._tag = "html" return len(self._words(self.fetcher.html_source(article))) @staticmethod def _dton(s): """ degrees minutes, seconds to float or int. """ ls = re.split(ur'(?:°|′|″)', s.strip()) sig = -1 if ls.pop() in ['S', 'W'] else 1 ret = int(ls.pop(0)) if len(ls): m = float(ls.pop(0)) ret += m / 60 if len(ls): s = float(ls.pop(0)) ret += s / 3600 return sig * (ret if isinstance(ret, int) else round(ret, 4)) def _words(self, article): return re.findall('\w+', article.lower())
2.609375
3
examples/TushareDataService/test3.py
gongkai90000/2010test
0
12784974
<reponame>gongkai90000/2010test # encoding: UTF-8 import requests import sys import csv import csv import os ''' future_code = 'M0' url_str = ('http://stock2.finance.sina.com.cn/futures/api/json.php/IndexService.getInnerFuturesMiniKLine15m?symbol=' + future_code) r = requests.get(url_str) #http://stock2.finance.sina.com.cn/futures/api/json.php/IndexService.getInnerFuturesMiniKLine15m?symbol=M0 r_json = r.json() r_lists = list(r_json) #print('future_code,date,open,high,low,close,vol') headers=['id','username','password','age','country'] rows=[(1001,'qiye','qiye_pass',20,'china'),(1002,'mary','mary_pass',23,'usa')] f=open("csvfile.csv",'a+') wf =csv.writer(f) #wf.writerow(headers) wf.writerows(r_lists) f.close() ''' with open("csvfile.csv") as cf: lines = csv.reader(cf) for line in lines: print(line) gg=os.path.exists("csvfile.csv") print gg ty=[1,2,3,4,5,6,7] print ty del(ty[0]) print ty #http://stock2.finance.sina.com.cn/futures/api/json.php/IndexService.getInnerFuturesMiniKLine5m?symbol=M0
2.921875
3
src/metrics.py
anastasiia-kornilova/mom-tools
8
12784975
# Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import open3d as o3d from random_geometry_points.plane import Plane def mean_map_entropy(pc_map, map_tips=None, KNN_RAD=1): MIN_KNN = 5 map_tree = o3d.geometry.KDTreeFlann(pc_map) points = np.asarray(pc_map.points) metric = [] for i in range(points.shape[0]): point = points[i] [k, idx, _] = map_tree.search_radius_vector_3d(point, KNN_RAD) if len(idx) > MIN_KNN: cov = np.cov(points[idx].T) det = np.linalg.det(2 * np.pi * np.e * cov) if det > 0: metric.append(0.5 * np.log(det)) return 0 if len(metric) == 0 else np.mean(metric) def mean_plane_variance(pc_map, map_tips=None, KNN_RAD=1): MIN_KNN = 5 map_tree = o3d.geometry.KDTreeFlann(pc_map) points = np.asarray(pc_map.points) metric = [] for i in range(points.shape[0]): point = points[i] [k, idx, _] = map_tree.search_radius_vector_3d(point, KNN_RAD) if len(idx) > MIN_KNN: cov = np.cov(points[idx].T) eigenvalues = np.linalg.eig(cov)[0] metric.append(min(eigenvalues)) return 0 if len(metric) == 0 else np.mean(metric) def orth_mme(pc_map, map_tips, knn_rad=0.5): map_tree = o3d.geometry.KDTreeFlann(pc_map) points = np.asarray(pc_map.points) orth_axes_stats = [] orth_list = map_tips['orth_list'] for k, chosen_points in enumerate(orth_list): metric = [] plane_error = [] for i in range(chosen_points.shape[0]): point = chosen_points[i] [_, idx, _] = map_tree.search_radius_vector_3d(point, knn_rad) if len(idx) > 5: metric.append(mme(points[idx])) avg_metric = np.mean(metric) orth_axes_stats.append(avg_metric) return np.sum(orth_axes_stats) def orth_mpv(pc_map, map_tips, knn_rad=1): map_tree = o3d.geometry.KDTreeFlann(pc_map) points = np.asarray(pc_map.points) orth_axes_stats = [] orth_list = map_tips['orth_list'] for k, chosen_points in enumerate(orth_list): metric = [] plane_error = [] for i in range(chosen_points.shape[0]): point = chosen_points[i] [_, idx, _] = map_tree.search_radius_vector_3d(point, knn_rad) if len(idx) > 5: metric.append(mpv(points[idx])) avg_metric = np.median(metric) orth_axes_stats.append(avg_metric) return np.sum(orth_axes_stats) def mme(points): cov = np.cov(points.T) det = np.linalg.det(2 * np.pi * np.e * cov) return 0.5 * np.log(det) if det > 0 else -math.inf def mpv(points): cov = np.cov(points.T) eigenvalues = np.linalg.eig(cov)[0] return min(eigenvalues) def rpe(T_gt, T_est): seq_len = len(T_gt) err = 0 for i in range(seq_len): for j in range(seq_len): d_gt = T_gt[i] @ np.linalg.inv(T_gt[j]) d_est = T_est[i] @ np.linalg.inv(T_est[j]) dt = d_est[:3, 3] - d_gt[:3, 3] err += np.linalg.norm(dt) ** 2 return err
1.726563
2
modules_tf/util.py
kibernetika-ai/first-order-model
0
12784976
import tensorflow as tf from tensorflow.keras import layers from tensorflow.python.ops.gen_image_ops import resize_nearest_neighbor @tf.function def kp2gaussian(kp_value, spatial_size, kp_variance): """ Transform a keypoint into gaussian like representation """ mean = kp_value # B, 10, 2 coordinate_grid = make_coordinate_grid(spatial_size, mean.dtype) # 64, 64, 2 grid_shape = tf.shape(coordinate_grid) coordinate_grid = tf.reshape( coordinate_grid, [1, grid_shape[0], grid_shape[1], 1, 2] ) # 1, 64, 64, 1, 2 # repeats = # B, 1, 1, 10, 1 coordinate_grid = tf.tile(coordinate_grid, [tf.shape(mean)[0], 1, 1, mean.shape[1], 1]) # B, 64, 64, 10, 2 # Preprocess kp shape mean = tf.reshape(mean, [tf.shape(mean)[0], 1, 1, mean.shape[1], mean.shape[2]]) # B, 1, 1, 10, 2 mean_sub = (coordinate_grid - mean) # B, 64, 64, 10, 2 out = tf.exp(-0.5 * tf.reduce_sum(mean_sub ** 2, -1) / kp_variance) # B, 64, 64, 10 return out def make_coordinate_grid(spatial_size, type): """ Create a meshgrid [-1,1] x [-1,1] of given spatial_size. """ h, w = spatial_size[0], spatial_size[1] x = tf.range(w, dtype=type) y = tf.range(h, dtype=type) x = (2. * (x / (tf.cast(w, type) - 1.)) - 1.) y = (2. * (y / (tf.cast(h, type) - 1.)) - 1.) yy = tf.repeat(tf.reshape(y, [-1, 1]), w, 1) xx = tf.repeat(tf.reshape(x, [1, -1]), h, 0) # yy = y.view(-1, 1).repeat(1, w) # xx = x.view(1, -1).repeat(h, 1) meshed = tf.concat([tf.expand_dims(xx, 2), tf.expand_dims(yy, 2)], 2) return meshed class ResBlock2d(layers.Layer): """ Res block, preserve spatial resolution. """ def __init__(self, in_features, kernel_size, padding): super(ResBlock2d, self).__init__() self.conv1 = layers.Conv2D(in_features, kernel_size=kernel_size, padding='same') self.conv2 = layers.Conv2D(in_features, kernel_size=kernel_size, padding='same') self.norm1 = layers.BatchNormalization() self.norm2 = layers.BatchNormalization() def call(self, x, **kwargs): out = self.norm1(x) out = tf.keras.activations.relu(out) out = self.conv1(out) out = self.norm2(out) out = tf.keras.activations.relu(out) out = self.conv2(out) out += x return out class UpBlock2d(layers.Layer): """ Upsampling block for use in decoder. """ def __init__(self, out_features, kernel_size=(3, 3), groups=1): super(UpBlock2d, self).__init__() self.conv = layers.Conv2D(out_features, kernel_size=kernel_size, padding='same') self.norm = layers.BatchNormalization() self.up = layers.UpSampling2D() def call(self, x, **kwargs): out = self.up(x) out = self.conv(out) out = self.norm(out) out = tf.keras.activations.relu(out) return out class DownBlock2d(layers.Layer): """ Downsampling block for use in encoder. """ def __init__(self, out_features, kernel_size=3): super(DownBlock2d, self).__init__() self.conv = layers.Conv2D(out_features, kernel_size=kernel_size, padding='same') self.norm = layers.BatchNormalization() self.pool = layers.AvgPool2D(pool_size=(2, 2)) def call(self, x, **kwargs): out = self.conv(x) out = self.norm(out) out = tf.keras.activations.relu(out) out = self.pool(out) return out class SameBlock2d(layers.Layer): """ Simple block, preserve spatial resolution. """ def __init__(self, out_features, kernel_size=3): super(SameBlock2d, self).__init__() self.conv = layers.Conv2D(out_features, kernel_size=kernel_size, padding='same') self.norm = layers.BatchNormalization() def call(self, x, **kwargs): out = self.conv(x) out = self.norm(out) out = tf.keras.activations.relu(out) return out class Encoder(layers.Layer): """ Hourglass Encoder """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Encoder, self).__init__() self.num_blocks = num_blocks # down_blocks = [] for i in range(num_blocks): block = DownBlock2d( min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3 ) setattr(self, f'down_block{i}', block) # down_blocks.append(block) # self.down_blocks = tf.keras.Sequential(down_blocks) def call(self, x, **kwargs): outs = [x] for i in range(self.num_blocks): res = getattr(self, f'down_block{i}')(outs[-1]) outs.append(res) return outs class Decoder(layers.Layer): """ Hourglass Decoder """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Decoder, self).__init__() # up_blocks = [] self.num_blocks = num_blocks for i in range(num_blocks)[::-1]: out_filters = min(max_features, block_expansion * (2 ** i)) block = UpBlock2d(out_filters, kernel_size=3) setattr(self, f'up_block{i}', block) # up_blocks.append() # self.up_blocks = nn.ModuleList(up_blocks) self.out_filters = block_expansion + in_features def call(self, x, **kwargs): out = x.pop() for i in range(self.num_blocks)[::-1]: out = getattr(self, f'up_block{i}')(out) skip = x.pop() out = tf.concat([out, skip], axis=3) return out class Hourglass(layers.Layer): """ Hourglass architecture. """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Hourglass, self).__init__() self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) self.out_filters = self.decoder.out_filters def call(self, x, **kwargs): return self.decoder(self.encoder(x)) class AntiAliasInterpolation2d(layers.Layer): """ Band-limited downsampling, for better preservation of the input signal. """ def __init__(self, channels, scale): super(AntiAliasInterpolation2d, self).__init__() sigma = (1 / scale - 1) / 2 kernel_size = 2 * round(sigma * 4) + 1 self.ka = kernel_size // 2 self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka kernel_size = [kernel_size, kernel_size] sigma = [sigma, sigma] # The gaussian kernel is the product of the # gaussian function of each dimension. kernel = 1 meshgrids = tf.meshgrid( [tf.range(kernel_size[0], dtype=tf.float32)], [tf.range(kernel_size[1], dtype=tf.float32)], ) for size, std, mgrid in zip(kernel_size, sigma, meshgrids): mean = (size - 1) / 2 kernel *= tf.exp(-(mgrid - mean) ** 2 / (2 * std ** 2)) # Make sure sum of values in gaussian kernel equals 1. kernel = kernel / tf.reduce_sum(kernel) # Reshape to depthwise convolutional weight kernel = tf.reshape(kernel, [1, 1, *kernel.shape]) kernel = tf.repeat(kernel, channels, 0) kernel = tf.transpose(tf.constant(kernel, name='kernel'), [2, 3, 1, 0]) self.kernel = tf.Variable(tf.tile(kernel, [1, 1, 1, 1]), trainable=False) self.groups = channels self.scale = scale self.kernels = tf.split(self.kernel, self.groups, axis=3) def call(self, input, **kwargs): if self.scale == 1.0: return input padded = tf.keras.backend.spatial_2d_padding(input, ((self.ka, self.kb), (self.ka, self.kb))) # split & concat - to work on CPU splitted = tf.split(padded, 3, axis=3) parts = [] for i in range(3): parts.append(tf.nn.conv2d(splitted[i], self.kernels[i], strides=1, padding='VALID')) out = tf.concat([*parts], axis=3) # out = tf.nn.conv2d(padded, self.kernel, strides=1, padding='VALID') size = (tf.cast(out.shape[1] * self.scale, tf.int32), tf.cast(out.shape[2] * self.scale, tf.int32)) # out = tf.image.resize(out, size, method=tf.image.ResizeMethod.BILINEAR) out = resize_nearest_neighbor(out, size) return out
2.71875
3
ut.py
michaelpdu/adversary_ml
1
12784977
import os, sys import unittest import tlsh from logging import * sys.path.append(os.path.join(os.path.dirname(__file__),'UT')) # from ut_trendx_predictor import TrendXPredictorTestCase from ut_dna_manager import DNAManagerTestCase from ut_housecallx_report import HouseCallXReportTestCase from ut_trendx_wrapper import TrendXWrapperTestCase from ut_pe_generator import PEGeneratorTestCase from ut_workflow import AdversaryWorkflowTestCase from ut_tlsh import TLSHTestCase from ut_adversary_tlsh import TLSHAdversaryTestCase def suite(): suite = unittest.TestSuite() # TrendXPredictor Test Cases # suite.addTest(TrendXPredictorTestCase("test_script_adversary")) # suite.addTest(TrendXPredictorTestCase("test_pe_adversary")) # # DNAManager Test Cases # suite.addTest(DNAManagerTestCase("test_load_dna")) # suite.addTest(DNAManagerTestCase("test_load_dna_random")) # suite.addTest(DNAManagerTestCase("test_generate_random_indexes")) # # HouseCallXReport Test Cases # suite.addTest(HouseCallXReportTestCase("test_get_scores")) # # TrendX Wrapper Test Cases # if sys.version_info.major >= 3: # suite.addTest(TrendXWrapperTestCase("test_scan_pe_file")) # suite.addTest(TrendXWrapperTestCase("test_scan_pe_dir")) # suite.addTest(TrendXWrapperTestCase("test_scan_pe_list")) # else: # suite.addTest(TrendXWrapperTestCase("test_scan_script_file")) # suite.addTest(TrendXWrapperTestCase("test_scan_script_dir")) # suite.addTest(TrendXWrapperTestCase("test_scan_script_list")) # # PEGenerator Test Cases # if sys.version_info.major >= 3: # suite.addTest(PEGeneratorTestCase("test_generate")) # # suite.addTest(PEGeneratorRandomTestCase("test_generate_imports")) # else: # pass # AdversaryWorkflow Test Case if sys.version_info.major >= 3: # suite.addTest(AdversaryWorkflowTestCase("test_process_trendx_pe_bruteforce")) # suite.addTest(AdversaryWorkflowTestCase("test_process_trendx_script_bruteforce")) # suite.addTest(AdversaryWorkflowTestCase("test_process_trendx_pe_ga")) # suite.addTest(AdversaryWorkflowTestCase("test_process_trendx_script_ga")) # suite.addTest(AdversaryWorkflowTestCase("test_process_tlsh_pe_bruteforce")) # suite.addTest(AdversaryWorkflowTestCase("test_process_tlsh_script_bruteforce")) # suite.addTest(AdversaryWorkflowTestCase("test_process_tlsh_pe_ga")) # suite.addTest(AdversaryWorkflowTestCase("test_process_tlsh_script_ga")) suite.addTest(AdversaryWorkflowTestCase("test_start")) # suite.addTest(AdversaryWorkflowTestCase("test_attack")) else: pass # # TLSH Test Case # suite.addTest(TLSHTestCase("test_get_tlsh")) # suite.addTest(TLSHTestCase("test_gen_csv_for_file")) # suite.addTest(TLSHTestCase("test_gen_csv_for_dir")) # suite.addTest(TLSHTestCase("test_gen_and_scan_csv")) # suite.addTest(TLSHTestCase("test_tlsh_wrapper_scan")) # # TLSHGAAdversary Test Case # suite.addTest(TLSHAdversaryTestCase("test_process_tlsh_pe_ga")) return suite if __name__ == "__main__": basicConfig(filename='adversary_ml_ut_{}.log'.format(os.getpid()), format='[%(asctime)s][%(process)d.%(thread)d][%(levelname)s] - %(message)s', level=DEBUG) unittest.main(defaultTest = 'suite')
1.945313
2
service/Speech.py
sola1993/inmoov
1
12784978
<filename>service/Speech.py from time import sleep from org.myrobotlab.service import Speech from org.myrobotlab.service import Runtime # sayThings.py # example script for MRL showing various methods # of the Speech Service # http://myrobotlab.org/doc/org/myrobotlab/service/Speech.html # The preferred method for creating services is # through the Runtime. This will allow # the script to be rerun without creating a new # Service each time. The initial delay from Service # creation and caching voice files can be large, however # after creation and caching methods should return # immediately # Create a running instance of the Speech Service. # Name it "speech". speech = Runtime.create("speech","Speech") speech.startService() # Speak with initial defaults - Google en speech.speak("hello brave new world") # Google must have network connectivity # the back-end will cache a sound file # once it is pulled from Goole. So the # first time it is slow but subsequent times its very # quick and can be run without network connectivity. speech.setBackendType("GOOGLE") speech.setLanguage("en") speech.speak("Hello World From Google.") speech.setLanguage("pt") # Google supports some language codes speech.speak("Hello World From Google.") speech.setLanguage("de") speech.speak("Hello World From Google.") speech.setLanguage("ja") speech.speak("Hello World From Google.") speech.setLanguage("da") speech.speak("Hello World From Google.") speech.setLanguage("ro") speech.speak("Hello World From Google.") sleep(3) # Switching to FreeTTS <<url>> # http://freetts.sourceforge.net/docs/index.php speech.setBackendType("FREETTS") speech.speak("Hello World From Free TTS.")
3.46875
3
lib/awx_cli/commands/BaseCommand.py
bennojoy/awx-cli
2
12784979
# Copyright 2013, AnsibleWorks Inc. # <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import exceptions class BaseCommand(object): def __init__(self, toplevel): self.toplevel = toplevel self.name = "BASE-COMMAND" def run(self, args): raise exceptions.NotImplementedError()
1.921875
2
hard-gists/2038329/snippet.py
jjhenkel/dockerizeme
21
12784980
<reponame>jjhenkel/dockerizeme from bigfloat import * N = 5 setcontext(precision(10**N)) def f(x): return x + sin(x) def g(n): x = 3 for i in xrange(n): x = f(x) return x import sympy goodpi = str(sympy.pi.evalf(10**N)) def goodtill(n): cand = g(n) for i,(a,b) in enumerate(zip(str(cand),goodpi)): if a != b: return i-1 inds = range(20) print map(goodtill,inds)
2.609375
3
server.py
MeiRose/Datamanager
0
12784981
from flask import Flask, send_from_directory, jsonify import os BASE_DIR = os.path.abspath(os.path.dirname(__file__)) CLIENT_DIR = os.path.join(BASE_DIR, "client", "dist") STATIC_DIR = os.path.join(BASE_DIR, "static") app = Flask(__name__) app.secret_key = "Developer Key" @app.route('/') def index(): return send_from_directory(CLIENT_DIR, "index.html") @app.route('/<path:filename>') def client_app(filename): return send_from_directory(CLIENT_DIR, filename) @app.route('/static/<path:filename>') def static_files(filename): return send_from_directory(STATIC_DIR, filename) @app.route('/api/items') def data(): reply = { "results": [ "Item 1", "Item 2", ] } return jsonify(result=reply)
2.515625
3
switch/controller/main_controller.py
fnrg-nfv/P4SFC-public
2
12784982
from flask import Flask, request import argparse import time import threading from p4_controller import P4Controller from state_allocator import EntryManager app = Flask(__name__) p4_controller = None entry_manager = None @app.route('/test') def test(): return "Hello from switch control plane controller~!" @app.route('/config_pipeline', methods=["POST"]) def config_pipeline(): data = request.get_json() operation_type = data.get("type") if operation_type == "insert": entries = [] entry_infos = data.get("entry_infos") for entry_info in entry_infos: entries.append(p4_controller.build_table_entry(entry_info)) p4_controller.insert_table_entries(entries) return "OK" @app.route("/config_route", methods=["POST"]) def config_route(): data = request.get_json() chain_id = data.get("chain_id") chain_length = data.get("chain_length") output_port = data.get("output_port") operation_type = data.get("type") if operation_type == "insert": p4_controller.insert_route(chain_id, chain_length, output_port) return str(int(time.time() * 1000)) @app.route("/new_nf", methods=["POST"]) def new_nf(): data = request.get_json() ip_addr = data.get("ip_addr") port = data.get("port") entry_manager.add_grpc_client("%s:%s" % (ip_addr, port)) def main(p4info_file_path, tofino_config_fpath, server_port, max_rule, polling_time, enable_topk, debug): global p4_controller p4_controller = P4Controller(p4info_file_path, tofino_config_fpath, debug) if max_rule > 0 or polling_time > 0: global entry_manager entry_manager = EntryManager( p4_controller, [], max_rule, polling_time, enable_topk) entry_manager.start() app.run(host="0.0.0.0", port=server_port) if __name__ == '__main__': parser = argparse.ArgumentParser(description='P4SFC switch controller') parser.add_argument('--p4info', help='p4info proto in text format from p4c', type=str, action="store", required=False, default='../../build/p4info.pb.txt') parser.add_argument('--tofino-config', help='Tofino config file from p4c', type=str, action="store", required=False, default='../../build/device_config') parser.add_argument('--server-port', help='port for RESTful API', type=str, action="store", required=False, default=8090) parser.add_argument('--max-rule', help='The maximum number of rules a switch can hold', type=int, action="store", required=False, default=1000) parser.add_argument( '--polling-time', help='The polling time (in seconds) for poll the entries', type=float, action="store", required=False, default=30) parser.add_argument('--enable-topk', dest='enable_topk', action='store_true') parser.add_argument('--disable-topk', dest='enable_topk', action='store_false') parser.add_argument('--debug', dest='debug', action='store_true') parser.set_defaults(enable_topk=True) parser.set_defaults(debug=False) args = parser.parse_args() main(args.p4info, args.tofino_config, args.server_port, args.max_rule, args.polling_time, args.enable_topk, args.debug)
2.359375
2
itemIndex.py
adamb70/CSGO-Market-Float-Finder
73
12784983
index = { "ID0": "Vanilla", "ID2": "Groundwater", "ID3": "Candy Apple", "ID5": "Forest DDPAT", "ID6": "Arctic Camo", "ID8": "Desert Storm", "ID9": "Bengal Tiger", "ID10": "Copperhead", "ID11": "Skulls", "ID12": "Crimson Web", "ID13": "Blue Streak", "ID14": "Red Laminate", "ID15": "Gunsmoke", "ID16": "Jungle Tiger", "ID17": "Urban DDPAT", "ID20": "Virus", "ID21": "Granite Marbleized", "ID22": "Contrast Spray", "ID25": "Forest Leaves", "ID26": "Lichen Dashed", "ID27": "Bone Mask", "ID28": "Anodized Navy", "ID30": "Snake Camo", "ID32": "Silver", "ID33": "Hot Rod", "ID34": "Metallic DDPAT", "ID36": "Ossified", "ID37": "Blaze", "ID38": "Fade", "ID39": "Bulldozer", "ID40": "Night", "ID41": "Copper", "ID42": "Blue Steel", "ID43": "Stained", "ID44": "Case Hardened", "ID46": "Contractor", "ID47": "Colony", "ID48": "Dragon Tattoo", "ID51": "Lightning Strike", "ID59": "Slaughter", "ID60": "Dark Water", "ID61": "Hypnotic", "ID62": "Bloomstick", "ID67": "Cold Blooded", "ID70": "Carbon Fiber", "ID71": "Scorpion", "ID72": "Safari Mesh", "ID73": "Wings", "ID74": "Polar Camo", "ID75": "Blizzard Marbleized", "ID76": "Winter Forest", "ID77": "Boreal Forest", "ID78": "Forest Night", "ID83": "Orange DDPAT", "ID84": "Pink DDPAT", "ID90": "Mudder", "ID92": "Cyanospatter", "ID93": "Caramel", "ID95": "Grassland", "ID96": "Blue Spruce", "ID98": "Ultraviolet", "ID99": "Sand Dune", "ID100": "Storm", "ID101": "Tornado", "ID102": "Whiteout", "ID104": "Grassland Leaves", "ID107": "Polar Mesh", "ID110": "Condemned", "ID111": "Glacier Mesh", "ID116": "Sand Mesh", "ID119": "Sage Spray", "ID122": "Jungle Spray", "ID124": "Sand Spray", "ID135": "Urban Perforated", "ID136": "Waves Perforated", "ID141": "Orange Peel", "ID143": "Urban Masked", "ID147": "Jungle Dashed", "ID148": "Sand Dashed", "ID149": "Urban Dashed", "ID151": "Jungle", "ID153": "Demolition", "ID154": "Afterimage", "ID155": "Bullet Rain", "ID156": "Death by Kitty", "ID157": "Palm", "ID158": "Walnut", "ID159": "Brass", "ID162": "Splash", "ID164": "Modern Hunter", "ID165": "Splash Jam", "ID166": "Blaze Orange", "ID167": "Radiation Hazard", "ID168": "Nuclear Threat", "ID169": "Fallout Warning", "ID170": "Predator", "ID171": "Irradiated Alert", "ID172": "Black Laminate", "ID174": "BOOM", "ID175": "Scorched", "ID176": "Faded Zebra", "ID177": "Memento", "ID178": "Doomkitty", "ID179": "Nuclear Threat", "ID180": "Fire Serpent", "ID181": "Corticera", "ID182": "Emerald Dragon", "ID183": "Overgrowth", "ID184": "Corticera", "ID185": "Golden Koi", "ID186": "Wave Spray", "ID187": "Zirka", "ID188": "Graven", "ID189": "Bright Water", "ID190": "Black Limba", "ID191": "Tempest", "ID192": "Shattered", "ID193": "Bone Pile", "ID194": "Spitfire", "ID195": "Demeter", "ID196": "Emerald", "ID197": "Anodized Navy", "ID198": "Hazard", "ID199": "Dry Season", "ID200": "Mayan Dreams", "ID201": "Palm", "ID202": "Jungle DDPAT", "ID203": "Rust Coat", "ID204": "Mosaico", "ID205": "Jungle", "ID206": "Tornado", "ID207": "Facets", "ID208": "Sand Dune", "ID209": "Groundwater", "ID210": "Anodized Gunmetal", "ID211": "Ocean Foam", "ID212": "Graphite", "ID213": "Ocean Foam", "ID214": "Graphite", "ID215": "X-Ray", "ID216": "Blue Titanium", "ID217": "Blood Tiger", "ID218": "Hexane", "ID219": "Hive", "ID220": "Hemoglobin", "ID221": "Serum", "ID222": "Blood in the Water", "ID223": "Nightshade", "ID224": "Water Sigil", "ID225": "Ghost Camo", "ID226": "Blue Laminate", "ID227": "Electric Hive", "ID228": "Blind Spot", "ID229": "Azure Zebra", "ID230": "Steel Disruption", "ID231": "Cobalt Disruption", "ID232": "Crimson Web", "ID233": "Tropical Storm", "ID234": "Ash Wood", "ID235": "VariCamo", "ID236": "Night Ops", "ID237": "Urban Rubble", "ID238": "VariCamo Blue", "ID240": "CaliCamo", "ID241": "Hunting Blind", "ID242": "Army Mesh", "ID243": "Gator Mesh", "ID244": "Teardown", "ID245": "Army Recon", "ID246": "Amber Fade", "ID247": "Damascus Steel", "ID248": "Red Quartz", "ID249": "Cobalt Quartz", "ID250": "Full Stop", "ID251": "Pit Viper", "ID252": "Silver Quartz", "ID253": "Acid Fade", "ID254": "Nitro", "ID255": "Asiimov", "ID256": "The Kraken", "ID257": "Guardian", "ID258": "Mehndi", "ID259": "Redline", "ID260": "Pulse", "ID261": "Marina", "ID262": "Rose Iron", "ID263": "Rising Skull", "ID264": "Sandstorm", "ID265": "Kami", "ID266": "Magma", "ID267": "Cobalt Halftone", "ID268": "Tread Plate", "ID269": "The Fuschia Is Now", "ID270": "Victoria", "ID271": "Undertow", "ID272": "Titanium Bit", "ID273": "Heirloom", "ID274": "Copper Galaxy", "ID275": "Red FragCam", "ID276": "Panther", "ID277": "Stainless", "ID278": "Blue Fissure", "ID279": "Asiimov", "ID280": "Chameleon", "ID281": "Corporal", "ID282": "Redline", "ID283": "Trigon", "ID284": "Heat", "ID285": "Terrain", "ID286": "Antique", "ID287": "Pulse", "ID288": "Sergeant", "ID289": "Sandstorm", "ID290": "Guardian", "ID291": "Heaven Guard", "ID293": "Death Rattle", "ID294": "Green Apple", "ID295": "Franklin", "ID296": "Meteorite", "ID297": "Tuxedo", "ID298": "<NAME>", "ID299": "Caged Steel", "ID300": "<NAME>", "ID301": "Atomic Alloy", "ID302": "Vulcan", "ID303": "Isaac", "ID304": "Slashed", "ID305": "Torque", "ID306": "Antique", "ID307": "Retribution", "ID308": "Kami", "ID309": "Howl", "ID310": "Curse", "ID311": "Desert Warfare", "ID312": "Cyrex", "ID313": "Orion", "ID314": "Heaven Guard", "ID315": "Poison Dart", "ID316": "Jaguar", "ID317": "Bratatat", "ID318": "Road Rash", "ID319": "Detour", "ID320": "Red Python", "ID321": "Master Piece", "ID322": "Nitro", "ID323": "Rust Coat", "ID325": "Chalice", "ID326": "Knight", "ID327": "Chainmail", "ID328": "Hand Cannon", "ID329": "Dark Age", "ID330": "Briar", "ID332": "Royal Blue", "ID333": "Indigo", "ID334": "Twist", "ID335": "Module", "ID336": "Desert-Strike", "ID337": "Tatter", "ID338": "Pulse", "ID339": "Caiman", "ID340": "Jet Set", "ID341": "First Class", "ID342": "Leather", "ID343": "Commuter", "ID344": "Dragon Lore", "ID345": "First Class", "ID346": "Coach Class", "ID347": "Pilot", "ID348": "Red Leather", "ID349": "Osiris", "ID350": "Tigris", "ID351": "Conspiracy", "ID352": "Fowl Play", "ID353": "Water Elemental", "ID354": "Urban Hazard", "ID355": "Desert-Strike", "ID356": "Koi", "ID357": "Ivory", "ID358": "Supernova", "ID359": "Asiimov", "ID360": "Cyrex", "ID361": "Abyss", "ID362": "Labyrinth", "ID363": "Traveler", "ID364": "Business Class", "ID365": "Olive Plaid", "ID366": "Green Plaid", "ID367": "Reactor", "ID368": "Setting Sun", "ID369": "Nuclear Waste", "ID370": "Bone Machine", "ID371": "Styx", "ID372": "Nuclear Garden", "ID373": "Contamination", "ID374": "Toxic", "ID375": "Radiation Hazard", "ID376": "Chemical Green", "ID377": "Hot Shot", "ID378": "Fallout Warning", "ID379": "Cerberus", "ID380": "Wasteland Rebel", "ID381": "Grinder", "ID382": "Murky", "ID383": "Basilisk", "ID384": "Griffin", "ID385": "Firestarter", "ID386": "Dart", "ID387": "Urban Hazard", "ID388": "Cartel", "ID389": "Fire Elemental", "ID390": "Highwayman", "ID391": "Cardiac", "ID392": "Delusion", "ID393": "Tranquility", "ID394": "Cartel", "ID395": "Man-o'-war", "ID396": "Urban Shock", "ID397": "Naga", "ID398": "Chatterbox", "ID399": "Catacombs", "ID400": "Dragon King", "ID401": "System Lock", "ID402": "Malachite", "ID403": "Deadly Poison", "ID404": "Muertos", "ID405": "Serenity", "ID406": "Grotto", "ID407": "Quicksilver", "ID409": "Tiger Tooth", "ID410": "<NAME>", "ID411": "D<NAME>el", "ID413": "<NAME>", "ID414": "<NAME>", "ID415": "Doppler (Ruby)", "ID416": "Doppler (Sapphire)", "ID417": "Doppler (Blackpearl)", "ID418": "Doppler (Phase 1)", "ID419": "Doppler (Phase 2)", "ID420": "Doppler (Phase 3)", "ID421": "Doppler (Phase 4)", "ID422": "Elite Build", "ID423": "Armor Core", "ID424": "Worm God", "ID425": "Bronze Deco", "ID426": "Valence", "ID427": "Monkey Business", "ID428": "Eco", "ID429": "Djinn", "ID430": "Hyper Beast", "ID431": "Heat", "ID432": "Man-o'-war", "ID433": "Neon Rider", "ID434": "Origami", "ID435": "Pole Position", "ID436": "Grand Prix", "ID437": "Twilight Galaxy", "ID438": "Chronos", "ID439": "Hades", "ID440": "Icarus Fell", "ID441": "Minotaur's Labyrinth", "ID442": "Asterion", "ID443": "Pathfinder", "ID444": "Daedalus", "ID445": "Hot Rod", "ID446": "Medusa", "ID447": "Duelist", "ID448": "Pandora's Box", "ID449": "Poseidon", "ID450": "Moon in Libra", "ID451": "Sun in Leo", "ID452": "Shipping Forecast", "ID453": "Emerald", "ID454": "Para Green", "ID455": "Akihabara Accept", "ID456": "Hydroponic", "ID457": "Bamboo Print", "ID458": "Bamboo Shadow", "ID459": "Bamboo Forest", "ID460": "Aqua Terrace", "ID462": "Counter Terrace", "ID463": "Terrace", "ID464": "Neon Kimono", "ID465": "Orange Kimono", "ID466": "<NAME>", "ID467": "<NAME>", "ID468": "Midnight Storm", "ID469": "Sunset Storm 2", "ID470": "Sunset Storm", "ID471": "Daybreak", "ID472": "Impact Drill", "ID473": "Seabird", "ID474": "Aquamarine Revenge", "ID475": "Hyper Beast", "ID476": "Yellow Jacket", "ID477": "Neural Net", "ID478": "Rocket Pop", "ID479": "Bunsen Burner", "ID480": "Evil Daimyo", "ID481": "Nemesis", "ID482": "Ruby Poison Dart", "ID483": "Loudmouth", "ID484": "Ranger", "ID485": "Handgun", "ID486": "Elite Build", "ID487": "Cyrex", "ID488": "Riot", "ID489": "Torque", "ID490": "Frontside Misty", "ID491": "Dualing Dragons", "ID492": "Survivor Z", "ID493": "Flux", "ID494": "Stone Cold", "ID495": "Wraiths", "ID496": "Nebula Crusader", "ID497": "Golden Coil", "ID498": "Rangeen", "ID499": "Cobalt Core", "ID500": "Special Delivery", "ID501": "Wingshot", "ID502": "Green Marine", "ID503": "Big Iron", "ID504": "Kill Confirmed", "ID505": "Scumbria", "ID506": "Point Disarray", "ID507": "Ricochet", "ID508": "Fuel Rod", "ID509": "Corinthian", "ID510": "Retrobution", "ID511": "The Executioner", "ID512": "Royal Paladin", "ID514": "Power Loader", "ID515": "Imperial", "ID516": "Shapewood", "ID517": "Yorick", "ID518": "Outbreak", "ID519": "Tiger Moth", "ID520": "Avalanche", "ID521": "Teclu Burner", "ID522": "Fade", "ID523": "Amber Fade", "ID524": "Fuel Injector", "ID525": "Elite Build", "ID526": "Photic Zone", "ID527": "Kumicho Dragon", "ID528": "Cartel", "ID529": "Valence", "ID530": "Triumvirate", "ID532": "Royal Legion", "ID533": "The Battlestar", "ID534": "Lapis Gator", "ID535": "Praetorian", "ID536": "Impire", "ID537": "Hyper Beast", "ID538": "Necropos", "ID539": "Jambiya", "ID540": "Lead Conduit", "ID541": "Fleet Flock", "ID542": "Judgement of Anubis", "ID543": "Red Astor", "ID544": "Ventilators", "ID545": "Orange Crash", "ID546": "Firefight", "ID547": "Spectre", "ID548": "Chantico's Fire", "ID549": "Bioleak", "ID550": "Oceanic", "ID551": "Asiimov", "ID552": "Fubar", "ID553": "Atlas", "ID554": "Ghost Crusader", "ID555": "Re-Entry", "ID556": "Primal Saber", "ID557": "Black Tie", "ID558": "Lore", "ID559": "Lore", "ID560": "Lore", "ID561": "Lore", "ID562": "Lore", "ID563": "Black Laminate", "ID564": "Black Laminate", "ID565": "Black Laminate", "ID566": "Black Laminate", "ID567": "Black Laminate", "ID568": "Gamma Doppler (Emerald Marble)", "ID569": "Gamma Doppler (Phase 1)", "ID570": "Gamma Doppler (Phase 2)", "ID571": "Gamma Doppler (Phase 3)", "ID572": "Gamma Doppler (Phase 4)", "ID573": "Autotronic", "ID574": "Autotronic", "ID575": "Autotronic", "ID576": "Autotronic", "ID577": "Autotronic", "ID578": "Bright Water", "ID579": "Bright Water", "ID580": "Freehand", "ID581": "Freehand", "ID582": "Freehand", "ID583": "Aristocrat", "ID584": "Phobos", "ID585": "Violent Daimyo", "ID586": "Wasteland Rebel", "ID587": "Mecha Industries", "ID588": "Desolate Space", "ID589": "Carnivore", "ID590": "Exo", "ID591": "Imperial Dragon", "ID592": "Iron Clad", "ID593": "Chopper", "ID594": "Harvester", "ID595": "Reboot", "ID596": "Limelight", "ID597": "Bloodsport", "ID598": "Aerial", "ID599": "Ice Cap", "ID600": "Neon Revolution", "ID601": "Syd Mead", "ID602": "Imprint", "ID603": "Directive", "ID604": "Roll Cage", "ID605": "Scumbria", "ID606": "Ventilator", "ID607": "Weasel", "ID608": "Petroglyph", "ID609": "Airlock", "ID610": "Dazzle", "ID611": "Grim", "ID612": "Powercore", "ID613": "Triarch", "ID614": "Fuel Injector", "ID615": "Briefing", "ID616": "Slipstream", "ID617": "Doppler", "ID618": "Doppler", "ID619": "Doppler", "ID620": "Ultraviolet", "ID621": "Ultraviolet", "ID622": "Polymer", "ID623": "Ironwork", "ID624": "Dragonfire", "ID625": "Royal Consorts", "ID626": "Mecha Industries", "ID627": "Cirrus", "ID628": "Stinger", "ID629": "Black Sand", "ID630": "Sand Scale", "ID631": "Flashback", "ID632": "Buzz Kill", "ID633": "Sonar", "ID634": "Gila", "ID635": "Turf", "ID636": "Shallow Grave", "ID637": "Cyrex", "ID638": "Wasteland Princess", "ID639": "Bloodsport", "ID640": "Fever Dream", "ID641": "Jungle Slipstream", "ID642": "Blueprint", "ID643": "Xiangliu", "ID644": "Decimator", "ID645": "Oxide Blaze", "ID646": "Capillary", "ID647": "Crimson Tsunami", "ID648": "Emerald Poison Dart", "ID649": "Akoben", "ID650": "Ripple", "ID651": "Last Dive", "ID652": "Scaffold", "ID653": "Neo-Noir", "ID654": "Seasons", "ID655": "Zander", "ID656": "Orbit Mk01", "ID657": "Blueprint", "ID658": "Cobra Strike", "ID659": "Macabre", "ID660": "Hyper Beast", "ID661": "Sugar Rush", "ID662": "Oni Taiji", "ID663": "Briefing", "ID664": "Hellfire", "ID665": "Aloha", "ID666": "Hard Water", "ID667": "Woodsman", "ID668": "Red Rock", "ID669": "Death Grip", "ID670": "Death's Head", "ID671": "Cut Out", "ID672": "Metal Flowers", "ID673": "Morris", "ID674": "Triqua", "ID675": "The Empress", "ID676": "High Roller", "ID677": "Hunter", "ID678": "See Ya Later", "ID679": "Goo", "ID680": "Off World", "ID681": "Leaded Glass", "ID682": "Oceanic", "ID683": "Llama Cannon", "ID684": "Cracked Opal", "ID685": "Jungle Slipstream", "ID686": "Phantom", "ID687": "Tacticat", "ID688": "Exposure", "ID689": "Ziggy", "ID690": "Stymphalian", "ID691": "Mortis", "ID692": "Night Riot", "ID693": "Flame Test", "ID694": "Moonrise", "ID695": "Neo-Noir", "ID696": "Bloodsport", "ID697": "Black Sand", "ID698": "Lionfish", "ID699": "Wild Six", "ID700": "Urban Hazard", "ID701": "Grip", "ID702": "Aloha", "ID703": "SWAG-7", "ID704": "Arctic Wolf", "ID705": "Cortex", "ID706": "Oxide Blaze", "ID10006": "Charred", "ID10007": "Snakebite", "ID10008": "Bronzed", "ID10009": "Leather", "ID10010": "Spruce DDPAT", "ID10013": "Lunar Weave", "ID10015": "Convoy", "ID10016": "Crimson Weave", "ID10018": "Superconductor", "ID10019": "Arid", "ID10021": "Slaughter", "ID10024": "Eclipse", "ID10026": "Spearmint", "ID10027": "Boom!", "ID10028": "Cool Mint", "ID10030": "Forest DDPAT", "ID10033": "<NAME>", "ID10034": "Emerald Web", "ID10035": "Foundation", "ID10036": "Badlands", "ID10037": "Pandora's Box", "ID10038": "Hedge Maze", "ID10039": "Guerrilla", "ID10040": "Diamondback", "ID10041": "King Snake", "ID10042": "Imperial Plaid", "ID10043": "Overtake", "ID10044": "Racing Green", "ID10045": "Amphibious", "ID10046": "Bronze Morph", "ID10047": "Omega", "ID10048": "Vice", "ID10049": "POW!", "ID10050": "Turtle", "ID10051": "Transport", "ID10052": "Polygon", "ID10053": "Cobalt Skulls", "ID10054": "Overprint", "ID10055": "Duct Tape", "ID10056": "Arboreal", "ID10057": "Emerald", "ID10058": "Mangrove", "ID10059": "Rattler", "ID10060": "Case Hardened", "ID10061": "Crimson Web", "ID10062": "Buckshot", "ID10063": "Fade", "ID10064": "Mogul" }
1.34375
1
pyimq/bin/utils/create_photo_test_set.py
bradday4/PyImageQualityRanking
8
12784984
<reponame>bradday4/PyImageQualityRanking """ <NAME> - 2015 - <EMAIL> A small utility that generates Gaussian blurred images from a series of base images. This utility was use to create an autofocus function test dataset. """ import os import sys from scipy import ndimage, misc import numpy def main(): # Check input parameters if len(sys.argv) < 2 or not os.path.isdir(sys.argv[1]): print("Please specify a path to a directory that contains the pictures") sys.exit(1) path = sys.argv[1] # Create output directory output_dir = os.path.join(path, "test_image_series") if not os.path.exists(output_dir): os.makedirs(output_dir) # Process every image in the input path for image_name in os.listdir(path): real_path = os.path.join(path, image_name) if not real_path.endswith((".jpg", ".tif", ".tiff", ".png")): continue original = misc.imread(real_path, flatten=True) path_parts = os.path.split(real_path) extension = path_parts[1].split(".")[1] base_name = path_parts[1].split(".")[0] # Save original output_path = os.path.join(output_dir, image_name) misc.imsave(output_path, original) # Blur with Gaussian filter, Sigma=1 file_name = base_name + "_gaussian_1." + extension output_path = os.path.join(output_dir, file_name) misc.imsave(output_path, ndimage.gaussian_filter(original, 1)) # Blur with Gaussian filter, Sigma=2 file_name = base_name + "_gaussian_2." + extension output_path = os.path.join(output_dir, file_name) misc.imsave(output_path, ndimage.gaussian_filter(original, 2)) if __name__ == "__main__": main()
2.859375
3
common/rtemsext.py
cillianodonnell/rtems-docs
1
12784985
from docutils import nodes import sphinx.domains.std # Borrowed from: http://stackoverflow.com/questions/13848328/sphinx-references-to-other-sections-containing-section-number-and-section-title class CustomStandardDomain(sphinx.domains.std.StandardDomain): def __init__(self, env): env.settings['footnote_references'] = 'superscript' sphinx.domains.std.StandardDomain.__init__(self, env) def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode): res = super(CustomStandardDomain, self).resolve_xref(env, fromdocname, builder, typ, target, node, contnode) if res is None: return res if typ == 'ref' and not node['refexplicit']: docname, labelid, sectname = self.data['labels'].get(target, ('','','')) res['refdocname'] = docname return res def doctree_resolved(app, doctree, docname): secnums = app.builder.env.toc_secnumbers for node in doctree.traverse(nodes.reference): if 'refdocname' in node: refdocname = node['refdocname'] if refdocname in secnums: secnum = secnums[refdocname] emphnode = node.children[0] textnode = emphnode.children[0] toclist = app.builder.env.tocs[refdocname] anchorname = None for refnode in toclist.traverse(nodes.reference): if refnode.astext() == textnode.astext(): anchorname = refnode['anchorname'] if anchorname is None: continue sec_number = secnum[anchorname] chapter = sec_number[0] section = None if len(sec_number) > 1: section = ".".join(map(str, sec_number[1:])) if section: node.replace(emphnode, nodes.Text("Chapter %s Section %s - %s" % (chapter, section, textnode))) else: node.replace(emphnode, nodes.Text("Chapter %s - %s" % (chapter, textnode))) def setup(app): app.override_domain(CustomStandardDomain) app.connect('doctree-resolved', doctree_resolved) return {'version': "1.0", 'parallel_read_safe': True}
2.234375
2
ctc_fast/swbd-utils/score_frag_utts.py
SrikarSiddarth/stanford-ctc
268
12784986
<filename>ctc_fast/swbd-utils/score_frag_utts.py<gh_stars>100-1000 ''' Look at error rates only scoring utterances that contain frags ''' FRAG_FILE = '/deep/u/zxie/ctc_clm_transcripts/frags.txt' if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('hyp') parser.add_argument('stm') parser.add_argument('hyp_out') parser.add_argument('stm_out') args = parser.parse_args() # Read in utt keys with frags frag_utts = set() with open(FRAG_FILE, 'r') as fin: lines = fin.read().strip().splitlines() for l in lines: utt_key, frag_word = l.split(' ', 1) frag_utts.add(utt_key) # Read in hyps with open(args.hyp, 'r') as fin: lines = fin.read().splitlines() # Write the filtered hyp file frag_utt_count = 0 tot_utt_count = 0 fout = open(args.hyp_out, 'w') for l in lines: parts = l.split(' ', 1) if len(parts) == 1: assert False utt_key, utt = parts if utt_key not in frag_utts: tot_utt_count += 1 continue fout.write(l + '\n') tot_utt_count += 1 frag_utt_count += 1 fout.close() # Sanity check print '%d/%d utts contain frags' % (frag_utt_count, tot_utt_count) # Read in stm reference file stm_frag_utts = 0 frag_utt_starts = set() for ou in frag_utts: ou_start = '-'.join(ou.split('-')[0:2]) frag_utt_starts.add(ou_start) with open(args.stm, 'r') as fin: lines = fin.read().strip().splitlines() fout = open(args.stm_out, 'w') for l in lines: # Handle comments if l.startswith(';;'): fout.write(l+'\n') continue parts = l.split(' ', 6) utt_key_part, channel, utt_key, t_start, t_end, metadata, utt = parts stm_utt_key = '%s-%s_%06d' % (utt_key_part, channel.lower(), int(float(t_start) * 100)) print stm_utt_key if stm_utt_key not in frag_utt_starts: continue fout.write(l + '\n') stm_frag_utts += 1 fout.close() # Sanity check print '%d/%d stm utts contain frags' % (stm_frag_utts, tot_utt_count)
2.859375
3
leadgen.py
jsmiles/LeadGen
0
12784987
<gh_stars>0 import pandas as pd input = pd.read_csv('input.txt',sep=',') ref = pd.read_csv('reference.txt',sep=',') def ref_lookup(company): if company in ref.loc[:,'Company'].tolist(): dom = ref.loc[ref['Company']== f'{company}', 'Domain'].iloc[:] pat = ref.loc[ref['Company']== f'{company}', 'Pattern'].iloc[:] return dom, pat else: x = pd.Series(1) y = pd.Series(2) return x, y c_list = input.loc[:,'Company'].iloc[:] c_list = c_list.tolist() def emailgen(): EmailList = [] NoEmailList = [] for i in c_list: d, p = ref_lookup(i) d = d.item() p = p.item() if p == 'p1': a = input.loc[input['Company']==i,'firstname'].item() b = input.loc[input['Company']==i,'surname'].item() EmailList.append(f"{a}.{b}{d}") elif p == 'p2': a = input.loc[input['Company']==i,'firstname'].item()[0] b = input.loc[input['Company']==i,'surname'].item() EmailList.append(f"{a}{b}{d}") elif p == 'p3': a = input.loc[input['Company']==i,'firstname'].item()[0] b = input.loc[input['Company']==i,'surname'].item() EmailList.append(f"{b}.{a}{d}") else: NoEmailList.append(i) return EmailList, NoEmailList a, b = emailgen() for i in a: print(f"{i}, ") print(""" ABOVE: A list of emails, formatted. Don't forget to remove the last trailing comma. BELOW: A list of the companies with no lookup pattern contained in \'reference.txt\' """) print(b)
3.140625
3
data_loader/data_loaders.py
Neronjust2017/pytorch-classification-project
0
12784988
import torch from torch.utils.data import TensorDataset from torchvision import datasets, transforms from base import BaseDataLoader, BaseDataLoader_2 from torch.utils.data import DataLoader import numpy as np import pandas as pd from .utils import readmts_uci_har, transform_labels class MnistDataLoader(BaseDataLoader): """ MNIST data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_workers=1, training=True): trsfm = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) self.data_dir = data_dir self.dataset = datasets.MNIST(self.data_dir, train=training, download=True, transform=trsfm) super().__init__(self.dataset, batch_size, shuffle, validation_split, num_workers) class HumanActivityRecognitionDataLoader2(BaseDataLoader): """ HumanActivityRecognition data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, test_split=0.0, num_workers=1, training=True): x_train, y_train, x_test, y_test = readmts_uci_har(data_dir) x_train = x_train.swapaxes(1, 2) x_test = x_test.swapaxes(1, 2) y_train, y_test = transform_labels(y_train, y_test) for i in range(len(x_train)): for j in range(len(x_test)): c = (x_train[i] == x_test[j]) d = c.all() if d: break X = np.concatenate((x_train, x_test)) Y = np.concatenate((y_train, y_test)) X = torch.from_numpy(X).float() Y = torch.from_numpy(Y) dataset = TensorDataset(X, Y) super().__init__(dataset, batch_size, shuffle, validation_split, test_split, num_workers, normalization=True) class HumanActivityRecognitionDataLoader1(BaseDataLoader): """ HumanActivityRecognition data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, test_split=0.0, num_workers=1, training=True): INPUT_SIGNAL_TYPES = [ "body_acc_x_", "body_acc_y_", "body_acc_z_", "body_gyro_x_", "body_gyro_y_", "body_gyro_z_", "total_acc_x_", "total_acc_y_", "total_acc_z_" ] # Output classes to learn how to classify LABELS = [ "WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING" ] DATASET_PATH = data_dir TRAIN = "/train/" TEST = "/test/" # Load "X" (the neural network's training and testing inputs) def load_X(X_signals_paths): """ Given attribute (train or test) of feature, read all 9 features into an np ndarray of shape [sample_sequence_idx, time_step, feature_num] argument: X_signals_paths str attribute of feature: 'train' or 'test' return: np ndarray, tensor of features """ X_signals = [] for signal_type_path in X_signals_paths: file = open(signal_type_path, 'rb') # Read dataset from disk, dealing with text files' syntax X_signals.append( [np.array(serie, dtype=np.float32) for serie in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]] ) file.close() return np.transpose(np.array(X_signals), (1, 2, 0)) X_train_signals_paths = [ DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES ] X_test_signals_paths = [ DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES ] x_train = load_X(X_train_signals_paths) x_test = load_X(X_test_signals_paths) x_train = x_train.swapaxes(1, 2) x_test = x_test.swapaxes(1, 2) # Load "y" (the neural network's training and testing outputs) def load_y(y_path): """ Read Y file of values to be predicted argument: y_path str attibute of Y: 'train' or 'test' return: Y ndarray / tensor of the 6 one_hot labels of each sample """ file = open(y_path, 'rb') # Read dataset from disk, dealing with text file's syntax y_ = np.array( [elem for elem in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]], dtype=np.int32 ) file.close() # Substract 1 to each output class for friendly 0-based indexing # return one_hot(y_ - 1) return y_ - 1 y_train_path = DATASET_PATH + TRAIN + "y_train.txt" y_test_path = DATASET_PATH + TEST + "y_test.txt" y_train = load_y(y_train_path) y_test = load_y(y_test_path) X = np.concatenate((x_train, x_test)) Y = np.concatenate((y_train, y_test)) Y = Y.reshape((len(Y), )) X = torch.from_numpy(X).float() Y = torch.from_numpy(Y).long() dataset = TensorDataset(X, Y) super().__init__(dataset, batch_size, shuffle, validation_split, test_split, num_workers, normalization=True) class HumanActivityRecognitionDataLoader3(BaseDataLoader_2): """ HumanActivityRecognition data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, test_split=0.0, num_workers=1, training=True): INPUT_SIGNAL_TYPES = [ "body_acc_x_", "body_acc_y_", "body_acc_z_", "body_gyro_x_", "body_gyro_y_", "body_gyro_z_", "total_acc_x_", "total_acc_y_", "total_acc_z_" ] # Output classes to learn how to classify LABELS = [ "WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING" ] DATASET_PATH = data_dir TRAIN = "/train/" TEST = "/test/" # Load "X" (the neural network's training and testing inputs) def load_X(X_signals_paths): """ Given attribute (train or test) of feature, read all 9 features into an np ndarray of shape [sample_sequence_idx, time_step, feature_num] argument: X_signals_paths str attribute of feature: 'train' or 'test' return: np ndarray, tensor of features """ X_signals = [] for signal_type_path in X_signals_paths: file = open(signal_type_path, 'rb') # Read dataset from disk, dealing with text files' syntax X_signals.append( [np.array(serie, dtype=np.float32) for serie in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]] ) file.close() return np.transpose(np.array(X_signals), (1, 2, 0)) X_train_signals_paths = [ DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES ] X_test_signals_paths = [ DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES ] x_train = load_X(X_train_signals_paths) x_test = load_X(X_test_signals_paths) x_train = x_train.swapaxes(1, 2) x_test = x_test.swapaxes(1, 2) # Load "y" (the neural network's training and testing outputs) def load_y(y_path): """ Read Y file of values to be predicted argument: y_path str attibute of Y: 'train' or 'test' return: Y ndarray / tensor of the 6 one_hot labels of each sample """ file = open(y_path, 'rb') # Read dataset from disk, dealing with text file's syntax y_ = np.array( [elem for elem in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]], dtype=np.int32 ) file.close() # Substract 1 to each output class for friendly 0-based indexing # return one_hot(y_ - 1) return y_ - 1 y_train_path = DATASET_PATH + TRAIN + "y_train.txt" y_test_path = DATASET_PATH + TEST + "y_test.txt" y_train = load_y(y_train_path) y_test = load_y(y_test_path) X = np.concatenate((x_train, x_test)) Y = np.concatenate((y_train, y_test)) n_train = len(x_train) n_test = len(x_test) // 2 n_val = n_test idx_full = np.arange(len(X)) test_idx = idx_full[-n_test:] valid_idx = idx_full[-(n_test+n_val):-n_test] train_idx = idx_full[:n_train] Y = Y.reshape((len(Y), )) X = torch.from_numpy(X).float() Y = torch.from_numpy(Y).long() dataset = TensorDataset(X, Y) super().__init__(dataset, batch_size, shuffle, train_idx, valid_idx, test_idx, num_workers, normalization=True) class HumanActivityRecognitionDataLoader(BaseDataLoader_2): """ HumanActivityRecognition data loading demo using BaseDataLoader """ def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, test_split=0.0, num_workers=1, training=True): INPUT_SIGNAL_TYPES = [ "body_acc_x_", "body_acc_y_", "body_acc_z_", "body_gyro_x_", "body_gyro_y_", "body_gyro_z_", "total_acc_x_", "total_acc_y_", "total_acc_z_" ] # Output classes to learn how to classify LABELS = [ "WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING" ] DATASET_PATH = data_dir TRAIN = "/train/" TEST = "/test/" # Load "X" (the neural network's training and testing inputs) def load_X(X_signals_paths): """ Given attribute (train or test) of feature, read all 9 features into an np ndarray of shape [sample_sequence_idx, time_step, feature_num] argument: X_signals_paths str attribute of feature: 'train' or 'test' return: np ndarray, tensor of features """ X_signals = [] for signal_type_path in X_signals_paths: file = open(signal_type_path, 'rb') # Read dataset from disk, dealing with text files' syntax X_signals.append( [np.array(serie, dtype=np.float32) for serie in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]] ) file.close() return np.transpose(np.array(X_signals), (1, 2, 0)) X_train_signals_paths = [ DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES ] X_test_signals_paths = [ DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES ] x_train = load_X(X_train_signals_paths) x_test = load_X(X_test_signals_paths) x_train = x_train.swapaxes(1, 2) x_test = x_test.swapaxes(1, 2) # Load "y" (the neural network's training and testing outputs) def load_y(y_path): """ Read Y file of values to be predicted argument: y_path str attibute of Y: 'train' or 'test' return: Y ndarray / tensor of the 6 one_hot labels of each sample """ file = open(y_path, 'rb') # Read dataset from disk, dealing with text file's syntax y_ = np.array( [elem for elem in [ row.replace(b' ', b' ').strip().split(b' ') for row in file ]], dtype=np.int32 ) file.close() # Substract 1 to each output class for friendly 0-based indexing # return one_hot(y_ - 1) return y_ - 1 y_train_path = DATASET_PATH + TRAIN + "y_train.txt" y_test_path = DATASET_PATH + TEST + "y_test.txt" y_train = load_y(y_train_path) y_test = load_y(y_test_path) X = np.concatenate((x_train, x_test)) Y = np.concatenate((y_train, y_test)) n_train = len(x_train) n_test = len(x_test) n_val = n_test idx_full = np.arange(len(X)) test_idx = idx_full[-n_test:] train_idx = idx_full[:n_train] np.random.seed(123) np.random.shuffle(train_idx) valid_idx = train_idx[-n_test//2:] train_idx = train_idx[:-n_test//2] Y = Y.reshape((len(Y), )) X = torch.from_numpy(X).float() Y = torch.from_numpy(Y).long() dataset = TensorDataset(X, Y) super().__init__(dataset, batch_size, shuffle, train_idx, valid_idx, test_idx, num_workers, normalization=True)
2.71875
3
sandbox/lhs_reduced.py
MiroK/fenics_ii
10
12784989
<filename>sandbox/lhs_reduced.py from block import block_mat, block_vec, block_bc from dolfin import * from xii import * import mshr N = 10 EPS = 1E-3 R = 0.25 box_domain = mshr.Box(dolfin.Point(0, 0, 0), dolfin.Point(1, 1, 1)) _mesh = mshr.generate_mesh(box_domain, N) stokes_subdomain = dolfin.CompiledSubDomain( "sqrt((x[0]-0.5) * (x[0]-0.5) + (x[1]-0.5) * (x[1]-0.5)) < R", R=R ) subdomains = MeshFunction('size_t', _mesh, _mesh.topology().dim(), 0) # Awkward marking for cell in cells(_mesh): x = cell.midpoint().array() if stokes_subdomain.inside(x, False): subdomains[cell] = 1 else: subdomains[cell] = 0 submeshes, interface, _ = mortar_meshes(subdomains, list(range(2)), strict=True, tol=EPS) stokes_domain = submeshes[0] porous_domain = submeshes[1] interface = interface ## function spaces # biot Vp = FunctionSpace(porous_domain, "RT", 1) Qp = FunctionSpace(porous_domain, "DG", 0) U = VectorFunctionSpace(porous_domain, "CG", 2) # # stokes Vf = VectorFunctionSpace(stokes_domain, "CG", 2) Qf = FunctionSpace(stokes_domain, "CG", 1) # # lagrange multiplier X = FunctionSpace(interface, "DG", 1) W = [Vp, Qp, U, Vf, Qf, X] ## this is where the troubles start up, pp, dp, uf, pf, lbd = list(map(TrialFunction, W)) vp, wp, ep, vf, wf, mu = list(map(TestFunction, W)) up_prev, pp_prev, dp_prev, uf_prev, pf_prev, lbd_prev = list(map(Function, W)) # up_prev, pp_prev, dp_prev, uf_prev, pf_prev, lbd_prev = ii_Function(W) Tup, Tdp, Tuf = [Trace(x, interface) for x in [up, dp, uf]] Tvp, Tep, Tvf = [Trace(x, interface) for x in [vp, ep, vf]] dxGamma = Measure("dx", domain=interface) n_Gamma_f = OuterNormal(interface, [0.5, 0.5, 0.5]) n_Gamma_p = -n_Gamma_f# L_mult = inner(Trace(dp, interface), n_Gamma_p) * mu * dxGamma AL_mult = ii_assemble(inner(Trace(dp, interface), n_Gamma_p) * mu * dxGamma) b = AL_mult*dp_prev.vector() assert b.size() == X.dim() import numpy as np L_mult = inner(Trace(dp_prev, interface), n_Gamma_p) * mu * dxGamma AL_mult = ii_assemble(inner(Trace(dp, interface), n_Gamma_p) * mu * dxGamma) for i in range(3): dp_prev.vector().set_local(np.random.rand(dp_prev.vector().local_size())) dp_prev.vector().apply('insert') x = ii_assemble(L_mult) y = AL_mult*dp_prev.vector() assert (ii_convert(x) - ii_convert(y)).norm('linf') < DOLFIN_EPS
1.921875
2
geoist/magmod/magnetic_model/model_composed.py
CHEN-Zhaohui/geoist
53
12784990
#------------------------------------------------------------------------------- # # Aggregated Magnetic Model # # Author: <NAME> <<EMAIL>> # #------------------------------------------------------------------------------- # Copyright (C) 2018 EOX IT Services GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies of this Software or works derived from this Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #------------------------------------------------------------------------------- from collections import namedtuple from numpy import inf, zeros, asarray from .._pymm import ( GEOCENTRIC_SPHERICAL, GEODETIC_ABOVE_WGS84, GEOCENTRIC_CARTESIAN, convert, vrot_sph2geod, vrot_sph2cart, ) from .model import GeomagneticModel Component = namedtuple("_Component", ["model", "scale", "parameters"]) def _validity_overlap(validity1, validity2): start1, end1 = validity1 start2, end2 = validity2 start = max(start1, start2) end = min(end1, end2) if end < start: return -inf, -inf return start, end class ComposedGeomagneticModel(GeomagneticModel): """ Composed Earth magnetic field model aggregating multiple models into one. """ def __init__(self, *models): self._parameters = set() self._components = [] self._validity = (-inf, inf) for model in models: self.push(model) def push(self, model, scale=1.0, **parameters): """ Add model. """ self._parameters.update(model.parameters) self._validity = _validity_overlap(self.validity, model.validity) self._components.append(Component(model, scale, parameters)) @property def validity(self): return self._validity @property def parameters(self): """ required parameters. """ return tuple(self._parameters) def eval(self, time, location, input_coordinate_system=GEOCENTRIC_SPHERICAL, output_coordinate_system=GEOCENTRIC_SPHERICAL, **options): # convert input coordinates to spherical coordinates coord_sph = convert( location, input_coordinate_system, GEOCENTRIC_SPHERICAL ) # get output dimension time = asarray(time) location = asarray(location) if time.ndim > (location.ndim - 1): shape = time.shape else: shape = location.shape[:-1] result = zeros(shape + (3,)) final_scale = options.pop("scale", None) for model, scale, params in self._components: args = options.copy() args.update(params) result += model.eval(time, coord_sph, scale=scale, **args) # rotate result to the desired coordinate frame if output_coordinate_system == GEODETIC_ABOVE_WGS84: if input_coordinate_system == GEODETIC_ABOVE_WGS84: coord_out = location else: coord_out = convert( coord_sph, GEOCENTRIC_SPHERICAL, GEODETIC_ABOVE_WGS84 ) result = vrot_sph2geod(result, coord_out[..., 0] - coord_sph[..., 0]) elif output_coordinate_system == GEOCENTRIC_CARTESIAN: result = vrot_sph2cart(result, coord_sph[..., 0], coord_sph[..., 1]) # apply the final scale if final_scale is not None: result *= final_scale return result
1.21875
1
src/classification/experiment.py
rubencart/es-img-captioning
0
12784991
<filename>src/classification/experiment.py import torchvision from torchvision.transforms import transforms from algorithm.tools.experiment import Experiment from algorithm.tools.utils import Config class MnistExperiment(Experiment): """ Subclass for MNIST experiment """ def __init__(self, exp, config: Config, master=True): super().__init__(exp, config, master=master) def init_loaders(self, config=None, batch_size=None, workers=None, _=None): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) self.trainloader, self.valloader, self.testloader = \ self._init_torchvision_loaders(torchvision.datasets.MNIST, transform, config, batch_size, workers) self._orig_trainloader_lth = len(self.trainloader)
2.375
2
children/basic_logging.py
IgorIvkin/Children
0
12784992
""" Author: Igor Date: 2020.06.07 """ import logging import sys from datetime import datetime from logging.handlers import TimedRotatingFileHandler LOG_FORMATTING_STRING = logging.Formatter('%(asctime)s - %(module)s - %(filename)s - ' '%(lineno)d - %(levelname)s - %(message)s') def get_file_handler(): file_name = 'log/error.log.{0}'.format(datetime.utcnow().strftime("%Y%m%d")) file_handler = TimedRotatingFileHandler(filename=file_name, when='midnight') file_handler.setFormatter(LOG_FORMATTING_STRING) file_handler.setLevel(logging.WARN) file_handler.suffix = "%Y%m%d" return file_handler def get_console_handler(): console_handler = logging.StreamHandler(sys.stdout) console_handler.setFormatter(LOG_FORMATTING_STRING) console_handler.setLevel(logging.DEBUG) return console_handler def get_logger(logger_name): """Returns a named logger that includes console logger that prints everything starting from 'debug' level and file logger that prints only the sensible errors starting from 'warning' level. How to use: (behind the scene application has a global variable log that points to this logger) from children import log log.warn('Test warn') log.debug('Test debug') log.error('Test error') You can put these output errors in any place of your code. It is recommended to avoid using it for the errors that are easily recoverable, for example not enough params in user input. """ logger = logging.getLogger(logger_name) logger.setLevel(logging.DEBUG) logger.propagate = False logger.addHandler(get_console_handler()) logger.addHandler(get_file_handler()) return logger
3.3125
3
test_myFunction.py
Guidofaassen/yolo-tyrion
0
12784993
<filename>test_myFunction.py import myFunction import numpy as np class TestClass: def test_answer(self): assert myFunction.add_one(3) == 4 def test_answer2(self): assert myFunction.add_one(4) == 5 def test_answer3(self): assert myFunction.add_one(-2) == -1 # def test_similarity_conditional2(self): # freqUV = np.asarray([[2,3],[3,4]]) # freqU = np.asarray([2,0]) # u = 0 # v = 1 # assert myFunction.similarity_conditional(freqUV,freqU, u, v) == 0 def test_similarity_conditional(self): freqUV = np.asarray([[2,3],[3,4]]) freqU = np.asarray([2,0]) u = 0 v = 1 assert myFunction.similarity_conditional(freqUV,freqU, u, v) == 0 def test_similarity_conditional2(self): freqUV = np.asarray([[2,3],[3,4]]) freqU = np.asarray([2,1]) u = 0 v = 1 assert myFunction.similarity_conditional(freqUV,freqU, u, v) == 1.5 def test_myDivide(self): assert myFunction.myDivide(1,0) == 0
2.96875
3
Node_Classification/2.GraphSN_GIN/cora/models.py
wokas36/GraphSNN
11
12784994
<gh_stars>10-100 import math import torch.nn as nn import torch.nn.functional as F import torch from torch.nn.parameter import Parameter from torch.nn import Sequential, Linear, ReLU, Parameter, Sequential, BatchNorm1d, Dropout class Graphsn_GIN(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout): super(Graphsn_GIN, self).__init__() self.nn = Linear(nfeat, nhid) self.fc = Linear(nhid, nclass) self.dropout = dropout self.eps = nn.Parameter(torch.FloatTensor(1)) self.reset_parameters() def reset_parameters(self): stdv_eps = 0.44 / math.sqrt(self.eps.size(0)) nn.init.constant_(self.eps, stdv_eps) def forward(self, x, adj): v = self.eps*torch.diag(adj) mask = torch.diag(torch.ones_like(v)) adj = mask*torch.diag(v) + (1. - mask)*adj x = torch.mm(adj, x) x = F.relu(self.nn(x)) x = F.dropout(x, self.dropout, training=self.training) x = self.fc(x) return F.log_softmax(x, dim=-1)
2.515625
3
apps/fund/permissions.py
jfterpstra/onepercentclub-site
7
12784995
from rest_framework import permissions class IsUser(permissions.BasePermission): """ Read / write permissions are only allowed if the obj.user is the logged in user. """ def has_object_permission(self, request, view, obj): return obj.user == request.user
2.71875
3
cli/decorators/count_calls.py
oleoneto/django-clite
22
12784996
<gh_stars>10-100 import functools def count_calls(f): @functools.wraps(f) def wrapper_count_calls(*args, **kwargs): wrapper_count_calls.num_calls += 1 print(f"Call {wrapper_count_calls.num_calls} of {f.__name__!r}") return f(*args, **kwargs) wrapper_count_calls.num_calls = 0 return wrapper_count_calls
3.09375
3
coralinede/auto_detect_df/detect_datatype.py
coralinetech/coralinede
0
12784997
import operator import sqlalchemy import pandas as pd import numpy as np from math import ceil DEFAULT_VARCHAR_LENGTH=100 def get_detected_column_types(df): """ Get data type of each columns ('DATETIME', 'NUMERIC' or 'STRING') Parameters: df (df): pandas dataframe Returns df (df): dataframe that all datatypes are converted (df) """ assert isinstance(df, pd.DataFrame), 'Parameter must be DataFrame' for c in df.columns: # Convert column to string col_data = df[c].map(str) col_data = col_data.replace("NaT", None) col_data = col_data.replace("NaN", None) # Check NULL column if(df[c].isnull().values.all()): continue # Check DATETIME try: # Check if it's able to convert column to datetime # if column is datetime, then skip to convert if 'datetime' in str(col_data.dtype): continue df[c] = pd.to_datetime(col_data) continue except ValueError: pass # Check NUMERIC try: # Drop NaN rows series = df[c].dropna() # if column_name is int or float, then skip to convert if 'int' in str(col_data.dtype) or 'float' in str(col_data.dtype): continue # Check if it can be converted to numeric df[c] = pd.to_numeric(series) except ValueError: pass return df def get_max_length_columns(df): """ find maximum length of value in each column and ceil it Parameters: df (df): dataframe Returns arr_max_len_columns (array): array of length for each column arr_max_decimal (array): array of maximum decimal for float, double, and decimal datatype, otherwise its value is zero """ assert isinstance(df, pd.DataFrame), 'Parameter must be DataFrame' measurer = np.vectorize(len) arr_max_len_columns = [] arr_max_decimal = [] for i, x in enumerate(measurer(df.values.astype(str)).max(axis=0)): if 'float' in str(df.iloc[:, i].dtype): col_data = df.iloc[:, i].map(str).str.extract('\.(.*)') max_decimal = measurer(col_data.values.astype(str)).max(axis=0)[0] arr_max_decimal.append(max_decimal) else: arr_max_decimal.append(0) arr_max_len_columns.append(ceil(x / 10) * 10) return arr_max_len_columns, arr_max_decimal def convert_df_datatype_to_sqlalchemy_datatype(df): """ convert dataframe's data type into SQLAlchemy's data type Parameters: df (df): dataframe Returns: dtype_dict (dict): dict of data type of each column in SQLAlchemy standard """ assert isinstance(df, pd.DataFrame), 'Parameter must be DataFrame' arr_max_len_columns, arr_max_decimal = get_max_length_columns(df) dtype_dict = {} for i, col_name in enumerate(df.columns): if(df[col_name].isnull().values.all()): dtype_dict[col_name] = sqlalchemy.types.VARCHAR(DEFAULT_VARCHAR_LENGTH) elif 'bool' in str(df[col_name].dtype): # Compatible with SQL-Server and MySQL, since MySQL doesn't have BOOLEAN. dtype_dict[col_name] = sqlalchemy.types.INTEGER() elif 'int' in str(df[col_name].dtype): dtype_dict[col_name] = sqlalchemy.types.INTEGER() elif 'float' in str(df[col_name].dtype): if df[col_name].dropna().apply(float.is_integer).all(): dtype_dict[col_name] = sqlalchemy.types.INTEGER() else: dtype_dict[col_name] = sqlalchemy.types.DECIMAL(precision=arr_max_len_columns[i], scale=arr_max_decimal[i]) elif 'datetime' in str(df[col_name].dtype): dtype_dict[col_name] = sqlalchemy.types.DateTime() elif 'object' in str(df[col_name].dtype): # check the limit of varhcar, if the length exeeds, then use TEXT if arr_max_len_columns[i] > 1000: dtype_dict[col_name] = sqlalchemy.types.Text() else: dtype_dict[col_name] = sqlalchemy.types.VARCHAR(length=arr_max_len_columns[i]) else: dtype_dict[col_name] = sqlalchemy.types.VARCHAR(length=arr_max_len_columns[i]) return dtype_dict def get_datatype_each_col(df): """ main function to call sub-function in order to find data type and data length for each column Parameters: df (df): dataframe Returns: dtype_dict (dict): dict of data type of each column in SQLAlchemy standard (dict) """ assert isinstance(df, pd.DataFrame), 'Parameter must be DataFrame' df = get_detected_column_types(df) dtype_dict = convert_df_datatype_to_sqlalchemy_datatype(df) del df return dtype_dict
3.296875
3
samples/python/40.timex-resolution/ambiguity.py
Aliacf21/BotBuilder-Samples
1,998
12784998
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from recognizers_date_time import recognize_datetime, Culture class Ambiguity: """ TIMEX expressions are designed to represent ambiguous rather than definite dates. For example: "Monday" could be any Monday ever. "May 5th" could be any one of the possible May 5th in the past or the future. TIMEX does not represent ambiguous times. So if the natural language mentioned 4 o'clock it could be either 4AM or 4PM. For that the recognizer (and by extension LUIS) would return two TIMEX expressions. A TIMEX expression can include a date and time parts. So ambiguity of date can be combined with multiple results. Code that deals with TIMEX expressions is frequently dealing with sets of TIMEX expressions. """ @staticmethod def date_ambiguity(): # Run the recognizer. results = recognize_datetime( "Either Saturday or Sunday would work.", Culture.English ) # We should find two results in this example. for result in results: # The resolution includes two example values: going backwards and forwards from NOW in the calendar. # Each result includes a TIMEX expression that captures the inherent date but not time ambiguity. # We are interested in the distinct set of TIMEX expressions. # There is also either a "value" property on each value or "start" and "end". distinct_timex_expressions = { value["timex"] for value in result.resolution["values"] if "timex" in value } print(f"{result.text} ({','.join(distinct_timex_expressions)})") @staticmethod def time_ambiguity(): # Run the recognizer. results = recognize_datetime( "We would like to arrive at 4 o'clock or 5 o'clock.", Culture.English ) # We should find two results in this example. for result in results: # The resolution includes two example values: one for AM and one for PM. # Each result includes a TIMEX expression that captures the inherent date but not time ambiguity. # We are interested in the distinct set of TIMEX expressions. distinct_timex_expressions = { value["timex"] for value in result.resolution["values"] if "timex" in value } # TIMEX expressions don't capture time ambiguity so there will be two distinct expressions for each result. print(f"{result.text} ({','.join(distinct_timex_expressions)})") @staticmethod def date_time_ambiguity(): # Run the recognizer. results = recognize_datetime( "It will be ready Wednesday at 5 o'clock.", Culture.English ) # We should find a single result in this example. for result in results: # The resolution includes four example values: backwards and forward in the calendar and then AM and PM. # Each result includes a TIMEX expression that captures the inherent date but not time ambiguity. # We are interested in the distinct set of TIMEX expressions. distinct_timex_expressions = { value["timex"] for value in result.resolution["values"] if "timex" in value } # TIMEX expressions don't capture time ambiguity so there will be two distinct expressions for each result. print(f"{result.text} ({','.join(distinct_timex_expressions)})")
3.4375
3
sensors/rg.py
caioluders/PII-Identifier
14
12784999
import re def check(data) : if not isinstance(data, list) : data = [data] maybe_rgs_parsed = [ re.sub("[^0-9]","",r) for r in data ] true_rgs = [] for r in maybe_rgs_parsed : r1 = list(map(int,list(r))) r4 = r1[:8] r2 = [ r4[rr]*(2+rr) for rr in range(len(r4)) ] d1 = 11-(sum(r2)%11) r4.append(d1) if r == ''.join(map(str,r4)) : true_rgs.append(r) return true_rgs
2.96875
3
kyu_7/remove_the_minimum/test_remove_the_minimum.py
pedrocodacyorg2/codewars
1
12785000
<filename>kyu_7/remove_the_minimum/test_remove_the_minimum.py<gh_stars>1-10 # Created by <NAME>. # GitHub: https://github.com/ikostan # LinkedIn: https://www.linkedin.com/in/egor-kostan/ # FUNDAMENTALS, LISTS, DATA STRUCTURES, ARRAYS import unittest import allure from numpy.random import randint from kyu_7.remove_the_minimum.remove_the_minimum import remove_smallest @allure.epic('7 kyu') @allure.parent_suite('Beginner') @allure.suite("Data Structures") @allure.sub_suite("Unit Tests") @allure.feature("Lists") @allure.story('The museum of incredible dull things') @allure.tag() @allure.link(url='', name='Source/Kata') class RemoveSmallestTestCase(unittest.TestCase): """ Testing remove_smallest function """ @staticmethod def random_list(): """ Helper function :return: """ with allure.step("Create a random list"): return list(randint(400, size=randint(1, 10))) def test_remove_smallest(self): """ Test lists with multiple digits :return: """ allure.dynamic.title("'multiply' function verification: " "lists with multiple digits") allure.dynamic.severity(allure.severity_level.NORMAL) allure.dynamic.description_html('<h3>Codewars badge:</h3>' '<img src="https://www.codewars.com/users/myFirstCode' '/badges/large">' '<h3>Test Description:</h3>' "<p></p>") with allure.step("Remove smallest value from " "the start of the list"): self.assertEqual(remove_smallest([1, 2, 3, 4, 5]), [2, 3, 4, 5], "Wrong result for [1, 2, 3, 4, 5]") with allure.step("Remove smallest value from " "near the end of the list"): self.assertEqual(remove_smallest([5, 3, 2, 1, 4]), [5, 3, 2, 4], "Wrong result for [5, 3, 2, 1, 4]") with allure.step("Remove smallest value from " "the end of the list"): self.assertEqual(remove_smallest([1, 2, 3, 1, 1]), [2, 3, 1, 1], "Wrong result for [1, 2, 3, 1, 1]") def test_remove_smallest_empty_list(self): """ Test with empty list :return: """ allure.dynamic.title("'multiply' function verification " "with empty list") allure.dynamic.severity(allure.severity_level.NORMAL) allure.dynamic.description_html('<h3>Codewars badge:</h3>' '<img src="https://www.codewars.com/users/myFirstCode' '/badges/large">' '<h3>Test Description:</h3>' "<p></p>") with allure.step("Remove smallest value from " "the empty list"): self.assertEqual(remove_smallest([]), [], "Wrong result for []") def test_remove_smallest_one_element_list(self): """ Returns [] if list has only one element :return: """ allure.dynamic.title("'multiply' function verification " "with one element list") allure.dynamic.severity(allure.severity_level.NORMAL) allure.dynamic.description_html('<h3>Codewars badge:</h3>' '<img src="https://www.codewars.com/users/myFirstCode' '/badges/large">' '<h3>Test Description:</h3>' "<p></p>") with allure.step("Remove smallest value from " "the empty list with one element only"): i = 0 while i < 10: x = randint(1, 400) self.assertEqual(remove_smallest([x]), [], "Wrong result for [{}]".format(x)) i += 1 def test_remove_smallest_random_list(self): """ Returns a list that misses only one element :return: """ allure.dynamic.title("'multiply' function verification " "with random list") allure.dynamic.severity(allure.severity_level.NORMAL) allure.dynamic.description_html('<h3>Codewars badge:</h3>' '<img src="https://www.codewars.com/users/myFirstCode' '/badges/large">' '<h3>Test Description:</h3>' "<p></p>") with allure.step("Remove smallest value from " "the random list"): i = 0 while i < 10: arr = self.random_list() self.assertEqual(len(remove_smallest(arr[:])), len(arr) - 1, "Wrong sized result for {}".format(arr)) i += 1
3.234375
3
day 4 .py
ShubhamSinghThakur2907/100daysofcode
0
12785001
<reponame>ShubhamSinghThakur2907/100daysofcode<filename>day 4 .py Python 3.7.4 (v3.7.4:e09359112e, Jul 8 2019, 14:54:52) [Clang 6.0 (clang-600.0.57)] on darwin Type "help", "copyright", "credits" or "license()" for more information. >>> ## there are basically 2 types of functions in python >>> ##pre-defined user defined >>> ##user defined >>> ## built in function are the functions which can be used by just calling it >>> ## example of built in functions help() print() input() min() >>> ##user defined functions these are the functions wich need to be defined before calling it . >>> def avarage(x,y): print("avarage of x & y is :",(x+y)/2) avarage(3,4) SyntaxError: unindent does not match any outer indentation level >>> >>> print(avarage(3,4)) Traceback (most recent call last): File "<pyshell#10>", line 1, in <module> print(avarage(3,4)) NameError: name 'avarage' is not defined >>> def avarage(x,y): z=(x+y)/2 return(z) avarage(4,6) SyntaxError: invalid syntax >>> ##an argument is value sent to function during execution >>> ## recrtion function means a function can also call itself. >>> #example of recursive function >>> def tri_recursion(k): if(k>0): result = k+tri_recursion(k-1) print(result) else: result = 0 return result print("\n\nRecursion Example Results") tri_recursion(6) SyntaxError: invalid syntax >>> #A lambda function can take any number of arguments, but can only have one expression >>> #example of lambada function >>> x = lambda a : a + 10 print(x(5)) SyntaxError: multiple statements found while compiling a single statement >>>
3.4375
3
fetching_data.py
mosihere/selenium
0
12785002
<gh_stars>0 import time from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.chrome.service import Service from webdriver_manager.chrome import ChromeDriverManager # Install selenium driver in case that doesn't exist driver = webdriver.Chrome(service=Service(ChromeDriverManager().install())) # Count fetched items counter = 1 # page numbers you want to scrape for page in range(1, 11): url = f'https://divar.ir/s/tehran/buy-apartment/parand?page={page}' driver.get(url) elements = driver.find_elements(By.CLASS_NAME, 'kt-post-card__body') urls = driver.find_elements(By.CLASS_NAME, 'kt-post-card') f = open('data.txt', 'a') for element, url in zip(elements, urls): f.write(f'{counter} --> {element.text}') f.write('\n') f.write(f'Link --> {url.get_attribute("href")}') counter += 1 time.sleep(10) f.close() driver.quit()
3.046875
3
openprocurement/auctions/geb/tests/fixtures/active_tendering.py
oleksiyVeretiuk/openprocurement.auctions.geb
0
12785003
<reponame>oleksiyVeretiuk/openprocurement.auctions.geb from copy import deepcopy from openprocurement.auctions.core.utils import get_now from openprocurement.auctions.geb.tests.fixtures.active_rectification import ( ACTIVE_RECTIFICATION_AUCTION_DEFAULT_FIXTURE ) from openprocurement.auctions.geb.tests.fixtures.questions import ( TEST_QESTION_IN_TENDERING_PERIOD ) from openprocurement.auctions.geb.tests.fixtures.bids import ( DRAFT_BID, PENDING_BID_FIRST, ACTIVE_BID_FIRST, ACTIVE_BID_SECOND ) from openprocurement.auctions.geb.tests.fixtures.calculator import ( Calculator ) now = get_now() calculator = Calculator(now, 'tenderPeriod', 'start') # blank auction fixture auction = deepcopy(ACTIVE_RECTIFICATION_AUCTION_DEFAULT_FIXTURE) auction['status'] = 'active.tendering' auction["rectificationPeriod"] = { "startDate": calculator.rectificationPeriod.startDate.isoformat(), "endDate": calculator.rectificationPeriod.endDate.isoformat() } auction["tenderPeriod"] = { "startDate": calculator.tenderPeriod.startDate.isoformat(), "endDate": calculator.tenderPeriod.endDate.isoformat() } auction["enquiryPeriod"] = { "startDate": calculator.enquiryPeriod.startDate.isoformat(), "endDate": calculator.enquiryPeriod.endDate.isoformat() } auction["auctionPeriod"] = { "shouldStartAfter": calculator.auctionPeriod.shouldStartAfter.isoformat() } auction["next_check"] = calculator.tenderPeriod.endDate.isoformat() auction["date"] = calculator.auctionDate.date.isoformat() ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE = auction # auction with questions fixture auction = deepcopy(ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE) auction['questions'] = [TEST_QESTION_IN_TENDERING_PERIOD] ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE_WITH_QUESTION = auction # auction with bids auction = deepcopy(ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE) auction['bids'] = [DRAFT_BID] AUCTION_WITH_DRAFT_BID = auction auction = deepcopy(ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE) auction['bids'] = [PENDING_BID_FIRST] AUCTION_WITH_PENDING_BID = auction auction = deepcopy(ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE) auction['bids'] = [ACTIVE_BID_FIRST] AUCTION_WITH_ACTIVE_BID = auction # end tendering period fixtures calculator = Calculator(now, 'tenderPeriod', 'end') auction = deepcopy(ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE) auction["rectificationPeriod"] = { "startDate": calculator.rectificationPeriod.startDate.isoformat(), "endDate": calculator.rectificationPeriod.endDate.isoformat() } auction["tenderPeriod"] = { "startDate": calculator.tenderPeriod.startDate.isoformat(), "endDate": calculator.tenderPeriod.endDate.isoformat() } auction["enquiryPeriod"] = { "startDate": calculator.enquiryPeriod.startDate.isoformat(), "endDate": calculator.enquiryPeriod.endDate.isoformat() } auction["auctionPeriod"] = { "shouldStartAfter": calculator.auctionPeriod.shouldStartAfter.isoformat() } auction["next_check"] = calculator.enquiryPeriod.endDate.isoformat() auction["date"] = calculator.auctionDate.date.isoformat() END_ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE = auction # end tendering period with one bid fixture auction = deepcopy(END_ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE) auction['bids'] = [ACTIVE_BID_FIRST] END_ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE_WITH_ONE_BID = auction # end tendering period with two bid fixture auction = deepcopy(END_ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE) auction['bids'] = [ACTIVE_BID_FIRST, ACTIVE_BID_SECOND] END_ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE_WITH_TWO_BIDS = auction # end tendering period with two bids and one draft bid auction = deepcopy(END_ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE) auction['bids'] = [ACTIVE_BID_FIRST, ACTIVE_BID_SECOND, DRAFT_BID] END_ACTIVE_TENDERING_AUCTION_DEFAULT_FIXTURE_WITH_TWO_BIDS_AND_ONE_DRAFT = auction
2.015625
2
src/abstract_factory2.py
MrRezoo/design-patterns-python
6
12785004
""" Creational: abstract factory Car => Benz, Bmw => Suv, Coupe benz suv => gla, glc bmw suv => x1, x2 benz coupe => cls, E-class bmw coupe => m2, m4 """ from abc import ABC, abstractmethod class Car(ABC): @abstractmethod def call_suv(self): pass @abstractmethod def call_coupe(self): pass # ------------------------------------------------------------- class Benz(Car): def call_suv(self): return Gla() def call_coupe(self): return Cls() # ------------------------------------------------------------- class Bmw(Car): def call_suv(self): return X1() def call_coupe(self): return M2() # ------------------------------------------------------------- class Suv(ABC): @abstractmethod def creating_suv(self): pass class Coupe(ABC): @abstractmethod def creating_coupe(self): pass # ------------------------------------------------------------- class Gla(Suv): def creating_suv(self): print("This is your suv benz gla. . . ") class X1(Suv): def creating_suv(self): print("This is your suv bmw x1. . .") # ------------------------------------------------------------- class Cls(Coupe): def creating_coupe(self): print("This is your coupe benz cls. . .") class M2(Coupe): def creating_coupe(self): print("This is your coupe bmw m2. . .") # ------------------------------------------------------------- def client_suv(order): suv = order.call_suv() suv.creating_suv() def client_coupe(order): coupe = order.call_coupe() coupe.creating_coupe() # ------------------------------------------------------------- """Test the app""" client_coupe(Bmw()) client_coupe(Benz()) client_suv(Benz()) client_suv(Bmw())
4.15625
4
coinlib/wallet.py
santosmarco/coinlib
3
12785005
import coinlib class Wallet(): def __init__(self, contents={}): coins_by_symbol = coinlib.get_all_coins_by_symbol() coins_by_name = coinlib.get_all_coins_by_name() self.contents = {} for coin in contents: coin_lower = coin.lower().strip() if (coin_lower not in coins_by_symbol and coin_lower not in coins_by_name): raise ValueError(coinlib.errors('103', [coin])) else: self.contents[coin_lower] = contents[coin] def get_value(self, convert='USD'): if len(self.contents) == 0: return 0 convert = convert.upper().strip() if convert not in coinlib.VALID_CONVERSION_CURRENCIES: raise ValueError(coinlib.errors('101', [convert])) contents_coins = coinlib.get_coins(list(self.contents.keys()), convert) values = [] for coin in contents_coins: values.append(contents_coins[coin]['price']*self.contents[coin]) return sum(values) def add(self, coin, quantity): coin = coin.lower().strip() if coin in self.contents: self.contents[coin] += quantity else: self.contents[coin] = quantity return self.contents def add_many(self, coins): for coin in coins: coin = coin.lower().strip() if coin in self.contents: self.contents[coin] += coins[coin] else: self.contents[coin] = coins[coin] return self.contents def subtract(self, coin, quantity): self.contents[coin.lower().strip()] -= quantity return self.contents def subtract_many(self, coins): for coin in coins: coin = coin.lower().strip() self.contents[coin] -= coins[coin] return self.contents def remove(self, coin): del self.contents[coin.lower().strip()] return self.contents def remove_many(self, coins): for coin in coins: coin = coin.lower().strip() del self.contents[coin]
3.34375
3
instagram/views.py
amiinegal/instagram
0
12785006
from django.shortcuts import render, redirect, get_object_or_404 from .models import Image,Profile,Location,tags from django.http import HttpResponse, Http404, HttpResponseRedirect from django.contrib.auth.decorators import login_required from django.core.urlresolvers import reverse from django.contrib.auth.models import User from .forms import NewImageForm from .email import send_welcome_email from .forms import NewsLetterForm, NewCommentForm # Views @login_required(login_url='/accounts/login/') def home_images(request): # Display all images here: # images = Image.objects.all() locations = Location.objects.all() if request.GET.get('location'): pictures = Image.filter_by_location(request.GET.get('location')) elif request.GET.get('tags'): pictures = Image.filter_by_tag(request.GET.get('tags')) elif request.GET.get('search_term'): pictures = Image.search_image(request.GET.get('search_term')) else: pictures = Image.objects.all() if request.method == 'POST': form = NewsLetterForm(request.POST) if form.is_valid(): name = form.cleaned_data['your_name'] email = form.cleaned_data['email'] HttpResponseRedirect('home_images') else: form = NewsLetterForm() return render(request, 'index.html', {'locations':locations, 'pictures':pictures, 'letterForm':form}) @login_required(login_url='/accounts/login/') def image(request): images = Image.objects.all() # try: # image = Image.objects.get(pk = id) # except DoesNotExist:<div class="col-md-1"></div> # raise Http404() # current_user = request.user return render(request,'registration/image_list.html', {"images":images}) @login_required(login_url='/accounts/login/') def new_image(request): current_user = request.user if request.method == 'POST': form = NewImageForm(request.POST, request.FILES) if form.is_valid(): image = form.save(commit=False) image.user = current_user image.save() return redirect('homePage') else: form = NewImageForm() return render(request, 'registration/new_image.html', {"form": form}) def search_users(request): # search for a user by their username if 'user' in request.GET and request.GET["user"]: search_term = request.GET.get("user") searched_users = Profile.search_users(search_term) message = f"{search_term}" return render(request, 'search.html', {"message": message, "profiles": searched_users}) else: message = "You haven't searched for any person" return render(request, 'search.html', {"message": message}) def search_image(request): # search for an image by the description of the image if 'image' in request.GET and request.GET["image"]: search_term = request.GET.get("image") searched_images = Image.search_image(search_term) message = f"{search_term}" return render(request, 'search.html', {"message": message, "pictures": searched_images}) else: message = "You haven't searched for any image" return render(request, 'search.html', {"message": message}) @login_required(login_url='/accounts/login/') def myprofile(request, username = None): current_user = request.user pictures = Image.objects.filter(user=current_user).all() return render(request, 'profile.html', locals(), {'pictures':pictures}) @login_required(login_url='/accounts/login/') def individual_profile_page(request, username): print(username) if not username: username = request.user.username # images by user id images = Image.objects.filter(user_id=username) user = request.user profile = Profile.objects.get(user=user) userf = User.objects.get(pk=username) if userf: print('user found') profile = Profile.objects.get(user=userf) else: print('No suchuser') return render (request, 'registration/profile.html', {'images':images,'profile':profile,'user':user, 'username': username}) def user_list(request): user_list = User.objects.all() context = {'user_list': user_list} return render(request, 'image_details.html', context) def image_detail(request, image_id): image = Image.objects.get(id = image_id) return render(request, 'image_details.html', {"image":image}) @login_required(login_url='/accounts/login/') def new_comment(request, username): current_user =request.user username = current_user.username if request.method =='POST': form = NewCommentForm(request.POST, request.FILES) if form.is_valid(): comment = form.save() comment.user = request.user comment.save() return redirect('homePage') else: form = NewCommentForm() return render(request, 'new_comment.html', {"form":form}) @login_required(login_url='/accounts/login/') def single_image_like(request, image_id): image = Image.objects.get(id=image_id) image.likes = image.likes + 1 image.save() return redirect('homePage')
2.15625
2
2021/day08/main.py
jonathonfletcher/adventofcode
0
12785007
<gh_stars>0 from collections import defaultdict class P1(object): def __init__(self): self.counter = 0 self.length_mapping = { 2:1, 3:7, 4:4, 7:8 } def add(self, inputs, outputs): for o in outputs: if len(o) in self.length_mapping.keys(): self.counter += 1 @property def value(self): return self.counter class P2(P1): def deduce_inputs(self, inputs): found = {} segments = {} remaining = list() for i in inputs: x = self.length_mapping.get(len(i)) if x is not None: found[x] = i remaining.append(i) remaining = sorted(remaining, key=lambda x: len(x)) if found.get(1): for seg in found[1]: c = 0 for e in remaining: if not set([seg]).issubset(set(e)): c+=1 if 1 == c: segments['f'] = seg for e in remaining: if not set([seg]).issubset(set(e)): found[2] = e break elif 2 == c: segments['c'] = seg if found.get(7): b_seg = set(found[7])-set(found[1]) if 1 == len(b_seg): segments['a'] = b_seg.pop() for e in remaining: if not 5 == len(e): continue if e in found.values(): continue seg_c = segments['c'] seg_f = segments['f'] if set([seg_c]).issubset(set(e)): found[3] = e elif set([seg_f]).issubset(set(e)): found[5] = e i = set(e).intersection(set(found[2])).intersection(set(found[4])) if 1 == len(i): segments['d'] = i.pop() if found.get(4): e = set(found[4]) for k in ['c', 'd', 'f']: v = segments.get(k) if v is not None: e = e - set([v]) if 1 == len(e): segments['b'] = e.pop() if found.get(3) and found.get(5): e = set(found[3]).intersection(set(found[5])) for k, v in segments.items(): e = e - set([v]) if 1 == len(e): segments['g'] = e.pop() for r in remaining: if not 7 == len(r): continue e = set(r) for k, v in segments.items(): e = e - set([v]) if 1 == len(e): segments['e'] = e.pop() for r in remaining: if not 6 == len(r): continue d_seg = set([segments['d']]) e_seg = set([segments['e']]) if d_seg.union(e_seg).issubset(set(r)): found[6] = r elif d_seg.issubset(set(r)): found[9] = r elif e_seg.issubset(set(r)): found[0] = r if False: rfound = {str(v):str(k) for k, v in found.items()} rsegments = {str(v):str(k) for k, v in segments.items()} for r in remaining: row = list() for e in list("ABCDEFG"): v = " " if set([e]).issubset(set(r)): v = e row.append(f'{rsegments.get(v,"")}-{v}') row.append(str(len(r))) row.append(rfound.get(r, "")) print("\t".join(row)) return {str(v):int(k) for k, v in found.items()} def add(self, inputs, outputs): found = self.deduce_inputs(inputs) if 10 == len(found): # print(outputs) # print(found) v = 0 for o in outputs: v *= 10 v += found[o] print(f'{outputs} - {v}') self.counter += v if __name__ == '__main__': with open("part1.txt") as ifp: p1 = P1() p2 = P2() for line in list(map(lambda x: x.strip().upper(), ifp.readlines())): inputs, outputs = list(map(lambda x: x.strip(), line.split('|'))) inputs = list(map(lambda x: ''.join(sorted(list(x))), inputs.split())) outputs = list(map(lambda x: ''.join(sorted(list(x))), outputs.split())) p1.add(inputs, outputs) p2.add(inputs, outputs) print(p1.value) print(p2.value)
2.59375
3
TriangleStrategy.py
cibobo/FCoin
0
12785008
<reponame>cibobo/FCoin<filename>TriangleStrategy.py import FCoinRestLib import time import datetime import json import fcoin3 import math class TriangleStrategy(object): # minimum trading volumn for the reference coin # BTC: 0.001; ETH: 0.01; USDT: 6.23 minNotional = 0.001 # standard volumn used for triangle strategy # buy_volumn = minNotional * 1 # minimum trading volumn unit for the symbol|ref_coin[0], symbol|ref_coin[1] and ref_coin[1]|ref_coin[0] # for the trading group FT/USDT, FT/BTC, BTC/USDT # minQty = [0.0001, 0.0001, 0.000001] # minPrice = [0.000001, 0.0001, 0.000001] # price_precise = [int(-math.log10(x)) for x in minPrice] # volumn toloranz (0.05%) to match the request delay, that some one has already buy/sell with the detected price volumn_toloranz = 1.1 # define trigger interval for trading trigger_threshold = 1.003 # target win rate target_win_rate = 0.0006 # Fee quote, which is use to calculate exactly selling volumn fee_quote = 0.001 def __init__(self, symbol, coin): self.fcoin = fcoin3.Fcoin() self.fcoin.auth(FCoinRestLib.APIKey, FCoinRestLib.privateKey) self.symbol = symbol self.coin = coin self.price = {} self.getExchangeInfo() # Use traiding minQty to ask first price, so that the requried buy/sell volumn can be estimated self.volumn = [] for i in range(3): self.volumn.append({'buy':self.minQty[i],'sell':self.minQty[i]}) self.balance_coin_list = coin self.balance_coin_list.append(symbol) self.saveAccountInfo() def saveAccountInfo(self): # get the current price self.getTrianglePrice() file_out = open('AccountInfo.log','a') # save date time file_out.write(str(datetime.datetime.now())+'\n') file_out.write(str(time.time())+'\n') # get balance balance = FCoinRestLib.getBalance(self.balance_coin_list) json.dump(balance, file_out) file_out.write("\n") # calculate the total price in coin 0 (usdt) symbol_free = float(balance[self.symbol])*self.price['direct_sell'] between_free = float(balance[self.coin[1]])*self.price['rate_sell'] total_free = float(balance[self.coin[0]]) + symbol_free + between_free file_out.write("Total balance in " + str(self.coin[0]) + " is: ") file_out.write(str(total_free)) file_out.write('\n\n') file_out.close() def getExchangeInfo(self): exchangeInfo = self.fcoin.get_symbols() # minimum trading price unit for the symbol|ref_coin[0], symbol|ref_coin[1] and ref_coin[1]|ref_coin[0] self.minPrice = [] self.price_precise = [] self.minQty = [] # get exchange info from symbol|ref_coin[0] # get all filters for the target trading symbol filters = next(item for item in exchangeInfo if item['name'] == str(self.symbol+self.coin[0]))['price_decimal'] self.price_precise.append(filters) Qty = next(item for item in exchangeInfo if item['name'] == str(self.symbol+self.coin[0]))['amount_decimal'] self.minQty.append(10**(-1*Qty)) # get exchange info from symbol|ref_coin[1] filters = next(item for item in exchangeInfo if item['name'] == str(self.symbol+self.coin[1]))['price_decimal'] self.price_precise.append(filters) Qty = next(item for item in exchangeInfo if item['name'] == str(self.symbol+self.coin[1]))['amount_decimal'] self.minQty.append(10**(-1*Qty)) # get exchange info from ref_coin[1]|ref_coin[0] filters = next(item for item in exchangeInfo if item['name'] == str(self.coin[1]+self.coin[0]))['price_decimal'] self.price_precise.append(filters) Qty = next(item for item in exchangeInfo if item['name'] == str(self.coin[1]+self.coin[0]))['amount_decimal'] self.minQty.append(10**(-1*Qty)) # calculate the precise self.minPrice = [math.pow(10,-x) for x in self.price_precise] print(self.minPrice) print(self.price_precise) print(self.minQty) def getTrianglePrice(self): # Create 3 threads to get the 3 prices of triangle trading parallel thread1 = FCoinRestLib.getPriceThread(1, "Thread-1", self.symbol, self.coin[0], self.volumn[0]) thread2 = FCoinRestLib.getPriceThread(2, "Thread-2", self.symbol, self.coin[1], self.volumn[1]) thread3 = FCoinRestLib.getPriceThread(3, "Thread-3", self.coin[1], self.coin[0], self.volumn[2]) # Start new Threads thread1.start() thread2.start() thread3.start() # Wait for all threads to complete thread1.join() thread2.join() thread3.join() if 'NAN' in thread1.price.values() or 'NAN' in thread2.price.values() or 'NAN' in thread3.price.values(): print("Market depth is too shallow, wait for another round") return 0 # Get the price from thread back and calculate the triangle price self.price['direct_buy'] = thread1.price['asks_vol'] self.price['direct_sell'] = thread1.price['bids_vol'] # Add sell_1 price for limit trading self.price['direct_sell_1'] = thread1.price['bids_1'] self.price['between_buy'] = thread2.price['asks_vol'] self.price['between_sell'] = thread2.price['bids_vol'] # Add buy_1 price for limit between sell self.price['between_buy_1'] = thread2.price['asks_1'] self.price['rate_buy'] = thread3.price['asks_vol'] self.price['rate_sell'] = thread3.price['bids_vol'] # Add buy_1 price for limit rate sell self.price['rate_buy_1'] = thread3.price['asks_1'] # Two trading directions are possible: # 1. coin[0] --> coin[1](between) --> symbol --> coin[0]: call BBS (buy buy sell) # 2. coin[0] --> symbol --> coin[1](between) --> coin[0]: call BSS (buy sell sell) # Calculate BBS price and win self.price['BBS_price'] = self.price['between_buy']*self.price['rate_buy'] self.price['BBS_win'] = self.price['direct_sell']/self.price['BBS_price'] # Calculate BSS price and win self.price['BSS_price'] = self.price['between_sell']*self.price['rate_sell'] self.price['BSS_win'] = self.price['BSS_price']/self.price['direct_buy'] #TODO Test Code # self.price['BBS_win'] = self.price['BSS_price']/self.price['direct_buy'] # self.price['BSS_win'] = self.price['BSS_price']/(self.price['direct_sell']+0.00001) # calculate buy volumn based on the BTC minNotation self.buy_volumn = self.minNotional*self.price['rate_buy'] print("Current buy Volumn is: ", self.buy_volumn) # Prepare the volumn for the next price request symoble_buy = self.buy_volumn/self.price['direct_buy'] symbole_sell = self.buy_volumn/self.price['direct_sell'] # Direct trading volumn self.volumn[0]['buy'] = symoble_buy*self.volumn_toloranz self.volumn[0]['sell'] = symbole_sell*self.volumn_toloranz # Between trading volumn self.volumn[1]['buy'] = symoble_buy*self.price['between_buy']*self.volumn_toloranz self.volumn[1]['sell'] = symoble_buy*self.price['between_sell']*self.volumn_toloranz # Rate trading volumn self.volumn[2]['buy'] = (self.buy_volumn/self.price['rate_buy'])*self.volumn_toloranz self.volumn[2]['sell'] = (self.buy_volumn/self.price['rate_sell'])*self.volumn_toloranz print("Price: --------") print(self.price) print("Volumn: --------") print(self.volumn) return 1 # Use limit Direct Buy and also limit sell of between coin def triangleTradingLimitTwice(self): # recalculate the direct buy price with sell price (bid_1) + minPrice allowed by platform self.price['direct_buy'] = round(float(self.price['direct_sell_1'] + self.minPrice[0]),self.price_precise[0]) # recalculate the between sell price with buy price (ask_1) - minPrice allowed by platform self.price['between_sell'] = round(float(self.price['between_buy_1'] - self.minPrice[1]*3),self.price_precise[1]) # Calculate BSS price and win self.price['BSS_price'] = self.price['between_sell']*self.price['rate_sell'] self.price['BSS_win'] = self.price['BSS_price']/self.price['direct_buy'] # print(self.price, " @", self.price_time) # in case the BSS minuse handling fee (0.15%) is still cheeper if self.price['BSS_win'] > self.trigger_threshold: self.trading_begin_time = int(time.time()*1000) # because of the minimum quantity of the trading, calculate how much target Coin(symbol) should be buy with triangle price self.cal_buy_volumn_symbol = self.buy_volumn/self.price['direct_buy'] # self.real_buy_volumn_symbol = (int(self.cal_buy_volumn_symbol/self.minQty[0]))*self.minQty[0] buy_volumn_precise = int(-math.log10(self.minQty[0])) self.real_buy_volumn_symbol = round(self.cal_buy_volumn_symbol,buy_volumn_precise) # becasue the fee is withdrewed directly from trading volumn, calculate the sell volumn from target coin self.cal_sell_volumn_symbol = self.real_buy_volumn_symbol*(1-self.fee_quote) self.real_sell_volumn_symbol = (int(self.cal_sell_volumn_symbol/self.minQty[1]))*self.minQty[1] self.real_sell_volumn_symbol = round(self.real_sell_volumn_symbol, buy_volumn_precise) # caclulate how much between reference coin is needed based on real selling volumn # because in FCoin, the market selling price is based on coin0 (usdt), use the bss price to calculate the volumn self.cal_trading_volumn_between = self.real_sell_volumn_symbol*self.price['between_sell']*(1-self.fee_quote) # use round up integer to calculate the needed between reference coin volumn # self.real_trading_volumn_between = (math.ceil(self.cal_trading_volumn_between/self.minQty[2]))*self.minQty[2] # use round instead of ceil to balance the volumn of Between Coin and Main Coin between_volumn_precise = int(-math.log10(self.minQty[2])) self.real_trading_volumn_between = round(self.cal_trading_volumn_between,between_volumn_precise) # buy target coin with direct reference coin in Limit Trading # self.response_1 = BinanceRestLib.createLimitOrder(self.symbol,self.coin[0],"BUY",self.real_buy_volumn_symbol,self.price['direct_buy'],self.time_offset) self.response_1 = self.fcoin.buy(self.symbol+self.coin[0], self.price['direct_buy'], self.real_buy_volumn_symbol) print("Fill the triangle trading condition ----------------------------------") print("Calculated Buy Symbol: ", self.cal_buy_volumn_symbol) print("Real Buy Symbol: ", self.real_buy_volumn_symbol) print("Calculated Sell Symbol: ", self.cal_sell_volumn_symbol) print("Real Sell Symbol: ", self.real_sell_volumn_symbol) print("Calculated Trading Between: ", self.cal_trading_volumn_between) print("Real Trading Between: ",self.real_trading_volumn_between) print("Response_1------------------------") print(json.dumps(self.response_1, indent=4)) # get the order id orderId = self.response_1['data'] # wait a small time interval, until the limit trad is taken by the others for i in range(2): self.limit_order = self.fcoin.get_order(orderId) if 'data' in self.limit_order: self.limit_order = self.limit_order['data'] # if the order is filled, complete the triangle trading if self.limit_order['state'] == "filled": # finish the selling process self.triangleTradingSellLimit() return 1 else: print("Unknown response:") print(json.dumps(self.limit_order, indent=4)) print("End of %dth loop" %(i)) # if the limit trading is not taken by others, cancel it self.cancel_limit_order = self.fcoin.cancel_order(orderId) print("cancel_limit_order------------------------") print(json.dumps(self.cancel_limit_order, indent=4)) # some times the trading is already executed, in this case a error code will be returned # if 'msg' in self.cancel_limit_order: # No return, if a HttpError Exception has been catched in fcoin3 in Siagned Request if self.cancel_limit_order is None: print("Special Case: the trading is already filled. Complete the rest selling phase") # finish the selling process self.triangleTradingSellLimit() return 1 # check whether some part of the trading is already completed before cancel # get the current price thread1 = FCoinRestLib.getPriceThread(1, "Thread-1", self.symbol, self.coin[0], self.volumn[0]) thread1.start() self.cancel_order = self.fcoin.get_order(orderId) print("cancel_order------------------------") print(json.dumps(self.cancel_order, indent=4)) thread1.join() # calculate the trading price cancel_sell_price = round(float(thread1.price['asks_1'] - self.minPrice[0]),self.price_precise[0]) # if only a part is completed sell them directly # check whether the response is sucessfully if 'data' in self.cancel_order: self.cancel_order = self.cancel_order['data'] # if the state is pending, wait, until the handling in server is finished if self.cancel_order['state'] == 'pending_cancel': while True: time.sleep(1) self.cancel_order = self.fcoin.get_order(orderId) print("Pending cancel_order------------------------") print(json.dumps(self.cancel_order, indent=4)) if 'data' in self.cancel_order: self.cancel_order = self.cancel_order['data'] if self.cancel_order['state'] != 'pending_cancel': break else: print("Still pending cancel") else: print("Bed Server response during the cancel pending") # check whether the state is marked as "partial_canceled" if self.cancel_order['state'] == 'partial_canceled': print("Sell the not canceled part") # calculate already filled volumn cal_cancel_volumn = float(self.cancel_order['filled_amount']) - float(self.cancel_order['fill_fees']) real_cancel_volumn = round(cal_cancel_volumn, buy_volumn_precise) # in case the filled amount is too small if real_cancel_volumn >= 3: # create a limit trade to sell all target coin back to coin[0], with the sell_1 price self.limit_order = self.fcoin.sell(self.symbol+self.coin[0], cancel_sell_price, real_cancel_volumn) limit_order_Id = self.limit_order['data'] # wait until the trading is completed while True: time.sleep(1) # print("Waiting limit sell for target coin ...") self.limit_order = self.fcoin.get_order(limit_order_Id) if 'data' in self.limit_order: self.limit_order = self.limit_order['data'] if self.limit_order['state'] == "filled": break # if the trading is cancelled manually, wait 5 min for the next rund if self.limit_order['state'] == "canceled": print("Cancel the trading and sell the coin manually") time.sleep(300) break else: print("Unknown status:") print(json.dumps(self.limit_order, indent=4)) print(json.dumps(self.limit_order, indent=4)) else: print("already filled amount is too less, ignore it") # if the order has been already filled if self.cancel_order['state'] == 'filled': print("Trade is canceled at the same time as the state is returned") # finish the selling process self.triangleTradingSellLimit() return 1 self.trading_end_time = int(time.time()*1000) return 0 # the sell phase always with limit trading on between coin def triangleTradingSellLimit(self): # get current between sell price thread2 = FCoinRestLib.getPriceThread(2, "Thread-2", self.symbol, self.coin[1], self.volumn[1]) thread2.start() # sell between refrence coin with market price firstly self.response_3 = self.fcoin.sellMarket(self.coin[1]+self.coin[0], self.real_trading_volumn_between) print(json.dumps(self.response_3, indent=4)) thread2.join() # # create a current sell price based on current sell_1 price # current_between_sell = round(float(thread2.price['asks_1'] - self.minPrice[1]),self.price_precise[1]) # # calculate minimum price to sell the between coin without loss # #TODO: need to get the real selling price from response3 # minimum_between_sell = round((self.price['direct_buy']*1.0015/self.price['rate_sell']),self.price_precise[1]) # print(self.price, " @", self.price_time) # print("Saved price: ", self.price['between_sell']) # print("Current sell price: ", current_between_sell) # print("Minimum sell price: ", minimum_between_sell) # # choose the bigger price betwen current sell price and minimum sell price as the executing selling price # if minimum_between_sell > current_between_sell: # self.price['between_sell'] = minimum_between_sell # else: # self.price['between_sell'] = current_between_sell # use a conservative trading price to garantee the continue tradings minimum_between_sell = round((self.price['direct_buy']*(self.trigger_threshold+self.target_win_rate)/self.price['rate_sell']),self.price_precise[1]) self.price['between_sell'] = minimum_between_sell print("Saved price: ", self.price['between_sell']) print("Minimum sell price: ", minimum_between_sell) print("begin between sell") # create limit trading for between coin self.response_2 = self.fcoin.sell(self.symbol+self.coin[1], self.price['between_sell'], self.real_sell_volumn_symbol) print(json.dumps(self.response_2, indent=4)) # get the order id orderId = self.response_2['data'] # check the order state self.limit_order = self.fcoin.get_order(orderId) begin_waiting_time = time.time() begin_time = time.time() # wait until the limit order is filled while True: time.sleep(1) # print("Waiting limit sell for bewteen coin ...") self.limit_order = self.fcoin.get_order(orderId) if 'data' in self.limit_order: self.limit_order = self.limit_order['data'] if self.limit_order['state'] == "filled": # update the basic buy volumn with last win self.minNotional *= (1+self.target_win_rate) print("New Basic Buy Volumn is: ", self.buy_volumn) break # if the trading is cancelled manually, wait 5 min for the next rund if self.limit_order['state'] == "canceled": print("Cancel the trading and sell the coin manually") time.sleep(300) break else: print("Unknown status:") print(json.dumps(self.limit_order, indent=4)) # resnycho time offset in every 10min if time.time()-begin_time > 600: # if the limit sell is already hold more than 3hours, just keep the current limit sell and restart a round once again. if time.time()-begin_waiting_time > 10800: current_price = FCoinRestLib.getCurrentPrice(self.symbol, self.coin[1], self.volumn[1]) print("Special case, that a limit trade is not taken for a long time. ", current_price['asks_vol']) # in case the current limit sell price is 5% less than the expected one if current_price['asks_vol']/self.price['between_sell'] < 0.95: break print(json.dumps(self.limit_order, indent=4)) self.saveAccountInfo() self.trading_end_time = int(time.time()*1000) def writeLog(self): file_out = open('TradingInfo.log','a') file_out.write(str(datetime.datetime.now())+'\n') file_out.write(str(self.price) + '\n') file_out.write("Fill the triangle trading condition ----------------------------------") file_out.write("Calculated Buy Symbol: %f \n" %(self.cal_buy_volumn_symbol)) file_out.write("Real Buy Symbol: %f \n" %(self.real_buy_volumn_symbol)) file_out.write("Calculated Trading Between: %f \n" %(self.cal_trading_volumn_between)) file_out.write("Real Trading Between: %f \n" %(self.real_trading_volumn_between)) file_out.write("Trading begin -------------------------------@ %f \n" %(self.trading_begin_time)) file_out.write("Step 1:\n") json.dump(self.response_1, file_out) file_out.write("Step 2:\n") json.dump(self.response_2, file_out) file_out.write("Step 3:\n") json.dump(self.response_3, file_out) file_out.write("Trading end -------------------------------@ %f \n" %(self.trading_end_time)) file_out.write("Buy volumn: %f \n" %(self.real_buy_volumn_symbol)) file_out.write("Sell volumn: %f \n" %(self.real_sell_volumn_symbol)) file_out.write("Between Sell volumn: %f \n" %(self.real_trading_volumn_between)) file_out.close()
2.828125
3
airflow_run/__init__.py
TheWeatherCompany/airflow-run
3
12785009
<filename>airflow_run/__init__.py<gh_stars>1-10 from airflow_run.run import AirflowRun
1.15625
1
PoseEstimationModel.py
zabir-nabil/keras-human-pose
10
12785010
<gh_stars>1-10 import keras from keras.models import Sequential from keras.models import Model from keras.layers import Input, Dense, Activation, Lambda from keras.layers.convolutional import Conv2D from keras.layers.pooling import MaxPooling2D from keras.layers.normalization import BatchNormalization from keras.layers.merge import Concatenate import scipy import math import numpy as np import util import cv2 class PoseEstimationModel: def __init__(self, weights_path): self.weights_path = weights_path def relu(self, x): return Activation('relu')(x) def conv(self, x, nf, ks, name): x1 = Conv2D(nf, (ks, ks), padding='same', name=name)(x) return x1 def pooling(self, x, ks, st, name): x = MaxPooling2D((ks, ks), strides=(st, st), name=name)(x) return x def vgg_block(self, x): # Block 1 x = self.conv(x, 64, 3, "conv1_1") x = self.relu(x) x = self.conv(x, 64, 3, "conv1_2") x = self.relu(x) x = self.pooling(x, 2, 2, "pool1_1") # Block 2 x = self.conv(x, 128, 3, "conv2_1") x = self.relu(x) x = self.conv(x, 128, 3, "conv2_2") x = self.relu(x) x = self.pooling(x, 2, 2, "pool2_1") # Block 3 x = self.conv(x, 256, 3, "conv3_1") x = self.relu(x) x = self.conv(x, 256, 3, "conv3_2") x = self.relu(x) x = self.conv(x, 256, 3, "conv3_3") x = self.relu(x) x = self.conv(x, 256, 3, "conv3_4") x = self.relu(x) x = self.pooling(x, 2, 2, "pool3_1") # Block 4 x = self.conv(x, 512, 3, "conv4_1") x = self.relu(x) x = self.conv(x, 512, 3, "conv4_2") x = self.relu(x) # Additional non vgg layers x = self.conv(x, 256, 3, "conv4_3_CPM") x = self.relu(x) x = self.conv(x, 128, 3, "conv4_4_CPM") x = self.relu(x) return x def stage1_block(self, x, num_p, branch): # Block 1 x = self.conv(x, 128, 3, "conv5_1_CPM_L%d" % branch) x = self.relu(x) x = self.conv(x, 128, 3, "conv5_2_CPM_L%d" % branch) x = self.relu(x) x = self.conv(x, 128, 3, "conv5_3_CPM_L%d" % branch) x = self.relu(x) x = self.conv(x, 512, 1, "conv5_4_CPM_L%d" % branch) x = self.relu(x) x = self.conv(x, num_p, 1, "conv5_5_CPM_L%d" % branch) return x def stageT_block(self, x, num_p, stage, branch): # Block 1 x = self.conv(x, 128, 7, "Mconv1_stage%d_L%d" % (stage, branch)) x = self.relu(x) x = self.conv(x, 128, 7, "Mconv2_stage%d_L%d" % (stage, branch)) x = self.relu(x) x = self.conv(x, 128, 7, "Mconv3_stage%d_L%d" % (stage, branch)) x = self.relu(x) x = self.conv(x, 128, 7, "Mconv4_stage%d_L%d" % (stage, branch)) x = self.relu(x) x = self.conv(x, 128, 7, "Mconv5_stage%d_L%d" % (stage, branch)) x = self.relu(x) x = self.conv(x, 128, 1, "Mconv6_stage%d_L%d" % (stage, branch)) x = self.relu(x) x = self.conv(x, num_p, 1, "Mconv7_stage%d_L%d" % (stage, branch)) return x def create_model(self): input_shape = (None,None,3) img_input = Input(shape=input_shape) stages = 6 np_branch1 = 38 np_branch2 = 19 img_normalized = Lambda(lambda x: x / 256 - 0.5)(img_input) # [-0.5, 0.5] # VGG stage0_out = self.vgg_block(img_normalized) # stage 1 stage1_branch1_out = self.stage1_block(stage0_out, np_branch1, 1) stage1_branch2_out = self.stage1_block(stage0_out, np_branch2, 2) x = Concatenate()([stage1_branch1_out, stage1_branch2_out, stage0_out]) # stage t >= 2 for sn in range(2, stages + 1): stageT_branch1_out = self.stageT_block(x, np_branch1, sn, 1) stageT_branch2_out = self.stageT_block(x, np_branch2, sn, 2) if (sn < stages): x = Concatenate()([stageT_branch1_out, stageT_branch2_out, stage0_out]) model = Model(img_input, [stageT_branch1_out, stageT_branch2_out]) model.load_weights(self.weights_path) # save the model self.model = model return model
2.640625
3
src/colors/colors.py
pmk456/Py-Colors
1
12785011
""" Author: <NAME> Licence: Apache 2.0 Version: 0.1 """ import os import sys _colors = ["RED", "BLUE", "CYAN", "YELLOW", "GREEN", "MAGENTA", "WHITE", "BLACK"] backgrounds = ["BG_RED", "BG_BLUE", "BG_CYAN", "BG_YELLOW", "BG_GREEN", "BG_MAGENTA", "BG_WHITE", "BG_BLACK"] styles = ['BOLD', 'REVERSE', 'UNDERLINE', 'RESET', 'ITALIC', 'BLINK', 'INVISIBLE', "RED_UNDERLINE", "GREEN_UNDERLINE", 'DOUBLE_UNDERLINE', 'STRIKE', 'RED_UNDERLINE', 'GREEN_UNDERLINE', 'INVISIBLE'] if sys.platform == "win32": path = __file__ if not os.path.exists(path.replace( "colors.py", "completed")): print("Registering Colors In Windows Registry......") cmd = os.popen(r'reg add HKEY_CURRENT_USER\Console /v VirtualTerminalLevel /t REG_DWORD /d 0x00000001 ' '/f').read() assert cmd.rstrip() == "The operation completed successfully.", "Run As Administrator" with open(path.replace("colors.py", "completed"), "x") as file: ... print("Successfully Registered Colors In Windows Registry") colors = { 'RED': "\033[1;31m", 'BLUE': "\033[1;34m", 'CYAN': "\033[1;36m", 'YELLOW': "\u001b[33m", 'GREEN': "\033[0;32m", 'MAGENTA': "\u001b[35m", 'WHITE': "\u001b[37m", 'BLACK': "\u001b[30m", 'BG_BLACK': "\u001b[40m", 'BG_RED': "\u001b[41m", 'BG_GREEN': "\u001b[42m", 'BG_YELLOW': "\u001b[43m", 'BG_BLUE': "\u001b[44m", 'BG_MAGENTA': "\u001b[45m", 'BG_CYAN': "\u001b[46m", 'BG_WHITE': "\u001b[47m", 'RESET': "\033[0;0m", 'BOLD': "\033[;1m", 'REVERSE': "\033[7m", 'UNDERLINE': "\u001b[4m", 'ITALIC': "\u001b[3m", 'BLINK': "\033[5m", 'INVISIBLE': "\033[8m", 'RED_UNDERLINE': "\u001b[4m\u001b[31m", 'GREEN_UNDERLINE': "\u001b[4m\u001b[32m", 'STRIKE': "\u001b[9m", "CURLY_UNDERLINE": '\u001b[4:3m'} def is_string(string): """ :param string: string to check weather it is a string :raise ValueError if string is not a string """ if not isinstance(string, str): raise ValueError("Please Enter A String Not %s" % str(type(string))[8:].replace("'>", "")) def color(string, fg=None, bg=None, style=None): """ :param string: String :param fg: ForeGround Color :param bg: BackGround Color :param style: Style To use :return: string Formatted with fg, bg and style """ is_string(string) if fg is not None: if fg.upper() not in _colors: raise ValueError("%s Not Available" % fg) string = colors[fg.upper()] + string if bg is not None: if "BG_" + bg.upper() not in backgrounds: raise ValueError("%s Not Available" % bg) string = colors["BG_" + bg.upper()] + string if style is not None: if style.upper() not in styles: raise ValueError("%s Style Not Available" % style) string = colors[style.upper()] + string string += reset return string # Shortcut For Foreground Colors blue = colors['BLUE'] green = colors['GREEN'] yellow = colors["YELLOW"] white = colors["WHITE"] cyan = colors["CYAN"] magenta = colors["MAGENTA"] red = colors["RED"] black = colors["BLACK"] # Shortcut For Background Colors bg_black = colors["BG_BLACK"] bg_red = colors["BG_RED"] bg_blue = colors["BG_BLUE"] bg_cyan = colors["BG_CYAN"] bg_white = colors["BG_WHITE"] bg_green = colors["BG_GREEN"] bg_magenta = colors["BG_MAGENTA"] bg_yellow = colors["BG_YELLOW"] # Shortcut For Styles bold = colors["BOLD"] italic = colors["ITALIC"] reverse = colors['REVERSE'] underline = colors['UNDERLINE'] red_underline = colors['RED_UNDERLINE'] green_underline = colors['GREEN_UNDERLINE'] invisible = colors['INVISIBLE'] blink = colors['BLINK'] strike = colors['STRIKE'] curly_underline = colors["CURLY_UNDERLINE"] reset = colors["RESET"] def print_all_colors(): for k, v in colors.items(): print(v, k, reset)
2.484375
2
sara_flexbe_behaviors/src/sara_flexbe_behaviors/leftorright_sm.py
WalkingMachine/sara_behaviors
5
12785012
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- ########################################################### # WARNING: Generated code! # # ************************** # # Manual changes may get lost if file is generated again. # # Only code inside the [MANUAL] tags will be kept. # ########################################################### from flexbe_core import Behavior, Autonomy, OperatableStateMachine, ConcurrencyContainer, PriorityContainer, Logger from sara_flexbe_states.ClosestObject import ClosestObject from flexbe_states.check_condition_state import CheckConditionState from sara_flexbe_states.sara_say import SaraSay # Additional imports can be added inside the following tags # [MANUAL_IMPORT] # [/MANUAL_IMPORT] ''' Created on Fri Jul 05 2019 @author: Huynh-Anh ''' class leftOrRightSM(Behavior): ''' return if an object is at the left or right of the robot ''' def __init__(self): super(leftOrRightSM, self).__init__() self.name = 'leftOrRight' # parameters of this behavior # references to used behaviors # Additional initialization code can be added inside the following tags # [MANUAL_INIT] # [/MANUAL_INIT] # Behavior comments: def create(self): # x:818 y:151, x:162 y:460 _state_machine = OperatableStateMachine(outcomes=['finished', 'failed'], input_keys=['object']) _state_machine.userdata.object = "snacks" # Additional creation code can be added inside the following tags # [MANUAL_CREATE] # [/MANUAL_CREATE] with _state_machine: # x:124 y:77 OperatableStateMachine.add('ClosestObject', ClosestObject(), transitions={'found': 'CheckAngle', 'not_found': 'failed', 'non_existant': 'failed'}, autonomy={'found': Autonomy.Off, 'not_found': Autonomy.Off, 'non_existant': Autonomy.Off}, remapping={'object': 'object', 'angle': 'angle', 'closestObject': 'closestObject'}) # x:342 y:132 OperatableStateMachine.add('CheckAngle', CheckConditionState(predicate=lambda x: x>0), transitions={'true': 'left', 'false': 'sayright'}, autonomy={'true': Autonomy.Off, 'false': Autonomy.Off}, remapping={'input_value': 'angle'}) # x:552 y:92 OperatableStateMachine.add('left', SaraSay(sentence=lambda x: "The "+ str(x[1]) + " is on the left of the" + str(x[0].name), input_keys=["object", "closestObject"], emotion=0, block=True), transitions={'done': 'finished'}, autonomy={'done': Autonomy.Off}, remapping={'object': 'object', 'closestObject': 'closestObject'}) # x:441 y:296 OperatableStateMachine.add('sayright', SaraSay(sentence=lambda x: "The " + str(x[1]) + " is on the right of the " + str(x[0].name), input_keys=["object","closestObject"], emotion=0, block=True), transitions={'done': 'finished'}, autonomy={'done': Autonomy.Off}, remapping={'object': 'object', 'closestObject': 'closestObject'}) return _state_machine # Private functions can be added inside the following tags # [MANUAL_FUNC] # [/MANUAL_FUNC]
1.890625
2
tests/test_ipm.py
klauer/pcdsdevices
1
12785013
<reponame>klauer/pcdsdevices import logging import pytest from ophyd.sim import make_fake_device from unittest.mock import Mock from pcdsdevices.inout import InOutRecordPositioner from pcdsdevices.ipm import IPM from conftest import HotfixFakeEpicsSignal logger = logging.getLogger(__name__) @pytest.fixture(scope='function') def fake_ipm(): FakeIPM = make_fake_device(IPM) FakeIPM.state.cls = HotfixFakeEpicsSignal FakeIPM.diode.cls.state.cls = HotfixFakeEpicsSignal ipm = FakeIPM("Test:My:IPM", name='test_ipm') ipm.diode.state.sim_put(0) ipm.diode.state.sim_set_enum_strs(['Unknown'] + InOutRecordPositioner.states_list) ipm.state.sim_put(0) ipm.state.sim_set_enum_strs(['Unknown'] + IPM.states_list) return ipm def test_ipm_states(fake_ipm): logger.debug('test_ipm_states') ipm = fake_ipm ipm.state.put(5) assert ipm.removed assert not ipm.inserted ipm.state.put(1) assert not ipm.removed assert ipm.inserted def test_ipm_motion(fake_ipm): logger.debug('test_ipm_motion') ipm = fake_ipm # Remove IPM Targets ipm.remove(wait=True, timeout=1.0) assert ipm.state.get() == 5 # Insert IPM Targets ipm.set(1) assert ipm.state.get() == 1 # Move diodes in ipm.diode.insert() assert ipm.diode.state.get() == 1 ipm.diode.remove() # Move diodes out assert ipm.diode.state.get() == 2 def test_ipm_subscriptions(fake_ipm): logger.debug('test_ipm_subscriptions') ipm = fake_ipm # Subscribe a pseudo callback cb = Mock() ipm.subscribe(cb, event_type=ipm.SUB_STATE, run=False) # Change the target state ipm.state.put(2) assert cb.called
2.15625
2
jowilder_utils.py
fielddaylab/OGDUtils
0
12785014
# google imports # standard library imports import sys import copy import pickle import os from collections import Counter from io import BytesIO from zipfile import ZipFile import copy import pickle from math import ceil import importlib import urllib.request # math imports from matplotlib import pyplot as plt import numpy as np import pandas as pd from scipy import stats import seaborn as sns sns.set() # Jupyter Imports from IPython.display import display # from google.colab import files # ML imports # models from sklearn.naive_bayes import CategoricalNB from sklearn.tree import ExtraTreeClassifier, DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from xgboost import XGBClassifier from sklearn.linear_model import RidgeCV, SGDRegressor from sklearn.svm import LinearSVR # preprocessing from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler, OneHotEncoder, KBinsDiscretizer from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.model_selection import train_test_split # sampling from imblearn.over_sampling import RandomOverSampler from imblearn.under_sampling import RandomUnderSampler, EditedNearestNeighbours, RepeatedEditedNearestNeighbours from imblearn.combine import SMOTEENN, SMOTETomek # metrics from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import plot_precision_recall_curve, plot_confusion_matrix, plot_roc_curve from sklearn.metrics import f1_score, roc_auc_score, roc_curve, accuracy_score # other from imblearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV # custom imports import feature_utils as feat_util def response_boxplot(df, category, verbose=False): print('\n'+category) fig, axs = plt.subplots(1, 3, figsize=(20, 10)) qs = ['EFL_yes_no', 'skill_low_med_high', 'enjoy_high_med_low_none'] for i, f in enumerate(['R0_quiz_response', 'R1_quiz_response', 'R2_quiz_response', ]): if verbose: print(qs[i]) bp = df.boxplot(column=category, by=df[f].astype( 'category'), ax=axs[i]) bp.set_xlabel('') for choice in range(df[f].min(), df[f].max()+1): query = f"{f}=={choice}" cat_df = df.query(query)[category] num_chose = len(cat_df) mean = cat_df.mean() std = cat_df.std() if verbose: print( f'{f} # chose {choice}: {num_chose} ({round(num_chose/len(df)*100)}%). Avg {mean}, std {std}.') plt.suptitle(f'{category} Boxplot') fig.show() def group_by_func(df, func, title='', show=True): r0_groups = {0: 'native', 1: 'nonnative'} r1_groups = {0: 'not very good skill', 1: 'okay skill', 2: 'very good skill'} r2_groups = {0: 'really enjoy', 1: 'enjoy', 2: 'okay', 3: 'not enjoy'} def group_string(r0, r1, r2): return ', '.join( [r0_groups[r0], r1_groups[r1], r2_groups[r2]]) result_dfs = [pd.DataFrame(index=r1_groups.values(), columns=r2_groups.values( )), pd.DataFrame(index=r1_groups.values(), columns=r2_groups.values())] if show: print(f'{"-"*6} {title} {"-"*6}') for r0 in [0, 1]: subtitle = "Nonnatives" if r0 else "Natives" if show: print(f'\n{subtitle}:') tdf0 = df.query(f"R0_quiz_response == {r0}") for r1 in [0, 1, 2]: tdf1 = tdf0.query(f"R1_quiz_response == {r1}") for r2 in [0, 1, 2, 3]: tdf2 = tdf1.query(f"R2_quiz_response == {r2}") result_dfs[r0].loc[r1_groups[r1], r2_groups[r2] ] = func(df, tdf0, tdf1, tdf2) if show: display(result_dfs[r0]) return result_dfs def standard_group_by_func(fulldf, per_category_stats_list=None): per_category_stats_list = None or ['sess_count_clicks', 'sess_count_hovers', 'sess_meaningful_action_count', 'sess_EventCount', 'sess_count_notebook_uses', 'sess_avg_time_between_clicks', 'sess_first_enc_words_read', 'sess_first_enc_boxes_read', 'sess_num_enc', 'sess_first_enc_duration', 'sess_first_enc_avg_wps', 'sess_first_enc_var_wps', 'sess_first_enc_avg_tbps', 'sess_first_enc_var_tbps', 'sess_start_obj', 'sess_end_obj', 'start_level', 'max_level', 'sessDuration'] dfs_list = [] title_list = [] def df_func(df, tdf0, tdf1, tdf2): return len(tdf2) title = 'count' dfs = group_by_func(fulldf, df_func, title) dfs_list.append(dfs) title_list.append(title) def df_func(df, tdf0, tdf1, tdf2): return round(len(tdf2)/len(df)*100, 2) title = 'percent total pop' dfs = group_by_func(fulldf, df_func, title) dfs_list.append(dfs) title_list.append(title) def df_func(df, tdf0, tdf1, tdf2): return round(len(tdf2)/len(tdf0)*100, 2) title = 'percent native class pop' dfs = group_by_func(fulldf, df_func, title) dfs_list.append(dfs) title_list.append(title) for category in per_category_stats_list: df_func = get_avg_std_df_func(category) title = f'(avg, std) {category}' dfs = group_by_func(fulldf, df_func, title) dfs_list.append(dfs) title_list.append(title) return title_list, dfs_list def get_avg_std_df_func(category_name): def inner(df, tdf0, tdf1, tdf2): mean = tdf2[category_name].mean() std = tdf2[category_name].std() if not pd.isna(mean): mean = round(mean, 2) if not pd.isna(std): std = round(std, 2) return (mean, std) return inner def html_stats(df): html_strs = ['<div class="container">', '<h3>{Stats}</h3>'] qs = ['EFL_yes_no', 'skill_low_med_high', 'enjoy_high_med_low_none'] html_strs.append(f'<p> Total pop {len(df)} </p>') for i, f in enumerate(['R0_quiz_response', 'R1_quiz_response', 'R2_quiz_response', ]): html_strs.append(f'<p> {qs[i]}</p>') for choice in range(df[f].min(), df[f].max()+1): query = f"{f}=={choice}" cat_df = df.query(query) num_chose = len(cat_df) html_strs.append( f'<p>{f} # chose {choice}: {num_chose} ({round(num_chose/len(df)*100)}%).</p>') return '\n'.join(html_strs+['</div>']) def full_html(base_df, title_list, dfs_list, suptitle=None): HEADER = '''<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Document</title> </head> <body> <style> .flex-container { display: flex; flex-wrap: wrap; } .container { border: thick solid black; padding: 10px; margin: 5px; } .container table:nth-of-type(2) td { background-color: rgb(161, 161, 230); } .container table:nth-of-type(2) th { background-color: rgb(20, 20, 194); color: white; } .container table:nth-of-type(2n-1) td { background-color: rgb(235, 158, 158); } .container table:nth-of-type(2n-1) th { background-color: rgb(160, 11, 11); color: white; } .break { flex-basis: 100%; height: 0; } </style> <div class="flex-container">''' FOOTER = ''' </div> </body> </html>''' def table_header(title): return f''' <div class="container"> <h3>{title}</h3>''' table_footer = ''' </div>''' def table_html(title, dfs): return '\n'.join([table_header( title), "<p>Natives:</p>", dfs[0].to_html(), "<p>Nonnatives:</p>", dfs[1].to_html(), table_footer]) if suptitle is not None: suptitle = f'<h2>{suptitle}</h2>\n<div class="break"></div> <!-- break -->' else: suptitle = '' return '\n'.join([HEADER, suptitle, html_stats(base_df)] + [table_html(t, dfs) for t, dfs in zip(title_list, dfs_list)] + [FOOTER]) def download_full_html(base_df, title_list, dfs_list, filename, suptitle=None): with open(filename, 'w+') as f: f.write(full_html(base_df, title_list, dfs_list, suptitle=suptitle)) print("Wrote to", filename) files.download(filename) onext_int_feats = [f'obj{i}_onext_int' for i in range(80)] onext_int_cats = [["nan", 1], ["nan", 11], ["nan", 12, 86, 111, 125], ["nan", 13, 14, 113, 116, 118], ["nan", 14, 15, 113, 114, 116, 118], ["nan", 13, 15, 113, 114, 116, 118], ["nan", 16, 86, 115, 118, 132, 161], ["nan", 17, 86, 115, 118, 128, 161], ["nan", 18, 86, 115, 118, 161], ["nan", 19, 86, 117, 118, 127, 133, 134, 161], ["nan", 20, 133, 134, 136], ["nan", 2, 80, 81, 82, 83], ["nan", 21, 86, 117, 127, 136, 137, 161], ["nan", 22, 137, 141], ["nan", 23, 24, 86, 117, 127, 136, 161], ["nan", 23, 24, 117, 127, 136, 161], ["nan", 25, 86, 117, 118, 127, 136, 140, 147, 151, 161], ["nan", 26, 142, 145], ["nan", 27, 143], ["nan", 28, 86, 117, 118, 136, 140, 150, 161], ["nan", 29, 119, 130], ["nan", 29, 30, 35, 86, 117, 118, 126, 136, 140, 149], ["nan", 3, 80, 82, 83, 86, 87, 88, 93], ["nan", 31, 38], ["nan", 32, 153], ["nan", 33, 154], ["nan", 34, 155], ["nan", 35, 156], ["nan", 36, 157], ["nan", 37, 158], ["nan", 30], ["nan", 39, 163], ["nan", 40, 160], ["nan", 3], ["nan", 41, 164, 166], ["nan", 42, 166], ["nan", 30], ["nan", 44, 85, 125], ["nan", 29, 45, 47, 84, 118, 125, 136, 140, 149, 168, 169, 184], ["nan", 45, 46, 169, 170], ["nan", 29, 45, 47, 92, 118, 136, 140, 149, 169, 184], ["nan", 29, 45, 48, 92, 118, 140, 149, 168, 184], ["nan", 46, 49, 168], ["nan", 46, 50, 168, 170], ["nan", 5, 80, 82, 83, 86, 89, 91, 95, 97, 125], ["nan", 29, 51, 92, 118, 136, 140, 149, 168, 184], ["nan", 52, 92, 118, 136, 149, 171, 184], ["nan", 53, 54, 92, 118, 136, 140, 149, 184], ["nan", 53, 54, 55, 59, 60, 90, 92, 94, 118, 136, 140, 149, 168, 184], ["nan", 53, 55, 59, 60, 90, 92, 94, 118, 136, 140, 149, 184], ["nan", 55, 56, 59, 60, 149, 174], ["nan", 57, 59, 60, 174], ["nan", 58, 59, 60, 136, 172, 174, 184], ["nan", 29, 59, 60, 61, 92, 118, 136, 149, 168, 172, 184], ["nan", 55, 56, 57, 58, 60, 61, 140, 172, 174, 184], ["nan", 6, 80, 82, 83, 86, 98, 100, 125], ["nan", 55, 56, 57, 58, 59, 61, 92, 118, 136, 140, 149, 172, 174, 184], ["nan", 59, 62, 136, 140, 149, 172, 173, 175, 184], ["nan", 63, 64, 176], ["nan", 64, 66, 149, 175, 184], ["nan", 29, 65, 66, 92, 118, 136, 140, 172, 175, 177, 184], ["nan", 66, 67, 68, 92, 118, 136, 140, 146, 175, 177, 184], ["nan", 67, 144], ["nan", 29, 64, 65, 68, 92, 118, 131, 136, 140, 148, 149, 172, 175, 177, 184], ["nan", 92, 118, 122, 123, 124, 131, 136, 140, 146, 148, 168, 172, 175, 177, 184], ["nan", 70], ["nan", 7], ["nan", 71, 178], ["nan", 72, 179], ["nan", 73, 180], ["nan", 74, 181], ["nan", 75, 182], ["nan", 69], ["nan", 77, 78, 185], ["nan", 78, 185], ["nan", 79], [0], ["nan", 8], ["nan", 9, 103], ["nan", 104, 105, 108]] QA_1_feats = [f'Q{i}_A1' for i in range(19)] QA_1_cats = [['0', 'A', 'B', 'C', 'D'], ['0', 'A', 'B', 'C', 'D'], ['0', 'A', 'B', 'C', 'D'], ['0', 'A', 'B', 'C', 'D'], ['0', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q'], ['0', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'O', 'P', 'Q'], ['0', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q'], ['0', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q'], ['0', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q'], ['0', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q'], ['0', '?', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q'], ['0', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q'], ['0', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q'], ['0', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q'], ['0', 'A', 'B', 'C', 'D', 'F', 'G', 'I', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f'], ['0', 'Q', 'V', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f'], ['0', '?', 'X', 'Y', 'Z', 'b', 'c', 'd', 'e', 'f'], ['0', 'X', 'Y', 'b', 'c', 'd', 'e', 'f'], ['0', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f']] def get_preprocessor(df, scaler=StandardScaler(), imputer=SimpleImputer(strategy='constant'), bool_dtype='int64'): """ By default has a number of steps: 1. drops columns from use in preprocessor if present: - [f'Q{q}_answers' for q in range(19)] - ["play_year", "play_month", "play_day", "play_hour", "play_minute", "play_second"] - ["_continue", "continue", "save_code", "music", "hq", "fullscreen", "persistentSessionID"] 2. Creates a preprocessor for all non-y columns and non-boolean columns with the following steps: a. Standard Scaler (0 mean, 1 std) b. Simple Imputer(strategy='constant') (fill NaN with 0) 3. Fits the preprocessor to the given X 4. returns the unfitted preprocessor (sklearn pipeline), and the unprocessed X dataframe :param df: jowilder dataframe :param scaler: sklearn compatible scaler :param imputer: sklearn compatible imputer :return: the unfitted preprocessor (sklearn pipeline), and the unprocessed X dataframe """ df = df.drop( [f'Q{q}_answers' for q in range(19)] + ["play_year", "play_month", "play_day", "play_hour", "play_minute", "play_second", "_continue", "continue", "save_code", "music", "hq", "fullscreen", "persistentSessionID", ], axis=1, errors='ignore').copy() y_cols, bool_cols, num_cols = separate_columns(df, bool_dtype=bool_dtype) X = df.loc[:, num_cols+bool_cols] # too complicated to allow for pipeline order # pipeline_strings = [pipeline_order[i:i+2] for i in range(0,len(pipeline_order),2)] # transformers = [] # num_sa, num_sc, num_im = 0,0,0 # for s in pipeline_strings: # if s == 'Sa': # transformer = make_pipeline(sampler) # cols = num_cols + bool_cols # name = f'{s}{num_sa}' # num_sa += 1 # elif s == 'Sc': # transformer = scaler # name = f'{s}{num_sc}' # cols = num_cols # num_sc += 1 # elif s == 'Im': # transformer = imputer # name = f'{s}{num_im}' # cols = num_cols # num_im += 1 # else: # raise ValueError("Pipeline substrings must be Sa Sc or Im") # transformers.append((name, transformer, cols)) def col_str_to_int(col_strs): return [ X.columns.get_loc(s) for s in col_strs] column_transformer = ColumnTransformer( transformers=[ ('num', make_pipeline(scaler, imputer), col_str_to_int(num_cols)), ('bool', 'passthrough', col_str_to_int(bool_cols)) ], remainder='drop') return column_transformer, X def get_ys(df): """ :rtype: dictionary of y columns (df series). keys: y0,y1,y2,y1_bin,y2_bin,y1_bin_x,y2_bin_x """ ys = {} for key, y_col in [ ('y0', 'R0_quiz_response'), ('y1', 'R1_quiz_response'), ('y2', 'R2_quiz_response'), ('y1_bin', 'R1_quiz_response_bin'), ('y1_bin_0v12', 'R1_quiz_response_0v12'), ('y1_bin_01v2', 'R1_quiz_response_01v2'), ('y1_bin_x', 'R1_quiz_response_bin_x'), ('y2_bin', 'R2_quiz_response_bin'), ('y2_bin_x', 'R2_quiz_response_bin_x'), ('y2_bin_0v123', 'R2_quiz_response_bin0v123'), ('y2_bin_01v23', 'R2_quiz_response_bin01v23'), ('y2_bin_012v3', 'R2_quiz_response_bin012v3'), ]: if y_col in df.columns: ys[key] = df.loc[:, y_col].astype('category').copy() return ys def separate_columns(df, bool_dtype='int64', expect_bool_cols = True) -> (list, list, list): """ :param df: :param bool_dtype: Defaults to 'int64'. Should be int64 if coming from import csv otherwise could be 'uint8' if coming from the pd dummies. :return: tuple of lists of column names for y_columns, bool_columns, and integer_columns """ y_cols = [col for col in df.columns if 'quiz_response' in col] bool_cols = [col for col in df.select_dtypes(include=[bool_dtype]) if np.isin(df[col].dropna().unique(), [0, 1]).all() and col not in y_cols] num_cols = [ col for col in df.columns if col not in bool_cols and col not in y_cols] if not bool_cols and expect_bool_cols: print('Warning! No bool columns. Consider changing bool_dtype="int_64" to "uint8"') return y_cols, bool_cols, num_cols end_obj_to_last_Q = { 9: 0, 10: 3, 11: 3, 12: 3, 13: 3, 14: 3, 15: 3, 16: 3, 17: 3, 18: 3, 19: 3, 20: 3, 21: 3, 22: 3, 23: 3, 24: 3, 25: 3, 26: 3, 27: 3, 28: 3, 29: 3, 30: 3, 31: 3, 32: 4, 33: 5, 34: 6, 35: 7, 36: 8, 37: 9, 38: 9, 39: 10, 40: 11, 41: 12, 42: 13, 43: 13, 44: 13, 45: 13, 46: 13, 47: 13, 48: 13, 49: 13, 50: 13, 51: 13, 52: 13, 53: 13, 54: 13, 55: 13, 56: 13, 57: 13, 58: 13, 59: 13, 60: 13, 61: 13, 62: 13, 63: 13, 64: 13, 65: 13, 66: 13, 67: 13, 68: 13, 69: 13, 70: 13, 71: 14, 72: 15, 73: 16, 74: 17, 75: 18, 76: 18, 77: 18, 78: 18, 79: 18, } end_obj_to_last_lvl = { 0: 0, 1: 0, 2: 0, 3: 1, 4: 2, 5: 2, 6: 3, 7: 3, 8: 4, 9: 4, 10: 4, 11: 4, 12: 5, 13: 6, 14: 6, 15: 6, 16: 6, 17: 6, 18: 6, 19: 7, 20: 7, 21: 8, 22: 8, 23: 9, 24: 9, 25: 9, 26: 10, 27: 10, 28: 11, 29: 11, 30: 12, 31: 12, 32: 12, 33: 12, 34: 12, 35: 12, 36: 12, 37: 12, 38: 12, 39: 12, 40: 12, 41: 12, 42: 12, 43: 13, 44: 13, 45: 14, 46: 15, 47: 15, 48: 16, 49: 16, 50: 17, 51: 17, 52: 18, 53: 18, 54: 18, 55: 18, 56: 18, 57: 18, 58: 18, 59: 18, 60: 18, 61: 18, 62: 19, 63: 19, 64: 19, 65: 20, 66: 20, 67: 21, 68: 21, 69: 22, 70: 22, 71: 22, 72: 22, 73: 22, 74: 22, 75: 22, 76: 22, 77: 23, 78: 23, 79: 23, } class GridSearcher(): def __init__(self, csv_fpath=None, df=None, preprocessor=None, fillna=0, meta=[], expect_bool_cols=True): # either give csv_fpath or df. assert csv_fpath or not df.empty print(f'Loading from {csv_fpath}...') # load df if df is None: print(f'Loading from {csv_fpath}...') self.df, self.meta = feat_util.open_csv_from_path_with_meta( csv_fpath, index_col=0) else: self.df, self.meta = df, meta # set X and ys, and preprocessor if not preprocessor: self.preprocessor, self.X = get_preprocessor(self.df) self.X = self.X.fillna(fillna) else: _, bool_cols, num_cols = separate_columns(self.df, expect_bool_cols=expect_bool_cols) self.X = df[bool_cols+num_cols] self.preprocessor = preprocessor self.ys = get_ys(self.df) # set object vars self.model_dict = {} self.cur_model = None def split_data(self): nonnull_X, nonnull_y = feat_util.remove_nan_labels(self.X, self.y) X_train, X_test, y_train, y_test = train_test_split( nonnull_X, nonnull_y, test_size=0.2, random_state=1) self.X_train, self.X_test, self.y_train, self.y_test = X_train, X_test, y_train, y_test def set_y(self, y_key=None, other_col=None): if y_key: print(f'Switching to {y_key}...') self.y = self.ys[y_key] elif other_col: self.y = self.X[other_col] self.X = self.X.drop(other_col, axis=1) else: print("Did not change y. Invalid inputs.") self.split_data() def run_fit(self, classifier, sampler=None, verbose=False, preprocess_twice=True, sampler_index=None, full_pipeline=False): # fit self.cur_model as a pipeline of the given preprocessor, sampler, preprocessor, classifer # if preprocess_twice is false, self.cur_model is sampler, preprocessor, classifier # if full_pipeline and sampler index, self.cur_model is the classifier # (must be a pipeline containing a sampler or a placeholder (None) for the sampler) if full_pipeline: assert sampler_index is not None clf = classifier elif preprocess_twice: clf = make_pipeline(self.preprocessor, sampler, copy.deepcopy(self.preprocessor), classifier) sampler_index = 1 else: clf = make_pipeline(sampler, self.preprocessor, classifier) sampler_index = 0 self._sampling_pipeline = clf[:sampler_index+1] self._classifying_pipeline = clf[sampler_index+1:] if clf[sampler_index] is not None: self.X_train_sampled, self.y_train_sampled = self._sampling_pipeline.fit_resample( self.X_train, self.y_train) else: self.X_train_sampled, self.y_train_sampled = self.X_train, self.y_train clf = self._classifying_pipeline # model_name = f'{sampler} {classifier}' # if verbose: # print(f'Running {model_name}.') self._classifying_pipeline.fit( self.X_train_sampled, self.y_train_sampled) self.cur_model = clf # if verbose: # print("model trained to: %.3f" % # clf.score(self.X_train, self.y_train)) # print("model score: %.3f" % clf.score(self.X_test, self.y_test)) return clf def metrics(self, graph_dir=None, graph_prefix=None, binary_classification=True): # return list of (metric: float, metric_name: str) tuples of metrics of given classifier (default: self.cur_model) # can only do metrics for binary classification as of right now assert binary_classification metric_list = [] clf = self.cur_model # label metrics if graph_prefix: for flipped_labels in [False, True]: flipped_labels_suffix = '' if not flipped_labels else '_flipped' fig, axes = plt.subplots(3, 3, figsize=(20, 20)) for i, (yarray, Xarray, label) in enumerate([(self.y_test, self.X_test, 'test'), (self.y_train_sampled, self.X_train_sampled, 'train'), (self.y_train, self.X_train, 'train_raw'), ]): for j, (graph_type, func) in enumerate([ ('', plot_confusion_matrix), ('_PR', plot_precision_recall_curve), ('_ROC', plot_roc_curve), ]): ax = axes[j, i] graph_yarray = yarray.astype(bool) if flipped_labels: graph_yarray = ~graph_yarray disp = func(clf, Xarray, graph_yarray, ax=ax) title = f'{label}{graph_type}{flipped_labels_suffix}' ax.set_title(title) if graph_type in ['_PR', '_ROC']: ax.set_xlim(-0.05, 1.05) ax.set_ylim(-0.05, 1.05) ax.set_aspect('equal', adjustable='box') suptitle = f'{graph_prefix}{flipped_labels_suffix}' plt.suptitle(suptitle) savepath = os.path.join(graph_dir, f'{suptitle}.png') fig.savefig(savepath, dpi=100) plt.close() for i, (yarray, Xarray, label) in enumerate([(self.y_test, self.X_test, 'test'), (self.y_train_sampled, self.X_train_sampled, 'train'), (self.y_train, self.X_train, 'train_raw'), ]): y_pred = clf.predict(Xarray) y_prob = clf.predict_proba(Xarray)[:, 1] y_true = yarray X_shape = Xarray.shape metric_list.extend(feat_util.binary_metric_list( y_true=y_true, y_pred=y_pred, y_prob=y_prob, X_shape=X_shape, label_prefix=f'{label}_' )) return metric_list def model_stats(self, classifier=None, graph=True): # counter, auc, and optional graph of given classifer (default: self.cur_model) classifier = classifier or self.cur_model y_prob = classifier.predict_proba(self.X_test)[:, 1] print(f"dimension y_prob: {y_prob.shape}") print(f"dimension y_test: {self.y_test.shape}") print(f'Predicts:', Counter(list(classifier.predict(self.X_test)))) print(f'True Labels:', Counter(self.y_test)) if graph: fpr, tpr, thres = roc_curve(self.y_test, y_prob) plt.plot(fpr, tpr, color='green') plt.plot([0, 1], [0, 1], color='red', linestyle='--') plt.show() roc_auc = roc_auc_score(self.y_test, y_prob) print(f"ROC-AUC Score: {roc_auc}") def classification_report(self): # classification report on current model y_true = self.y_test y_pred = self.cur_model.predict(self.X_test) print(classification_report(y_true, y_pred)) class JWWindowSelector: ycols = ['R0_quiz_response','R1_quiz_response','R2_quiz_response','R1_quiz_response_bin', 'R1_quiz_response_0v12','R1_quiz_response_01v2','R1_quiz_response_bin_x', 'R2_quiz_response_bin','R2_quiz_response_bin_x','R2_quiz_response_bin0v123', 'R2_quiz_response_bin01v23','R2_quiz_response_bin012v3'] INTERACTION = 0 LEVEL = 1 QUIZ = 2 OBJECTIVE = 3 def __init__(self, csv_fpath=None, df=None, meta=None): assert csv_fpath is not None or df is not None # load df if df is None: print(f'Loading from {csv_fpath}...') self.df, self.meta = feat_util.open_csv_from_path_with_meta( csv_fpath, index_col=0) else: self.df = df self.meta = meta or [] self.df_cols = list(df.columns) @staticmethod def get_abbrev(window_type): if window_type == JWWindowSelector.INTERACTION: return 'int' if window_type == JWWindowSelector.LEVEL: return 'lvl' if window_type == JWWindowSelector.QUIZ: return 'q' if window_type == JWWindowSelector.OBJECTIVE: return 'obj' @staticmethod def get_prefix(n, window_type): if window_type == JWWindowSelector.INTERACTION: return f'int{n}_i' if window_type == JWWindowSelector.LEVEL: return f'lvl{n}_' if window_type == JWWindowSelector.QUIZ: return f'Q{n}_' if window_type == JWWindowSelector.OBJECTIVE: return f'obj{n}_o' @staticmethod def get_window_range(window_type, skip_Q23=False): if window_type == JWWindowSelector.INTERACTION: return range(189) if window_type == JWWindowSelector.LEVEL: return range(24) if window_type == JWWindowSelector.QUIZ: if not skip_Q23: return range(19) else: return [0,1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] if window_type == JWWindowSelector.OBJECTIVE: return range(80) def cols_startwith(self, prefix): return [c for c in self.df_cols if c.startswith(prefix)] def get_feats(self, n, window_type): prefix = self.get_prefix(n, window_type) feats = self.cols_startwith(prefix) return feats def get_filter_queries(self, n, window_type, max_seconds_per_word=2): prefix = JWWindowSelector.get_prefix(n, window_type) queries = [f"R1_quiz_response == R1_quiz_response"] if window_type in [JWWindowSelector.INTERACTION, JWWindowSelector.LEVEL]: queries.extend([ f"{prefix}first_enc_duration == {prefix}first_enc_duration", f"{prefix}first_enc_duration > 0", ]) if window_type == JWWindowSelector.QUIZ: queries.extend([ f'{prefix}A1_nan!=1' ]) elif window_type == JWWindowSelector.INTERACTION: num_words = self.df[f"int{n}_ifirst_enc_words_read"].max() queries.extend([ f"{prefix}first_enc_words_read == {num_words}", f"{prefix}time_to > 0", f"{prefix}first_enc_duration < {prefix}first_enc_words_read*{max_seconds_per_word}", ]) elif window_type == JWWindowSelector.OBJECTIVE: if n < 79: queries.append(f'obj{n}_onext_int_nan==0') queries.append(f"obj{n}_otime_to_next_obj < 600") queries.append(f"obj{n}_otime_to_next_obj > 0 ") elif window_type == JWWindowSelector.LEVEL: queries.append(f"{prefix}time_in_level < 1200") queries.append(f"{prefix}time_in_level > 0") queries.extend([f"R{i}_quiz_response == R{i}_quiz_response" for i in [0,1,2]]) return queries def get_base_meta(self): return self.meta @staticmethod def join_XY(X,Y): return X.join(Y) def get_X_Y_meta(self, n, window_type, max_seconds_per_word=2,nbins=0, drop_first_next_int_col = True): meta = [] prefix = JWWindowSelector.get_prefix(n, window_type) Xfeats = self.get_feats(n, window_type) meta.append(f'Using feats: {Xfeats}') if window_type==JWWindowSelector.INTERACTION: total_words = self.df[f"int{n}_ifirst_enc_words_read"].max() if total_words is np.nan: return None, None, meta elif total_words < 10: print('Total words < 10!') queries = self.get_filter_queries(n, window_type, max_seconds_per_word=max_seconds_per_word) filtered_df, filtered_df_meta = feat_util.filter_df(self.df[Xfeats+JWWindowSelector.ycols], query_list=queries, verbose=True, fillna=None) meta.extend(filtered_df_meta) X = filtered_df[Xfeats].fillna(0).copy() meta.append(f'Filled X with 0') Y = filtered_df[JWWindowSelector.ycols].copy() drop_cols = [] if window_type in [JWWindowSelector.INTERACTION, JWWindowSelector.LEVEL]: drop_cols = [ f"{prefix}first_enc_boxes_read", f"{prefix}first_enc_words_read", ] if window_type==JWWindowSelector.INTERACTION: drop_cols.extend([ f"{prefix}time_to", f"{prefix}total_duration" ]) if window_type==JWWindowSelector.OBJECTIVE: drop_cols.append(f"{prefix}next_int_nan") # if window_type==JWWindowSelector.QUIZ: # drop_cols.append(f"{prefix}answers") X = X.drop(columns=drop_cols) meta.append(f"Dropped drop_cols: {drop_cols}") constant_cols = X.columns[X.nunique()==1] X = X.drop(columns=constant_cols) meta.append(f'Dropped constant_cols: {constant_cols}') if not len(X): return None, None, meta if window_type == JWWindowSelector.OBJECTIVE and drop_first_next_int_col: next_int_cols = [c for c in X.columns if 'next_int' in c] if next_int_cols: X = X.drop(columns=next_int_cols[0]) meta.append(f'Dropped onehot column {next_int_cols[0]} from {next_int_cols}') ## does not bin by default if nbins: est = KBinsDiscretizer(n_bins=nbins, encode='onehot-dense', strategy='quantile') bin_feats = [f'{prefix}first_enc_avg_tbps', f'{prefix}first_enc_avg_wps', # f'{prefix}first_enc_duration', f'{prefix}first_enc_var_tbps', f'{prefix}first_enc_var_wps'] bin_feats = [c for c in bin_feats if c in X.columns] if bin_feats: Xt = est.fit_transform(X[bin_feats]) new_feat_names = [f'{feat}>{x:.2f}' for bins,feat in zip(est.bin_edges_,bin_feats) for x in list(bins)[:-1]] Xt_df = pd.DataFrame(Xt, index=X.index, columns=new_feat_names) X = X.join(Xt_df) X = X.drop(columns=bin_feats) meta.append(f'Quantized n_bins={nbins} feats {bin_feats} to {new_feat_names}') return (X, Y, meta) def get_X_Y_meta_range(self, ns, window_type, max_seconds_per_word=2,nbins=0, drop_first_next_int_col = True, verbose=True): X, Y, meta = None, None, [] for n in ns: tX, tY, tmeta = self.get_X_Y_meta(n, window_type, max_seconds_per_word=max_seconds_per_word, nbins=nbins, drop_first_next_int_col=drop_first_next_int_col) X, Y, meta = JWWindowSelector.join_X_Y_meta(X, Y, meta, tX, tY, tmeta, copy=False) print('Join Size:', X.shape) X, Y = X.copy(), Y.copy() return X, Y, meta @staticmethod def join_X_Y_meta(X1, Y1, meta1, X2, Y2, meta2, copy=True): meta = meta1+meta2 if X1 is None: X = X2 Y = Y2 elif X2 is None: X = X1 Y = Y1 else: X = X1.join(X2, how='inner') Y = Y1.loc[X.index, :] meta = meta1+['--Inner Join--']+meta2+[f'Resultant Join Shape: {X.shape}'] if copy and X is not None: X, Y = X.copy(), Y.copy() return X, Y, meta
1.992188
2
mods/libvis_mods/project-templates/test-interactive.py
danlkv/pywebviz
0
12785015
from subprocess import Popen, PIPE import sys import os from queue import Queue, Empty import subprocess import threading import time class LocalShell(object): def __init__(self): pass def run(self, cmd): env = os.environ.copy() p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=subprocess.STDOUT, shell=True, env=env) def writeall(p): while True: # print("read data: ") data = p.stdout.read(1).decode("utf-8") if not data: break sys.stdout.write(data) sys.stdout.flush() writer = threading.Thread(target=writeall, args=(p,)) writer.start() def reader(readq): try: while True: d = sys.stdin.read(1) if not d: break readq.put(d) except EOFError: pass readq = Queue() r = threading.Thread(target=reader, args=(readq,)) r.daemon=True r.start() while True: if not writer.isAlive(): break try: d = readq.get(block=False) self._write(p, bytes(d, 'utf-8')) time.sleep(0.01) except Empty: pass def _write(self, process, message): process.stdin.write(message) process.stdin.flush() cmd = ['cookiecutter', 'source-files'] cmd = ' '.join(cmd) def main(): shell = LocalShell() try: shell.run(cmd) except KeyboardInterrupt: return if __name__ == '__main__': main()
2.40625
2
python/testData/codeInsight/smartEnter/methodParameterStaticMethod_after.py
tgodzik/intellij-community
2
12785016
<reponame>tgodzik/intellij-community<filename>python/testData/codeInsight/smartEnter/methodParameterStaticMethod_after.py<gh_stars>1-10 class MyClass: @staticmethod def method(): <caret>
1.617188
2
fancy/trainer/transforms/normalize_both_input_and_target.py
susautw/fancy-trainer
0
12785017
from typing import Optional, Callable import torch import numpy as np from PIL.Image import Image from ..transforms import TargetHandler class NormalizeBothInputAndTarget: transform: Callable[[Image], Image] target_handler: TargetHandler def __init__( self, transform: Callable[[Image], Image], target_handler: Optional[TargetHandler] = None, ): self.target_handler = target_handler self.transform = transform def forward(self, x: Image) -> torch.Tensor: image_data = np.array(x) std = image_data.std() mean = image_data.mean() erased_img = self.transform(x) erased_img_data = torch.tensor(np.array(erased_img), dtype=torch.float32) normed_img_data = (erased_img_data - mean) / std target = self.target_handler.get() if target is None: raise RuntimeError("target has not generated.") if not isinstance(target, Image): raise TypeError("the generated target must be an PIL.Image") target_data = torch.tensor(np.array(target), dtype=torch.float32) self.target_handler.set((target_data - mean) / std) return normed_img_data
2.6875
3
version.py
TheNomet/blackbricks
0
12785018
<reponame>TheNomet/blackbricks<filename>version.py<gh_stars>0 import re import os def get_version(): """Return the current version number from blackbricks/__init__.py""" with open(os.path.join(os.path.dirname(__file__), "blackbricks/__init__.py")) as f: match = re.search(r'__version__ = "([0-9\.]+)"', f.read()) assert match, "No version in blackbricks/__init__.py !" return match.group(1) if __name__ == "__main__": print(get_version())
2.46875
2
tests/snippets/decorators.py
gabhijit/RustPython
1
12785019
<gh_stars>1-10 def logged(f): def wrapper(a, b): print('Calling function', f) return f(a, b + 1) return wrapper @logged def add(a, b): return a + b c = add(10, 3) assert c == 14
2.921875
3
assets/tinyurl.py
Code-Cecilia/BotMan.py
4
12785020
import aiohttp async def get_tinyurl(link: str): url = f"http://tinyurl.com/api-create.php?url={link}" async with aiohttp.ClientSession() as session: async with session.get(url) as response: response = (await response.content.read()).decode('utf-8') return response
2.953125
3
YTPP001 Competition/ISGOODNM.py
8Bit1Byte/Codechef-Solutions
2
12785021
''' Problem Name: Good Number Or Not Problem Code: ISGOODNM Problem Link: https://www.codechef.com/problems/ISGOODNM Solution Link: https://www.codechef.com/viewsolution/47005382 ''' def divisors(m): from math import sqrt l = set() for i in range(1, int(sqrt(m)+1)): if m%i == 0: l.add(i) l.add(m//i) l = list(l) l.sort() return l[:-1] def solve(n): l = sum(divisors(n)) if l == n: return 'YES' return 'NO' if __name__ == '__main__': n = int(input()) print(solve(n))
3.71875
4
reproduction/coreference_resolution/data_load/cr_loader.py
KuNyaa/fastNLP
1
12785022
<filename>reproduction/coreference_resolution/data_load/cr_loader.py from fastNLP.io.dataset_loader import JsonLoader,DataSet,Instance from fastNLP.io.file_reader import _read_json from fastNLP.core.vocabulary import Vocabulary from fastNLP.io.base_loader import DataBundle from reproduction.coreference_resolution.model.config import Config import reproduction.coreference_resolution.model.preprocess as preprocess class CRLoader(JsonLoader): def __init__(self, fields=None, dropna=False): super().__init__(fields, dropna) def _load(self, path): """ 加载数据 :param path: :return: """ dataset = DataSet() for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): if self.fields: ins = {self.fields[k]: v for k, v in d.items()} else: ins = d dataset.append(Instance(**ins)) return dataset def process(self, paths, **kwargs): data_info = DataBundle() for name in ['train', 'test', 'dev']: data_info.datasets[name] = self.load(paths[name]) config = Config() vocab = Vocabulary().from_dataset(*data_info.datasets.values(), field_name='sentences') vocab.build_vocab() word2id = vocab.word2idx char_dict = preprocess.get_char_dict(config.char_path) data_info.vocabs = vocab genres = {g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])} for name, ds in data_info.datasets.items(): ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), config.max_sentences, is_train=name=='train')[0], new_field_name='doc_np') ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), config.max_sentences, is_train=name=='train')[1], new_field_name='char_index') ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), config.max_sentences, is_train=name=='train')[2], new_field_name='seq_len') ds.apply(lambda x: preprocess.speaker2numpy(x["speakers"], config.max_sentences, is_train=name=='train'), new_field_name='speaker_ids_np') ds.apply(lambda x: genres[x["doc_key"][:2]], new_field_name='genre') ds.set_ignore_type('clusters') ds.set_padder('clusters', None) ds.set_input("sentences", "doc_np", "speaker_ids_np", "genre", "char_index", "seq_len") ds.set_target("clusters") # train_dev, test = self.ds.split(348 / (2802 + 343 + 348), shuffle=False) # train, dev = train_dev.split(343 / (2802 + 343), shuffle=False) return data_info
2.375
2
problems/problem25.py
phanghos/euler-solutions
1
12785023
<gh_stars>1-10 def digits(n): c = 0 while n > 0: c += 1 n //= 10 return c fib1 = fib2 = 1 fib3 = fib1 + fib2 c = 3 while digits(fib3) != 1000: fib1, fib2 = fib2, fib3 fib3 = fib1 + fib2 c += 1 print(c)
3.53125
4
reservationen_package/db_util.py
cyrilwelschen/reservationen_package
0
12785024
import sqlite3 import os class DbUtil: def __init__(self, db_file): self.db_path = db_file self.conn = self.create_connection() self.c = self.create_cursor() def create_connection(self): try: os.remove(self.db_path) print("removing existing db file") except OSError as e: print(e) print("Db file doesn't exist, creating it...") conn = sqlite3.connect(self.db_path) return conn def create_cursor(self): return self.conn.cursor() def create_table(self, creation_string): self.c.execute(creation_string) self.conn.commit() def execute_on_db(self, execution_string): exec_st = "" try: # todo: check if encode/decode is really necessary? exec_st = execution_string.encode("utf-8") self.c.execute(exec_st.decode("utf-8")) except sqlite3.OperationalError as e: # todo: send mail notification print(exec_st) raise e def close_db(self): self.conn.close()
3.109375
3
spectrespecs/core/models.py
Spacehug/loony-lovegood
1
12785025
<gh_stars>1-10 from django.utils import timezone from django.db import models class Profile(models.Model): uid = models.BigIntegerField( blank=False, null=False, help_text="Telegram user ID.", verbose_name="User ID", db_index=True, ) gid = models.BigIntegerField( blank=False, null=False, help_text="Telegram group ID this user has sent message into.", verbose_name="Group ID", db_index=True, ) has_messages = models.BooleanField(blank=False, null=False, default=False) created_at = models.DateTimeField( blank=False, auto_now_add=True, help_text="Date and time the profile was created at.", verbose_name="Created at", ) updated_at = models.DateTimeField( blank=False, auto_now=True, help_text="Date and time the profile was updated at.", verbose_name="Updated at", ) grace_at = models.DateTimeField( blank=True, null=True, help_text="Date and time the profile grace period started at.", verbose_name="Grace started at", ) warnings = models.IntegerField( blank=False, null=False, help_text="Warnings this user have.", verbose_name="Warnings", default=0, ) class Meta: db_table = "profiles" verbose_name = "Profile" verbose_name_plural = "Profiles" unique_together = ("uid", "gid") def __repr__(self): return f"Profile({self.uid} from {self.gid})" def __str__(self): return f"{self.uid} from {self.gid}" def reset_grace(self): self.grace_at = timezone.now() self.save()
2.375
2
dl/keras-efficientnet-regression/efficient_net_keras_regression.py
showkeyjar/beauty
1
12785026
from typing import Iterator, List, Union, Tuple, Any from datetime import datetime import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from tensorflow import keras import tensorflow_addons as tfa from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras import layers, models, Model from tensorflow.python.keras.callbacks import TensorBoard, EarlyStopping, ModelCheckpoint from tensorflow.keras.losses import MeanAbsoluteError, MeanAbsolutePercentageError from tensorflow.keras.models import Sequential from tensorflow.keras.applications import EfficientNetB0 from tensorflow.keras.utils import plot_model from tensorflow.keras.callbacks import History # the next 3 lines of code are for my machine and setup due to https://github.com/tensorflow/tensorflow/issues/43174 import tensorflow as tf physical_devices = tf.config.list_physical_devices("GPU") tf.config.experimental.set_memory_growth(physical_devices[0], True) def visualize_augmentations(data_generator: ImageDataGenerator, df: pd.DataFrame): """Visualizes the keras augmentations with matplotlib in 3x3 grid. This function is part of create_generators() and can be accessed from there. Parameters ---------- data_generator : Iterator The keras data generator of your training data. df : pd.DataFrame The Pandas DataFrame containing your training data. """ # super hacky way of creating a small dataframe with one image series = df.iloc[2] df_augmentation_visualization = pd.concat([series, series], axis=1).transpose() iterator_visualizations = data_generator.flow_from_dataframe( # type: ignore dataframe=df_augmentation_visualization, x_col="image_location", y_col="price", class_mode="raw", target_size=(224, 224), # size of the image batch_size=1, # use only one image for visualization ) for i in range(9): ax = plt.subplot(3, 3, i + 1) # create a 3x3 grid batch = next(iterator_visualizations) # get the next image of the generator (always the same image) img = batch[0] # type: ignore img = img[0, :, :, :] # remove one dimension for plotting without issues plt.imshow(img) plt.show() plt.close() def get_mean_baseline(train: pd.DataFrame, val: pd.DataFrame) -> float: """Calculates the mean MAE and MAPE baselines by taking the mean values of the training data as prediction for the validation target feature. Parameters ---------- train : pd.DataFrame Pandas DataFrame containing your training data. val : pd.DataFrame Pandas DataFrame containing your validation data. Returns ------- float MAPE value. """ y_hat = train["price"].mean() val["y_hat"] = y_hat mae = MeanAbsoluteError() mae = mae(val["price"], val["y_hat"]).numpy() # type: ignore mape = MeanAbsolutePercentageError() mape = mape(val["price"], val["y_hat"]).numpy() # type: ignore print(mae) print("mean baseline MAPE: ", mape) return mape def split_data(df: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: """Accepts a Pandas DataFrame and splits it into training, testing and validation data. Returns DataFrames. Parameters ---------- df : pd.DataFrame Your Pandas DataFrame containing all your data. Returns ------- Union[pd.DataFrame, pd.DataFrame, pd.DataFrame] [description] """ train, val = train_test_split(df, test_size=0.2, random_state=1) # split the data with a validation size o 20% train, test = train_test_split( train, test_size=0.125, random_state=1 ) # split the data with an overall test size of 10% print("shape train: ", train.shape) # type: ignore print("shape val: ", val.shape) # type: ignore print("shape test: ", test.shape) # type: ignore print("Descriptive statistics of train:") print(train.describe()) # type: ignore return train, val, test # type: ignore def create_generators( df: pd.DataFrame, train: pd.DataFrame, val: pd.DataFrame, test: pd.DataFrame, plot_augmentations: Any ) -> Tuple[Iterator, Iterator, Iterator]: """Accepts four Pandas DataFrames: all your data, the training, validation and test DataFrames. Creates and returns keras ImageDataGenerators. Within this function you can also visualize the augmentations of the ImageDataGenerators. Parameters ---------- df : pd.DataFrame Your Pandas DataFrame containing all your data. train : pd.DataFrame Your Pandas DataFrame containing your training data. val : pd.DataFrame Your Pandas DataFrame containing your validation data. test : pd.DataFrame Your Pandas DataFrame containing your testing data. Returns ------- Tuple[Iterator, Iterator, Iterator] keras ImageDataGenerators used for training, validating and testing of your models. """ train_generator = ImageDataGenerator( rescale=1.0 / 255, rotation_range=5, width_shift_range=0.1, height_shift_range=0.1, brightness_range=(0.75, 1), shear_range=0.1, zoom_range=[0.75, 1], horizontal_flip=True, validation_split=0.2, ) # create an ImageDataGenerator with multiple image augmentations validation_generator = ImageDataGenerator( rescale=1.0 / 255 ) # except for rescaling, no augmentations are needed for validation and testing generators test_generator = ImageDataGenerator(rescale=1.0 / 255) # visualize image augmentations if plot_augmentations == True: visualize_augmentations(train_generator, df) train_generator = train_generator.flow_from_dataframe( dataframe=train, x_col="image_location", # this is where your image data is stored y_col="price", # this is your target feature class_mode="raw", # use "raw" for regressions target_size=(224, 224), batch_size=32, # increase or decrease to fit your GPU ) validation_generator = validation_generator.flow_from_dataframe( dataframe=val, x_col="image_location", y_col="price", class_mode="raw", target_size=(224, 224), batch_size=128, ) test_generator = test_generator.flow_from_dataframe( dataframe=test, x_col="image_location", y_col="price", class_mode="raw", target_size=(224, 224), batch_size=128, ) return train_generator, validation_generator, test_generator def get_callbacks(model_name: str) -> List[Union[TensorBoard, EarlyStopping, ModelCheckpoint]]: """Accepts the model name as a string and returns multiple callbacks for training the keras model. Parameters ---------- model_name : str The name of the model as a string. Returns ------- List[Union[TensorBoard, EarlyStopping, ModelCheckpoint]] A list of multiple keras callbacks. """ logdir = ( "logs/scalars/" + model_name + "_" + datetime.now().strftime("%Y%m%d-%H%M%S") ) # create a folder for each model. tensorboard_callback = TensorBoard(log_dir=logdir) # use tensorboard --logdir logs/scalars in your command line to startup tensorboard with the correct logs early_stopping_callback = EarlyStopping( monitor="val_mean_absolute_percentage_error", min_delta=1, # model should improve by at least 1% patience=10, # amount of epochs with improvements worse than 1% until the model stops verbose=2, mode="min", restore_best_weights=True, # restore the best model with the lowest validation error ) model_checkpoint_callback = ModelCheckpoint( "./data/models/" + model_name + ".h5", monitor="val_mean_absolute_percentage_error", verbose=0, save_best_only=True, # save the best model mode="min", save_freq="epoch", # save every epoch ) # saving eff_net takes quite a bit of time return [tensorboard_callback, early_stopping_callback, model_checkpoint_callback] def small_cnn() -> Sequential: """A very small custom convolutional neural network with image input dimensions of 224x224x3. Returns ------- Sequential The keras Sequential model. """ model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation="relu", input_shape=(224, 224, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation="relu")) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation="relu")) model.add(layers.Flatten()) model.add(layers.Dense(64, activation="relu")) model.add(layers.Dense(1)) return model def run_model( model_name: str, model_function: Model, lr: float, train_generator: Iterator, validation_generator: Iterator, test_generator: Iterator, ) -> History: """This function runs a keras model with the Ranger optimizer and multiple callbacks. The model is evaluated within training through the validation generator and afterwards one final time on the test generator. Parameters ---------- model_name : str The name of the model as a string. model_function : Model Keras model function like small_cnn() or adapt_efficient_net(). lr : float Learning rate. train_generator : Iterator keras ImageDataGenerators for the training data. validation_generator : Iterator keras ImageDataGenerators for the validation data. test_generator : Iterator keras ImageDataGenerators for the test data. Returns ------- History The history of the keras model as a History object. To access it as a Dict, use history.history. For an example see plot_results(). """ callbacks = get_callbacks(model_name) model = model_function model.summary() plot_model(model, to_file=model_name + ".png", show_shapes=True) radam = tfa.optimizers.RectifiedAdam(learning_rate=lr) ranger = tfa.optimizers.Lookahead(radam, sync_period=6, slow_step_size=0.5) optimizer = ranger model.compile( optimizer=optimizer, loss="mean_absolute_error", metrics=[MeanAbsoluteError(), MeanAbsolutePercentageError()] ) history = model.fit( train_generator, epochs=100, validation_data=validation_generator, callbacks=callbacks, workers=6, # adjust this according to the number of CPU cores of your machine ) model.evaluate( test_generator, callbacks=callbacks, ) return history # type: ignore def adapt_efficient_net() -> Model: """This code uses adapts the most up-to-date version of EfficientNet with NoisyStudent weights to a regression problem. Most of this code is adapted from the official keras documentation. Returns ------- Model The keras model. """ inputs = layers.Input( shape=(224, 224, 3) ) # input shapes of the images should always be 224x224x3 with EfficientNetB0 # use the downloaded and converted newest EfficientNet wheights model = EfficientNetB0(include_top=False, input_tensor=inputs, weights="efficientnetb0_notop.h5") # Freeze the pretrained weights model.trainable = False # Rebuild top x = layers.GlobalAveragePooling2D(name="avg_pool")(model.output) x = layers.BatchNormalization()(x) top_dropout_rate = 0.4 x = layers.Dropout(top_dropout_rate, name="top_dropout")(x) outputs = layers.Dense(1, name="pred")(x) # Compile model = keras.Model(inputs, outputs, name="EfficientNet") return model def plot_results(model_history_small_cnn: History, model_history_eff_net: History, mean_baseline: float): """This function uses seaborn with matplotlib to plot the trainig and validation losses of both input models in an sns.relplot(). The mean baseline is plotted as a horizontal red dotted line. Parameters ---------- model_history_small_cnn : History keras History object of the model.fit() method. model_history_eff_net : History keras History object of the model.fit() method. mean_baseline : float Result of the get_mean_baseline() function. """ # create a dictionary for each model history and loss type dict1 = { "MAPE": model_history_small_cnn.history["mean_absolute_percentage_error"], "type": "training", "model": "small_cnn", } dict2 = { "MAPE": model_history_small_cnn.history["val_mean_absolute_percentage_error"], "type": "validation", "model": "small_cnn", } dict3 = { "MAPE": model_history_eff_net.history["mean_absolute_percentage_error"], "type": "training", "model": "eff_net", } dict4 = { "MAPE": model_history_eff_net.history["val_mean_absolute_percentage_error"], "type": "validation", "model": "eff_net", } # convert the dicts to pd.Series and concat them to a pd.DataFrame in the long format s1 = pd.DataFrame(dict1) s2 = pd.DataFrame(dict2) s3 = pd.DataFrame(dict3) s4 = pd.DataFrame(dict4) df = pd.concat([s1, s2, s3, s4], axis=0).reset_index() grid = sns.relplot(data=df, x=df["index"], y="MAPE", hue="model", col="type", kind="line", legend=False) grid.set(ylim=(20, 100)) # set the y-axis limit for ax in grid.axes.flat: ax.axhline( y=mean_baseline, color="lightcoral", linestyle="dashed" ) # add a mean baseline horizontal bar to each plot ax.set(xlabel="Epoch") labels = ["small_cnn", "eff_net", "mean_baseline"] # custom labels for the plot plt.legend(labels=labels) plt.savefig("training_validation.png") plt.show() def run(small_sample=False): """Run all the code of this file. Parameters ---------- small_sample : bool, optional If you just want to check if the code is working, set small_sample to True, by default False """ df = pd.read_pickle("./data/df.pkl") df["image_location"] = ( "./data/processed_images/" + df["zpid"] + ".png" ) # add the correct path for the image locations. if small_sample == True: df = df.iloc[0:1000] # set small_sampe to True if you want to check if your code works without long waiting train, val, test = split_data(df) # split your data mean_baseline = get_mean_baseline(train, val) train_generator, validation_generator, test_generator = create_generators( df=df, train=train, val=val, test=test, plot_augmentations=True ) small_cnn_history = run_model( model_name="small_cnn", model_function=small_cnn(), lr=0.001, train_generator=train_generator, validation_generator=validation_generator, test_generator=test_generator, ) eff_net_history = run_model( model_name="eff_net", model_function=adapt_efficient_net(), lr=0.5, train_generator=train_generator, validation_generator=validation_generator, test_generator=test_generator, ) plot_results(small_cnn_history, eff_net_history, mean_baseline) if __name__ == "__main__": run(small_sample=False)
3
3
src/thirdparty/harfbuzz/src/check-includes.py
devbrain/neutrino
0
12785027
#!/usr/bin/env python3 import sys, os, re os.chdir(os.getenv('srcdir', os.path.dirname(__file__))) HBHEADERS = [os.path.basename(x) for x in os.getenv('HBHEADERS', '').split()] or \ [x for x in os.listdir('.') if x.startswith('hb') and x.endswith('.h')] HBSOURCES = [os.path.basename(x) for x in os.getenv('HBSOURCES', '').split()] or \ [x for x in os.listdir('.') if x.startswith('hb') and x.endswith(('.cc', '.hh'))] stat = 0 print('Checking that public header files #include "hb-common.h" or "hb.h" first (or none)') for x in HBHEADERS: if x == 'hb.h' or x == 'hb-common.h': continue with open(x, 'r', encoding='utf-8') as f: content = f.read() first = re.findall(r'#.*include.*', content)[0] if first not in ['#include "hb.h"', '#include "hb-common.h"']: print('failure on %s' % x) stat = 1 print('Checking that source files #include a private header first (or none)') for x in HBSOURCES: with open(x, 'r', encoding='utf-8') as f: content = f.read() includes = re.findall(r'#.*include.*', content) if includes: if not len(re.findall(r'"hb.*\.hh"', includes[0])): print('failure on %s' % x) stat = 1 print('Checking that there is no #include <hb-*.h>') for x in HBHEADERS + HBSOURCES: with open(x, 'r', encoding='utf-8') as f: content = f.read() if re.findall('#.*include.*<.*hb', content): print('failure on %s' % x) stat = 1 sys.exit(stat)
2.796875
3
bit_manipulation/swapVariables.py
itsvinayak/cracking_the_codeing_interview
4
12785028
<gh_stars>1-10 # given two integer swap them without using any temporary variable # link : https://www.youtube.com/watch?v=DtnH3V_Vjek&list=PLNmW52ef0uwvkul_e_wLD525jbTfMKLIJ&index=4 # x = x + y # y = x - y # x = x - y def swapVariables(a, b): a = a ^ b b = a ^ b a = a ^ b return [a, b] def main(): a, b = map(int, input().split()) print(*swapVariables(a, b)) if __name__ == "__main__": main()
3.78125
4
data_aug/analyze.py
carboncoo/UNITER
0
12785029
import os import sys import lmdb import json import torch import pickle import random import msgpack import numpy as np import msgpack_numpy # from transformers import AutoTokenizer from lz4.frame import compress, decompress from os.path import exists, abspath, dirname from sklearn.metrics.pairwise import cosine_similarity from PIL import Image, ImageFont, ImageDraw, ImageEnhance import pprint pp = pprint.PrettyPrinter() msgpack_numpy.patch() origin_img_dir = '/data/share/UNITER/origin_imgs/flickr30k/flickr30k-images/' def load_txt_db(db_dir): # db loading env_in = lmdb.open(db_dir, readonly=True, create=False) txn_in = env_in.begin() db = {} for key, value in txn_in.cursor(): db[key] = value print('db length:', len(db)) # db length: 443757 env_in.close() return db def load_img_db(img_dir, conf_th=0.2, max_bb=100, min_bb=10, num_bb=36, compress=False): if conf_th == -1: db_name = f'feat_numbb{num_bb}' name2nbb = defaultdict(lambda: num_bb) else: db_name = f'feat_th{conf_th}_max{max_bb}_min{min_bb}' nbb = f'nbb_th{conf_th}_max{max_bb}_min{min_bb}.json' if not os.path.exists(f'{img_dir}/{nbb}'): # nbb is not pre-computed name2nbb = None else: name2nbb = json.load(open(f'{img_dir}/{nbb}')) # => {'coco_test2015_000000043222.npz': 57, ...} if compress: db_name += '_compressed' if name2nbb is None: if compress: db_name = 'all_compressed' else: db_name = 'all' # db loading env = lmdb.open(f'{img_dir}/{db_name}', readonly=True, create=False) txn = env.begin(buffers=True) return name2nbb, txn def load_single_img(txn, file_name, compress=False): # load single image with its file_name dump = txn.get(file_name.encode('utf-8')) if compress: with io.BytesIO(dump) as reader: img_dump = np.load(reader, allow_pickle=True) img_dump = {'features': img_dump['features'], 'norm_bb': img_dump['norm_bb']} else: img_dump = msgpack.loads(dump, raw=False) return img_dump def get_concat_h(im1, im2): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst def draw_bounding_box(img_name, img_bb, outline=(0, 0, 0, 255)): source_img = Image.open(origin_img_dir + img_name).convert("RGB") width, height = source_img.size draw = ImageDraw.Draw(source_img, 'RGBA') p1 = (width*img_bb[0], height*img_bb[1]) p2 = (width*img_bb[2], height*img_bb[3]) draw.rectangle((p1, p2), outline=outline, width=2) # draw.text((img_bb[0], img_bb[1]), "something123", font=ImageFont.truetype("font_path123")) return source_img # source_img.save('bb_' + img_name, "JPEG") def crop_bb(img_name, img_bbs): source_img = Image.open(origin_img_dir + img_name).convert("RGB") width, height = source_img.size for i in range(img_bbs.shape[0]): p1 = (width*img_bbs[i][0], height*img_bbs[i][1]) p2 = (width*img_bbs[i][2], height*img_bbs[i][3]) crop = source_img.crop((p1[0], p1[1], p2[0], p2[1])) crop.save('crop_%d.jpg'%(i), 'JPEG') def main(): NUM_LABELS = 1600 # tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') id2tok = json.load(open('id2tok.json')) labels_ids = json.load(open('object_labels_ids.json')) def convert_ids_to_tokens(i): if isinstance(i, int): return id2tok[str(i)] else: i = list(i) return [id2tok[str(ii)] for ii in i] def get_label_str(i): if isinstance(i, int): return convert_ids_to_tokens(labels_ids[i]) else: i = list(i) return [convert_ids_to_tokens(labels_ids[ii]) if ii > 0 else '[BACKGROUND]' for ii in i] def get_hard_labels(soft_labels, top_k=3): if len(soft_labels.shape) < 2: soft_labels = soft_labels.reshape(1, -1) sorted_labels = soft_labels.argsort(axis=-1)[:, ::-1][:, :top_k] sorted_labels = sorted_labels - 1 res = [] for l in sorted_labels: res.append(get_label_str(l)) return res checkpoint = torch.load( "/data/private/cc/experiment/MMP/pretrained_ckpts/pretrained/uniter-base.pt") emb_weight = checkpoint['uniter.embeddings.word_embeddings.weight'] txt_db_old = load_txt_db('/data/share/UNITER/ve/txt_db/ve_train.db') txt_db_new = load_txt_db( '/data/share/UNITER/ve/da/GloVe/seed2/txt_db/ve_train.db') name2nbb, img_db_txn = load_img_db('/data/share/UNITER/ve/img_db/flickr30k') def display(k): d1 = msgpack.loads(decompress(txt_db_old[k.split(b'_')[1]]), raw=False) d2 = msgpack.loads(decompress(txt_db_new[k]), raw=False) # input_1 = tokenizer.convet_ids_to_tokens(d1['input_ids']) # input_2 = tokenizer.convert_ids_to_tokens(d2['input_ids']) input_1 = convert_ids_to_tokens(d1['input_ids']) input_2 = convert_ids_to_tokens(d2['input_ids']) input_3 = convert_ids_to_tokens(d2['mix_input_ids']) hard_labels = get_hard_labels(d2['mix_soft_labels']) # img1 = load_single_img(img_db_txn, d1['img_fname']) img = load_single_img(img_db_txn, d2['img_fname']) origin_img_name = str(k).split('_')[1].split('#')[0] im1 = draw_bounding_box(origin_img_name, img['norm_bb'][d2['mix_index']]) im2 = draw_bounding_box(d2['mix_img_flk_id'], d2['mix_bb'], (200, 0, 0, 255)) cat_im = get_concat_h(im1, im2) cat_im.save('bb_' + origin_img_name + '_' + d2['mix_img_flk_id'], 'JPEG') # crop_bb(origin_img_name, img['norm_bb']) return input_1, input_2, input_3, hard_labels # print(list(txt_db_new.keys())[:10]) pp.pprint(display(list(txt_db_new.keys())[3])) # pp.pprint(display(list(txt_db_new.keys())[1])) # pp.pprint(display(list(txt_db_new.keys())[2])) # import ipdb # ipdb.set_trace() if __name__ == '__main__': main()
1.742188
2
bs4ocr.py
JKamlah/BackgroundSubtractor4OCR
5
12785030
<filename>bs4ocr.py #!/usr/bin/env python3 import argparse import subprocess import sys from pathlib import Path import cv2 import numpy as np # Command line arguments. arg_parser = argparse.ArgumentParser(description='Subtract background for better OCR results.') arg_parser.add_argument("fname", type=lambda x: Path(x), help="filename of text file or path to files", nargs='*') arg_parser.add_argument("-o", "--outputfolder", default="./cleaned", help="filename of the output") arg_parser.add_argument("-e", "--extension", default="jpg", help="Extension of the img")i arg_parser.add_argument("-r", "--replace", action="store_true", help="Replace the original image") arg_parser.add_argument("--extensionaddon", default=".prep", help="Addon to the fileextension") arg_parser.add_argument("-b", "--blursize", default=59, type=int, help="Kernelsize for medianBlur") arg_parser.add_argument("-i", "--bluriter", default=1, type=int, help="Iteration of the medianBlur") arg_parser.add_argument("-f", "--fixblursize", action="store_true", help="Deactivate decreasing Blurkernelsize") arg_parser.add_argument("--blurfilter", default="Gaussian", type=str, help="Kernelsize for dilation", choices=["Gaussian", "Median"]) arg_parser.add_argument("-d", "--dilsize", default=5, type=int, help="Kernelsize for dilation") arg_parser.add_argument("-s", "--kernelshape", default="ellipse", type=str, help="Shape of the kernel for dilation", choices=["cross", "ellipse", "rect"]) arg_parser.add_argument("-c", "--contrast", default=0.0, type=float, help="Higher contrast (experimental)") arg_parser.add_argument("-n", "--normalize", action="store_true", help="Higher contrast (experimental)") arg_parser.add_argument("--normalize-only", action="store_true", help="Normalizes the image but doesnt subtract") arg_parser.add_argument("--normalize_auto", action="store_true", help="Auto-Normalization (experimental)") arg_parser.add_argument("--normalize_min", default=0, type=int, help="Min value for background normalization") arg_parser.add_argument("--normalize_max", default=255, type=int, help="Max value for background normalization") arg_parser.add_argument("--scale_channel", default="None", type=str, help="Shape of the kernel for dilation", choices=["None", "red", "green", "blue", "cyan", "magenta", "yellow"]) arg_parser.add_argument("--scale_channel_value", default=0.0, type=float, help="Scale value") arg_parser.add_argument("--binarize", action="store_true", help="Use Adaptive-Otsu-Binarization") arg_parser.add_argument("--dpi", default=300, type=int, help="Dots per inch (This value is used for binarization)") arg_parser.add_argument("-t", "--textdilation", action="store_false", help="Deactivate extra dilation for text") arg_parser.add_argument("-q", "--quality", default=100, help="Compress quality of the image like jpg") arg_parser.add_argument("-v", "--verbose", help="show ignored files", action="store_true") args = arg_parser.parse_args() def channelscaler(channel, value): channel = cv2.multiply(channel, value) channel = np.where(channel < 255, 255, channel) return channel # -i 4 -b 150 -d 10 good settings atm for 300 dpi def subtractor(img, dilsize: int = 15, blursize: int = 59, kernelshape: str = "ellipse", bluriter: int = 1, fix_blursize: bool = False, blurfilter: str = "Gaussian", textdilation: bool = True, contrast: bool = False, verbose: bool = False): """ The text in the image will be removed, the background smoothed and than extracted from the original image :param img: :param dilsize: :param blursize: :param kernelshape: :param normalize: :param norm_min: :param norm_max: :param norm_auto: :param bluriter: :param fix_blursize: :param blurfilter: :param textdilation: :param contrast: :param verbose: :return: """ rgb_planes = cv2.split(img) result_planes = [] # Only odd blurkernelsize are valid blursize = blursize + 1 if blursize % 2 == 0 else blursize for idx, plane in enumerate(rgb_planes[:3]): dilated_img = plane kshape = {"rect": cv2.MORPH_RECT, "ellipse": cv2.MORPH_ELLIPSE, "cross": cv2.MORPH_CROSS}.get(kernelshape, cv2.MORPH_ELLIPSE) # Reduce influence of the text by dilation (round kernel produce atm the best results) if textdilation: dil_kernel = cv2.getStructuringElement(kshape, (int(dilsize / 2), dilsize)) dilated_img = cv2.dilate(plane, dil_kernel, iterations=3) dil_kernel = cv2.getStructuringElement(kshape, (int(dilsize / 2) + 1, dilsize + 1)) dilated_img = cv2.erode(dilated_img, dil_kernel, iterations=1) else: dil_kernel = cv2.getStructuringElement(kshape, (dilsize, dilsize)) dilated_img = cv2.dilate(dilated_img, dil_kernel) bg_img = dilated_img for ksize in np.linspace(blursize, 1, num=bluriter): if not fix_blursize: if blurfilter == "Gaussian": bg_img = cv2.GaussianBlur(bg_img, (int(ksize) + (1 + int(ksize) % 2), int(ksize) + (1 + int(ksize) % 2)), 0) else: bg_img = cv2.medianBlur(bg_img, (int(ksize) + (1 + int(ksize) % 2))) else: if blurfilter == "Gaussian": bg_img = cv2.GaussianBlur(bg_img, (blursize, blursize), 0) else: bg_img = cv2.medianBlur(bg_img, blursize) if verbose: cv2.imwrite(f"Filtered_{idx}.jpg", bg_img) cv2.imwrite(f"Dilate_{idx}.jpg", dilated_img) # Subtract bg from fg diff_img = 255 - cv2.absdiff(plane, bg_img) norm_img = cv2.normalize(diff_img, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX) # Increases the contrast if contrast: diff_img = cv2.add(norm_img, plane * contrast, dtype=cv2.CV_8U) # Normalize the final image to the range 0-255 norm_img = cv2.normalize(diff_img, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX) result_planes.append(norm_img) return cv2.merge(result_planes) def normalizer(img, norm_min: int = 0, norm_max: int = 255, norm_auto: bool = False): """ Normalizes the histogram of the image :param img: path object of the image :param norm_min: max min value :param norm_max: min max value :param auto: auto normalizer :return: """ rgb_planes = cv2.split(img) result_planes = [] for idx, plane in enumerate(rgb_planes[:3]): if norm_auto: auto_min = np.min(np.where((norm_min <= 25, 255))) auto_max = np.max(np.where((norm_min <= 220, 0))) plane = np.where(plane <= auto_min, auto_min, plane) plane = np.where(plane >= auto_max, auto_max, plane) else: plane = np.where(plane <= norm_min, norm_min, plane) plane = np.where(plane >= norm_max, norm_max, plane) norm_img = cv2.normalize(plane, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX) result_planes.append(norm_img) return cv2.merge(result_planes) def main(): # Set filenames or path if len(args.fname) == 1 and not args.fname[0].is_file(): args.fname = list(Path(args.fname[0]).rglob(f"*.{args.extension}")) for fname in args.fname: print(fname.name + " in process!") try: # Try to get dpi information from PIL import Image dpi = Image.open(fname).info['dpi'] args.dpi = np.mean(dpi, dtype=int) print("DPI was set to:", args.dpi) except: pass # Read image img = cv2.imread(str(fname), -1) resimg = img # Channel scaler if args.scale_channel != 'None' and len(img.shape) > 2: if args.scale_channel in ['red', 'yellow', 'magenta']: img[:, :, 0] = channelscaler(img[:, :, 0], args.scale_channel_value) if args.scale_channel in ['green', 'yellow', 'cyan']: img[:, :, 1] = channelscaler(img[:, :, 1], args.scale_channel_value) if args.scale_channel in ['blue', 'magenta', 'cyan']: img[:, :, 2] = channelscaler(img[:, :, 2], args.scale_channel_value) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Background normalizer if args.normalize or args.normalize_only: img = normalizer(img, args.normalize_min, args.normalize_max, args.normalize_auto) # Background subtractor if not args.normalize_only: resimg = subtractor(img, dilsize=args.dilsize, blursize=args.blursize, kernelshape=args.kernelshape, bluriter=args.bluriter, fix_blursize=args.fixblursize, textdilation=args.textdilation, contrast=args.contrast, verbose=args.verbose) # Image binarizer if args.binarize: DPI = args.dpi + 1 if args.dpi % 2 == 0 else args.dpi resimg = resimg if len(resimg.shape) == 2 else cv2.cvtColor(resimg, cv2.COLOR_BGR2GRAY) resimg = cv2.adaptiveThreshold(resimg, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, \ cv2.THRESH_BINARY, DPI, int(DPI / 12)) args.extensionaddon = args.extensionaddon + ".bin" # Output fout = Path(args.outputfolder).absolute().joinpath( fname.name.rsplit(".", 1)[0] + f"{args.extensionaddon}.{args.extension}")i if not fout.parent.exists(): fout.parent.mkdir() if args.replace: cv2.imwrite(str(fname.resolve()), resimg) elif args.extension == "jpg": cv2.imwrite(str(fout.absolute()), resimg, [int(cv2.IMWRITE_JPEG_QUALITY), args.quality]) else: cv2.imwrite(str(fout.absolute()), resimg) print(str(fout) + " created!") if __name__ == "__main__": main()
2.953125
3
accounts/urls.py
imuno/Diploma
3
12785031
<gh_stars>1-10 from django.contrib import admin from django.urls import path, include from . import views from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('/', views.login, name='login'), ] + static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
1.585938
2
lifx.py
Noatz/lifx-api
0
12785032
import requests from typing import Dict, List class LIFX: ''' docs: https://api.developer.lifx.com selectors: https://api.developer.lifx.com/docs/selectors ''' url = 'https://api.lifx.com' def __init__(self, token): self.headers = { 'Authorization': f'Bearer {token}', 'Content-Type': 'application/json' } def list_lights(self, selector: str = 'all'): ''' Args: selector = what lights to list Returns: response object ''' response = requests.get( url=f'{LIFX.url}/v1/lights/{selector}', headers=self.headers ) return response def set_state(self, color: str, selector: str = 'all', power: str = 'on', brightness: float = 1, duration: float = 0, fast: bool = True): ''' Args selector = what lights to change power = on|off color = color to change state to brightness = 0.0 - 1.0 duration = how long until state is full fast = don't make checks and just change Returns response object ''' response = requests.put( url=f'{LIFX.url}/v1/lights/{selector}/state', headers=self.headers, json={ 'power': power, 'color': color, 'brightness': brightness, 'duration': duration, 'fast': fast } ) return response def set_states(self, states: List = [], defaults: Dict = {}, fast: bool = True): ''' Args: states = a list of state objects defaults = default parameters for each state object fast = don't make checks and just change Returns: response object ''' response = requests.put( url=f'{LIFX.url}/v1/lights/states', headers=self.headers, json={ 'states': states, 'defaults': defaults, 'fast': fast } ) return response def pulse_effect(self, color: str, selector: str = 'all', from_color: str = '', period: float = 2, cycles: float = 5, power_on: bool = True): ''' Args: color = the color for the effect from_color = the color to start the effect from period = time in seconds for one cycle cycles = number of times to repeat power_on = turn on the light if not already on Returns: response object ''' response = requests.post( url=f'{LIFX.url}/v1/lights/{selector}/effects/pulse', headers=self.headers, json={ 'color': color, 'from_color': from_color, 'period': period, 'cycles': cycles, 'power_on': power_on } ) return response def effects_off(self, selector: str = 'all', power_off: bool = False): ''' Args: power_off = also turn the lights off Returns: response object ''' response = requests.post( url=f'{LIFX.url}/v1/lights/{selector}/effects/off', headers=self.headers, json={'power_off': power_off} ) return response
2.84375
3
tests/test_gosubdag_relationships.py
flying-sheep/goatools
477
12785033
#!/usr/bin/env python """Plot both the standard 'is_a' field and the optional 'part_of' relationship.""" from __future__ import print_function __copyright__ = "Copyright (C) 2016-2018, <NAME>, <NAME>, All rights reserved." import os import sys import timeit import datetime from goatools.base import download_go_basic_obo from goatools.obo_parser import GODag from goatools.gosubdag.gosubdag import GoSubDag REPO = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../..") def test_gosubdag_relationships(prt=sys.stdout): """Plot both the standard 'is_a' field and the 'part_of' relationship.""" goids = set([ "GO:0032501", "GO:0044707", # alt_id: GO:0032501 # BP 1011 L01 D01 B multicellular organismal process "GO:0050874", "GO:0007608", # sensory perception of smell "GO:0050911"]) # detection of chemical stimulus involved in sensory perception of smell # Load GO-DAG: Load optional 'relationship' fin_obo = os.path.join(REPO, "go-basic.obo") download_go_basic_obo(fin_obo, prt, loading_bar=None) go2obj_plain = GODag(fin_obo) go2obj_relat = GODag(fin_obo, optional_attrs=['relationship']) print("\nCreate GoSubDag with GO DAG containing no relationships.") tic = timeit.default_timer() # Create Plot object; Plot both 'is_a' and optional 'part_of' relationship gosubdag = GoSubDag(goids, go2obj_plain, relationships=False, prt=prt) # gosubdag.prt_goids(gosubdag.go2obj) goids_plain = set(gosubdag.go2obj) tic = _rpt_hms(tic, len(gosubdag.go2obj)) print("\nCreate GoSubDag while IGNORING relationships") # Create Plot object; Plot both 'is_a' and optional 'part_of' relationship gosubdag = GoSubDag(goids, go2obj_relat, relationships=False, prt=prt) # gosubdag.prt_goids(gosubdag.go2obj) goids_false = set(gosubdag.go2obj) tic = _rpt_hms(tic, len(gosubdag.go2obj)) assert goids_plain == goids_false print("\nCreate GoSubDag while loading only the 'part_of' relationship") gosubdag = GoSubDag(goids, go2obj_relat, relationships=['part_of'], prt=prt) # gosubdag.prt_goids(gosubdag.go2obj) goids_part_of = set(gosubdag.go2obj) tic = _rpt_hms(tic, len(gosubdag.go2obj)) assert goids_plain.intersection(goids_part_of) == goids_plain assert len(goids_part_of) > len(goids_plain) print("\nCreate GoSubDag while loading all relationships") gosubdag = GoSubDag(goids, go2obj_relat, relationships=True, prt=prt) # gosubdag.prt_goids(gosubdag.go2obj) goids_true = set(gosubdag.go2obj) tic = _rpt_hms(tic, len(gosubdag.go2obj)) assert goids_part_of.intersection(goids_true) == goids_part_of assert len(goids_true) >= len(goids_part_of) def _rpt_hms(tic, num_goids): """Report the elapsed time for particular events.""" elapsed_time = str(datetime.timedelta(seconds=(timeit.default_timer()-tic))) print("Elapsed HMS: {HMS} {N} GO IDs".format(HMS=elapsed_time, N=num_goids)) return timeit.default_timer() if __name__ == '__main__': test_gosubdag_relationships() # Copyright (C) 2016-2018, <NAME>, <NAME>, All rights reserved.
2.40625
2
pystatreduce/optimize/OAS_Example1/pyopt_oas_problem.py
OptimalDesignLab/pyStatReduce
0
12785034
<filename>pystatreduce/optimize/OAS_Example1/pyopt_oas_problem.py # pyopt_oas_problem.py # The following file contains the optimization of the deterministic problem shown # in the quick example within OpenAeroStruct tutorial, the difference being, # pyOptSparse is called separately, whereas the Quick example uses a driver. import numpy as np import chaospy as cp # Import the OpenMDAo shenanigans from openmdao.api import IndepVarComp, Problem, Group, NewtonSolver, \ ScipyIterativeSolver, LinearBlockGS, NonlinearBlockGS, \ DirectSolver, LinearBlockGS, PetscKSP, SqliteRecorder from openaerostruct.geometry.utils import generate_mesh from openaerostruct.geometry.geometry_group import Geometry from openaerostruct.aerodynamics.aero_groups import AeroPoint import pyoptsparse class OASExample1Opt(object): """ Trial test to see if I can ge the optimization running using my framework """ def __init__(self): # Create a dictionary to store options about the mesh mesh_dict = {'num_y' : 7, 'num_x' : 2, 'wing_type' : 'CRM', 'symmetry' : True, 'num_twist_cp' : 5} # Generate the aerodynamic mesh based on the previous dictionary mesh, twist_cp = generate_mesh(mesh_dict) # Create a dictionary with info and options about the aerodynamic # lifting surface surface = { # Wing definition 'name' : 'wing', # name of the surface 'type' : 'aero', 'symmetry' : True, # if true, model one half of wing # reflected across the plane y = 0 'S_ref_type' : 'wetted', # how we compute the wing area, # can be 'wetted' or 'projected' 'fem_model_type' : 'tube', 'twist_cp' : twist_cp, 'mesh' : mesh, 'num_x' : mesh.shape[0], 'num_y' : mesh.shape[1], # Aerodynamic performance of the lifting surface at # an angle of attack of 0 (alpha=0). # These CL0 and CD0 values are added to the CL and CD # obtained from aerodynamic analysis of the surface to get # the total CL and CD. # These CL0 and CD0 values do not vary wrt alpha. 'CL0' : 0.0, # CL of the surface at alpha=0 'CD0' : 0.015, # CD of the surface at alpha=0 # Airfoil properties for viscous drag calculation 'k_lam' : 0.05, # percentage of chord with laminar # flow, used for viscous drag 't_over_c_cp' : np.array([0.15]), # thickness over chord ratio (NACA0015) 'c_max_t' : .303, # chordwise location of maximum (NACA0015) # thickness 'with_viscous' : True, # if true, compute viscous drag 'with_wave' : False, # if true, compute wave drag } # Create the OpenMDAO problem self.prob = Problem() # Create an independent variable component that will supply the flow # conditions to the problem. indep_var_comp = IndepVarComp() indep_var_comp.add_output('v', val=248.136, units='m/s') indep_var_comp.add_output('alpha', val=5., units='deg') indep_var_comp.add_output('Mach_number', val=0.84) indep_var_comp.add_output('re', val=1.e6, units='1/m') indep_var_comp.add_output('rho', val=0.38, units='kg/m**3') indep_var_comp.add_output('cg', val=np.zeros((3)), units='m') # Add this IndepVarComp to the problem model self.prob.model.add_subsystem('prob_vars', indep_var_comp, promotes=['*']) # Create and add a group that handles the geometry for the # aerodynamic lifting surface geom_group = Geometry(surface=surface) self.prob.model.add_subsystem(surface['name'], geom_group) # Create the aero point group, which contains the actual aerodynamic # analyses aero_group = AeroPoint(surfaces=[surface]) point_name = 'aero_point_0' self.prob.model.add_subsystem(point_name, aero_group, promotes_inputs=['v', 'alpha', 'Mach_number', 're', 'rho', 'cg']) name = surface['name'] # Connect the mesh from the geometry component to the analysis point self.prob.model.connect(name + '.mesh', point_name + '.' + name + '.def_mesh') # Perform the connections with the modified names within the # 'aero_states' group. self.prob.model.connect(name + '.mesh', point_name + '.aero_states.' + name + '_def_mesh') self.prob.model.connect(name + '.t_over_c', point_name + '.' + name + '_perf.' + 't_over_c') self.prob.setup() # print "wing.twist_cp", self.prob['wing.twist_cp'] def objfunc(xdict): dv = xdict['xvars'] QoI.prob['wing.twist_cp'] = dv QoI.prob.run_model() funcs = {} funcs['obj'] = QoI.prob['aero_point_0.wing_perf.CD'] conval = np.zeros(1) conval[0] = QoI.prob['aero_point_0.wing_perf.CL'] funcs['con'] = conval fail = False return funcs, fail def sens(xdict, funcs): dv = xdict['xvars'] QoI.prob['wing.twist_cp'] = dv QoI.prob.run_model() deriv = QoI.prob.compute_totals(of=['aero_point_0.wing_perf.CD', 'aero_point_0.wing_perf.CL'], wrt=['wing.twist_cp']) funcsSens = {} funcsSens['obj', 'xvars'] = deriv['aero_point_0.wing_perf.CD', 'wing.twist_cp'] funcsSens['con', 'xvars'] = deriv['aero_point_0.wing_perf.CL', 'wing.twist_cp'] fail = False return funcsSens, fail if __name__ == "__main__": # Lets do this QoI = OASExample1Opt() optProb = pyoptsparse.Optimization('OASExample1', objfunc) optProb.addVarGroup('xvars', 5, 'c', lower=-10., upper=15.) optProb.addConGroup('con', 1, lower=0.5, upper=0.5) optProb.addObj('obj') # print optProb # opt = pyoptsparse.SLSQP(tol=1.e-9) opt = pyoptsparse.SNOPT(optOptions = {'Major feasibility tolerance' : 1e-10}) sol = opt(optProb, sens=sens) print sol
2.609375
3
update.py
QuarkSources/quarksources.github.io
34
12785035
<gh_stars>10-100 from sourceUtil import AltSourceManager, AltSourceParser, GithubParser, Unc0verParser sourcesData = [ { "parser": AltSourceParser, "kwargs": {"filepath": "https://altstore.oatmealdome.me"}, "ids": ["me.oatmealdome.dolphinios-njb", "me.oatmealdome.DolphiniOS-njb-patreon-beta"] }, { "parser": AltSourceParser, "kwargs": {"filepath": "quarksource.json"}, "ids": ["com.libretro.dist.ios.RetroArch", "com.louisanslow.record", "org.scummvm.scummvm", "net.namedfork.minivmac", "com.dry05.filzaescaped11-12", "com.virtualapplications.play"] }, { "parser": AltSourceParser, "kwargs": {"filepath": "https://provenance-emu.com/apps.json"}, "ids": ["org.provenance-emu.provenance"] }, { "parser": AltSourceParser, "kwargs": {"filepath": "https://theodyssey.dev/altstore/odysseysource.json"}, "ids": ["org.coolstar.odyssey"] }, { "parser": GithubParser, "kwargs": {"repo_author": "Odyssey-Team", "repo_name": "Taurine"}, #"kwargs": {"filepath": "https://taurine.app/altstore/taurinestore.json"}, "ids": ["com.odysseyteam.taurine"] }, { "parser": AltSourceParser, "kwargs": {"filepath": "https://alt.getutm.app"}, "ids": ["com.utmapp.UTM", "com.utmapp.UTM-SE"] }, { "parser": AltSourceParser, "kwargs": {"filepath": "https://demo.altstore.io"}, "ids": ["com.rileytestut.GBA4iOS"] }, { "parser": GithubParser, "kwargs": {"repo_author": "iNDS-Team", "repo_name": "iNDS"}, "ids": ["net.nerd.iNDS"] }, { "parser": GithubParser, "kwargs": {"repo_author": "yoshisuga", "repo_name": "MAME4iOS"}, "ids": ["com.example.mame4ios"] }, { "parser": GithubParser, "kwargs": {"repo_author": "brandonplank", "repo_name": "flappybird"}, "ids": ["org.brandonplank.flappybird15"] }, { "parser": GithubParser, "kwargs": {"repo_author": "Wh0ba", "repo_name": "XPatcher"}, "ids": ["com.wh0ba.xpatcher"] }, { "parser": GithubParser, "kwargs": {"repo_author": "litchie", "repo_name": "dospad"}, "ids": ["com.litchie.idosgames"] }, { "parser": GithubParser, "kwargs": {"repo_author": "mariolopjr", "repo_name": "ppsspp-builder"}, "ids": ["org.ppsspp.ppsspp"] }, { "parser": Unc0verParser, "kwargs": {"url": "https://unc0ver.dev/releases.json"}, "ids": ["science.xnu.undecimus"] } ] alternateAppData = { "org.ppsspp.ppsspp": { "tintColor": "#21486b", "subtitle": "PlayStation Portable games on iOS.", "screenshotURLs": [ "https://i.imgur.com/CWl6GgH.png", "https://i.imgur.com/SxmN1M0.png", "https://i.imgur.com/sGWgR6z.png", "https://i.imgur.com/AFKTdmZ.png" ], "iconURL": "https://i.imgur.com/JP0Fncv.png" }, "com.rileytestut.GBA4iOS": { "iconURL": "https://i.imgur.com/SBrqO9g.png", "screenshotURLs": [ "https://i.imgur.com/L4H0yM3.png", "https://i.imgur.com/UPGYLVr.png", "https://i.imgur.com/sWpUAii.png", "https://i.imgur.com/UwnDXRc.png" ] }, "org.provenance-emu.provenance": { "localizedDescription": "Provenance is a multi-system emulator frontend for a plethora of retro gaming systems. You can keep all your games in one place, display them with cover art, and play to your heart's content.\n\nSystems Supported:\n\n• Atari\n - 2600\n - 5200\n - 7800\n - Lynx\n - Jaguar\n• Bandai\n - WonderSwan / WonderSwan Color\n• NEC\n - PC Engine / TurboGrafx-16 (PCE/TG16)\n - PC Engine Super CD-ROM² System / TurboGrafx-CD\n - PC Engine SuperGrafx\n - PC-FX\n• Nintendo\n - Nintendo Entertainment System / Famicom (NES/FC)\n - Famicom Disk System\n - Super Nintendo Entertainment System / Super Famicom (SNES/SFC)\n - Game Boy / Game Boy Color (GB/GBC)\n - Virtual Boy\n - Game Boy Advance (GBA)\n - Pokémon mini\n• Sega\n - SG-1000\n - Master System\n - Genesis / Mega Drive\n - Game Gear\n - CD / MegaCD\n - 32X\n• SNK\n - Neo Geo Pocket / Neo Geo Pocket Color\n• Sony\n - PlayStation (PSX/PS1)", "tintColor": "#1c7cf3", "permissions": [ { "type": "camera", "usageDescription": "Used for album artwork." }, { "type": "photos", "usageDescription": "Provenance can set custom artworks from your photos or save screenshots to your photos library." }, { "type": "music", "usageDescription": "This will let you play your imported music on Spotify." }, { "type": "bluetooth", "usageDescription": "Provenance uses Bluetooth to support game controllers." }, { "type": "background-fetch", "usageDescription": "Provenance can continue running while in the background." }, { "type": "background-audio", "usageDescription": "Provenance can continue playing game audio while in the background." } ] } } quantumsrc = AltSourceManager("quantumsource.json", sourcesData, alternateAppData, prettify=False) # if prettify is true, output will have indents and newlines try: quantumsrc.update() except Exception as err: print("Unable to update Quantum Source.") print(f"{type(err).__name__}: {str(err)}") sourcesData = [ { "parser": AltSourceParser, "kwargs": {"filepath": "https://apps.altstore.io"}, "ids": ["com.rileytestut.AltStore", "com.rileytestut.AltStore.Beta", "com.rileytestut.Delta", "com.rileytestut.Delta.Beta", "com.rileytestut.Clip", "com.rileytestut.Clip.Beta"], "getAllNews": True }, { "parser": AltSourceParser, "kwargs": {"filepath": "https://alpha.altstore.io"}, "ids": ["com.rileytestut.AltStore.Alpha", "com.rileytestut.Delta.Alpha"], "getAllNews": True } ] alternateAppData = { "com.rileytestut.AltStore.Beta": { "name": "AltStore (Beta)", "beta": False }, "com.rileytestut.Delta.Beta": { "name": "Delta (Beta)", "beta": False }, "com.rileytestut.Clip.Beta": { "name": "Clip (Beta)", "beta": False } } alt_complete = AltSourceManager("altstore-complete.json", sourcesData, alternateAppData, prettify=False) try: alt_complete.update() except Exception as err: print("Unable to update AltStore Complete.") print(f"{type(err).__name__}: {str(err)}") sourcesData = [ { "parser": AltSourceParser, "kwargs": {"filepath": "quarksource++.json"}, "ids": ["com.crunchyroll.iphone", "com.duolingo.DuolingoMobile", "com.deezer.Deezer", "com.spotify.client", "syto203.reddit.pp", "com.antique.Popcorn-iOS", "mediaboxhd.event.2", "comicreader.net.ios", "com.channelsapp.channels", "com.burbn.instagram", "com.Lema.Michael.InstagramApp", "net.whatsapp.WhatsApp", "com.hotdog.popcorntime81.ios", "tv.twitch"] }, { "parser": AltSourceParser, "kwargs": {"filepath": "quarksource-cracked.json"}, "ids": ["com.grailr.CARROTweather", "com.wolframalpha.wolframalpha", "com.firecore.infuse", "com.stey", "com.luma-touch.LumaFusion"] }, { "parser": AltSourceParser, "kwargs": {"filepath": "https://9ani.app/api/altstore"}, "ids": ["com.marcuszhou.NineAnimator"] }, { "parser": GithubParser, "kwargs": {"repo_author": "Paperback-iOS", "repo_name": "app", "ver_parse": lambda x: x.replace("-r", ".").lstrip("v")}, #ver_parse allows you to specify how to github tag should be processed before comparing to AltStore version tags "ids": ["com.faizandurrani.paperback.ios"] }, { "parser": GithubParser, "kwargs": {"repo_author": "tatsuz0u", "repo_name": "EhPanda"}, "ids": ["app.ehpanda"] }, { "parser": AltSourceParser, "kwargs": {"filepath": "https://raw.githubusercontent.com/ytjailed/ytjailed.github.io/main/apps.json"}, "ids": ["com.google.ios.youtube", "com.google.ios.youtube.cercube", "com.atebits.Tweetie2"] } ] alternateAppData = { "com.google.ios.youtube.cercube": { "tintColor": "#1E47D0", "permissions": [ { "type": "camera", "usageDescription": "This lets you create videos using the app." }, { "type": "photos", "usageDescription": "This lets you upload videos you've already created." }, { "type": "bluetooth", "usageDescription": "YouTube needs bluetooth access to scan for nearby Cast devices." }, { "type": "contacts", "usageDescription": "Your contacts will be sent to YouTube servers to help you find friends to share videos with." }, { "type": "network", "usageDescription": "Access to your network allows YouTube to discover and connect to devices such as your TV." }, { "type": "music", "usageDescription": "This lets you add your own audio files to your videos." }, { "type": "microphone", "usageDescription": "This lets you include audio with your videos and search using your voice." }, { "type": "location", "usageDescription": "Makes it easier for you to attach location information to your videos and live streams and allows for features such as improved recommendations and ads." }, { "type": "background-fetch", "usageDescription": "YouTube can continue running while in the background." }, { "type": "background-audio", "usageDescription": "YouTube can continue playing audio while in the background." } ] }, "com.google.ios.youtube": { "permissions": [ { "type": "camera", "usageDescription": "This lets you create videos using the app." }, { "type": "photos", "usageDescription": "This lets you upload videos you've already created." }, { "type": "bluetooth", "usageDescription": "YouTube needs bluetooth access to scan for nearby Cast devices." }, { "type": "contacts", "usageDescription": "Your contacts will be sent to YouTube servers to help you find friends to share videos with." }, { "type": "network", "usageDescription": "Access to your network allows YouTube to discover and connect to devices such as your TV." }, { "type": "music", "usageDescription": "This lets you add your own audio files to your videos." }, { "type": "microphone", "usageDescription": "This lets you include audio with your videos and search using your voice." }, { "type": "location", "usageDescription": "Makes it easier for you to attach location information to your videos and live streams and allows for features such as improved recommendations and ads." }, { "type": "background-fetch", "usageDescription": "YouTube can continue running while in the background." }, { "type": "background-audio", "usageDescription": "YouTube can continue playing audio while in the background." } ] } } quantumsrc_plus = AltSourceManager("quantumsource++.json", sourcesData, alternateAppData, prettify=False) try: quantumsrc_plus.update() except Exception as err: print("Unable to update Quantum Source Plus.") print(f"{type(err).__name__}: {str(err)}")
1.617188
2
logger.py
tommyvsfu1/ADL2019_ReinforcementLearning
1
12785036
import torch import torchvision from torch.utils.tensorboard import SummaryWriter from torchvision import datasets, transforms # Writer will output to ./runs/ directory by default class TensorboardLogger(object): def __init__(self, dir): """Create a summary writer logging to log_dir.""" self.writer = SummaryWriter(log_dir=dir) self.time_s = 0 def scalar_summary(self, tag, value, t=-1): if t == -1: self.writer.add_scalar(tag, value, global_step=self.time_s) else : self.writer.add_scalar(tag, value, global_step=t) def histogram_summary(self, tag, tensor, t=-1): if t == -1: self.writer.add_histogram(tag, tensor, global_step=self.time_s) else : self.writer.add_histogram(tag, tensor, global_step=t) def logger_close(self): self.writer.close() def update(self): self.time_s += 1
2.9375
3
app/utils/generator.py
hpi-studyu/analysis-project-generator
1
12785037
import json import os from dotenv import load_dotenv from utils.copier import generate_files_from_template from utils.gitlab_service import GitlabService from utils.study_data import fetch_new_study_data from utils.supabase_service import SupabaseService load_dotenv() def generate_repo(sbs: SupabaseService, gs: GitlabService, study_id: str): study = sbs.fetch_study(study_id) generate_files_from_template( study_title=study["title"], path=os.environ.get("PROJECT_PATH") ) project = gs.create_project(study["title"]) print(f"Created project: {project.name}") generate_initial_commit(gs, project) print("Committed initial files") fetch_new_study_data(sbs, gs, study_id, project, 'create') print("Fetched newest study data") return project.id def generate_initial_commit(gs, project): commit_actions = [ commit_action(file_path, os.environ.get("PROJECT_PATH")) for file_path in walk_generated_project(os.environ.get("PROJECT_PATH")) ] return gs.make_commit( project=project, message="Generated project from copier-studyu\n\nhttps://github.com/hpi-studyu/copier-studyu", actions=commit_actions, ) def commit_action(file_path: str, project_path: str, action: str = "create"): return { "action": action, "file_path": file_path, "content": open(os.path.join(project_path, file_path)).read(), } def walk_generated_project(project_path): for root, dirs, files in os.walk(project_path): for name in files: yield os.path.relpath(os.path.join(root, name), project_path).replace( os.sep, "/" )
2.28125
2
nogi/endpoints.py
Cooomma/nogi-backup-blog
0
12785038
import requests HEADERS = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36' } # Bilibili Videos Backup def get_channel_info(member_id: int): return requests.get( url='https://api.bilibili.com/x/space/acc/info', params=dict(mid=member_id, jsonp='jsonp'), headers=HEADERS,).json() def get_videos(member_id: int, page_num: int = 1, page_size: int = 30, keyword: str = None) -> list: return requests.get( url='https://space.bilibili.com/ajax/member/getSubmitVideos', params=dict( mid=member_id, pagesize=page_size, tid=0, page=page_num, keyword=keyword, order='pubdate'), headers=HEADERS,).json() # Nogizaka Web Archive Backup def get_web_archive_archive_snapshot_url(member_sub: str) -> str: return requests.get( url='http://web.archive.org/web/timemap/link/http://blog.nogizaka46.com/{}/'.format(member_sub), headers=HEADERS).text # Nogizaka Official Blog def get_nogi_official_archives_html(roma_name: str) -> str: return requests.get(url='http://blog.nogizaka46.com/{}/'.format(roma_name), headers=HEADERS).text
2.25
2
deep_utils/vision/face_detection/haarcascade/cv2/haarcascade_cv2_face_detection.py
dornasabet/deep_utils
36
12785039
from deep_utils.vision.face_detection.main import FaceDetector from deep_utils.utils.lib_utils.lib_decorators import get_from_config, expand_input, get_elapsed_time, rgb2bgr from deep_utils.utils.lib_utils.download_utils import download_decorator from deep_utils.utils.box_utils.boxes import Box, Point from .config import Config class HaarcascadeCV2FaceDetector(FaceDetector): def __init__(self, **kwargs): super().__init__(name=self.__class__.__name__, file_path=__file__, download_variables=("haarcascade_frontalface", "haarcascade_eye", "haarcascade_nose", "landmarks"), **kwargs) self.config: Config @download_decorator def load_model(self): import cv2 face_detector = cv2.CascadeClassifier(self.config.haarcascade_frontalface) nose_detector = cv2.CascadeClassifier(self.config.haarcascade_nose) eye_detector = cv2.CascadeClassifier(self.config.haarcascade_eye) landmark_detector = cv2.face.createFacemarkLBF() landmark_detector.loadModel(self.config.landmarks) self.model = dict(face=face_detector, nose=nose_detector, eye=eye_detector, landmarks=landmark_detector) @get_elapsed_time @expand_input(3) @get_from_config @rgb2bgr('gray') def detect_faces(self, img, is_rgb, scaleFactor=None, minNeighbors=None, minSize=None, maxSize=None, flags=None, get_landmarks=True, get_nose=True, get_eye=True, get_time=False, ): boxes, landmarks_, confidences, eye_poses, nose_poses = [], [], [], [], [] for image in img: faces = self.model['face'].detectMultiScale(image, scaleFactor=scaleFactor, minNeighbors=minNeighbors, minSize=minSize, maxSize=maxSize, flags=flags) boxes.append(Box.box2box(faces, in_source='CV', to_source='Numpy', in_format='XYWH', to_format='XYXY')) if get_nose: nose_pos = self.model['nose'].detectMultiScale(image, scaleFactor=scaleFactor, minNeighbors=minNeighbors, minSize=minSize, maxSize=maxSize, flags=flags) nose_pos = Point.point2point(nose_pos, in_source='CV', to_source='Numpy') nose_poses.append(nose_pos) if get_eye: eye_pos = self.model['eye'].detectMultiScale(image, scaleFactor=scaleFactor, minNeighbors=minNeighbors, minSize=minSize, maxSize=maxSize, flags=flags) eye_pos = Point.point2point(eye_pos, in_source='CV', to_source='Numpy') eye_poses.append(eye_pos) if len(faces) != 0 and get_landmarks: _, landmarks = self.model['landmarks'].fit(image, faces) landmarks = [Point.point2point(face_landmarks[0].tolist(), in_source='CV', to_source='Numpy') for face_landmarks in landmarks] landmarks_.append(landmarks) return dict(boxes=boxes, confidences=confidences, landmarks=landmarks_, eye_poses=eye_poses, nose_poses=nose_poses)
2.328125
2
test/test_vuelos_entrantes_aena_controller.py
SergioCMDev/Busines-Inteligence-applied-to-tourism
0
12785040
<reponame>SergioCMDev/Busines-Inteligence-applied-to-tourism # coding: utf-8 from __future__ import absolute_import from . import BaseTestCase from six import BytesIO from flask import json class TestVuelosEntrantesAenaController(BaseTestCase): """ VuelosEntrantesAenaController integration test stubs """ def test_obtener_cantidad_anio_ciudad(self): """ Test case for obtener_cantidad_anio_ciudad Obtener cantidades de vuelos entrantes en la ciudad del pais divididas por meses """ query_string = [('CiudadDestino', 'Valencia'), ('Anio', 2009)] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadAnioCiudad/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) def test_obtener_cantidad_anio_por_ciudades(self): """ Test case for obtener_cantidad_anio_por_ciudades Obtener cantidad de vuelos entrantes en las ciudades de un pais durante un año """ query_string = [('Anio', 2009)] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadAnioPorCiudades/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) def test_obtener_cantidad_anualmente(self): """ Test case for obtener_cantidad_anualmente Obtener cantidad de vuelos entrantes anualmente dado un pais destino y un rango de años """ query_string = [('AnioInicio', 2009), ('AnioFin', 2015)] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadAnualmente/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) def test_obtener_cantidad_ciudad(self): """ Test case for obtener_cantidad_ciudad Obtener cantidad de vuelos entrantes en una ciudad de un pais durante el rango de años seleccionado """ query_string = [('CiudadDestino', 'Valencia'), ('AnioInicio', 2009), ('AnioFin', 2015)] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadCiudad/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) def test_obtener_cantidad_entrantes_por_ciudades(self): """ Test case for obtener_cantidad_entrantes_por_ciudades Obtener cantidad de vuelos entrantes en las ciudades de un pais durante un rango de años """ query_string = [('AnioInicio', 2009), ('AnioFin', 2015)] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadPorCiudades/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) def test_obtener_cantidad_mensual(self): """ Test case for obtener_cantidad_mensual Obtener cantidad de vuelos entrantes durante los meses de un año """ query_string = [('Anio', 2009)] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadMensual/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) def test_obtener_cantidad_mensualmente(self): """ Test case for obtener_cantidad_mensualmente Obtener cantidad de vuelos entrantes de forma mensual dado un pais destino y un rango de años """ query_string = [('AnioInicio', 2009), ('AnioFin', 2015)] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadMensualmente/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) def test_obtener_cantidad_mes(self): """ Test case for obtener_cantidad_mes Obtener cantidad de vuelos entrantes durante el mismo mes en un rango de años para el pais destino """ query_string = [('Mes', 'Enero'), ('AnioInicio', 2009), ('AnioFin', 2015)] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadMes/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) def test_obtener_cantidad_mes_anio_por_ciudades(self): """ Test case for obtener_cantidad_mes_anio_por_ciudades Obtener cantidad de vuelos entrantes en las ciudades del pais durante el mes del año seleccionado """ query_string = [('Anio', 2009), ('Mes', 'Enero')] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadMesAnioPorCiudades/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) def test_obtener_cantidad_mes_ciudad(self): """ Test case for obtener_cantidad_mes_ciudad Obtener cantidad de vuelos entrantes en la ciudad del pais durante el mes del rango de años seleccionado """ query_string = [('CiudadDestino', 'Valencia'), ('Mes', 'Enero'), ('AnioInicio', 2009), ('AnioFin', 2015)] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadMesCiudad/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) def test_obtener_cantidad_mes_por_ciudades(self): """ Test case for obtener_cantidad_mes_por_ciudades Obtener cantidad de vuelos entrantes en las ciudades de un pais durante un rango de años durante un mismo mes """ query_string = [('AnioInicio', 2009), ('AnioFin', 2015), ('Mes', 'Enero')] response = self.client.open('/server/Aena/VuelosEntrantes/ObtenerCantidadMesPorCiudades/{PaisDestino}'.format(PaisDestino='PaisDestino_example'), method='GET', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) if __name__ == '__main__': import unittest unittest.main()
2.6875
3
sdk/python/tests/integration/online_store/test_universal_online.py
marsishandsome/feast
1
12785041
import random import unittest import pandas as pd from tests.integration.feature_repos.test_repo_configuration import ( Environment, parametrize_online_test, ) @parametrize_online_test def test_online_retrieval(environment: Environment): fs = environment.feature_store full_feature_names = environment.test_repo_config.full_feature_names sample_drivers = random.sample(environment.driver_entities, 10) drivers_df = environment.driver_df[ environment.driver_df["driver_id"].isin(sample_drivers) ] sample_customers = random.sample(environment.customer_entities, 10) customers_df = environment.customer_df[ environment.customer_df["customer_id"].isin(sample_customers) ] entity_rows = [ {"driver": d, "customer_id": c} for (d, c) in zip(sample_drivers, sample_customers) ] feature_refs = [ "driver_stats:conv_rate", "driver_stats:avg_daily_trips", "customer_profile:current_balance", "customer_profile:avg_passenger_count", "customer_profile:lifetime_trip_count", ] unprefixed_feature_refs = [f.rsplit(":", 1)[-1] for f in feature_refs] online_features = fs.get_online_features( features=feature_refs, entity_rows=entity_rows, full_feature_names=full_feature_names, ) assert online_features is not None keys = online_features.to_dict().keys() assert ( len(keys) == len(feature_refs) + 2 ) # Add two for the driver id and the customer id entity keys. for feature in feature_refs: if full_feature_names: assert feature.replace(":", "__") in keys else: assert feature.rsplit(":", 1)[-1] in keys assert "driver_stats" not in keys and "customer_profile" not in keys online_features_dict = online_features.to_dict() tc = unittest.TestCase() for i, entity_row in enumerate(entity_rows): df_features = get_latest_feature_values_from_dataframes( drivers_df, customers_df, entity_row ) assert df_features["customer_id"] == online_features_dict["customer_id"][i] assert df_features["driver_id"] == online_features_dict["driver_id"][i] for unprefixed_feature_ref in unprefixed_feature_refs: tc.assertEqual( df_features[unprefixed_feature_ref], online_features_dict[ response_feature_name(unprefixed_feature_ref, full_feature_names) ][i], ) # Check what happens for missing values missing_responses_dict = fs.get_online_features( features=feature_refs, entity_rows=[{"driver": 0, "customer_id": 0}], full_feature_names=full_feature_names, ).to_dict() assert missing_responses_dict is not None for unprefixed_feature_ref in unprefixed_feature_refs: tc.assertIsNone( missing_responses_dict[ response_feature_name(unprefixed_feature_ref, full_feature_names) ][0] ) def response_feature_name(feature: str, full_feature_names: bool) -> str: if ( feature in {"current_balance", "avg_passenger_count", "lifetime_trip_count"} and full_feature_names ): return f"customer_profile__{feature}" if feature in {"conv_rate", "avg_daily_trips"} and full_feature_names: return f"driver_stats__{feature}" return feature def get_latest_feature_values_from_dataframes(driver_df, customer_df, entity_row): driver_rows = driver_df[driver_df["driver_id"] == entity_row["driver"]] latest_driver_row: pd.DataFrame = driver_rows.loc[ driver_rows["event_timestamp"].idxmax() ].to_dict() customer_rows = customer_df[customer_df["customer_id"] == entity_row["customer_id"]] latest_customer_row = customer_rows.loc[ customer_rows["event_timestamp"].idxmax() ].to_dict() latest_customer_row.update(latest_driver_row) return latest_customer_row
2.453125
2
examples/04-rl-ray.py
nnaisense/pgpelib
36
12785042
# Solving reinforcement learning problems using pgpelib with parallelization # and with observation normalization # ========================================================================== # # This example demonstrates how to solve locomotion tasks. # The following techniques are used: # # - dynamic population size # - observation normalization # - parallelization (using the ray library) # # Because we are using both parallelization and observation normalization, # we will have to synchronize the observation stats between the remote # workers and the main process. # We demonstrate how to do this synchronization using ray, # however the logic is applicable to other parallelization libraries. from pgpelib import PGPE from pgpelib.policies import Policy, LinearPolicy, MLPPolicy from pgpelib.restore import to_torch_module from pgpelib.runningstat import RunningStat from typing import Tuple, Iterable from numbers import Real import numpy as np import torch import gym import ray import multiprocessing as mp from time import sleep import pickle # Here is the gym environment to solve. ENV_NAME = 'Walker2d-v2' # The environment we are considering to solve is a locomotion problem. # It defines an "alive bonus" to encourage the agent to stand on its # feet without falling. # However, such alive bonuses might drive the evolution process into # generating agents which focus ONLY on standing on their feet (without # progressing), just to collect these bonuses. # We therefore remove this alive bonus by subtracting 1.0 at every # simulator timestep. DECREASE_REWARDS_BY = 1.0 # Ray supports stateful parallelization via remote actors. # An actor is a class instance which lives on different process than # the main process, and which stores its state. # Here, we define a remote actor class (which will be instantiated # multiple times, so that we will be able to use the instances for # parallelized evaluation of our solutions) @ray.remote class Worker: def __init__(self, policy, decrease_rewards_by): policy: Policy self.policy: Policy = policy self.decrease_rewards_by = decrease_rewards_by def set_main_obs_stats(self, rs): # Set the main observation stats of the remote worker. # The goal of this function is to receive the observation # stats from the main process. rs: RunningStat self.policy.set_main_obs_stats(rs) def pop_collected_obs_stats(self): # Pop the observation stats collected by the worker. # At the time of synchronization, the main process will call # this method of each remote worker, and update its main # observation stats with those collected data. return self.policy.pop_collected_obs_stats() def run(self, d): # Run a each solution in the dictionary d. # The dictionary d is expected in this format: # { solution_index1: solution1, # solution_index2: solution2, # ... } # and the result will be: # { solution_index1: (cumulative_reward1, number_of_interactions1) # solution_index2: (cumulative_reward2, number_of_interactions2) # ... } return self.policy.set_params_and_run_all( d, decrease_rewards_by=self.decrease_rewards_by ) # Set the number of workers to be instantiated as the number of CPUs. NUM_WORKERS = mp.cpu_count() # List of workers. # Initialized as a list containing `None`s in the beginning. WORKERS = [None] * NUM_WORKERS def prepare_workers(policy, decrease_rewards_by): # Fill the WORKERS list. # Initialize the ray library. ray.init() # For each index i of WORKERS list, fill the i-th element with a new # worker instance. for i in range(len(WORKERS)): WORKERS[i] = Worker.remote(policy, decrease_rewards_by) Reals = Iterable[Real] def evaluate_solutions(solutions: Iterable[np.ndarray]) -> Tuple[Reals, Reals]: # This function evaluates the given solutions in parallel. # Get the number of solutions nslns = len(solutions) if len(WORKERS) > nslns: # If the number of workers is greater than the number of solutions # then the workers that we are going to actually use here # is the first `nslns` amount of workers, not all of them. workers = WORKERS[:nslns] else: # If the number of solutions is equal to or greater than the # number of workers, then we will use all of the instantiated # workers. workers = WORKERS # Number of workers that are going to be used now. nworkers = len(workers) # To each worker, we aim to send a dictionary, each dictionary being # in this form: # { solution_index1: solution1, solution_index2: solution2, ...} # We keep those dictionaries in the `to_worker` variable. # to_worker[i] stores the dictionary to be sent to the i-th worker. to_worker = [dict() for _ in range(nworkers)] # Iterate over the solutions and assign them one by one to the # workers. i_worker = 0 for i, solution in enumerate(solutions): to_worker[i_worker][i] = solution i_worker = (i_worker + 1) % nworkers # Each worker executes the solution dictionary assigned to itself. # The results are then collected to the list `worker_results`. # The workers do their tasks in parallel. worker_results = ray.get( [ workers[i].run.remote(to_worker[i]) for i in range(nworkers) ] ) # Allocate a list for storing the fitnesses, and another list for # storing the number of interactions. fitnesses = [None] * nslns num_interactions = [None] * nslns # For each worker: for worker_result in worker_results: # For each solution and its index mentioned in the worker's # result dictionary: for i, result in worker_result.items(): fitness, timesteps = result # Store the i-th solution's fitness in the fitnesses list fitnesses[i] = fitness # Store the i-th solution's number of interactions in the # num_interactions list. num_interactions[i] = timesteps # Return the fitnesses and the number of interactions lists. return fitnesses, num_interactions def sync_obs_stats(main_policy: Policy): # This function synchronizes the observation stats of the # main process and of the main workers. # Collect observation stats from the remote workers collected_stats = ray.get( [ worker.pop_collected_obs_stats.remote() for worker in WORKERS ] ) # In the main process, update the main policy's # observation stats with the stats collected from the remote workers. for stats in collected_stats: main_policy.update_main_obs_stats(stats) # To each worker, send the main policy's up-to-date stats. ray.get( [ worker.set_main_obs_stats.remote( main_policy.get_main_obs_stats() ) for worker in WORKERS ] ) def main(): # This is the main function. # The main evolution procedure will be defined here. # Make a linear policy. policy = LinearPolicy( env_name=ENV_NAME, # Name of the environment observation_normalization=True ) # Prepare the workers prepare_workers(policy, DECREASE_REWARDS_BY) # Initial solution x0 = np.zeros(policy.get_parameters_count(), dtype='float32') # The following are the Walker2d-v2 hyperparameters used in the paper: # ClipUp: A Simple and Powerful Optimizer for Distribution-based # Policy Evolution N = policy.get_parameters_count() max_speed = 0.015 center_learning_rate = max_speed / 2.0 radius = max_speed * 15 # Compute the stdev_init from the radius: stdev_init = np.sqrt((radius ** 2) / N) popsize = 100 popsize_max = 800 # Below we initialize our PGPE solver. pgpe = PGPE( solution_length=N, popsize=popsize, popsize_max=popsize_max, num_interactions=int(popsize * 1000 * (3 / 4)), center_init=x0, center_learning_rate=center_learning_rate, optimizer='clipup', optimizer_config={'max_speed': max_speed}, stdev_init=stdev_init, stdev_learning_rate=0.1, stdev_max_change=0.2, solution_ranking=True, dtype='float32' ) num_iterations = 500 # The main loop of the evolutionary computation for i in range(1, 1 + num_iterations): total_episodes = 0 while True: # Get the solutions from the pgpe solver solutions = pgpe.ask() # Evaluate the solutions in parallel and get the fitnesses fitnesses, num_interactions = evaluate_solutions(solutions) sync_obs_stats(policy) # Send the pgpe solver the received fitnesses iteration_finished = pgpe.tell(fitnesses, num_interactions) total_episodes += len(fitnesses) if iteration_finished: break print( "Iteration:", i, " median score:", np.median(fitnesses), " num.episodes:", total_episodes ) print("Visualizing the center solution...") # Get the center solution center_solution = pgpe.center.copy() # Make the gym environment for visualizing the center solution env = gym.make(ENV_NAME) # Load the center solution into the policy policy.set_parameters(center_solution) # Save the policy into a pickle file with open(__file__ + '.pickle', 'wb') as f: pickle.dump(policy, f) # Convert the policy to a PyTorch module net = to_torch_module(policy) while True: print("Please choose: 1> Visualize the agent 2> Quit") response = input(">>") if response == '1': cumulative_reward = 0.0 # Reset the environment, and get the observation of the initial # state into a variable. observation = env.reset() # Visualize the initial state env.render() # Main loop of the trajectory while True: with torch.no_grad(): action = net( torch.as_tensor(observation, dtype=torch.float32) ).numpy() if isinstance(env.action_space, gym.spaces.Box): interaction = action elif isinstance(env.action_space, gym.spaces.Discrete): interaction = int(np.argmax(action)) else: assert False, "Unknown action space" observation, reward, done, info = env.step(interaction) env.render() cumulative_reward += reward if done: break print("cumulative_reward", cumulative_reward) elif response == '2': break else: print('Unrecognized response:', repr(response)) if __name__ == "__main__": main()
2.9375
3
util/__init__.py
Ovakefali13/buerro
2
12785043
from .singleton import Singleton from .to_html import link_to_html, list_to_html, dict_to_html, table_to_html
1.1875
1
logscanner.py
thiscodedbox/TerrariaPythonEmail
0
12785044
# ThisCodedBox Terraria notifier python script # last modified 26-MAY-2017 # time for pauses # smtplib for notifications # random to add that random string import time import smtplib import random, string #setup the random, random, random maker def randomword(length): return ''.join(random.choice(string.lowercase) for i in range(length)) # Reset the variables (maybe not needed) oldAmountOfLines = 0 numNewLines = 0 emailNoFlood = 0 # Pull initial figures, set this to the default # configuration to prevent false positives on server # resarts where the file wasn't deleted and was appended # or when the python script starts after server start # basically, we don't want it trying to send emails for # all previous join events on startup fileHandle = open ( r"c:\tshock\logs\tlivelog.txt" ) lineList = fileHandle.readlines() fileHandle.close() # Set the balance at zero to start so it doesn't go back in time oldAmountOfLines = len(lineList) print "Ready and waiting for Joins..." # loop it forever and ever, truth is forever. while True: # don't let email flood variable get too low # just in case the number gets OOC if emailNoFlood < 0: emailNoFlood = 0 # Pull the log file, get the lines fileHandle = open ( r"c:\tshock\logs\tlivelog.txt" ) lineList = fileHandle.readlines() fileHandle.close() # make variable that that contains how many new lines there are numNewLines = (len(lineList) - oldAmountOfLines) # loop through the new lines to search for joins # keep in mind this won't even run if there are # no new lines so that is pretty efficient while numNewLines > 0: # now grab the first new log line (string) as lineItem lineItem = lineList[len(lineList) - (numNewLines) ] # check for "has joined." text if "has joined." in lineItem: # if it's there, print the line, and begin the email # process provided you haven't sent an email in an # 30m or so (1800 seconds, see counter at end) print lineList[len(lineList) - (numNewLines) ] if emailNoFlood < 1: print "EMAIL(s) TO BE SENT" fromaddr = '<EMAIL>' toaddrs = '<EMAIL>','<EMAIL>' # All of this email is boilerplate, save for the # "randomword" which prevents threading on gmail # et al by adding a random string to the subject line msg = 'From: yourserver@yourhost.com\nSubject:'+lineItem+' Notification:['+randomword(10)+']\n\n'+lineItem user = 'smtpuser' password = '<PASSWORD>' server = smtplib.SMTP_SSL('smtp.yoursmtp.com:465') server.login(user,password) server.sendmail(fromaddr, toaddrs, msg) server.quit() print "and ... SENT!" # OK, IF you sent an email, don't send one for 30 minutes now # important to not set this to 1800 if no email was sent, # hence the else statement and this remains in the if statement. emailNoFlood = 1800 else: print "***Email sent less than 30m ago, no email sent***" # we're back in the original while statement, sequence the numNewLines # down one, and run it again (or break out if we're through with new lines) numNewLines -= 1 # maybe this doesn't need to be in the while loop, not sure, but it works. oldAmountOfLines = len(lineList) # The sleep command allows this to cycle approximately once per # second, so subtrack 1 from the emailNoFlood variable every time # it runs through to allow it to countdown. emailNoFlood -= 1 time.sleep(1)
2.625
3
src/rosthrottle/tests/throttledListener.py
UTNuclearRoboticsPublic/rosthrottle
3
12785045
import rospy from std_msgs.msg import String def callback(data): rospy.loginfo(rospy.get_caller_id() + "I heard %s", data.data) def listener(): rospy.init_node('throttled_listener') rospy.Subscriber('chatter_message_throttled', String, callback) rospy.Subscriber('chatter_bandwidth_throttled', String, callback) rospy.spin() if __name__ == '__main__': listener()
2.25
2
tests/serializers/test_snippet.py
juliofelipe/snippets
1
12785046
<filename>tests/serializers/test_snippet.py import json import uuid from src.domain.snippet import Snippet from src.serializers.snippet import SnippetJsonEncoder def test_serializers_domain_snippet(): code = uuid.uuid4() snippet = Snippet( code=code, language="Python", title="Replace to join", description="''.join(data)", created_at="2021-11-13" ) expected_json = f""" {{ "code": "{code}", "language": "Python", "title": "Replace to join", "description": "''.join(data)", "created_at": "2021-11-13" }} """ json_snippet = json.dumps(snippet, cls=SnippetJsonEncoder) assert json.loads(json_snippet) == json.loads(expected_json)
2.515625
3
MedString.py
soorajbhatia/bioinformatics
0
12785047
<reponame>soorajbhatia/bioinformatics from itertools import permutations as p import itertools with open('data.txt', 'r') as file: k = int(file.readline()) Dna = file.readlines() #creates a list of all possible kmers def HammingDistance(Text,Text2): #defines variables to be used n = len(Text) k = 1 j=0 #goes through both sequences and increments j by one every time there's a mismatch for i in range(n): MatchPattern1 = Text[i:i + k] MatchPattern2 = Text2[i:i + k] if MatchPattern1 != MatchPattern2: j = j + 1 #prints number of mismatches return(j) # Function which returns subset or r length from n def perm(n, seq): listy=[] for p in itertools.product(seq, repeat=n): listy.append("".join(p)) return(listy) #Finds median string def MedianString(Dna, k): final=[] kmers = perm(k, "ATCG") for kmer in kmers: tosum=[] for string in Dna: minham=[] for i in range(len(string) - k + 1): pattern = string[i:i + k] Text = pattern minham.append(HammingDistance(kmer,Text)) tosum.append(min(minham)) final.append(sum(tosum)) index = final.index(min(final)) return(kmers[index]) print(MedianString(Dna,k))
3.75
4
misc/python/btn.py
Kolkir/orange-pi
1
12785048
<reponame>Kolkir/orange-pi<gh_stars>1-10 #!/usr/bin/env python import os import sys import subprocess if not os.getegid() == 0: sys.exit('Script must be run as root') from time import sleep from subprocess import * from pyA20.gpio import gpio from pyA20.gpio import connector from pyA20.gpio import port button_shutdown = port.PA2 #PIN 20 """Init gpio module""" gpio.init() """Set directions""" gpio.setcfg(button_shutdown, gpio.INPUT) """Enable pullup resistor""" gpio.pullup(button_shutdown, gpio.PULLUP) def delay_milliseconds(milliseconds): seconds = milliseconds / float(1000) sleep(seconds) def run_cmd(cmd): p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT) output = p.communicate()[0] return output shutdown_pressed = 1 while True: value_out = 0 shutdown_pressed = gpio.input(button_shutdown) if (shutdown_pressed == 0): value_out = 1 run_cmd("shutdown now") delay_milliseconds(100)
2.5
2
.archived/snakecode/other/dogfood.py
gearbird/calgo
4
12785049
<reponame>gearbird/calgo def feedDog(sp: list[str], k: int) -> int: feedCount = 0 nextDog = 0 for i, v in enumerate(sp): if v != 'F': continue while nextDog < min(i+k+1, len(sp)): if sp[nextDog] != 'D': nextDog += 1 continue if abs(nextDog-i) <= k: break nextDog += 1 if nextDog == len(sp): return feedCount if sp[nextDog] == 'D' and abs(nextDog-i) <= k: feedCount += 1 nextDog += 1 return feedCount def test(): sp = ['D', 'D', 'F', 'F', 'D'] sp = ['D', 'D', 'F', 'F', 'D', 'D', 'D', 'F', 'F', 'D', 'D'] # sp = ['D', 'D', 'D', 'F', 'F', 'F'] # sp = ['D', 'D', 'D', 'D', 'D', 'D'] # sp = ['F', 'F', 'F', 'D', 'F', 'F'] print(feedDog(sp, 1)) test()
2.875
3
cme/enum/wmiquery.py
padfoot999/CrackMapExec
2
12785050
#!/usr/bin/python # Copyright (c) 2003-2015 CORE Security Technologies # # This software is provided under under a slightly modified version # of the Apache Software License. See the accompanying LICENSE file # for more information. # # Description: [MS-WMI] example. It allows to issue WQL queries and # get description of the objects. # # e.g.: select name from win32_account # e.g.: describe win32_process # # Author: # <NAME> (@agsolino) # # Reference for: # DCOM # import logging import traceback from impacket.dcerpc.v5.dtypes import NULL from impacket.dcerpc.v5.dcom import wmi from impacket.dcerpc.v5.dcomrt import DCOMConnection class WMIQUERY: def __init__(self, connection): self.__logger = connection.logger self.__addr = connection.host self.__username = connection.username self.__password = connection.password self.__hash = connection.hash self.__domain = connection.domain self.__namespace = connection.args.wmi_namespace self.__query = connection.args.wmi self.__iWbemServices = None self.__doKerberos = False self.__aesKey = None self.__oxidResolver = True self.__lmhash = '' self.__nthash = '' if self.__hash is not None: self.__lmhash, self.__nthash = self.__hash.split(':') if self.__password is None: self.__password = '' self.__dcom = DCOMConnection(self.__addr, self.__username, self.__password, self.__domain, self.__lmhash, self.__nthash, self.__aesKey, self.__oxidResolver, self.__doKerberos) try: iInterface = self.__dcom.CoCreateInstanceEx(wmi.CLSID_WbemLevel1Login,wmi.IID_IWbemLevel1Login) iWbemLevel1Login = wmi.IWbemLevel1Login(iInterface) self.__iWbemServices= iWbemLevel1Login.NTLMLogin(self.__namespace, NULL, NULL) iWbemLevel1Login.RemRelease() except Exception as e: self.__logger.error(e) def query(self): query = self.__query.strip('\n') if query[-1:] == ';': query = query[:-1] if self.__iWbemServices: iEnumWbemClassObject = self.__iWbemServices.ExecQuery(query.strip('\n')) self.__logger.success('Executed specified WMI query') self.printReply(iEnumWbemClassObject) iEnumWbemClassObject.RemRelease() self.__iWbemServices.RemRelease() self.__dcom.disconnect() def describe(self, sClass): sClass = sClass.strip('\n') if sClass[-1:] == ';': sClass = sClass[:-1] try: iObject, _ = self.iWbemServices.GetObject(sClass) iObject.printInformation() iObject.RemRelease() except Exception as e: traceback.print_exc() def printReply(self, iEnum): printHeader = True while True: try: pEnum = iEnum.Next(0xffffffff,1)[0] record = pEnum.getProperties() line = [] for rec in record: line.append('{}: {}'.format(rec, record[rec]['value'])) self.__logger.highlight(' | '.join(line)) except Exception, e: #import traceback #print traceback.print_exc() if str(e).find('S_FALSE') < 0: raise else: break iEnum.RemRelease()
2.265625
2