max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
src/models.py
tonouchi510/tensorflow-design
0
12785051
<filename>src/models.py import tensorflow as tf from tensorflow.keras.layers import * from tensorflow.keras.models import * from typing import List from absl import flags FLAGS = flags.FLAGS def build_model(input_shape: List, num_classes: int): """トレーニングに使用するモデルを作成する. Args: input_shape {List} -- 入力データのshape. num_classes {int} -- クラス数. """ inputs = tf.keras.Input(shape=input_shape) outputs = tf.keras.layers.Dense(num_classes, activation="softmax")(inputs) model = CustomModelClass(inputs, outputs) # カスタムモデルクラスをしようしない場合は以下 #model = tf.keras.Model(inputs, outputs) return model class CustomModelClass(tf.keras.Model): """トレーニングループをカスタマイズするための自前クラス. tf.keras.Model.fit時に内部で呼び出される`train_step`メソッドをオーバーライドすることで、 トレーニングループのカスタマイズが可能. Args: tf ([type]): [description] """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # クラス内で参照が必要なパラメータを設定 self.param_a = "~~~" self.param_b = "~~~" def train_step(self, x, y): """ここにトレーニングループの実装を書く. 引数の数なども任意に設定できる. `tf.keras.Model.compile`で指定した損失関数やOptimizerにもアクセスできる. Args: x {Tensor} -- モデルへの入力(例えば入力画像) y {Tensor} -- モデルへの入力(例えば教師ラベル) Returns: [type]: [description] """ # 何らかの処理 with tf.GradientTape() as tape: # 何らかの処理 y_pred = self(x, training=True) # selfのみのcallはモデルへの入力 # 何らかの処理 loss = self.compiled_loss(y, y_pred) gradients = tape.gradient(loss, self.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.trainable_variables)) return {m.name: m.result() for m in self.metrics}
2.796875
3
undaqTools/examples/example01__daq_to_hdf5_batch_conversion.py
rogerlew/undaqTools
0
12785052
<filename>undaqTools/examples/example01__daq_to_hdf5_batch_conversion.py from __future__ import print_function # Copyright (c) 2013, <NAME> # All rights reserved. # undaq.py in the scripts folder is more fully featured version of this # example. This code is a bit easier to follow though. """ Batch convert daq files to HDF5 in parallel using the multiprocessing module """ import os import glob import time import multiprocessing import undaqTools # define a function to convert a daq to hdf5 def convert_daq(daq_file): """ converts a daqfile to hdf5 Parameters ---------- daq_file : string relative path to daq_file Returns ------- elapsed_time : float returns the time it took to complete converting daq or -1 if the conversion fails. """ t0 = time.time() # both multiprocessing and ipython cluster mask Exceptions # This way we can at least identify what file fails and the batch # processing continues # # Discovered this is needed the hard way. During an experimental trial # our MiniSim ran out of harddrive space and the resulting Daq failed to # load. try: daq = undaqTools.Daq() daq.read(daq_file) daq.write_hd5(daq_file.replace('.daq', '.hdf5')) del daq return time.time()-t0 except: return -1 if __name__ == '__main__': # data is on a local SSD drive. This is very important for performance. data_dir = './' # change the directory of the kernel print("Changing wd to '%s"%data_dir) os.chdir(data_dir) # specifies whether to convert all the daqs or only the ones that haven't # been created. Unless you muck with the Daq or DynObj classes there it # should be fine to leave this False rebuild_all = False # The clients may be RAM limited. In this example the machine has 8 cores # but we are only using 6 to convert the daq files (with this particular # dataset) (Machine has 32GB of memory and daqfiles are ~ 1.5 GB each, # memory peaks at about 29 GB with no other applications.) numcpus = 6 # parallel worker pool pool = multiprocessing.Pool(numcpus) # find all hdf5 files and all the daq files # we don't want to convert the daq files unless we have to # # data is organized such that every participant has his or her # own folder. Casting as tuples isn't strictly necessary. But this way # this ensures they are immutable. hd5_files = tuple(glob.glob('*/*.hdf5')) daq_files = tuple(glob.glob('*/*.daq')) # need to build list of daq_files to convert to pass to convert_daq if rebuild_all: daqs2convert = daq_files else: daqs2convert = \ [daq for daq in daq_files if daq[:-3]+'hdf5' not in hd5_files] # ready to roll. print('\nConverting daqs (this may take awhile)...') t0 = time.time() # start global time clock # this launches the batch processing of the daq files times = pool.imap(convert_daq, daqs2convert) # this provides feedback as the sets of files complete. Using imap # guarentees that the times are in the same order as daqs2convert but # delays receiving feedback for i, elapsed_time in enumerate(times): print(' {:<43}{:.1f} s'.format(daqs2convert[i], elapsed_time)) elapsed_time = time.time() - t0 + 1e-6 # so throughput calc doesn't bomb # when daq2convert is empty # close multiprocessing pool pool.close() pool.join()
2.78125
3
viz.py
huanzhang12/tensorflow-alexnet-model
7
12785053
<gh_stars>1-10 import tensorflow as tf from tensorflow.python.platform import gfile import sys if len(sys.argv) < 2: print("Usage: {} model_file log_dir".format(sys.argv[0])) sys.exit(0) model_filename = sys.argv[1] LOGDIR = sys.argv[2] with tf.Session() as sess: with gfile.FastGFile(model_filename, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) g_in = tf.import_graph_def(graph_def) for node in graph_def.node: print(node.name) print("writing summary to", LOGDIR) train_writer = tf.summary.FileWriter(LOGDIR) train_writer.add_graph(sess.graph) train_writer.close()
2.578125
3
views/game_over_view.py
AnotherCat/dtc-level-2-game
0
12785054
<gh_stars>0 from typing import TYPE_CHECKING from arcade import View, draw_text, set_viewport, start_render from arcade.color import WHITE from static_values import HEIGHT, START_LEVEL, WIDTH if TYPE_CHECKING: from main import GameWindow class GameOverView(View): """View to show when game is over""" def __init__(self) -> None: """This is run once when we switch to this view""" super().__init__() self.window.set_mouse_visible(True) # Make the mouse visible self.window: "GameWindow" # Store this so all progress is not lost self.current_level: int def setup(self, current_level: int = START_LEVEL) -> None: # Reset the viewport, necessary if we have a scrolling game and we need # to reset the viewport back to the start so we can see what we draw. set_viewport(0, WIDTH - 1, 0, HEIGHT - 1) self.current_level = current_level def on_draw(self) -> None: """Draw this view""" start_render() draw_text( "Game Over", WIDTH / 2, HEIGHT / 2, WHITE, font_size=50, anchor_x="center" ) draw_text( "Click to restart", WIDTH / 2, HEIGHT - 75, WHITE, font_size=20, anchor_x="center", ) def on_mouse_press( self, _x: float, _y: float, _button: int, _modifiers: int ) -> None: """If the user presses the mouse button, re-start the game.""" game_view = self.window.game_view game_view.setup(self.current_level) self.window.show_view(game_view)
3.09375
3
tests/unit/test_cluster.py
kishkaru/python-driver
0
12785055
# Copyright 2013-2016 DataStax, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: import unittest2 as unittest except ImportError: import unittest # noqa from mock import patch, Mock from cassandra import ConsistencyLevel, DriverException, Timeout, Unavailable, RequestExecutionException, ReadTimeout, WriteTimeout, CoordinationFailure, ReadFailure, WriteFailure, FunctionFailure, AlreadyExists,\ InvalidRequest, Unauthorized, AuthenticationFailed, OperationTimedOut, UnsupportedOperation, RequestValidationException, ConfigurationException from cassandra.cluster import _Scheduler, Session, Cluster from cassandra.policies import HostDistance from cassandra.query import SimpleStatement class ExceptionTypeTest(unittest.TestCase): def test_exception_types(self): """ PYTHON-443 Sanity check to ensure we don't unintentionally change class hierarchy of exception types """ self.assertTrue(issubclass(Unavailable, DriverException)) self.assertTrue(issubclass(Unavailable, RequestExecutionException)) self.assertTrue(issubclass(ReadTimeout, DriverException)) self.assertTrue(issubclass(ReadTimeout, RequestExecutionException)) self.assertTrue(issubclass(ReadTimeout, Timeout)) self.assertTrue(issubclass(WriteTimeout, DriverException)) self.assertTrue(issubclass(WriteTimeout, RequestExecutionException)) self.assertTrue(issubclass(WriteTimeout, Timeout)) self.assertTrue(issubclass(CoordinationFailure, DriverException)) self.assertTrue(issubclass(CoordinationFailure, RequestExecutionException)) self.assertTrue(issubclass(ReadFailure, DriverException)) self.assertTrue(issubclass(ReadFailure, RequestExecutionException)) self.assertTrue(issubclass(ReadFailure, CoordinationFailure)) self.assertTrue(issubclass(WriteFailure, DriverException)) self.assertTrue(issubclass(WriteFailure, RequestExecutionException)) self.assertTrue(issubclass(WriteFailure, CoordinationFailure)) self.assertTrue(issubclass(FunctionFailure, DriverException)) self.assertTrue(issubclass(FunctionFailure, RequestExecutionException)) self.assertTrue(issubclass(RequestValidationException, DriverException)) self.assertTrue(issubclass(ConfigurationException, DriverException)) self.assertTrue(issubclass(ConfigurationException, RequestValidationException)) self.assertTrue(issubclass(AlreadyExists, DriverException)) self.assertTrue(issubclass(AlreadyExists, RequestValidationException)) self.assertTrue(issubclass(AlreadyExists, ConfigurationException)) self.assertTrue(issubclass(InvalidRequest, DriverException)) self.assertTrue(issubclass(InvalidRequest, RequestValidationException)) self.assertTrue(issubclass(Unauthorized, DriverException)) self.assertTrue(issubclass(Unauthorized, RequestValidationException)) self.assertTrue(issubclass(AuthenticationFailed, DriverException)) self.assertTrue(issubclass(OperationTimedOut, DriverException)) self.assertTrue(issubclass(UnsupportedOperation, DriverException)) class ClusterTest(unittest.TestCase): def test_invalid_contact_point_types(self): with self.assertRaises(ValueError): Cluster(contact_points=[None], protocol_version=4, connect_timeout=1) with self.assertRaises(TypeError): Cluster(contact_points="not a sequence", protocol_version=4, connect_timeout=1) def test_requests_in_flight_threshold(self): d = HostDistance.LOCAL mn = 3 mx = 5 c = Cluster(protocol_version=2) c.set_min_requests_per_connection(d, mn) c.set_max_requests_per_connection(d, mx) # min underflow, max, overflow for n in (-1, mx, 127): self.assertRaises(ValueError, c.set_min_requests_per_connection, d, n) # max underflow, under min, overflow for n in (0, mn, 128): self.assertRaises(ValueError, c.set_max_requests_per_connection, d, n) class SchedulerTest(unittest.TestCase): # TODO: this suite could be expanded; for now just adding a test covering a ticket @patch('time.time', return_value=3) # always queue at same time @patch('cassandra.cluster._Scheduler.run') # don't actually run the thread def test_event_delay_timing(self, *_): """ Schedule something with a time collision to make sure the heap comparison works PYTHON-473 """ sched = _Scheduler(None) sched.schedule(0, lambda: None) sched.schedule(0, lambda: None) # pre-473: "TypeError: unorderable types: function() < function()"t class SessionTest(unittest.TestCase): # TODO: this suite could be expanded; for now just adding a test covering a PR @patch('cassandra.cluster.ResponseFuture._make_query_plan') def test_default_serial_consistency_level(self, *_): """ Make sure default_serial_consistency_level passes through to a query message. Also make sure Statement.serial_consistency_level overrides the default. PR #510 """ s = Session(Mock(protocol_version=4), []) # default is None self.assertIsNone(s.default_serial_consistency_level) sentinel = 1001 for cl in (None, ConsistencyLevel.LOCAL_SERIAL, ConsistencyLevel.SERIAL, sentinel): s.default_serial_consistency_level = cl # default is passed through f = s._create_response_future(query='', parameters=[], trace=False, custom_payload={}, timeout=100) self.assertEqual(f.message.serial_consistency_level, cl) # any non-None statement setting takes precedence for cl_override in (ConsistencyLevel.LOCAL_SERIAL, ConsistencyLevel.SERIAL): f = s._create_response_future(SimpleStatement(query_string='', serial_consistency_level=cl_override), parameters=[], trace=False, custom_payload={}, timeout=100) self.assertEqual(s.default_serial_consistency_level, cl) self.assertEqual(f.message.serial_consistency_level, cl_override)
1.921875
2
envreader/field_getter.py
vd2org/envreader
11
12785056
# Copyright (C) 2020-2021 by Vd. # This file is part of EnvReader, the modern environment variables processor. # EnvReader is released under the MIT License (see LICENSE). from typing import Callable, Optional from .field import Field class FieldGetter(Field): def __init__(self, default, alias: str, transform: Callable, description: Optional[str], example: Optional[str], cached: bool): super().__init__(default, alias=alias, transform=transform, description=description, example=example) self.__cached = cached self.__value = None def get_value(self): if self.__value: return self.__value val = super().get_value() if self.__cached: self.__value = val return val def __get__(self, obj, cls=None): return self.get_value() def __set__(self, obj, value): raise AttributeError("You can't change an env variable from here! Use os.environ for this.")
2.453125
2
Advance/5.Regex.py
AMZEnterprise/Python_Course_Jadi
0
12785057
<reponame>AMZEnterprise/Python_Course_Jadi import re str = 'Hello ali, how are you ali? I am fine. And you?' result = re.search(r'ali', str) print(result) result = re.sub(r'ali', 'Mahdi', str) print(result)
3.671875
4
flash/video/classification/input_transform.py
Actis92/lightning-flash
1,457
12785058
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Callable import torch from flash.core.data.io.input_transform import InputTransform from flash.core.data.transforms import ApplyToKeys from flash.core.utilities.imports import _KORNIA_AVAILABLE, _PYTORCHVIDEO_AVAILABLE, requires if _KORNIA_AVAILABLE: import kornia.augmentation as K if _PYTORCHVIDEO_AVAILABLE: from pytorchvideo.transforms import UniformTemporalSubsample from torchvision.transforms import CenterCrop, Compose, RandomCrop else: ClipSampler, LabeledVideoDataset, EncodedVideo, ApplyTransformToKey = None, None, None, None @requires("video") @dataclass class VideoClassificationInputTransform(InputTransform): image_size: int = 244 temporal_sub_sample: int = 8 mean: torch.Tensor = torch.tensor([0.45, 0.45, 0.45]) std: torch.Tensor = torch.tensor([0.225, 0.225, 0.225]) data_format: str = "BCTHW" same_on_frame: bool = False def per_sample_transform(self) -> Callable: if self.training: per_sample_transform = [RandomCrop(self.image_size, pad_if_needed=True)] else: per_sample_transform = [CenterCrop(self.image_size)] return ApplyToKeys( "video", Compose([UniformTemporalSubsample(self.temporal_sub_sample)] + per_sample_transform) ) def per_batch_transform_on_device(self) -> Callable: return ApplyToKeys( "video", K.VideoSequential( K.Normalize(self.mean, self.std), data_format=self.data_format, same_on_frame=self.same_on_frame, ), )
2.0625
2
compileman/Compile_Result.py
danilocgsilva/CompileMan
0
12785059
class Compile_Result: def __init__(self): self.success = None self.message = None def setSuccess(self): self.success = True return self def setError(self, message: str): self.success = False self.message = message return self def getResult(self) -> bool: return self.success def getErrorMessage(self) -> str: return self.message
2.75
3
dict.py
jlogans/vampy2017cs
1
12785060
d1 = {"key1":1, "key2":2, "key3":3, "key4":4, "key5":5} sorted_keys = sorted(d1) print(sorted_keys) for key in sorted_keys: print(d1[key])
3.96875
4
chapter3/run23.py
donngchao/python_code_snippets
0
12785061
# encoding: utf-8 ''' @author: developer @software: python @file: run23.py @time: 2021/8/7 7:10 @desc: ''' ''' 描述 2008年北京奥运会,A国的运动员参与了n天的决赛项目(1≤n≤17)。现在要统计一下A国所获得的金、银、铜牌数目及总奖牌数。 输入 输入n+1行,第1行是A国参与决赛项目的天数n,其后n行,每一行是该国某一天获得的金、银、铜牌数目,以一个空格分开。 输出 输出1行,包括4个整数,为A国所获得的金、银、铜牌总数及总奖牌数,以一个空格分开。 样例输入 3 1 0 3 3 1 0 0 3 0 样例输出 4 4 3 11 ''' day_of_olympic = int(input()) medals = [] for day in range(day_of_olympic): medals.append(input().split()) gold_medal = [] silver_medal = [] bronze_medal = [] for day in range(day_of_olympic): bronze, silver, gold = int(medals[day][0]), int(medals[day][1]), int(medals[day][2]) gold_medal.append(bronze) silver_medal.append(silver) bronze_medal.append(gold) total_gold = sum(gold_medal) total_silver = sum(silver_medal) total_bronze = sum(bronze_medal) total_medal = total_gold + total_silver + total_bronze print("%d %d %d %d" %(total_gold, total_silver, total_bronze, total_medal))
3.59375
4
ozet/settings/dev.py
ozet-team/ozet-server
0
12785062
<filename>ozet/settings/dev.py # fmt: off # flake8: noqa from .base import * INSTAGRAM_OAUTH_REDIRECT_URL = "https://staging-api.ozet.app/api/v1/member/user/me/instagram/oauth/authorize/" CRONJOBS = []
1
1
scripts/rule_system/POTATO/frontend/app.py
GKingA/offensive_text
0
12785063
import argparse import configparser import copy import datetime import json import os import random import re import sys import time from collections import Counter, defaultdict from contextlib import contextmanager from io import StringIO from threading import current_thread import networkx as nx import pandas as pd import penman as pn import requests import streamlit as st import streamlit.components.v1 as components from potato.dataset.utils import default_pn_to_graph from potato.graph_extractor.extract import FeatureEvaluator from potato.models.trainer import GraphTrainer from PIL import Image from st_aggrid import AgGrid, DataReturnMode, GridOptionsBuilder, GridUpdateMode, JsCode from streamlit.report_thread import REPORT_CONTEXT_ATTR_NAME from tuw_nlp.grammar.text_to_4lang import TextTo4lang from tuw_nlp.graph.fourlang import FourLang from tuw_nlp.graph.utils import GraphFormulaMatcher, pn_to_graph, read_alto_output if "false_graph_number" not in st.session_state: st.session_state.false_graph_number = 0 if "true_graph_number" not in st.session_state: st.session_state.true_graph_number = 0 if "false_neg_number" not in st.session_state: st.session_state.false_neg_number = 0 if "predicted_num" not in st.session_state: st.session_state.predicted_num = 0 if "whole_accuracy" not in st.session_state: st.session_state.whole_accuracy = [] if "df_statistics" not in st.session_state: st.session_state.df_statistics = pd.DataFrame if "val_dataframe" not in st.session_state: st.session_state.val_dataframe = pd.DataFrame if "whole_accuracy_val" not in st.session_state: st.session_state.whole_accuracy_val = [] if "feature_df" not in st.session_state: st.session_state.feature_df = pd.DataFrame if "clustered_words_path" not in st.session_state: st.session_state.clustered_words_path = None if "features" not in st.session_state: st.session_state.features = {} if "suggested_features" not in st.session_state: st.session_state.suggested_features = {} if "trained" not in st.session_state: st.session_state.trained = False if "ml_feature" not in st.session_state: st.session_state.ml_feature = None if "sens" not in st.session_state: st.session_state.sens = [] if "min_edge" not in st.session_state: st.session_state.min_edge = 0 if "rows_to_delete" not in st.session_state: st.session_state.rows_to_delete = [] if "rls_after_delete" not in st.session_state: st.session_state.rls_after_delete = [] def rerun(): raise st.experimental_rerun() @contextmanager def st_redirect(src, dst): placeholder = st.empty() output_func = getattr(placeholder, dst) with StringIO() as buffer: old_write = src.write def new_write(b): if getattr(current_thread(), REPORT_CONTEXT_ATTR_NAME, None): buffer.write(b) output_func(buffer.getvalue()) else: old_write(b) try: src.write = new_write yield finally: src.write = old_write @contextmanager def st_stdout(dst): with st_redirect(sys.stdout, dst): yield def to_dot(graph, marked_nodes=set(), integ=False): lines = ["digraph finite_state_machine {", "\tdpi=70;"] # lines.append('\tordering=out;') # sorting everything to make the process deterministic node_lines = [] node_to_name = {} for node, n_data in graph.nodes(data=True): if integ: d_node = d_clean(str(node)) else: d_node = d_clean(n_data["name"]) if n_data["name"] else "None" printname = d_node node_to_name[node] = printname if "expanded" in n_data and n_data["expanded"] and printname in marked_nodes: node_line = '\t{0} [shape = circle, label = "{1}", \ style=filled, fillcolor=purple];'.format( d_node, printname ).replace( "-", "_" ) elif "expanded" in n_data and n_data["expanded"]: node_line = '\t{0} [shape = circle, label = "{1}", \ style="filled"];'.format( d_node, printname ).replace( "-", "_" ) elif "fourlang" in n_data and n_data["fourlang"]: node_line = '\t{0} [shape = circle, label = "{1}", \ style="filled", fillcolor=red];'.format( d_node, printname ).replace( "-", "_" ) elif "substituted" in n_data and n_data["substituted"]: node_line = '\t{0} [shape = circle, label = "{1}", \ style="filled"];'.format( d_node, printname ).replace( "-", "_" ) elif printname in marked_nodes: node_line = '\t{0} [shape = circle, label = "{1}", style=filled, fillcolor=lightblue];'.format( d_node, printname ).replace( "-", "_" ) else: node_line = '\t{0} [shape = circle, label = "{1}"];'.format( d_node, printname ).replace("-", "_") node_lines.append(node_line) lines += sorted(node_lines) edge_lines = [] for u, v, edata in graph.edges(data=True): if "color" in edata: d_node1 = node_to_name[u].replace("-", "_") d_node2 = node_to_name[v].replace("-", "_") edge_lines.append( '\t{0} -> {1} [ label = "{2}" ];'.format( d_node1, d_node2, edata["color"] ) ) lines += sorted(edge_lines) lines.append("}") return "\n".join(lines) def save_ruleset(path, features): with open(path, "w+") as f: json.dump(features, f) def d_clean(string): s = string for c in "\\=@-,'\".!:;<>/{}[]()#^?": s = s.replace(c, "_") s = s.replace("$", "_dollars") s = s.replace("%", "_percent") s = s.replace("|", " ") s = s.replace("*", " ") if s == "#": s = "_number" keywords = ("graph", "node", "strict", "edge") if re.match("^[0-9]", s) or s in keywords: s = "X" + s return s def get_df_from_rules(rules, negated_rules): data = {"rules": rules, "negated_rules": negated_rules} # Create DataFrame. df = pd.DataFrame(data) return df def save_after_modify(hand_made_rules, classes): st.session_state.features[classes] = copy.deepcopy( st.session_state.rls_after_delete ) st.session_state.feature_df = get_df_from_rules( [";".join(feat[0]) for feat in st.session_state.features[classes]], [";".join(feat[1]) for feat in st.session_state.features[classes]], ) save_rules = hand_made_rules or "saved_features.json" save_ruleset(save_rules, st.session_state.features) st.session_state.rows_to_delete = [] rerun() @st.cache(allow_output_mutation=True) def load_text_to_4lang(): tfl = TextTo4lang("en", "en_nlp_cache") return tfl @st.cache() def init_evaluator(): return FeatureEvaluator() @st.cache(allow_output_mutation=True) def read_train(path): return pd.read_pickle(path) def save_dataframe(data, path): data.to_pickle(path) @st.cache(allow_output_mutation=True) def read_val(path): return pd.read_pickle(path) def train_df(df, min_edge=0): with st_stdout("code"): trainer = GraphTrainer(df) features = trainer.prepare_and_train(min_edge=min_edge) return features def rule_chooser(): option = st.selectbox("Choose from the rules", st.session_state.sens) G, _ = default_pn_to_graph(option.split(";")[0]) text_G, _ = default_pn_to_graph(option.split(";")[0]) st.graphviz_chart(to_dot(text_G), use_container_width=True) nodes = [d_clean(n[1]["name"].split("_")[0]) for n in text_G.nodes(data=True)] return nodes, option def annotate_df(predicted): for i, pred in enumerate(predicted): if pred: st.session_state.df.at[i, "label"] = st.session_state.inverse_labels[1] st.session_state.df.at[i, "applied_rules"] = pred else: st.session_state.df.at[i, "applied_rules"] = [] if st.session_state.df.loc[i, "annotated"] == False: st.session_state.df.at[i, "label"] = "" def show_ml_feature(classes, hand_made_rules): st.markdown( f"<span>Feature: {st.session_state.ml_feature[0]}, Precision: <b>{st.session_state.ml_feature[1]:.3f}</b>, \ Recall: <b>{st.session_state.ml_feature[2]:.3f}</b>, Fscore: <b>{st.session_state.ml_feature[3]:.3f}</b>, \ Support: <b>{st.session_state.ml_feature[4]}</b></span>", unsafe_allow_html=True, ) accept_rule = st.button("Accept") decline_rule = st.button("Decline") if accept_rule: st.session_state.features[classes].append(st.session_state.ml_feature[0]) st.session_state.ml_feature = None if st.session_state.features[classes]: st.session_state.feature_df = get_df_from_rules( [";".join(feat[0]) for feat in st.session_state.features[classes]], [";".join(feat[1]) for feat in st.session_state.features[classes]], ) save_rules = hand_made_rules or "saved_features.json" save_ruleset(save_rules, st.session_state.features) rerun() elif decline_rule: st.session_state.ml_feature = None rerun() def extract_data_from_dataframe(option): fp_graphs = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].False_positive_graphs fp_sentences = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].False_positive_sens tp_graphs = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].True_positive_graphs tp_sentences = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].True_positive_sens fn_graphs = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].False_negative_graphs fn_sentences = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].False_negative_sens prec = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].Precision recall = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].Recall fscore = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].Fscore support = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].Support predicted = st.session_state.df_statistics.iloc[ st.session_state.sens.index(option) ].Predicted return ( fn_graphs, fn_sentences, fp_graphs, fp_sentences, fscore, prec, predicted, recall, support, tp_graphs, tp_sentences, ) def graph_viewer(type, graphs, sentences, nodes): graph_type = { "FP": st.session_state.false_graph_number, "TP": st.session_state.true_graph_number, "FN": st.session_state.false_neg_number, } if st.button(f"Previous {type}"): graph_type[type] = max(0, graph_type[type] - 1) if st.button(f"Next {type}"): graph_type[type] = min( graph_type[type] + 1, len(graphs) - 1, ) if graph_type[type] > len(graphs) - 1: graph_type[type] = 0 st.markdown( f"<span><b>Sentence:</b> {sentences[graph_type[type]][0]}</span>", unsafe_allow_html=True, ) st.markdown( f"<span><b>Gold label:</b> {sentences[graph_type[type]][1]}</span>", unsafe_allow_html=True, ) st.text(f"{type}: {len(graphs)}") current_graph = graphs[graph_type[type]] st.graphviz_chart( to_dot( current_graph, marked_nodes=set(nodes), ), use_container_width=True, ) if type == "FP": st.session_state.false_graph_number = graph_type[type] elif type == "TP": st.session_state.true_graph_number = graph_type[type] elif type == "FN": st.session_state.false_neg_number = graph_type[type] def add_rule_manually(classes, hand_made_rules): text = st.text_area("You can add a new rule here manually") negated_text = st.text_area("You can modify the negated features here") agree = st.button("Add rule to the ruleset") if agree: if not negated_text.strip(): negated_features = [] else: negated_features = negated_text.split(";") st.session_state.features[classes].append([[text], negated_features, classes]) if st.session_state.features[classes]: st.session_state.feature_df = get_df_from_rules( [";".join(feat[0]) for feat in st.session_state.features[classes]], [";".join(feat[1]) for feat in st.session_state.features[classes]], ) save_rules = hand_made_rules or "saved_features.json" save_ruleset(save_rules, st.session_state.features) rerun() st.markdown( f"<span><b>Or get suggestions by our ML!</b></span>", unsafe_allow_html=True, ) def rank_and_suggest(classes, data, evaluator): suggest_new_rule = st.button("suggest new rules") if suggest_new_rule: if ( not st.session_state.df_statistics.empty and st.session_state.sens and st.session_state.suggested_features[classes] ): features_to_rank = st.session_state.suggested_features[classes][:5] with st.spinner("Ranking rules..."): features_ranked = evaluator.rank_features( classes, features_to_rank, data, st.session_state.df_statistics.iloc[0].False_negative_indices, ) suggested_feature = features_ranked[0] st.session_state.suggested_features[classes].remove(suggested_feature[0]) st.session_state.ml_feature = suggested_feature def supervised_mode( evaluator, data, val_data, graph_format, feature_path, hand_made_rules ): if hand_made_rules: with open(hand_made_rules) as f: st.session_state.features = json.load(f) if not feature_path and not st.session_state.trained: st.sidebar.title("Train your dataset!") show_app = st.sidebar.button("Train") st.session_state.min_edge = st.sidebar.number_input( "Min edge in features", min_value=0, max_value=3, value=0, step=1 ) if show_app: st.session_state.suggested_features = train_df( data, st.session_state.min_edge ) st.session_state.trained = True with st_stdout("success"): print("Success, your dataset is trained, wait for the app to load..") time.sleep(3) rerun() st.markdown( "<h3 style='text-align: center; color: black;'>Your dataset is shown below, click the train button to train your dataset!</h3>", unsafe_allow_html=True, ) sample_df = AgGrid(data, width="100%", fit_columns_on_grid_load=True) st.write("label distribution:") st.bar_chart(data.groupby("label").size()) st.write("sentence lenghts:") st.bar_chart(data.text.str.len()) st.write("common words:") st.bar_chart( pd.Series(" ".join(data["text"]).lower().split()).value_counts()[:100] ) if st.session_state.trained or feature_path: col1, col2 = st.columns(2) if ( feature_path and os.path.exists(feature_path) and not st.session_state.suggested_features ): with open(feature_path) as f: st.session_state.suggested_features = json.load(f) if not st.session_state.features: for key in st.session_state.suggested_features: pop_len = ( 5 if len(st.session_state.suggested_features[key]) > 5 else len(st.session_state.suggested_features[key]) ) st.session_state.features[key] = [ st.session_state.suggested_features[key].pop(0) for _ in range(pop_len) ] col1.header("Rule to apply") col2.header("Graphs and results") # if graph_format == "fourlang": # tfl = load_text_to_4lang() with col1: classes = st.selectbox( "Choose class", list(st.session_state.features.keys()) ) st.session_state.feature_df = get_df_from_rules( [";".join(feat[0]) for feat in st.session_state.features[classes]], [";".join(feat[1]) for feat in st.session_state.features[classes]], ) with st.form("example form") as f: gb = GridOptionsBuilder.from_dataframe(st.session_state.feature_df) # make all columns editable gb.configure_columns(["rules", "negated_rules"], editable=True) gb.configure_selection( "multiple", use_checkbox=True, groupSelectsChildren=True, groupSelectsFiltered=True, # ◙pre_selected_rows=[1,2] ) go = gb.build() ag = AgGrid( st.session_state.feature_df, gridOptions=go, key="grid1", allow_unsafe_jscode=True, reload_data=True, update_mode=GridUpdateMode.MODEL_CHANGED | GridUpdateMode.VALUE_CHANGED, width="100%", theme="material", fit_columns_on_grid_load=True, ) delete_or_train = st.radio( "Delete or Train selected rules", ("none", "delete", "train") ) submit = st.form_submit_button(label="save updates") evaluate = st.form_submit_button(label="evaluate selected") if evaluate: feature_list = [] selected_rules = ( ag["selected_rows"] if ag["selected_rows"] else ag["data"].to_dict(orient="records") ) for rule in selected_rules: positive_rules = ( rule["rules"].split(";") if "rules" in rule and rule["rules"].strip() else [] ) negated_rules = ( rule["negated_rules"].split(";") if "negated_rules" in rule and rule["negated_rules"].strip() else [] ) feature_list.append( [ positive_rules, negated_rules, classes, ] ) st.session_state.sens = [";".join(feat[0]) for feat in feature_list] with st.spinner("Evaluating rules..."): ( st.session_state.df_statistics, st.session_state.whole_accuracy, ) = evaluator.evaluate_feature( classes, feature_list, data, graph_format ) ( st.session_state.val_dataframe, st.session_state.whole_accuracy_val, ) = evaluator.evaluate_feature( classes, feature_list, val_data, graph_format, ) st.success("Done!") rerun() if submit: delete = delete_or_train == "delete" train = delete_or_train == "train" st.session_state.rows_to_delete = [ r["rules"] for r in ag["selected_rows"] ] st.session_state.rls_after_delete = [] negated_list = ag["data"]["negated_rules"].tolist() feature_list = [] for i, rule in enumerate(ag["data"]["rules"].tolist()): if not negated_list[i].strip(): feature_list.append([rule.split(";"), [], classes]) else: feature_list.append( [ rule.split(";"), negated_list[i].strip().split(";"), classes, ] ) if st.session_state.rows_to_delete and delete: for r in feature_list: if ";".join(r[0]) not in st.session_state.rows_to_delete: st.session_state.rls_after_delete.append(r) elif st.session_state.rows_to_delete and train: st.session_state.rls_after_delete = copy.deepcopy(feature_list) rule_to_train = st.session_state.rows_to_delete[0] if ";" in rule_to_train or ".*" not in rule_to_train: st.text("Only single and underspecified rules can be trained!") else: selected_words = evaluator.train_feature( classes, rule_to_train, data, graph_format ) for f in selected_words: st.session_state.rls_after_delete.append([[f], [], classes]) else: st.session_state.rls_after_delete = copy.deepcopy(feature_list) if st.session_state.rls_after_delete and not delete: save_after_modify(hand_made_rules, classes) if st.session_state.rows_to_delete and delete_or_train == "delete": with st.form("Delete form"): st.write("The following rules will be deleted, do you accept it?") st.write(st.session_state.rows_to_delete) save_button = st.form_submit_button("Accept Delete") if save_button: save_after_modify(hand_made_rules, classes) add_rule_manually(classes, hand_made_rules) rank_and_suggest(classes, data, evaluator) if st.session_state.ml_feature: show_ml_feature(classes, hand_made_rules) with col2: if not st.session_state.df_statistics.empty and st.session_state.sens: if st.session_state.sens: nodes, option = rule_chooser() st.markdown( f"<span>Result of using all the rules: Precision: <b>{st.session_state.whole_accuracy[0]:.3f}</b>, \ Recall: <b>{st.session_state.whole_accuracy[1]:.3f}</b>, Fscore: <b>{st.session_state.whole_accuracy[2]:.3f}</b>, \ Support: <b>{st.session_state.whole_accuracy[3]}</b></span>", unsafe_allow_html=True, ) ( fn_graphs, fn_sentences, fp_graphs, fp_sentences, fscore, prec, predicted, recall, support, tp_graphs, tp_sentences, ) = extract_data_from_dataframe(option) st.markdown( f"<span>The rule's result: Precision: <b>{prec:.3f}</b>, Recall: <b>{recall:.3f}</b>, \ Fscore: <b>{fscore:.3f}</b>, Support: <b>{support}</b></span>", unsafe_allow_html=True, ) with st.expander("Show validation data", expanded=False): val_prec = st.session_state.val_dataframe.iloc[ st.session_state.sens.index(option) ].Precision val_recall = st.session_state.val_dataframe.iloc[ st.session_state.sens.index(option) ].Recall val_fscore = st.session_state.val_dataframe.iloc[ st.session_state.sens.index(option) ].Fscore val_support = st.session_state.val_dataframe.iloc[ st.session_state.sens.index(option) ].Support st.markdown( f"<span>Result of using all the rules on the validation data: Precision: <b>{st.session_state.whole_accuracy_val[0]:.3f}</b>, \ Recall: <b>{st.session_state.whole_accuracy_val[1]:.3f}</b>, Fscore: <b>{st.session_state.whole_accuracy_val[2]:.3f}</b>, \ Support: <b>{st.session_state.whole_accuracy_val[3]}</b></span>", unsafe_allow_html=True, ) st.markdown( f"<span>The rule's result on the validation data: Precision: <b>{val_prec:.3f}</b>, \ Recall: <b>{val_recall:.3f}</b>, Fscore: <b>{val_fscore:.3f}</b>, \ Support: <b>{val_support}</b></span>", unsafe_allow_html=True, ) tp_fp_fn_choice = ( "True Positive graphs", "False Positive graphs", "False Negative graphs", ) tp_fp_fn = st.selectbox( "Select the graphs you want to view", tp_fp_fn_choice ) if tp_fp_fn == "False Positive graphs": if fp_graphs: graph_viewer("FP", fp_graphs, fp_sentences, nodes) elif tp_fp_fn == "True Positive graphs": if tp_graphs: graph_viewer("TP", tp_graphs, tp_sentences, nodes) elif tp_fp_fn == "False Negative graphs": if fn_graphs: graph_viewer("FN", fn_graphs, fn_sentences, nodes) def unsupervised_mode( evaluator, train_data, graph_format, feature_path, hand_made_rules ): data = read_train(train_data) if hand_made_rules: with open(hand_made_rules) as f: st.session_state.features = json.load(f) if "df" not in st.session_state: st.session_state.df = data.copy() if "annotated" not in st.session_state.df: st.session_state.df["annotated"] = False if "applied_rules" not in st.session_state.df: st.session_state.df["applied_rules"] = [ [] for _ in range(len(st.session_state.df)) ] if "index" not in st.session_state.df: st.session_state.df.reset_index(level=0, inplace=True) if "df_to_train" not in st.session_state: st.session_state.df_to_train = pd.DataFrame if "applied_rules" not in st.session_state: st.session_state.applied_rules = [] df_annotated = st.session_state.df[st.session_state.df.annotated == True][ ["index", "text", "label", "applied_rules"] ] df_unannotated = st.session_state.df[st.session_state.df.annotated == False][ ["index", "text", "label", "applied_rules"] ] if "labels" not in st.session_state: st.text("Before we start, please provide labels you want to train") user_input = st.text_input("label encoding", "NOT:0,OFF:1") st.session_state.labels = { label.split(":")[0]: int(label.split(":")[1]) for label in user_input.split(",") } st.write(st.session_state.labels) st.session_state.inverse_labels = { v: k for (k, v) in st.session_state.labels.items() } else: st.markdown( f"<span><b>Annotate samples here:</b></span>", unsafe_allow_html=True, ) if st.session_state.applied_rules: st.markdown( f"<span>Currently the following rules are applied:</span>", unsafe_allow_html=True, ) st.write(st.session_state.applied_rules) with st.form("annotate form") as f: gb = GridOptionsBuilder.from_dataframe(df_unannotated) gb.configure_default_column( editable=True, resizable=True, sorteable=True, wrapText=True, autoHeight=True, ) # make all columns editable gb.configure_selection( "multiple", use_checkbox=True, groupSelectsChildren=True, groupSelectsFiltered=True, ) go = gb.build() ag = AgGrid( df_unannotated, gridOptions=go, key="grid2", allow_unsafe_jscode=True, reload_data=True, update_mode=GridUpdateMode.MODEL_CHANGED | GridUpdateMode.VALUE_CHANGED, width="100%", theme="material", fit_columns_on_grid_load=True, ) annotate = st.form_submit_button("Annotate") if annotate: if ag["selected_rows"]: for row in ag["selected_rows"]: st.session_state.df.loc[ row["index"], "label" ] = st.session_state.inverse_labels[1] st.session_state.df.loc[row["index"], "annotated"] = True save_dataframe(st.session_state.df, train_data) rerun() st.markdown( f"<span>Samples you have already annotated:</span>", unsafe_allow_html=True, ) with st.form("annotated form") as f: gb = GridOptionsBuilder.from_dataframe(df_annotated) gb.configure_default_column( editable=True, resizable=True, sorteable=True, wrapText=True, ) # make all columns editable gb.configure_selection( "multiple", use_checkbox=True, groupSelectsChildren=True, groupSelectsFiltered=True, ) go = gb.build() ag_ann = AgGrid( df_annotated, gridOptions=go, key="grid3", allow_unsafe_jscode=True, reload_data=True, update_mode=GridUpdateMode.MODEL_CHANGED | GridUpdateMode.VALUE_CHANGED, width="100%", theme="material", fit_columns_on_grid_load=True, ) clear_annotate = st.form_submit_button("Clear annotation") if clear_annotate: if ag_ann["selected_rows"]: for row in ag_ann["selected_rows"]: st.session_state.df.loc[ row["index"], "label" ] = st.session_state.inverse_labels[1] st.session_state.df.loc[row["index"], "annotated"] = False st.session_state.df.loc[row["index"], "label"] = "" save_dataframe(st.session_state.df, train_data) rerun() train = st.button("Train!") if train: df_to_train = st.session_state.df.copy() df_to_train = df_to_train[df_to_train.applied_rules.map(len) == 0] if not df_to_train.empty: st.session_state.trained = True df_to_train["label"] = df_to_train["label"].apply( lambda x: st.session_state.inverse_labels[0] if not x else x ) df_to_train["label_id"] = df_to_train["label"].apply( lambda x: st.session_state.labels[x] ) positive_size = df_to_train.groupby("label").size()[ st.session_state.inverse_labels[1] ] df_to_train = df_to_train.groupby("label").sample( n=positive_size, random_state=1, replace=True ) st.session_state.suggested_features = train_df( df_to_train, st.session_state.min_edge ) st.session_state.df_to_train = df_to_train st.session_state.df_statistics = pd.DataFrame for key in st.session_state.suggested_features: if key not in st.session_state.features: st.session_state.features[key] = [ st.session_state.suggested_features[key].pop(0) ] else: st.session_state.features[key].append( st.session_state.suggested_features[key].pop(0) ) else: st.write("Empty dataframe!") col1, col2 = st.columns(2) if st.session_state.trained and st.session_state.suggested_features: with col1: if not st.session_state.features: for key in st.session_state.suggested_features: st.session_state.features[key] = [ st.session_state.suggested_features[key].pop(0) ] classes = st.selectbox( "Choose class", list(st.session_state.features.keys()) ) st.session_state.feature_df = get_df_from_rules( [";".join(feat[0]) for feat in st.session_state.features[classes]], [";".join(feat[1]) for feat in st.session_state.features[classes]], ) with st.form("example form") as f: gb = GridOptionsBuilder.from_dataframe(st.session_state.feature_df) # make all columns editable gb.configure_columns(["rules", "negated_rules"], editable=True) gb.configure_selection( "multiple", use_checkbox=True, groupSelectsChildren=True, groupSelectsFiltered=True, # ◙pre_selected_rows=[1,2] ) go = gb.build() ag = AgGrid( st.session_state.feature_df, gridOptions=go, key="grid1", allow_unsafe_jscode=True, reload_data=True, update_mode=GridUpdateMode.MODEL_CHANGED | GridUpdateMode.VALUE_CHANGED, width="100%", theme="material", fit_columns_on_grid_load=True, ) delete_or_train = st.radio( "Delete or Train selected rules", ("none", "delete", "train") ) submit = st.form_submit_button(label="save updates") evaluate = st.form_submit_button(label="evaluate selected") annotate = st.form_submit_button(label="annotate based on selected") feature_list = [] selected_rules = ( ag["selected_rows"] if ag["selected_rows"] else ag["data"].to_dict(orient="records") ) for rule in selected_rules: positive_rules = ( rule["rules"].split(";") if "rules" in rule and rule["rules"].strip() else [] ) negated_rules = ( rule["negated_rules"].split(";") if "negated_rules" in rule and rule["negated_rules"].strip() else [] ) feature_list.append( [ positive_rules, negated_rules, classes, ] ) if evaluate or annotate: st.session_state.sens = [";".join(feat[0]) for feat in feature_list] with st.spinner("Evaluating rules..."): ( st.session_state.df_statistics, st.session_state.whole_accuracy, ) = evaluator.evaluate_feature( classes, feature_list, st.session_state.df, graph_format, ) st.success("Done!") if annotate: predicted_rules = [[] for _ in range(len(st.session_state.df))] st.session_state.applied_rules = st.session_state.sens for j, opt in enumerate(st.session_state.sens): predicted = st.session_state.df_statistics.iloc[j].Predicted predicted_indices = [ i for i, pred in enumerate(predicted) if pred == 1 ] for ind in predicted_indices: predicted_rules[ind].append(opt) annotate_df(predicted_rules) st.session_state.trained = False rerun() if submit: delete = delete_or_train == "delete" train = delete_or_train == "train" st.session_state.rows_to_delete = [ r["rules"] for r in ag["selected_rows"] ] st.session_state.rls_after_delete = [] negated_list = ag["data"]["negated_rules"].tolist() feature_list = [] for i, rule in enumerate(ag["data"]["rules"].tolist()): if not negated_list[i].strip(): feature_list.append([rule.split(";"), [], classes]) else: feature_list.append( [ rule.split(";"), negated_list[i].strip().split(";"), classes, ] ) if st.session_state.rows_to_delete and delete: for r in feature_list: if ";".join(r[0]) not in st.session_state.rows_to_delete: st.session_state.rls_after_delete.append(r) elif st.session_state.rows_to_delete and train: st.session_state.rls_after_delete = copy.deepcopy(feature_list) rule_to_train = st.session_state.rows_to_delete[0] if ";" in rule_to_train or ".*" not in rule_to_train: st.text( "Only single and underspecified rules can be trained!" ) else: selected_words = evaluator.train_feature( classes, rule_to_train, st.session_state.df, graph_format, ) for f in selected_words: st.session_state.rls_after_delete.append( [[f], [], classes] ) else: st.session_state.rls_after_delete = copy.deepcopy(feature_list) if st.session_state.rls_after_delete and not delete: save_after_modify(hand_made_rules, classes) if st.session_state.rows_to_delete and delete_or_train == "delete": with st.form("Delete form"): st.write( "The following rules will be deleted, do you accept it?" ) st.write(st.session_state.rows_to_delete) save_button = st.form_submit_button("Accept Delete") if save_button: save_after_modify(hand_made_rules, classes) add_rule_manually(classes, hand_made_rules) rank_and_suggest(classes, st.session_state.df, evaluator) if st.session_state.ml_feature: show_ml_feature(classes, hand_made_rules) with col2: if not st.session_state.df_statistics.empty and st.session_state.sens: if st.session_state.sens: nodes, option = rule_chooser() st.markdown( f"<span>Result of using all the rules: Precision: <b>{st.session_state.whole_accuracy[0]:.3f}</b>, \ Recall: <b>{st.session_state.whole_accuracy[1]:.3f}</b>, Fscore: <b>{st.session_state.whole_accuracy[2]:.3f}</b>, \ Support: <b>{st.session_state.whole_accuracy[3]}</b></span>", unsafe_allow_html=True, ) ( fn_graphs, fn_sentences, fp_graphs, fp_sentences, fscore, prec, predicted, recall, support, tp_graphs, tp_sentences, ) = extract_data_from_dataframe(option) st.markdown( f"<span>The rule's result: Precision: <b>{prec:.3f}</b>, Recall: <b>{recall:.3f}</b>, \ Fscore: <b>{fscore:.3f}</b>, Support: <b>{support}</b></span>", unsafe_allow_html=True, ) tp_fp_fn_choice = ( "Predicted", "True Positive graphs", "False Positive graphs", "False Negative graphs", ) tp_fp_fn = st.selectbox( "Select the option you want to view", tp_fp_fn_choice ) current_graph = None if tp_fp_fn == "Predicted": predicted_inds = [ i for i, pred in enumerate(predicted) if pred == 1 ] if st.button("Previous Predicted"): st.session_state.predicted_num = max( 0, st.session_state.predicted_num - 1 ) if st.button("Next Predicted"): st.session_state.predicted_num = min( st.session_state.predicted_num + 1, len(predicted_inds) - 1, ) if st.session_state.predicted_num > len(predicted_inds) - 1: st.session_state.predicted_inds = 0 st.markdown( f"<span><b>Sentence:</b> {st.session_state.df.iloc[predicted_inds[st.session_state.predicted_num]].text}</span>", unsafe_allow_html=True, ) st.markdown( f"<span><b>Gold label:</b> {st.session_state.df.iloc[predicted_inds[st.session_state.predicted_num]].label}</span>", unsafe_allow_html=True, ) st.text(f"Predicted: {len(predicted_inds)}") current_graph = st.session_state.df.iloc[ predicted_inds[st.session_state.predicted_num] ].graph st.graphviz_chart( to_dot( current_graph, marked_nodes=set(nodes), ), use_container_width=True, ) elif tp_fp_fn == "False Positive graphs": if fp_graphs: graph_viewer("FP", fp_graphs, fp_sentences, nodes) elif tp_fp_fn == "True Positive graphs": if tp_graphs: graph_viewer("TP", tp_graphs, tp_sentences, nodes) elif tp_fp_fn == "False Negative graphs": if fn_graphs: graph_viewer("FN", fn_graphs, fn_sentences, nodes) def get_args(): parser = argparse.ArgumentParser(description="") parser.add_argument("-t", "--train-data", type=str, required=True) parser.add_argument("-v", "--val-data", type=str) parser.add_argument( "-sr", "--suggested-rules", default=None, type=str, help="Rules extracted automatically from python. If not present, the UI will automatically train it.", ) parser.add_argument( "-hr", "--hand-rules", default=None, type=str, help="Rules extracted with the UI. If provided, the UI will load them.", ) parser.add_argument("-m", "--mode", default="supervised", type=str) parser.add_argument("-g", "--graph-format", default="fourlang", type=str) return parser.parse_args() def main(args): st.set_page_config(layout="wide") st.markdown( "<h1 style='text-align: center; color: black;'>Rule extraction framework</h1>", unsafe_allow_html=True, ) evaluator = init_evaluator() data = read_train(args.train_data) if args.val_data: val_data = read_val(args.val_data) graph_format = args.graph_format feature_path = args.suggested_rules hand_made_rules = args.hand_rules mode = args.mode if mode == "supervised": assert args.val_data supervised_mode( evaluator, data, val_data, graph_format, feature_path, hand_made_rules ) elif mode == "unsupervised": unsupervised_mode( evaluator, args.train_data, graph_format, feature_path, hand_made_rules ) if __name__ == "__main__": args = get_args() main(args)
1.851563
2
benchmark/lue/benchmark/export_results.py
computationalgeography/lue
2
12785064
import lue.data_model as ldm import numpy as np import csv def export_partition_shape_results( lue_dataset, csv_writer): # Assert that the number of array shapes for which experiments where # performed is 1 lue_array = lue_dataset.array.array assert lue_array.shape.value.nr_arrays == 1 # For each array shape for which experiments where performed lue_measurement = lue_dataset.benchmark.measurement array_shapes = lue_measurement.array_shape.value[:] assert np.all(array_shapes == array_shapes[0]) count = lue_measurement.duration.value.array_shape[:][0] lue_partition = lue_dataset.partition.partition partition_shape = lue_measurement.partition_shape.value[:] nr_partitions = lue_measurement.nr_partitions.value[:,-1] assert len(partition_shape) == len(nr_partitions) if count == 1: assert False, "Implement!" else: # Write the following columns: # - partition_shape # - nr_partitions # - {mean,std}_duration csv_writer.writerow([ # "partition_shape", "partition_size", "nr_partitions", "mean_duration", "std_duration", ]) mean_duration = \ lue_partition.properties["mean_duration_{}".format(0)].value[:] std_duration = \ lue_partition.properties["std_duration_{}".format(0)].value[:] for n in range(len(partition_shape)): csv_writer.writerow([ # "{},{}".format(*partition_shape[n]), np.prod(partition_shape[n]), nr_partitions[n], mean_duration[n], std_duration[n], ]) def export_strong_scaling_results( lue_dataset, csv_writer): lue_measurement = lue_dataset.benchmark.measurement count = lue_measurement.duration.value.array_shape[:][0] nr_workers = lue_measurement.nr_workers.value[:] sort_idxs = np.argsort(nr_workers) nr_workers = nr_workers[sort_idxs] if count == 1: # Write the following columns: # - nr_workers # - relative_speed_up # - relative_efficiency # - lups csv_writer.writerow([ "nr_workers", "duration", "relative_speed_up", "relative_efficiency", "lups", ]) lue_scaling = lue_dataset.benchmark.scaling duration = lue_measurement.duration.value[:][sort_idxs] relative_speed_up = lue_scaling.relative_speed_up.value[:][sort_idxs] relative_efficiency = lue_scaling.relative_efficiency.value[:][sort_idxs] lups = lue_scaling.lups.value[:][sort_idxs] for n in range(len(nr_workers)): csv_writer.writerow([ nr_workers[n], duration[n][0], relative_speed_up[n][0], relative_efficiency[n][0], lups[n][0], ]) else: # Write the following columns: # - nr_workers # - {mean,std}_duration # - {mean,std}_relative_efficiency # - {mean,std}_lups csv_writer.writerow([ "nr_workers", "mean_duration", "std_duration", "mean_relative_efficiency", "std_relative_efficiency", "mean_lups", "std_lups", ]) lue_scaling = lue_dataset.benchmark.scaling mean_duration = lue_scaling.mean_duration.value[:][sort_idxs] std_duration = lue_scaling.std_duration.value[:][sort_idxs] mean_relative_efficiency = lue_scaling.mean_relative_efficiency.value[:][sort_idxs] std_relative_efficiency = lue_scaling.std_relative_efficiency.value[:][sort_idxs] mean_lups = lue_scaling.mean_lups.value[:][sort_idxs] std_lups = lue_scaling.std_lups.value[:][sort_idxs] for n in range(len(nr_workers)): csv_writer.writerow([ nr_workers[n], mean_duration[n], std_duration[n], mean_relative_efficiency[n], std_relative_efficiency[n], mean_lups[n], std_lups[n], ]) def export_weak_scaling_results( lue_dataset, csv_writer): lue_measurement = lue_dataset.benchmark.measurement count = lue_measurement.duration.value.array_shape[:][0] nr_workers = lue_measurement.nr_workers.value[:] sort_idxs = np.argsort(nr_workers) nr_workers = nr_workers[sort_idxs] if count == 1: # Write the following columns: # - nr_workers # - duration # - relative_efficiency # - lups csv_writer.writerow([ "nr_workers", "duration", "relative_efficiency", "lups", ]) lue_scaling = lue_dataset.benchmark.scaling duration = lue_measurement.duration.value[:] relative_efficiency = lue_scaling.relative_efficiency.value[:][sort_idxs] lups = lue_scaling.lups.value[:][sort_idxs] for n in range(len(nr_workers)): csv_writer.writerow([ nr_workers[n], duration[n][0], relative_efficiency[n][0], lups[n][0], ]) else: # Write the following columns: # - nr_workers # - {mean,std}_duration # - {mean,std}_relative_efficiency # - {mean,std}_lups csv_writer.writerow([ "nr_workers", "mean_duration", "std_duration", "mean_relative_efficiency", "std_relative_efficiency", "mean_lups", "std_lups", ]) lue_scaling = lue_dataset.benchmark.scaling mean_duration = lue_scaling.mean_duration.value[:][sort_idxs] std_duration = lue_scaling.std_duration.value[:][sort_idxs] mean_relative_efficiency = lue_scaling.mean_relative_efficiency.value[:][sort_idxs] std_relative_efficiency = lue_scaling.std_relative_efficiency.value[:][sort_idxs] mean_lups = lue_scaling.mean_lups.value[:][sort_idxs] std_lups = lue_scaling.std_lups.value[:][sort_idxs] for n in range(len(nr_workers)): csv_writer.writerow([ nr_workers[n], mean_duration[n], std_duration[n], mean_relative_efficiency[n], std_relative_efficiency[n], mean_lups[n], std_lups[n], ]) def export_results( lue_dataset_pathname, csv_file_pathname): lue_dataset = ldm.open_dataset(lue_dataset_pathname, "r") kind = lue_dataset.benchmark.meta_information.kind.value[:][0] with open(csv_file_pathname, "w") as csv_file: csv_writer = csv.writer(csv_file) export_by_kind = { "partition_shape": export_partition_shape_results, "strong_scaling": export_strong_scaling_results, "weak_scaling": export_weak_scaling_results, } export_by_kind[kind](lue_dataset, csv_writer)
2.3125
2
src/playbacker/clock.py
vrslev/playbacker
1
12785065
import time from dataclasses import dataclass, field from threading import Event, Thread from typing import Callable, NoReturn @dataclass class Clock: callback: Callable[[], None] = field(repr=False) thread: Thread = field(init=False, repr=False) started: Event = field(default_factory=Event, init=False, repr=False) lag: float = field(init=False) previous_time: float = field(init=False, repr=False) def __post_init__(self) -> None: self.thread = Thread(daemon=True, target=self.run) self.thread.start() def start(self) -> None: self.previous_time = time.monotonic() self.started.set() def pause(self) -> None: self.started.clear() def destroy(self) -> None: self.thread.join(0) def _sleep(self): result = self.lag + self.previous_time - time.monotonic() sleep_for = result * 0.925 if result > 0 else 0 time.sleep(sleep_for) def _tick(self) -> None: self._sleep() self.previous_time += self.lag self.callback() def _run_once(self) -> None: self.started.wait() while self.started.is_set(): self._tick() def run(self) -> NoReturn: while True: self._run_once()
2.859375
3
examples/varying_model_parameters/scan_torsions/scan_torsions.py
shirtsgroup/foldamers
1
12785066
import os from statistics import mean import numpy as np import matplotlib.pyplot as pyplot from simtk import unit from simtk.openmm.app.pdbfile import PDBFile from foldamers.cg_model.cgmodel import CGModel from foldamers.parameters.reweight import * from foldamers.thermo.calc import * from foldamers.ensembles.ens_build import * from cg_openmm.simulation.rep_exch import * from cg_openmm.simulation.tools import * # Job settings scan_sc_bb_bb_sc_torsions = True calculate_dQ = True calculate_free_energies = True evaluate_heat_capacity = True output_directory = "output" if not os.path.exists(output_directory): os.mkdir(output_directory) # Number of grid points to scan (around initial angle definition) grid_points = 3 # Configure Yank (replica exchange) simulation settings print_frequency = 5 # Number of steps to skip when printing output total_simulation_time = 500.0 * unit.picosecond simulation_time_step = 5.0 * unit.femtosecond number_replicas = 30 min_temp = 1.0 * unit.kelvin max_temp = 400.0 * unit.kelvin temperature_list = get_temperature_list(min_temp, max_temp, number_replicas) # Model settings polymer_length = 12 backbone_lengths = [1] sidechain_lengths = [1] sidechain_positions = [0] include_bond_forces = False include_bond_angle_forces = True include_nonbonded_forces = True include_torsion_forces = True constrain_bonds = True # Bond definitions bond_length = 7.5 * unit.angstrom bond_lengths = { "bb_bb_bond_length": bond_length, "bb_sc_bond_length": bond_length, "sc_sc_bond_length": bond_length, } bond_force_constant = 0 * unit.kilocalorie_per_mole / unit.nanometer / unit.nanometer bond_force_constants = { "bb_bb_bond_k": bond_force_constant, "bb_sc_bond_k": bond_force_constant, "sc_sc_bond_k": bond_force_constant, } # Particle definitions mass = 100.0 * unit.amu masses = {"backbone_bead_masses": mass, "sidechain_bead_masses": mass} r_min = 3.0 * bond_length # Lennard-Jones potential r_min sigma = r_min / (2.0 ** (1 / 6)) # Factor of /(2.0**(1/6)) is applied to convert r_min to sigma sigmas = {"bb_sigma": sigma, "sc_sigma": sigma} epsilon = 0.05 * unit.kilocalorie_per_mole epsilons = {"bb_eps": epsilon, "sc_eps": epsilon} # Bond angle definitions bond_angle_force_constant = 0.0001 * unit.kilocalorie_per_mole / unit.radian / unit.radian bond_angle_force_constants = { "bb_bb_bb_angle_k": bond_angle_force_constant, "bb_bb_sc_angle_k": bond_angle_force_constant, } bb_bb_bb_equil_bond_angle = 120.0 * ( 3.14 / 180.0 ) # OpenMM expects angle definitions in units of radians bb_bb_sc_equil_bond_angle = 120.0 * (3.14 / 180.0) equil_bond_angles = { "bb_bb_bb_angle_0": bb_bb_bb_equil_bond_angle, "bb_bb_sc_angle_0": bb_bb_sc_equil_bond_angle, } # Torsion angle definitions (Used to establish a scanning range below) torsion_force_constant = 0.01 * unit.kilocalorie_per_mole / unit.radian / unit.radian if scan_sc_bb_bb_sc_torsions == True: torsion_force_constants = { "bb_bb_bb_bb_torsion_k": torsion_force_constant, "sc_bb_bb_sc_torsion_k": torsion_force_constant, } bb_bb_bb_bb_equil_torsion_angle = 78.0 * ( 3.14 / 180.0 ) # OpenMM defaults to units of radians for angle definitions sc_bb_bb_sc_equil_torsion_angle = 120.0 * (3.14 / 180.0) equil_torsion_angles = { "bb_bb_bb_bb_torsion_0": bb_bb_bb_bb_equil_torsion_angle, "sc_bb_bb_sc_torsion_0": sc_bb_bb_sc_equil_torsion_angle, } torsion_periodicities = {"bb_bb_bb_bb_period": 1, "sc_bb_bb_sc_period": 1} else: torsion_force_constants = {"bb_bb_bb_bb_torsion_k": torsion_force_constant} bb_bb_bb_bb_equil_torsion_angle = 78.0 * ( 3.14 / 180.0 ) # OpenMM defaults to units of radians for angle definitions equil_torsion_angles = {"bb_bb_bb_bb_torsion_0": bb_bb_bb_bb_equil_torsion_angle} torsion_periodicities = {"bb_bb_bb_bb_period": 1} # Get initial positions from local file positions = PDBFile("helix.pdb").getPositions() # Build a coarse grained model cgmodel = CGModel( polymer_length=polymer_length, backbone_lengths=backbone_lengths, sidechain_lengths=sidechain_lengths, sidechain_positions=sidechain_positions, masses=masses, sigmas=sigmas, epsilons=epsilons, bond_lengths=bond_lengths, bond_force_constants=bond_force_constants, bond_angle_force_constants=bond_angle_force_constants, torsion_force_constants=torsion_force_constants, equil_bond_angles=equil_bond_angles, equil_torsion_angles=equil_torsion_angles, torsion_periodicities=torsion_periodicities, include_nonbonded_forces=include_nonbonded_forces, include_bond_forces=include_bond_forces, include_bond_angle_forces=include_bond_angle_forces, include_torsion_forces=include_torsion_forces, constrain_bonds=constrain_bonds, positions=positions, ) # Run test simulations (NVT) with this coarse-grained model at the minimum and maximum temperatures # to make sure the parameters are reasonable before attempting replica exchange simulations # (If high-T simulations fail then we need to modify the model parameters) test_simulation_time = 50.0 * unit.picosecond print_frequency = 5 temperature = temperature_list[0] output_directory = str("test_" + str(round(temperature._value, 1))) if not os.path.exists(output_directory): os.mkdir(output_directory) run_simulation( cgmodel, output_directory, test_simulation_time, simulation_time_step, temperature, print_frequency, ) temperature = temperature_list[-1] output_directory = str("test_" + str(round(temperature._value, 1))) if not os.path.exists(output_directory): os.mkdir(output_directory) run_simulation( cgmodel, output_directory, test_simulation_time, simulation_time_step, temperature, print_frequency, ) # Reset the output directory output_directory = "output" if not os.path.exists(output_directory): os.mkdir(output_directory) # Create a list of the torsion angles that we will investigate in our parameter scan bb_bb_bb_bb_equil_torsion_angles = [ float(bb_bb_bb_bb_equil_torsion_angle + i * 0.05) for i in range(-grid_points, grid_points, 1) ] if scan_sc_bb_bb_sc_torsions == True: sc_bb_bb_sc_equil_torsion_angles = [ float(sc_bb_bb_sc_equil_torsion_angle + i * 0.05) for i in range(-grid_points, grid_points, 1) ] else: sc_bb_bb_sc_equil_torsion_angles = [0.0] if calculate_dQ: # Set parameters for evaluating native contacts native_structure_contact_distance_cutoff = 1.00 * cgmodel.get_sigma( 0 ) # This distance cutoff determines which nonbonded interactions are considered 'native' contacts native_fraction_cutoff = ( 0.95 # The threshold fraction of native contacts above which a pose is considered 'native' ) nonnative_fraction_cutoff = 0.95 # The threshold fraction of native contacts below which a pose is considered 'nonnative' native_ensemble_size = 10 nonnative_ensemble_size = 10 decorrelate = True # Build arrays to store data for each model parameter scan/grid point dQ_list = [] df_ij_list = [] ddf_ij_list = [] Delta_u_list = [] dDelta_u_list = [] Delta_s_list = [] dDelta_s_list = [] C_v_list = [] dC_v_list = [] # This is where we start evaluating the properties of models with different equilibrium torsion angles for sc_bb_bb_sc_equil_torsion_angle in sc_bb_bb_sc_equil_torsion_angles: for bb_bb_bb_bb_equil_torsion_angle in bb_bb_bb_bb_equil_torsion_angles: if scan_sc_bb_bb_sc_torsions == True: equil_torsion_angles = { "bb_bb_bb_bb_torsion_0": bb_bb_bb_bb_equil_torsion_angle, "sc_bb_bb_sc_torsion_0": sc_bb_bb_sc_equil_torsion_angle, } else: equil_torsion_angles = {"bb_bb_bb_bb_torsion_0": bb_bb_bb_bb_equil_torsion_angle} # Build a coarse grained model that has the torsion parameters for this grid point. positions = PDBFile("helix.pdb").getPositions() cgmodel = CGModel( polymer_length=polymer_length, backbone_lengths=backbone_lengths, sidechain_lengths=sidechain_lengths, sidechain_positions=sidechain_positions, masses=masses, sigmas=sigmas, epsilons=epsilons, bond_lengths=bond_lengths, bond_force_constants=bond_force_constants, bond_angle_force_constants=bond_angle_force_constants, torsion_force_constants=torsion_force_constants, equil_bond_angles=equil_bond_angles, equil_torsion_angles=equil_torsion_angles, torsion_periodicities=torsion_periodicities, include_nonbonded_forces=include_nonbonded_forces, include_bond_forces=include_bond_forces, include_bond_angle_forces=include_bond_angle_forces, include_torsion_forces=include_torsion_forces, constrain_bonds=constrain_bonds, positions=positions, ) if scan_sc_bb_bb_sc_torsions == True: output_data = str( str(output_directory) + "/torsions_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_" + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + ".nc" ) file_name = str( str(output_directory) + "/re_min_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_" + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + ".pdb" ) else: output_data = str( str(output_directory) + "/torsions_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + ".nc" ) file_name = str( str(output_directory) + "/re_min_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + ".pdb" ) if os.path.exists(file_name): print("\n") print("Reading existing simulation data for a coarse grained model") print( "with bb_bb_bb_bb torsion angles of " + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + " degrees." ) if scan_sc_bb_bb_sc_torsions == True: print( "and sc_bb_bb_sc torsion angles of " + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + " degrees." ) print("\n") # Search for existing data, and reading it if possible replica_energies, replica_positions, replica_states = read_replica_exchange_data( system=cgmodel.system, topology=cgmodel.topology, temperature_list=temperature_list, output_data=output_data, print_frequency=print_frequency, ) # Find the lowest energy pose for this model native_structure = PDBFile(file_name).getPositions() else: print("\n") print("Performing simulations for a coarse grained model") print( "with bb_bb_bb_bb torsion angles of " + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + " degrees." ) if scan_sc_bb_bb_sc_torsions == True: print( "and sc_bb_bb_sc torsion angles of " + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + " degrees." ) print("\n") # Run a replica exchange simulation with this cgmodel replica_energies, replica_positions, replica_states = run_replica_exchange( cgmodel.topology, cgmodel.system, cgmodel.positions, temperature_list=temperature_list, simulation_time_step=simulation_time_step, total_simulation_time=total_simulation_time, print_frequency=print_frequency, output_data=output_data, ) native_structure = get_native_structure( replica_positions, replica_energies, temperature_list ) file = open(file_name, "w") PDBFile.writeFile(cgmodel.topology, native_structure, file=file) file.close() if calculate_dQ: native_structure_contact_distance_cutoff = 1.15 * cgmodel.get_sigma( 0 ) # This distance cutoff determines which nonbonded interactions are considered 'native' contacts native_fraction_cutoff = 0.95 # The threshold fraction of native contacts above which a pose is considered 'native' nonnative_fraction_cutoff = 0.95 # The threshold fraction of native contacts below which a pose is considered 'nonnative' native_ensemble_size = 10 nonnative_ensemble_size = 100 decorrelate = True ( native_ensemble, native_ensemble_energies, nonnative_ensemble, nonnative_ensemble_energies, ) = get_ensembles_from_replica_positions( cgmodel, replica_positions, replica_energies, temperature_list, decorrelate=decorrelate, native_fraction_cutoff=native_fraction_cutoff, nonnative_fraction_cutoff=nonnative_fraction_cutoff, native_structure_contact_distance_cutoff=native_structure_contact_distance_cutoff, native_ensemble_size=native_ensemble_size, nonnative_ensemble_size=nonnative_ensemble_size, ) if ( len(native_ensemble_energies) != native_ensemble_size or len(nonnative_ensemble_energies) != nonnative_ensemble_size ): print( "ERROR: attempt to generate native and nonnative ensembles was unsuccessful." ) print( str(len(native_ensemble_energies)) + " native ensemble members were generated (" + str(native_ensemble_size) + " were requested)," ) print( "and " + str(len(nonnative_ensemble_energies)) + " non-native ensemble members were generated (" + str(nonnative_ensemble_size) + " were requested)." ) print( "Try adjusting the 'native_structure_distance_cutoff' parameter (current value=" + str(native_structure_contact_distance_cutoff.__div__(cgmodel.get_sigma(0))) + "*'bb_sigma')," ) print( "and the 'nonnative_fraction_cutoff' parameter (current value=" + str(nonnative_fraction_cutoff) + ")" ) print("to see if either of these approaches fixes the problem.") exit() if scan_sc_bb_bb_sc_torsions == True: nonnative_ensemble_directory = str( str(output_directory) + "/ens_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_" + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + "_nonnative" ) native_ensemble_directory = str( str(output_directory) + "/ens_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_" + str(round(sc_bb_bb_sc_equil_torsion_angle * (180.0 / 3.14), 1)) + "_native" ) else: nonnative_ensemble_directory = str( str(output_directory) + "/ens_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_nonnative" ) native_ensemble_directory = str( str(output_directory) + "/ens_" + str(round(bb_bb_bb_bb_equil_torsion_angle * (180.0 / 3.14), 1)) + "_native" ) # We build an ensemble of nonnative poses for energetic comparison with the native pose. if os.path.exists(nonnative_ensemble_directory): nonnative_ensemble, nonnative_ensemble_energies = get_ensemble_data( cgmodel, nonnative_ensemble_directory ) if len(nonnative_ensemble) != nonnative_ensemble_size: print( "ERROR: " + str(len(nonnative_ensemble_energies)) + " nonnative poses were found in existing output folders, but " + str(nonnative_ensemble_size) + " poses were requested." ) print( "This probably means that the requested ensemble size changed since the script was last run." ) exit() else: os.mkdir(nonnative_ensemble_directory) for pose in nonnative_ensemble: cgmodel.positions = pose write_ensemble_pdb(cgmodel, ensemble_directory=nonnative_ensemble_directory) nonnative_ensemble_Q = [] for pose in nonnative_ensemble: Q = fraction_native_contacts(cgmodel, pose, native_structure) nonnative_ensemble_Q.append(Q) nonnative_ensemble_Q = np.array([Q for Q in nonnative_ensemble_Q]) mean_nonnative_contacts = mean(nonnative_ensemble_Q) print( "The mean fraction of native contacts for this model is: " + str(mean_nonnative_contacts) ) # We build an ensemble of native poses in order to understand the energy distribution around the folded state. if os.path.exists(native_ensemble_directory): native_ensemble, native_ensemble_energies = get_ensemble_data( cgmodel, native_ensemble_directory ) if len(native_ensemble_energies) != native_ensemble_size: print( "ERROR: " + str(len(native_ensemble_energies)) + " native poses were found in existing output folders, but " + str(native_ensemble_size) + " poses were requested." ) print( "This probably means that the requested ensemble size changed since the script was last run." ) exit() else: os.mkdir(native_ensemble_directory) for pose in native_ensemble: cgmodel.positions = pose write_ensemble_pdb(cgmodel, ensemble_directory=native_ensemble_directory) # Get the average change in the fraction of native contacts during folding (dQ), # calculated as the difference between the average fraction of native contacts # in the nonnative ensemble. # A large dQ means the model/structure has a stable folded state. # A small dQ means the model/structure does not have a stable folded state. dQ = 1.0 - mean_nonnative_contacts dQ_list.append(dQ) if calculate_free_energies: num_intermediate_states = 1 mbar, E_kn, E_expect, dE_expect, new_temp_list = get_mbar_expectation( replica_energies, temperature_list, num_intermediate_states ) df_ij, ddf_ij = get_free_energy_differences(mbar) df_ij_list.append(df_ij) ddf_ij_list.append(ddf_ij) Delta_s, dDelta_s = get_entropy_differences(mbar) Delta_s_list.append(Delta_s) dDelta_s_list.append(dDelta_s) Delta_u, dDelta_u = get_enthalpy_differences(mbar) Delta_u_list.append(Delta_u) dDelta_u_list.append(dDelta_u) if evaluate_heat_capacity: C_v, dC_v, new_temperature_list = get_heat_capacity( replica_energies, temperature_list, num_intermediate_states=1 ) C_v_list.append(C_v) dC_v_list.append(dC_v) if scan_sc_bb_bb_sc_torsions == True: file_name = "dQ_for_variable_equil_torsion_angles.png" figure = pyplot.figure(1) bb_bb_bb_bb_equil_torsion_angles = np.array( [float(equil_torsion_angle) for equil_torsion_angle in bb_bb_bb_bb_equil_torsion_angles] ) sc_bb_bb_sc_equil_torsion_angles = np.array( [float(equil_torsion_angle) for equil_torsion_angle in sc_bb_bb_sc_equil_torsion_angles] ) x = np.unique(bb_bb_bb_bb_equil_torsion_angles * (180.0 / 3.14)) y = np.unique(sc_bb_bb_sc_equil_torsion_angles * (180.0 / 3.14)) X, Y = np.meshgrid(x, y) Z = dQ_list.reshape(len(x), len(y)) pyplot.xlabel(r"$ \alpha_{0}^{BB-BB-BB-BB} $ ( Degrees )") pyplot.ylabel(r"$ \alpha_{0}^{SC-BB-BB-SC} $ ( Degrees )") pyplot.title("dQ (Change in native contacts during folding)") pyplot.pcolormesh(X, Y, Z) pyplot.colorbar() pyplot.savefig(file_name) pyplot.show() pyplot.close() if calculate_dQ: file_name = "dQ_for_variable_bb_bb_bb_bb_torsion_angle.png" figure = pyplot.figure(1) x = np.array([float(angle * (180.0 / 3.14)) for angle in bb_bb_bb_bb_equil_torsion_angles]) y = np.array([float(dQ) for dQ in dQ_list]) pyplot.xlabel(r"$ \alpha_{0}^{BB-BB-BB-BB} $ ( Degrees )") pyplot.ylabel(r"$\Delta$Q") pyplot.title(r"$\Delta$Q (Change in native contacts) during folding") pyplot.plot(x, y) pyplot.savefig(file_name) pyplot.show() pyplot.close() if calculate_free_energies: file_name = "free_energies_for_variable_bb_bb_bb_bb_torsion_angle.png" figure = pyplot.figure(1) legend_title = r"$ \alpha_{0}^{BB-BB-BB-BB} $ (Degrees)" legend_labels = np.array( [float(round(angle * (180.0 / 3.14), 1)) for angle in bb_bb_bb_bb_equil_torsion_angles] ) temperatures = np.array([temperature for temperature in new_temp_list]) index = 0 for df_ij, ddf_ij in zip(df_ij_list, ddf_ij_list): df_ij = np.array([df_ij[i][0] for i in range(len(df_ij))]) ddf_ij = np.array([ddf_ij[i][0] for i in range(len(ddf_ij))]) (line,) = pyplot.plot(temperatures, df_ij) line.set_label(legend_labels[index]) index = index + 1 pyplot.xlabel("Temperature (Kelvin)") pyplot.ylabel(r"Dimensionless free energy differences $\mathit{F}$") pyplot.title(r"$\mathit{F}$ for variable $\alpha_{0}^{BB-BB-BB-BB}$") pyplot.legend(legend_labels) pyplot.savefig(file_name) pyplot.show() pyplot.close() file_name = "entropies_for_variable_bb_bb_bb_bb_torsion_angle.png" figure = pyplot.figure(1) legend_title = r"$ \alpha_{0}^{BB-BB-BB-BB} $ (Degrees)" legend_labels = np.array( [float(round(angle * (180.0 / 3.14), 1)) for angle in bb_bb_bb_bb_equil_torsion_angles] ) temperatures = np.array([temperature for temperature in new_temp_list]) index = 0 for Delta_s in Delta_s_list: delta_s = np.array([Delta_s[i][0] for i in range(len(Delta_s))]) (line,) = pyplot.plot(temperatures, delta_s) line.set_label(legend_labels[index]) index = index + 1 pyplot.xlabel("Temperature (Kelvin)") pyplot.ylabel("Entropy differences ($\Delta$S)") pyplot.title(r"Entropy for variable $\alpha_{0}^{BB-BB-BB-BB}$") pyplot.legend(legend_labels) pyplot.savefig(file_name) pyplot.show() pyplot.close() if evaluate_heat_capacity: file_name = "heat_capacity_for_variable_bb_bb_bb_bb_torsion_angle.png" figure = pyplot.figure(1) legend_title = r"$ \alpha_{0}^{BB-BB-BB-BB} $ (Degrees)" legend_labels = np.array( [float(round(angle * (180.0 / 3.14), 1)) for angle in bb_bb_bb_bb_equil_torsion_angles] ) temperatures = np.array([temperature for temperature in new_temp_list]) index = 0 for C_v, dC_v in zip(C_v_list, dC_v_list): C_v = np.array([C_v[i] for i in range(len(C_v))]) dC_v = np.array([dC_v[i] for i in range(len(dC_v))]) pyplot.errorbar(temperatures, C_v, yerr=dC_v, figure=figure, label=legend_labels[index]) index = index + 1 pyplot.xlabel("Temperature ( Kelvin )") pyplot.ylabel(r"C$_{v}$ ( kcal/mol * Kelvin )") pyplot.title(r"Heat capacity for variable $\epsilon$") pyplot.legend(legend_labels) pyplot.savefig(file_name) pyplot.show() pyplot.close() exit()
1.929688
2
extract_pin_function_from_liberty.py
hrshishym/ExtractPinFunctionFromLibertySource
0
12785067
<reponame>hrshishym/ExtractPinFunctionFromLibertySource<filename>extract_pin_function_from_liberty.py #!/usr/bin/env python ### Setting cell_attributes = ["clock_gating_integrated_cell"] ff_attributes = [] pin_attributes = ["direction", "clock", "function", "state_function"] import os import sys import re sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'modules')) import argparse parser = argparse.ArgumentParser() parser.add_argument("input") parser.add_argument("-d", "--debug", action="store_true") args = parser.parse_args() from liberty.parser import parse_liberty tdata = re.sub("\\\\\n", "", open(args.input).read()) tlib = parse_liberty(tdata) if args.debug: import pprint pprint.pprint(tlib) # library (sxlib013) { print("library ({}) {{".format(tlib.args[0])) for eachlib in tlib.groups: if eachlib.group_name != "cell": continue cellname = eachlib.args[0] # cell(a2_x2) { /* 2008-01-10:21h05 */ print("cell({}) {{".format(cellname)) if args.debug: print("==") pprint.pprint(eachlib) print("==") pprint.pprint(eachlib.attributes) print("==") ### Print cell attributes for eachattr in eachlib.attributes: for eachattr in cell_attributes: if eachattr in eachlib.attributes.keys(): print(" {} : {} ;".format(eachattr, eachlib.attributes[eachattr])) ### Print sub group for eachgroup in eachlib.groups: if args.debug: print("====") pprint.pprint(eachgroup) print("====") if eachgroup.group_name == "ff": # ff print(" ff({}) {{ ".format(",".join(eachgroup.args))) for eachkey in eachgroup.attributes.keys(): print(" {} : {} ;".format(eachkey, eachgroup.attributes[eachkey])) print(" }") elif eachgroup.group_name == "pin": ## pin print(" pin({}) {{".format(eachgroup.args[0])) for eachattr in pin_attributes: if eachattr in eachgroup.attributes.keys(): print(" {} : {} ;".format(eachattr, eachgroup.attributes[eachattr])) print(" }") elif eachgroup.group_name == "statetable": ## statetable tarr = [] for i in eachgroup.args: tarr.append(str(i)) print(" statetable( {} ) {{".format(" , ".join(tarr))) if "table" in eachgroup.attributes.keys(): print(" {} : {} ;".format("table", re.sub(",", ", \\\n", str(eachgroup.attributes["table"])))) print(" }") print("}") print("}")
2.484375
2
PyPoll/Resources/main.py
alcazar007/python-challenge
0
12785068
''' ## PyPoll ![Vote-Counting](Images/Vote_counting.png) * In this challenge, you are tasked with helping a small, rural town modernize its vote-counting process. (Up until now, Uncle Cleetus had been trustfully tallying them one-by-one, but unfortunately, his concentration isn't what it used to be.) * You will be give a set of poll data called [election_data.csv](PyPoll/Resources/election_data.csv). The dataset is composed of three columns: `Voter ID`, `County`, and `Candidate`. Your task is to create a Python script that analyzes the votes and calculates each of the following: * The total number of votes cast * A complete list of candidates who received votes * The percentage of votes each candidate won * The total number of votes each candidate won * The winner of the election based on popular vote. * As an example, your analysis should look similar to the one below: ```text Election Results ------------------------- Total Votes: 3521001 ------------------------- Khan: 63.000% (2218231) Correy: 20.000% (704200) Li: 14.000% (492940) O'Tooley: 3.000% (105630) ------------------------- Winner: Khan ------------------------- ``` * In addition, your final script should both print the analysis to the terminal and export a text file with the results. ''' # Imports import os, csv # CSV Path data_file = os.path.join("election_data.csv") # Store Objects database_total_votes = [] candidates_with_votes = [] store_candidates_votes = [] winner = [] # Variables total_votes = 0 vote_percents = 0 # Open csv with reaser, header, and F statement with open (data_file, newline="", encoding="UTF=8") as csv_file: csv_reader = csv.reader(csv_file, delimiter=",") csv_header = next(csv_file) # Loop through the data to variables for row in csv_reader: total_votes = total_votes +1 database_total_votes = total_votes print(database_total_votes) # A complete list of candidates who received votes `Voter ID`, `County`, and `Candidate` candidates_with_votes.append(row[2]) candidates_with_votes = candidates_with_votes print(candidates_with_votes)
3.703125
4
mantabot/core/private.py
spectras/turbot
2
12785069
<gh_stars>1-10 import asyncio class PrivateChat(object): """ A direct messaging channel to a specific user There should be only one per user per bot. The intent is to provide a way for multiple plugins to claim, acquire and release the private chat, preventing several of them from interacting simultaneously and confusing the user. """ class BusyError(RuntimeError): pass def __init__(self, client, user): self.client = client self.user = user self.channel = None self.task = None async def wait_reply(self, timeout=None): """ Wait until the user types something or specified time elapses (in seconds) Calling task must have acquired ownership of the channel first. """ assert self.task == asyncio.Task.current_task() def check(msg): return msg.channel == self.channel and msg.author == self.user try: return await self.client.wait_for('message', check=check, timeout=timeout) except asyncio.TimeoutError: return None async def send(self, *args, **kwargs): """ Send a message to the user """ return await self.user.send(*args, **kwargs) async def __aenter__(self): """ Acquire ownership of the private chat """ if self.task: raise self.BusyError() self.task = asyncio.Task.current_task() if not self.channel: self.channel = await self.user.create_dm() return self async def __aexit__(self, exc_type, exc_value, traceback): """ Release ownership of the private chat """ self.task = None
2.8125
3
lib/TestTaxonAPI/TestTaxonAPIImpl.py
scanon/testtaxonapi
0
12785070
<reponame>scanon/testtaxonapi #BEGIN_HEADER from biokbase.workspace.client import Workspace as workspaceService import doekbase.data_api.taxonomy.taxon.api from doekbase.data_api import cache import logging #END_HEADER class TestTaxonAPI: ''' Module Name: TestTaxonAPI Module Description: A KBase module: test_taxon_api ''' ######## WARNING FOR GEVENT USERS ####### # Since asynchronous IO can lead to methods - even the same method - # interrupting each other, you must be *very* careful when using global # state. A method could easily clobber the state set by another while # the latter method is running. ######################################### VERSION = "0.0.1" GIT_URL = "https://github.com/scanon/testtaxonapi" GIT_COMMIT_HASH = "a76b28a7e461132eb5227a7465dc8c37fb01b839" #BEGIN_CLASS_HEADER #END_CLASS_HEADER # config contains contents of config file in a hash or None if it couldn't # be found def __init__(self, config): #BEGIN_CONSTRUCTOR self.workspaceURL = config['workspace-url'] self.shockURL = config['shock-url'] self.logger = logging.getLogger() log_handler = logging.StreamHandler() log_handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(message)s")) self.logger.addHandler(log_handler) self.services = { "workspace_service_url": self.workspaceURL, "shock_service_url": self.shockURL, } try: cache_dir = config['cache_dir'] except: cache_dir = None try: redis_host = config['redis_host'] redis_port = config['redis_port'] except: redis_host = None redis_port = None if redis_host is not None and redis_port is not None: self.logger.info("Activating REDIS at host:{} port:{}".format(redis_host, redis_port)) cache.ObjectCache.cache_class = cache.RedisCache cache.ObjectCache.cache_params = {'redis_host': redis_host, 'redis_port': redis_port} elif cache_dir is not None: self.logger.info("Activating File") cache.ObjectCache.cache_class = cache.DBMCache cache.ObjectCache.cache_params = {'path':cache_dir,'name':'data_api'} else: self.logger.info("Not activating REDIS") #END_CONSTRUCTOR pass def get_parent(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_parent taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_parent(ref_only=True) #END get_parent # At some point might do deeper type checking... if not isinstance(returnVal, basestring): raise ValueError('Method get_parent return value ' + 'returnVal is not type basestring as required.') # return the results return [returnVal] def get_children(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_children taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_children(ref_only=True) #END get_children # At some point might do deeper type checking... if not isinstance(returnVal, list): raise ValueError('Method get_children return value ' + 'returnVal is not type list as required.') # return the results return [returnVal] def get_genome_annotations(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_genome_annotations taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_genome_annotations(ref_only=True) #END get_genome_annotations # At some point might do deeper type checking... if not isinstance(returnVal, list): raise ValueError('Method get_genome_annotations return value ' + 'returnVal is not type list as required.') # return the results return [returnVal] def get_scientific_lineage(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_scientific_lineage taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_scientific_lineage() #END get_scientific_lineage # At some point might do deeper type checking... if not isinstance(returnVal, list): raise ValueError('Method get_scientific_lineage return value ' + 'returnVal is not type list as required.') # return the results return [returnVal] def get_scientific_name(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_scientific_name taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_scientific_name() #END get_scientific_name # At some point might do deeper type checking... if not isinstance(returnVal, basestring): raise ValueError('Method get_scientific_name return value ' + 'returnVal is not type basestring as required.') # return the results return [returnVal] def get_taxonomic_id(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_taxonomic_id taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_taxonomic_id() #END get_taxonomic_id # At some point might do deeper type checking... if not isinstance(returnVal, int): raise ValueError('Method get_taxonomic_id return value ' + 'returnVal is not type int as required.') # return the results return [returnVal] def get_kingdom(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_kingdom taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_kingdom() #END get_kingdom # At some point might do deeper type checking... if not isinstance(returnVal, basestring): raise ValueError('Method get_kingdom return value ' + 'returnVal is not type basestring as required.') # return the results return [returnVal] def get_domain(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_domain taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_domain() #END get_domain # At some point might do deeper type checking... if not isinstance(returnVal, basestring): raise ValueError('Method get_domain return value ' + 'returnVal is not type basestring as required.') # return the results return [returnVal] def get_genetic_code(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_genetic_code taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_genetic_code() #END get_genetic_code # At some point might do deeper type checking... if not isinstance(returnVal, int): raise ValueError('Method get_genetic_code return value ' + 'returnVal is not type int as required.') # return the results return [returnVal] def get_aliases(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_aliases taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_aliases() #END get_aliases # At some point might do deeper type checking... if not isinstance(returnVal, list): raise ValueError('Method get_aliases return value ' + 'returnVal is not type list as required.') # return the results return [returnVal] def get_info(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_info taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_info() #END get_info # At some point might do deeper type checking... if not isinstance(returnVal, dict): raise ValueError('Method get_info return value ' + 'returnVal is not type dict as required.') # return the results return [returnVal] def get_history(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_history taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_history() #END get_history # At some point might do deeper type checking... if not isinstance(returnVal, list): raise ValueError('Method get_history return value ' + 'returnVal is not type list as required.') # return the results return [returnVal] def get_provenance(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_provenance taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_provenance() #END get_provenance # At some point might do deeper type checking... if not isinstance(returnVal, list): raise ValueError('Method get_provenance return value ' + 'returnVal is not type list as required.') # return the results return [returnVal] def get_id(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_id taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_id() #END get_id # At some point might do deeper type checking... if not isinstance(returnVal, int): raise ValueError('Method get_id return value ' + 'returnVal is not type int as required.') # return the results return [returnVal] def get_name(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_name taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_name() #END get_name # At some point might do deeper type checking... if not isinstance(returnVal, basestring): raise ValueError('Method get_name return value ' + 'returnVal is not type basestring as required.') # return the results return [returnVal] def get_version(self, ctx, ref): # ctx is the context object # return variables are: returnVal #BEGIN get_version taxon_api = doekbase.data_api.taxonomy.taxon.api.TaxonAPI(self.services, ctx['token'], ref) returnVal=taxon_api.get_version() #END get_version # At some point might do deeper type checking... if not isinstance(returnVal, basestring): raise ValueError('Method get_version return value ' + 'returnVal is not type basestring as required.') # return the results return [returnVal] def status(self, ctx): #BEGIN_STATUS returnVal = {'state': "OK", 'message': "", 'version': self.VERSION, 'git_url': self.GIT_URL, 'git_commit_hash': self.GIT_COMMIT_HASH} #END_STATUS return [returnVal]
1.820313
2
models/head/box_head.py
nota-github/ssd_tf2
8
12785071
import tensorflow as tf from utils import box_utils from models import registry from .loss import MultiBoxLoss from .inference import PostProcessor from models.head.box_predictor import make_box_predictor from models.anchors.prior_box import PriorBox @registry.BOX_HEADS.register('SSDBoxHead') class SSDBoxHead(tf.keras.layers.Layer): def __init__(self, cfg): super(SSDBoxHead, self).__init__() self.cfg = cfg self.predictor = make_box_predictor(cfg) self.loss_evaluator = MultiBoxLoss(neg_pos_ratio=cfg.MODEL.NEG_POS_RATIO) self.post_processor = PostProcessor(cfg) self.priors = None def call(self, features, targets=None): cls_logits, bbox_pred = self.predictor(features) # (batch_size, num_priors, num_C) | (batch_size, num_priors, 4) if targets is not None: return self._call_train(cls_logits, bbox_pred, targets) return self._call_test(cls_logits, bbox_pred) def _call_train(self, cls_logits, bbox_pred, targets): gt_boxes, gt_labels = targets reg_loss, cls_loss = self.loss_evaluator(cls_logits, bbox_pred, gt_labels, gt_boxes) return reg_loss, cls_loss def _call_test(self, cls_logits, bbox_pred): if self.priors is None: self.priors = PriorBox(self.cfg)() scores = tf.keras.activations.softmax(cls_logits, axis=2) boxes = box_utils.convert_locations_to_boxes(bbox_pred, self.priors , self.cfg.MODEL.CENTER_VARIANCE, self.cfg.MODEL.SIZE_VARIANCE) boxes = box_utils.center_form_to_corner_form(boxes) detections = (scores, boxes) detections = self.post_processor(detections) return detections
2.015625
2
mahjong/ai/test/test_mahjong_comb.py
feiyaaaa/mahjong
0
12785072
import pymysql import sys from mahjong.ai.comb.perm_comb_mahjong import PermCombMahjongGenerator Tiles = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] db = pymysql.connect(host='127.0.0.1', user='root', password='<PASSWORD>', db='mahjong', port=3306, charset='utf8') cursor = db.cursor() raw_sql = """INSERT INTO comb_chain(hands_comb, search_chain) VALUES ('{0}', '') ON DUPLICATE KEY UPDATE search_chain = ''""" comb_gen = PermCombMahjongGenerator(Tiles, 13, end_point=1, start_comb=[0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 5, 6]) comb = comb_gen.next() i = 1 while comb is not None: i += 1 if i % 1000 == 0: print(comb) comb_str = "" comb_str_list = [] for tile in comb: comb_str_list.append(tile.__str__()+",") comb_str = ''.join(comb_str_list) comb_str = comb_str[:-1] s = raw_sql.format(comb_str) try: # 执行sql语句 cursor.execute(s) # 提交到数据库执行 db.commit() except Exception: # 如果发生错误则回滚 db.rollback() print("wrong") print(sys.exc_info()[0], sys.exc_info()[1]) comb = comb_gen.next()
2.6875
3
catalog/Marshall PY/plugins/games.py
derwear/bots.hub
8
12785073
<reponame>derwear/bots.hub import datetime, random, time from kutana.vksm import * from kutana import Plugin from kutana.database import * import aiohttp, json, re, xmltodict plugin = Plugin(name="other") cases = (2, 0, 1, 1, 1, 2) def plural_form(n: int, v: (list, tuple), need_n=False, need_cases=False): """Функция возвращает число и просклонённое слово после него Аргументы: :param n: число :param v: варианты слова в формате (для 1, для 2, для 5) Пример: plural_form(difference.days, ("день", "дня", "дней")) :return: Число и просклонённое слово после него """ return f"{n if need_n is False else ''} {v[2 if (4 < n % 100 < 20) else cases[min(n % 10, 5)]] if need_cases is False else ''}" async def get_diff(a, b): if a < b: return int(((b-a)/a) * 100) elif a > b: return int(((a-b)/a) * 100) elif a == b: return 0 @plugin.on_startup() async def on_startup(kutana, update): plugin.dict = {} plugin.min_bet = 50 plugin.positive = random.choice(['😊','😉','😃','😋','😏','😄']) plugin.negative = random.choice(['😩','😰','😒','😔','😢']) async def get_or_create_profile(user_id): try: shopcenters = ( shopcenter .select() ) job = ( jobs.select() ) profiles = ( Profile .select() .where(Profile.user_id == user_id ) ) profile = list(await db.prefetch(profiles, shopcenters, job))[0] except IndexError: profile = await peewee_async.create_object(Profile, user_id=user_id) return profile def text_to_value(value, text): value2 = 1000 if text == 'к' or text == 'k': return int(value) * int(value2) if text == 'кк' or text == 'kk': return int(value) * (int(value2) ** 2) if text == 'ккк' or text == 'kkk': return int(value) * (int(value2) ** 3) if text == 'кккк' or text == 'kkkk': return int(value) * (int(value2) ** 4) if text == 'ккккк' or text == 'kkkkk': return int(value) * (int(value2) ** 5) if text == 'кккккк' or text == 'kkkkkk': return int(value) * (int(value2) ** 6) if text == 'ккккккк' or text == 'kkkkkkk': return int(value) * (int(value2) ** 7) if text == 'кккккккк' or text == 'kkkkkkkk': return int(value) * (int(value2) ** 8) return int(value) def humanize(value): return "{:,}".format(round(value)).replace(",",".") @plugin.on_startswith_text('шар') async def shar(msg,ats,env): if not env.body: return answers2 = '''Абсолютно точно! Да. Нет. Бесспорно. Никаких сомнений. Определённо да. Пока не ясно, попробуй снова. Предрешено. Скорее да, чем нет. Сконцентрируйся и спроси опять. Не уверен... Сейчас нельзя предсказать. Однозначно нет! Можешь быть уверен в этом. Перспективы не очень хорошие. А как же иначе?. Знаки говорят — «да». Не знаю. Мой ответ — «нет». Весьма сомнительно. Ну может быть. Приличный вопрос задай :c Не могу дать точный ответ. '''.splitlines() return await env.reply("🔮" + random.choice(answers2).lower()) @plugin.on_startswith_text('переверни') async def invert(msg,ats,env): flipTable = { 'a' : '\u0250', 'b' : 'q', 'c' : '\u0254', 'd' : 'p', 'e': '\u01DD', 'f': '\u025F', 'g' : '\u0183', 'h' : '\u0265', 'i' : '\u0131', 'j' : '\u027E', 'k' : '\u029E', 'l' : '\u0283', 'm' : '\u026F', 'n' : 'u', 'r' : '\u0279', 't' : '\u0287', 'v' : '\u028C', 'w' : '\u028D', 'y' : '\u028E', '.' : '\u02D9', '[' : ']', '(' : ')', '{' : '}', '?' : '\u00BF', '!' : '\u00A1', "\'" : ',', '<' : '>', '_' : '\u203E', '\u203F' : '\u2040', '\u2045' : '\u2046', '\u2234' : '\u2235', '\r' : '\n', 'а' : 'ɐ', 'б' : 'ƍ', 'в' : 'ʚ', 'г' : 'ɹ', 'д' : 'ɓ', 'е' : 'ǝ', 'ё' : 'ǝ', 'ж' : 'ж', 'з' : 'ε', 'и' : 'и', 'й' : 'ņ', 'к' : 'ʞ', 'л' : 'v', 'м' : 'w', 'н' : 'н', 'о' : 'о', 'п' : 'u', 'р' : 'd', 'с' : 'ɔ', 'т' : 'ɯ', 'у' : 'ʎ', 'ф' : 'ф', 'х' : 'х', 'ц' : 'ǹ', 'ч' : 'Һ', 'ш' : 'm', 'щ' : 'm', 'ъ' : 'q', 'ы' : 'ıq', 'ь' : 'q', 'э' : 'є', 'ю' : 'oı', 'я' : 'ʁ' } if not env.body: return result = "" for word in env.body: result += flipTable.get(word, word) return await env.reply(result) @plugin.on_startswith_text('инфа','шанс','вероятность') async def info(msg,ats,env): if not env.body: return answers2 = '''17e^3pi/-e%*6,0(3)... Я тут прикинул Хуерятность Ровно Примерно Звезды говорят, что вероятность Почти Наверное '''.splitlines() num = random.randint(1, 100) return await env.reply(f"{random.choice(answers2)} {str(num)}%") @plugin.on_text('анекдот') async def joke(msg,ats,env): async with aiohttp.ClientSession() as sess: async with sess.get(f"http://nextjoke.net/Api/GetJoke?format=JSONP&ratingMin=100&NOCACHE={time.time()}") as resp: html = await resp.text() try: html = json.loads(html.replace("window.JokeWidget.parseResponse(", "", 1)[:-2])["text"] except: return await env.reply("Сегодня без шуток ;(") html = re.sub("(\n|^| )-([A-Za-zА-Яа-я])", "- \\2", html) return await env.reply(html.replace("\r", "")) @plugin.on_text('онлайн') async def members(msg,ats,env): if msg.peer_id > 2000000000: all_users = await env.request('messages.getConversationMembers', peer_id=msg.peer_id, fields='online') text = "" x = 0 numerate = 1 if not all_users.response: return await env.reply('назначьте меня администратором и попробуйте еще раз.') for user in all_users.response['profiles']: if 'online' in user and user['online'] == 1: name = await parse_user_name(env, user['id']) text += f"{numerate}. [id{user['id']}|{name}]\n" numerate += 1 x += 1 plural = plural_form(x, ('пользователя', 'пользователи', 'пользователей'), need_n=True) await env.reply(f'онлайн пользователи ({x} из {all_users.response["count"]}):\n' + text) else: await env.reply("эту команду можно использовать только в беседе.") @plugin.on_startswith_text('дата') async def datareg(msg,ats,env): async with aiohttp.ClientSession() as sess: data = await parse_user_id(msg, env) check = 0 if not data: data = msg.from_id check = 1 url = f"http://vk.com/foaf.php?id={data[0] if check == 0 else data}" async with sess.get(url) as resp: xml = xmltodict.parse(await resp.text()) items = xml["rdf:RDF"]["foaf:Person"] item = items reg = item["ya:created"] res = reg["@dc:date"].split("T")[0] year = res.split("-")[0] mounth = res.split("-")[1].replace("01", "января").replace("02", "февраля").replace("03", "марта").replace( "04","апреля").replace( "05","мая").replace( "06", "июня").replace( "07", "июля").replace( "08", "августа").replace( "09", "сентября").replace("10","октября").replace("11","ноября").replace("12","декабря") day = res.split("-")[2] await env.reply(f'{item["foaf:name"]}\n' f'🚀 Дата регистрации: {day} {mounth} {year} года') @plugin.on_startswith_text('трейд') async def trade(msg,ats,env): if not env.body: return await env.reply(f'"Бинарный опцион"\n• Суть игры: Бинарный опцион используется для получения прибыли на движениях цены активов (в нашем случае валют) на мировых финансовых рынках. Пользователь делает прогноз как изменится цена его актива.\n• Помощь: Для того, чтобы начать игру, введите \"трейд [прогноз (вверх/вниз)] [ставка]\"') try: forecast, bet = env.body.split(" ") except Exception as e: return await env.reply(f"Недостаточно аргументов.\nДля того, чтобы начать игру, введите \"трейд [прогноз (вверх/вниз)] [ставка]\"") if not forecast.lower() in ('вверх','вниз'): return p = await get_or_create_profile(msg.from_id) try: value = re.findall(r'\d+', bet) text = re.sub(r'[^\w\s]+|[\d]+', r'',bet).strip() result = text_to_value(value[0], text) except: return await env.reply('Что-то пошло не так.') if int(result) > p.money: return await env.reply("Недостаточно средств на счету.") if int(result) < 50: return await env.reply('минимальная ставка - 50$') course_money = 100 res = course_money + random.randint(-50, 50) data = await get_diff(res, course_money) p.money -= int(result) if forecast == "вверх" and res >= course_money or forecast == "вниз" and res <= course_money: p.money += int(result) + int(result) vk_message = f'курс акции {"подорожал⤴" if res >= course_money else "подешевел⤵"} на {data}$\n{"✔ Вы получили" if forecast == "вверх" and res >= course_money or forecast == "вниз" and res <= course_money else "❌ Вы потеряли"}: {humanize(int(result))}$\n💰 | Ваш баланс: {humanize(p.money)}$\n' await db.update(p) return await env.reply(vk_message) @plugin.on_startswith_text('кубик') async def cube(msg,ats,env): if not env.body or not env.body.isdigit(): return await env.reply('для игры в кубик используйте команду "Кубик [1-6]"') bot_choice = random.randint(1,6) if int(env.body) == int(bot_choice): money = random.randint(2000, 10000) p = await get_or_create_profile(msg.from_id) p.money += money await db.update(p) return await env.reply(f'вы угадали! Приз {humanize(money)}$ {plugin.positive}') else: return await env.reply(f'вы не угадали {plugin.negative}\n🎲 Выпало число {bot_choice}') @plugin.on_startswith_text('стаканчик') async def stakan(msg,ats,env): if not env.body: return await env.reply('для игры в стаканчик используйте команду "Стаканчик [1-3] [сумма]"') try: choice, bet = env.body.split(" ") if not choice.isdigit() or int(choice) > 3 or int(choice) < 1: raise ValueError except Exception as e: return await env.reply('для игры в стаканчик используйте команду "Стаканчик [1-3] [сумма]"') try: value = re.findall(r'\d+', bet) text = re.sub(r'[^\w\s]+|[\d]+', r'',bet).strip() result = text_to_value(value[0], text) except: return await env.reply('Что-то пошло не так.') p = await get_or_create_profile(msg.from_id) if int(result) > p.money: return await env.reply("Недостаточно средств на счету.") if int(result) < 50: return await env.reply('минимальная ставка - 50$') bot_choice = random.randint(1,3) if int(choice) == int(bot_choice): money = random.randint(100,2000) p.money += Decimal(int(result) + int(money)) await db.update(p) return await env.reply(f'вы угадали! Приз {humanize(int(result) + int(money))}$ {plugin.positive}') else: p.money -= Decimal(result) await db.update(p) return await env.reply(f'вы не угадали, это был {bot_choice} стаканчик {plugin.negative}')
2.25
2
plugins/niux2_hermit_player/__init__.py
sdphome/blog-content
0
12785074
# -*- coding: UTF-8 -*- from .niux2_hermit_player import *
0.917969
1
Crypt/Crypt/Crypt.py
wtglover/TOR
0
12785075
from Crypto.PublicKey import RSA from Crypto.Signature import pss from Crypto.Hash import SHA256 from Crypto.Cipher import PKCS1_OAEP from Crypto.Protocol.KDF import PBKDF2 from Crypto.Cipher import AES from Crypto.Random import get_random_bytes from os import urandom import struct import logging import sys crypt_logger = logging.getLogger("Crypt") crypt_logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) crypt_logger.addHandler(ch) sym_logger = logging.getLogger("Symmetric") sym_logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) sym_logger.addHandler(ch) MAX_MSG_LEN = 214 # determined manually for RSA2048 key, padding with PKCS1_OAEP KEY_SIZE = 2048 class Crypt(object): PUB_DER_LEN = len(RSA.generate(KEY_SIZE).publickey().exportKey('DER')) def __init__(self, private_key=None, public_key=None, name='', debug=False): self.public_key = public_key self._private_key = private_key self._name = name self._debug = debug def log(self, message): if self._debug: crypt_logger.debug(message) def generate_key(self): return RSA.generate(KEY_SIZE) def available(self): return not (self.public_key is None or self._private_key is None) def setPublicKey(self, publicKey): self.public_key = publicKey def sign_and_encrypt(self, data): cipher = PKCS1_OAEP.new(self.public_key) self.log("Signing with own key %s" % self._private_key.publickey().exportKey(format="DER").encode('hex')[66:74]) self.log("Encrypting with %s's key %s" % (self._name, self.public_key.exportKey(format="DER").encode('hex')[66:74])) signature = pss.new(self._private_key).sign(SHA256.new(data)) # print signature.encode('hex')[:16], signature.encode('hex')[-16:], data.encode('hex')[:16], data.encode('hex')[-16:] data = signature + data message = "" i = 0 while i * MAX_MSG_LEN < len(data): message += cipher.encrypt(data[i * MAX_MSG_LEN : (i + 1) * MAX_MSG_LEN]) i += 1 return message def decrypt(self, message): self.log("Decrypting with own key %s" % self._private_key.publickey().exportKey(format="DER").encode('hex')[66:74]) cipher = PKCS1_OAEP.new(self._private_key) chunk_size = KEY_SIZE / 8 data = "" i = 0 while chunk_size * i < len(message): chunk = message[i * chunk_size : (i + 1) * chunk_size] data += cipher.decrypt(chunk) i += 1 # print data[:256].encode('hex')[:16], data[:256].encode('hex')[-16:], data[256:].encode('hex')[:16], data[256:].encode('hex')[-16:] return data[256:], data[:256] def auth(self, data, hash): self.log("Checking signature with %s's key %s" % (self._name, self.public_key.exportKey(format="DER").encode('hex')[66:74])) verifier = pss.new(self.public_key) verifier.verify(SHA256.new(data), hash) # raises error if verification fails def decrypt_and_auth(self, message): data, hash = self.decrypt(message) self.auth(data, hash) return data class BadSID(Exception): pass class MACMismatch(Exception): pass class Symmetric(object): CRYPT_HEADER_LEN = 16 * 5 HEADER_LEN = 16 FULL_HEADER = CRYPT_HEADER_LEN + HEADER_LEN STATUS_OK = "OKOK" STATUS_EXIT = "EXIT" def __init__(self, key='', sid="\00"*8, debug=False): self.raw_key = key self.sid = sid self.key = None self.salt = None self.head_nonce = None self.head_tag = None self.body_nonce = None self.body_tag = None self._debug = debug def log(self, message): if self._debug: sym_logger.debug(message) @staticmethod def generate(): return urandom(16) def unpack_payload(self, payload): return (payload[:self.CRYPT_HEADER_LEN], payload[self.CRYPT_HEADER_LEN:self.FULL_HEADER], payload[self.FULL_HEADER:]) def absorb_crypto_header(self, header): """Absorbs the cryptographic information in the crypto header Args: header (str): 80B cryptographic header """ self.salt, self.head_tag, self.head_nonce, self.body_tag, self.body_nonce \ = [header[i:i+16] for i in range(0, 16 * 5, 16)] def decrypt_header(self, header): """Decrypts and authenticates the packet header Args: header (str): 16B header Returns: (int, str): number of bytes to come and status message Raises: MACMismatch: data authentication failed BadSID: SID doesn't match """ self.log("Decrypting header with key %s" % repr(self.raw_key.encode('hex'))) self.log("\nkey: %s\nsalt: %s\nnonce: %s\ntag: %s\nheader: %s" % (repr(self.raw_key.encode('hex')), repr(self.salt.encode('hex')), repr(self.head_nonce.encode('hex')), repr(self.head_tag.encode('hex')), repr(header.encode('hex')))) self.log("ENCHEAD: %s" % repr(header)) key = PBKDF2(self.raw_key, self.salt) cipher = AES.new(key, AES.MODE_GCM, self.head_nonce) cipher.update(self.sid) header = cipher.decrypt_and_verify(header, self.head_tag) try: pass except ValueError: raise MACMismatch num_bytes, status, sid = struct.unpack("!L4s8s", header) if self.sid != sid: print self.sid.encode("hex") print sid.encode('hex') raise BadSID return num_bytes, status def decrypt_body(self, body): """Decrypts and authenticates the packet header Args: body (str): data (multiple of 16B) Returns: str: decrypted and authenticated data Raises: MACMismatch: data authentication failed """ self.log("Decrypting body with key %s" % repr(self.raw_key.encode('hex'))) key = PBKDF2(self.raw_key, self.salt) cipher = AES.new(key, AES.MODE_GCM, self.body_nonce) cipher.update(self.sid) try: return cipher.decrypt_and_verify(body, self.body_tag) except ValueError: raise MACMismatch def encrypt_payload(self, data, status): """Encrypts and data and formats into packet Args: data (str): data to encrypt status (str): 4B status string Returns: str: encrypted data """ self.log("Encrypting body with key %s" % repr(self.raw_key.encode('hex'))) # encrypt body salt = get_random_bytes(16) key = PBKDF2(self.raw_key, salt) cipher = AES.new(key, AES.MODE_GCM) cipher.update(self.sid) ct, body_tag = cipher.encrypt_and_digest(data) body_nonce = cipher.nonce # build header header = struct.pack("!L4s8s", len(ct), status, self.sid) # encrypt header cipher = AES.new(key, AES.MODE_GCM) cipher.update(self.sid) header, head_tag = cipher.encrypt_and_digest(header) head_nonce = cipher.nonce crypto_head = salt + head_tag + head_nonce + body_tag + body_nonce self.log("\nkey: %s\nsalt: %s\nnonce: %s\ntag: %s\nheader: %s" % (repr(self.raw_key.encode('hex')), repr(salt.encode('hex')), repr(head_nonce.encode('hex')), repr(head_tag.encode('hex')), repr(header.encode('hex')))) self.log("SYM HEADER: '%s...%s'" % (crypto_head.encode('hex')[:8], header.encode('hex')[-8:])) self.log("ENCHEAD: %s" % repr(header)) return crypto_head + header + ct def test(): key1 = Crypt().generate_key() key2 = Crypt().generate_key() crypt1 = Crypt(key1, key2.publickey(), debug=True) crypt2 = Crypt(key2, key1.publickey(), debug=True) message = "this is a test" data = crypt1.sign_and_encrypt(message) if crypt2.decrypt_and_auth(data) == message: print "Test pass" else: raise TypeError('TEST DID NOT PASS') def test_sym(): key = get_random_bytes(16) sid = "12345678" message = "This is the example message! " * 10 status = "OKOK" c1 = Symmetric(key, sid) packet = c1.encrypt_payload(message, status) print c1.unpack_payload(packet) crypt_header, header, body = c1.unpack_payload(packet) c2 = Symmetric(key, sid) c2.absorb_crypto_header(crypt_header) print c2.decrypt_header(header) print repr(c2.decrypt_body(body)) if __name__ == '__main__': # test() test_sym()
2.453125
2
sphinxcontrib/pylit/PylitFile.py
rblack42/sphinxcontrib-pylit
0
12785076
from sphinx.directives.code import CodeBlock class PylitFile(CodeBlock): def run(self): caption = self.options.get('caption') if not caption: caption = "" newcaption = '<<' + caption + '>>==' self.options['caption'] = newcaption # format the block and return return super(PylitFile, self).run()
2.625
3
Incident-Response/Tools/grr/grr/client/grr_response_client/unprivileged/memory/client.py
sn0b4ll/Incident-Playbook
1
12785077
#!/usr/bin/env python """Unprivileged memory RPC client code.""" import abc from typing import TypeVar, Generic from grr_response_client.unprivileged import communication from grr_response_client.unprivileged.proto import memory_pb2 class ConnectionWrapper: """Wraps a connection, adding protobuf serialization of messages.""" def __init__(self, connection: communication.Connection): self._connection = connection def Send(self, request: memory_pb2.Request) -> None: self._connection.Send( communication.Message(request.SerializeToString(), b"")) def Recv(self) -> memory_pb2.Response: raw_response, _ = self._connection.Recv() response = memory_pb2.Response() response.ParseFromString(raw_response) return response class Error(Exception): """Base class for exceptions in this module.""" pass class OperationError(Exception): """Error while executing the operation.""" def __init__(self, message: str, formatted_exception: str): """Constructor. Args: message: the exception message formatted_exception: the remote exception formatted using traceback.format_exc() """ super().__init__(message) self.formatted_exception = formatted_exception RequestType = TypeVar("RequestType") ResponseType = TypeVar("ResponseType") class OperationHandler(abc.ABC, Generic[RequestType, ResponseType]): """Base class for RPC handlers.""" def __init__(self, connection: ConnectionWrapper): self._connection = connection def Run(self, request: RequestType) -> ResponseType: self._connection.Send(self.PackRequest(request)) packed_response = self._connection.Recv() if packed_response.HasField("exception"): raise OperationError(packed_response.exception.message, packed_response.exception.formatted_exception) else: response = self.UnpackResponse(packed_response) return response @abc.abstractmethod def UnpackResponse(self, response: memory_pb2.Response) -> ResponseType: """Extracts an inner Response message from a response message.""" pass @abc.abstractmethod def PackRequest(self, request: RequestType) -> memory_pb2.Request: """Packs an inner Request message into a request message.""" pass class UploadSignatureHandler( OperationHandler[memory_pb2.UploadSignatureRequest, memory_pb2.UploadSignatureResponse]): """Implements the UploadSignature RPC.""" def UnpackResponse( self, response: memory_pb2.Response) -> memory_pb2.UploadSignatureResponse: return response.upload_signature_response def PackRequest( self, request: memory_pb2.UploadSignatureRequest) -> memory_pb2.Request: return memory_pb2.Request(upload_signature_request=request) class ProcessScanHandler(OperationHandler[memory_pb2.ProcessScanRequest, memory_pb2.ProcessScanResponse]): """Implements the ProcessScan RPC.""" def UnpackResponse( self, response: memory_pb2.Response) -> memory_pb2.ProcessScanResponse: return response.process_scan_response def PackRequest(self, request: memory_pb2.ProcessScanRequest) -> memory_pb2.Request: return memory_pb2.Request(process_scan_request=request) class Client: """Client for the RPC memory service.""" def __init__(self, connection: communication.Connection): self._connection = ConnectionWrapper(connection) def UploadSignature(self, yara_signature: str): """Uploads a yara signature to be used for this connection.""" request = memory_pb2.UploadSignatureRequest(yara_signature=yara_signature) UploadSignatureHandler(self._connection).Run(request) def ProcessScan(self, serialized_file_descriptor: int, offset: int, size: int, timeout_seconds: int) -> memory_pb2.ProcessScanResponse: """Scans process memory. Args: serialized_file_descriptor: Serialized file descriptor for the process memory. The file descriptor must be accessible by the server process. offset: Offset in memory. size: Size of memory to scan. timeout_seconds: Timeout in seconds. Returns: A `ScanResult` proto. """ request = memory_pb2.ProcessScanRequest( serialized_file_descriptor=serialized_file_descriptor, offset=offset, size=size, timeout_seconds=timeout_seconds) response = ProcessScanHandler(self._connection).Run(request) return response def CreateMemoryClient(connection: communication.Connection) -> Client: """Creates a memory client.""" return Client(connection)
2.578125
3
{{cookiecutter.project_name}}/{{cookiecutter.app_name}}/api/graphql/views.py
Anyesh/cookiecutter-flask-all-in-one
35
12785078
<gh_stars>10-100 from flask import Blueprint from flask_graphql import GraphQLView from {{cookiecutter.app_name}}.api.graphql.schemas import schema bp = Blueprint('graphql', __name__) def graphql(): view = GraphQLView.as_view('graphql', schema=schema, graphiql=True) return view bp.add_url_rule('/graphql', view_func=graphql())
2.0625
2
bbt_bpm/bbt_bpm/report/obsolescence_report/obsolescence_report.py
rathodjitendra/BBT-I2E
0
12785079
<reponame>rathodjitendra/BBT-I2E # Copyright (c) 2013, Bakelite and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe, erpnext from frappe import _ from frappe.utils import has_common import json from six import StringIO, string_types from datetime import date from frappe.utils import cstr, getdate, split_emails, add_days, today, get_last_day, get_first_day, month_diff, nowdate, cint, flt, date_diff from six import iteritems import datetime from datetime import date from dateutil.relativedelta import relativedelta import copy def execute(filters=None): columns, data = get_columns(), get_data(filters) return columns, data def get_data(filters): if filters.get("company"): company_currency = erpnext.get_company_currency(filters.get("company")) else: company_currency = frappe.db.get_single_value("Global Defaults", "default_currency") items = get_items(filters) sle = get_stock_ledger_entries(filters, items) iwb_map = get_item_warehouse_map(filters, sle) item_map = get_item_details(items, sle, filters) item_reorder_detail_map = get_item_reorder_details(item_map.keys()) stock_qty=stock_qty_before_some_month(filters) data = [] conversion_factors = {} _func = lambda x: x[1] for (company, item, warehouse) in sorted(iwb_map): if item_map.get(item): qty_dict = iwb_map[(company, item, warehouse)] item_reorder_level = 0 item_reorder_qty = 0 if item + warehouse in item_reorder_detail_map: item_reorder_level = item_reorder_detail_map[item + warehouse]["warehouse_reorder_level"] item_reorder_qty = item_reorder_detail_map[item + warehouse]["warehouse_reorder_qty"] last_stock_updated_date=frappe.db.sql("""SELECT item_code, posting_date from `tabStock Ledger Entry` where item_code='{0}' and company='{1}' and warehouse='{2}' ORDER BY posting_date DESC """.format(item, company, warehouse), as_dict=1) if item in stock_qty and stock_qty.get(item).get("warehouse")==warehouse: report_data = { 'currency': company_currency, 'item_code': item, 'warehouse': warehouse, 'company': company, 'reorder_level': item_reorder_level, 'reorder_qty': item_reorder_qty, 'last_stock_updated_date':last_stock_updated_date[0].get("posting_date") if last_stock_updated_date[0] else "", 'days_60':stock_qty.get(item).get(2, 0), 'days_90':stock_qty.get(item).get(3, 0), 'days_180':stock_qty.get(item).get(6, 0), 'year_1':stock_qty.get(item).get(12, 0), 'year_2':stock_qty.get(item).get(24, 0) } else: report_data = { 'currency': company_currency, 'item_code': item, 'warehouse': warehouse, 'company': company, 'reorder_level': item_reorder_level, 'reorder_qty': item_reorder_qty, 'last_stock_updated_date':last_stock_updated_date[0].get("posting_date") if last_stock_updated_date[0] else "" } report_data.update(item_map[item]) report_data.update(qty_dict) data.append(report_data) return data def get_stock_ledger_entries(filters, items): item_conditions_sql = '' if items: item_conditions_sql = ' and sle.item_code in ({})'\ .format(', '.join([frappe.db.escape(i, percent=False) for i in items])) conditions = get_conditions(filters) return frappe.db.sql(""" select sle.item_code, warehouse, sle.posting_date, sle.actual_qty, sle.valuation_rate, sle.company, sle.voucher_type, sle.qty_after_transaction, sle.stock_value_difference, sle.item_code as name, sle.voucher_no, sle.stock_value, sle.name from `tabStock Ledger Entry` sle force index (posting_sort_index) where sle.docstatus < 2 %s %s order by sle.posting_date, sle.posting_time, sle.creation, sle.actual_qty""" % #nosec (item_conditions_sql, conditions), as_dict=1) def get_conditions(filters): conditions = "" # if not filters.get("from_date"): # frappe.throw(_("'From Date' is required")) # if filters.get("to_date"): # conditions += " and sle.posting_date <= %s" % frappe.db.escape(filters.get("to_date")) # else: # frappe.throw(_("'To Date' is required")) if filters.get("company"): conditions += " and sle.company = %s" % frappe.db.escape(filters.get("company")) if filters.get("warehouse"): warehouse_details = frappe.db.get_value("Warehouse", filters.get("warehouse"), ["lft", "rgt"], as_dict=1) if warehouse_details: conditions += " and exists (select name from `tabWarehouse` wh \ where wh.lft >= %s and wh.rgt <= %s and sle.warehouse = wh.name)"%(warehouse_details.lft, warehouse_details.rgt) # if filters.get("warehouse_type") and not filters.get("warehouse"): # conditions += " and exists (select name from `tabWarehouse` wh \ # where wh.warehouse_type = '%s' and sle.warehouse = wh.name)"%(filters.get("warehouse_type")) return conditions def get_item_warehouse_map(filters, sle): iwb_map = {} from_date = getdate(filters.get("from_date")) to_date = getdate(filters.get("to_date")) float_precision = cint(frappe.db.get_default("float_precision")) or 3 for d in sle: key = (d.company, d.item_code, d.warehouse) if key not in iwb_map: iwb_map[key] = frappe._dict({ "opening_qty": 0.0, "opening_val": 0.0, "in_qty": 0.0, "in_val": 0.0, "out_qty": 0.0, "out_val": 0.0, "bal_qty": 0.0, "bal_val": 0.0, "val_rate": 0.0 }) qty_dict = iwb_map[(d.company, d.item_code, d.warehouse)] if d.voucher_type == "Stock Reconciliation": qty_diff = flt(d.qty_after_transaction) - flt(qty_dict.bal_qty) else: qty_diff = flt(d.actual_qty) value_diff = flt(d.stock_value_difference) # if d.posting_date < from_date: # qty_dict.opening_qty += qty_diff # qty_dict.opening_val += value_diff # elif d.posting_date >= from_date and d.posting_date <= to_date: # if flt(qty_diff, float_precision) >= 0: # qty_dict.in_qty += qty_diff # qty_dict.in_val += value_diff # else: # qty_dict.out_qty += abs(qty_diff) # qty_dict.out_val += abs(value_diff) qty_dict.val_rate = d.valuation_rate qty_dict.bal_qty += qty_diff qty_dict.bal_val += value_diff iwb_map = filter_items_with_no_transactions(iwb_map, float_precision) return iwb_map def filter_items_with_no_transactions(iwb_map, float_precision): for (company, item, warehouse) in sorted(iwb_map): qty_dict = iwb_map[(company, item, warehouse)] no_transactions = True for key, val in iteritems(qty_dict): val = flt(val, float_precision) qty_dict[key] = val if key != "val_rate" and val: no_transactions = False if no_transactions: iwb_map.pop((company, item, warehouse)) return iwb_map def get_item_details(items, sle, filters): item_details = {} if not items: items = list(set([d.item_code for d in sle])) if not items: return item_details cf_field = cf_join = "" if filters.get("include_uom"): cf_field = ", ucd.conversion_factor" cf_join = "left join `tabUOM Conversion Detail` ucd on ucd.parent=item.name and ucd.uom=%s" \ % frappe.db.escape(filters.get("include_uom")) res = frappe.db.sql(""" select item.name, item.item_name, item.description, item.item_group, item.brand, item.stock_uom %s from `tabItem` item %s where item.name in (%s) """ % (cf_field, cf_join, ','.join(['%s'] *len(items))), items, as_dict=1) for item in res: item_details.setdefault(item.name, item) if filters.get('show_variant_attributes', 0) == 1: variant_values = get_variant_values_for(list(item_details)) item_details = {k: v.update(variant_values.get(k, {})) for k, v in iteritems(item_details)} return item_details def get_item_reorder_details(items): item_reorder_details = frappe._dict() if items: item_reorder_details = frappe.db.sql(""" select parent, warehouse, warehouse_reorder_qty, warehouse_reorder_level from `tabItem Reorder` where parent in ({0}) """.format(', '.join([frappe.db.escape(i, percent=False) for i in items])), as_dict=1) return dict((d.parent + d.warehouse, d) for d in item_reorder_details) def get_items(filters): conditions = [] if filters.get("item_code"): conditions.append("item.name=%(item_code)s") items = [] if conditions: items = frappe.db.sql_list("""select name from `tabItem` item where {}""" .format(" and ".join(conditions)), filters) return items def stock_qty_before_some_month(filters): months_list = [2, 3, 6, 12, 24] months_date = [] # months_date.append(getdate(today())) for row in months_list: _date = date.today() + relativedelta(months=-row) months_date.append(getdate(_date)) new_list = {} stock_dict = {} for idx, v in enumerate(months_date): month_len = len(months_date)-1 if month_len != idx: sle_qty = frappe.db.sql("""select sle.item_code, sle.warehouse, sle.posting_date, ABS(sum(sle.actual_qty) - sum(sle.qty_after_transaction)) as bal_qty, sle.company from `tabStock Ledger Entry` sle where sle.company='{0}' and sle.posting_date BETWEEN '{1}' and '{2}' GROUP BY sle.item_code, sle.warehouse""".format(filters.get("company"), months_date[idx+1], v), as_dict=1) else: sle_qty = frappe.db.sql("""select distinct sle.item_code, sle.warehouse, sle.posting_date, ABS(sum(sle.actual_qty) - sum(sle.qty_after_transaction)) as bal_qty, sle.company from `tabStock Ledger Entry` sle where sle.company='{0}' and sle.posting_date < '{1}' GROUP BY sle.item_code, sle.warehouse""".format(filters.get("company"), v), as_dict=1) for row in sle_qty: if row.get("item_code") in stock_dict: d=stock_dict[row.get("item_code")] d[months_list[idx]]=row.get("bal_qty") stock_dict[row.get("item_code")]=d else: row[months_list[idx]]=row.get("bal_qty") stock_dict[row.get("item_code")] = row return stock_dict def get_columns(): return [ { "label": _("Branch"), "fieldname": "company", "fieldtype": "Data", "width": 150 }, { "label": _("Warehouse"), "fieldname": "warehouse", "fieldtype": "Data", "width": 120 }, { "label": _("Book Code"), "fieldname": "item_code", "fieldtype": "Data", "width": 120 }, { "label": _("Book Description"), "fieldname": "description", "fieldtype": "Data", "width": 120 }, { "label": _("Last Stock Updated Date"), "fieldname": "last_stock_updated_date", "fieldtype": "Date", "width": 150 }, { "label": _("Available Stock"), "fieldname": "bal_qty", "fieldtype": "Data", "width": 120 }, { "label": _("0-30 Days"), "fieldname": "bal_qty", "fieldtype": "Data", "width": 120 }, { "label": _("60 Days"), "fieldname": "days_60", "fieldtype": "Data", "width": 150 }, { "label": _("90 Days"), "fieldname": "days_90", "fieldtype": "Data", "width": 120 }, { "label": _("180 Days"), "fieldname": "days_180", "fieldtype": "Data", "width": 120 }, { "label": _("1 Year"), "fieldname": "year_1", "fieldtype": "Data", "width": 120 }, { "label": _(">2 Year"), "fieldname": "year_2", "fieldtype": "Data", "width": 150 } ]
1.710938
2
ubxlib/cid.py
albard00/ubxlib
3
12785080
<gh_stars>1-10 class UbxCID(object): # UBX Class IDs CLASS_NAV = 0x01 CLASS_ACK = 0x05 CLASS_CFG = 0x06 CLASS_UPD = 0x09 CLASS_MON = 0x0A CLASS_ESF = 0x10 CLASS_MGA = 0x13 def __init__(self, cls, id): super().__init__() self.__cls = cls self.__id = id @property def cls(self): return self.__cls @property def id(self): return self.__id def __eq__(self, other): return self.__cls == other.__cls and self.__id == other.__id def __str__(self): return f'cls:{self.__cls:02x} id:{self.__id:02x}' def __hash__(self): return hash((self.__cls, self.__id))
2.5
2
mpqa.py
trondth/master
0
12785081
<reponame>trondth/master<gh_stars>0 import ast import os import random import re from collections import OrderedDict from future_builtins import zip import shlex from masters_project_config import * def pairwise(iterable): """ @param iterable: List or other iterable @return: List of tuples """ a = iter(iterable) return zip(a, a) class MPQA: re_attr = re.compile(r'("[^"]*"|[\w-]+)') def __init__(self, name="", mpqa_root=DATA_PREFIX): self.docs = OrderedDict({}) self.name = name self.mpqa_root = mpqa_root if self.mpqa_root[:-1] != '/': self.mpqa_root += '/' def annotations_from_file(self, document): """ Returns list with sentence objects from a gatesentences.mpqa.2.0-file. @param document: String refering to unique doc, example: 20010927/23.18.15-25073 @return: List of sentence objects. """ annotations = [] f = file(self.mpqa_root + document, 'r') tmp = f.read() f.close() for tuple in self.getmpqatuples(document, 'annotations'): annotations.append((tuple, tmp[tuple[1]])) annotations.sort(key=lambda x: (x[1][1].start)) return annotations def annotation_tuples_from_file(self, document): """ Returns list of tuples from a gateman.mpqa.2.0-file, sorted on start positions. @param document: String refering to unique doc, example: 20010927/23.18.15-25073 @return: List of tuples from annotation file. """ annotations = [] f = file(self.mpqa_root + document, 'r') tmp = f.read() f.close() for tuple in self.getmpqatuples(document, 'annotations'): annotations.append(tuple) #print annotations annotations.sort(key=lambda x: (x[1].start)) #print annotations return annotations def sentences_from_file(self, document): """ Returns list with sentence objects from a gatesentences.mpqa.2.0-file. @param document: String refering to unique doc, example: 20010927/23.18.15-25073 @return: List of sentence objects. """ sentences = [] f = file(self.mpqa_root + document, 'r') tmp = f.read() f.close() for tuple in self.getmpqatuples(document, 'sentence'): sentences.append((tmp[tuple[1]],tuple)) sentences.sort(key=lambda x: (x[1][1].start)) return sentences def expandvariant(self, variant): if variant == 'sentence': return 'gatesentences.mpqa.2.0' if variant == 'annotations': return 'gateman.mpqa.lre.2.0' def tuplefrommpqa(self, line): """ @param Line: from mpqatuples @return: Tuple with slice object as second element """ tmp = line.split(None, 4) tmp[1] = (lambda x: slice(int(x[0]), int(x[1])))(tmp[1].split(',')) d = {} if len(tmp) > 4: #print tmp[4].split() # = (lambda x: slice(int(x[0]), int(x[1])))(tmp[1].split(',')) tmp[4] = self.attributesfrommpqa(tmp[4]) return tmp def attributesfrommpqa(self, attributes): """ @param attributes: String with attributes @return: Dictionary with attributes """ tmp = self.re_attr.findall(attributes) if len(tmp) % 2 != 0: print "Attribute string in MPQA file not wellformed. ({})".format(attributes) return {key: value.strip('"') for (key, value) in pairwise(tmp)} re_docs = re.compile(r'/docs/') def getmpqatuples(self, document, variant): """ @param document: String refering to unique doc, example: 20010927/23.18.15-25073 @param variant: @return: List of 5-tuples from data in the MPQA-document """ variant = self.expandvariant(variant) tuples = [] f = file(self.mpqa_root + self.re_docs.sub(r'/man_anns/', document) + '/' + variant, 'r') for line in f: if line[0] != '#': tuples.append(self.tuplefrommpqa(line)) f.close() return tuples if __name__ == "__main__": m = MPQA("Foo") #testdoc = "database.mpqa.2.0/docs/20020510/21.50.13-28912" #testdoc = "database.mpqa.2.0/docs/20010630/00.48.42-17806" #testdoc = 'database.mpqa.2.0/docs/20020314/20.23.54-19638' #testdoc = 'database.mpqa.2.0/docs/ula/20000410_nyt-NEW' #testdoc = 'database.mpqa.2.0/docs/ula/20000815_AFP_ARB.0084.IBM-HA-NEW' testdoc = 'database.mpqa.2.0/docs/20020315/20.42.26-19148' #testdoc = 'database.mpqa.2.0/docs/20020331/21.09.25-22686' s = m.getmpqatuples(testdoc, 'sentence') s2 = m.annotation_tuples_from_file(testdoc) #s = m.sentences_from_file(testdoc) #print s
2.453125
2
bookyourcab/models.py
shankarj67/bookyouruber
0
12785082
from django.db import models # Create your models here. class Uber(models.Model): source = models.CharField(max_length=150) destination = models.CharField(max_length=150) time = models.TimeField() email = models.EmailField()
2.234375
2
0062 The Accountant.py
ansabgillani/binarysearchcomproblems
1
12785083
<filename>0062 The Accountant.py class Solution: def solve(self, n): ans = [] while n > 0: ans.append(chr(ord("A") + (n-1)%26)) n = (n-1)//26 ans.reverse() return "".join(ans)
3.328125
3
pytorch/sje_gmpool.py
tchittesh/zsl-project
0
12785084
import random import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt import matplotlib.image as mpimg from utils import normalizeFeaturesL2 class SJE_GMPool(nn.Module): def __init__(self, img_feature_size, num_attributes, margin): super(SJE_GMPool, self).__init__() self.margin = margin # copying initialization technique from original code W = torch.rand(img_feature_size, num_attributes, requires_grad=True) W = normalizeFeaturesL2(W.permute(1,0)).permute(1,0) self.W = nn.Parameter(W, requires_grad=True) power = torch.zeros(num_attributes, requires_grad=True) self.power = nn.Parameter(power, requires_grad=True) self.example_indices = random.choices(range(1000), k=2) # this is a hack def get_power(self): c = float(10) p = self.power * 3 power = torch.zeros_like(p) power[p>=2] = c power = torch.where((0<=p)&(p<2), (c-1)/2*p+1, power) power = torch.where((-1<=p)&(p<0), 1/((1-c)*p+1), power) power = torch.where((-1.5<=p)&(p<-1), -1/(2*(c-1)*(p+1.5)+1), power) power = torch.where((-2<=p)&(p<-1.5), 2*(c-1)*(p+2)-c, power) power[p<-2] = -c assert torch.all(power != 0) return power def apply_gmpool(self, projected_feats): ''' projected_feats: torch.Tensor of shape [B, num_attributes, H, W] returns pooled features of shape [B, num_attributes] ''' m = projected_feats.min() p = self.get_power().view(1,-1,1,1) if m < 0: pooled = (projected_feats-m+1e-3).pow(p).mean(2, keepdim=True).mean(3, keepdim=True).pow(1/p)+m+1e-3 else: pooled = projected_feats.pow(p).mean(2, keepdim=True).mean(3, keepdim=True).pow(1/p) return pooled.squeeze(2).squeeze(2) def forward(self, *args, **kwargs): if self.training: return self.forward_train(*args, **kwargs) else: return self.forward_test(*args, **kwargs) def forward_train(self, img_features, all_class_attributes, class_attributes, labels): ''' img_features: torch.Tensor of shape [B, img_feature_size, H, W] class_attributes: torch.Tensor of shape [B, num_attributes] labels: torch.Tensor of shape [B] all_class_attributes: torch.Tensor of shape [num_attributes, num_classes] returns scalar loss ''' XW = torch.tensordot(img_features, self.W, [[1],[0]]).permute(0,3,1,2) # shape [B, num_attributes, H, W] XW = self.apply_gmpool(XW) # shape [B, num_attributes] if torch.any(XW.isnan()): print("YIKES") XW = normalizeFeaturesL2(XW) # normalize each projected vector to have unit length scores = torch.matmul(XW.unsqueeze(1), all_class_attributes).squeeze(1) # shape [B, num_classes] gt_class_scores = scores[torch.arange(len(scores)), labels].unsqueeze(1) # shape [B, 1] # add margin to scores losses = self.margin + scores - gt_class_scores # shape [B, num_classes] losses[torch.arange(len(losses)), labels] = 0.0 losses = losses.max(dim=1)[0] # shape [B] return losses.clamp(0).mean() def forward_test(self, img_features, all_class_attributes): XW = torch.tensordot(img_features, self.W, [[1],[0]]).permute(0,3,1,2) # shape [B, num_attributes, H, W] XW = self.apply_gmpool(XW) # shape [B, num_attributes] if torch.any(XW.isnan()): print("YIKES") XW = normalizeFeaturesL2(XW) # normalize each projected vector to have unit length scores = torch.matmul(XW.unsqueeze(1), all_class_attributes).squeeze(1) # shape [B, num_classes] return scores.argmax(1) # shape [B] def log_spatial_examples(self, dataloader, device, writer, split, epoch): dataset = dataloader.dataset self.eval() classes = dataset.classes for i, idx in enumerate(self.example_indices): # unpack data data = dataset[idx] img_features = data['img'].to(device).unsqueeze(0) gt_label = classes[data['label']] all_class_attributes = dataset.class_attributes gt_class_attributes = all_class_attributes[:,data['label']] img = mpimg.imread(dataset.get_img_path(idx)) # forward pass XW = torch.tensordot(img_features, self.W, [[1],[0]]).permute(0,3,1,2).squeeze() # shape [num_attributes, H, W] for spatial_dist, gt_attribute_score, attribute_name in zip(XW, gt_class_attributes, dataset.attributes): fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2) ax1.set_title(f"Attribute: {attribute_name}\nGT Attribute Value: {gt_attribute_score:.4f}") mappable = ax1.imshow(spatial_dist.cpu().detach().numpy(), vmin=-0.25, vmax=0.25) fig.colorbar(mappable, ax=ax1) ax2.set_title(f"Original Image({gt_label})") ax2.imshow(img) plt.tight_layout() writer.add_figure(f"Spatial Examples ({split})/{attribute_name}-{i}", fig, epoch) plt.close(fig)
2.28125
2
market/migrations/0008_auto_20161206_2042.py
zhanhailiu/Market
39
12785085
<filename>market/migrations/0008_auto_20161206_2042.py # -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-12-06 12:42 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('market', '0007_goods_publish_time'), ] operations = [ migrations.AlterField( model_name='goods', name='goods_phone', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='goods', name='goods_qq', field=models.IntegerField(blank=True, null=True), ), ]
1.390625
1
pyscreenshot/__init__.py
audreyr/pyscreenshot
1
12785086
<gh_stars>1-10 from easyprocess import EasyProcess from pyscreenshot.backendloader import BackendLoader from PIL import Image import logging import tempfile import sys __version__ = '0.3.2' log = logging.getLogger(__name__) log.debug('version=' + __version__) def _grab(to_file, childprocess=False, backend=None, bbox=None, filename=None): if childprocess: log.debug('running "%s" in child process' % backend) if not to_file: f = tempfile.NamedTemporaryFile( suffix='.png', prefix='pyscreenshot_childprocess_') filename = f.name params = ["'%s'" % (filename), 'childprocess=False'] if backend: params += ["backend='%s'" % (backend)] params = ','.join(params) EasyProcess([sys.executable, '-c', "import pyscreenshot; pyscreenshot.grab_to_file(%s)" % ( params), ]).check() if not to_file: im = Image.open(filename) if bbox: im = im.crop(bbox) return im else: if backend: BackendLoader().force(backend) backend_obj = BackendLoader().selected() if to_file: return backend_obj.grab_to_file(filename) else: return backend_obj.grab(bbox) def grab(bbox=None, childprocess=False, backend=None): '''Copy the contents of the screen to PIL image memory. :param bbox: optional bounding box :param childprocess: pyscreenshot can cause an error, if it is used on more different virtual displays and back-end is not in different process. Some back-ends are always different processes: scrot, imagemagick :param backend: back-end can be forced if set (examples:scrot, wx,..), otherwise back-end is automatic ''' return _grab(to_file=False, childprocess=childprocess, backend=backend, bbox=bbox) def grab_to_file(filename, childprocess=False, backend=None): '''Copy the contents of the screen to a file. :param filename: file for saving :param childprocess: see :py:func:`grab` :param backend: see :py:func:`grab` ''' return _grab(to_file=True, childprocess=childprocess, backend=backend, filename=filename)
2.328125
2
scripts/hyphy_simulated.py
ThibaultLatrille/NucleotideBias
0
12785087
<reponame>ThibaultLatrille/NucleotideBias # GLOBAL IMPORTS import argparse import pandas as pd from plot_module import * from hyphy_format import * import statsmodels.api as sm from stat_simulated import stats_from_ali, open_fasta_file, omega_pairwise_from_profile from scipy.linalg import null_space def plot_pairwise_matrices(predicted, estimated, output, estimated_list=None): if estimated_list is None: estimated_list = [] fig, axs = plt.subplots(1, 3, figsize=(16, 6)) cbar = fig.colorbar(axs[0].imshow(predicted), ax=axs[0], orientation='horizontal', fraction=.05) cbar.ax.tick_params(labelsize=font_size) axs[0].set_title('$\\left\\langle 2 N_{\\mathrm{e}} \\mathbb{P}_{\\mathrm{fix}} (x \\to y) \\right\\rangle $ ' 'predicted between\npairs of amino-acids', fontsize=font_size * 1.2) cbar = fig.colorbar(axs[1].imshow(estimated), ax=axs[1], orientation='horizontal', fraction=.05) cbar.ax.tick_params(labelsize=font_size) axs[1].set_title('$\\widehat{\\omega}_{x,y}$ estimated between\npairs of amino-acids', fontsize=font_size * 1.2) for index in [0, 1]: # We want to show all ticks... axs[index].set_xticks(np.arange(len(amino_acids))) axs[index].set_yticks(np.arange(len(amino_acids))) # ... and label them with the respective list entries axs[index].set_xticklabels(amino_acids) axs[index].set_yticklabels(amino_acids) # Loop over data dimensions and create text annotations. ''' for i in range(len(amino_acids)): for j in range(len(amino_acids)): text = axs[index].text(j, i, "{0:.2f}".format(predicted[i, j] if index == 0 else estimated[i, j]), ha="center", va="center", color="w") ''' filt = np.isfinite(predicted) & np.isfinite(estimated) x = predicted[filt].flatten() y = estimated[filt].flatten() axs[2].scatter(x, y) axs[2].set_title('Fixation probabilities', fontsize=font_size * 1.2) model = sm.OLS(y, sm.add_constant(x)) results = model.fit() b, a = results.params[0:2] idf = np.linspace(min(x), max(x), 100) axs[2].plot(idf, a * idf + b, '-', color=BLUE, label=r"$y={0:.2g}x {3} {1:.2g}$ ($r^2={2:.2g})$".format(a, abs(b), results.rsquared, "+" if float(b) > 0 else "-")) if estimated_list and len(estimated_list) > 5: # yerr = np.array([y - np.percentile(estimated_list, 5, axis=0)[filt].flatten(), np.percentile(estimated_list, 95, axis=0)[filt].flatten() - y]) yerr = 1.96 * np.std(estimated_list, axis=0)[filt].flatten() / np.sqrt(len(estimated_list)) axs[2].errorbar(x, y, yerr=yerr, fmt='o', marker=None, mew=0, ecolor=BLUE, lw=0.5, zorder=-1) axs[2].set_xlabel('True $\\left\\langle 2 N_{\\mathrm{e}} \\mathbb{P}_{\\mathrm{fix}} (x \\to y) \\right\\rangle $', fontsize=font_size * 1.2) axs[2].set_ylabel('Estimated $\\widehat{\\omega}_{x,y}$', fontsize=font_size * 1.2) axs[2].legend(fontsize=font_size * 0.8, loc="lower right") fig.tight_layout() plt.savefig(output + ".pdf", format="pdf") plt.savefig(output + ".png", format="png") plt.clf() plt.close('all') def plot_scaling(list_plot, outname, ylabel, plot_id=True, yscale="log", loc="lower right", legend_fontsize=14): fig, ax = plt.subplots() if plot_id: ax.plot(lambda_mut, lambda_mut, color="black", linestyle='-', linewidth=2, label="y=x") for param in list_plot: y_list = np.array([np.mean(k[param["experiment"]]) for k in nested_dict.values()]) ax.plot(lambda_mut, y_list, linestyle=param["linestyle"], label=param["label"], color=param["color"], linewidth=param["linewidth"]) reps_set_len = set([len(k[param["experiment"]]) for k in nested_dict.values()]) assert (len(reps_set_len) == 1) reps_len = reps_set_len.pop() if reps_len > 2: std = np.array([np.std(k[param["experiment"]]) for k in nested_dict.values()]) yerr = 1.96 * std / np.sqrt(reps_len) lower = y_list - yerr upper = y_list + yerr ax.fill_between(lambda_mut, lower, upper, alpha=0.3, color=param["color"], facecolor=param["color"]) lambda_inf = np.array([np.mean(k["lambda_inf"]) for k in nested_dict.values()]) out_file = open("{0}/{1}.tsv".format(args.output, outname), "w") out_file.write("λ (precision in %)\n{0:.2f}%".format(100 * np.mean(np.abs((lambda_inf - lambda_mut)) / lambda_mut))) out_file.close() ax.set_xscale('log') ax.set_xlabel('$\\lambda$ used for the simulation', fontsize=font_size) ax.set_yscale(yscale) ax.set_ylabel(ylabel, fontsize=font_size) ax.get_xaxis().get_major_formatter().labelOnlyBase = False ax.legend(fontsize=legend_fontsize, loc=loc) model_name = {"GTR": "General time-reversible (GTR) on third positions", "MG": "Muse & Gaut codon model", "MF": "Mean-field codon model"} ax.set_title(model_name[args.model], fontsize=font_size) ax.set_xticks([0.2, 1, 5]) ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) if yscale == "log": ax.set_yticks([0.2, 1, 5]) ax.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plt.xticks(fontsize=legend_size) plt.yticks(fontsize=legend_size) plt.tight_layout() plt.savefig("{0}/{1}.pdf".format(args.output, outname), format="pdf") plt.savefig("{0}/{1}.png".format(args.output, outname), format="png") plt.clf() if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-o', '--output', required=True, type=str, dest="output") parser.add_argument('-i', '--trace', required=True, type=str, nargs='+', dest="input") parser.add_argument('-m', '--model', required=True, type=str, dest="model") parser.add_argument('-n', '--mutation_matrix', required=False, type=str, default="False", dest="mutation_matrix") args = parser.parse_args() freqs = np.zeros(4) * 0.25 if args.mutation_matrix != "False": df = pd.read_csv(args.mutation_matrix, sep="\t") nuc_matrix = np.zeros((len(nucleotides), len(nucleotides))) for id_s, nuc_source in enumerate(nucleotides): for id_t, nuc_target in enumerate(nucleotides): if nuc_source == nuc_target: continue sub = "q_" + nuc_source + nuc_target nuc_matrix[id_s, id_t] = df[sub].values[0] nuc_matrix[id_s, id_s] -= nuc_matrix[id_s, id_t] freqs = null_space(nuc_matrix.T).T[0] freqs /= freqs.sum() assert (np.sum(np.abs(np.dot(freqs, nuc_matrix))) < 1e-5) nested_dict = defaultdict(lambda: defaultdict(lambda: list())) predicted_dico = {} estimated_array = [] for batch in args.input: at_gc_pct = float(batch.split("/")[-1].split("_")[0]) replicate = int(batch.split("/")[-1].split("_")[1]) if args.mutation_matrix == "False": freqs = [(at_gc_pct if nuc in weak_nucleotides else 1.0) for nuc in nucleotides] freqs = np.array(freqs) / sum(freqs) alpha = float(batch.split("/")[-2]) exp = batch.replace(args.model + "_run.bf_hyout.txt", "exp") species, alignment = open_fasta_file(exp + (".ThirdPos.fasta" if args.model == "GTR" else ".fasta")) ali_dico = stats_from_ali(alignment) nested_dict[at_gc_pct]["AT/GC_obs"].append(ali_dico["at_over_gc"]) if args.model != "GTR": nested_dict[at_gc_pct]["AT/GC_1_obs"].append(ali_dico["at_over_gc_1"]) nested_dict[at_gc_pct]["AT/GC_2_obs"].append(ali_dico["at_over_gc_2"]) nested_dict[at_gc_pct]["AT/GC_3_obs"].append(ali_dico["at_over_gc_3"]) hyphy_dico = dico_from_file(batch) format_hyphy_dico(hyphy_dico, args.model) if args.model == "MF": profile_path = "/".join(batch.split("/")[:-1]) + "_profile.prefs" key = profile_path + str(at_gc_pct) if key not in predicted_dico: predicted_dico[key] = omega_pairwise_from_profile(profile_path, freqs) estimated_array.append(omega_pairwise_from_hyphy(hyphy_dico)) # plot_pairwise_matrices(predicted_dico[key], estimated_array[-1], "{0}/omega.{1}_{2}".format(args.output, at_gc_pct, replicate)) results_dico = {k: v[0] for k, v in pd.read_csv(exp + ".tsv", sep='\t').items()} nested_dict[at_gc_pct]["w_obs"].append(results_dico["dnd0_event_tot"]) if args.model != "GTR": nested_dict[at_gc_pct]["w_inf"].append(hyphy_dico["w"]) if ("pnG" in hyphy_dico) and ("pnG" in hyphy_dico): gc_pct = hyphy_dico["pnG"] + hyphy_dico["pnC"] nested_dict[at_gc_pct]["lambda_inf"].append((1 - gc_pct) / gc_pct) atgc_tot, atgc_1, atgc_2, atgc_3 = equilibrium_lambda(hyphy_dico) nested_dict[at_gc_pct]["AT/GC_inf"].append(atgc_tot) nested_dict[at_gc_pct]["AT/GC_1_inf"].append(atgc_1) nested_dict[at_gc_pct]["AT/GC_2_inf"].append(atgc_2) nested_dict[at_gc_pct]["AT/GC_3_inf"].append(atgc_3) if args.model == "MF": predicted_mean = np.mean(list(predicted_dico.values()), axis=0) estimated_mean = np.mean(estimated_array, axis=0) plot_pairwise_matrices(predicted_mean, estimated_mean, "{0}/mean.omega".format(args.output), estimated_array) if args.model != "GTR": f = open("{0}/omega.tsv".format(args.output), "w") f.write("ω (precision in %)" + ("\tλ\n" if len(nested_dict) > 1 else "\n")) for lambda_mut in nested_dict.keys(): omega_obs = np.array(nested_dict[lambda_mut]["w_obs"]) omega_inf = np.array(nested_dict[lambda_mut]["w_inf"]) f.write("{0:.2f}".format(100 * np.mean(np.abs((omega_inf - omega_obs)) / omega_obs)) + ( "\t{0}".format(lambda_mut) if len(nested_dict) > 1 else "")) f.close() lambda_mut = list(nested_dict.keys()) if len(lambda_mut) < 1: exit(0) list_plots = list() list_plots.append( {"experiment": "AT/GC_obs", "color": BLUE, "linestyle": '-', "linewidth": 2, "label": "AT/GC observed"}) list_plots.append({"experiment": "lambda_inf", "color": GREEN, "linestyle": '--', "linewidth": 2, "label": "$\\widehat{\\lambda}$ inferred"}) list_plots.append({"experiment": "AT/GC_inf", "color": YELLOW, "linestyle": '--', "linewidth": 2, "label": "AT/GC predicted"}) plot_scaling(list_plots, "lambda", '$\\lambda$ estimated') if args.model == "GTR": exit(0) list_plots = list() list_plots.append({"experiment": "AT/GC_1_obs", "color": BLUE, "linestyle": '-', "linewidth": 2, "label": "AT/GC observed"}) list_plots.append({"experiment": "AT/GC_1_inf", "color": YELLOW, "linestyle": '--', "linewidth": 3, "label": "AT/GC predicted"}) plot_scaling(list_plots, "obs_atgc_1", "AT/GC at first position") list_plots = list() list_plots.append({"experiment": "AT/GC_2_obs", "color": BLUE, "linestyle": '-', "linewidth": 2, "label": "AT/GC observed"}) list_plots.append({"experiment": "AT/GC_2_inf", "color": YELLOW, "linestyle": '--', "linewidth": 3, "label": "AT/GC predicted"}) plot_scaling(list_plots, "obs_atgc_2", "AT/GC at second position") list_plots = list() list_plots.append({"experiment": "AT/GC_3_obs", "color": BLUE, "linestyle": '-', "linewidth": 2, "label": "AT/GC observed"}) list_plots.append({"experiment": "AT/GC_3_inf", "color": YELLOW, "linestyle": '--', "linewidth": 2, "label": "AT/GC predicted"}) plot_scaling(list_plots, "obs_atgc_3", "AT/GC at third position") list_plots = list() list_plots.append( {"experiment": "w_obs", "color": BLUE, "linestyle": '-', "linewidth": 2, "label": "$\\omega$ of simulation"}) list_plots.append({"experiment": "w_inf", "color": GREEN, "linestyle": '--', "linewidth": 2, "label": "$\\widehat{\\omega}$ inferred"}) plot_scaling(list_plots, "omega", '$\\omega$', plot_id=False, yscale="linear", loc="upper right")
2.5625
3
src/h_matchers/matcher/number.py
hypothesis/h-matcher
0
12785088
"""A collection of matchers for various number types.""" # pylint: disable=too-few-public-methods from decimal import Decimal from h_matchers.matcher.core import Matcher class AnyNumber(Matcher): """Matches any number.""" _types = (int, float, complex, Decimal) _type_description = "number" def __init__(self): self.conditions = [] super().__init__("dummy", self.assert_equal_to) def assert_equal_to(self, other): # Ints are also booleans # pylint: disable=compare-to-zero assert other is not True and other is not False, "Not a boolean" # Check it's the right type assert isinstance(other, self._types) # Apply all the different conditions for label, test in self.conditions: assert test(other), label return True def not_equal_to(self, value): """Constrain this number to be not equal to a number.""" return self._add_condition(f"!= {value}", lambda other: other != value) def truthy(self): """Constrain this number to be truthy.""" return self._add_condition("truthy", bool) def falsy(self): """Constrain this number to be falsy.""" return self._add_condition("falsy", lambda other: not bool(other)) def _add_condition(self, description, test): self.conditions.append((description, test)) return self def __str__(self): parts = [self._type_description] for condition_label, _ in self.conditions: parts.append(condition_label) if len(parts) > 3: parts[-1] = f"and {parts[-1]}" return f"** any {', '.join(parts)} **" class AnyReal(AnyNumber): """Matches any real number.""" _types = (int, float, Decimal) # We're going to refer to this as just a "number" as it's what we're going # to work on 99.9% of the time _type_description = "number" def less_than(self, value): """Constrain this number to be less than a number.""" return self._add_condition(f"<{value}", lambda other: other < value) def less_than_or_equal_to(self, value): """Constrain this number to be less than or equal a number.""" return self._add_condition(f">={value}", lambda other: other <= value) def greater_than(self, value): """Constrain this number to be greater than a number.""" return self._add_condition(f">{value}", lambda other: other > value) def greater_than_or_equal_to(self, value): """Constrain this number to be greater than or equal to a number.""" return self._add_condition(f">={value}", lambda other: other >= value) def multiple_of(self, value): """Constrain this number to be a multiple of a number.""" return self._add_condition( f"multiple of {value}", lambda other: not other % value ) def even(self): """Constrain this number to be even.""" return self.multiple_of(2) def odd(self): """Constrain this number to be odd.""" return self._add_condition("odd", lambda other: other % 2 == 1) def approximately(self, value, error_factor=0.05): """Constrain this number to be approximately a number.""" return self._add_condition( f"~ {value} ({error_factor})", lambda other: abs(value - other) <= error_factor * float(value), ) def __lt__(self, value): return self.less_than(value) def __le__(self, value): return self.less_than_or_equal_to(value) def __gt__(self, value): return self.greater_than(value) def __ge__(self, value): return self.greater_than_or_equal_to(value) class AnyInt(AnyReal): """Matches any integer.""" _types = (int,) _type_description = "integer" class AnyFloat(AnyReal): """Matches any float.""" _types = (float,) _type_description = "float" class AnyDecimal(AnyReal): """Matches any Decimal.""" _types = (Decimal,) _type_description = "decimal" class AnyComplex(AnyNumber): """Matches any complex number.""" _types = (complex,) _type_description = "complex"
3.109375
3
turbo/__init__.py
blopker/turbo-django
0
12785089
<gh_stars>0 from django.db.models import Model default_app_config = 'turbo.apps.TurboDjangoConfig' def make_channel_name(model_label, pk): return f"BROADCAST-{model_label}-{pk}".lower() def channel_name_for_instance(instance: Model): return make_channel_name(instance._meta.label, instance.pk)
2
2
src/py/4.3.4-Task-API-Multi-label.py
saibaldas/automl-in-action-notebooks
1
12785090
<filename>src/py/4.3.4-Task-API-Multi-label.py """shell pip install -r https://raw.githubusercontent.com/datamllab/automl-in-action-notebooks/master/requirements.txt """ import tensorflow as tf import autokeras as ak """ ### Create synthetic multi-label dataset """ from sklearn.datasets import make_multilabel_classification X, Y = make_multilabel_classification( n_samples=100, n_features=64, n_classes=3, n_labels=2, allow_unlabeled=False, random_state=1, ) X = X.reshape((100, 8, 8)) X.shape, Y.shape """invisible """ x_train, x_test, y_train, y_test = X[:80], X[80:], Y[:80], Y[80:] """ ### Run the ImageClassifier for multi-label classification """ # Initialize the image classifier. clf = ak.ImageClassifier( max_trials=10, multi_label=True, overwrite=True ) # It tries two different pipelines. # Feed the image classifier with training data # 20% of the data is used as validation data by default for tuning # the process may run for a bit long time, please try to use GPU clf.fit(x_train, y_train, epochs=3, verbose=2) # each model is trained for three epochs """ ### Predict with the best model. """ predicted_y = clf.predict(x_test) print("The prediction shape is: {}".format(predicted_y.shape)) print( "The predicted labels of the first five instances are:\n {}".format( predicted_y[:5, :] ) ) """invisible """ test_loss, test_acc = clf.evaluate(x_test, y_test, verbose=0) print("Test accuracy: ", test_acc)
3.109375
3
oz/error_pages/uimodules.py
dailymuse/oz
36
12785091
"""UIModules for the error pages plugin""" import oz import base64 import pprint import oz.error_pages import tornado.web import tornado.escape TABLE_FORMAT = """ <table %s %s> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> %s </tbody> </table> """ TABLE_ROW_FORMAT = """ <tr> <td>%s %s</td> <td class="code">%s</td> </tr> """ @oz.uimodule class DictTable(tornado.web.UIModule): """Renders an HTML table from a dict""" def render(self, d, id=None, kls=None): items = sorted(d.items()) if items: rows = [] for k, v in items: try: escaped_val = tornado.escape.xhtml_escape(oz.error_pages.prettify_object(v)) rows.append(TABLE_ROW_FORMAT % (k, "", escaped_val)) except UnicodeDecodeError: rows.append(TABLE_ROW_FORMAT % (k, "(in base64)", base64.b64encode(v))) return TABLE_FORMAT % ("id='%s'" % id if id else "", "class='%s'" if kls else "", "\n".join(rows)) else: return "<p>No data</p>"
2.59375
3
subsync.py
Xwaler/Subsync-headless
0
12785092
import os import time import shlex import shutil import requests import threading import json from watchdog.observers import Observer from watchdog.events import FileSystemEvent, FileSystemEventHandler from subprocess import check_call, DEVNULL, check_output, STDOUT, CalledProcessError BAZARR_URL = os.environ.get('BAZARR_URL') BAZARR_API_KEY = os.environ.get('BAZARR_API_KEY') BAZARR_USERNAME = os.environ.get('BAZARR_USERNAME') BAZARR_PASSWORD = os.environ.get('BAZARR_PASSWORD') NUM_WORKERS = int(os.environ.get('NUM_WORKERS')) if os.environ.get('NUM_WORKERS') else 1 JOBS_FOLDER = '/.config/jobs' FAILED_JOBS_FOLDER = '/.config/failed_jobs' if not os.path.exists(JOBS_FOLDER): os.mkdir(JOBS_FOLDER) if not os.path.exists(FAILED_JOBS_FOLDER): os.mkdir(FAILED_JOBS_FOLDER) event_lock = threading.Lock() last_file_event = 0 last_event = None worker_sem = threading.Semaphore(NUM_WORKERS) working_lock = threading.Lock() working = set() class AnyEventHandler(FileSystemEventHandler): def on_any_event(self, event): global last_file_event global last_event event_lock.acquire() t = time.time() if t > last_file_event: last_file_event = t if not isinstance(last_event, FileSystemEvent) or event.src_path != last_event.src_path: print(event) last_event = event event_lock.release() def sync(file): global worker_sem global working with open(file, 'r') as f: job = json.load(f) if job['ref_lang'] == 'None': job['ref_lang'] = 'eng' subsync_ref_lang = job['ref_lang'] \ .replace('fra', 'fre') \ .replace('deu', 'ger') \ .replace('lit', 'eng') # Bazarr thinks YTS.LT releases are Lithuanian subsync_sub_lang = job['sub_lang'] \ .replace('fra', 'fre') \ .replace('deu', 'ger') \ .replace('lit', 'eng') # Bazarr thinks YTS.LT releases are Lithuanian print(f'Syncing {os.path.basename(file)}') command = f'/subsync/bin/subsync --cli --verbose 0 sync ' \ f'--ref "{job["ref"]}" --ref-stream-by-type audio --ref-lang "{subsync_ref_lang}" ' \ f'--sub "{job["sub"]}" --sub-lang "{subsync_sub_lang}" ' \ f'--out "{job["sub"]}" --overwrite' try: check_call(shlex.split(command), stdout=DEVNULL, stderr=DEVNULL) print(f'Successful subsync {os.path.basename(file)}') if os.path.exists(os.path.join(FAILED_JOBS_FOLDER, os.path.basename(file))): os.remove(os.path.join(FAILED_JOBS_FOLDER, os.path.basename(file))) except CalledProcessError as e: print(f'Subsync failed {os.path.basename(file)} | {e}') command = f'/usr/local/bin/ffsubsync "{job["ref"]}" -i "{job["sub"]}" ' \ f' --max-offset-seconds 600 --encoding UTF-8 --overwrite-input' try: stdout = check_output(shlex.split(command), stderr=STDOUT, encoding='UTF-8') if 'Synchronization failed' in str(stdout): raise CalledProcessError(2, shlex.split(command)) print(f'Successful ffsubsync {os.path.basename(file)}') if os.path.exists(os.path.join(FAILED_JOBS_FOLDER, os.path.basename(file))): os.remove(os.path.join(FAILED_JOBS_FOLDER, os.path.basename(file))) except CalledProcessError as e: print(f'FFSubsync failed {os.path.basename(file)} | {e}') print(f'Blacklisting {os.path.basename(file)}') s = requests.session() headers = {"x-api-key": BAZARR_API_KEY} r = s.post(f"{BAZARR_URL}/api/system/account?action=login", data={"username": BAZARR_USERNAME, "password": <PASSWORD>}) if not r.ok: print("Authentication failed") shutil.copy(file, os.path.join(FAILED_JOBS_FOLDER, os.path.basename(file))) else: data = { 'subtitles_path': job["sub"], 'provider': job["provider"], 'subs_id': job["sub_id"], 'language': job["sub_code_2"], } if not job["series_id"]: url = f"{BAZARR_URL}/api/movies/blacklist?radarrid={job['episode_id']}" else: url = f"{BAZARR_URL}/api/episodes/blacklist?seriesid={job['series_id']}&episodeid={job['episode_id']}" r = s.post(url, data=data, headers=headers) if r.ok: print(f'Blacklisted {os.path.basename(file)}') else: print(f'Failed to blacklist {os.path.basename(file)} : {r.text}') shutil.copy(file, os.path.join(FAILED_JOBS_FOLDER, os.path.basename(file))) finally: working_lock.acquire() os.remove(file) working.remove(file) working_lock.release() worker_sem.release() if __name__ == '__main__': observer = Observer() observer.schedule(AnyEventHandler(), JOBS_FOLDER, recursive=True) observer.start() while True: time.sleep(3) event_lock.acquire() content = os.listdir(JOBS_FOLDER) if last_file_event + 10 < time.time(): event_lock.release() for thing in content: path = os.path.join(JOBS_FOLDER, thing) working_lock.acquire() cond = path in working working_lock.release() if cond: continue if os.path.exists(path): if os.path.isfile(path): worker_sem.acquire() working_lock.acquire() working.add(path) working_lock.release() worker = threading.Thread(target=sync, args=(path,)) worker.start() else: print(f'Warning: non-file found in jobs queue ({thing})') else: print(f"Job file doesn't exist ({thing})") else: event_lock.release()
2.109375
2
source/functions/Key_generate.py
GucciHsuan/CampusCyberInspectionTool2021
0
12785093
from cryptography.fernet import Fernet class Key_generate: def write_key(): """ Generates a key and save it into a file """ key = Fernet.generate_key() with open("key.key", "wb") as key_file: key_file.write(key) key = open("key.key", "rb").read() print(key)
3.453125
3
github_commit.py
Aaron1011/CloudBotPlugins
0
12785094
<filename>github_commit.py<gh_stars>0 from cloudbot import hook import requests GITHUB_URL = "https://api.github.com/repos/{}/{}/branches/{}" DEFAULT_OWNER = "SpongePowered" DEFAULT_REPO = "SpongeAPI" DEFAULT_BRANCH = "master" @hook.command("latest", "l") def latest(text, message): data = None owner = DEFAULT_OWNER repo = DEFAULT_REPO branch = DEFAULT_BRANCH if len(text) == 0: data = requests.get(GITHUB_URL.format(DEFAULT_OWNER, DEFAULT_REPO, DEFAULT_BRANCH)).json() else: text = text.split(' ') if len(text) == 1: branch = text[0] data = requests.get(GITHUB_URL.format(DEFAULT_OWNER, DEFAULT_REPO, branch)).json() elif len(text) == 2: repo = text[0] branch = text[1] data = requests.get(GITHUB_URL.format(DEFAULT_OWNER, repo, branch)).json() if data != None: slug = "{}/{}".format(repo, branch) sha = data["commit"]["sha"][0:7] print(data["commit"]) commit_message = data["commit"]["commit"]["message"].split("\n")[0] author = data["commit"]["commit"]["author"]["name"] message("{} {}: {} (by {})".format(slug, sha, commit_message, author))
2.640625
3
stagecraft/apps/dashboards/models/__init__.py
alphagov-mirror/stagecraft
3
12785095
<gh_stars>1-10 from .dashboard import Dashboard, Link from .module import Module, ModuleType
1.101563
1
RecoTauTag/Configuration/python/tools/adaptToRunAtMiniAOD.py
menglu21/cmssw
0
12785096
<reponame>menglu21/cmssw<filename>RecoTauTag/Configuration/python/tools/adaptToRunAtMiniAOD.py import FWCore.ParameterSet.Config as cms ###### # Tools to adapt Tau sequences to run tau ReReco+PAT at MiniAOD samples # <NAME>, <NAME> # based on work of <NAME>, CERN # Created: 9 Nov. 2017 ###### import PhysicsTools.PatAlgos.tools.helpers as configtools ##### class adaptToRunAtMiniAOD(object): def __init__(self, process, runBoosted=False, postfix=""): self.process = process self.runBoosted = runBoosted self.postfix = postfix if runBoosted: self.postfix = 'Boosted'+postfix #print("Adapting boosted tau reconstruction to run at miniAOD; postfix = \"%s\"" % self.postfix) #else: # print("Adapting tau reconstruction to run at miniAOD; postfix = \"%s\"" % self.postfix) ##### def addTauReReco(self): #PAT self.process.load('PhysicsTools.PatAlgos.producersLayer1.tauProducer_cff') self.process.load('PhysicsTools.PatAlgos.selectionLayer1.tauSelector_cfi') self.process.selectedPatTaus.cut="pt > 18. && tauID(\'decayModeFindingNewDMs\')> 0.5" #Cut as in MiniAOD #Tau RECO self.process.load("RecoTauTag.Configuration.RecoPFTauTag_cff") #Task/Sequence for tau rereco self.process.miniAODTausTask = cms.Task( self.process.PFTauTask, self.process.makePatTausTask, self.process.selectedPatTaus ) #Add Run-2 tauIDs for boostedTaus if self.runBoosted: self.process.PFTauMVAIsoTask = cms.Task( self.process.hpsPFTauDiscriminationByIsolationMVArun2v1DBoldDMwLTraw, self.process.hpsPFTauDiscriminationByIsolationMVArun2v1DBoldDMwLT, self.process.hpsPFTauDiscriminationByIsolationMVArun2v1DBnewDMwLTraw, self.process.hpsPFTauDiscriminationByIsolationMVArun2v1DBnewDMwLT ) self.process.PFTauTask.add(self.process.PFTauMVAIsoTask) self.miniAODTausTask = configtools.cloneProcessingSnippetTask( self.process,self.process.miniAODTausTask,postfix=self.postfix) setattr(self.process,'miniAODTausSequence'+self.postfix,cms.Sequence(self.miniAODTausTask)) if not self.postfix=="": del self.process.miniAODTausTask ##### def convertModuleToMiniAODInput(self,name): module = getattr(self.process, name) if hasattr(module, 'particleFlowSrc'): module.particleFlowSrc = cms.InputTag("packedPFCandidates", "", "") if hasattr(module, 'vertexSrc'): module.vertexSrc = cms.InputTag('offlineSlimmedPrimaryVertices') if hasattr(module, 'qualityCuts') and hasattr(module.qualityCuts, 'primaryVertexSrc'): module.qualityCuts.primaryVertexSrc = cms.InputTag('offlineSlimmedPrimaryVertices') ##### def adaptTauToMiniAODReReco(self,reclusterJets=True): # TRYING TO MAKE THINGS MINIAOD COMPATIBLE, FROM THE START, TO THE END, 1 BY 1 #print '[adaptTauToMiniAODReReco]: Start' jetCollection = 'slimmedJets' # Add new jet collections if reclustering is demanded if self.runBoosted: jetCollection = 'boostedTauSeedsPAT'+self.postfix from RecoTauTag.Configuration.boostedHPSPFTaus_cff import ca8PFJetsCHSprunedForBoostedTaus setattr(self.process,'ca8PFJetsCHSprunedForBoostedTausPAT'+self.postfix,ca8PFJetsCHSprunedForBoostedTaus.clone( src = 'packedPFCandidates', jetCollInstanceName = 'subJetsForSeedingBoostedTausPAT' )) setattr(self.process,'boostedTauSeedsPAT'+self.postfix, cms.EDProducer("PATBoostedTauSeedsProducer", subjetSrc = cms.InputTag('ca8PFJetsCHSprunedForBoostedTausPAT'+self.postfix,'subJetsForSeedingBoostedTausPAT'), pfCandidateSrc = cms.InputTag('packedPFCandidates'), verbosity = cms.int32(0) )) self.miniAODTausTask.add(getattr(self.process,'ca8PFJetsCHSprunedForBoostedTausPAT'+self.postfix)) self.miniAODTausTask.add(getattr(self.process,'boostedTauSeedsPAT'+self.postfix)) elif reclusterJets: jetCollection = 'patJetsPAT'+self.postfix from RecoJets.JetProducers.ak4PFJets_cfi import ak4PFJets setattr(self.process,'ak4PFJetsPAT'+self.postfix,ak4PFJets.clone( src = "packedPFCandidates" )) # trivial PATJets from PhysicsTools.PatAlgos.producersLayer1.jetProducer_cfi import _patJets setattr(self.process,'patJetsPAT'+self.postfix,_patJets.clone( jetSource = "ak4PFJetsPAT"+self.postfix, addJetCorrFactors = False, jetCorrFactorsSource = [], addBTagInfo = False, addDiscriminators = False, discriminatorSources = [], addAssociatedTracks = False, addJetCharge = False, addGenPartonMatch = False, embedGenPartonMatch = False, addGenJetMatch = False, getJetMCFlavour = False, addJetFlavourInfo = False, )) self.miniAODTausTask.add(getattr(self.process,'ak4PFJetsPAT'+self.postfix)) self.miniAODTausTask.add(getattr(self.process,'patJetsPAT'+self.postfix)) # so this adds all tracks to jet in some deltaR region. we don't have tracks so don't need it :D # self.process.ak4PFJetTracksAssociatorAtVertex.jets = cms.InputTag(jetCollection) # Remove ak4PFJetTracksAssociatorAtVertex from recoTauCommonSequence # Remove pfRecoTauTagInfoProducer from recoTauCommonSequence since it uses the jet-track association # HOWEVER, may use https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMiniAOD2017#Isolated_Tracks # probably needs recovery of the two modules above self.miniAODTausTask.remove(getattr(self.process,'ak4PFJetTracksAssociatorAtVertex'+self.postfix)) self.miniAODTausTask.remove(getattr(self.process,'pfRecoTauTagInfoProducer'+self.postfix)) self.miniAODTausTask.remove(getattr(self.process,'recoTauAK4PFJets08Region'+self.postfix)) setattr(self.process,'recoTauAK4Jets08RegionPAT'+self.postfix, cms.EDProducer("RecoTauPatJetRegionProducer", deltaR = self.process.recoTauAK4PFJets08Region.deltaR, maxJetAbsEta = self.process.recoTauAK4PFJets08Region.maxJetAbsEta, minJetPt = self.process.recoTauAK4PFJets08Region.minJetPt, pfCandAssocMapSrc = cms.InputTag(""), pfCandSrc = cms.InputTag("packedPFCandidates"), src = cms.InputTag(jetCollection) )) _jetRegionProducer = getattr(self.process,'recoTauAK4Jets08RegionPAT'+self.postfix) self.miniAODTausTask.add(_jetRegionProducer) if self.runBoosted: _jetRegionProducer.pfCandAssocMapSrc = cms.InputTag(jetCollection, 'pfCandAssocMapForIsolation') getattr(self.process,'recoTauPileUpVertices'+self.postfix).src = "offlineSlimmedPrimaryVertices" for moduleName in self.miniAODTausTask.moduleNames(): self.convertModuleToMiniAODInput(moduleName) # Adapt TauPiZeros producer _piZeroProducer = getattr(self.process,'ak4PFJetsLegacyHPSPiZeros'+self.postfix) for builder in _piZeroProducer.builders: builder.qualityCuts.primaryVertexSrc = "offlineSlimmedPrimaryVertices" _piZeroProducer.jetSrc = jetCollection # Adapt TauChargedHadrons producer _chargedHadronProducer = getattr(self.process,'ak4PFJetsRecoTauChargedHadrons'+self.postfix) for builder in _chargedHadronProducer.builders: builder.qualityCuts.primaryVertexSrc = "offlineSlimmedPrimaryVertices" if builder.name.value() == 'tracks': #replace plugin based on generalTracks by one based on lostTracks builder.name = 'lostTracks' builder.plugin = 'PFRecoTauChargedHadronFromLostTrackPlugin' builder.srcTracks = "lostTracks" if self.runBoosted: builder.dRcone = 0.3 builder.dRconeLimitedToJetArea = True _chargedHadronProducer.jetSrc = jetCollection # Adapt combinatoricRecoTau producer _combinatoricRecoTauProducer = getattr(self.process,'combinatoricRecoTaus'+self.postfix) _combinatoricRecoTauProducer.jetRegionSrc = 'recoTauAK4Jets08RegionPAT'+self.postfix _combinatoricRecoTauProducer.jetSrc = jetCollection # Adapt builders for builder in _combinatoricRecoTauProducer.builders: for name,value in builder.parameters_().items(): if name == 'qualityCuts': builder.qualityCuts.primaryVertexSrc = 'offlineSlimmedPrimaryVertices' elif name == 'pfCandSrc': builder.pfCandSrc = 'packedPFCandidates' # Adapt supported modifiers and remove unsupported ones _modifiersToRemove = cms.VPSet() for mod in _combinatoricRecoTauProducer.modifiers: if mod.name.value() == 'elec_rej': _modifiersToRemove.append(mod) continue elif mod.name.value() == 'TTIworkaround': _modifiersToRemove.append(mod) continue elif mod.name.value() == 'tau_lost_tracks': _modifiersToRemove.append(mod) continue for name,value in mod.parameters_().items(): if name == 'qualityCuts': mod.qualityCuts.primaryVertexSrc = 'offlineSlimmedPrimaryVertices' for mod in _modifiersToRemove: _combinatoricRecoTauProducer.modifiers.remove(mod) #print "\t\t Removing '%s' modifier from 'combinatoricRecoTaus'" %mod.name.value() # Redefine tau PV producer _tauPVProducer = getattr(self.process,'hpsPFTauPrimaryVertexProducer'+self.postfix) _tauPVProducer.__dict__['_TypedParameterizable__type'] = 'PFTauMiniAODPrimaryVertexProducer' _tauPVProducer.PVTag = 'offlineSlimmedPrimaryVertices' _tauPVProducer.packedCandidatesTag = cms.InputTag("packedPFCandidates") _tauPVProducer.lostCandidatesTag = cms.InputTag("lostTracks") # Redefine tau SV producer setattr(self.process,'hpsPFTauSecondaryVertexProducer'+self.postfix, cms.EDProducer("PFTauSecondaryVertexProducer", PFTauTag = cms.InputTag("hpsPFTauProducer"+self.postfix) )) # Remove RecoTau producers which are not supported (yet?), i.e. against-e/mu discriminats for moduleName in self.miniAODTausTask.moduleNames(): if 'ElectronRejection' in moduleName or 'MuonRejection' in moduleName: if 'ByDeadECALElectronRejection' in moduleName: continue self.miniAODTausTask.remove(getattr(self.process, moduleName)) # Instead add against-mu discriminants which are MiniAOD compatible from RecoTauTag.RecoTau.hpsPFTauDiscriminationByMuonRejectionSimple_cff import hpsPFTauDiscriminationByMuonRejectionSimple setattr(self.process,'hpsPFTauDiscriminationByMuonRejectionSimple'+self.postfix, hpsPFTauDiscriminationByMuonRejectionSimple.clone( PFTauProducer = "hpsPFTauProducer"+self.postfix)) _tauIDAntiMuSimple = getattr(self.process,'hpsPFTauDiscriminationByMuonRejectionSimple'+self.postfix) if self.runBoosted: _tauIDAntiMuSimple.dRmuonMatch = 0.1 self.miniAODTausTask.add(_tauIDAntiMuSimple) ##### # PAT part in the following getattr(self.process,'tauGenJets'+self.postfix).GenParticles = "prunedGenParticles" getattr(self.process,'tauMatch'+self.postfix).matched = "prunedGenParticles" # Remove unsupported tauIDs _patTauProducer = getattr(self.process,'patTaus'+self.postfix) for name,src in _patTauProducer.tauIDSources.parameters_().items(): if name.find('againstElectron') > -1 or name.find('againstMuon') > -1: if name.find('againstElectronDeadECAL') > -1: continue delattr(_patTauProducer.tauIDSources,name) # Add MiniAOD specific ones setattr(_patTauProducer.tauIDSources,'againstMuonLooseSimple', cms.PSet(inputTag = cms.InputTag('hpsPFTauDiscriminationByMuonRejectionSimple'+self.postfix), provenanceConfigLabel = cms.string('IDWPdefinitions'), idLabel = cms.string('ByLooseMuonRejectionSimple') )) setattr(_patTauProducer.tauIDSources,'againstMuonTightSimple', cms.PSet(inputTag = cms.InputTag('hpsPFTauDiscriminationByMuonRejectionSimple'+self.postfix), provenanceConfigLabel = cms.string('IDWPdefinitions'), idLabel = cms.string('ByTightMuonRejectionSimple') )) #Add Run-2 tauIDs still used for boostedTaus if self.runBoosted: from PhysicsTools.PatAlgos.producersLayer1.tauProducer_cfi import containerID containerID(_patTauProducer.tauIDSources, "hpsPFTauDiscriminationByIsolationMVArun2v1DBoldDMwLT"+self.postfix, "rawValues", [ ["byIsolationMVArun2DBoldDMwLTraw", "discriminator"] ]) containerID(_patTauProducer.tauIDSources, "hpsPFTauDiscriminationByIsolationMVArun2v1DBoldDMwLT"+self.postfix, "workingPoints", [ ["byVVLooseIsolationMVArun2DBoldDMwLT", "_VVLoose"], ["byVLooseIsolationMVArun2DBoldDMwLT", "_VLoose"], ["byLooseIsolationMVArun2DBoldDMwLT", "_Loose"], ["byMediumIsolationMVArun2DBoldDMwLT", "_Medium"], ["byTightIsolationMVArun2DBoldDMwLT", "_Tight"], ["byVTightIsolationMVArun2DBoldDMwLT", "_VTight"], ["byVVTightIsolationMVArun2DBoldDMwLT", "_VVTight"] ]) containerID(_patTauProducer.tauIDSources, "hpsPFTauDiscriminationByIsolationMVArun2v1DBnewDMwLT"+self.postfix, "rawValues", [ ["byIsolationMVArun2DBnewDMwLTraw", "discriminator"] ]) containerID(_patTauProducer.tauIDSources, "hpsPFTauDiscriminationByIsolationMVArun2v1DBnewDMwLT"+self.postfix, "workingPoints", [ ["byVVLooseIsolationMVArun2DBnewDMwLT", "_VVLoose"], ["byVLooseIsolationMVArun2DBnewDMwLT", "_VLoose"], ["byLooseIsolationMVArun2DBnewDMwLT", "_Loose"], ["byMediumIsolationMVArun2DBnewDMwLT", "_Medium"], ["byTightIsolationMVArun2DBnewDMwLT", "_Tight"], ["byVTightIsolationMVArun2DBnewDMwLT", "_VTight"], ["byVVTightIsolationMVArun2DBnewDMwLT", "_VVTight"] ]) # Run TauIDs (anti-e && deepTau) on top of selectedPatTaus _updatedTauName = 'selectedPatTausNewIDs'+self.postfix _noUpdatedTauName = 'selectedPatTausNoNewIDs'+self.postfix toKeep = ['deepTau2017v2p1'] #For boosted do not run deepTauIDs, but add still used Run-2 anti-e MVA if self.runBoosted: toKeep = ['againstEle2018'] import RecoTauTag.RecoTau.tools.runTauIdMVA as tauIdConfig tauIdEmbedder = tauIdConfig.TauIDEmbedder( self.process, debug = False, originalTauName = _noUpdatedTauName, updatedTauName = _updatedTauName, postfix = "MiniAODTaus"+self.postfix, toKeep = toKeep ) tauIdEmbedder.runTauID() setattr(self.process, _noUpdatedTauName, getattr(self.process,'selectedPatTaus'+self.postfix).clone()) self.miniAODTausTask.add(getattr(self.process,_noUpdatedTauName)) delattr(self.process, 'selectedPatTaus'+self.postfix) setattr(self.process,'selectedPatTaus'+self.postfix,getattr(self.process, _updatedTauName).clone()) delattr(self.process, _updatedTauName) setattr(self.process,'newTauIDsTask'+self.postfix,cms.Task( getattr(self.process,'rerunMvaIsolationTaskMiniAODTaus'+self.postfix), getattr(self.process,'selectedPatTaus'+self.postfix) )) self.miniAODTausTask.add(getattr(self.process,'newTauIDsTask'+self.postfix)) #print '[adaptTauToMiniAODReReco]: Done!' ##### def setOutputModule(self,mode=0): #mode = 0: store original MiniAOD and new selectedPatTaus #mode = 1: store original MiniAOD, new selectedPatTaus, and all PFTau products as in AOD (except of unsuported ones), plus a few additional collections (charged hadrons, pi zeros, combinatoric reco taus) import Configuration.EventContent.EventContent_cff as evtContent output = cms.OutputModule( 'PoolOutputModule', fileName=cms.untracked.string('miniAOD_TauReco.root'), fastCloning=cms.untracked.bool(False), dataset=cms.untracked.PSet( dataTier=cms.untracked.string('MINIAODSIM'), filterName=cms.untracked.string('') ), outputCommands = evtContent.MINIAODSIMEventContent.outputCommands, SelectEvents=cms.untracked.PSet( SelectEvents=cms.vstring('*',) ) ) output.outputCommands.append('keep *_selectedPatTaus'+self.postfix+'_*_*') if mode==1: import re for prod in evtContent.RecoTauTagAOD.outputCommands: if prod.find('ElectronRejection') > -1 and prod.find('DeadECAL') == -1: continue if prod.find('MuonRejection') > -1: continue if prod.find("_*_*")>-1: # products w/o instance output.outputCommands.append(prod.replace("_*_*",self.postfix+"_*_*")) else: # check if there are prods with instance m = re.search(r'_[A-Za-z0-9]+_\*', prod) if m!=None: inst = m.group(0) output.outputCommands.append(prod.replace(inst,self.postfix+inst)) else: print("Warning: \"%s\" do not match known name patterns; trying to keep w/o postfix" % prod) output.outputCommands.append(prod) output.outputCommands.append('keep *_hpsPFTauDiscriminationByMuonRejectionSimple'+self.postfix+'_*_*') output.outputCommands.append('keep *_combinatoricReco*_*_*') output.outputCommands.append('keep *_ak4PFJetsRecoTauChargedHadrons'+self.postfix+'_*_*') output.outputCommands.append('keep *_ak4PFJetsLegacyHPSPiZeros'+self.postfix+'_*_*') output.outputCommands.append('keep *_patJetsPAT'+self.postfix+'_*_*') output.outputCommands.append('keep *_boostedTauSeedsPAT'+self.postfix+'_*_*') return output #####
1.984375
2
oscar/lib/python2.7/site-packages/_pytest/__init__.py
bhav11esh/Oscar-Bookshelf
1
12785097
# __version__ = '3.0.6'
1.054688
1
instance.py
Elaina-Alex/PixivCrawler
1
12785098
<filename>instance.py import os import re import time from rich import print import yaml class Msg: msg_help = [ "输入首字母", "h | help\t\t\t\t\t\t--- 显示说明", "q | quit\t\t\t\t\t\t--- 退出正在运作的程序", "d | picture\t\t\t\t\t\t--- 输入id或url下载插画", "t | recommend\t\t\t\t\t--- 下载pixiv推荐插画", "s | start\t\t\t\t\t\t--- 下载账号收藏插画", "r | rank\t\t\t\t\t\t--- 下载排行榜作品", "n | tag name\t\t\t\t\t--- 输入插画名或者表情名", "u | read text pid\t\t\t\t\t--- 读取本地文本里的pid批量下载", "f | follow\t\t\t\t\t\t--- 下载关注的画师作品", ] class YamlData: def __init__(self, file_path=None, file_dir=None): if file_dir is not None: self.file_dir = os.path.join(os.getcwd(), file_dir) if not os.path.exists(self.file_dir): try: os.mkdir(self.file_dir) except (FileExistsError, OSError) as err: print(err) self.file_path = os.path.join(os.getcwd(), file_path) self.data = {} def load(self): try: with open(file=self.file_path, mode="r", encoding='utf-8') as f: self.data = yaml.load(f, Loader=yaml.FullLoader) if self.data is None: self.data = {} except FileNotFoundError: with open(self.file_path, 'w', encoding='utf-8'): self.data = {} def save(self): with open(file=self.file_path, mode="w", encoding='utf-8') as f: yaml.safe_dump(self.data, f, default_flow_style=False, allow_unicode=True) def write_file(file_dir: str, m: str, content: str = ""): if m == "r": return open(file_dir, "r", encoding='utf-8').read() with open(file_dir, m, encoding='utf-8', newline="") as f: f.write(content) class Vars: cfg = YamlData('pixiv-config.yaml') images_info = None complex_images_info = list() images_info_list = list() def count_time(func: callable) -> callable: def wrapper(*arg, **kwargs): start_time = time.time() result = func(*arg, **kwargs) print(f"下载耗时:{time.time() - start_time:.2f}s") return result return wrapper def remove_str(content: str): res_compile = re.compile(u'[\U00010000-\U0010ffff\\uD800-\\uDBFF\\uDC00-\\uDFFF]') return res_compile.sub("", re.sub('[/:*?"<>|x08]', '-', content)) def rec_id(book_id: str): book_id = book_id if 'http' not in book_id else re.findall(r'/(\d+)/?', book_id)[0] return str(book_id) if book_id.isdigit() else f'输入信息 {book_id} 不是数字或链接!' def index_title(division_index: int, image_name: str): return str(division_index).rjust(4, "0") + '-' + str(image_name) def input_str(prompt, default=None): while True: ret = input(prompt) if ret != '': return ret elif default is not None: return default def input_int(prompt: str, max_number: int = None): while True: ret = input(prompt) if ret.isdigit(): if max_number is None: return int(ret) if max_number is not None and int(ret) < max_number: return int(ret) else: print(f"输入数字 {ret} 需要小于索引 {max_number} ") continue else: if ret.strip() != '': print(f"输入的内容 {ret} 不是数字,请重新输入") def set_config(): Vars.cfg.load() config_change = False if type(Vars.cfg.data.get('max_thread')) is not int: Vars.cfg.data['max_thread'] = 5 config_change = True if Vars.cfg.data.get('save_file') is not str: Vars.cfg.data['save_file'] = 'image_file' config_change = True if Vars.cfg.data.get('out_file') is not str: Vars.cfg.data['out_file'] = 'downloaded' config_change = True if type(Vars.cfg.data.get('save_type')) is not bool: Vars.cfg.data['save_type'] = False config_change = True if type(Vars.cfg.data.get('access_token')) is not str: Vars.cfg.data['access_token'] = "" config_change = True if type(Vars.cfg.data.get('refresh_token')) is not str: Vars.cfg.data['refresh_token'] = "" config_change = True if type(Vars.cfg.data.get('max_retry')) is not int: Vars.cfg.data['max_retry'] = 5 # retry times when download failed config_change = True if not isinstance(Vars.cfg.data.get('file_name_config'), dict): Vars.cfg.data['file_name_config'] = {'image_id': True, 'author': 'author'} config_change = True if not isinstance(Vars.cfg.data.get('user_info'), dict): Vars.cfg.data['user_info'] = {} # save user info to config file config_change = True if config_change: # if config change, save it to file and reload. Vars.cfg.save() if not os.path.exists(Vars.cfg.data.get('save_file')): os.mkdir(Vars.cfg.data.get('save_file'))
2.484375
2
_doc/examples/gallery1/plot_project_name.py
sdpython/python_project_template
0
12785099
<filename>_doc/examples/gallery1/plot_project_name.py # -*- coding: utf-8 -*- """ =============================== Example with the project itself =============================== Example with a simple import. """ ############################## # import import python3_module_template print(python3_module_template.__version__)
1.898438
2
lib/data_stores/tdb_data_store_test.py
nahidupa/grr
1
12785100
#!/usr/bin/env python """Tests the tdb data store - in memory implementation.""" import shutil # pylint: disable=unused-import,g-bad-import-order from grr.lib import server_plugins # pylint: enable=unused-import,g-bad-import-order from grr.lib import access_control from grr.lib import config_lib from grr.lib import data_store from grr.lib import data_store_test from grr.lib import flags from grr.lib import test_lib from grr.lib.data_stores import tdb_data_store # pylint: mode=test class TDBTestMixin(object): def InitDatastore(self): self.token = access_control.ACLToken(username="test", reason="Running tests") config_lib.CONFIG.Set("Datastore.location", "%s/tdb_test/" % self.temp_dir) self.DestroyDatastore() data_store.DB = tdb_data_store.TDBDataStore() data_store.DB.security_manager = test_lib.MockSecurityManager() def testCorrectDataStore(self): self.assertTrue(isinstance(data_store.DB, tdb_data_store.TDBDataStore)) def DestroyDatastore(self): try: shutil.rmtree(config_lib.CONFIG.Get("Datastore.location")) except (OSError, IOError): pass class TDBDataStoreTest(TDBTestMixin, data_store_test._DataStoreTest): """Test the tdb data store.""" class TDBDataStoreBenchmarks(TDBTestMixin, data_store_test.DataStoreBenchmarks): """Benchmark the TDB data store abstraction.""" class TDBDataStoreCSVBenchmarks(TDBTestMixin, data_store_test.DataStoreCSVBenchmarks): """Benchmark the TDB data store abstraction.""" def main(args): test_lib.main(args) if __name__ == "__main__": flags.StartMain(main)
2.109375
2
imaging.py
jinjiaho/project57
0
12785101
<gh_stars>0 from PIL import Image import os ## A library for all your image manipulation needs! ## Requires Pillow for Python 2.7/3.3+ class Imaging(object): # set proposed dimension of thumbnail # assume max height/width of 255 def __init__(self, dim=255, path="static/img/items/", fallback="default.thumb"): self.dim = dim self.path = path self.fallback = fallback # create thumbnail of size `dim` for file args def thumb(self, *args): for infile in args: infile_abs = self.path + infile outfile = os.path.splitext(infile)[0] + ".thumb" outfile_abs = self.path + outfile if infile != outfile: try: im = Image.open(infile_abs) im = im.convert("RGB") im.thumbnail((self.dim, self.dim), Image.ANTIALIAS) im.save(outfile_abs, "JPEG") return outfile except IOError: print("PYTHON: Cannot create thumbnail for '%s'" % infile) return self.fallback def __str__(self): return "Dimension: %d\nPath: %s" % self.dim, self.path if __name__ == '__main__': print("PYTHON: `Imaging.py` is not meant to be executed directly")
3.078125
3
tests/test_copyright.py
jbwang1997/pre-commit-hooks
12
12785102
<filename>tests/test_copyright.py import os import os.path as osp from pre_commit_hooks.check_copyright import check_copyright def test_copyright(): includes = ['./tests/data'] excludes = ['./tests/data/exclude'] suffixes = ['.py', '.cpp', '.h', '.cu', '.cuh', '.hpp'] contain_copyright = ['./tests/data/contain_copyright'] assert check_copyright(includes, excludes, suffixes) == 1 for dir in includes: for root, dirs, files in os.walk(dir): for file in files: filepath = osp.join(root, file) with open(filepath, 'r', encoding='utf-8') as f: lines = f.readlines() if root not in excludes: assert lines[0].split(' ').count('Copyright') > 0 else: assert lines[0].split(' ').count('Copyright') == 0 with open(filepath, 'w', encoding='utf-8') as f: if root not in excludes and root not in contain_copyright: f.writelines(lines[1:]) else: f.writelines(lines) for dir in contain_copyright: for root, dirs, files in os.walk(dir): for file in files: filepath = osp.join(root, file) with open(filepath, 'r', encoding='utf-8') as f: line = f.readline() assert line.split(' ').count('OpenMMLab.') > 0
2.453125
2
android-runner/ExperimentRunner/MonkeyRunner.py
S2-group/mobilesoft-2020-caching-pwa-replication-package
0
12785103
import subprocess from ExperimentRunner.Script import Script class MonkeyRunner(Script): """ Subclass of `Script` for running MonkeyRunner scripts directly. As opposed to `MonkeyReplay`, it runs the scripts directly using MonkeyRunner. Thanks to that it's not necessary to go through a layer of indirection in the form of JSON files and a custom runner. This results in higher flexibility and greater control. Usage: 1. Create a script runnable by MonkeyRunner. 2. Add it to the config file with the type "monkeyrunner". Important! The script has to be directly runnable by MonkeyRunner. It means that: - it has to create an instance of `MonkeyDevice` explicitly in the script, - all operations are supposed to be invoked on this instance, - there has to be module-level code running the operations, - it has to follow any other restrictions specified in the docs. Docs and examples: https://developer.android.com/studio/test/monkeyrunner/ """ def __init__(self, path, timeout=0, logcat_regex=None, monkeyrunner_path='monkeyrunner'): super(MonkeyRunner, self).__init__(path, timeout, logcat_regex) self.monkeyrunner_path = monkeyrunner_path def execute_script(self, device, *args, **kwargs): """ Run the MonkeyRunner script. Returns the return value returned by MonkeyRunner. """ super(MonkeyRunner, self).execute_script(device, *args, **kwargs) return subprocess.call([self.monkeyrunner_path, self.path])
2.6875
3
mysite/slhpa/admin.py
jeffb4real/SLHPA-Web-App
1
12785104
from django.contrib import admin from .models import PhotoRecord, KeyValueRecord admin.site.register(PhotoRecord) admin.site.register(KeyValueRecord)
1.273438
1
nmastudio/tools/storage.py
silviametelli/nmastudio
2
12785105
<reponame>silviametelli/nmastudio import pandas as pd from nmastudio.tools.utils import get_network from collections import OrderedDict NET_DATA = pd.read_csv('db/psoriasis_wide.csv') NET_DATA2 = NET_DATA.drop(["TE", "seTE", "n1", "n2"], axis=1) NET_DATA2 = NET_DATA2.rename(columns={"TE2": "TE", "seTE2": "seTE", "n2.1": "n1", "n2.2": "n2"}) CONSISTENCY_DATA = pd.read_csv('db/consistency/consistency.csv') DEFAULT_ELEMENTS = USER_ELEMENTS = get_network(df=NET_DATA) DEFAULT_ELEMENTS2 = USER_ELEMENTS2 = get_network(df=NET_DATA2) FOREST_DATA = pd.read_csv('db/forest_data/forest_data.csv') FOREST_DATA_OUT2 = pd.read_csv('db/forest_data/forest_data_outcome2.csv') FOREST_DATA_PRWS = pd.read_csv('db/forest_data/forest_data_pairwise.csv') FOREST_DATA_PRWS_OUT2 = pd.read_csv('db/forest_data/forest_data_pairwise_out2.csv') LEAGUE_TABLE_DATA = pd.read_csv('db/league_table_data/league_table.csv', index_col=0) CINEMA_NET_DATA1 = pd.read_csv('db/Cinema/cinema_report_PASI90.csv') CINEMA_NET_DATA2 = pd.read_csv('db/Cinema/cinema_report_SAE.csv') NETSPLIT_DATA = pd.read_csv('db/consistency/consistency_netsplit.csv') NETSPLIT_DATA_OUT2 = pd.read_csv('db/consistency/consistency_netsplit_out2.csv') NETSPLIT_DATA_ALL = pd.read_csv('db/consistency/netsplit_all.csv') NETSPLIT_DATA_ALL_OUT2 = pd.read_csv('db/consistency/netsplit_all_out2.csv') RANKING_DATA = pd.read_csv('db/ranking/rank.csv') FUNNEL_DATA = pd.read_csv('db/funnel/funnel_data.csv') FUNNEL_DATA_OUT2 = pd.read_csv('db/funnel/funnel_data_out2.csv') DEFAULT_DATA = OrderedDict(net_data_STORAGE=NET_DATA, net_data_out2_STORAGE=NET_DATA2, consistency_data_STORAGE=CONSISTENCY_DATA, user_elements_STORAGE=USER_ELEMENTS, user_elements_out2_STORAGE=USER_ELEMENTS2, forest_data_STORAGE=FOREST_DATA, forest_data_out2_STORAGE=FOREST_DATA_OUT2, forest_data_prws_STORAGE=FOREST_DATA_PRWS, forest_data_prws_out2_STORAGE=FOREST_DATA_PRWS_OUT2, ranking_data_STORAGE=RANKING_DATA, funnel_data_STORAGE=FUNNEL_DATA, funnel_data_out2_STORAGE=FUNNEL_DATA_OUT2, league_table_data_STORAGE=LEAGUE_TABLE_DATA, net_split_data_STORAGE=NETSPLIT_DATA, net_split_data_out2_STORAGE=NETSPLIT_DATA_OUT2, net_split_ALL_data_STORAGE=NETSPLIT_DATA_ALL, net_split_ALL_data_out2_STORAGE=NETSPLIT_DATA_ALL_OUT2, cinema_net_data1_STORAGE=CINEMA_NET_DATA1, cinema_net_data2_STORAGE=CINEMA_NET_DATA2, ) OPTIONS_VAR = [{'label': '{}'.format(col), 'value': col} for col in NET_DATA.select_dtypes(['number']).columns] N_CLASSES = USER_ELEMENTS[-1]["data"]['n_class'] if "n_class" in USER_ELEMENTS[-1]["data"] else 1
2.5625
3
data_structures/tests/test_union_find.py
tzaffi/PyAlgo
0
12785106
<filename>data_structures/tests/test_union_find.py from data_structures.union_find import UnionFind def test_init(): ds = UnionFind([1, 2, 3]) assert ds._elts == {1, 2, 3} assert ds._reps == {1, 2, 3} assert ds._comp_count == 3 assert ds._parent[2] == 2 def test_union_find(): ds = UnionFind([1, 2, 3]) assert ds.find(3) == 3 assert 3 == ds.union(2, 3) assert ds.find(2) == ds.find(3) assert ds.find(1) != ds.find(3) def test_component_n_size(): ds = UnionFind([1, 2, 3]) for i in [1, 2, 3]: assert ds.component(i) == {i} assert ds.component_size(i) == 1 assert 3 == ds.union(2, 3) assert ds.component(1) == {1} assert ds.component(2) == {2, 3} assert ds.component_size(1) == 1 assert ds.component_size(2) == 2 def test_connected(): ds = UnionFind([1, 2, 3]) for i in [1, 2, 3]: assert ds.connected(i, i) assert not ds.connected(i, i + 1 if i < 3 else 1) assert 3 == ds.union(2, 3) assert ds.connected(2, 3) assert not ds.connected(1, 3) def test_eq_neq(): ds1 = UnionFind([1, 2, 3]) ds2 = UnionFind([1, 2, 3]) assert ds1 == ds2 assert not ds1 != ds2 ds1.union(2, 3) assert not ds1 == ds2 assert ds1 != ds2 def test_len(): ds = UnionFind([1, 2, 3]) assert len(ds) == 3 ds.union(2, 3) assert len(ds) == 2 ds.union(2, 3) assert len(ds) == 2 ds.union(1, 2) assert len(ds) == 1 def equal_sets_collection(sets1, sets2): if len(sets1) != len(sets2): return False for s in sets1: if s not in sets2: return False return True def test_sets(): ds = UnionFind([1, 2, 3]) ds.union(2, 3) expected = [{1}, {2, 3}] actual = ds.sets() assert equal_sets_collection(expected, actual), actual
3.046875
3
Leak #5 - Lost In Translation/windows/Resources/Python/Core/Lib/contextlib.py
bidhata/EquationGroupLeaks
9
12785107
<reponame>bidhata/EquationGroupLeaks # uncompyle6 version 2.9.10 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.6.0b2 (default, Oct 11 2016, 05:27:10) # [GCC 6.2.0 20161005] # Embedded file name: contextlib.py """Utilities for with-statement contexts. See PEP 343.""" import sys from functools import wraps from warnings import warn __all__ = [ 'contextmanager', 'nested', 'closing'] class GeneratorContextManager(object): """Helper for @contextmanager decorator.""" def __init__(self, gen): self.gen = gen def __enter__(self): try: return self.gen.next() except StopIteration: raise RuntimeError("generator didn't yield") def __exit__(self, type, value, traceback): if type is None: try: self.gen.next() except StopIteration: return raise RuntimeError("generator didn't stop") else: if value is None: value = type() try: self.gen.throw(type, value, traceback) raise RuntimeError("generator didn't stop after throw()") except StopIteration as exc: return exc is not value except: if sys.exc_info()[1] is not value: raise return def contextmanager(func): """@contextmanager decorator. Typical usage: @contextmanager def some_generator(<arguments>): <setup> try: yield <value> finally: <cleanup> This makes this: with some_generator(<arguments>) as <variable>: <body> equivalent to this: <setup> try: <variable> = <value> <body> finally: <cleanup> """ @wraps(func) def helper(*args, **kwds): return GeneratorContextManager(func(*args, **kwds)) return helper @contextmanager def nested(*managers): """Combine multiple context managers into a single nested context manager. This function has been deprecated in favour of the multiple manager form of the with statement. The one advantage of this function over the multiple manager form of the with statement is that argument unpacking allows it to be used with a variable number of context managers as follows: with nested(*managers): do_something() """ warn('With-statements now directly support multiple context managers', DeprecationWarning, 3) exits = [] vars = [] exc = (None, None, None) try: try: for mgr in managers: exit = mgr.__exit__ enter = mgr.__enter__ vars.append(enter()) exits.append(exit) yield vars except: exc = sys.exc_info() finally: while exits: exit = exits.pop() try: if exit(*exc): exc = (None, None, None) except: exc = sys.exc_info() if exc != (None, None, None): raise exc[0], exc[1], exc[2] return class closing(object): """Context to automatically close something at the end of a block. Code like this: with closing(<module>.open(<arguments>)) as f: <block> is equivalent to this: f = <module>.open(<arguments>) try: <block> finally: f.close() """ def __init__(self, thing): self.thing = thing def __enter__(self): return self.thing def __exit__(self, *exc_info): self.thing.close()
2.921875
3
ituro/orders/management/commands/linefollowerdeleteorders.py
kayduemre/ituro
9
12785108
from django.core.management.base import BaseCommand, CommandError from django.conf import settings from orders.models import RaceOrder, LineFollowerRaceOrder class Command(BaseCommand): args = '<day>' help = 'Deletes line follower race orders of the specified day.' def handle(self, *args, **options): try: day = int(args[0]) except IndexError: raise CommandError('Please specify a day.') if day < 1 or day > 2: raise CommandError('Day interval is 1 <= day <= 2.') LineFollowerRaceOrder.objects.filter(stage__order=day).delete() self.stdout.write( "Line follower race orders day #{} deleted.".format(day))
2.296875
2
leitor.py
rjribeiro/trabalho-formais
3
12785109
<gh_stars>1-10 import re class Leitor: def __init__(self, arquivo): self.__terminais = self.__monta_terminais(arquivo) self.__variaveis = self.__monta_variaveis(arquivo) self.__inicial = self.__le_linha(arquivo).strip()[2:-2] self.__producoes = self.__monta_producoes(arquivo) def __le_linha(self, arquivo): """ Lê uma linha do arquivo e lida com os comentarios, retornado apenas a parte significativa da linha. :param arquivo: arquivo txt onde esta a gramatica a ser lida :type arquivo: file :return: a linha com os dados uteis :rtype: str """ linha = arquivo.readline() posicao = linha.find("#") if posicao == -1: return linha elif posicao == 0: for prefixo in ["#Terminais", "#Variaveis", "#Inicial", "#Regras"]: if linha.startswith(prefixo): return prefixo return linha[:posicao] def __splita_linha(self, linha): """ Separa numa lista cada conjunto de caracteres na linha. Exemplo: [ S ] > [ NP ] [ VP ] -> ['', ' S ', ' ', ' ', ' NP ', ' ', ' VP ', '\n'] :param linha: str :return: lista de strings, contendo variaveis e/ou terminais :rtype: list """ # Nas 3 proximas linhas eu troco os caracteres inuteis para "|" com o objetivo de facilitar o split # Tentei usar o metodo re.split() mas ela retorna o resultado errado linha = linha.replace("[", "|") linha = linha.replace("]", "|") linha = linha.replace(">", "|") linha = linha.split("|") return linha def __monta_terminais(self, arquivo): """ Pega os simbolos terminais da gramatica Exemplo: gramatica_exemplo2.txt -> ['runs', 'barks', 'eats', ... , 'with', 'at'] :param arquivo: arquivo txt onde esta a gramatica a ser lida :type arquivo: file :return: conjunto contendo os terminais da gramatica :rtype: set """ self.__le_linha(arquivo)#esse readline eh pra pular a primeira linha do o arquivo, onde ta escrito "#Terminais" terminais = set() while True: linha = self.__le_linha(arquivo) if linha == '#Variaveis': break else: terminais.add(re.split('[ | ]', linha)[1]) return terminais def __monta_producao(self, linha): """ Formata a lista retornada da funcao splita_linha() Exemplo: ['', ' S ', ' ', ' ', ' NP ', ' ', ' VP ', '\n'] -> ['S', ['NP', 'VP']] :param linha: lista que contem os elementos de uma producao :type linha: list :return: a producao extraida da lista :rytpe: tuple """ cabeca = linha[1][1:-1] # A cabeca da producao sempre vai estar no indice 1 da lista. Esse slice [1:-1] eh # para tirar os espacos em branco que cercam ela corpo = [] for x in linha[4::2]:# Os membros do corpo da producao comecam a partir do indice 4 da lista e vao ateh o final # dela pulando de 2 em 2 para nao pegar os caracteres inuteis ', ' ', ' corpo.append(x[1:-1]) # Esse slice [1:-1] eh para tirar os espacos em branco return (cabeca, tuple(corpo)) def __monta_producoes(self, arquivo): """ Pega as regras de producao da gramatica Exemplo: gramatica_exemplo2.txt -> [['S', ['NP', 'VP']], ... , ['N', ['dog']], ['N', ['cat']] :param arquivo: arquivo txt onde esta a gramatica a ser lida :type arquivo: file :return: conjunto contendo as producoes da gramatica :rtype: set """ self.__le_linha(arquivo) producoes = set() while True: linha = self.__le_linha(arquivo) if linha == '': break else: linha = self.__splita_linha(linha) producao = self.__monta_producao(linha) producoes.add(producao) return producoes def __monta_variaveis(self, arquivo): """ Pega os simbolos variaveis da gramatica Exemplo: gramatica_exemplo2.txt -> ['VB', 'NP', 'DT', 'VP', 'S', 'PP', 'P'] :param arquivo: arquivo txt onde esta a gramatica a ser lida :type arquivo: file :return: lista das variaveis da gramatica rtype: list """ variaveis = set() while True: linha = self.__le_linha(arquivo) if linha == '#Inicial': break else: variaveis.add(re.split('[ | ]', linha)[1]) return variaveis @property def terminais(self): return self.__terminais @property def variaveis(self): return self.__variaveis @property def inicial(self): return self.__inicial @property def producoes(self): return self.__producoes
3.1875
3
assignment1/mapper.py
IITDU-BSSE06/ads-demystifying-the-logs-Sabir001
0
12785110
#!/usr/bin/python import sys for line in sys.stdin: data = line.strip().split("- -") if len(data) == 2: ipAddress, rest = data if ipAddress.strip() == "10.99.99.186": print "{0}".format(ipAddress)
3.21875
3
blender-processing-scripts/render/master_image_from_angle.py
MikeFesta/3xr
7
12785111
# SPDX-License-Identifier: Apache-2.0 import bpy import math import os import time from xrs import automate as xra ## Depricated - used to render asset submissions # rename xra.log_info('Rendering Asset Master Image from angle') arguments = xra.get_command_line_arguments() working_dir = arguments[0] asset_name = arguments[1] submission_id = arguments[2] theta = float(arguments[3]) phi = float(arguments[4]) radius = float(arguments[5]) asset_blend = working_dir + asset_name + '.blend' # Save a copy for testing purposes. Can be removed in the future. # TODO: Remove this when it is not needed anymore xra.save_as(working_dir, 'master_image_from_angle') xra.log_info('Linking asset from ' + asset_blend + ' with camera rotation ' + str(theta) + ', ' + str(phi) + ', ' + str(radius)) xra.append_collection(asset_blend, "master") if ("master" not in bpy.data.collections): # Exit if the collection couldn't be loaded xra.quit_with_error("Unable to load master collection") xra.log_info('Setting Render Engine to Cycles') xra.set_renderer_to_cycles(64) #TODO: experiment with this number xra.set_render_resolution(2048, 2048) xra.log_info('Rendering device: ' + bpy.context.scene.cycles.device) bpy.context.scene.render.film_transparent = True # Don't render the backdrop if "Backdrop" in bpy.data.objects: bpy.data.objects["Backdrop"].cycles.is_holdout = True # when camera is under, backface culling is used instead of holdout if (phi > math.pi): bpy.data.objects["Floor"].cycles.is_holdout = True else: bpy.data.objects["Floor"].cycles.is_holdout = False class shotClass: def __init__(self, name, x, z): self.name = name self.x = x self.z = z orbitX = str(math.floor(math.degrees(theta))) orbitY = str(math.floor(math.degrees(phi))) shot = shotClass(("-" + orbitX + "_" + orbitY), theta, phi) # Camera bpy.ops.object.camera_add() bpy.context.scene.camera = bpy.context.active_object # Join all objects in the master collection into a single object # this is for camera scaling purposes xra.join_collection_objects_into_one("master") # Make sure that it is not hidden from the render (TODO: add to validation) bpy.data.collections["master"].objects[0].hide_render = False # Rotate the object and angle the camera (vertically only) xra.rotate_object_and_angle_camera( bpy.context.scene.camera, bpy.data.collections["master"].objects[0], shot.x, shot.z ) # Render Image xra.log_info('Starting Render') timer = time.time() bpy.ops.render.render() # Image Save Location xra.log_info('Setting Image Save Location') # TODO: pass the filename from rabbit bpy.context.scene.render.filepath = working_dir + asset_name + shot.name + ".png" bpy.context.scene.render.image_settings.file_format = "PNG" xra.log_info(bpy.context.scene.render.filepath) # Save Image bpy.data.images["Render Result"].save_render(filepath=bpy.context.scene.render.filepath) xra.log_info(shot.name + " Render Time: " + str(time.time() - timer) + " seconds") if xra.record_asset_submission_render(submission_id, (asset_name + shot.name + ".png")) == False: xra.log_error("Unable to record renders on 3xr.com") # Save again with all of the changes # TODO: remove this when no longer needed xra.save_as(working_dir, 'master_image_from_angle')
2.046875
2
examples/add_vm_nic.py
oliel/python-ovirt-engine-sdk4
3
12785112
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2016 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import ovirtsdk4 as sdk import ovirtsdk4.types as types logging.basicConfig(level=logging.DEBUG, filename='example.log') # This example will connect to the server and add a network interface # card to an existing virtual machine. # Create the connection to the server: connection = sdk.Connection( url='https://engine40.example.com/ovirt-engine/api', username='admin@internal', password='<PASSWORD>', ca_file='ca.pem', debug=True, log=logging.getLogger(), ) # Locate the virtual machines service and use it to find the virtual # machine: system_service = connection.system_service() vms_service = system_service.vms_service() vm = vms_service.list(search='name=myvm')[0] # In order to specify the network that the new interface will be # connected to we need to specify the identifier of the virtual network # interface profile, so we need to find it. We can have duplicate names # for vnic profiles in different clusters, so we must also find first the # network by datacenter and cluster: cluster = system_service.clusters_service().cluster_service(vm.cluster.id).get() dcs_service = connection.system_service().data_centers_service() dc = dcs_service.list(search='Clusters.name=%s' % cluster.name)[0] networks_service = dcs_service.service(dc.id).networks_service() network = next( (n for n in networks_service.list() if n.name == 'mynetwork'), None ) profiles_service = connection.system_service().vnic_profiles_service() profile_id = None for profile in profiles_service.list(): if profile.name == 'mynetwork': profile_id = profile.id break # Locate the service that manages the network interface cards of the # virtual machine: nics_service = vms_service.vm_service(vm.id).nics_service() # Use the "add" method of the network interface cards service to add the # new network interface card: nics_service.add( types.Nic( name='mynic', description='My network interface card', vnic_profile=types.VnicProfile( id=profile_id, ), ), ) # Close the connection to the server: connection.close()
2.28125
2
python_packaging/sample_restraint/tests/test_binding.py
kassonlab/gmxapi
43
12785113
<gh_stars>10-100 # The myplugin module must be locatable by Python. # If you configured CMake in the build directory ``/path/to/repo/build`` then, # assuming you are in ``/path/to/repo``, run the tests with something like # PYTHONPATH=./cmake-build-debug/src/pythonmodule mpiexec -n 2 python -m mpi4py -m pytest tests/ # This test is not currently run automatically in any way. Build the module, point your PYTHONPATH at it, # and run pytest in the tests directory. import logging import os import gmxapi as gmx from gmxapi.simulation.context import Context from gmxapi.simulation.workflow import WorkElement, from_tpr from gmxapi import version as gmx_version import pytest # create console handler ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create formatter and add it to the handler formatter = logging.Formatter('%(asctime)s:%(name)s:%(levelname)s: %(message)s') ch.setFormatter(formatter) # add the handlers to the logger logging.getLogger().addHandler(ch) logger = logging.getLogger() def test_import(): # Suppress inspection warning outside of testing context. # noinspection PyUnresolvedReferences import myplugin assert myplugin @pytest.mark.usefixtures("cleandir") def test_ensemble_potential_nompi(spc_water_box, mdrun_kwargs): """Test ensemble potential without an ensemble. """ tpr_filename = spc_water_box print("Testing plugin potential with input file {}".format(os.path.abspath(tpr_filename))) assert gmx.version.api_is_at_least(0, 0, 5) md = from_tpr([tpr_filename], append_output=False, **mdrun_kwargs) # Create a WorkElement for the potential params = {'sites': [1, 4], 'nbins': 10, 'binWidth': 0.1, 'min_dist': 0., 'max_dist': 10., 'experimental': [1.] * 10, 'nsamples': 1, 'sample_period': 0.001, 'nwindows': 4, 'k': 10000., 'sigma': 1.} potential = WorkElement(namespace="myplugin", operation="ensemble_restraint", params=params) # Note that we could flexibly capture accessor methods as workflow elements, too. Maybe we can # hide the extra Python bindings by letting myplugin.HarmonicRestraint automatically convert # to a WorkElement when add_dependency is called on it. potential.name = "ensemble_restraint" md.add_dependency(potential) context = Context(md) with context as session: session.run() @pytest.mark.withmpi_only @pytest.mark.usefixtures("cleandir") def test_ensemble_potential_withmpi(spc_water_box, mdrun_kwargs): tpr_filename = spc_water_box logger.info("Testing plugin potential with input file {}".format(os.path.abspath(tpr_filename))) assert gmx_version.api_is_at_least(0, 0, 5) md = from_tpr([tpr_filename, tpr_filename], append_output=False, **mdrun_kwargs) # Create a WorkElement for the potential params = {'sites': [1, 4], 'nbins': 10, 'binWidth': 0.1, 'min_dist': 0., 'max_dist': 10., 'experimental': [0.5] * 10, 'nsamples': 1, 'sample_period': 0.001, 'nwindows': 4, 'k': 10000., 'sigma': 1.} potential = WorkElement(namespace="myplugin", operation="ensemble_restraint", params=params) # Note that we could flexibly capture accessor methods as workflow elements, too. Maybe we can # hide the extra Python bindings by letting myplugin.HarmonicRestraint automatically convert # to a WorkElement when add_dependency is called on it. potential.name = "ensemble_restraint" md.add_dependency(potential) context = Context(md) with context as session: session.run()
1.859375
2
tests/util/test_filetimes.py
dariusbakunas/rawdisk
3
12785114
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest from rawdisk.util.filetimes import dt_to_filetime, filetime_to_dt, UTC, ZERO from datetime import datetime class TestFiletimesModule(unittest.TestCase): def test_dt_to_filetime(self): value = datetime(2009, 7, 25, 23, 0) self.assertEqual(128930364000000000, dt_to_filetime(value)) def test_filetime_to_dt(self): value = 116444736000000000 self.assertEqual(datetime(1970, 1, 1, 0, 0), filetime_to_dt(value)) def test_utc(self): utc = UTC() self.assertEqual(utc.tzname(None), "UTC") self.assertEqual(utc.utcoffset(None), ZERO) if __name__ == "__main__": unittest.main()
2.8125
3
migrations/sqlite_versions/2020-05-15_ccc37f794db6_update_add_constraints.py
debrief/pepys-import
4
12785115
"""update, add constraints Revision ID: ccc37f794db6 Revises: <PASSWORD> Create Date: 2020-05-15 14:02:21.163220 """ from datetime import datetime from uuid import uuid4 from alembic import op from geoalchemy2 import Geometry from sqlalchemy import DATE, Boolean, Column, DateTime, ForeignKey, Integer, MetaData, String from sqlalchemy.dialects.sqlite import REAL, TIMESTAMP from sqlalchemy.ext.associationproxy import association_proxy from sqlalchemy.orm import ( # used to defer fetching attributes unless it's specifically called declarative_base, declared_attr, deferred, relationship, ) from sqlalchemy.sql.schema import CheckConstraint from pepys_import.core.store import constants from pepys_import.core.store.common_db import ( ActivationMixin, CommentMixin, ContactMixin, DatafileMixin, ElevationPropertyMixin, GeometryMixin, HostedByMixin, LocationPropertyMixin, LogMixin, LogsHoldingMixin, MediaMixin, PlatformMixin, ReferenceDefaultFields, ReferenceRepr, SensorMixin, StateMixin, TaggedItemMixin, ) from pepys_import.core.store.db_base import sqlite_naming_convention from pepys_import.core.store.db_status import TableTypes from pepys_import.utils.sqlalchemy_utils import UUIDType Metadata = MetaData(naming_convention=sqlite_naming_convention) BaseSpatiaLite = declarative_base(metadata=Metadata) class ClassificationType(BaseSpatiaLite): __tablename__ = constants.CLASSIFICATION_TYPE table_type = TableTypes.REFERENCE table_type_id = 19 class_type_id = Column(UUIDType, primary_key=True, default=uuid4) class_type = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class ContactType(BaseSpatiaLite): __tablename__ = constants.CONTACT_TYPE table_type = TableTypes.REFERENCE table_type_id = 20 contact_type_id = Column(UUIDType, primary_key=True, default=uuid4) contact_type = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class ConfidenceLevel(BaseSpatiaLite): __tablename__ = constants.CONFIDENCE_LEVEL table_type = TableTypes.REFERENCE table_type_id = 27 confidence_level_id = Column(UUIDType, primary_key=True, default=uuid4) level = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class Task(BaseSpatiaLite): __tablename__ = constants.TASK table_type = TableTypes.METADATA table_type_id = 4 task_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False) parent_id = Column(UUIDType, ForeignKey("Tasks.task_id"), nullable=False) start = Column(TIMESTAMP, nullable=False) end = Column(TIMESTAMP, nullable=False) environment = deferred(Column(String(150))) location = deferred(Column(String(150))) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id"), nullable=False) created_date = Column(DateTime, default=datetime.utcnow) class CommentType(BaseSpatiaLite): __tablename__ = constants.COMMENT_TYPE table_type = TableTypes.REFERENCE table_type_id = 25 comment_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class MediaType(BaseSpatiaLite): __tablename__ = constants.MEDIA_TYPE table_type = TableTypes.REFERENCE table_type_id = 24 media_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class Privacy(BaseSpatiaLite): __tablename__ = constants.PRIVACY table_type = TableTypes.REFERENCE table_type_id = 22 privacy_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) level = Column(Integer, nullable=False) created_date = Column(DateTime, default=datetime.utcnow) class State(BaseSpatiaLite, StateMixin, ElevationPropertyMixin, LocationPropertyMixin): __tablename__ = constants.STATE table_type = TableTypes.MEASUREMENT table_type_id = 28 state_id = Column(UUIDType, primary_key=True, default=uuid4) time = Column(TIMESTAMP, nullable=False) sensor_id = Column(UUIDType, ForeignKey("Sensors.sensor_id"), nullable=False) _location = deferred( Column( "location", Geometry(geometry_type="POINT", srid=4326, management=True, spatial_index=False), ) ) _elevation = deferred(Column("elevation", REAL)) _heading = deferred(Column("heading", REAL)) _course = deferred(Column("course", REAL)) _speed = deferred(Column("speed", REAL)) source_id = Column(UUIDType, ForeignKey("Datafiles.datafile_id"), nullable=False) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id")) created_date = Column(DateTime, default=datetime.utcnow) @declared_attr def platform(self): return relationship( "Platform", secondary=constants.SENSOR, primaryjoin="State.sensor_id == Sensor.sensor_id", secondaryjoin="Platform.platform_id == Sensor.host", lazy="joined", join_depth=1, uselist=False, viewonly=True, ) @declared_attr def platform_name(self): return association_proxy("platform", "name") class Change(BaseSpatiaLite): __tablename__ = constants.CHANGE table_type = TableTypes.METADATA table_type_id = 8 change_id = Column(UUIDType, primary_key=True, default=uuid4) user = Column(String(150), nullable=False) modified = Column(DATE, nullable=False) reason = Column(String(500), nullable=False) created_date = Column(DateTime, default=datetime.utcnow) class Log(BaseSpatiaLite, LogMixin): __tablename__ = constants.LOG table_type = TableTypes.METADATA table_type_id = 9 log_id = Column(UUIDType, primary_key=True, default=uuid4) table = Column(String(150), nullable=False) id = Column(UUIDType, nullable=False) field = Column(String(150)) new_value = Column(String(150)) change_id = Column(UUIDType, ForeignKey("Changes.change_id"), nullable=False) created_date = Column(DateTime, default=datetime.utcnow) class Tag(BaseSpatiaLite): __tablename__ = constants.TAG table_type = TableTypes.METADATA table_type_id = 11 tag_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False) created_date = Column(DateTime, default=datetime.utcnow) class HostedBy(BaseSpatiaLite, HostedByMixin): __tablename__ = constants.HOSTED_BY table_type = TableTypes.METADATA table_type_id = 1 hosted_by_id = Column(UUIDType, primary_key=True, default=uuid4) subject_id = Column(UUIDType, ForeignKey("Platforms.platform_id"), nullable=False) host_id = Column(UUIDType, ForeignKey("Platforms.platform_id"), nullable=False) hosted_from = Column(DATE, nullable=False) host_to = Column(DATE, nullable=False) privacy_id = Column(Integer, ForeignKey("Privacies.privacy_id"), nullable=False) created_date = Column(DateTime, default=datetime.utcnow) class Platform(BaseSpatiaLite, PlatformMixin): __tablename__ = constants.PLATFORM table_type = TableTypes.METADATA table_type_id = 3 platform_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False) pennant = deferred(Column(String(10), nullable=False)) trigraph = deferred(Column(String(3))) quadgraph = deferred(Column(String(4))) nationality_id = Column(UUIDType, ForeignKey("Nationalities.nationality_id"), nullable=False) platform_type_id = Column( UUIDType, ForeignKey("PlatformTypes.platform_type_id"), nullable=False ) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id"), nullable=False) created_date = Column(DateTime, default=datetime.utcnow) class GeometrySubType(BaseSpatiaLite): __tablename__ = constants.GEOMETRY_SUBTYPE table_type = TableTypes.REFERENCE table_type_id = 16 geo_sub_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) parent = Column( UUIDType, ForeignKey("GeometryTypes.geo_type_id", onupdate="cascade"), nullable=False ) created_date = Column(DateTime, default=datetime.utcnow) class Serial(BaseSpatiaLite): __tablename__ = constants.SERIAL table_type = TableTypes.METADATA table_type_id = 37 serial_id = Column(UUIDType, primary_key=True, default=uuid4) wargame_id = Column( UUIDType, ForeignKey("Wargames.wargame_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) serial_number = Column( String(150), CheckConstraint("serial_number <> ''", name="ck_Serials_serial_number"), nullable=False, ) start = Column(TIMESTAMP, nullable=False) end = Column(TIMESTAMP, nullable=False) exercise = Column(String(150)) environment = deferred(Column(String(150))) location = deferred(Column(String(150))) privacy_id = Column( UUIDType, ForeignKey("Privacies.privacy_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) created_date = Column(DateTime, default=datetime.utcnow) class Wargame(BaseSpatiaLite): __tablename__ = constants.WARGAME table_type = TableTypes.METADATA table_type_id = 37 wargame_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), CheckConstraint("name <> ''", name="ck_Wargames_name"), nullable=False ) series_id = Column( UUIDType, ForeignKey("Series.series_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) start = Column(TIMESTAMP, nullable=False) end = Column(TIMESTAMP, nullable=False) privacy_id = Column( UUIDType, ForeignKey("Privacies.privacy_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) created_date = Column(DateTime, default=datetime.utcnow) class Series(BaseSpatiaLite): __tablename__ = constants.SERIES table_type = TableTypes.METADATA table_type_id = 36 series_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), CheckConstraint("name <> ''", name="ck_Series_name"), nullable=False) privacy_id = Column( UUIDType, ForeignKey("Privacies.privacy_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) created_date = Column(DateTime, default=datetime.utcnow) class WargameParticipant(BaseSpatiaLite): __tablename__ = constants.WARGAME_PARTICIPANT table_type = TableTypes.METADATA table_type_id = 38 wargame_participant_id = Column(UUIDType, primary_key=True, default=uuid4) wargame_id = Column( UUIDType, ForeignKey("Wargames.wargame_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) platform_id = Column( UUIDType, ForeignKey("Platforms.platform_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) privacy_id = Column( UUIDType, ForeignKey("Privacies.privacy_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) created_date = Column(DateTime, default=datetime.utcnow) class SerialParticipant(BaseSpatiaLite): __tablename__ = constants.SERIAL_PARTICIPANT table_type = TableTypes.METADATA table_type_id = 39 serial_participant_id = Column(UUIDType, primary_key=True, default=uuid4) wargame_participant_id = Column( UUIDType, ForeignKey( "WargameParticipants.wargame_participant_id", onupdate="cascade", ondelete="cascade" ), nullable=False, ) serial_id = Column( UUIDType, ForeignKey("Serials.serial_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) start = Column(TIMESTAMP) end = Column(TIMESTAMP) force_type_id = Column( UUIDType, ForeignKey("ForceTypes.force_type_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) privacy_id = Column( UUIDType, ForeignKey("Privacies.privacy_id", onupdate="cascade", ondelete="cascade"), nullable=False, ) created_date = Column(DateTime, default=datetime.utcnow) # Reference Tables class ForceType(BaseSpatiaLite, ReferenceRepr, ReferenceDefaultFields): __tablename__ = constants.FORCE_TYPE table_type = TableTypes.REFERENCE table_type_id = 40 force_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column( String(150), CheckConstraint("name <> ''", name="ck_ForceTypes_name"), nullable=False, unique=True, ) color = Column(String(10)) created_date = Column(DateTime, default=datetime.utcnow) class Geometry1(BaseSpatiaLite, GeometryMixin): __tablename__ = constants.GEOMETRY table_type = TableTypes.MEASUREMENT table_type_id = 33 geometry_id = Column(UUIDType, primary_key=True, default=uuid4) geometry = deferred( Column( Geometry(geometry_type="GEOMETRY", management=True, spatial_index=False), nullable=False ) ) name = Column(String(150), nullable=False) geo_type_id = Column(UUIDType, ForeignKey("GeometryTypes.geo_type_id"), nullable=False) geo_sub_type_id = Column( UUIDType, ForeignKey("GeometrySubTypes.geo_sub_type_id"), nullable=False ) start = Column(TIMESTAMP) end = Column(TIMESTAMP) serial_id = Column(UUIDType, ForeignKey("Serials.serial_id")) subject_platform_id = Column(UUIDType, ForeignKey("Platforms.platform_id")) sensor_platform_id = Column(UUIDType, ForeignKey("Platforms.platform_id")) source_id = Column(UUIDType, ForeignKey("Datafiles.datafile_id"), nullable=False) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id")) created_date = Column(DateTime, default=datetime.utcnow) class GeometryType(BaseSpatiaLite): __tablename__ = constants.GEOMETRY_TYPE table_type = TableTypes.REFERENCE table_type_id = 15 geo_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class PlatformType(BaseSpatiaLite): __tablename__ = constants.PLATFORM_TYPE table_type = TableTypes.REFERENCE table_type_id = 13 platform_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class Participant(BaseSpatiaLite): __tablename__ = constants.PARTICIPANT table_type = TableTypes.METADATA table_type_id = 5 participant_id = Column(UUIDType, primary_key=True, default=uuid4) platform_id = Column(UUIDType, ForeignKey("Platforms.platform_id"), nullable=False) task_id = Column(UUIDType, ForeignKey("Tasks.task_id"), nullable=False) start = Column(TIMESTAMP) end = Column(TIMESTAMP) force = Column(String(150)) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id"), nullable=False) created_date = Column(DateTime, default=datetime.utcnow) class TaggedItem(BaseSpatiaLite, TaggedItemMixin): __tablename__ = constants.TAGGED_ITEM table_type = TableTypes.METADATA table_type_id = 12 tagged_item_id = Column(UUIDType, primary_key=True, default=uuid4) tag_id = Column(UUIDType, ForeignKey("Tags.tag_id"), nullable=False) item_id = Column(UUIDType, nullable=False) tagged_by_id = Column(UUIDType, ForeignKey("Users.user_id"), nullable=False) private = Column(Boolean, nullable=False) tagged_on = Column(DATE, nullable=False) created_date = Column(DateTime, default=datetime.utcnow) class SensorType(BaseSpatiaLite): __tablename__ = constants.SENSOR_TYPE table_type = TableTypes.REFERENCE table_type_id = 21 sensor_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class DatafileType(BaseSpatiaLite): __tablename__ = constants.DATAFILE_TYPE table_type = TableTypes.REFERENCE table_type_id = 23 datafile_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class User(BaseSpatiaLite): __tablename__ = constants.USER table_type = TableTypes.REFERENCE table_type_id = 17 user_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class Activation(BaseSpatiaLite, ActivationMixin): __tablename__ = constants.ACTIVATION table_type = TableTypes.MEASUREMENT table_type_id = 30 activation_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False) sensor_id = Column(UUIDType, ForeignKey("Sensors.sensor_id"), nullable=False) start = deferred(Column(TIMESTAMP, nullable=False)) end = deferred(Column(TIMESTAMP, nullable=False)) _min_range = deferred(Column("min_range", REAL)) _max_range = deferred(Column("max_range", REAL)) _left_arc = deferred(Column("left_arc", REAL)) _right_arc = deferred(Column("right_arc", REAL)) source_id = Column(UUIDType, ForeignKey("Datafiles.datafile_id"), nullable=False) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id")) created_date = Column(DateTime, default=datetime.utcnow) class Comment(BaseSpatiaLite, CommentMixin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.sensor_name = "N/A" __tablename__ = constants.COMMENT table_type = TableTypes.MEASUREMENT table_type_id = 32 comment_id = Column(UUIDType, primary_key=True, default=uuid4) platform_id = Column(UUIDType, ForeignKey("Platforms.platform_id")) time = Column(TIMESTAMP, nullable=False) comment_type_id = Column(UUIDType, ForeignKey("CommentTypes.comment_type_id"), nullable=False) content = Column(String(150), nullable=False) source_id = Column(UUIDType, ForeignKey("Datafiles.datafile_id"), nullable=False) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id")) created_date = Column(DateTime, default=datetime.utcnow) class Contact(BaseSpatiaLite, ContactMixin, LocationPropertyMixin, ElevationPropertyMixin): __tablename__ = constants.CONTACT table_type = TableTypes.MEASUREMENT table_type_id = 29 contact_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150)) sensor_id = Column(UUIDType, ForeignKey("Sensors.sensor_id"), nullable=False) time = Column(TIMESTAMP, nullable=False) _bearing = deferred(Column("bearing", REAL)) _rel_bearing = deferred(Column("rel_bearing", REAL)) _ambig_bearing = deferred(Column("ambig_bearing", REAL)) _freq = deferred(Column("freq", REAL)) _range = deferred(Column("range", REAL)) _location = deferred( Column( "location", Geometry(geometry_type="POINT", srid=4326, management=True, spatial_index=False), ) ) _elevation = deferred(Column("elevation", REAL)) _major = deferred(Column("major", REAL)) _minor = deferred(Column("minor", REAL)) _orientation = deferred(Column("orientation", REAL)) classification = deferred(Column(UUIDType, ForeignKey("ClassificationTypes.class_type_id"))) confidence = deferred(Column(UUIDType, ForeignKey("ConfidenceLevels.confidence_level_id"))) contact_type = deferred(Column(UUIDType, ForeignKey("ContactTypes.contact_type_id"))) _mla = deferred(Column("mla", REAL)) _soa = deferred(Column("soa", REAL)) subject_id = Column(UUIDType, ForeignKey("Platforms.platform_id")) source_id = Column(UUIDType, ForeignKey("Datafiles.datafile_id"), nullable=False) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id")) created_date = deferred(Column(DateTime, default=datetime.utcnow)) @declared_attr def platform(self): return relationship( "Platform", secondary=constants.SENSOR, primaryjoin="Contact.sensor_id == Sensor.sensor_id", secondaryjoin="Platform.platform_id == Sensor.host", lazy="joined", join_depth=1, uselist=False, viewonly=True, ) @declared_attr def platform_name(self): return association_proxy("platform", "name") class Sensor(BaseSpatiaLite, SensorMixin): __tablename__ = constants.SENSOR table_type = TableTypes.METADATA table_type_id = 2 sensor_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False) sensor_type_id = Column(UUIDType, ForeignKey("SensorTypes.sensor_type_id"), nullable=False) host = Column(UUIDType, ForeignKey("Platforms.platform_id"), nullable=False) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id"), nullable=False) created_date = Column(DateTime, default=datetime.utcnow) class Datafile(BaseSpatiaLite, DatafileMixin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.measurements = dict() __tablename__ = constants.DATAFILE table_type = TableTypes.METADATA table_type_id = 6 datafile_id = Column(UUIDType, primary_key=True, default=uuid4) simulated = deferred(Column(Boolean, nullable=False)) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id"), nullable=False) datafile_type_id = Column( UUIDType, ForeignKey("DatafileTypes.datafile_type_id"), nullable=False ) reference = Column(String(150)) url = Column(String(150)) size = deferred(Column(Integer, nullable=False)) hash = deferred(Column(String(32), nullable=False)) created_date = Column(DateTime, default=datetime.utcnow) class UnitType(BaseSpatiaLite): __tablename__ = constants.UNIT_TYPE table_type = TableTypes.REFERENCE table_type_id = 18 unit_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class CommodityType(BaseSpatiaLite): __tablename__ = constants.COMMODITY_TYPE table_type = TableTypes.REFERENCE table_type_id = 26 commodity_type_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) class Media(BaseSpatiaLite, MediaMixin, ElevationPropertyMixin, LocationPropertyMixin): __tablename__ = constants.MEDIA table_type = TableTypes.MEASUREMENT table_type_id = 34 media_id = Column(UUIDType, primary_key=True, default=uuid4) platform_id = Column(UUIDType, ForeignKey("Platforms.platform_id")) subject_id = Column(UUIDType, ForeignKey("Platforms.platform_id")) sensor_id = Column(UUIDType, ForeignKey("Sensors.sensor_id")) _location = deferred( Column( "location", Geometry(geometry_type="POINT", srid=4326, management=True, spatial_index=False), ) ) _elevation = deferred(Column("elevation", REAL)) time = Column(TIMESTAMP) media_type_id = Column(UUIDType, ForeignKey("MediaTypes.media_type_id"), nullable=False) url = deferred(Column(String(150), nullable=False)) source_id = Column(UUIDType, ForeignKey("Datafiles.datafile_id"), nullable=False) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id")) created_date = Column(DateTime, default=datetime.utcnow) class LogsHolding(BaseSpatiaLite, LogsHoldingMixin): __tablename__ = constants.LOGS_HOLDING table_type = TableTypes.MEASUREMENT table_type_id = 31 logs_holding_id = Column(UUIDType, primary_key=True, default=uuid4) time = Column(TIMESTAMP, nullable=False) commodity_id = Column(UUIDType, ForeignKey("CommodityTypes.commodity_type_id"), nullable=False) quantity = Column(REAL, nullable=False) unit_type_id = Column(UUIDType, ForeignKey("UnitTypes.unit_type_id"), nullable=False) platform_id = Column(UUIDType, ForeignKey("Platforms.platform_id"), nullable=False) comment = Column(String(150), nullable=False) source_id = Column(UUIDType, ForeignKey("Datafiles.datafile_id"), nullable=False) privacy_id = Column(UUIDType, ForeignKey("Privacies.privacy_id")) created_date = Column(DateTime, default=datetime.utcnow) class Nationality(BaseSpatiaLite): __tablename__ = constants.NATIONALITY table_type = TableTypes.REFERENCE table_type_id = 14 nationality_id = Column(UUIDType, primary_key=True, default=uuid4) name = Column(String(150), nullable=False, unique=True) created_date = Column(DateTime, default=datetime.utcnow) # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "<PASSWORD>" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table("Activations", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Activations_source_id_Datafiles"), "Datafiles", ["source_id"], ["datafile_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Activations_sensor_id_Sensors"), "Sensors", ["sensor_id"], ["sensor_id"] ) batch_op.create_foreign_key( batch_op.f("fk_Activations_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) with op.batch_alter_table("Comments", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Comments_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Comments_platform_id_Platforms"), "Platforms", ["platform_id"], ["platform_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Comments_source_id_Datafiles"), "Datafiles", ["source_id"], ["datafile_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Comments_comment_type_id_CommentTypes"), "CommentTypes", ["comment_type_id"], ["comment_type_id"], ) with op.batch_alter_table("Contacts", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Contacts_sensor_id_Sensors"), "Sensors", ["sensor_id"], ["sensor_id"] ) batch_op.create_foreign_key( batch_op.f("fk_Contacts_source_id_Datafiles"), "Datafiles", ["source_id"], ["datafile_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Contacts_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Contacts_subject_id_Platforms"), "Platforms", ["subject_id"], ["platform_id"], ) with op.batch_alter_table("Datafiles", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Datafiles_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Datafiles_datafile_type_id_DatafileTypes"), "DatafileTypes", ["datafile_type_id"], ["datafile_type_id"], ) with op.batch_alter_table("Geometries", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Geometries_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Geometries_task_id_Tasks"), "Tasks", ["task_id"], ["task_id"] ) batch_op.create_foreign_key( batch_op.f("fk_Geometries_subject_platform_id_Platforms"), "Platforms", ["subject_platform_id"], ["platform_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Geometries_geo_sub_type_id_GeometrySubTypes"), "GeometrySubTypes", ["geo_sub_type_id"], ["geo_sub_type_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Geometries_source_id_Datafiles"), "Datafiles", ["source_id"], ["datafile_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Geometries_geo_type_id_GeometryTypes"), "GeometryTypes", ["geo_type_id"], ["geo_type_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Geometries_sensor_platform_id_Platforms"), "Platforms", ["sensor_platform_id"], ["platform_id"], ) with op.batch_alter_table("HostedBy", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_HostedBy_subject_id_Platforms"), "Platforms", ["subject_id"], ["platform_id"], ) batch_op.create_foreign_key( batch_op.f("fk_HostedBy_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) batch_op.create_foreign_key( batch_op.f("fk_HostedBy_host_id_Platforms"), "Platforms", ["host_id"], ["platform_id"] ) with op.batch_alter_table("Logs", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Logs_change_id_Changes"), "Changes", ["change_id"], ["change_id"] ) with op.batch_alter_table("LogsHoldings", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_LogsHoldings_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) batch_op.create_foreign_key( batch_op.f("fk_LogsHoldings_platform_id_Platforms"), "Platforms", ["platform_id"], ["platform_id"], ) batch_op.create_foreign_key( batch_op.f("fk_LogsHoldings_source_id_Datafiles"), "Datafiles", ["source_id"], ["datafile_id"], ) batch_op.create_foreign_key( batch_op.f("fk_LogsHoldings_unit_type_id_UnitTypes"), "UnitTypes", ["unit_type_id"], ["unit_type_id"], ) batch_op.create_foreign_key( batch_op.f("fk_LogsHoldings_commodity_id_CommodityTypes"), "CommodityTypes", ["commodity_id"], ["commodity_type_id"], ) with op.batch_alter_table("Media", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Media_source_id_Datafiles"), "Datafiles", ["source_id"], ["datafile_id"] ) batch_op.create_foreign_key( batch_op.f("fk_Media_sensor_id_Sensors"), "Sensors", ["sensor_id"], ["sensor_id"] ) batch_op.create_foreign_key( batch_op.f("fk_Media_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"] ) batch_op.create_foreign_key( batch_op.f("fk_Media_media_type_id_MediaTypes"), "MediaTypes", ["media_type_id"], ["media_type_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Media_subject_id_Platforms"), "Platforms", ["subject_id"], ["platform_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Media_platform_id_Platforms"), "Platforms", ["platform_id"], ["platform_id"], ) with op.batch_alter_table("Participants", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Participants_platform_id_Platforms"), "Platforms", ["platform_id"], ["platform_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Participants_task_id_Tasks"), "Tasks", ["task_id"], ["task_id"] ) batch_op.create_foreign_key( batch_op.f("fk_Participants_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) with op.batch_alter_table("Platforms", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Platforms_nationality_id_Nationalities"), "Nationalities", ["nationality_id"], ["nationality_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Platforms_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Platforms_platform_type_id_PlatformTypes"), "PlatformTypes", ["platform_type_id"], ["platform_type_id"], ) with op.batch_alter_table("Sensors", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Sensors_sensor_type_id_SensorTypes"), "SensorTypes", ["sensor_type_id"], ["sensor_type_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Sensors_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) batch_op.create_foreign_key( batch_op.f("fk_Sensors_host_Platforms"), "Platforms", ["host"], ["platform_id"] ) with op.batch_alter_table("States", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_States_sensor_id_Sensors"), "Sensors", ["sensor_id"], ["sensor_id"] ) batch_op.create_foreign_key( batch_op.f("fk_States_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"], ) batch_op.create_foreign_key( batch_op.f("fk_States_source_id_Datafiles"), "Datafiles", ["source_id"], ["datafile_id"] ) with op.batch_alter_table("TaggedItems", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_TaggedItems_tag_id_Tags"), "Tags", ["tag_id"], ["tag_id"] ) batch_op.create_foreign_key( batch_op.f("fk_TaggedItems_tagged_by_id_Users"), "Users", ["tagged_by_id"], ["user_id"] ) with op.batch_alter_table("Tasks", schema=None) as batch_op: batch_op.create_foreign_key( batch_op.f("fk_Tasks_privacy_id_Privacies"), "Privacies", ["privacy_id"], ["privacy_id"] ) batch_op.create_foreign_key( batch_op.f("fk_Tasks_parent_id_Tasks"), "Tasks", ["parent_id"], ["task_id"] ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table("Tasks", schema=None, copy_from=Task.__table__) as batch_op: batch_op.drop_constraint(batch_op.f("fk_Tasks_parent_id_Tasks"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_Tasks_privacy_id_Privacies"), type_="foreignkey") with op.batch_alter_table( "TaggedItems", schema=None, copy_from=TaggedItem.__table__ ) as batch_op: batch_op.drop_constraint( batch_op.f("fk_TaggedItems_tagged_by_id_Users"), type_="foreignkey" ) batch_op.drop_constraint(batch_op.f("fk_TaggedItems_tag_id_Tags"), type_="foreignkey") with op.batch_alter_table("States", schema=None, copy_from=State.__table__) as batch_op: batch_op.drop_constraint(batch_op.f("fk_States_source_id_Datafiles"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_States_privacy_id_Privacies"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_States_sensor_id_Sensors"), type_="foreignkey") with op.batch_alter_table("Sensors", schema=None, copy_from=Sensor.__table__) as batch_op: batch_op.drop_constraint(batch_op.f("fk_Sensors_host_Platforms"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_Sensors_privacy_id_Privacies"), type_="foreignkey") batch_op.drop_constraint( batch_op.f("fk_Sensors_sensor_type_id_SensorTypes"), type_="foreignkey" ) with op.batch_alter_table("Platforms", schema=None, copy_from=Platform.__table__) as batch_op: batch_op.drop_constraint( batch_op.f("fk_Platforms_platform_type_id_PlatformTypes"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_Platforms_privacy_id_Privacies"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_Platforms_nationality_id_Nationalities"), type_="foreignkey" ) with op.batch_alter_table( "Participants", schema=None, copy_from=Participant.__table__ ) as batch_op: batch_op.drop_constraint( batch_op.f("fk_Participants_privacy_id_Privacies"), type_="foreignkey" ) batch_op.drop_constraint(batch_op.f("fk_Participants_task_id_Tasks"), type_="foreignkey") batch_op.drop_constraint( batch_op.f("fk_Participants_platform_id_Platforms"), type_="foreignkey" ) with op.batch_alter_table("Media", schema=None, copy_from=Media.__table__) as batch_op: batch_op.drop_constraint(batch_op.f("fk_Media_platform_id_Platforms"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_Media_subject_id_Platforms"), type_="foreignkey") batch_op.drop_constraint( batch_op.f("fk_Media_media_type_id_MediaTypes"), type_="foreignkey" ) batch_op.drop_constraint(batch_op.f("fk_Media_privacy_id_Privacies"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_Media_sensor_id_Sensors"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_Media_source_id_Datafiles"), type_="foreignkey") with op.batch_alter_table( "LogsHoldings", schema=None, copy_from=LogsHolding.__table__ ) as batch_op: batch_op.drop_constraint( batch_op.f("fk_LogsHoldings_commodity_id_CommodityTypes"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_LogsHoldings_unit_type_id_UnitTypes"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_LogsHoldings_source_id_Datafiles"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_LogsHoldings_platform_id_Platforms"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_LogsHoldings_privacy_id_Privacies"), type_="foreignkey" ) with op.batch_alter_table("Logs", schema=None, copy_from=Log.__table__) as batch_op: batch_op.drop_constraint(batch_op.f("fk_Logs_change_id_Changes"), type_="foreignkey") with op.batch_alter_table("HostedBy", schema=None, copy_from=HostedBy.__table__) as batch_op: batch_op.drop_constraint(batch_op.f("fk_HostedBy_host_id_Platforms"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_HostedBy_privacy_id_Privacies"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_HostedBy_subject_id_Platforms"), type_="foreignkey") with op.batch_alter_table("Geometries", schema=None, copy_from=Geometry1.__table__) as batch_op: batch_op.drop_constraint( batch_op.f("fk_Geometries_sensor_platform_id_Platforms"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_Geometries_geo_type_id_GeometryTypes"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_Geometries_source_id_Datafiles"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_Geometries_geo_sub_type_id_GeometrySubTypes"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_Geometries_subject_platform_id_Platforms"), type_="foreignkey" ) batch_op.drop_constraint(batch_op.f("fk_Geometries_task_id_Tasks"), type_="foreignkey") batch_op.drop_constraint( batch_op.f("fk_Geometries_privacy_id_Privacies"), type_="foreignkey" ) with op.batch_alter_table("Datafiles", schema=None, copy_from=Datafile.__table__) as batch_op: batch_op.drop_constraint( batch_op.f("fk_Datafiles_datafile_type_id_DatafileTypes"), type_="foreignkey" ) batch_op.drop_constraint( batch_op.f("fk_Datafiles_privacy_id_Privacies"), type_="foreignkey" ) with op.batch_alter_table("Contacts", schema=None, copy_from=Contact.__table__) as batch_op: batch_op.drop_constraint(batch_op.f("fk_Contacts_subject_id_Platforms"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_Contacts_privacy_id_Privacies"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_Contacts_source_id_Datafiles"), type_="foreignkey") batch_op.drop_constraint(batch_op.f("fk_Contacts_sensor_id_Sensors"), type_="foreignkey") with op.batch_alter_table("Comments", schema=None, copy_from=Comment.__table__) as batch_op: batch_op.drop_constraint( batch_op.f("fk_Comments_comment_type_id_CommentTypes"), type_="foreignkey" ) batch_op.drop_constraint(batch_op.f("fk_Comments_source_id_Datafiles"), type_="foreignkey") batch_op.drop_constraint( batch_op.f("fk_Comments_platform_id_Platforms"), type_="foreignkey" ) batch_op.drop_constraint(batch_op.f("fk_Comments_privacy_id_Privacies"), type_="foreignkey") with op.batch_alter_table( "Activations", schema=None, copy_from=Activation.__table__ ) as batch_op: batch_op.drop_constraint( batch_op.f("fk_Activations_privacy_id_Privacies"), type_="foreignkey" ) batch_op.drop_constraint(batch_op.f("fk_Activations_sensor_id_Sensors"), type_="foreignkey") batch_op.drop_constraint( batch_op.f("fk_Activations_source_id_Datafiles"), type_="foreignkey" ) # ### end Alembic commands ###
1.789063
2
predictatops/checkdata_runner.py
bluetyson/predictatops
0
12785116
# -*- coding: utf-8 -*- ##### import from other modules from checkdata import * from configurationplusfiles_runner import input_data_inst, config, output_data_inst ##### running functions called from elsewhere ##### tops = TopsAvailable(input_data_inst, config) print("finding unique tops:") tops.find_unique_tops_list() #### Take out wells with no tops, this assumes some data structures that might not exist in your data, so check code! tops.take_out_wells_with_no_tops() tops_counts = tops.get_df_of_top_counts_in_picks_df() print("tops_counts = ", tops_counts) print("number of wells with any tops:") tops.get_number_wells_with_any_top() #### Will print: returning list of wells names that have the required tops. The length of list is : ### If this number is too small, consider changing the required tops in the configuration object. test = tops.findWellsWithAllTopsGive() ##### Example use pattern if you just want to initiate Class and run all the functions using variables defined in configruation object #### This just creates a class instance and then calls run_all() new_tops2 = TopsAvailable(input_data_inst, config) wells_with_required_tops = new_tops2.run_all() print("first well that meets requirements:", wells_with_required_tops[0]) print("number of wells that meet requirements so far:", len(wells_with_required_tops)) print("configuration variables so far, gotten by printing vars(config):", vars(config)) #### Find & understand available curves curvesInst2 = CurvesAvailable(input_data_inst, config) curves_results = curvesInst2.run_all() curves_results.keys() print( "curves_results['wellsWithWantedCurves'][0:5]", curves_results["wellsWithWantedCurves"][0:5], ) print("len(curves_results['wellsWithWantedCurves'])") len(curves_results["wellsWithWantedCurves"]) print("vars(curvesInst2).keys()", vars(curvesInst2).keys()) curvesInst2.config.threshold_returnCurvesThatArePresentInThisManyWells = 1916 onlyPlentifulCurvesArray = curvesInst2.getCurvesInMinNumberOfWells() onlyPlentifulCurvesArray wells_with_tops_and_curves = list( set(wells_with_required_tops).intersection(curves_results["wellsWithWantedCurves"]) ) print("len(wells_with_tops_and_curves)", len(wells_with_tops_and_curves)) objectOfCurves = curves_results["objectOfCurves"] wellsWithNeededCurvesList = findWellsWithCertainCurves( objectOfCurves, onlyPlentifulCurvesArray ) print("number of wells with all the required curves is", len(wellsWithNeededCurvesList)) #### NOTE! when we import the wells for real, we should add in the wells that have DEPTH instead of DEPT and rename the curve to DEPT!¶ print(onlyPlentifulCurvesArray) newCurveList = getCurvesListWithDifferentCurveName( onlyPlentifulCurvesArray, "DEPT", "DEPTH" ) print("newCurveList", newCurveList) wellsWithNeededCurvesListButDEPTHinsteadDEPT = findWellsWithCertainCurves( objectOfCurves, newCurveList ) print( "number of wells with all the required curves but DEPTH instead of DEPT is", len(wellsWithNeededCurvesListButDEPTHinsteadDEPT), ) #### Hmmm, zero? Let's see if we can get those 7 wells that we know have DEPTH instead of DEPT to appear if we reduce the other curve names? wellsWithNeededCurvesListButDEPTHinsteadDEPT0 = findWellsWithCertainCurves( objectOfCurves, ["GR", "DEPTH"] ) print( "number of wells with all the required curves but DEPTH instead of DEPT is", len(wellsWithNeededCurvesListButDEPTHinsteadDEPT), ) wellsWithNeededCurvesListButDEPTHinsteadDEPT1 = findWellsWithCertainCurves( objectOfCurves, ["GR", "DEPT"] ) print( "number of wells with all the required curves but DEPTH instead of DEPT is", len(wellsWithNeededCurvesListButDEPTHinsteadDEPT), ) wellsWithNeededCurvesListButDEPTHinsteadDEPT2 = findWellsWithCertainCurves( objectOfCurves, ["ILD", "NPHI", "GR", "DEPT"] ) print( "number of wells with all the required curves but DEPTH instead of DEPT is", len(wellsWithNeededCurvesListButDEPTHinsteadDEPT), ) wellsWithNeededCurvesListButDEPTHinsteadDEPT3 = findWellsWithCertainCurves( objectOfCurves, ["ILD", "GR", "DPHI", "DEPT"] ) print( "number of wells with all the required curves but DEPTH instead of DEPT is", len(wellsWithNeededCurvesListButDEPTHinsteadDEPT), ) wellsWithNeededCurvesListButDEPTHinsteadDEPT4 = findWellsWithCertainCurves( objectOfCurves, ["ILD", "GR", "DEPT"] ) print( "number of wells with all the required curves but DEPTH instead of DEPT is", len(wellsWithNeededCurvesListButDEPTHinsteadDEPT), ) wellsWithNeededCurvesListButDEPTHinsteadDEPT5 = findWellsWithCertainCurves( objectOfCurves, ["ILD", "GR", "DEPTH"] ) print( "number of wells with all the required curves but DEPTH instead of DEPT is", len(wellsWithNeededCurvesListButDEPTHinsteadDEPT), ) wellsWithNeededCurvesListButDEPTHinsteadDEPT6 = findWellsWithCertainCurves( objectOfCurves, ["ILD", "NPHI", "GR", "DPHI", "DEPT"] ) print( "number of wells with all the required curves but DEPTH instead of DEPT is", len(wellsWithNeededCurvesListButDEPTHinsteadDEPT), ) wellsWithNeededCurvesListButDEPTHinsteadDEPT7 = findWellsWithCertainCurves( objectOfCurves, ["ILD", "NPHI", "GR", "DEPT"] ) print( "number of wells with all the required curves but DEPTH instead of DEPT is", len(wellsWithNeededCurvesListButDEPTHinsteadDEPT), ) #### final try print("final version:") wellsWithNeededCurvesList_real = findWellsWithCertainCurves( objectOfCurves, config.must_have_curves_list ) print( "number of wells with all the required curves but DEPTH instead of DEPT is", len(wellsWithNeededCurvesList_real), ) print( "wellsWithNeededCurvesList_real, first 3 wells:", wellsWithNeededCurvesList_real[0:3], ) #### Make list of wells that includes both the minimum required curves & minimum required tops #### These two lists are different. One is SITEID the other is LAS file name. We'll convert them in the function below and find the ones in common and returnt that as a new list of wells. # WellsWithGivenTopsCurves = findWellsWithGivenTopsCurves(input_data_inst.wells_df,wells_with_required_tops,wellsWithNeededCurvesList_real) # print("len(WellsWithGivenTopsCurves)",len(WellsWithGivenTopsCurves)) wells_with_required_tops_and_curves_list = list( set(wells_with_required_tops).intersection(wellsWithNeededCurvesList_real) ) print("length wells_test", len(wells_with_required_tops_and_curves_list)) print("wells_test = ", wells_with_required_tops_and_curves_list) # print("wells with needed curves list real",wellsWithNeededCurvesList_real) # print("wells wells_with_required_tops",wells_with_required_tops) #### NOW LETS SAVE RESULTS print( "type of wells_with_required_tops_and_curves_list", type(wells_with_required_tops_and_curves_list), ) wells_with_required_tops_and_curves_list_df = pd.DataFrame( np.array(wells_with_required_tops_and_curves_list), columns=["wells"] ) print("type", type(wells_with_required_tops_and_curves_list_df)) checkdata_path_results = ( output_data_inst.base_path_for_all_results + "/" + output_data_inst.path_checkData + "/" + "wellnames_with_required_tops_and_curves_list.h5" ) print("will now save results in hdf5 file in:", checkdata_path_results) key_for_file_path_for_results = "wellsWTopsCurves" print("key for hdf file is", key_for_file_path_for_results) wells_with_required_tops_and_curves_list_df.to_hdf( checkdata_path_results, key=key_for_file_path_for_results, mode="w" )
3.03125
3
remote/python/src/main.py
magnusoy/Sparkie
15
12785117
<filename>remote/python/src/main.py # #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This module ... __author__ = "<NAME>" __copyright__ = "Copyright 2020, Sparkie Quadruped Robot" __credits__ = ["<NAME>", "<NAME>", "<NAME>"] __version__ = "1.0.0" __license__ = "MIT" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" """ # Import packages import cv2 import os import time # Importing model and utility from object_detection.model import ObjectDetector from communication.server import Server # Change working directory to get the inference graph and labelmap os.chdir('C:\\Users\\Petter\\Documents\\Sparkie\\resources') # Get file paths to frozen inference graph and labelmap CWD_PATH = os.getcwd() PATH_TO_CKPT = os.path.join(CWD_PATH, 'model', 'frozen_inference_graph.pb') PATH_TO_LABELS = os.path.join(CWD_PATH, 'model', 'labelmap.pbtxt') # Change working directory back to source os.chdir('C:\\Users\\Petter\\Documents\\Sparkie\\remote\\python\\src') # Initialize object detector model object_detector = ObjectDetector(PATH_TO_CKPT, PATH_TO_LABELS) object_detector.initialize() # Creates a TCP Server server = Server(host="0.0.0.0", port=8089) client_connected = True # Collects frames recieved from client on server # Computes the Object detection # and stores them in file. if __name__ == "__main__": while True: while not client_connected: client_connected = server.wait_for_connection() frame = server.get_frame() client_connected = False object_detector.run(frame, debug=False)
2.09375
2
AnEnsembleForPointEstimate/PredictWindSpd.py
AmateurZhang/EnjoyWithDataOnPowerSystems
0
12785118
<reponame>AmateurZhang/EnjoyWithDataOnPowerSystems # -*- coding: utf-8 -*- """ Created on Mon Oct 2 22:39:11 2017 @author: thuzhang """ #Predict WindSpeed(WINDSPD) #packages import numpy as np import pandas as pd import sklearn.svm as svm from sklearn.cross_validation import train_test_split import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor def PredictWindSpd(NumberOfDays=2): Data=[] OriginData=pd.read_table(r'FormerDataModel.csv',sep=",",header=None) Data=OriginData.as_matrix().astype(np.float32) #Get the properties and the target Y=Data[:,1].astype(np.float32) X=Data[:,2:2+3*NumberOfDays] #Machine Learning model builds up #X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2) Length=len(Y)-1 method=GradientBoostingRegressor() method.fit(X[0:Length,:],Y[0:Length].ravel()) DataForecast=[] OriginDataFC=pd.read_table(r'FormerDataForecast.csv',sep=",",header=None) DataForecast=OriginDataFC.as_matrix().astype(np.float32) X_Pre=DataForecast[(len(DataForecast)-25):(len(DataForecast)-1),2:2+3*NumberOfDays] Y_Pre=method.predict(X_Pre) print(Y_Pre) return Y_Pre #y_pre=method.predict(X[Length]) #y_all=Y[Length] #print(y_pre[0]) #print(y_all) #Result=[] #Result.append(y_pre) #Result.append(y_all) #Score=metrics.accuracy_score(y_pre,Y[Length:]) #print(Score) #plt.figure() #set the size of subplots #left,width=0.1,2.5 #bottom,height=0.11,1 #bottom_h=bottom+height+0.04 #rect_line1=[left,bottom,width,height] #axs=plt.axes(rect_line1) #plot1=axs.plot(y_pre[0:LengthOfTime],'-ob') #plot2=axs.plot(y_all[0:LengthOfTime],'-og',ms=1) #plt.show() #Output #Save=pd.DataFrame(y_all.astype(float)) #Save.to_csv(r'PredictWindSpdData.csv',header=None,index=None) #PredictWindSpd(1)
3.140625
3
wca/components.py
Rajpratik71/workload-collocation-agent
40
12785119
# Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List try: import pkg_resources except ImportError: # When running from pex use vendored library from pex. from pex.vendor._vendored.setuptools import pkg_resources from wca.runners import detection from wca.runners import allocation from wca.runners import measurement from wca.extra import static_allocator from wca import config from wca import detectors from wca import allocators from wca import mesos from wca import kubernetes from wca import storage from wca.extra import static_node from wca.extra import numa_allocator from wca import security REGISTERED_COMPONENTS = [ measurement.MeasurementRunner, allocation.AllocationRunner, detection.DetectionRunner, mesos.MesosNode, kubernetes.KubernetesNode, storage.LogStorage, storage.KafkaStorage, storage.FilterStorage, detectors.NOPAnomalyDetector, allocators.NOPAllocator, allocators.AllocationConfiguration, kubernetes.CgroupDriverType, static_node.StaticNode, numa_allocator.NUMAAllocator, static_allocator.StaticAllocator, security.SSL, measurement.TaskLabelRegexGenerator, ] def register_components(extra_components: List[str]): for component in REGISTERED_COMPONENTS: config.register(component) for component in extra_components: # Load external class ignored its requirements. ep = pkg_resources.EntryPoint.parse('external_cls=%s' % component) cls = ep.resolve() config.register(cls)
1.703125
2
tensorflow_graphics/datasets/features/camera_feature_test.py
Liang813/graphics
2,759
12785120
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for tensorflow_graphics.datasets.features.camera_feature.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import tensorflow_datasets as tfds from tensorflow_graphics.datasets.features import camera_feature class CameraFeatureTest(tfds.testing.FeatureExpectationsTestCase): """Test Cases for Camera FeatureConnector.""" def __get_camera_params(self): pose = {'R': np.eye(3).astype(np.float32), 't': np.zeros(3).astype(np.float32)} f = 35. optical_center = (640 / 2, 480 / 2) return pose, f, optical_center def test_simple_camera(self): """Tests camera parameters with fixed focal length, no skew and no aspect ratio.""" expected_pose, expected_f, expected_center = self.__get_camera_params() expected_intrinsics = np.asarray([[expected_f, 0, expected_center[0]], [0, expected_f, expected_center[1]], [0, 0, 1]], dtype=np.float32) expected_camera = {'pose': expected_pose, 'intrinsics': expected_intrinsics} inputs = {'f': expected_f, 'optical_center': expected_center, 'pose': expected_pose} lookat_inputs = { 'f': expected_f, 'optical_center': expected_center, 'pose': { 'look_at': np.array([0, 0, -1], dtype=np.float32), 'up': np.array([0, 1, 0], dtype=np.float32), 'position': np.array([0, 0, 0], dtype=np.float32) } } raising_pose_entry = { 'f': expected_f, 'optical_center': expected_center, 'pose': np.eye(4) } raising_pose_inputs = { 'f': expected_f, 'optical_center': expected_center, 'pose': {'rot': np.eye(3), 'trans': np.zeros(3)} } raising_lookat_inputs = { 'f': expected_f, 'optical_center': expected_center, 'pose': { 'l': np.array([0, 0, -1], dtype=np.float32), 'up': np.array([0, 1, 0], dtype=np.float32), 'C': np.array([0, 0, 0], dtype=np.float32) } } self.assertFeature( feature=camera_feature.Camera(), shape={ 'pose': { 'R': (3, 3), 't': (3,) }, 'intrinsics': (3, 3) }, dtype={ 'pose': { 'R': tf.float32, 't': tf.float32 }, 'intrinsics': tf.float32 }, tests=[ tfds.testing.FeatureExpectationItem( value=inputs, expected=expected_camera, ), tfds.testing.FeatureExpectationItem( value=lookat_inputs, expected=expected_camera ), tfds.testing.FeatureExpectationItem( value=raising_pose_inputs, raise_cls=ValueError, raise_msg='Wrong keys for pose feature provided' ), tfds.testing.FeatureExpectationItem( value=raising_lookat_inputs, raise_cls=ValueError, raise_msg='Wrong keys for pose feature provided' ), tfds.testing.FeatureExpectationItem( value=raising_pose_entry, raise_cls=ValueError, raise_msg='Pose needs to be a dictionary' ), ], ) def test_camera_with_aspect_ratio_and_skew(self): """Tests camera parameters with fixed focal length, aspect_ratio and skew.""" expected_pose, expected_f, expected_center = self.__get_camera_params() expected_aspect_ratio = expected_center[0] / expected_center[1] expected_skew = 0.6 expected_intrinsics = np.asarray( [[expected_f, expected_skew, expected_center[0]], [0, expected_aspect_ratio * expected_f, expected_center[1]], [0, 0, 1]], dtype=np.float32) expected_camera = {'pose': expected_pose, 'intrinsics': expected_intrinsics} inputs = {'f': expected_f, 'optical_center': expected_center, 'skew': expected_skew, 'aspect_ratio': expected_aspect_ratio, 'pose': expected_pose} self.assertFeature( feature=camera_feature.Camera(), shape={ 'pose': { 'R': (3, 3), 't': (3,) }, 'intrinsics': (3, 3) }, dtype={ 'pose': { 'R': tf.float32, 't': tf.float32 }, 'intrinsics': tf.float32 }, tests=[ tfds.testing.FeatureExpectationItem( value=inputs, expected=expected_camera, ), ], ) def test_full_camera_calibration_matrix(self): """Tests camera parameters with different focal length per camera axis and skew.""" expected_pose, _, expected_optical_center = self.__get_camera_params() expected_skew = 0.6 expected_f = (35., 40.) expected_intrinsics = np.array( [[expected_f[0], expected_skew, expected_optical_center[0]], [0, expected_f[1], expected_optical_center[1]], [0, 0, 1]], dtype=np.float32) expected_camera = {'pose': expected_pose, 'intrinsics': expected_intrinsics} inputs = {'f': expected_f, 'optical_center': expected_optical_center, 'skew': expected_skew, 'pose': expected_pose} raising_inputs = {'f': expected_f, 'aspect_ratio': 1.5, 'optical_center': expected_optical_center, 'skew': expected_skew, 'pose': expected_pose} self.assertFeature( feature=camera_feature.Camera(), shape={ 'pose': { 'R': (3, 3), 't': (3,) }, 'intrinsics': (3, 3) }, dtype={ 'pose': { 'R': tf.float32, 't': tf.float32 }, 'intrinsics': tf.float32 }, tests=[ tfds.testing.FeatureExpectationItem( value=inputs, expected=expected_camera, ), tfds.testing.FeatureExpectationItem( value=raising_inputs, raise_cls=ValueError, raise_msg='If aspect ratio is provided, f needs to ' 'be a single float', ), ], ) if __name__ == '__main__': tfds.testing.test_main()
2.3125
2
MFCN_SMC/code_MFCN/stage3_line_reconnection.py
kskim-phd/MFCN
0
12785121
<reponame>kskim-phd/MFCN # -*- coding: utf-8 -*- """ Created on Mon Feb 17 2020 @author: <NAME> (<EMAIL>) """ import header # common import torch, torchvision import numpy as np # dataset import mydataset from torch.utils.data import DataLoader from PIL import Image # model import torch.nn as nn # post processing import cv2 import correlation_code import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" def main(): print("\nThird stage inference.py") ############################################################################################################################## # Semantic segmentation (inference) # Flag flag_eval_JI = True # True #False # calculate JI flag_save_PNG = True # preprocessR2U_Neted, mask connected_patch = True # GPU if torch.cuda.is_available(): device = torch.device("cuda") num_worker = header.num_worker else: device = torch.device("cpu") num_worker = 0 # Model initialization net = header.net print(str(header.test_third_network_name), "inference") # network to GPU if torch.cuda.device_count() > 1: print("GPU COUNT = ", str(torch.cuda.device_count())) if torch.cuda.device_count() > 1: net = nn.DataParallel(net) #FCDenseNet U_Net R2U_Net AttU_Net R2AttU_Net # Load model model_dir = header.dir_checkpoint + 'FCDenseNetmodel__1024_noise_RANZCR_100_1024v9.1.pth' print(model_dir) if os.path.isfile(model_dir): print('\n>> Load model - %s' % (model_dir)) checkpoint = torch.load(model_dir) net.load_state_dict(checkpoint['model_state_dict']) test_sampler = checkpoint['test_sampler'] print(" >>> Epoch : %d" % (checkpoint['epoch'])) # print(" >>> JI Best : %.3f" % (checkpoint['ji_best'])) else: print('[Err] Model does not exist in %s' % ( header.dir_checkpoint + test_network_name + header.filename_model)) exit() # network to GPU net.to(device) dir_third_test_path = header.dir_secon_data_root + 'output_inference_segmentation_endtoend' + test_network_name + header.Whole_Catheter + '/second_output_90/' + header.test_secon_network_name + '/data/input_Catheter_' + header.Whole_Catheter print('\n>> Load dataset -', dir_third_test_path) testset = mydataset.MyTestDataset(dir_third_test_path, test_sampler) testloader = DataLoader(testset, batch_size=header.num_batch_test, shuffle=False, num_workers=num_worker, pin_memory=True) print(" >>> Total # of test sampler : %d" % (len(testset))) # inference print('\n\n>> Evaluate Network') with torch.no_grad(): # initialize net.eval() for i, data in enumerate(testloader, 0): # forward outputs = net(data['input'].to(device)) outputs = torch.argmax(outputs.detach(), dim=1) # one hot outputs_max = torch.stack( [mydataset.one_hot(outputs[k], header.num_masks) for k in range(len(data['input']))]) # each case for k in range(len(data['input'])): # get size and case id original_size, dir_case_id, dir_results = mydataset.get_size_id(k, data['im_size'], data['ids'], header.net_label[1:]) # ''' # post processing post_output = [post_processing(outputs_max[k][j].numpy(), original_size) for j in range(1, header.num_masks)] # exclude background # original image processings save_dir = header.dir_save mydataset.create_folder(save_dir) image_original = testset.get_original(i * header.num_batch_test + k) # save mask/pre-processed image if flag_save_PNG: save_dir = save_dir + '/output_inference_segmentation_endtoend' + str( test_network_name) + header.Whole_Catheter + "/"+header.test_secon_network_name + 'third_output/' + str( header.test_third_network_name) + '/Whole' dir_case_id = dir_case_id.replace('/PICC', '') dir_case_id = dir_case_id.replace('/Normal', '') mydataset.create_folder(save_dir) # ''' Image.fromarray(post_output[0] * 255).convert('L').save(save_dir + dir_case_id + '_mask.jpg') Image.fromarray(image_original.astype('uint8')).convert('L').save( save_dir + dir_case_id + '_image.jpg') if connected_patch: oup = save_dir.replace('/Whole', '/First_connected_component') mydataset.create_folder(oup) connected_component(save_dir, oup) print("connected component process complete") make_correlation_check(oup) def connected_component(inp, oup): import os.path import cv2 import glob import numpy as np CAPTCHA_IMAGE_FOLDER = inp OUTPUT_FOLDER = oup # Get a list of all the captcha images we need to process captcha_image_files = glob.glob(os.path.join(CAPTCHA_IMAGE_FOLDER, "*_mask.jpg")) # loop over the image paths for (i, captcha_image_file) in enumerate(captcha_image_files): image = cv2.imread(captcha_image_file, cv2.IMREAD_UNCHANGED) image_zero = np.zeros(image.shape, dtype=image.dtype) image_zero[20:-20, 20:-20] = image[20:-20, 20:-20] image = image_zero # gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) binary = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] im = np.zeros((image.shape), np.uint8) check_value_list = [] # getting mask with connectComponents ret, labels = cv2.connectedComponents(binary) for label in range(1, ret): checkvalue = np.array(labels, dtype=np.uint8) checkvalue[labels == label] = 255 checkvalue = checkvalue.sum() check_value_list.append(checkvalue) check_value_list.sort() for label in range(1, ret): checkvalue = np.array(labels, dtype=np.uint8) checkvalue[labels == label] = 255 checkvalue = checkvalue.sum() if check_value_list[-1] == checkvalue: mask = np.array(labels, dtype=np.uint8) mask[labels == label] = 255 mask[labels != label] = 0 im = im + mask filename = os.path.basename(captcha_image_file) p = os.path.join(OUTPUT_FOLDER, filename.replace('_mask', '')) cv2.imwrite(p, im) def post_processing(raw_image, original_size, flag_pseudo=0): net_input_size = raw_image.shape raw_image = raw_image.astype('uint8') # resize if (flag_pseudo): raw_image = cv2.resize(raw_image, original_size, interpolation=cv2.INTER_NEAREST) else: raw_image = cv2.resize(raw_image, original_size, interpolation=cv2.INTER_NEAREST) if (flag_pseudo): raw_image = cv2.resize(raw_image, net_input_size, interpolation=cv2.INTER_NEAREST) return raw_image def make_correlation_check(inp): import pandas as pd oup = inp.replace('/First_connected_component', '') for x in header.dir_mask_path: mask_path = header.dir_First_test_path.replace('/input_Catheter' + header.Data_path, x) image_name, dice, subin, point_rmse = correlation_code.correlation_Images(inp, mask_path, oup) df_image = pd.DataFrame([x for x in zip(image_name, dice, subin, point_rmse)], columns=['image_name', 'dice', 'subin', 'point_rmse']) df_image.to_excel(oup + "third_image_rmse_jpg.xlsx", sheet_name='Sheet1') if __name__ == '__main__': # test_network_name_list = ["FCDenseNet", "U_Net", "AttU_Net"] test_network_name_list = ["FCDenseNet"] for test_network_name in test_network_name_list: main()
2.34375
2
python/sqlflow_submitter/xgboost/feature_column.py
brightcoder01/sqlflow
0
12785122
<reponame>brightcoder01/sqlflow<gh_stars>0 # Copyright 2020 The SQLFlow Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np __all__ = [ 'numeric_column', 'bucketized_column', 'categorical_column_with_identity', 'categorical_column_with_vocabulary_list', 'categorical_column_with_hash_bucket', ] # TODO(sneaxiy): implement faster and proper hash algorithm def hashing(x): return hash(x) # use builtin hash function def apply_transform_on_value(feature, transform_fn): if len(feature) == 1: # Dense input is like (value, ) return transform_fn(feature[0]), else: # Sparse input is like (indices, values, dense_shape) return feature[0], transform_fn(feature[1]), feature[2] class BaseColumnTransformer(object): def _set_field_names(self, field_names): self.field_names = field_names def get_column_names(self): raise NotImplementedError() def __call__(self, inputs): raise NotImplementedError() class CategoricalColumnTransformer(BaseColumnTransformer): pass class NumericColumnTransformer(BaseColumnTransformer): def __init__(self, key, shape): self.key = key self.shape = shape def _set_field_names(self, field_names): BaseColumnTransformer._set_field_names(self, field_names) self.column_idx = self.field_names.index(self.key) def __call__(self, inputs): return inputs[self.column_idx] def get_column_names(self): return [self.key] def numeric_column(key, shape): return NumericColumnTransformer(key, shape) class BucketizedColumnTransformer(CategoricalColumnTransformer): def __init__(self, source_column, boundaries): assert boundaries == sorted( boundaries), "Boundaries must be sorted in ascending order" self.source_column = source_column self.boundaries = boundaries def _set_field_names(self, field_names): CategoricalColumnTransformer._set_field_names(self, field_names) self.source_column._set_field_names(field_names) def get_column_names(self): return self.source_column.get_column_names() def __call__(self, inputs): return apply_transform_on_value( self.source_column(inputs), lambda x: np.searchsorted(self.boundaries, x)) def bucketized_column(source_column, boundaries): return BucketizedColumnTransformer(source_column, boundaries) class CategoricalColumnWithIdentityTransformer(CategoricalColumnTransformer): def __init__(self, key, num_buckets, default_value=None): self.key = key self.num_buckets = num_buckets self.default_value = default_value def _set_field_names(self, field_names): CategoricalColumnTransformer._set_field_names(self, field_names) self.column_idx = self.field_names.index(self.key) def get_column_names(self): return [self.key] def __call__(self, inputs): def transform_fn(slot_value): invalid_index = slot_value < 0 or slot_value >= self.num_buckets if any(invalid_index): if self.default_value is not None: slot_value[invalid_index] = self.default_value else: raise ValueError( 'The categorical value of column {} out of range [0, {})' .format(self.field_names[self.column_idx], self.num_buckets)) return slot_value return apply_transform_on_value(inputs[self.column_idx], transform_fn) def categorical_column_with_identity(key, num_buckets, default_value=None): return CategoricalColumnWithIdentityTransformer(key, num_buckets, default_value) class CategoricalColumnWithVocabularyList(CategoricalColumnTransformer): def __init__(self, key, vocabulary_list): self.key = key self.vocabulary_list = vocabulary_list def _set_field_names(self, field_names): CategoricalColumnTransformer._set_field_names(self, field_names) self.column_idx = self.field_names.index(self.key) def get_column_names(self): return [self.key] def __call__(self, inputs): def transform_fn(slot_value): if isinstance(slot_value, np.ndarray): output = np.ndarray(slot_value.shape) for i in six.moves.range(slot_value.size): output[i] = self.vocabulary_list.index(slot_value[i]) else: output = self.vocabulary_list.index(slot_value) return output return apply_transform_on_value(inputs[self.column_idx], transform_fn) def categorical_column_with_vocabulary_list(key, vocabulary_list): return CategoricalColumnWithVocabularyList(key, vocabulary_list) class CategoricalColumnWithHashBucketTransformer(CategoricalColumnTransformer): def __init__(self, key, hash_bucket_size, dtype='string'): self.key = key self.hash_bucket_size = hash_bucket_size self.dtype = dtype def _set_field_names(self, field_names): CategoricalColumnTransformer._set_field_names(self, field_names) self.column_idx = self.field_names.index(self.key) def get_column_names(self): return [self.key] def __call__(self, inputs): def transform_fn(slot_value): if isinstance(slot_value, np.ndarray): output = np.ndarray(slot_value.shape) for i in six.moves.range(slot_value.size): output[i] = hashing(slot_value[i]) else: output = hashing(slot_value) output %= self.hash_bucket_size return output return apply_transform_on_value(inputs[self.column_idx], transform_fn) def categorical_column_with_hash_bucket(key, hash_bucket_size, dtype='string'): return CategoricalColumnWithHashBucketTransformer(key, hash_bucket_size, dtype) class ComposedColumnTransformer(BaseColumnTransformer): def __init__(self, feature_column_names, *columns): for column in columns: assert isinstance(column, BaseColumnTransformer) assert len(columns) != 0, "No feature column found" self.columns = columns self._set_field_names(feature_column_names) def get_column_names(self): return ['/'.join(column.get_column_names()) for column in self.columns] def _set_field_names(self, field_names): BaseColumnTransformer._set_field_names(self, field_names) for column in self.columns: column._set_field_names(field_names) def __call__(self, inputs): return tuple([column(inputs) for column in self.columns])
2.453125
2
extract_bert_model.py
to-aoki/my-pytorch-bert
21
12785123
<reponame>to-aoki/my-pytorch-bert # Author <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Extract Bert Model.""" from mptb.models.bert import Config from mptb.models.pretrain_tasks import BertPretrainingTasks, OnlyMaskedLMTasks from mptb.models.embed_projection_albert import ProjectionOnlyMaskedLMTasks, ProjectionAlbertPretrainingTasks from mptb.models.albert import AlbertOnlyMaskedLMTasks, AlbertPretrainingTasks from mptb.utils import load, save def extract_model( config_path='config/bert_base.json', model_path="pretrain/pretran_on_the_way.pt", output_path="pretrain/bert_only_model.pt", load_strict=True, only_bert=False, mlm=False, parallel=False, model_name='bert', pad_idx=0 ): config = Config.from_json(config_path) if mlm and model_name == 'proj': model = ProjectionOnlyMaskedLMTasks(config, pad_idx=pad_idx) elif model_name == 'proj': model = ProjectionAlbertPretrainingTasks(config, pad_idx=pad_idx) elif mlm and model_name == 'albert': model = AlbertOnlyMaskedLMTasks(config, pad_idx=pad_idx) elif model_name == 'albert': model = AlbertPretrainingTasks(config, pad_idx=pad_idx) elif mlm: model = OnlyMaskedLMTasks(config, pad_idx=pad_idx) else: model = BertPretrainingTasks(config, pad_idx=pad_idx) load(model, model_path, 'cpu', strict=load_strict) if parallel: model = model.module if only_bert: model = model.bert save(model, output_path) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Extract my-pytorch-bert model.', usage='%(prog)s [options]') parser.add_argument('--config_path', help='JSON file path for defines networks.', nargs='?', type=str, default='config/bert_base.json') parser.add_argument('--model_path', help='my-pytorch-bert model path (include optimizer).', required=True, type=str) parser.add_argument('--loose', action='store_true', help='model load param checking loose') parser.add_argument('--mlm', action='store_true', help='load mlm only model.') parser.add_argument('--parallel', action='store_true', help='load parallel wrapper model.') parser.add_argument('--only_bert', action='store_true', help='Use bert only output.') parser.add_argument('--output_path', help='Output model path.', required=True, type=str) parser.add_argument('--model_name', nargs='?', type=str, default='bert', help= 'Select from the following name groups model. (bert, proj, albert)' ) parser.add_argument('--pad_idx', help='[PAD] vocab index', nargs='?', type=int, default=0) args = parser.parse_args() extract_model(config_path=args.config_path, model_path=args.model_path, load_strict=not args.loose, output_path=args.output_path, only_bert=args.only_bert, parallel=args.parallel, mlm=args.mlm, model_name=args.model_name, pad_idx=args.pad_idx)
2.203125
2
gallery/admin.py
lukacu/django-gallery
2
12785124
<reponame>lukacu/django-gallery #!/usr/bin/python # -*- Mode: python; indent-tabs-mode: nil; c-basic-offset: 2; tab-width: 2 -*- from django.conf import settings from django.contrib.admin.util import unquote from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect from django.shortcuts import get_object_or_404 from django.contrib import admin from django.forms import ModelForm from mptt.admin import MPTTModelAdmin from gallery.models import Album, Image from imagekit.admin import AdminThumbnail from mptt.forms import TreeNodeChoiceField class AlbumAdminForm(ModelForm): class Meta: model = Album def __init__(self, *args, **kwargs): super(AlbumAdminForm, self).__init__(*args, **kwargs) q = self.instance.get_descendants(include_self=True).filter(is_public=True).values("id") self.fields['cover'].queryset = Image.objects.filter(album__in=q, is_public=True).order_by("-date_added") class AlbumAdmin(MPTTModelAdmin): list_display = ('title', 'album_cover', 'is_public', 'order', 'move_up_down_links') list_filter = ['is_public'] mptt_level_indent = 40 form = AlbumAdminForm def get_urls(self): from django.conf.urls.defaults import patterns, url info = self.model._meta.app_label, self.model._meta.module_name return patterns('', url(r'^(.+)/move-(up)/$', self.admin_site.admin_view(self.move_album), name='%s_%s_move_up' % info), url(r'^(.+)/move-(down)/$', self.admin_site.admin_view(self.move_album), name='%s_%s_move_down' % info), ) + super(AlbumAdmin, self).get_urls() def move_album(self, request, object_id, direction): obj = get_object_or_404(self.model, pk=unquote(object_id)) if direction == 'up': relative = obj.get_previous_sibling() if relative: obj.move_to(relative, 'left') else: relative = obj.get_next_sibling() if relative: obj.move_to(relative, 'right') return HttpResponseRedirect('../../') def move_up_down_links(self, obj): var = {'app_label': self.model._meta.app_label, 'module_name': self.model._meta.module_name, 'object_id': obj.id, 'ADMIN_MEDIA_PREFIX': settings.ADMIN_MEDIA_PREFIX } if obj.get_previous_sibling(): up = '<a href="../../%(app_label)s/%(module_name)s/%(object_id)s/move-up/"><img src="%(ADMIN_MEDIA_PREFIX)simg/admin/arrow-up.gif" alt="Move up" /></a>' % var else: up = '' if obj.get_next_sibling(): down = '<a href="../../%(app_label)s/%(module_name)s/%(object_id)s/move-down/"><img src="%(ADMIN_MEDIA_PREFIX)simg/admin/arrow-down.gif" alt="Move up" /></a>' % var else: down = '' return "%s %s" % (up, down) move_up_down_links.allow_tags = True move_up_down_links.short_description = 'Move' def album_cover(self, obj): cover = obj.cover_image() if not cover: return "<em>Not defined</em>" return '<img src="%s" alt="%s" style="width: 42px;" />' % (cover.cover_image.url, cover.title) album_cover.allow_tags = True album_cover.short_description = 'Cover' class ImageAdmin(admin.ModelAdmin): list_display = ('admin_thumbnail', 'title', 'album', 'date_added', 'is_public') list_display_links = ['title'] list_filter = ['date_added', 'album', 'is_public'] search_fields = ['title', 'title_slug', 'text'] list_per_page = 20 admin_thumbnail = AdminThumbnail(image_field='thumbnail_image', template="gallery/admin/thumbnail.html") admin.site.register(Album, AlbumAdmin) admin.site.register(Image, ImageAdmin)
2.0625
2
ilexconf/config.py
vduseev/holly-config
9
12785125
from mapz import Mapz from typing import ( Any, Hashable, Mapping, ) class Config(Mapz): def __init__(self, *mappings: Mapping[Hashable, Any], **kwargs: Any): super().__init__(*mappings) for k, v in kwargs.items(): self.set( k, v, key_prefix="", key_sep="__", ) def __repr__(self) -> str: return f"Config{dict.__repr__(self)}"
2.90625
3
rcnn_dff/symbol/rcnn_iou_loss.py
tonysy/mx-rcnn-flow
2
12785126
<filename>rcnn_dff/symbol/rcnn_iou_loss.py import mxnet as mx import numpy as np def check_equal(lst, errstr='check_equal'): assert len(set(lst)) <= 1, '%s:%s' % (errstr, lst) class RCNNIoULossOperator(mx.operator.CustomOp): def __init__(self, num_classes, grad_scale): super(RCNNIoULossOperator, self).__init__() self._num_classes = num_classes self._grad_scale = grad_scale self._data = None self._info = None def forward(self, is_train, req, in_data, out_data, aux): # data (batch_rois, num_classes * 4): pred_boxes - rois data = in_data[0].asnumpy() # bbox_target (batch_rois, num_classes * 4): gt_boxes label = in_data[1].asnumpy() # bbox_weight (batch_rois, num_classes * 4): mark to learn regression bbox_weight = in_data[2].asnumpy() # rois (batch_rois, 5) rois = in_data[3].asnumpy() rois = rois[:, 1:] IoU = np.zeros(data.shape) IoULoss = np.zeros(data.shape) info = np.zeros(data.shape) for i in range(self._num_classes): data[:, 4 * i:4 * (i + 1)] += rois # predicted boxes w = np.maximum(0, data[:, 4 * i + 2] - data[:, 4 * i + 0]) h = np.maximum(0, data[:, 4 * i + 3] - data[:, 4 * i + 1]) # print max(np.maximum(w, h)) # np.clip(w, -10000, 10000, out=w) # np.clip(h, -10000, 10000, out=h) X = w * h # gt boxes w_gt = label[:, 4 * i + 2] - data[:, 4 * i + 0] h_gt = label[:, 4 * i + 3] - data[:, 4 * i + 1] X_gt = w_gt * h_gt # calculate iou between pred_boxes and gt_boxes I_w = np.maximum(0, np.minimum(data[:, 4 * i + 2], label[:, 4 * i + 2]) - np.maximum(data[:, 4 * i + 0], label[:, 4 * i + 0])) I_h = np.maximum(0, np.minimum(data[:, 4 * i + 3], label[:, 4 * i + 3]) - np.maximum(data[:, 4 * i + 1], label[:, 4 * i + 1])) I = I_w * I_h U = X + X_gt - I IoU[:, 4 * i] = I / (U + 1e-14) # store info info[:, 4 * i + 0] = I info[:, 4 * i + 1] = U info[:, 4 * i + 2] = I_w info[:, 4 * i + 3] = I_h # IoU loss is -ln(IoU) keep_inds = np.where((bbox_weight > 0) & (IoU > 0)) IoULoss[keep_inds] = -np.log(IoU[keep_inds]) self._data = data self._info = info self.assign(out_data[0], req[0], IoULoss) def backward(self, req, out_grad, in_data, out_data, in_grad, aux): data = self._data info = self._info label = in_data[1].asnumpy() bbox_weight = in_data[2].asnumpy() g_data = np.zeros(in_data[0].shape) o_grad = out_grad[0].asnumpy() for i in range(data.shape[0]): for j in range(self._num_classes): if bbox_weight[i, 4 * j] > 0: I = info[i, 4 * j + 0] U = info[i, 4 * j + 1] I_w = info[i, 4 * j + 2] I_h = info[i, 4 * j + 3] box = data[i, 4 * j:4 * (j + 1)] gt_box = label[i, 4 * j:4 * (j + 1)] dXdx = np.zeros(4) dIdx = np.zeros(4) if I > 0: # X = (box[2] - box[1]) * (box[3] - box[1]) dXdx[0] = box[1] - box[3] dXdx[1] = box[0] - box[2] dXdx[2] = box[3] - box[1] dXdx[3] = box[2] - box[0] # I = (xx2 - xx1) * (yy2 - yy1) # x1 > x1_gt: if box[0] > gt_box[0]: dIdx[0] = -I_h # y1 > y1_gt if box[1] > gt_box[1]: dIdx[1] = -I_w # x2 < x2_gt if box[2] < gt_box[2]: dIdx[2] = I_h # y2 < y2_gt if box[3] < gt_box[3]: dIdx[3] = I_w # grad = (1 / U) * dXdx - (U + I) / (U * I) * dIdx grad = (1 / U) * dXdx - (U + I) / (U * I) * dIdx g_data[i, 4 * j:4 * (j + 1)] = grad else: for k in range(0, 4): g_data[i, 4 * j + k] = 0.03 * np.sign(box[k] - gt_box[k]) # pos = np.where(g_data > 0) # print np.sum(np.abs(g_data[pos])) / np.prod(g_data[pos].shape) g_data *= o_grad g_data *= self._grad_scale self.assign(in_grad[0], req[0], g_data) @mx.operator.register("rcnn_iou_loss") class RCNNIoULossProp(mx.operator.CustomOpProp): def __init__(self, num_classes='21', grad_scale='1.0'): super(RCNNIoULossProp, self).__init__(need_top_grad=True) self._num_classes = int(num_classes) self._grad_scale = float(grad_scale) def list_arguments(self): return ['data', 'bbox_target', 'bbox_weight', 'rois'] def list_outputs(self): return ['output'] def infer_shape(self, in_shape): data_shape = in_shape[0] bbox_target_shape = in_shape[1] bbox_weight_shape = in_shape[2] rois_shape = in_shape[3] # share batch size batch_sizes = [data_shape[0], bbox_target_shape[0], bbox_weight_shape[0], rois_shape[0]] check_equal(batch_sizes, 'inconsistent batch size') out_shape = [data_shape] return in_shape, out_shape def create_operator(self, ctx, shapes, dtypes): return RCNNIoULossOperator(self._num_classes, self._grad_scale)
2.125
2
Python/Ex069.py
EspagueteTV/Meus-Estudos-CursoEmVideo
0
12785127
cont_pes = homens = mulheres_20 = 0 while True: print('-' * 20) print('CADASTRO DE UMA PESSOA') print('-' * 20) idade = int(input('Idade: ')) sexo = ' ' while sexo not in 'MF': sexo = str(input('Sexo: [M/F]')).strip().upper()[0] print('-' * 20) if idade > 18: cont_pes += 1 if sexo == 'M': homens += 1 if sexo == 'F' and idade < 20: mulheres_20 += 1 op = ' ' while op not in 'SsNn': op = str(input('Quer Continuar ? [S/N] ')).strip().upper()[0] if op == 'N': break print('\n======= FIM DO PROGRAMA =======') print(f'Há {cont_pes} pessoas maiores de 18 anos ') print(f'Foram cadastrados {homens} homens') print(f'Apenas {mulheres_20} mulheres têm menos de 20 anos')
3.6875
4
tests/test_secret_sources.py
jroslaniec/top-secret
3
12785128
import os import shutil import pytest from top_secret import FileSecretSource, DirectorySecretSource from top_secret import SecretMissingError SECRET_BASE_PATH = os.path.join("/tmp", ".top_secret_test") @pytest.fixture(scope="module", autouse=True) def setup_teardown_module(): # Setup os.makedirs(SECRET_BASE_PATH, exist_ok=True) yield # Tear Down if os.path.exists(SECRET_BASE_PATH): shutil.rmtree(SECRET_BASE_PATH) @pytest.fixture(autouse=True) def setup_function(): for file in os.listdir(SECRET_BASE_PATH): path = os.path.join(SECRET_BASE_PATH, file) if os.path.isfile(path): os.unlink(path) def test_file_ss_raise_if_file_does_not_exist(): ss = DirectorySecretSource(SECRET_BASE_PATH) with pytest.raises(SecretMissingError): ss.get("missing.txt") def test_file_ss_exists(): ss = DirectorySecretSource(SECRET_BASE_PATH) with open(os.path.join(SECRET_BASE_PATH, "my_secret.txt"), "w") as fd: fd.write("secret") secret = ss.get("my_secret.txt") assert secret == "secret" def test_file_ss_stripes_whitespaces(): ss = DirectorySecretSource(SECRET_BASE_PATH) with open(os.path.join(SECRET_BASE_PATH, "my_secret.txt"), "w") as fd: fd.write("\t\n secret\t \n\n") secret = ss.get("my_secret.txt") assert secret == "secret" def test_file_ss_with_whitespace_striping(): ss = DirectorySecretSource(SECRET_BASE_PATH, stripe_whitespaces=False) secret_in_file = "\t\n secret\t \n\n" with open(os.path.join(SECRET_BASE_PATH, "my_secret.txt"), "w") as fd: fd.write(secret_in_file) secret = ss.get("my_secret.txt") assert secret == secret_in_file def test_file_ss_postfix(): ss = DirectorySecretSource(SECRET_BASE_PATH, postfix=".txt") with open(os.path.join(SECRET_BASE_PATH, "my_secret.txt"), "w") as fd: fd.write("secret") secret = ss.get("my_secret") assert secret == "secret" def test_file_ss_get_secret_by_asb_path(): ss = DirectorySecretSource(SECRET_BASE_PATH) path = os.path.join(SECRET_BASE_PATH, "my_secret.txt") secret_in_file = "secret" with open(path, "w") as fd: fd.write(secret_in_file) secret = ss.get(path) assert secret == secret_in_file
2.078125
2
api/migrations/0078_lightningtalk.py
pythonkr/pyconkr-api
25
12785129
<reponame>pythonkr/pyconkr-api<filename>api/migrations/0078_lightningtalk.py # Generated by Django 2.2 on 2019-08-04 07:15 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('api', '0077_auto_20190729_2144'), ] operations = [ migrations.CreateModel( name='LightningTalk', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, null=True)), ('submitted_at', models.DateTimeField(blank=True, null=True)), ('accepted', models.BooleanField(default=True)), ('material', models.FileField(blank=True, default='', upload_to='lightningtalk')), ('owner', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], ), ]
1.554688
2
dolosse/data_formats/ldf/header.py
Tobias2023/dolosse
9
12785130
<reponame>Tobias2023/dolosse """ file: header.py brief: Defines how to handle an LDF Header buffer author: <NAME> date: February 04, 2019 """ import struct import dolosse.constants.data as data class LdfHeader: """ Defines a structure that reads the header information from a ORNL HEAD buffer """ def __init__(self): self.run_number = self.max_spill_size = self.run_time = 0 self.format = self.facility = self.start_date = self.end_date = self.title = '' def read_header(self, stream): """ Reads the header out of the provided stream :param stream: the stream that contains the header to read :return: a dictionary containing the header information """ return { 'buffer_size': struct.unpack('I', stream.read(data.WORD))[0], 'facility': stream.read(data.WORD * 2).decode(), 'format': stream.read(data.WORD * 2).decode(), 'type': stream.read(data.WORD * 4).decode(), 'date': stream.read(data.WORD * 4).decode(), 'title': stream.read(data.WORD * 20).decode(), 'run_number': struct.unpack('I', stream.read(data.WORD))[0], }
2.6875
3
Views/Roles.py
GhostyCatt/TheCloud
2
12785131
# Library Imports from os import execl import nextcord, json from nextcord.ui import button, View, Select # Custom Imports from Functions.Embed import * # Options from Json with open('Config/Options.json') as RawOptions: Options = json.load(RawOptions) # Note: The roles are fetched from IDs. These id's are stored as the values of the options in the dropdowns. To change this, modify the "options" variable in each subclass of Select # Age roles dropdown class AgeMenu(Select): def __init__(self, bot:commands.Bot): self.bot = bot options = [ nextcord.SelectOption(label = "- 13", description = "Click to get/remove this role", value = "886537316418609172"), nextcord.SelectOption(label = "+ 13", description = "Click to get/remove this role", value = "886537379450589215"), nextcord.SelectOption(label = "+ 16", description = "Click to get/remove this role", value = "886537464452366376"), nextcord.SelectOption(label = "+ 18", description = "Click to get/remove this role", value = "886537714206392320"), ] super().__init__(placeholder = 'Age Roles...', min_values = 1, max_values = 1, options = options, custom_id = "AgeRoleMenu2000", row = 3) async def callback(self, interaction: nextcord.Interaction): try: Guild = self.bot.get_guild(Options['Guild']['ID']) Role = Guild.get_role(int(self.values[0])) if Role in interaction.user.roles: await interaction.user.remove_roles(Role) else: await interaction.user.add_roles(Role) await interaction.response.edit_message(embed = interaction.message.embeds[0]) except: pass # Gender roles dropdown class SexMenu(Select): def __init__(self, bot:commands.Bot): self.bot = bot options = [ nextcord.SelectOption(label = "Male", description = "Click to get/remove this role", value = "886537847258112071"), nextcord.SelectOption(label = "Female", description = "Click to get/remove this role", value = "886537907412815912"), ] super().__init__(placeholder = 'Gender Roles...', min_values = 1, max_values = 1, options = options, custom_id = "SexRoleMenu2000", row = 2) async def callback(self, interaction: nextcord.Interaction): try: Guild = self.bot.get_guild(Options['Guild']['ID']) Role = Guild.get_role(int(self.values[0])) if Role in interaction.user.roles: await interaction.user.remove_roles(Role) else: await interaction.user.add_roles(Role) await interaction.response.edit_message(embed = interaction.message.embeds[0]) except: pass # Hobby roles dropdown class InterestMenu(Select): def __init__(self, bot:commands.Bot): self.bot = bot options = [ nextcord.SelectOption(label = "Arts", description = "Click to get/remove this role", value = "886538932018348032"), nextcord.SelectOption(label = "Sports", description = "Click to get/remove this role", value = "886538985852248094"), nextcord.SelectOption(label = "Music", description = "Click to get/remove this role", value = "886539050062864404"), nextcord.SelectOption(label = "Reading", description = "Click to get/remove this role", value = "886539142740209714"), nextcord.SelectOption(label = "Cooking", description = "Click to get/remove this role", value = "886539267998896128"), nextcord.SelectOption(label = "Singing", description = "Click to get/remove this role", value = "886539873631211520"), ] super().__init__(placeholder = 'Interest Roles...', min_values = 1, max_values = 1, options = options, custom_id = "InterestRoleMenu2000", row = 1) async def callback(self, interaction: nextcord.Interaction): try: Guild = self.bot.get_guild(Options['Guild']['ID']) Role = Guild.get_role(int(self.values[0])) if Role in interaction.user.roles: await interaction.user.remove_roles(Role) else: await interaction.user.add_roles(Role) await interaction.response.edit_message(embed = interaction.message.embeds[0]) except: pass # Mention roles dropdown class PingMenu(Select): def __init__(self, bot:commands.Bot): self.bot = bot options = [ nextcord.SelectOption(label = "Announcement", description = "Click to get/remove this role", value = "886540581004795904"), nextcord.SelectOption(label = "Event", description = "Click to get/remove this role", value = "886540636168282132"), nextcord.SelectOption(label = "Partner", description = "Click to get/remove this role", value = "886540681663873065"), nextcord.SelectOption(label = "Chat Revive", description = "Click to get/remove this role", value = "886540760583901185") ] super().__init__(placeholder = 'Mention Roles...', min_values = 1, max_values = 1, options = options, custom_id = "PingRoleMenu2000", row = 0) async def callback(self, interaction: nextcord.Interaction): try: Guild = self.bot.get_guild(Options['Guild']['ID']) Role = Guild.get_role(int(self.values[0])) if Role in interaction.user.roles: await interaction.user.remove_roles(Role) else: await interaction.user.add_roles(Role) await interaction.response.edit_message(embed = interaction.message.embeds[0]) except: pass # Button array class RoleView(View): def __init__(self, bot:commands.Bot): super().__init__(timeout = None) self.response = None self.bot = bot # Add all the views self.add_item(AgeMenu(bot)) self.add_item(SexMenu(bot)) self.add_item(InterestMenu(bot)) self.add_item(PingMenu(bot))
2.53125
3
Server_free_login_script/main.py
Ahrli/fast_tools
1
12785132
<reponame>Ahrli/fast_tools #!/usr/bin/env python3 # -*- coding: utf-8 -*- ' a test module ' import time __author__ = '<NAME>' import paramiko # username = "ahrli" # password = "<PASSWORD>" '''需要免密码登录服务器列表''' ################## 修改这里 别的不要动 ########################## # 用户 ip 密码 hostname_list=[ ('root','192.168.0.108','123456'), ] ############################################ def ssh_pub(hostname,username,password): '''生成id_rsa.pub''' # 创建SSH对象 ssh = paramiko.SSHClient() # 把要连接的机器添加到known_hosts文件中 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # 连接服务器 ssh.connect(hostname=hostname, port=22, username=username, password=password) cmd = 'ssh-keygen -t rsa' # 相当于建立一个terminal 不过每条命令都要自己加\n chan = ssh.invoke_shell(cmd) chan.send(cmd + '\n') time.sleep(0.3) chan.send('\n') time.sleep(0.3) chan.send('\n') time.sleep(0.3) chan.send('\n') time.sleep(0.3) chan.send('\n') time.sleep(0.3) chan.send('\n') time.sleep(0.3) # print(chan.recv(1024)) chan.close() ssh.close() def ssh_red(hostname,username,password): '''生成id_rsa.pub''' # 创建SSH对象 ssh = paramiko.SSHClient() # 把要连接的机器添加到known_hosts文件中 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # 连接服务器 ssh.connect(hostname=hostname, port=22, username=username, password=password) cmd2 = 'cd ~/.ssh/;cat id_rsa.pub ' # cmd = 'ls -l;ifconfig' #多个命令用;隔开 # 第一可以写回车命令vim 等操作 错误信息 成功信息 stdin, stdout, stderr = ssh.exec_command(cmd2) result = stdout.read() if not result: result = stderr.read() ssh.close() print(result.decode()) return result.decode() def sftp_file(hostname,username,password): # 创建SSH对象 t = paramiko.Transport((hostname, 22)) t.connect(username=username, password=password) sftp = paramiko.SFTPClient.from_transport(t) sftp.put('authorized_keys', '/root/.ssh/authorized_keys') t.close() def main(): """记下秘钥 每台机器发送秘钥""" for i in hostname_list: username, hostname, password = i ssh_pub(hostname, username, password) a = ssh_red(hostname, username, password) with open('authorized_keys', 'a+') as f: f.write(a) for i in hostname_list: username, hostname, password = tuple(i.split("@")) if username not in 'ahrli': sftp_file(hostname, username, password) if __name__ == '__main__': main()
1.945313
2
mysite/article/views.py
wuhaoqiu/engr597-stable
0
12785133
from django.shortcuts import render, get_object_or_404, get_list_or_404 from .models import Article,Comment from django.core.paginator import Paginator,EmptyPage,PageNotAnInteger from .forms import ShareEmailForm,CommentForm,SearchForm,ArticleForm # from django.core.mail import send_mail from django.db.models import Count from django.contrib.auth.decorators import login_required from taggit.models import Tag # for more aggregation function, read /topics/db/aggregation/ # Create your views here. # tag_slug comes with the URL of this request @login_required def article_list(request, tag_slug=None): all_articles=Article.objects.all() tag=None if tag_slug: tag=get_object_or_404(Tag,slug=tag_slug) all_articles=all_articles.filter(tags__in=[tag]) # each page only display 6 posts paginator=Paginator(all_articles,3) page=request.GET.get('page') try: one_page_articles=paginator.page(page) except PageNotAnInteger: one_page_articles=paginator.page(1) except EmptyPage: #retrieve the last page content if page number beyond range one_page_articles=paginator.page(paginator.num_pages) new_article = None if request.method == 'POST': article_form = ArticleForm(data=request.POST) if article_form.is_valid(): # comment_form.save can create a comment object,but donot save to database immediatley new_article = article_form.save(commit=False) new_article.author = request.user cd = article_form.cleaned_data from django.utils import timezone from django.contrib import messages if not Article.objects.filter(publish_time=timezone.now()).filter(label_in_url=cd.get('label_in_url')).exists(): new_article.save() for each_tag in cd.get('tags'): new_article.tags.add(each_tag) messages.success(request, 'profile and user information updated successfully') from django.http.response import HttpResponseRedirect from django.urls import reverse return HttpResponseRedirect(reverse('article:article_list')) else: messages.error(request, 'updated failed, may because duplicate slug today') # if this view is called by GET method, then render a brand new form else: article_form = ArticleForm() return render(request, 'article/articles/article_list.html', {'articles':one_page_articles, 'tag':tag, 'article_form':article_form}) @login_required def article_detail(request,year,month,day,label_in_url): # query the Article table using filter as below article=get_list_or_404(Article,label_in_url=label_in_url, publish_time__year=year, publish_time__month=month, publish_time__day=day, )[0] # list active comments comments=article.article_comments.all() # each page only display 6 posts paginator = Paginator(comments, 6) page = request.GET.get('page') try: one_page_comments = paginator.page(page) except PageNotAnInteger: one_page_comments = paginator.page(1) except EmptyPage: # retrieve the last page content if page number beyond range one_page_comments = paginator.page(paginator.num_pages) new_comment=None if request.method=='POST': comment_form=CommentForm(data=request.POST) if comment_form.is_valid(): # comment_form.save can create a comment object,but donot save to database immediatley new_comment=comment_form.save(commit=False) new_comment.article=article new_comment.user=request.user new_comment.save() # prevent submitting same forms again when refresh page from django.http.response import HttpResponseRedirect from django.urls import reverse return HttpResponseRedirect(reverse('article:article_detail', args=[ article.publish_time.year, article.publish_time.month, article.publish_time.day, article.label_in_url ])) # if this view is called by GET method, then render a brand new form else: comment_form=CommentForm() # flat=True, let tuple returned by values_list() to a python list article_tags_list=article.tags.values_list('id',flat=True) similar_articles=Article.published_set.filter(tags__in=article_tags_list).exclude(id=article.id) # use Count() to generate a new filed to those retrieved articles, named same_tags, then # order those articles by this new attribute - same_tags similar_articles=similar_articles.annotate(same_tags=Count('tags')).order_by('-same_tags','-publish_time')[:3] # use the object returned by above filter to render detail.html return render(request,'article/articles/article_detail.html', {'article':article, 'comments':one_page_comments, 'new_comment':new_comment, 'comment_form':comment_form, 'similar_articles':similar_articles,}) # @login_required # def share_article(request,article_id): # # retrieve artivle by its id # article=get_object_or_404(Article,id=article_id) # sent=False # error='' # sender_address='<EMAIL>' # # if request.method=='POST': # # submitted data by user is stored in request.Post # form=ShareEmailForm(request.POST) # if form.is_valid(): # try: # # .cleaned_data returns a dict containing only # # valid form field data # data_from_form=form.cleaned_data # # use .build_absolute_uri to build a complete URL including # # HTTP shcema and hostname with post url # article_url=request.build_absolute_uri( # article.get_absolute_url() # ) # subject="user {} whose email is {} recommends this article {}".format(data_from_form['name'],data_from_form['email'],article.title) # message="read {} at {} \n\n {}'s email_content:{}".format(article.title,article_url,data_from_form['name'],data_from_form['email_content']) # # here i must 给自己抄送y一份, otherwise, will fail to send # send_mail(subject,message,sender_address,[sender_address,data_from_form['to']]) # sent=True # except Exception: # form=ShareEmailForm() # error='somthing wrong,failed to send email,sorry' # else: # form=ShareEmailForm() # # return render(request,'article/articles/share.html', # {'article':article, # 'form':form, # 'sent':sent, # 'error':error})
2.25
2
snippet/social_oauth/backends.py
duoduo369/social_auth_demo
45
12785134
from django.contrib.auth.backends import ModelBackend from 你个人的.models import UserProfile from social_auth.models import UserSocialAuth class OAuth2Backend(ModelBackend): ''' oauth backend ''' def authenticate(self, provider=None, uid=None): try: user_social = UserSocialAuth.objects.get(provider=provider, uid=uid) return user_social.user except UserSocialAuth.DoesNotExist: return None
2.21875
2
torch_glow/tests/nodes/floor_test.py
dreiss/glow
1
12785135
<gh_stars>1-10 from __future__ import absolute_import, division, print_function, unicode_literals import unittest import torch from tests.utils import jitVsGlow class TestFloor(unittest.TestCase): def test_floor(self): """Basic test of the PyTorch floor Node on Glow.""" def test_f(a, b): c = a + b d = torch.floor(c) return d x = torch.randn(3, 4, 5) y = torch.randn(3, 4, 5) jitVsGlow(test_f, x, y, expected_fused_ops={"aten::floor"})
2.421875
2
konfuzio_sdk/regex.py
konfuzio-ai/konfuzio-sdk
0
12785136
"""Generic way to build regex from examples.""" import logging import regex as re from typing import List, Dict import pandas from tabulate import tabulate logger = logging.getLogger(__name__) def merge_regex(regex_tokens: List[str]): """Merge a list of regex to one group.""" tokens = r'|'.join(sorted(regex_tokens, key=len, reverse=True)) return f'(?:{tokens})' def harmonize_whitespaces(text): """Convert multiple whitespaces to one.""" single_whitespace_replaced = re.sub(r'(?<! ) (?! )', r'[ ]+', text) suggestion = re.sub(r' {2,}', r'[ ]{2,}', single_whitespace_replaced) return suggestion def escape(string: str): """Escape a string, so that it can still be used to create a regex.""" escaped_original = ( string.replace('\\', "\\\\") .replace('[', r'\[') .replace(']', r'\]') .replace('+', r'[\+]') .replace('*', r'\*') .replace('|', r'\|') .replace('\n', '\n') .replace('-', '[-]') .replace('.', r'\.') .replace('$', r'\$') .replace('(', r'\(') .replace(')', r'\)') .replace('@', r'\@') .replace('?', r'\?') .replace('!', r'\!') .replace(',', r'\,') .replace('#', r'\#') .replace('{', r'\{') .replace('}', r'\}') ) return escaped_original def plausible_regex(suggestion, string): """ Test regex for plausibility. We keep those tests in production to collect edge cases and always return true. """ try: re.compile(suggestion) plausibility_run = re.findall(suggestion, string) if not plausibility_run: logger.error( f'Using "{repr(string)}" we found the regex {repr(suggestion)}, which does not match the input.' ) logger.error( 'We are not able to able to convert your string to a valid regex. Please help to make it happen.' ) result = '' else: result = suggestion except re.error as e: logger.exception(f'The proposed regex >>{repr(suggestion)}<< is not a valid regex of string: >>{string}<<') logger.error('We are not able to able to convert your string to a valid regex. Please help to make it happen.') logger.error(e) result = '' return result def suggest_regex_for_string(string: str, replace_characters: bool = False, replace_numbers: bool = True): """Suggest regex for a given string.""" escaped_original = escape(string) if replace_characters: # strict replace capital letters strict_escaped_capital_letters = re.sub(r'[A-Z\Ä\Ö\Ü]', r'[A-ZÄÖÜ]', escaped_original) # combine multiple capital letters in sequence combined_capital_letters = re.sub(r'(\[A-Z\Ä\Ö\Ü\]){2,}', r'[A-ZÄÖÜ]+', strict_escaped_capital_letters) # escape all lower case letters escaped_small_letters = re.sub(r'[a-zäöüß]', r'[a-zäöüß]', combined_capital_letters) # combine multiple lower case letters in sequence escaped_original = re.sub(r'(\[a-zäöüß\]){2,}', '[a-zäöüß]+', escaped_small_letters) if replace_numbers: escaped_original = re.sub('\\d', r'\\d', escaped_original) # replace multiple whitespaces with r' +' suggestion = harmonize_whitespaces(escaped_original) suggestion = plausible_regex(suggestion, string) return suggestion def get_best_regex(evaluations: List, log_stats: bool = True, allow_zero_f1score=False) -> List: """Optimize selection of one regex in scenarios were we are unsure if all correct Annotations are Labeled.""" df = pandas.DataFrame(evaluations) if df.empty: logger.error('We cannot find any regex!') return [] if not allow_zero_f1score: df = df.loc[df['f1_score'] > 0] df = df.sort_values( [ 'total_correct_findings', 'f1_score', 'regex_quality', 'annotation_precision', 'runtime', # take the fastest regex ], ascending=[0, 0, 0, 0, 1], ).reset_index(drop=True) df['correct_findings_id'] = df['correct_findings'].apply(lambda x: set(y.id_ for y in x)) df['all_matches_id'] = [set.union(*df.loc[0:i, 'correct_findings_id']) for i in range(len(df.index))] df['new_matches_id'] = df.all_matches_id - df.all_matches_id.shift(1) null_mask = df['new_matches_id'].isnull() df.loc[null_mask, 'new_matches_id'] = df.loc[null_mask]['correct_findings_id'] df.insert(0, 'new_matches_count', df['new_matches_id'].str.len()) df = df.drop(['correct_findings_id', 'correct_findings', 'all_matches_id', 'new_matches_id'], axis=1) # iterate over sorted df, mark any row if it adds no matching value compared to regex above, we used max windowsize # matched_document = df.filter(regex=r'document_\d+').rolling(min_periods=1, window=100000000).max() # any regex witch matches more Documents that the regex before, is a good regex # relevant_regex = matched_document.sum(axis=1).diff() # df['matched_annotations_total'] = matched_document.sum(axis=1) # df['matched_annotations_additional'] = relevant_regex # get the index of all good regex index_of_regex = df[df['new_matches_count'] > 0].index if log_stats: stats = df.loc[index_of_regex][ ['regex', 'runtime', 'annotation_recall', 'annotation_precision', 'f1_score', 'new_matches_count'] ] logger.info(f'\n\n{tabulate(stats, floatfmt=".4f", headers="keys", tablefmt="pipe")}\n') # best_regex = df.loc[index_of_regex, 'regex'].to_list() best_regex = df.loc[df['new_matches_count'] > 0, 'regex'].to_list() return best_regex def regex_matches( doctext: str, regex: str, start_chr: int = 0, flags=0, overlapped=False, keep_full_match=True, filtered_group=None ) -> List[Dict]: """ Convert a text with the help by one regex to text offsets. A result of results is a full regex match, matches or (named) groups are separated by keys within this result. The function regexinfo in konfuzio.wrapper standardizes the information we keep per match. :param filtered_group: Name of the regex group you want to return as results :param keep_full_match: Keep the information about the full regex even the regex contains groups :param overlapped: Allow regex to overlap, e.g. ' ([^ ]*) ' creates an overlap on ' my name ' :param flags: Regex flag to compile regex :param doctext: A text you want to apply a rgx on :param regex: The regex, either with groups, named groups or just a regex :param start_chr: The start chr of the annotation_set, in case the text is a annotation_set within a text """ results = [] # compile regex pattern # will throw an error if the name of the group, ?P<GROUP_NAME>, is not a valid Python variable name, # e.g. GROUP_NAME starts with a numeric character. # we catch this error and then add a leading underscore to the group name, making it a valid Python variable name try: pattern = re.compile(regex, flags=flags) except re.error: # throws error if group name is an invalid Python variable match = re.search(r'\?P<.*?>', regex) # match the invalid group name group_name = match.group(0) # get the string representation group_name = group_name.replace('?P<', '?P<_') # add a leading underscore regex = re.sub(r'\?P<.*?>', group_name, regex) # replace invalid group name with new one pattern = re.compile(regex, flags=flags) # try the compile again for match in pattern.finditer(doctext, overlapped=overlapped): # hold results per match _results = [] if match.groups(): # parse named groups, if available for group_name, group_index in match.re.groupindex.items(): if match[group_index] is not None: # if one regex group ( a annotation's token) does not match, it returns none # https://stackoverflow.com/a/59120080 _results.append( { 'regex_used': repr(regex), 'regex_group': group_name, 'value': match[group_index], 'start_offset': match.regs[group_index][0], 'end_offset': match.regs[group_index][1], 'start_text': start_chr, } ) # find unnamed groups if available unnamed_groups = [x for x in range(1, match.re.groups + 1) if x not in match.re.groupindex.values()] for group_index in unnamed_groups: _results.append( { 'regex_used': repr(regex), 'regex_group': str(group_index), 'value': match[group_index], 'start_offset': match.regs[group_index][0], 'end_offset': match.regs[group_index][1], 'start_text': start_chr, } ) if match.groups() and keep_full_match or not match.groups(): _results.append( { 'regex_used': repr(regex), 'regex_group': '0', 'value': match.group(), 'start_offset': match.span()[0], 'end_offset': match.span()[1], 'start_text': start_chr, } ) # if bbox: # # update each element in _results with bbox # for res in _results: # res['bounding_box'] = get_bbox( # bbox, res['start_offset'] + res['start_text'], res['end_offset'] + res['start_text'] # ) # add results per match to all results results.extend(_results) if filtered_group: # allow to use similar group names, you can use "Ort_" if the group name is "Ort_255_259" return [result for result in results if filtered_group in result['regex_group']] else: return results def generic_candidate_function(regex, flags=0, overlapped=False, filtered_group=None): """Regex approach tob build a candidate function by one regex. :param filtered_group: If a regex contains multiple named groups, you can filter the respective group by name :param overlapped: Indicate if regex matches can overlapp. :param regex: Regex to create a candidate_function. :param flags: Regex flag which should be considered. :return: An initialized candidate function. """ # function to build candidates def candidate_function(doctext): """ Split the text in candidates and other text chunks. :param doctext: Text of the candidate :return: Tuple of list of candidates and other text chunks """ annotations = regex_matches( doctext=doctext, regex=regex, flags=flags, overlapped=overlapped, keep_full_match=False, filtered_group=filtered_group, ) # reduce the available information to value, start_offset and end_offset: # Due to historical aim of the candidate function to only find regex matches matches_tuples = [(d['value'], (d['start_offset'], d['end_offset'])) for d in annotations] candidates = [x for x, y in matches_tuples] candidates_spans = [y for x, y in matches_tuples] # Calculate other text bases on spans. other_text = [] previous = 0 for span in candidates_spans: other_text.append(doctext[previous : span[0]]) previous = span[1] other_text.append(doctext[previous:]) return candidates, other_text, candidates_spans candidate_function.__name__ = f"regex_{regex}" return candidate_function
3.640625
4
viewers/auger_sync_raster_scan.py
ScopeFoundry/FoundryDataBrowser
6
12785137
<gh_stars>1-10 from ScopeFoundry.data_browser import DataBrowserView import pyqtgraph as pg import numpy as np from qtpy import QtWidgets import h5py class AugerSyncRasterScanH5(DataBrowserView): name = 'auger_sync_raster_scan' def setup(self): self.settings.New('frame', dtype=int) #self.settings.New('sub_frame', dtype=int) self.settings.New('source', dtype=str, choices=('SEM', 'Auger')) self.settings.New('SEM_chan', dtype=int, vmin=0, vmax=1) self.settings.New('Auger_chan', dtype=int, vmin=0, vmax=7) self.settings.New('auto_level', dtype=bool, initial=True) for name in ['frame', 'source','SEM_chan', 'Auger_chan', 'auto_level']: self.settings.get_lq(name).add_listener(self.update_display) self.ui = QtWidgets.QWidget() self.ui.setLayout(QtWidgets.QVBoxLayout()) self.ui.layout().addWidget(self.settings.New_UI(), stretch=0) self.info_label = QtWidgets.QLabel() self.ui.layout().addWidget(self.info_label, stretch=0) self.imview = pg.ImageView() self.ui.layout().addWidget(self.imview, stretch=1) #self.graph_layout = pg.GraphicsLayoutWidget() #self.graph_layout.addPlot() def on_change_data_filename(self, fname): try: self.dat = h5py.File(fname) M = self.measurement = self.dat['measurement/auger_sync_raster_scan'] nframe, nsubframe, ny, nx, nadc_chan = M['adc_map'].shape self.settings.frame.change_min_max(0, nframe-1) self.settings.sub_frame.change_min_max(0, nsubframe-1) self.update_display() except Exception as err: self.imview.setImage(np.zeros((10,10))) self.databrowser.ui.statusbar.showMessage("failed to load %s:\n%s" %(fname, err)) raise(err) def is_file_supported(self, fname): return "auger_sync_raster_scan.h5" in fname def update_display(self): M = self.measurement ke = M['ke'] ii = self.settings['frame'] jj = 0 #self.settings['sub_frame'] source = self.settings['source'] if source=='SEM': kk = self.settings['SEM_chan'] im = M['adc_map'][ii, jj, :,:, kk] ke_info = " ke {:.1f} eV".format(ke[0,ii]) else: kk = self.settings['Auger_chan'] im = M['auger_chan_map'][ii, jj, :,:, kk] ke_info = " ke {:.1f} eV".format(ke[kk,ii]) self.imview.setImage(im.T, autoLevels=self.settings['auto_level'], ) info = "Frame {} {} chan {} ".format(ii,source, kk) self.info_label.setText(info+ke_info)
2.171875
2
src/deleteNode.py
JL1829/LeetCode
0
12785138
<gh_stars>0 """ 请编写一个函数,使其可以删除某个链表中给定的(非末尾)节点。 传入函数的**唯一参数** 是 **要被删除的节点** 现在有一链表: [4, 5, 1, 9] 它表示为:4 -> 5 -> 1 -> 9 删除节点5, 返回:[4, 1, 9], 因为: 5 被移除了,链表表示为: 4 -> 1 -> 9 **注意** 你只知道要被删除的节点,它的上一个节点你不知道。 **test case** >>> head = ListNode(4) >>> head.next = ListNode(5) >>> head.next.next = ListNode(1) >>> head.next.next.next = ListNode(9) >>> print(printLinkedList(node=head)) [4, 5, 1, 9] >>> deleteNode(node=head) >>> print(printLinkedList(node=head)) [4, 1, 9] """ class ListNode: """docString Placeholder""" def __init__(self, value): self.value = value self.next = None def __repr__(self): return f"List Node with value: {self.value}" __str__ = __repr__ def deleteNode(node): node.value = node.next.value node.next = node.next.next def printLinkedList(node): value = [] if not node: return [] while node: value.append(node.value) node = node.next return value if __name__ == '__main__': head1 = ListNode(4) head1.next = ListNode(5) head1.next.next = ListNode(1) head1.next.next.next = ListNode(9) LinkedList = printLinkedList(node=head1) print(LinkedList)
4.125
4
sqlite_dissect/carving/__init__.py
Defense-Cyber-Crime-Center/sqlite-dissect
12
12785139
""" __init__.py This init script will initialize any needed logic for this package. This package will control signature generation and carving of SQLite files. """
1.632813
2
tests/test_cubicbez.py
simoncozens/kurbopy
0
12785140
from kurbopy import Point, CubicBez import math def test_cubicbez_deriv(): c = CubicBez( Point(0.0, 0.0), Point(1.0 / 3.0, 0.0), Point(2.0 / 3.0, 1.0 / 3.0), Point(1.0, 1.0), ); deriv = c.deriv(); n = 10; for i in range(1, n): t = 1/(i*n) delta = 1e-6 p = c.eval(t) p1 = c.eval(t + delta) d_approx = (p1.to_vec2() - p.to_vec2()) * (1/delta) d = deriv.eval(t).to_vec2() assert (d - d_approx).hypot() < delta * 2.0 def test_cubicbez_arclen(): # y = x^2 c = CubicBez( Point(0.0, 0.0), Point(1.0 / 3.0, 0.0), Point(2.0 / 3.0, 1.0 / 3.0), Point(1.0, 1.0), ); true_arclen = 0.5 * math.sqrt(5.0) + 0.25 * math.log(2.0 + math.sqrt(5.0)) for i in range(0, 12): accuracy = 0.1 ** i error = c.arclen(accuracy) - true_arclen assert abs(error) < accuracy # def test_cubicbez_inv_arclen(): # // y = x^2 / 100 # c = CubicBez( # Point(0.0, 0.0), # Point(100.0 / 3.0, 0.0), # Point(200.0 / 3.0, 100.0 / 3.0), # Point(100.0, 100.0), # ); # true_arclen = 100.0 * (0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln()); # for i in 0..12 { # accuracy = 0.1f64.powi(i); # n = 10; # for j in 0..=n { # arc = (j as f64) * ((n as f64).recip() * true_arclen); # t = c.inv_arclen(arc, accuracy * 0.5); # actual_arc = c.subsegment(0.0..t).arclen(accuracy * 0.5); # assert!( # (arc - actual_arc).abs() < accuracy, # "at accuracy {:e, wanted { got {", # accuracy, # actual_arc, # arc # ); # // corner case: user passes accuracy larger than total arc length # accuracy = true_arclen * 1.1; # arc = true_arclen * 0.5; # t = c.inv_arclen(arc, accuracy); # actual_arc = c.subsegment(0.0..t).arclen(accuracy); # assert!( # (arc - actual_arc).abs() < 2.0 * accuracy, # "at accuracy {:e, want { got {", # accuracy, # actual_arc, # arc # ); # def test_cubicbez_signed_area_linear(): # # # c = CubicBez::new( # (1.0, 0.0), # (2.0 / 3.0, 1.0 / 3.0), # (1.0 / 3.0, 2.0 / 3.0), # (0.0, 1.0), # ); # epsilon = 1e-12; # assert_eq!((Affine::rotate(0.5) * c).signed_area(), 0.5); # assert!(((Affine::rotate(0.5) * c).signed_area() - 0.5).abs() < epsilon); # assert!(((Affine::translate((0.0, 1.0)) * c).signed_area() - 1.0).abs() < epsilon); # assert!(((Affine::translate((1.0, 0.0)) * c).signed_area() - 1.0).abs() < epsilon); # def test_cubicbez_signed_area(): # // y = 1 - x^3 # c = CubicBez::new((1.0, 0.0), (2.0 / 3.0, 1.0), (1.0 / 3.0, 1.0), (0.0, 1.0)); # epsilon = 1e-12; # assert!((c.signed_area() - 0.75).abs() < epsilon); # assert!(((Affine::rotate(0.5) * c).signed_area() - 0.75).abs() < epsilon); # assert!(((Affine::translate((0.0, 1.0)) * c).signed_area() - 1.25).abs() < epsilon); # assert!(((Affine::translate((1.0, 0.0)) * c).signed_area() - 1.25).abs() < epsilon); # def test_cubicbez_nearest(): # fn verify(result: Nearest, expected: f64) { # assert!( # (result.t - expected).abs() < 1e-6, # "got {:? expected {", # result, # expected # ); # // y = x^3 # c = CubicBez::new((0.0, 0.0), (1.0 / 3.0, 0.0), (2.0 / 3.0, 0.0), (1.0, 1.0)); # verify(c.nearest((0.1, 0.001).into(), 1e-6), 0.1); # verify(c.nearest((0.2, 0.008).into(), 1e-6), 0.2); # verify(c.nearest((0.3, 0.027).into(), 1e-6), 0.3); # verify(c.nearest((0.4, 0.064).into(), 1e-6), 0.4); # verify(c.nearest((0.5, 0.125).into(), 1e-6), 0.5); # verify(c.nearest((0.6, 0.216).into(), 1e-6), 0.6); # verify(c.nearest((0.7, 0.343).into(), 1e-6), 0.7); # verify(c.nearest((0.8, 0.512).into(), 1e-6), 0.8); # verify(c.nearest((0.9, 0.729).into(), 1e-6), 0.9); # verify(c.nearest((1.0, 1.0).into(), 1e-6), 1.0); # verify(c.nearest((1.1, 1.1).into(), 1e-6), 1.0); # verify(c.nearest((-0.1, 0.0).into(), 1e-6), 0.0); # a = Affine::rotate(0.5); # verify((a * c).nearest(a * Point::new(0.1, 0.001), 1e-6), 0.1); # // ensure to_quads returns something given colinear points # def test_degenerate_to_quads(): # c = CubicBez::new((0., 9.), (6., 6.), (12., 3.0), (18., 0.0)); # quads = c.to_quads(1e-6).collect::<Vec<_>>(); # assert_eq!(quads.len(), 1, "{:?", &quads); def test_cubicbez_extrema(): q = CubicBez(Point(0.0, 0.0), Point(0.0, 1.0), Point(1.0, 1.0), Point(1.0, 0.0)); extrema = q.extrema() assert len(extrema) == 1 assert abs(extrema[0] - 0.5) < 1e-6 q = CubicBez(Point(0.4, 0.5), Point(0.0, 1.0), Point(1.0, 0.0), Point(0.5, 0.4)); extrema = q.extrema(); assert len(extrema) == 4 # def test_cubicbez_toquads(): # // y = x^3 # c = CubicBez::new((0.0, 0.0), (1.0 / 3.0, 0.0), (2.0 / 3.0, 0.0), (1.0, 1.0)); # for i in 0..10 { # accuracy = 0.1f64.powi(i); # mut worst: f64 = 0.0; # for (_count, (t0, t1, q)) in c.to_quads(accuracy).enumerate() { # epsilon = 1e-12; # assert!((q.start() - c.eval(t0)).hypot() < epsilon); # assert!((q.end() - c.eval(t1)).hypot() < epsilon); # n = 4; # for j in 0..=n { # t = (j as f64) * (n as f64).recip(); # p = q.eval(t); # err = (p.y - p.x.powi(3)).abs(); # worst = worst.max(err); # assert!(err < accuracy, "got { wanted {", err, accuracy);
2.65625
3
xcp_abcd/utils/qcmetrics.py
krmurtha/xcp_abcd
5
12785141
<reponame>krmurtha/xcp_abcd import nibabel as nb import numpy as np def regisQ(bold2t1w_mask,t1w_mask,bold2template_mask,template_mask): reg_qc ={'coregDice': [dc(bold2t1w_mask,t1w_mask)], 'coregJaccard': [jc(bold2t1w_mask,t1w_mask)], 'coregCrossCorr': [crosscorr(bold2t1w_mask,t1w_mask)],'coregCoverag': [coverage(bold2t1w_mask,t1w_mask)], 'normDice': [dc(bold2template_mask,template_mask)],'normJaccard': [jc(bold2template_mask,template_mask)], 'normCrossCorr': [crosscorr(bold2template_mask,template_mask)], 'normCoverage': [coverage(bold2template_mask,template_mask)], } return reg_qc def dc(input1, input2): r""" Dice coefficient Computes the Dice coefficient (also known as Sorensen index) between the binary objects in twom j images. The metric is defined as .. math:: DC=\frac{2|A\cap B|}{|A|+|B|} , where :math:`A` is the first and :math:`B` the second set of samples (here: binary objects). Parameters ---------- input1 : array_like Input data containing objects. Can be any type but will be converted into binary: background where 0, object everywhere else. input2 : array_like Input data containing objects. Can be any type but will be converted into binary: background where 0, object everywhere else. Returns ------- dc : float The Dice coefficient between the object(s) in ```input1``` and the object(s) in ```input2```. It ranges from 0 (no overlap) to 1 (perfect overlap). Notes ----- This is a real metric. """ input1 = nb.load(input1).get_fdata() input2 = nb.load(input2).get_fdata() input1 = np.atleast_1d(input1.astype(np.bool)) input2 = np.atleast_1d(input2.astype(np.bool)) intersection = np.count_nonzero(input1 & input2) size_i1 = np.count_nonzero(input1) size_i2 = np.count_nonzero(input2) try: dc = 2. * intersection / float(size_i1 + size_i2) except ZeroDivisionError: dc = 0.0 return dc def jc(input1, input2): r""" Jaccard coefficient Computes the Jaccard coefficient between the binary objects in two images. Parameters ---------- input1: array_like Input data containing objects. Can be any type but will be converted into binary: background where 0, object everywhere else. input2: array_like Input data containing objects. Can be any type but will be converted into binary: background where 0, object everywhere else. Returns ------- jc: float The Jaccard coefficient between the object(s) in `input1` and the object(s) in `input2`. It ranges from 0 (no overlap) to 1 (perfect overlap). Notes ----- This is a real metric. """ input1 = nb.load(input1).get_fdata() input2 = nb.load(input2).get_fdata() input1 = np.atleast_1d(input1.astype(np.bool)) input2 = np.atleast_1d(input2.astype(np.bool)) intersection = np.count_nonzero(input1 & input2) union = np.count_nonzero(input1 | input2) jc = float(intersection) / float(union) return jc def crosscorr(input1, input2): r""" cross correlation computer compute cross correction bewteen input mask """ input1 = nb.load(input1).get_fdata() input2 = nb.load(input2).get_fdata() input1 = np.atleast_1d(input1.astype(np.bool)).flatten() input2 = np.atleast_1d(input2.astype(np.bool)).flatten() cc = np.corrcoef(input1, input2)[0][1] return cc def coverage(input1, input2): """ estimate the coverage between two mask """ input1 = nb.load(input1).get_fdata() input2 = nb.load(input2).get_fdata() input1 = np.atleast_1d(input1.astype(np.bool)) input2 = np.atleast_1d(input2.astype(np.bool)) intsec = np.count_nonzero(input1 & input2) if np.sum(input1) > np.sum(input2): smallv = np.sum(input2) else: smallv = np.sum(input1) cov = float(intsec)/float(smallv) return cov
2.34375
2
application.py
tg2648/cu-rooms-app
0
12785142
""" Main entrance to the application """ # Local application imports from app import create_app application = create_app() if __name__ == '__main__': application.run()
1.726563
2
adminlte_base/filters.py
kyzima-spb/adminlte-base
0
12785143
""" Provides ready-made implementations for filters used in templates. """ from string import Template import arrow from dateutil import tz from .constants import ThemeColor __all__ = ('humanize', 'if_true', 'navbar_skin', 'sidebar_skin', 'replace_with_flag') def humanize(dt, locale='en_us', time_zone=None): """The filter converts the date to human readable.""" dt = arrow.get(dt, tz.gettz(time_zone)) return dt.humanize(locale=locale, only_distance=True) def if_true(value, replace_with=None): """Replaces the value with the passed if the value is true.""" if not value: return '' if replace_with is None: return value return Template(replace_with).safe_substitute(value=value) def replace_with_flag(locale): """The filter replaces the locale with the CSS flag classes of the flag-icon-css library.""" locale = locale.replace('-', '_').lower().rsplit('_', maxsplit=1) if len(locale) == 2: return f'flag-icon flag-icon-{locale[-1]}' return '' def navbar_skin(color): """Returns a collection of classes to style the navigation bar.""" if color: light = {ThemeColor.LIGHT, ThemeColor.WARNING, ThemeColor.WHITE, ThemeColor.ORANGE} style = 'light' if color in light else f'dark' return f'navbar-{style} navbar-{color}' return '' def sidebar_skin(color, light=False): """Returns a collection of classes to style the main sidebar bar.""" if color: style = 'light' if light else f'dark' return f'sidebar-{style}-{color}' return ''
3.109375
3
redbrick/version_check.py
dereklukacs/redbrick-sdk
1
12785144
"""Management of versions to help users update.""" import os from configparser import ConfigParser from datetime import datetime from distutils.version import StrictVersion import requests from .utils.logging import print_warning # pylint: disable=cyclic-import def get_version() -> str: """Get current installed version of the SDK.""" with open( os.path.join(os.path.dirname(__file__), "VERSION"), "r", encoding="utf-8", ) as file_: return file_.read().strip() def version_check() -> None: """Check if current installed version of the SDK is up to date with latest pypi release.""" # Getting latest version on pypi cache_file = os.path.join(os.path.expanduser("~"), ".redbrickai", "version") os.makedirs(os.path.dirname(cache_file), exist_ok=True) cache_config = ConfigParser() cache_config.read(cache_file) update_cache = False if ( "version" not in cache_config or "current_version" not in cache_config["version"] or cache_config["version"]["current_version"] != __version__ ): cache_config["version"] = {"current_version": __version__} update_cache = True current_timestamp = int(datetime.now().timestamp()) if ( "latest_version" not in cache_config["version"] or "last_checked" not in cache_config["version"] or current_timestamp - int(cache_config["version"]["last_checked"]) > 86400 ): url = "https://pypi.org/pypi/redbrick-sdk/json" data = requests.get(url).json() versions = list(data["releases"].keys()) versions.sort(key=StrictVersion) latest_version = versions[-1] # Comparing with current installed version if __version__ != latest_version: warn = ( "You are using version '{}' of the SDK. However, version '{}' is available!\n" + "Please update as soon as possible to get the latest features and bug fixes.\n" + "You can use 'python -m pip install --upgrade redbrick-sdk'" + " to get the latest version." ) print_warning(warn.format(__version__, latest_version)) cache_config["version"]["latest_version"] = latest_version cache_config["version"]["last_checked"] = str(current_timestamp) update_cache = True if update_cache: with open(cache_file, "w", encoding="utf-8") as file_: cache_config.write(file_) __version__ = get_version() version_check()
2.390625
2
blitz_api/tests/tests_view_Users.py
Jerome-Celle/Blitz-API
0
12785145
<reponame>Jerome-Celle/Blitz-API import json from datetime import timedelta from unittest import mock from rest_framework import status from rest_framework.test import APIClient, APITestCase from django.contrib.auth import get_user_model from django.core import mail from django.urls import reverse from django.test.utils import override_settings from ..factories import UserFactory, AdminFactory from ..models import (ActionToken, Organization, Domain, AcademicField, AcademicLevel) from ..services import remove_translation_fields from store.models import Membership User = get_user_model() class UsersTests(APITestCase): @classmethod def setUpClass(cls): super(UsersTests, cls).setUpClass() org = Organization.objects.create(name="random_university") Domain.objects.create( name="mailinator.com", organization_id=org.id ) AcademicField.objects.create(name="random_field") cls.academic_level = AcademicLevel.objects.create(name="random_level") cls.membership = Membership.objects.create( name="basic_membership", details="1-Year student membership", available=True, price=50, duration=timedelta(days=365), ) cls.membership.academic_levels.set([cls.academic_level]) def setUp(self): self.client = APIClient() self.user = UserFactory() self.user.set_password('<PASSWORD>!') self.user.membership = self.membership self.user.save() self.admin = AdminFactory() self.admin.set_password('<PASSWORD>!') self.admin.save() def test_create_new_student_user(self): """ Ensure we can create a new user if we have the permission. """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>!', 'phone': '1234567890', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { 'name': "random_university" }, 'academic_field': {'name': "random_field"}, 'academic_level': {'name': "random_level"}, 'gender': "M", 'birthdate': "1999-11-11", } response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(json.loads(response.content)['phone'], '1234567890') user = User.objects.get(email="<EMAIL>") activation_token = ActionToken.objects.filter( user=user, type='account_activation', ) self.assertEqual(1, len(activation_token)) def test_create_new_user(self): """ Ensure we can create a new user if we have the permission. """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>!', 'phone': '1234567890', 'first_name': 'Chuck', 'last_name': 'Norris', 'gender': "M", 'birthdate': "1999-11-11", } response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(json.loads(response.content)['phone'], '1234567890') user = User.objects.get(email="<EMAIL>") activation_token = ActionToken.objects.filter( user=user, type='account_activation', ) self.assertEqual(1, len(activation_token)) def test_create_new_student_user_missing_field(self): """ Ensure we can't create a student user without academic_* fields. """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>!', 'phone': '1234567890', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { 'name': "random_university" }, 'academic_field': {'name': "random_field"}, 'gender': "M", 'birthdate': "1999-11-11", } response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) content = { 'academic_level': ['This field is required.'] } self.assertEqual(json.loads(response.content), content) def test_create_new_user_blank_fields(self): """ Ensure we can't create a new user with blank fields """ data = { 'email': '', 'password': '', 'phone': '', 'first_name': '', 'last_name': '', 'university': { 'name': "" }, 'academic_field': {'name': ""}, 'academic_level': {'name': ""}, 'gender': "", 'birthdate': "", } response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) content = { 'academic_field': {'name': ['This field may not be blank.']}, 'academic_level': {'name': ['This field may not be blank.']}, 'birthdate': [ 'Date has wrong format. Use one of these formats instead: ' 'YYYY-MM-DD.' ], 'first_name': ['This field may not be blank.'], 'gender': ['"" is not a valid choice.'], 'last_name': ['This field may not be blank.'], 'email': ['This field may not be blank.'], 'password': ['<PASSWORD> field may not be blank.'], 'phone': ['Invalid format.'], 'university': {'name': ['This field may not be blank.']} } self.assertEqual(json.loads(response.content), content) def test_create_new_user_missing_fields(self): """ Ensure we can't create a new user without required fields """ data = {} response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) content = { 'birthdate': ['This field is required.'], 'email': ['This field is required.'], 'first_name': ['This field is required.'], 'gender': ['This field is required.'], 'last_name': ['This field is required.'], 'password': ['<PASSWORD>.'] } self.assertEqual(json.loads(response.content), content) def test_create_new_user_weak_password(self): """ Ensure we can't create a new user with a weak password """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { "name": "random_university" }, 'academic_field': {'name': "random_field"}, 'academic_level': {'name': "random_level"}, 'gender': "M", 'birthdate': "1999-11-11", } response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) content = {"password": ['<PASSWORD>.']} self.assertEqual(json.loads(response.content), content) def test_create_new_user_invalid_domain(self): """ Ensure we can't create a new user with an invalid domain. An invalid domain can be defined as: - Non-existent - Not matching with selected university """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { "name": "random_university" }, 'academic_field': {'name': "random_field"}, 'academic_level': {'name': "random_level"}, 'gender': "M", 'birthdate': "1999-11-11", } response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) content = {'email': ['Invalid domain name.']} self.assertEqual(json.loads(response.content), content) def test_create_new_user_invalid_university(self): """ Ensure we can't create a new user with an invalid university. """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { "name": "invalid_university" }, 'academic_field': {'name': "random_field"}, 'academic_level': {'name': "random_level"}, 'gender': "M", 'birthdate': "1999-11-11", } response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) content = {'university': ['This university does not exist.']} self.assertEqual(json.loads(response.content), content) def test_create_new_user_invalid_fields(self): """ Ensure we can't create a new user with invalid fields. Emails are validated at creation time, this is why no email validation messages are sent in this case. """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { "name": "invalid_university" }, 'academic_field': {'name': "invalid_field"}, 'academic_level': {'name': "invalid_level"}, 'gender': "invalid_gender", 'birthdate': "invalid_date", } response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) content = { 'academic_field': ['This academic field does not exist.'], 'academic_level': ['This academic level does not exist.'], 'birthdate': [ 'Date has wrong format. Use one of these formats instead: ' 'YYYY-MM-DD.' ], 'gender': ['"invalid_gender" is not a valid choice.'], 'university': ['This university does not exist.'] } self.assertEqual(json.loads(response.content), content) def test_create_new_user_invalid_phone(self): """ Ensure we can't create a new user with an invalid phone number """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>#$%', 'phone': '12345', 'other_phone': '23445dfg', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { "name": "random_university" }, 'academic_field': {'name': "random_field"}, 'academic_level': {'name': "random_level"}, 'gender': "M", 'birthdate': "1999-11-11", } response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) content = { "phone": ['Invalid format.'], "other_phone": ['Invalid format.'] } self.assertEqual(json.loads(response.content), content) def test_create_new_user_duplicate_email(self): """ Ensure we can't create a new user with an already existing email """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>!', 'phone': '1234567890', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { "name": "random_university" }, 'academic_field': {'name': "random_field"}, 'academic_level': {'name': "random_level"}, 'gender': "M", 'birthdate': "1999-11-11", } user = UserFactory() user.email = '<EMAIL>' user.save() response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) content = { 'email': [ "An account for the specified email address already exists." ] } self.assertEqual(json.loads(response.content), content) @override_settings( LOCAL_SETTINGS={ "EMAIL_SERVICE": True, "AUTO_ACTIVATE_USER": False, "FRONTEND_INTEGRATION": { "ACTIVATION_URL": "fake_url", } } ) def test_create_user_activation_email(self): """ Ensure that the activation email is sent when user signs up. """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>!', 'phone': '1234567890', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { "name": "random_university" }, 'academic_field': {'name': "random_field"}, 'academic_level': {'name': "random_level"}, 'gender': "M", 'birthdate': "1999-11-11", } response = self.client.post( reverse('user-list'), data, format='json', ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(json.loads(response.content)['phone'], '1234567890') user = User.objects.get(email="<EMAIL>") activation_token = ActionToken.objects.filter( user=user, type='account_activation', ) self.assertFalse(user.is_active) self.assertEqual(1, len(activation_token)) # Test that one message was sent: self.assertEqual(len(mail.outbox), 1) @override_settings( LOCAL_SETTINGS={ "EMAIL_SERVICE": True, "AUTO_ACTIVATE_USER": False, "FRONTEND_INTEGRATION": { "ACTIVATION_URL": "fake_url", } } ) @mock.patch('blitz_api.services.EmailMessage.send', return_value=0) def test_create_user_activation_email_failure(self, send): """ Ensure that the user is notified that no email was sent. """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>!', 'phone': '1234567890', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { "name": "random_university" }, 'academic_field': {'name': "random_field"}, 'academic_level': {'name': "random_level"}, 'gender': "M", 'birthdate': "1999-11-11", } response = self.client.post( reverse('user-list'), data, format='json', ) content = { 'detail': "The account was created but no email was " "sent. If your account is not activated, " "contact the administration.", } self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(json.loads(response.content), content) user = User.objects.get(email="<EMAIL>") activation_token = ActionToken.objects.filter( user=user, type='account_activation', ) self.assertFalse(user.is_active) self.assertEqual(1, len(activation_token)) # Test that no email was sent: self.assertEqual(len(mail.outbox), 0) @override_settings( LOCAL_SETTINGS={ "EMAIL_SERVICE": True, "AUTO_ACTIVATE_USER": True, "FRONTEND_INTEGRATION": { "ACTIVATION_URL": "fake_url", } } ) @mock.patch('blitz_api.services.EmailMessage.send', return_value=0) def test_create_user_auto_activate(self, services): """ Ensure that the user is automatically activated. """ data = { 'username': 'John', 'email': '<EMAIL>', 'password': '<PASSWORD>!', 'phone': '1234567890', 'first_name': 'Chuck', 'last_name': 'Norris', 'university': { "name": "random_university" }, 'academic_field': {'name': "random_field"}, 'academic_level': {'name': "random_level"}, 'gender': "M", 'birthdate': "1999-11-11", } response = self.client.post( reverse('user-list'), data, format='json', ) content = { 'detail': "The account was created but no email was " "sent. If your account is not activated, " "contact the administration.", } self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(json.loads(response.content), content) user = User.objects.get(email="<EMAIL>") activation_token = ActionToken.objects.filter( user=user, type='account_activation', ) self.assertTrue(user.is_active) self.assertEqual(1, len(activation_token)) # Test that no email was sent: self.assertEqual(len(mail.outbox), 0) def test_list_users(self): """ Ensure we can list all users. """ self.client.force_authenticate(user=self.admin) response = self.client.get(reverse('user-list')) self.assertEqual(json.loads(response.content)['count'], 2) # Users are ordered alphabetically by email first_user = json.loads(response.content)['results'][0] second_user = json.loads(response.content)['results'][1] self.assertEqual(first_user['email'], self.admin.email) membership = { 'url': 'http://testserver/memberships/' + str(self.membership.id), 'id': self.membership.id, 'order_lines': [], 'name': 'basic_membership', 'available': True, 'price': '50.00', 'details': '1-Year student membership', 'duration': '365 00:00:00', 'academic_levels': ['http://testserver/academic_levels/' + str(self.academic_level.id)] } self.assertEqual( remove_translation_fields(second_user['membership']), membership ) # Check the system doesn't return attributes not expected attributes = [ 'id', 'url', 'email', 'first_name', 'last_name', 'is_active', 'phone', 'other_phone', 'is_superuser', 'is_staff', 'university', 'last_login', 'date_joined', 'academic_level', 'academic_field', 'gender', 'birthdate', 'groups', 'user_permissions', 'tickets', 'membership', 'membership_end', 'city', 'personnal_restrictions', 'academic_program_code', 'faculty', 'student_number', 'volunteer_for_workplace', ] for key in first_user.keys(): self.assertTrue( key in attributes, 'Attribute "{0}" is not expected but is ' 'returned by the system.'.format(key) ) attributes.remove(key) # Ensure the system returns all expected attributes self.assertTrue( len(attributes) == 0, 'The system failed to return some ' 'attributes : {0}'.format(attributes) ) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_list_users_with_search(self): """ Ensure we can list all users. """ self.client.force_authenticate(user=self.admin) response = self.client.get(reverse('user-list') + '?search=chuck') self.assertEqual(json.loads(response.content)['count'], 1) # Users are ordered alphabetically by email first_user = json.loads(response.content)['results'][0] self.assertEqual(first_user['email'], self.admin.email) # Check the system doesn't return attributes not expected attributes = [ 'id', 'url', 'email', 'first_name', 'last_name', 'is_active', 'phone', 'other_phone', 'is_superuser', 'is_staff', 'university', 'last_login', 'date_joined', 'academic_level', 'academic_field', 'gender', 'birthdate', 'groups', 'user_permissions', 'tickets', 'membership', 'membership_end', 'city', 'personnal_restrictions', 'academic_program_code', 'faculty', 'student_number', 'volunteer_for_workplace', ] for key in first_user.keys(): self.assertTrue( key in attributes, 'Attribute "{0}" is not expected but is ' 'returned by the system.'.format(key) ) attributes.remove(key) # Ensure the system returns all expected attributes self.assertTrue( len(attributes) == 0, 'The system failed to return some ' 'attributes : {0}'.format(attributes) ) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_list_users_without_authenticate(self): """ Ensure we can't list users without authentication. """ response = self.client.get(reverse('user-list')) content = {"detail": "Authentication credentials were not provided."} self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_list_users_without_permissions(self): """ Ensure we can't list users without permissions. """ self.client.force_authenticate(user=self.user) response = self.client.get(reverse('user-list')) content = { 'detail': 'You do not have permission to perform this action.' } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN)
2.046875
2
ray_examples/serving/modelserving/model_server_deployments.py
mlkimmins/scalingpythonml
13
12785146
import ray from ray import serve import requests import os import pickle import numpy as np import asyncio # Models locations RANDOM_FOREST_MODEL_PATH = os.path.join("wine-quality_random_forest.pkl") XGBOOST_MODEL_PATH = os.path.join("wine-quality_xgboost.pkl") GRBOOST_MODEL_PATH = os.path.join("wine-quality_grboost.pkl") # Start Ray ray.init() # Start Serve serve.start() #define deployments @serve.deployment(route_prefix="/randomforest") class RandomForestModel: def __init__(self, path): with open(path, "rb") as f: self.model = pickle.load(f) async def __call__(self, request): payload = await request.json() return self.serve(payload) def serve(self, request): input_vector = [ request["fixed acidity"], request["volatile acidity"], request["citric acid"], request["residual sugar"], request["chlorides"], request["free sulfur dioxide"], request["total sulfur dioxide"], request["density"], request["pH"], request["sulphates"], request["alcohol"], ] prediction = self.model.predict([input_vector])[0] return {"result": str(prediction)} @serve.deployment(route_prefix="/grboost") class GRBoostModel: def __init__(self, path): with open(path, "rb") as f: self.model = pickle.load(f) async def __call__(self, request): payload = await request.json() return self.serve(payload) def serve(self, request): input_vector = np.array([ request["fixed acidity"], request["volatile acidity"], request["citric acid"], request["residual sugar"], request["chlorides"], request["free sulfur dioxide"], request["total sulfur dioxide"], request["density"], request["pH"], request["sulphates"], request["alcohol"], ]) prediction = self.model.predict(input_vector.reshape(1,11))[0] return {"result": str(prediction)} @serve.deployment(route_prefix="/xgboost") class XGBoostModel: def __init__(self, path): with open(path, "rb") as f: self.model = pickle.load(f) async def __call__(self, request): payload = await request.json() return self.serve(payload) def serve(self, request): input_vector = np.array([ request["fixed acidity"], request["volatile acidity"], request["citric acid"], request["residual sugar"], request["chlorides"], request["free sulfur dioxide"], request["total sulfur dioxide"], request["density"], request["pH"], request["sulphates"], request["alcohol"], ]) prediction = self.model.predict(input_vector.reshape(1,11))[0] return {"result": str(prediction)} RandomForestModel.deploy(RANDOM_FOREST_MODEL_PATH) XGBoostModel.deploy(XGBOOST_MODEL_PATH) GRBoostModel.deploy(GRBOOST_MODEL_PATH) @serve.deployment(route_prefix="/speculative") class Speculative: def __init__(self): self.rfhandle = RandomForestModel.get_handle(sync=False) self.xgboosthandle = XGBoostModel.get_handle(sync=False) self.grboosthandle = GRBoostModel.get_handle(sync=False) async def __call__(self, request): payload = await request.json() f1, f2, f3 = await asyncio.gather(self.rfhandle.serve.remote(payload), self.xgboosthandle.serve.remote(payload), self.grboosthandle.serve.remote(payload)) rfresurlt = ray.get(f1)['result'] xgresurlt = ray.get(f2)['result'] grresult = ray.get(f3)['result'] ones = [] zeros = [] if rfresurlt == "1": ones.append("Random forest") else: zeros.append("Random forest") if xgresurlt == "1": ones.append("XGBoost") else: zeros.append("XGBoost") if grresult == "1": ones.append("Gradient boost") else: zeros.append("Gradient boost") if len(ones) >= 2: return {"result": "1", "methods": ones} else: return {"result": "0", "methods": zeros} Speculative.deploy() sample_request_input = { "fixed acidity": -0.70071875, "volatile acidity": 0.34736425, "citric acid": -1.34012182, "residual sugar": -0.16942723, "chlorides": -0.1586918, "free sulfur dioxide": 1.06389977, "total sulfur dioxide": -0.10545198, "density": -0.66075704, "pH": 0.70550789, "sulphates": -0.46118037, "alcohol": 0.26002813, } print(requests.get("http://localhost:8000/randomforest", json=sample_request_input).text) print(requests.get("http://localhost:8000/grboost", json=sample_request_input).text) print(requests.get("http://localhost:8000/xgboost", json=sample_request_input).text) print(requests.get("http://localhost:8000/speculative", json=sample_request_input).text)
2.453125
2
tests/benchmarks.py
Bahus/easy_cache
34
12785147
# -*- coding: utf-8 -*- from __future__ import unicode_literals, print_function import math from contextlib import contextmanager from timeit import default_timer from redis import StrictRedis import six from django.conf import settings # noinspection PyUnresolvedReferences from six.moves import xrange from easy_cache import caches from easy_cache.contrib.redis_cache import RedisCacheInstance from easy_cache.decorators import ecached from tests.conf import REDIS_HOST, MEMCACHED_HOST settings.configure( DEBUG=True, DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:' } }, CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'locmem', 'KEY_PREFIX': 'custom_prefix', }, 'memcached': { 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': MEMCACHED_HOST, 'KEY_PREFIX': 'memcached', }, 'redis': { 'BACKEND': 'django_redis.cache.RedisCache', 'LOCATION': 'redis://{}/1'.format(REDIS_HOST), 'OPTIONS': { 'CLIENT_CLASS': 'django_redis.client.DefaultClient', } } }, ROOT_URLCONF='', INSTALLED_APPS=() ) # adds custom redis client redis_host, redis_port = REDIS_HOST.split(':') caches['redis_client'] = RedisCacheInstance( StrictRedis(host=redis_host, port=redis_port), prefix='bench' ) def ratio(a, b): if a > b: return a / b, 1 elif a < b: return 1, b / a else: return 1, 1 class Stopwatch(object): def __init__(self, name): self.name = name self.t0 = default_timer() self.laps = [] def __unicode__(self): m = self.mean() d = self.stddev() a = self.median() fmt = u'%-37s: mean=%0.5f, median=%0.5f, stddev=%0.5f, n=%3d, snr=%8.5f:%8.5f' return fmt % ((self.name, m, a, d, len(self.laps)) + ratio(m, d)) def __str__(self): if six.PY2: return six.binary_type(self.__unicode__()) else: return self.__unicode__() def mean(self): return sum(self.laps) / len(self.laps) def median(self): return sorted(self.laps)[int(len(self.laps) / 2)] def stddev(self): mean = self.mean() return math.sqrt(sum((lap - mean) ** 2 for lap in self.laps) / len(self.laps)) def total(self): return default_timer() - self.t0 def reset(self): self.t0 = default_timer() self.laps = [] @contextmanager def timing(self): t0 = default_timer() try: yield finally: te = default_timer() self.laps.append(te - t0) c = 0 def time_consuming_operation(): global c c += 1 a = sum(xrange(1000000)) return str(a) def test_no_cache(): return time_consuming_operation() @ecached(cache_alias='default') def test_locmem_cache(): return time_consuming_operation() @ecached(cache_alias='memcached') def test_memcached_cache(): return time_consuming_operation() @ecached(cache_alias='redis') def test_redis_cache(): return time_consuming_operation() @ecached(cache_alias='redis_client') def test_redis_client_cache(): return time_consuming_operation() @ecached(cache_alias='default', tags=['tag1', 'tag2']) def test_locmem_cache_tags(): return time_consuming_operation() @ecached(cache_alias='memcached', tags=['tag1', 'tag2']) def test_memcached_cache_tags(): return time_consuming_operation() @ecached(cache_alias='redis', tags=['tag1', 'tag2']) def test_redis_cache_tags(): return time_consuming_operation() @ecached(cache_alias='redis_client', tags=['tag1', 'tag2']) def test_redis_client_cache_tags(): return time_consuming_operation() def main(): from django import get_version import sys print('=======', 'Python:', sys.version.replace('\n', ''), 'Django:', get_version(), '=======') global c n = 100 benchmarks = ( (test_no_cache, n), (test_locmem_cache, 1), (test_locmem_cache_tags, 1), (test_memcached_cache, 1), (test_memcached_cache_tags, 1), (test_redis_cache, 1), (test_redis_cache_tags, 1), (test_redis_client_cache, 1), (test_redis_client_cache_tags, 1), ) def cleanup(function): if hasattr(function, 'invalidate_cache_by_key'): function.invalidate_cache_by_key() if hasattr(function, 'invalidate_cache_by_tags'): function.invalidate_cache_by_tags() for method, count in benchmarks: sw1 = Stopwatch('[cleanup] ' + method.__name__) cleanup(method) c = 0 for _ in xrange(n): with sw1.timing(): method() cleanup(method) assert c == n, c print(sw1) sw2 = Stopwatch('[ normal] ' + method.__name__) cleanup(method) c = 0 for _ in xrange(n): # skip first time if _ == 0: method() continue with sw2.timing(): method() assert c == count, c print(sw2) print('mean diff: {:.3} %, median diff: {:.3} %'.format( float(sw2.mean()) / sw1.mean() * 100, float(sw2.median()) / sw1.median() * 100, )) if __name__ == '__main__': main()
1.96875
2
clothing/migrations/0003_test_data_clothCategories.py
AmitAharoni/iWear2021
0
12785148
<gh_stars>0 from django.db import migrations, transaction from clothing.models import ClothCategory from iWear.resources.clothCategories import CLOTH_CATEGORIES_LIST class Migration(migrations.Migration): dependencies = [ ('clothing', '0002_clothingitem_owner'), ] def generate_clothcategories_data(apps, schema_editor): with transaction.atomic(): for category in CLOTH_CATEGORIES_LIST: ClothCategory(category_name=category).save() operations = [ migrations.RunPython(generate_clothcategories_data), ]
2.109375
2
tf_agents/keras_layers/transformer_encoder_layer.py
woerns/agents
0
12785149
<filename>tf_agents/keras_layers/transformer_encoder_layer.py # coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multi-head attention layer as used in the Transformer model""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.utils import common # pylint:disable=g-direct-tensorflow-import from tensorflow.python.framework import tensor_shape # TF internal from tensorflow.python.keras import layers # TF internal # pylint:enable=g-direct-tensorflow-import __all__ = ["MultiHeadAttention", "TransformerEncoderLayer"] def _scaled_dot_product_attention(q, k, v, mask): """Calculate the attention weights. q, k, v must have matching leading dimensions. k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v. The mask has different shapes depending on its type(padding or look ahead) but it must be broadcastable for addition. Args: q: query shape == (..., seq_len_q, depth) k: key shape == (..., seq_len_k, depth) v: value shape == (..., seq_len_v, depth_v) mask: Float tensor with shape broadcastable to (..., seq_len_q, seq_len_k). Defaults to None. Returns: output, attention_weights """ matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k) # scale matmul_qk dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) # add the mask to the scaled tensor. if mask is not None: scaled_attention_logits += (mask * -1e9) # softmax is normalized on the last axis (seq_len_k) so that the scores # add up to 1. attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k) output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v) return output, attention_weights class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dtype=tf.float32): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.wq = tf.keras.layers.Dense(d_model, dtype=dtype) self.wk = tf.keras.layers.Dense(d_model, dtype=dtype) self.wv = tf.keras.layers.Dense(d_model, dtype=dtype) self.dense = tf.keras.layers.Dense(d_model, dtype=dtype) def _split_heads(self, x, batch_size): """Split the last dimension into (num_heads, depth). Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth) """ x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, v, k, q, mask): batch_size = tf.shape(q)[0] q = self.wq(q) # (batch_size, seq_len, d_model) k = self.wk(k) # (batch_size, seq_len, d_model) v = self.wv(v) # (batch_size, seq_len, d_model) q = self._split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth) k = self._split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth) v = self._split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth) # scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth) # attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k) scaled_attention, attention_weights = _scaled_dot_product_attention( q, k, v, mask) scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth) concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model) output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model) return output, attention_weights class TransformerEncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1, dtype=tf.float32): super(TransformerEncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads, dtype=dtype) self.ffn = tf.keras.Sequential([ tf.keras.layers.Dense(dff, activation='relu', dtype=dtype), # (batch_size, seq_len, dff) tf.keras.layers.Dense(d_model, dtype=dtype) # (batch_size, seq_len, d_model) ]) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6, dtype=dtype) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6, dtype=dtype) self.dropout1 = tf.keras.layers.Dropout(rate, dtype=dtype) self.dropout2 = tf.keras.layers.Dropout(rate, dtype=dtype) def call(self, x, training, mask): attn_output, _ = self.mha(x, x, x, mask) # (batch_size, input_seq_len, d_model) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model) ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model) return out2
1.789063
2
hydroffice/ssp_manager/sspmanager_ui.py
hydroffice/hyo_sspmanager
0
12785150
from __future__ import absolute_import, division, print_function, unicode_literals import wx import logging log = logging.getLogger(__name__) MENU_FILE = wx.NewId() MENU_VIEW = wx.NewId() MENU_INTERACT = wx.NewId() MENU_PROC = wx.NewId() MENU_DB = wx.NewId() MENU_SERVER = wx.NewId() MENU_TOOLS = wx.NewId() MENU_HELP = wx.NewId() MENU_FILE_IMP = wx.NewId() MENU_FILE_IMP_DIGI_S = wx.NewId() MENU_FILE_IMP_UNB = wx.NewId() MENU_FILE_IMP_SIPPICAN = wx.NewId() MENU_FILE_IMP_SEABIRD = wx.NewId() MENU_FILE_IMP_VALEPORT = wx.NewId() MENU_FILE_IMP_VALE_MIDAS = wx.NewId() MENU_FILE_IMP_VALE_MON = wx.NewId() MENU_FILE_IMP_VALE_MINIS = wx.NewId() MENU_FILE_IMP_TURO = wx.NewId() MENU_FILE_IMP_DIGIBAR = wx.NewId() MENU_FILE_IMP_DIGI_PRO = wx.NewId() MENU_FILE_IMP_CASTAWAY = wx.NewId() MENU_FILE_IMP_IDRONAUT = wx.NewId() MENU_FILE_IMP_SAIV = wx.NewId() MENU_FILE_QUERY = wx.NewId() MENU_FILE_QUERY_WOA = wx.NewId() MENU_FILE_QUERY_RTOFS = wx.NewId() MENU_FILE_QUERY_SIS = wx.NewId() MENU_FILE_EXPORT = wx.NewId() MENU_FILE_EXPORT_ASVP = wx.NewId() MENU_FILE_EXPORT_VEL = wx.NewId() MENU_FILE_EXPORT_HIPS = wx.NewId() MENU_FILE_EXPORT_PRO = wx.NewId() MENU_FILE_EXPORT_IXBLUE = wx.NewId() MENU_FILE_EXPORT_UNB = wx.NewId() MENU_FILE_EXPORT_ELAC = wx.NewId() MENU_FILE_EXPORT_CSV = wx.NewId() MENU_FILE_EXPORT_CAST = wx.NewId() MENU_FILE_CLEAR = wx.NewId() MENU_FILE_EXIT = wx.NewId() MENU_PROC_INS_ZOOM = wx.NewId() MENU_PROC_INS_FLAG = wx.NewId() MENU_PROC_INS_UNFLAG = wx.NewId() MENU_PROC_INS_INSERT = wx.NewId() MENU_VIEW_RESET = wx.NewId() MENU_VIEW_HIDE_WOA = wx.NewId() MENU_VIEW_HIDE_FLAGGED = wx.NewId() MENU_VIEW_HIDE_DEPTH = wx.NewId() MENU_PROC_LOAD_SAL = wx.NewId() MENU_PROC_LOAD_TEMP_SAL = wx.NewId() MENU_PROC_LOAD_SURFSP = wx.NewId() MENU_PROC_EXTEND_CAST = wx.NewId() MENU_PROC_INSPECTION = wx.NewId() MENU_PROC_PREVIEW_THINNING = wx.NewId() MENU_PROC_SEND_PROFILE = wx.NewId() MENU_PROC_STORE_SSP = wx.NewId() MENU_PROC_REDO_SSP = wx.NewId() MENU_PROC_LOG_METADATA = wx.NewId() # MENU_PROC_EXPRESS = wx.NewId() MENU_DB_QUERY = wx.NewId() MENU_DB_QUERY_INTERNAL_DB = wx.NewId() MENU_DB_QUERY_EXTERNAL_DB = wx.NewId() MENU_DB_DELETE = wx.NewId() MENU_DB_DELETE_INTERNAL_DB = wx.NewId() MENU_DB_DELETE_EXTERNAL_DB = wx.NewId() MENU_DB_EXPORT = wx.NewId() MENU_DB_EXPORT_SHP = wx.NewId() MENU_DB_EXPORT_KML = wx.NewId() MENU_DB_EXPORT_CSV = wx.NewId() MENU_DB_PLOT = wx.NewId() MENU_DB_PLOT_MAP_SSP = wx.NewId() MENU_DB_PLOT_DAILY_SSP = wx.NewId() MENU_DB_SAVE_DAILY_SSP = wx.NewId() MENU_TOOLS_SERVER = wx.NewId() MENU_TOOLS_SET_REFERENCE_CAST = wx.NewId() MENU_TOOLS_CLEAR_REFERENCE_CAST = wx.NewId() MENU_TOOLS_EDIT_REFERENCE_CAST = wx.NewId() MENU_TOOLS_REFERENCE = wx.NewId() MENU_TOOLS_MODIFY_SETTINGS = wx.NewId() MENU_TOOLS_VIEW_SETTINGS = wx.NewId() MENU_TOOLS_RELOAD_SETTINGS = wx.NewId() MENU_TOOLS_USER_INPUTS = wx.NewId() MENU_TOOLS_REF_MON = wx.NewId() MENU_TOOLS_GEO_MONITOR = wx.NewId() MENU_SERVER_START = wx.NewId() MENU_SERVER_SEND = wx.NewId() MENU_SERVER_STOP = wx.NewId() MENU_SERVER_LOG_METADATA = wx.NewId() MENU_HELP_MANUAL = wx.NewId() MENU_HELP_ABOUT = wx.NewId() MENUS_ALL = (MENU_FILE_IMP, MENU_FILE_IMP_CASTAWAY, MENU_FILE_IMP_DIGIBAR, MENU_FILE_IMP_DIGI_PRO, MENU_FILE_IMP_DIGI_S, MENU_FILE_IMP_IDRONAUT, MENU_FILE_IMP_SAIV, MENU_FILE_IMP_SEABIRD, MENU_FILE_IMP_SIPPICAN, MENU_FILE_IMP_TURO, MENU_FILE_IMP_UNB, MENU_FILE_IMP_VALEPORT, MENU_FILE_IMP_VALE_MIDAS, MENU_FILE_IMP_VALE_MON, MENU_FILE_IMP_VALE_MINIS, MENU_FILE_QUERY, MENU_FILE_EXPORT, MENU_FILE_EXPORT_CAST, MENU_FILE_EXPORT_ASVP, MENU_FILE_EXPORT_PRO, MENU_FILE_EXPORT_HIPS, MENU_FILE_EXPORT_IXBLUE, MENU_FILE_EXPORT_VEL, MENU_FILE_EXPORT_UNB, MENU_FILE_EXPORT_ELAC, MENU_FILE_EXPORT_CSV, MENU_FILE_CLEAR, MENU_VIEW_RESET, MENU_VIEW_HIDE_WOA, MENU_VIEW_HIDE_FLAGGED, MENU_VIEW_HIDE_DEPTH, MENU_PROC_LOAD_SAL, MENU_PROC_LOAD_TEMP_SAL, MENU_PROC_LOAD_SURFSP, MENU_PROC_EXTEND_CAST, MENU_PROC_INSPECTION, MENU_PROC_INS_ZOOM, MENU_PROC_INS_FLAG, MENU_PROC_INS_UNFLAG, MENU_PROC_INS_INSERT, # MENU_PROC_EXPRESS, MENU_PROC_PREVIEW_THINNING, MENU_PROC_SEND_PROFILE, MENU_PROC_STORE_SSP, MENU_PROC_REDO_SSP, MENU_PROC_LOG_METADATA, MENU_DB_QUERY, MENU_DB_DELETE, MENU_DB_EXPORT, MENU_DB_PLOT, MENU_SERVER_START, MENU_SERVER_SEND, MENU_SERVER_STOP, MENU_SERVER_LOG_METADATA, MENU_TOOLS_GEO_MONITOR, MENU_TOOLS_REF_MON, MENU_TOOLS_SET_REFERENCE_CAST, MENU_TOOLS_EDIT_REFERENCE_CAST, MENU_TOOLS_CLEAR_REFERENCE_CAST, MENU_TOOLS_MODIFY_SETTINGS, MENU_TOOLS_VIEW_SETTINGS, MENU_TOOLS_RELOAD_SETTINGS, MENU_TOOLS_USER_INPUTS) MENUS_DISABLED_ON_CLOSED = ( MENU_FILE_EXPORT_CAST, MENU_FILE_CLEAR, MENU_VIEW_RESET, MENU_VIEW_HIDE_WOA, MENU_VIEW_HIDE_FLAGGED, MENU_VIEW_HIDE_DEPTH, MENU_PROC_LOAD_SAL, MENU_PROC_LOAD_TEMP_SAL, MENU_PROC_LOAD_SURFSP, MENU_PROC_EXTEND_CAST, MENU_PROC_INSPECTION, MENU_PROC_INS_ZOOM, MENU_PROC_INS_FLAG, MENU_PROC_INS_INSERT, MENU_PROC_INS_UNFLAG, MENU_PROC_PREVIEW_THINNING, MENU_PROC_SEND_PROFILE, MENU_PROC_STORE_SSP, MENU_PROC_REDO_SSP, # MENU_PROC_EXPRESS, MENU_TOOLS_SET_REFERENCE_CAST, MENU_SERVER_SEND, MENU_SERVER_STOP) MENUS_DISABLED_ON_OPEN = (MENU_SERVER_SEND, MENU_SERVER_STOP) MENUS_DISABLED_ON_SERVER = ( MENU_FILE_IMP, # all import MENU_FILE_QUERY, # all query MENU_FILE_EXPORT, # all export MENU_FILE_CLEAR, MENU_PROC_LOG_METADATA, MENU_TOOLS_SET_REFERENCE_CAST, MENU_TOOLS_EDIT_REFERENCE_CAST, MENU_TOOLS_CLEAR_REFERENCE_CAST, MENU_FILE_IMP_DIGI_S, MENU_FILE_IMP_SEABIRD, # MENU_PROC_EXPRESS, MENU_PROC_LOAD_SAL, MENU_PROC_LOAD_TEMP_SAL, MENU_PROC_LOAD_SURFSP, MENU_PROC_EXTEND_CAST, MENU_PROC_INSPECTION, MENU_PROC_PREVIEW_THINNING, MENU_PROC_SEND_PROFILE, MENU_PROC_REDO_SSP, MENU_DB_QUERY, MENU_DB_DELETE, MENU_DB_EXPORT, MENU_DB_PLOT, MENU_SERVER_START) class SSPManagerBase(wx.Frame): def __init__(self, *args, **kwds): kwds["style"] = wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) # Menu Bar self.SVPEditorFrame_menubar = wx.MenuBar() # ### FILE ### self.FileMenu = wx.Menu() # File/Import FileImp = wx.Menu() self.FileImpCastaway = wx.MenuItem(FileImp, MENU_FILE_IMP_CASTAWAY, "Castaway (.csv)", "Import a Castaway cast", wx.ITEM_NORMAL) FileImp.AppendItem(self.FileImpCastaway) FileImpDigi = wx.Menu() self.FileImpDigibarPro = wx.MenuItem(FileImpDigi, MENU_FILE_IMP_DIGI_PRO, "Digibar Pro (.txt)", "Import a Digibar Pro cast", wx.ITEM_NORMAL) FileImpDigi.AppendItem(self.FileImpDigibarPro) self.FileImpDigibarS = wx.MenuItem(FileImpDigi, MENU_FILE_IMP_DIGI_S, "Digibar S (.csv)", "Import a Digibar S cast", wx.ITEM_NORMAL) FileImpDigi.AppendItem(self.FileImpDigibarS) FileImp.AppendMenu(MENU_FILE_IMP_DIGIBAR, "Digibar", FileImpDigi, "Import Digibar formats") self.FileImpIdronaut = wx.MenuItem(FileImp, MENU_FILE_IMP_IDRONAUT, "Idronaut (*.txt)", "Import an Idronaut cast", wx.ITEM_NORMAL) FileImp.AppendItem(self.FileImpIdronaut) self.FileImpSaiv = wx.MenuItem(FileImp, MENU_FILE_IMP_SAIV, "Saiv (*.txt)", "Import a Saiv cast", wx.ITEM_NORMAL) FileImp.AppendItem(self.FileImpSaiv) self.FileImpSeabird = wx.MenuItem(FileImp, MENU_FILE_IMP_SEABIRD, "Seabird (.cnv)", "Import a Seabird cast", wx.ITEM_NORMAL) FileImp.AppendItem(self.FileImpSeabird) self.FileImpSippican = wx.MenuItem(FileImp, MENU_FILE_IMP_SIPPICAN, "Sippican (.edf)", "Import a Sippican cast", wx.ITEM_NORMAL) FileImp.AppendItem(self.FileImpSippican) self.FileImpTuro = wx.MenuItem(FileImp, MENU_FILE_IMP_TURO, "Turo (.nc)", "Import a Turo cast", wx.ITEM_NORMAL) FileImp.AppendItem(self.FileImpTuro) self.FileImpUNB = wx.MenuItem(FileImp, MENU_FILE_IMP_UNB, "UNB (.unb)", "Import a UNB cast", wx.ITEM_NORMAL) FileImp.AppendItem(self.FileImpUNB) FileImpVale = wx.Menu() self.FileImpValeMidas = wx.MenuItem(FileImpVale, MENU_FILE_IMP_VALE_MIDAS, "Midas (.000)", "Import a Valeport Midas cast", wx.ITEM_NORMAL) FileImpVale.AppendItem(self.FileImpValeMidas) self.FileImpValeMonitor = wx.MenuItem(FileImpVale, MENU_FILE_IMP_VALE_MON, "Monitor (.000)", "Import a Valeport Monitor cast", wx.ITEM_NORMAL) FileImpVale.AppendItem(self.FileImpValeMonitor) self.FileImpValeMiniS = wx.MenuItem(FileImpVale, MENU_FILE_IMP_VALE_MINIS, "MiniSVP (.txt)", "Import a Valeport MiniSVP cast", wx.ITEM_NORMAL) FileImpVale.AppendItem(self.FileImpValeMiniS) FileImp.AppendMenu(MENU_FILE_IMP_VALEPORT, "Valeport", FileImpVale, "Import Valeport formats") self.FileMenu.AppendMenu(MENU_FILE_IMP, "Import cast", FileImp, "Import an SSP cast") # File/Query FileQuery = wx.Menu() self.FileQuerySis = wx.MenuItem(FileQuery, MENU_FILE_QUERY_SIS, "Kongsberg SIS", "Retrieve the SSP cast in use by SIS", wx.ITEM_NORMAL) FileQuery.AppendItem(self.FileQuerySis) self.FileQueryRtofs = wx.MenuItem(FileQuery, MENU_FILE_QUERY_RTOFS, "RTOFS atlas", "Retrieve a predicted RTOFS-based SSP", wx.ITEM_NORMAL) FileQuery.AppendItem(self.FileQueryRtofs) self.FileQueryWoa = wx.MenuItem(FileQuery, MENU_FILE_QUERY_WOA, "WOA09 atlas", "Retrieve statistical info about the SSP in the area", wx.ITEM_NORMAL) FileQuery.AppendItem(self.FileQueryWoa) self.FileMenu.AppendMenu(MENU_FILE_QUERY, "Query from", FileQuery, "Retrieve SSP info from external sources") # File / Export FileExp = wx.Menu() self.FileExpCast = wx.MenuItem(FileExp, MENU_FILE_EXPORT_CAST, "Export selected formats", "Export the current SSP in the selected formats", wx.ITEM_NORMAL) FileExp.AppendItem(self.FileExpCast) FileExp.AppendSeparator() self.FileExpHips = wx.MenuItem(FileExp, MENU_FILE_EXPORT_HIPS, "Caris HIPS (.svp)", "Export the current SSP as Caris HIPS format", wx.ITEM_CHECK) FileExp.AppendItem(self.FileExpHips) self.FileExpCsv = wx.MenuItem(FileExp, MENU_FILE_EXPORT_CSV, "Comma-separated (.csv)", "Export the current SSP as comma-separated format", wx.ITEM_CHECK) FileExp.AppendItem(self.FileExpCsv) self.FileExpElac = wx.MenuItem(FileExp, MENU_FILE_EXPORT_ELAC, "Elac (.sva)", "Export the current SSP as Elac format", wx.ITEM_CHECK) FileExp.AppendItem(self.FileExpElac) self.FileExpVel = wx.MenuItem(FileExp, MENU_FILE_EXPORT_VEL, "Hypack (.vel)", "Export the current SSP as Hypack format", wx.ITEM_CHECK) FileExp.AppendItem(self.FileExpVel) self.FileExpIxblue = wx.MenuItem(FileExp, MENU_FILE_EXPORT_IXBLUE, "IXBLUE (.txt)", "Export the current SSP as IXBLUE format", wx.ITEM_CHECK) FileExp.AppendItem(self.FileExpIxblue) self.FileExpAsvp = wx.MenuItem(FileExp, MENU_FILE_EXPORT_ASVP, "Kongsberg (.asvp)", "Export the current SSP as Kongsberg format", wx.ITEM_CHECK) FileExp.AppendItem(self.FileExpAsvp) self.FileExpPro = wx.MenuItem(FileExp, MENU_FILE_EXPORT_PRO, "Sonardyne (.pro)", "Export the current SSP as Sonardyne format", wx.ITEM_CHECK) FileExp.AppendItem(self.FileExpPro) self.FileExpUnb = wx.MenuItem(FileExp, MENU_FILE_EXPORT_UNB, "UNB (.unb)", "Export the current SSP as UNB format", wx.ITEM_CHECK) FileExp.AppendItem(self.FileExpUnb) self.FileMenu.AppendMenu(MENU_FILE_EXPORT, "Export SSP", FileExp, "Export the current SSP") self.FileClear = wx.MenuItem(self.FileMenu, MENU_FILE_CLEAR, "Clear", "Clear the loaded cast", wx.ITEM_NORMAL) self.FileMenu.AppendItem(self.FileClear) self.FileMenu.AppendSeparator() self.FileExit = wx.MenuItem(self.FileMenu, MENU_FILE_EXIT, "Exit", "Quit SSP Manager", wx.ITEM_NORMAL) self.FileMenu.AppendItem(self.FileExit) self.SVPEditorFrame_menubar.Append(self.FileMenu, "File") # ### VIEW ### self.ViewMenu = wx.Menu() self.ResetView = wx.MenuItem(self.ViewMenu, MENU_VIEW_RESET, "Reset plot view", "Reset the plot view", wx.ITEM_NORMAL) self.ViewMenu.AppendItem(self.ResetView) self.ViewMenu.AppendSeparator() self.ViewHideWOA = wx.MenuItem(self.ViewMenu, MENU_VIEW_HIDE_WOA, "Hide WOA info", "Hide the visualization of WOA info", wx.ITEM_CHECK) self.ViewMenu.AppendItem(self.ViewHideWOA) self.HideFlagged = wx.MenuItem(self.ViewMenu, MENU_VIEW_HIDE_FLAGGED, "Hide flagged data", "Hide all the flagged data", wx.ITEM_CHECK) self.ViewMenu.AppendItem(self.HideFlagged) self.HideDepth = wx.MenuItem(self.ViewMenu, MENU_VIEW_HIDE_DEPTH, "Hide depth", "Hide the depth visualization on the plot", wx.ITEM_CHECK) self.ViewMenu.AppendItem(self.HideDepth) self.SVPEditorFrame_menubar.Append(self.ViewMenu, "View") # ### Process ### self.ProcessMenu = wx.Menu() self.ProcessLoadSal = wx.MenuItem(self.ProcessMenu, MENU_PROC_LOAD_SAL, "Load salinity", "Load salinity from reference cast [XBT only]", wx.ITEM_NORMAL) self.ProcessMenu.AppendItem(self.ProcessLoadSal) self.ProcessLoadTempSal = wx.MenuItem(self.ProcessMenu, MENU_PROC_LOAD_TEMP_SAL, "Load temperature/salinity", "Load temperature and salinity from reference cast [SVP and XBT only]", wx.ITEM_NORMAL) self.ProcessMenu.AppendItem(self.ProcessLoadTempSal) self.ProcessLoadSurfSpeed = wx.MenuItem(self.ProcessMenu, MENU_PROC_LOAD_SURFSP, "Get surface sound speed", "Get the surface sound speed value from SIS", wx.ITEM_NORMAL) self.ProcessMenu.AppendItem(self.ProcessLoadSurfSpeed) self.ProcessMenu.AppendSeparator() self.ProcessExtend = wx.MenuItem(self.ProcessMenu, MENU_PROC_EXTEND_CAST, "Extend cast", "Extend the cast using the reference cast", wx.ITEM_NORMAL) self.ProcessMenu.AppendItem(self.ProcessExtend) self.ProcessInspection = wx.Menu() self.PlotZoom = wx.MenuItem(self.ProcessInspection, MENU_PROC_INS_ZOOM, "Zoom", "Zoom on plot by mouse selection", wx.ITEM_RADIO) self.ProcessInspection.AppendItem(self.PlotZoom) self.PlotFlag = wx.MenuItem(self.ProcessInspection, MENU_PROC_INS_FLAG, "Flag", "Flag samples on plot by mouse selection", wx.ITEM_RADIO) self.ProcessInspection.AppendItem(self.PlotFlag) self.PlotUnflag = wx.MenuItem(self.ProcessInspection, MENU_PROC_INS_UNFLAG, "Unflag", "Unflag samples on plot by mouse selection", wx.ITEM_RADIO) self.ProcessInspection.AppendItem(self.PlotUnflag) self.PlotInsert = wx.MenuItem(self.ProcessInspection, MENU_PROC_INS_INSERT, "Insert", "Insert a sample by mouse clicking", wx.ITEM_RADIO) self.ProcessInspection.AppendItem(self.PlotInsert) self.ProcessMenu.AppendMenu(MENU_PROC_INSPECTION, "Visual inspection", self.ProcessInspection, "Visual inspection of the resulting profile") self.ProcessMenu.AppendSeparator() self.ProcessPreviewThinning = wx.MenuItem(self.ProcessMenu, MENU_PROC_PREVIEW_THINNING, "Preview thinning", "Preview the thinning required by some client types", wx.ITEM_NORMAL) self.ProcessMenu.AppendItem(self.ProcessPreviewThinning) self.ProcessSendProfile = wx.MenuItem(self.ProcessMenu, MENU_PROC_SEND_PROFILE, "Send SSP", "Send the current SSP to the clients", wx.ITEM_NORMAL) self.ProcessMenu.AppendItem(self.ProcessSendProfile) self.ProcessMenu.AppendSeparator() self.ProcessStoreDb = wx.MenuItem(self.ProcessMenu, MENU_PROC_STORE_SSP, "Store SSP", "Locally store the current SSP data", wx.ITEM_NORMAL) self.ProcessMenu.AppendItem(self.ProcessStoreDb) self.ProcessRedoSsp = wx.MenuItem(self.ProcessMenu, MENU_PROC_REDO_SSP, "Redo processing", "Redo the processing by reloading the stored raw data", wx.ITEM_NORMAL) self.ProcessMenu.AppendItem(self.ProcessRedoSsp) self.ProcessLogMetadata = wx.MenuItem(self.ProcessMenu, MENU_PROC_LOG_METADATA, "Log processing metadata", "Store the processing metadata in the log DB", wx.ITEM_CHECK) self.ProcessMenu.AppendItem(self.ProcessLogMetadata) # self.ProcessMenu.AppendSeparator() # self.ProcessExpressMode = wx.MenuItem(self.ProcessMenu, MENU_PROC_EXPRESS, "Express mode", # "Activate the express mode (be careful!)", wx.ITEM_NORMAL) # self.ProcessMenu.AppendItem(self.ProcessExpressMode) self.SVPEditorFrame_menubar.Append(self.ProcessMenu, "Process") # ### DATABASE ### self.DbMenu = wx.Menu() # Query DbQuery = wx.Menu() self.DbQueryInternalDb = wx.MenuItem(DbQuery, MENU_DB_QUERY_INTERNAL_DB, "Internal DB", "Retrieve the locally stored SSP", wx.ITEM_NORMAL) DbQuery.AppendItem(self.DbQueryInternalDb) self.DbQueryExternalDb = wx.MenuItem(DbQuery, MENU_DB_QUERY_EXTERNAL_DB, "External DB", "Retrieve a SSP stored in the select DB", wx.ITEM_NORMAL) DbQuery.AppendItem(self.DbQueryExternalDb) self.DbMenu.AppendMenu(MENU_DB_QUERY, "Query from", DbQuery, "Retrieve SSP info from databases") # Db/Delete DbDelete = wx.Menu() self.DbDeleteInternalDb = wx.MenuItem(DbDelete, MENU_DB_DELETE_INTERNAL_DB, "Internal DB", "Delete a locally stored SSP", wx.ITEM_NORMAL) DbDelete.AppendItem(self.DbDeleteInternalDb) self.DbDeleteExternalDb = wx.MenuItem(DbDelete, MENU_DB_DELETE_EXTERNAL_DB, "External DB", "Delete a SSP stored in the select DB", wx.ITEM_NORMAL) DbDelete.AppendItem(self.DbDeleteExternalDb) self.DbMenu.AppendMenu(MENU_DB_DELETE, "Delete SSP", DbDelete, "") # Db/Export DbExport = wx.Menu() self.DbExportShp = wx.MenuItem(DbExport, MENU_DB_EXPORT_SHP, "Shapefile", "Export all the stored SSPs as a Shapefile", wx.ITEM_NORMAL) DbExport.AppendItem(self.DbExportShp) self.DbExportKml = wx.MenuItem(DbExport, MENU_DB_EXPORT_KML, "KML", "Export all the stored SSPs as a KML file", wx.ITEM_NORMAL) DbExport.AppendItem(self.DbExportKml) self.DbExportCsv = wx.MenuItem(DbExport, MENU_DB_EXPORT_CSV, "CSV", "Export all the stored SSPs as a Comma-Separated file", wx.ITEM_NORMAL) DbExport.AppendItem(self.DbExportCsv) self.DbMenu.AppendMenu(MENU_DB_EXPORT, "Export", DbExport, "") # Db/Plot DbPlot = wx.Menu() self.DbPlotMapSsp = wx.MenuItem(DbPlot, MENU_DB_PLOT_MAP_SSP, "Map all SSPs", "Create a map with all the stored SSPs", wx.ITEM_NORMAL) DbPlot.AppendItem(self.DbPlotMapSsp) self.DbPlotDailySsp = wx.MenuItem(DbPlot, MENU_DB_PLOT_DAILY_SSP, "Create daily plot", "Create a SSP plot for each day", wx.ITEM_NORMAL) DbPlot.AppendItem(self.DbPlotDailySsp) self.DbSaveDailySsp = wx.MenuItem(DbPlot, MENU_DB_SAVE_DAILY_SSP, "Save daily plot", "Save a SSP plot for each day", wx.ITEM_NORMAL) DbPlot.AppendItem(self.DbSaveDailySsp) self.DbMenu.AppendMenu(MENU_DB_PLOT, "Plot", DbPlot, "") self.SVPEditorFrame_menubar.Append(self.DbMenu, "Database") # ### Tools ### self.ToolsMenu = wx.Menu() ServerMenu = wx.Menu() self.ToolsServerStart = wx.MenuItem(ServerMenu, MENU_SERVER_START, "Start server", "Start SIS server mode", wx.ITEM_NORMAL) ServerMenu.AppendItem(self.ToolsServerStart) self.ToolsServerSend = wx.MenuItem(ServerMenu, MENU_SERVER_SEND, "Force send", "Force to send a SSP", wx.ITEM_NORMAL) ServerMenu.AppendItem(self.ToolsServerSend) self.ToolsServerStop = wx.MenuItem(ServerMenu, MENU_SERVER_STOP, "Stop server", "Stop SIS server mode", wx.ITEM_NORMAL) ServerMenu.AppendItem(self.ToolsServerStop) ServerMenu.AppendSeparator() self.ServerLogMetadata = wx.MenuItem(ServerMenu, MENU_SERVER_LOG_METADATA, "Log server metadata", "Store the server metadata in the log DB", wx.ITEM_CHECK) ServerMenu.AppendItem(self.ServerLogMetadata) self.ToolsMenu.AppendMenu(MENU_TOOLS_SERVER, "Server", ServerMenu, "") self.ToolsMenu.AppendSeparator() self.ToolsRefMon = wx.MenuItem(self.ToolsMenu, MENU_TOOLS_REF_MON, "Refraction Monitor", "Open the refraction monitor", wx.ITEM_NORMAL) self.ToolsMenu.AppendItem(self.ToolsRefMon) self.ToolsGeoMap = wx.MenuItem(self.ToolsMenu, MENU_TOOLS_GEO_MONITOR, "Geo Monitor", "Open the Geo Monitor", wx.ITEM_NORMAL) self.ToolsMenu.AppendItem(self.ToolsGeoMap) self.ToolsMenu.AppendSeparator() ReferenceMenu = wx.Menu() self.ToolsSetReferenceCast = wx.MenuItem(self.ToolsMenu, MENU_TOOLS_SET_REFERENCE_CAST, "Set as reference cast", "Set the current SSP as reference cast", wx.ITEM_NORMAL) ReferenceMenu.AppendItem(self.ToolsSetReferenceCast) self.ToolsEditReferenceCast = wx.MenuItem(self.ToolsMenu, MENU_TOOLS_EDIT_REFERENCE_CAST, "Edit the reference cast", "Edit the current reference cast", wx.ITEM_NORMAL) ReferenceMenu.AppendItem(self.ToolsEditReferenceCast) self.ToolsClearReferenceCast = wx.MenuItem(self.ToolsMenu, MENU_TOOLS_CLEAR_REFERENCE_CAST, "Clear the reference cast", "Clear the current reference cast", wx.ITEM_NORMAL) ReferenceMenu.AppendItem(self.ToolsClearReferenceCast) self.ToolsMenu.AppendMenu(MENU_TOOLS_REFERENCE, "Reference cast", ReferenceMenu, "Actions about a reference cast") self.ToolsMenu.AppendSeparator() self.ToolsUserInputs = wx.MenuItem(self.ToolsMenu, MENU_TOOLS_USER_INPUTS, "Monitor user inputs", "Provide information about user inputs", wx.ITEM_NORMAL) self.ToolsMenu.AppendItem(self.ToolsUserInputs) self.ToolsModifySettings = wx.MenuItem(self.ToolsMenu, MENU_TOOLS_MODIFY_SETTINGS, "Modify SSP settings", "Open tool to modify SSP settings", wx.ITEM_NORMAL) self.ToolsMenu.AppendItem(self.ToolsModifySettings) self.ToolsViewSettings = wx.MenuItem(self.ToolsMenu, MENU_TOOLS_VIEW_SETTINGS, "View SSP settings", "Show SSP settings information", wx.ITEM_NORMAL) self.ToolsMenu.AppendItem(self.ToolsViewSettings) self.ToolsReloadSettings = wx.MenuItem(self.ToolsMenu, MENU_TOOLS_RELOAD_SETTINGS, "Reload SSP settings", "Reload SSP settings information", wx.ITEM_NORMAL) self.ToolsMenu.AppendItem(self.ToolsReloadSettings) self.SVPEditorFrame_menubar.Append(self.ToolsMenu, "Tools") self.HelpMenu = wx.Menu() self.HelpManual = wx.MenuItem(self.HelpMenu, MENU_HELP_MANUAL, "Manual", "Open the manual", wx.ITEM_NORMAL) self.HelpMenu.AppendItem(self.HelpManual) self.HelpMenu.AppendSeparator() self.HelpAbout = wx.MenuItem(self.HelpMenu, MENU_HELP_ABOUT, "About", "Info about the application", wx.ITEM_NORMAL) self.HelpMenu.AppendItem(self.HelpAbout) self.SVPEditorFrame_menubar.Append(self.HelpMenu, "Help") self.SetMenuBar(self.SVPEditorFrame_menubar) self.frame_statusbar = self.CreateStatusBar(2) self.__set_properties() self.__do_layout() self.Bind(wx.EVT_MENU, self.on_file_import_castaway, self.FileImpCastaway) self.Bind(wx.EVT_MENU, self.on_file_import_digibar_pro, self.FileImpDigibarPro) self.Bind(wx.EVT_MENU, self.on_file_import_digibar_s, self.FileImpDigibarS) self.Bind(wx.EVT_MENU, self.on_file_import_sippican, self.FileImpSippican) self.Bind(wx.EVT_MENU, self.on_file_import_seabird, self.FileImpSeabird) self.Bind(wx.EVT_MENU, self.on_file_import_turo, self.FileImpTuro) self.Bind(wx.EVT_MENU, self.on_file_import_unb, self.FileImpUNB) self.Bind(wx.EVT_MENU, self.on_file_import_valeport_midas, self.FileImpValeMidas) self.Bind(wx.EVT_MENU, self.on_file_import_valeport_monitor, self.FileImpValeMonitor) self.Bind(wx.EVT_MENU, self.on_file_import_valeport_minisvp, self.FileImpValeMiniS) self.Bind(wx.EVT_MENU, self.on_file_import_idronaut, self.FileImpIdronaut) self.Bind(wx.EVT_MENU, self.on_file_import_saiv, self.FileImpSaiv) self.Bind(wx.EVT_MENU, self.on_file_query_woa09, self.FileQueryWoa) self.Bind(wx.EVT_MENU, self.on_file_query_rtofs, self.FileQueryRtofs) self.Bind(wx.EVT_MENU, self.on_file_query_sis, self.FileQuerySis) self.Bind(wx.EVT_MENU, self.on_file_export_cast, self.FileExpCast) self.Bind(wx.EVT_MENU, self.on_file_export_asvp, self.FileExpAsvp) self.Bind(wx.EVT_MENU, self.on_file_export_pro, self.FileExpPro) self.Bind(wx.EVT_MENU, self.on_file_export_vel, self.FileExpVel) self.Bind(wx.EVT_MENU, self.on_file_export_ixblue, self.FileExpIxblue) self.Bind(wx.EVT_MENU, self.on_file_export_hips, self.FileExpHips) self.Bind(wx.EVT_MENU, self.on_file_export_unb, self.FileExpUnb) self.Bind(wx.EVT_MENU, self.on_file_export_elac, self.FileExpElac) self.Bind(wx.EVT_MENU, self.on_file_export_csv, self.FileExpCsv) self.Bind(wx.EVT_MENU, self.on_file_clear, self.FileClear) self.Bind(wx.EVT_MENU, self.on_file_exit, self.FileExit) self.Bind(wx.EVT_MENU, self.on_plot_zoom, self.PlotZoom) self.Bind(wx.EVT_MENU, self.on_plot_flag, self.PlotFlag) self.Bind(wx.EVT_MENU, self.on_plot_unflag, self.PlotUnflag) self.Bind(wx.EVT_MENU, self.on_plot_insert, self.PlotInsert) self.Bind(wx.EVT_MENU, self.on_reset_view, self.ResetView) self.Bind(wx.EVT_MENU, self.on_view_hide_woa, self.ViewHideWOA) self.Bind(wx.EVT_MENU, self.on_view_hide_flagged, self.HideFlagged) self.Bind(wx.EVT_MENU, self.on_view_hide_depth, self.HideDepth) self.Bind(wx.EVT_MENU, self.on_process_load_salinity, self.ProcessLoadSal) self.Bind(wx.EVT_MENU, self.on_process_load_temp_and_sal, self.ProcessLoadTempSal) self.Bind(wx.EVT_MENU, self.on_process_load_surface_ssp, self.ProcessLoadSurfSpeed) self.Bind(wx.EVT_MENU, self.on_process_extend, self.ProcessExtend) self.Bind(wx.EVT_MENU, self.on_process_preview_thinning, self.ProcessPreviewThinning) self.Bind(wx.EVT_MENU, self.on_process_send_profile, self.ProcessSendProfile) self.Bind(wx.EVT_MENU, self.on_process_store_db, self.ProcessStoreDb) self.Bind(wx.EVT_MENU, self.on_process_redo_processing, self.ProcessRedoSsp) self.Bind(wx.EVT_MENU, self.on_process_log_metadata, self.ProcessLogMetadata) # self.Bind(wx.EVT_MENU, self.on_process_express_mode, self.ProcessExpressMode) self.Bind(wx.EVT_MENU, self.on_db_query_internal_db, self.DbQueryInternalDb) self.Bind(wx.EVT_MENU, self.on_db_query_external_db, self.DbQueryExternalDb) self.Bind(wx.EVT_MENU, self.on_db_delete_internal, self.DbDeleteInternalDb) self.Bind(wx.EVT_MENU, self.on_db_delete_external, self.DbDeleteExternalDb) self.Bind(wx.EVT_MENU, self.on_db_export_shp, self.DbExportShp) self.Bind(wx.EVT_MENU, self.on_db_export_kml, self.DbExportKml) self.Bind(wx.EVT_MENU, self.on_db_export_csv, self.DbExportCsv) self.Bind(wx.EVT_MENU, self.on_db_plot_map_ssp, self.DbPlotMapSsp) self.Bind(wx.EVT_MENU, self.on_db_plot_daily_ssp, self.DbPlotDailySsp) self.Bind(wx.EVT_MENU, self.on_db_save_daily_ssp, self.DbSaveDailySsp) self.Bind(wx.EVT_MENU, self.on_tools_refraction_monitor, self.ToolsRefMon) self.Bind(wx.EVT_MENU, self.on_tools_geo_monitor, self.ToolsGeoMap) self.Bind(wx.EVT_MENU, self.on_tools_server_start, self.ToolsServerStart) self.Bind(wx.EVT_MENU, self.on_tools_server_send, self.ToolsServerSend) self.Bind(wx.EVT_MENU, self.on_tools_server_stop, self.ToolsServerStop) self.Bind(wx.EVT_MENU, self.on_tools_server_log_metadata, self.ServerLogMetadata) self.Bind(wx.EVT_MENU, self.on_tools_set_reference_cast, self.ToolsSetReferenceCast) self.Bind(wx.EVT_MENU, self.on_tools_edit_reference_cast, self.ToolsEditReferenceCast) self.Bind(wx.EVT_MENU, self.on_tools_clear_reference_cast, self.ToolsClearReferenceCast) self.Bind(wx.EVT_MENU, self.on_tools_user_inputs, self.ToolsUserInputs) self.Bind(wx.EVT_MENU, self.on_tools_modify_settings, self.ToolsModifySettings) self.Bind(wx.EVT_MENU, self.on_tools_view_settings, self.ToolsViewSettings) self.Bind(wx.EVT_MENU, self.on_tools_reload_settings, self.ToolsReloadSettings) self.Bind(wx.EVT_MENU, self.on_help_manual, self.HelpManual) self.Bind(wx.EVT_MENU, self.on_help_about, self.HelpAbout) def __set_properties(self): self.SetTitle("SSP Manager") # self.SetSize((1100, 700)) self.frame_statusbar.SetStatusWidths([-1, 400]) SSPManFrame_statusbar_fields = ["", ""] for i in range(len(SSPManFrame_statusbar_fields)): self.frame_statusbar.SetStatusText(SSPManFrame_statusbar_fields[i], i) def __do_layout(self): sizer_1 = wx.BoxSizer(wx.VERTICAL) self.SetSizer(sizer_1) self.Layout() def on_file_query_woa09(self, event): log.info("Event handler 'on_file_query_woa09' not implemented!") event.Skip() def on_file_query_rtofs(self, event): log.info("Event handler 'on_file_query_rtofs' not implemented!") event.Skip() def on_file_query_sis(self, event): log.info("Event handler 'on_file_query_sis' not implemented!") event.Skip() def on_process_store_db(self, event): log.info("Event handler 'on_process_store_db' not implemented!") event.Skip() def on_process_log_metadata(self, event): log.info("Event handler 'on_process_log_metadata' not implemented!") event.Skip() def on_file_import_castaway(self, event): log.info("Event handler 'on_file_import_castaway' not implemented!") event.Skip() def on_file_import_digibar_pro(self, event): log.info("Event handler 'on_file_import_digibar_pro' not implemented!") event.Skip() def on_file_import_digibar_s(self, event): log.info("Event handler 'on_file_import_digibar_s' not implemented!") event.Skip() def on_file_import_sippican(self, event): log.info("Event handler 'on_file_import_sippican' not implemented!") event.Skip() def on_file_import_seabird(self, event): log.info("Event handler 'on_file_import_seabird' not implemented!") event.Skip() def on_file_import_turo(self, event): log.info("Event handler 'on_file_import_turo' not implemented!") event.Skip() def on_file_import_unb(self, event): log.info("Event handler 'on_file_import_unb' not implemented!") event.Skip() def on_file_import_valeport_midas(self, event): log.info("Event handler 'on_file_import_valeport_midas' not implemented!") event.Skip() def on_file_import_valeport_monitor(self, event): log.info("Event handler 'on_file_import_valeport_monitor' not implemented!") event.Skip() def on_file_import_valeport_minisvp(self, event): log.info("Event handler 'on_file_import_valeport_minisvp' not implemented!") event.Skip() def on_file_import_idronaut(self, event): log.info("Event handler 'on_file_import_idronaut' not implemented!") event.Skip() def on_file_import_saiv(self, event): log.info("Event handler 'on_file_import_saiv' not implemented!") event.Skip() def on_file_export_cast(self, event): log.info("Event handler 'on_file_export_cast' not implemented!") event.Skip() def on_file_export_asvp(self, event): log.info("Event handler 'on_file_export_asvp' not implemented!") event.Skip() def on_file_export_pro(self, event): log.info("Event handler 'on_file_export_pro' not implemented!") event.Skip() def on_file_export_vel(self, event): log.info("Event handler 'on_file_export_vel' not implemented!") event.Skip() def on_file_export_ixblue(self, event): log.info("Event handler 'on_file_export_ixblue' not implemented!") event.Skip() def on_file_export_hips(self, event): log.info("Event handler 'on_file_export_hips' not implemented!") event.Skip() def on_file_export_unb(self, event): log.info("Event handler 'on_file_export_unb' not implemented!") event.Skip() def on_file_export_elac(self, event): log.info("Event handler 'on_file_export_elac' not implemented!") event.Skip() def on_file_export_csv(self, event): log.info("Event handler 'on_file_export_csv' not implemented!") event.Skip() def on_file_clear(self, event): log.info("Event handler 'on_file_clear' not implemented!") event.Skip() def on_file_exit(self, event): log.info("Event handler 'on_file_exit' not implemented!") event.Skip() def on_plot_zoom(self, event): log.info("Event handler 'on_plot_zoom' not implemented!") event.Skip() def on_plot_flag(self, event): log.info("Event handler 'on_plot_flag' not implemented!") event.Skip() def on_plot_unflag(self, event): log.info("Event handler 'on_plot_unflag' not implemented!") event.Skip() def on_plot_insert(self, event): log.info("Event handler 'on_plot_insert' not implemented!") event.Skip() def on_reset_view(self, event): log.info("Event handler 'on_reset_view' not implemented!") event.Skip() def on_view_hide_woa(self, event): log.info("Event handler 'on_view_hide_woa' not implemented!") event.Skip() def on_view_hide_flagged(self, event): log.info("Event handler 'on_view_hide_flagged' not implemented!") event.Skip() def on_view_hide_depth(self, event): log.info("Event handler 'on_view_hide_depth' not implemented!") event.Skip() def on_tools_refraction_monitor(self, event): log.info("Event handler 'on_tools_refraction_monitor' not implemented!") event.Skip() def on_tools_geo_monitor(self, event): log.info("Event handler 'on_tools_geo_monitor' not implemented!") event.Skip() # def on_process_express_mode(self, event): # log.info("Event handler `OnToolsExpress' not implemented!") # event.Skip() def on_process_load_salinity(self, event): log.info("Event handler 'on_process_load_salinity' not implemented!") event.Skip() def on_process_load_temp_and_sal(self, event): log.info("Event handler 'on_process_load_temp_and_sal' not implemented!") event.Skip() def on_process_load_surface_ssp(self, event): log.info("Event handler 'on_process_load_surface_ssp' not implemented!") event.Skip() def on_process_extend(self, event): log.info("Event handler 'on_process_extend' not implemented!") event.Skip() def on_process_preview_thinning(self, event): log.info("Event handler 'on_process_preview_thinning' not implemented!") event.Skip() def on_process_send_profile(self, event): log.info("Event handler 'on_process_send_profile' not implemented!") event.Skip() def on_process_redo_processing(self, event): log.info("Event handler 'on_process_redo_processing' not implemented!") event.Skip() def on_db_query_internal_db(self, event): log.info("Event handler 'on_db_query_internal' not implemented!") event.Skip() def on_db_query_external_db(self, event): log.info("Event handler 'on_db_query_external' not implemented!") event.Skip() def on_db_delete_internal(self, event): log.info("Event handler 'on_db_delete_internal' not implemented!") event.Skip() def on_db_delete_external(self, event): log.info("Event handler 'on_db_delete_external' not implemented!") event.Skip() def on_db_export_shp(self, event): log.info("Event handler 'on_db_export_shp' not implemented!") event.Skip() def on_db_export_kml(self, event): log.info("Event handler 'on_db_export_kml' not implemented!") event.Skip() def on_db_export_csv(self, event): log.info("Event handler 'on_db_export_csv' not implemented!") event.Skip() def on_db_plot_map_ssp(self, event): log.info("Event handler 'on_db_plot_map_ssp' not implemented!") event.Skip() def on_db_plot_daily_ssp(self, event): log.info("Event handler 'on_db_plot_daily_ssp' not implemented!") event.Skip() def on_db_save_daily_ssp(self, event): log.info("Event handler 'on_db_save_daily_ssp' not implemented!") event.Skip() def on_tools_user_inputs(self, event): log.info("Event handler 'on_tools_user_inputs' not implemented!") event.Skip() def on_tools_set_reference_cast(self, event): log.info("Event handler 'on_tools_set_reference_cast' not implemented!") event.Skip() def on_tools_edit_reference_cast(self, event): log.info("Event handler 'on_tools_edit_reference_cast' not implemented!") event.Skip() def on_tools_clear_reference_cast(self, event): log.info("Event handler 'on_tools_clear_reference_cast' not implemented!") event.Skip() def on_tools_server_start(self, event): log.info("Event handler 'on_tools_server_start' not implemented!") event.Skip() def on_tools_server_send(self, event): log.info("Event handler 'on_tools_server_send' not implemented!") event.Skip() def on_tools_server_stop(self, event): log.info("Event handler 'on_tools_server_stop' not implemented!") event.Skip() def on_tools_server_log_metadata(self, event): log.info("Event handler 'on_tools_server_log_metadata' not implemented!") event.Skip() def on_tools_modify_settings(self, event): log.info("Event handler 'on_tools_modify_settings' not implemented!") event.Skip() def on_tools_view_settings(self, event): log.info("Event handler 'on_tools_view_settings' not implemented!") event.Skip() def on_tools_reload_settings(self, event): log.info("Event handler 'on_tools_reload_settings' not implemented!") event.Skip() def on_help_manual(self, event): log.info("Event handler 'on_help_manual' not implemented!") event.Skip() def on_help_about(self, event): log.info("Event handler 'on_help_about' not implemented!") event.Skip()
1.609375
2