code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : str ={ """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class _A ( snake_case__ ): snake_case__ : Dict = """mgp-str""" def __init__( self , __lowerCAmelCase=[32, 128] , __lowerCAmelCase=4 , __lowerCAmelCase=3 , __lowerCAmelCase=27 , __lowerCAmelCase=38 , __lowerCAmelCase=5_0257 , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=4.0 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=False , __lowerCAmelCase=0.0_2 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**_A ) lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = max_token_length lowercase = num_character_labels lowercase = num_bpe_labels lowercase = num_wordpiece_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = mlp_ratio lowercase = distilled lowercase = layer_norm_eps lowercase = drop_rate lowercase = qkv_bias lowercase = attn_drop_rate lowercase = drop_path_rate lowercase = output_aa_attentions lowercase = initializer_range
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' lowercase = StableDiffusionPipeline.from_pretrained(snake_case__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase = load_file(snake_case__ ) lowercase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase = pipeline.text_encoder else: lowercase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase = pipeline.unet # find the target layer lowercase = layer_infos.pop(0 ) while len(snake_case__ ) > -1: try: lowercase = curr_layer.__getattr__(snake_case__ ) if len(snake_case__ ) > 0: lowercase = layer_infos.pop(0 ) elif len(snake_case__ ) == 0: break except Exception: if len(snake_case__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase = layer_infos.pop(0 ) lowercase = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(snake_case__ ) else: pair_keys.append(snake_case__ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case__ , snake_case__ ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase = state_dict[pair_keys[0]].to(torch.floataa ) lowercase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case__ , snake_case__ ) # update visited list for item in pair_keys: visited.append(snake_case__ ) return pipeline if __name__ == "__main__": __lowerCAmelCase : Any =argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") __lowerCAmelCase : Optional[int] =parser.parse_args() __lowerCAmelCase : Optional[Any] =args.base_model_path __lowerCAmelCase : List[Any] =args.checkpoint_path __lowerCAmelCase : Dict =args.dump_path __lowerCAmelCase : Tuple =args.lora_prefix_unet __lowerCAmelCase : Optional[Any] =args.lora_prefix_text_encoder __lowerCAmelCase : int =args.alpha __lowerCAmelCase : List[str] =convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __lowerCAmelCase : Optional[Any] =pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _A ( _SCREAMING_SNAKE_CASE ): snake_case__ : Any = 42 class _A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , __lowerCAmelCase = 6_5536 , __lowerCAmelCase = None , __lowerCAmelCase = 2 , __lowerCAmelCase = 2 , __lowerCAmelCase = 0 , __lowerCAmelCase = "fourier" , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = 0.0 , __lowerCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __lowerCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __lowerCAmelCase = "UNetMidBlock1D" , __lowerCAmelCase = None , __lowerCAmelCase = (32, 32, 64) , __lowerCAmelCase = None , __lowerCAmelCase = 8 , __lowerCAmelCase = 1 , __lowerCAmelCase = False , ): """simple docstring""" super().__init__() lowercase = sample_size # time if time_embedding_type == "fourier": lowercase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__lowerCAmelCase , log=__lowerCAmelCase , flip_sin_to_cos=__lowerCAmelCase ) lowercase = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowercase = Timesteps( block_out_channels[0] , flip_sin_to_cos=__lowerCAmelCase , downscale_freq_shift=__lowerCAmelCase ) lowercase = block_out_channels[0] if use_timestep_embedding: lowercase = block_out_channels[0] * 4 lowercase = TimestepEmbedding( in_channels=__lowerCAmelCase , time_embed_dim=__lowerCAmelCase , act_fn=__lowerCAmelCase , out_dim=block_out_channels[0] , ) lowercase = nn.ModuleList([] ) lowercase = None lowercase = nn.ModuleList([] ) lowercase = None # down lowercase = in_channels for i, down_block_type in enumerate(__lowerCAmelCase ): lowercase = output_channel lowercase = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowercase = i == len(__lowerCAmelCase ) - 1 lowercase = get_down_block( __lowerCAmelCase , num_layers=__lowerCAmelCase , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__lowerCAmelCase ) # mid lowercase = get_mid_block( __lowerCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__lowerCAmelCase , add_downsample=__lowerCAmelCase , ) # up lowercase = list(reversed(__lowerCAmelCase ) ) lowercase = reversed_block_out_channels[0] if out_block_type is None: lowercase = out_channels else: lowercase = block_out_channels[0] for i, up_block_type in enumerate(__lowerCAmelCase ): lowercase = output_channel lowercase = ( reversed_block_out_channels[i + 1] if i < len(__lowerCAmelCase ) - 1 else final_upsample_channels ) lowercase = i == len(__lowerCAmelCase ) - 1 lowercase = get_up_block( __lowerCAmelCase , num_layers=__lowerCAmelCase , in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__lowerCAmelCase ) lowercase = output_channel # out lowercase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowercase = get_out_block( out_block_type=__lowerCAmelCase , num_groups_out=__lowerCAmelCase , embed_dim=block_out_channels[0] , out_channels=__lowerCAmelCase , act_fn=__lowerCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , ): """simple docstring""" lowercase = timestep if not torch.is_tensor(__lowerCAmelCase ): lowercase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: lowercase = timesteps[None].to(sample.device ) lowercase = self.time_proj(__lowerCAmelCase ) if self.config.use_timestep_embedding: lowercase = self.time_mlp(__lowerCAmelCase ) else: lowercase = timestep_embed[..., None] lowercase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowercase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowercase = () for downsample_block in self.down_blocks: lowercase , lowercase = downsample_block(hidden_states=__lowerCAmelCase , temb=__lowerCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowercase = self.mid_block(__lowerCAmelCase , __lowerCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowercase = down_block_res_samples[-1:] lowercase = down_block_res_samples[:-1] lowercase = upsample_block(__lowerCAmelCase , res_hidden_states_tuple=__lowerCAmelCase , temb=__lowerCAmelCase ) # 5. post-process if self.out_block: lowercase = self.out_block(__lowerCAmelCase , __lowerCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=__lowerCAmelCase )
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = inspect.getfile(accelerate.test_utils ) lowercase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowercase = test_metrics @require_cpu def A__ ( self ): """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def A__ ( self ): """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def A__ ( self ): """simple docstring""" self.test_metrics.main() @require_multi_gpu def A__ ( self ): """simple docstring""" print(f'Found {torch.cuda.device_count()} devices.' ) lowercase = ['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase , env=os.environ.copy() )
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> Dict: '''simple docstring''' lowercase , lowercase = emb.weight.shape lowercase = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) lowercase = emb.weight.data return lin_layer def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = torch.load(snake_case_ , map_location="""cpu""" ) lowercase = Namespace(**checkpoint["""cfg"""]["""model"""] ) lowercase = checkpoint["""model"""] remove_ignore_keys_(snake_case_ ) lowercase = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowercase = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} lowercase = XGLMConfig( vocab_size=snake_case_ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowercase = XGLMForCausalLM(snake_case_ ) lowercase = model.load_state_dict(snake_case_ , strict=snake_case_ ) print(snake_case_ ) lowercase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __lowerCAmelCase : List[Any] =parser.parse_args() __lowerCAmelCase : Tuple =convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' lowercase = '' for word_or_phrase in separated: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(lowerCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> tuple: '''simple docstring''' lowercase = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCAmelCase : int =logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( lowerCamelCase_ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: lowercase = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , __snake_case , standard_warn=__snake_case ) lowercase = dict(scheduler.config ) lowercase = 1 lowercase = FrozenDict(__snake_case ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: lowercase = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , __snake_case , standard_warn=__snake_case ) lowercase = dict(scheduler.config ) lowercase = True lowercase = FrozenDict(__snake_case ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=__snake_case , segmentation_processor=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , ) def A__ ( self , __lowerCAmelCase = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def A__ ( self ): """simple docstring""" self.enable_attention_slicing(__snake_case ) def A__ ( self ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowercase = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self ): """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 512 , __lowerCAmelCase = 512 , __lowerCAmelCase = 50 , __lowerCAmelCase = 7.5 , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 1 , **__lowerCAmelCase , ): """simple docstring""" lowercase = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) lowercase = self.segmentation_model(**__snake_case ) lowercase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase = self.numpy_to_pil(__snake_case )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , )
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowerCAmelCase : Tuple =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") __lowerCAmelCase : str =list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __lowerCAmelCase : Optional[int] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> List[Any]: '''simple docstring''' with open(lowerCAmelCase__ , """rb""" ) as f: lowercase = Image.open(lowerCAmelCase__ ) return im.convert("""RGB""" ) @dataclass class _A : snake_case__ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) snake_case__ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) snake_case__ : Optional[str] = field(default=_SCREAMING_SNAKE_CASE , metadata={'help': 'A folder containing the training data.'} ) snake_case__ : Optional[str] = field(default=_SCREAMING_SNAKE_CASE , metadata={'help': 'A folder containing the validation data.'} ) snake_case__ : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) snake_case__ : Optional[int] = field( default=_SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case__ : Optional[int] = field( default=_SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def A__ ( self ): """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class _A : snake_case__ : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) snake_case__ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_SCREAMING_SNAKE_CASE )} , ) snake_case__ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) snake_case__ : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) snake_case__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case__ : str = field(default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Name or path of preprocessor config.'} ) snake_case__ : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) snake_case__ : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> str: '''simple docstring''' lowercase = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def UpperCAmelCase__ ( ) -> str: '''simple docstring''' lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="""image-classification""" , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase = {} if data_args.train_dir is not None: lowercase = os.path.join(data_args.train_dir , """**""" ) if data_args.validation_dir is not None: lowercase = os.path.join(data_args.validation_dir , """**""" ) lowercase = load_dataset( """imagefolder""" , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir , task="""image-classification""" , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase = dataset["""train"""].train_test_split(data_args.train_val_split ) lowercase = split["""train"""] lowercase = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = dataset["""train"""].features["""labels"""].names lowercase , lowercase = {}, {} for i, label in enumerate(lowerCAmelCase__ ): lowercase = str(lowerCAmelCase__ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ :Optional[int] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase__ ) , labelaid=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , finetuning_task="""image-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase = image_processor.size["""shortest_edge"""] else: lowercase = (image_processor.size["""height"""], image_processor.size["""width"""]) lowercase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase = Compose( [ RandomResizedCrop(lowerCAmelCase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase = Compose( [ Resize(lowerCAmelCase__ ), CenterCrop(lowerCAmelCase__ ), ToTensor(), normalize, ] ) def train_transforms(lowerCAmelCase__ :Optional[Any] ): lowercase = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(lowerCAmelCase__ :Optional[int] ): lowercase = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase__ ) # Initalize our trainer lowercase = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=dataset["""train"""] if training_args.do_train else None , eval_dataset=dataset["""validation"""] if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCAmelCase__ ) trainer.save_metrics("""eval""" , lowerCAmelCase__ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) if __name__ == "__main__": main()
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
"""simple docstring""" import re def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> list: '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_ )] def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> str: '''simple docstring''' lowercase = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool , lowerCAmelCase__ :str ) -> str: '''simple docstring''' try: lowercase = split_input(lowerCAmelCase__ ) if upper: lowercase = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowercase = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> str: '''simple docstring''' return to_simple_case(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> str: '''simple docstring''' try: lowercase = to_simple_case(lowerCAmelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool ) -> str: '''simple docstring''' return to_complex_case(lowerCAmelCase__ , lowerCAmelCase__ , """_""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool ) -> str: '''simple docstring''' return to_complex_case(lowerCAmelCase__ , lowerCAmelCase__ , """-""" ) if __name__ == "__main__": __import__("""doctest""").testmod()
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass(frozen=lowerCAmelCase ) class _A : snake_case__ : str snake_case__ : str snake_case__ : Optional[str] = None snake_case__ : Optional[str] = None snake_case__ : Optional[str] = None @dataclass(frozen=lowerCAmelCase ) class _A : snake_case__ : List[int] snake_case__ : Optional[List[int]] = None snake_case__ : Optional[List[int]] = None snake_case__ : Optional[Union[int, float]] = None snake_case__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class _A ( lowerCAmelCase ): snake_case__ : List[InputFeatures] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase=False , __lowerCAmelCase = False , ): """simple docstring""" lowercase = hans_processors[task]() lowercase = os.path.join( __lowerCAmelCase , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(__lowerCAmelCase ) , __lowerCAmelCase , ) , ) lowercase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase , lowercase = label_list[2], label_list[1] lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase = cached_features_file + """.lock""" with FileLock(__lowerCAmelCase ): if os.path.exists(__lowerCAmelCase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) lowercase = torch.load(__lowerCAmelCase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) lowercase = ( processor.get_dev_examples(__lowerCAmelCase ) if evaluate else processor.get_train_examples(__lowerCAmelCase ) ) logger.info("""Training examples: %s""" , len(__lowerCAmelCase ) ) lowercase = hans_convert_examples_to_features(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) logger.info("""Saving features into cached file %s""" , __lowerCAmelCase ) torch.save(self.features , __lowerCAmelCase ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , __lowerCAmelCase ): """simple docstring""" return self.features[i] def A__ ( self ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class _A : snake_case__ : List[InputFeatures] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 128 , __lowerCAmelCase=False , __lowerCAmelCase = False , ): """simple docstring""" lowercase = hans_processors[task]() lowercase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase , lowercase = label_list[2], label_list[1] lowercase = label_list lowercase = processor.get_dev_examples(__lowerCAmelCase ) if evaluate else processor.get_train_examples(__lowerCAmelCase ) lowercase = hans_convert_examples_to_features(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_0000 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(__lowerCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowercase = tf.data.Dataset.from_generator( __lowerCAmelCase , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A__ ( self ): """simple docstring""" return self.dataset def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , __lowerCAmelCase ): """simple docstring""" return self.features[i] def A__ ( self ): """simple docstring""" return self.label_list class _A ( lowerCAmelCase ): def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(__lowerCAmelCase , """heuristics_train_set.txt""" ) ) , """train""" ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(__lowerCAmelCase , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def A__ ( self ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = [] for i, line in enumerate(__lowerCAmelCase ): if i == 0: continue lowercase = """%s-%s""" % (set_type, line[0]) lowercase = line[5] lowercase = line[6] lowercase = line[7][2:] if line[7].startswith("""ex""" ) else line[7] lowercase = line[0] examples.append(InputExample(guid=__lowerCAmelCase , text_a=__lowerCAmelCase , text_b=__lowerCAmelCase , label=__lowerCAmelCase , pairID=__lowerCAmelCase ) ) return examples def UpperCAmelCase__ ( lowerCAmelCase__ :List[InputExample] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :PreTrainedTokenizer , ) -> Optional[Any]: '''simple docstring''' lowercase = {label: i for i, label in enumerate(lowerCAmelCase__ )} lowercase = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCAmelCase__ ) , desc="""convert examples to features""" ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d""" % (ex_index) ) lowercase = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" , truncation=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , ) lowercase = label_map[example.label] if example.label in label_map else 0 lowercase = int(example.pairID ) features.append(InputFeatures(**lowerCAmelCase__ , label=lowerCAmelCase__ , pairID=lowerCAmelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features __lowerCAmelCase : Tuple ={ """hans""": 3, } __lowerCAmelCase : str ={ """hans""": HansProcessor, }
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def UpperCAmelCase__ ( lowerCAmelCase__ :Callable[[int | float], int | float] , lowerCAmelCase__ :int | float , lowerCAmelCase__ :int | float , lowerCAmelCase__ :int = 1_0_0 , ) -> float: '''simple docstring''' lowercase = x_start lowercase = fnc(lowerCAmelCase__ ) lowercase = 0.0 for _ in range(lowerCAmelCase__ ): # Approximates curve as a sequence of linear lines and sums their length lowercase = (x_end - x_start) / steps + xa lowercase = fnc(lowerCAmelCase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase = xa lowercase = fxa return length if __name__ == "__main__": def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> Any: '''simple docstring''' return math.sin(1_0 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") __lowerCAmelCase : Dict =1_0 while i <= 1_0_0_0_0_0: print(F"""With {i} steps: {line_length(f, -1_0, 1_0, i)}""") i *= 1_0
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _A ( lowerCAmelCase ): snake_case__ : List[str] = (DEISMultistepScheduler,) snake_case__ : Union[str, Any] = (('num_inference_steps', 25),) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" lowercase = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**__lowerCAmelCase ) return config def A__ ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , __lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config(**__lowerCAmelCase ) lowercase = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) lowercase = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase , lowercase = sample, sample for t in range(__lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self ): """simple docstring""" pass def A__ ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , __lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) lowercase = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" if scheduler is None: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**__lowerCAmelCase ) lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**__lowerCAmelCase ) lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = 10 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase = model(__lowerCAmelCase , __lowerCAmelCase ) lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample return sample def A__ ( self ): """simple docstring""" lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , __lowerCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(__lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(__lowerCAmelCase , """set_timesteps""" ): lowercase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] lowercase = dummy_past_residuals[: scheduler.config.solver_order] lowercase = scheduler.timesteps[5] lowercase = scheduler.timesteps[6] lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A__ ( self ): """simple docstring""" lowercase = DEISMultistepScheduler(**self.get_scheduler_config() ) lowercase = self.full_loop(scheduler=__lowerCAmelCase ) lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3 lowercase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase = DEISMultistepScheduler.from_config(scheduler.config ) lowercase = self.full_loop(scheduler=__lowerCAmelCase ) lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3 def A__ ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" self.check_over_configs(thresholding=__lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , algorithm_type="""deis""" , solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , algorithm_type=__lowerCAmelCase , ) lowercase = self.full_loop( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , algorithm_type=__lowerCAmelCase , ) assert not torch.isnan(__lowerCAmelCase ).any(), "Samples have nan numbers" def A__ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=__lowerCAmelCase ) self.check_over_configs(lower_order_final=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCAmelCase , time_step=0 ) def A__ ( self ): """simple docstring""" lowercase = self.full_loop() lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.full_loop(prediction_type="""v_prediction""" ) lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0 ) lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = 10 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase = model(__lowerCAmelCase , __lowerCAmelCase ) lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' lowercase = limit + 1 lowercase = [0] * limit for first_term in range(1 , lowerCAmelCase__ ): for n in range(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase = sum(1 for x in frequency[1:limit] if x == 1_0 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = """laion/clap-htsat-unfused""" lowercase = tempfile.mkdtemp() def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def A__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() lowercase = self.get_feature_extractor() lowercase = ClapProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase = self.get_feature_extractor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) lowercase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) lowercase = floats_list((3, 1000) ) lowercase = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(audios=__lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A__ ( self ): """simple docstring""" lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) lowercase = """This is a test string""" lowercase = processor(text=__lowerCAmelCase ) lowercase = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self ): """simple docstring""" lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(__lowerCAmelCase ) lowercase = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_feature_extractor() lowercase = self.get_tokenizer() lowercase = ClapProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
356
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __lowerCAmelCase : Dict ="""\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ __lowerCAmelCase : List[Any] ="""\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ __lowerCAmelCase : int =""" Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ __lowerCAmelCase : List[str] =""" ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ __lowerCAmelCase : int ="""The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def A__ ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=[1, 10, 100] , __lowerCAmelCase=4 , __lowerCAmelCase=3.0 ): """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=__lowerCAmelCase ) as executor: lowercase = [] lowercase = Counter() lowercase = 0 lowercase = defaultdict(__lowerCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): for candidate in candidates: lowercase = candidate + """\n""" + test_case lowercase = (test_program, timeout, task_id, completion_id[task_id]) lowercase = executor.submit(__lowerCAmelCase , *__lowerCAmelCase ) futures.append(__lowerCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__lowerCAmelCase ): lowercase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) lowercase , lowercase = [], [] for result in results.values(): result.sort() lowercase = [r[1]["""passed"""] for r in result] total.append(len(__lowerCAmelCase ) ) correct.append(sum(__lowerCAmelCase ) ) lowercase = np.array(__lowerCAmelCase ) lowercase = np.array(__lowerCAmelCase ) lowercase = k lowercase = {f'pass@{k}': estimate_pass_at_k(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' def estimator(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = itertools.repeat(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) else: assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) lowercase = iter(lowerCAmelCase__ ) return np.array([estimator(int(lowerCAmelCase__ ) , int(lowerCAmelCase__ ) , lowerCAmelCase__ ) for n, c in zip(lowerCAmelCase__ , lowerCAmelCase__ )] )
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A ( lowerCAmelCase ): def A__ ( self ): """simple docstring""" lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(__lowerCAmelCase , """num_heads""" ) ) class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=64 , __lowerCAmelCase=3 , __lowerCAmelCase=[16, 48, 96] , __lowerCAmelCase=[1, 3, 6] , __lowerCAmelCase=[1, 2, 10] , __lowerCAmelCase=[7, 3, 3] , __lowerCAmelCase=[4, 2, 2] , __lowerCAmelCase=[2, 1, 1] , __lowerCAmelCase=[2, 2, 2] , __lowerCAmelCase=[False, False, True] , __lowerCAmelCase=[0.0, 0.0, 0.0] , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=2 , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = image_size lowercase = patch_sizes lowercase = patch_stride lowercase = patch_padding lowercase = is_training lowercase = use_labels lowercase = num_labels lowercase = num_channels lowercase = embed_dim lowercase = num_heads lowercase = stride_kv lowercase = depth lowercase = cls_token lowercase = attention_drop_rate lowercase = initializer_range lowercase = layer_norm_eps def A__ ( self ): """simple docstring""" lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: # create a random int32 tensor of given shape lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def A__ ( self ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = TFCvtModel(config=__lowerCAmelCase ) lowercase = model(__lowerCAmelCase , training=__lowerCAmelCase ) lowercase = (self.image_size, self.image_size) lowercase , lowercase = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = TFCvtForImageClassification(__lowerCAmelCase ) lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : int = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () snake_case__ : Dict = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) snake_case__ : List[Any] = False snake_case__ : int = False snake_case__ : Tuple = False snake_case__ : Any = False snake_case__ : int = False def A__ ( self ): """simple docstring""" lowercase = TFCvtModelTester(self ) lowercase = TFCvtConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def A__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def A__ ( self ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def A__ ( self ): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def A__ ( self ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def A__ ( self ): """simple docstring""" lowercase = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(__lowerCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ) lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowercase = model_class(__lowerCAmelCase ) lowercase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = len(self.model_tester.depth ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFCvtModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def UpperCAmelCase__ ( ) -> Tuple: '''simple docstring''' lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _A ( unittest.TestCase ): @cached_property def A__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A__ ( self ): """simple docstring""" lowercase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=__lowerCAmelCase , return_tensors="""tf""" ) # forward pass lowercase = model(**__lowerCAmelCase ) # verify the logits lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase = tf.constant([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __lowerCAmelCase , atol=1E-4 ) )
358
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
0
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> str: '''simple docstring''' lowercase = [] for line in lines: lowercase = re.sub(R"""#.*""" , """""" , lowerCAmelCase__ ) # remove comments if line: filtered_lines.append(lowerCAmelCase__ ) lowercase = """\n""".join(lowerCAmelCase__ ) # Make a hash from all this code lowercase = full_str.encode("""utf-8""" ) return shaaaa(lowerCAmelCase__ ).hexdigest() # get importable module names and hash for caching __lowerCAmelCase : Any ={ """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __lowerCAmelCase : Union[str, Any] ={ """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __lowerCAmelCase : List[Any] ={"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __lowerCAmelCase : Dict[str, List[str]] ={} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> Union[str, Any]: with open(lowerCAmelCase__ ) as metadata_file: lowercase = json.load(lowerCAmelCase__ ) lowercase = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""module"""] # Load the entity vocab file lowercase = load_original_entity_vocab(lowerCAmelCase__ ) # add an entry for [MASK2] lowercase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowercase = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks lowercase = AddedToken("""<ent>""" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) lowercase = AddedToken("""<ent2>""" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """tokenizer_config.json""" ) , """r""" ) as f: lowercase = json.load(lowerCAmelCase__ ) lowercase = """MLukeTokenizer""" with open(os.path.join(lowerCAmelCase__ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) # Initialize the embeddings of the special tokens lowercase = tokenizer.convert_tokens_to_ids(["""@"""] )[0] lowercase = tokenizer.convert_tokens_to_ids(["""#"""] )[0] lowercase = state_dict["""embeddings.word_embeddings.weight"""] lowercase = word_emb[ent_init_index].unsqueeze(0 ) lowercase = word_emb[enta_init_index].unsqueeze(0 ) lowercase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowercase = state_dict[bias_name] lowercase = decoder_bias[ent_init_index].unsqueeze(0 ) lowercase = decoder_bias[enta_init_index].unsqueeze(0 ) lowercase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase = f'encoder.layer.{layer_index}.attention.self.' lowercase = state_dict[prefix + matrix_name] lowercase = state_dict[prefix + matrix_name] lowercase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowercase = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowercase = state_dict["""entity_predictions.bias"""] lowercase = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowercase = LukeForMaskedLM(config=lowerCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) lowercase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): lowercase = state_dict[key] else: lowercase = state_dict[key] lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if set(lowerCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowerCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowercase = MLukeTokenizer.from_pretrained(lowerCAmelCase__ , task="""entity_classification""" ) lowercase = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" lowercase = (0, 9) lowercase = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors="""pt""" ) lowercase = model(**lowerCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowercase = torch.Size((1, 3_3, 7_6_8) ) lowercase = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowercase = torch.Size((1, 1, 7_6_8) ) lowercase = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowercase = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) lowercase = """Tokyo is the capital of <mask>.""" lowercase = (2_4, 3_0) lowercase = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors="""pt""" ) lowercase = model(**lowerCAmelCase__ ) lowercase = encoding["""input_ids"""][0].tolist() lowercase = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) lowercase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase__ ) lowercase = outputs.entity_logits[0][0].argmax().item() lowercase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(lowerCAmelCase__ ) ) model.save_pretrained(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Tuple: lowercase = ["""[MASK]""", """[PAD]""", """[UNK]"""] lowercase = [json.loads(lowerCAmelCase__ ) for line in open(lowerCAmelCase__ )] lowercase = {} for entry in data: lowercase = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowercase = entity_id break lowercase = f'{language}:{entity_name}' lowercase = entity_id return new_mapping if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __lowerCAmelCase : Any =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' lowercase = tmp_path / """file.csv""" lowercase = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Dict: '''simple docstring''' lowercase = tmp_path / """malformed_file.csv""" lowercase = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict ) -> List[str]: '''simple docstring''' lowercase = tmp_path / """csv_with_image.csv""" lowercase = textwrap.dedent( f'\\n image\n {image_file}\n ' ) with open(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Dict: '''simple docstring''' lowercase = tmp_path / """csv_with_label.csv""" lowercase = textwrap.dedent( """\ label good bad good """ ) with open(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> Any: '''simple docstring''' lowercase = tmp_path / """csv_with_int_list.csv""" lowercase = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(lowerCAmelCase__ , """w""" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str ) -> Any: '''simple docstring''' lowercase = Csv() lowercase = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCAmelCase__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowerCAmelCase__ ) in record.message for record in caplog.records ) @require_pil def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> str: '''simple docstring''' with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: lowercase = f.read().splitlines()[1] lowercase = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase = csv._generate_tables([[csv_file_with_image]] ) lowercase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> List[str]: '''simple docstring''' with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: lowercase = f.read().splitlines()[1:] lowercase = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase = csv._generate_tables([[csv_file_with_label]] ) lowercase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCAmelCase__ ) for label in labels] def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> int: '''simple docstring''' lowercase = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCAmelCase__ : [int(lowerCAmelCase__ ) for i in x.split()]} ) lowercase = csv._generate_tables([[csv_file_with_int_list]] ) lowercase = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
361
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
0
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __lowerCAmelCase : str =logging.getLogger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :torch.nn.Module , lowerCAmelCase__ :BnbQuantizationConfig , lowerCAmelCase__ :Union[str, os.PathLike] = None , lowerCAmelCase__ :Optional[Dict[str, Union[int, str, torch.device]]] = None , lowerCAmelCase__ :Optional[List[str]] = None , lowerCAmelCase__ :Optional[Dict[Union[int, str], Union[int, str]]] = None , lowerCAmelCase__ :Optional[Union[str, os.PathLike]] = None , lowerCAmelCase__ :bool = False , ) -> int: '''simple docstring''' lowercase = bnb_quantization_config.load_in_abit lowercase = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) lowercase = [] # custom device map if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1: lowercase = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowercase = get_keys_to_not_convert(lowerCAmelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ ) lowercase = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowercase = [] lowercase = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCAmelCase__ ) # compatibility with peft lowercase = load_in_abit lowercase = load_in_abit lowercase = get_parameter_device(lowerCAmelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) lowercase = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) # convert param to the right dtype lowercase = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowercase = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) lowercase = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCAmelCase__ ): param.to(lowerCAmelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): lowercase = replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) lowercase = get_quantized_model_device_map( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowercase = True lowercase = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :int=None ) -> str: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): lowercase = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) lowercase = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowercase = {} lowercase = special_dtypes lowercase = no_split_module_classes lowercase = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowercase = get_balanced_memory( lowerCAmelCase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase = max_memory lowercase = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # check if don't have any quantized module on the cpu lowercase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowercase = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Tuple=None ) -> int: '''simple docstring''' if modules_to_not_convert is None: lowercase = [] lowercase , lowercase = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :str=None , ) -> int: '''simple docstring''' lowercase = False for name, module in model.named_children(): if current_key_name is None: lowercase = [] current_key_name.append(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowercase = """.""".join(lowerCAmelCase__ ) lowercase = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowercase = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowercase = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowercase = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) lowercase = module.weight.data if module.bias is not None: lowercase = module.bias.data bnb_module.requires_grad_(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = True if len(list(module.children() ) ) > 0: lowercase , lowercase = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Any: '''simple docstring''' with init_empty_weights(): lowercase = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowercase = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase = sum(lowerCAmelCase__ , [] ) lowercase = len(lowerCAmelCase__ ) > 0 # Check if it is a base model lowercase = False if hasattr(lowerCAmelCase__ , """base_model_prefix""" ): lowercase = not hasattr(lowerCAmelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase = list(model.named_children() ) lowercase = [list_modules[-1][0]] # add last module together with tied weights lowercase = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) lowercase = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys lowercase = [""".weight""", """.bias"""] lowercase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase = name.replace(lowerCAmelCase__ , """""" ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' for m in model.modules(): if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ): return True return False def UpperCAmelCase__ ( lowerCAmelCase__ :nn.Module ) -> Any: '''simple docstring''' return next(parameter.parameters() ).device def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict ) -> List[str]: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ ) lowercase = param_name lowercase = model if "." in tensor_name: lowercase = tensor_name.split(""".""" ) for split in splits[:-1]: lowercase = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) lowercase = new_module lowercase = splits[-1] # offload weights lowercase = False offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase__ , index=lowerCAmelCase__ , ) else: offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) offload_weight(lowerCAmelCase__ , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase__ , index=lowerCAmelCase__ ) set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , """meta""" , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase : int =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : List[str] = ['input_features', 'attention_mask'] def __init__( self , __lowerCAmelCase=80 , __lowerCAmelCase=1_6000 , __lowerCAmelCase=80 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" super().__init__(feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , **__lowerCAmelCase ) lowercase = num_mel_bins lowercase = do_ceptral_normalize lowercase = normalize_means lowercase = normalize_vars lowercase = True def A__ ( self , __lowerCAmelCase , ): """simple docstring""" lowercase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowercase = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ) lowercase = ta_kaldi.fbank(__lowerCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def A__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = 0.0 , ): """simple docstring""" if normalize_means: lowercase = x[:input_length].mean(axis=0 ) lowercase = np.subtract(__lowerCAmelCase , __lowerCAmelCase ) if normalize_vars: lowercase = x[:input_length].std(axis=0 ) lowercase = np.divide(__lowerCAmelCase , __lowerCAmelCase ) if input_length < x.shape[0]: lowercase = padding_value # make sure array is in float32 lowercase = x.astype(np.floataa ) return x def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowerCAmelCase , __lowerCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__lowerCAmelCase , __lowerCAmelCase ) ] def __call__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowercase = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowercase = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): lowercase = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase = [raw_speech] # extract fbank features lowercase = [self._extract_fbank_features(__lowerCAmelCase ) for waveform in raw_speech] # convert into correct format for padding lowercase = BatchFeature({"""input_features""": features} ) lowercase = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) # make sure list is in array format lowercase = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , __lowerCAmelCase ): lowercase = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in input_features] lowercase = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowercase = [np.asarray(__lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowercase = ( np.array(__lowerCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(__lowerCAmelCase , max_length=__lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase = self.normalize( padded_inputs["""input_features"""] , attention_mask=__lowerCAmelCase ) if return_tensors is not None: lowercase = padded_inputs.convert_to_tensors(__lowerCAmelCase ) return padded_inputs
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Optional[int] = ['pixel_values'] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BILINEAR , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) lowercase = size if size is not None else {"""shortest_edge""": 256} lowercase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase = get_size_dict(__lowerCAmelCase ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase = get_resize_output_image_size(__lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCAmelCase ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(__lowerCAmelCase ) return center_crop(__lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase ): """simple docstring""" return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): """simple docstring""" lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(__lowerCAmelCase ) lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: lowercase = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase ) for image in images] if do_rescale: lowercase = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: lowercase = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] lowercase = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] lowercase = {"""pixel_values""": images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : str ={ """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : str =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __lowerCAmelCase : int ={"""UserAgent""": UserAgent().random} def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> dict: '''simple docstring''' lowercase = script.contents[0] lowercase = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = f'https://www.instagram.com/{username}/' lowercase = self.get_json() def A__ ( self ): """simple docstring""" lowercase = requests.get(self.url , headers=__lowerCAmelCase ).text lowercase = BeautifulSoup(__lowerCAmelCase , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): """simple docstring""" return f'{self.__class__.__name__}(\'{self.username}\')' def __str__( self ): """simple docstring""" return f'{self.fullname} ({self.username}) is {self.biography}' @property def A__ ( self ): """simple docstring""" return self.user_data["username"] @property def A__ ( self ): """simple docstring""" return self.user_data["full_name"] @property def A__ ( self ): """simple docstring""" return self.user_data["biography"] @property def A__ ( self ): """simple docstring""" return self.user_data["business_email"] @property def A__ ( self ): """simple docstring""" return self.user_data["external_url"] @property def A__ ( self ): """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def A__ ( self ): """simple docstring""" return self.user_data["edge_follow"]["count"] @property def A__ ( self ): """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def A__ ( self ): """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def A__ ( self ): """simple docstring""" return self.user_data["is_verified"] @property def A__ ( self ): """simple docstring""" return self.user_data["is_private"] def UpperCAmelCase__ ( lowerCAmelCase__ :str = "github" ) -> None: '''simple docstring''' import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions lowercase = InstagramUser(lowerCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowerCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Any =InstagramUser("""github""") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __lowerCAmelCase : Tuple =datasets.logging.get_logger(__name__) __lowerCAmelCase : str ="""\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ __lowerCAmelCase : str ="""\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ __lowerCAmelCase : Dict =""" Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any=False , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Any="dummy_doc" ) -> int: '''simple docstring''' lowercase = {doc: key_lines} lowercase = {doc: sys_lines} lowercase = {} lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 0 lowercase = 0 lowercase , lowercase = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: lowercase = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowercase = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__ ) if remove_nested: lowercase , lowercase = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowercase , lowercase = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowercase = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict ) -> int: '''simple docstring''' lowercase = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = {} lowercase = 0 lowercase = 0 for name, metric in metrics: lowercase , lowercase , lowercase = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , f'Recall: {recall * 1_0_0:.2f}' , f' Precision: {precision * 1_0_0:.2f}' , f' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: lowercase = (conll / 3) * 1_0_0 logger.info(f'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> str: '''simple docstring''' lowercase = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: lowercase = line.split()[5] if not parse_col == "-": lowercase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def A__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False ): """simple docstring""" lowercase = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: lowercase = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowercase = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase : Optional[Any] ={ """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __lowerCAmelCase : Union[str, Any] ={ """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } class _A ( lowerCAmelCase ): snake_case__ : List[Any] = VOCAB_FILES_NAMES snake_case__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : int = ['input_ids', 'attention_mask'] snake_case__ : int = BartTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="replace" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space: lowercase = getattr(__lowerCAmelCase , pre_tok_state.pop("""type""" ) ) lowercase = add_prefix_space lowercase = pre_tok_class(**__lowerCAmelCase ) lowercase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase = """post_processor""" lowercase = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) if tokenizer_component_instance: lowercase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase = tuple(state["""sep"""] ) if "cls" in state: lowercase = tuple(state["""cls"""] ) lowercase = False if state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space: lowercase = add_prefix_space lowercase = True if state.get("""trim_offsets""" , __lowerCAmelCase ) != trim_offsets: lowercase = trim_offsets lowercase = True if changes_to_apply: lowercase = getattr(__lowerCAmelCase , state.pop("""type""" ) ) lowercase = component_class(**__lowerCAmelCase ) setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value lowercase = value def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = kwargs.get("""is_split_into_words""" , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = kwargs.get("""is_split_into_words""" , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" lowercase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" __lowerCAmelCase : Any =6_5_5_2_1 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> int: '''simple docstring''' lowercase = 1 lowercase = 0 for plain_chr in plain_text: lowercase = (a + ord(lowerCAmelCase__ )) % MOD_ADLER lowercase = (b + a) % MOD_ADLER return (b << 1_6) | a
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __lowerCAmelCase : int =logging.get_logger(__name__) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : int ={ """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : List[str] = 'owlvit_text_model' def __init__( self , __lowerCAmelCase=4_9408 , __lowerCAmelCase=512 , __lowerCAmelCase=2048 , __lowerCAmelCase=12 , __lowerCAmelCase=8 , __lowerCAmelCase=16 , __lowerCAmelCase="quick_gelu" , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1.0 , __lowerCAmelCase=0 , __lowerCAmelCase=4_9406 , __lowerCAmelCase=4_9407 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = max_position_embeddings lowercase = hidden_act lowercase = layer_norm_eps lowercase = attention_dropout lowercase = initializer_range lowercase = initializer_factor @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(__lowerCAmelCase ) lowercase , lowercase = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": lowercase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class _A ( lowerCAmelCase ): snake_case__ : Union[str, Any] = 'owlvit_vision_model' def __init__( self , __lowerCAmelCase=768 , __lowerCAmelCase=3072 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3 , __lowerCAmelCase=768 , __lowerCAmelCase=32 , __lowerCAmelCase="quick_gelu" , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1.0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = num_channels lowercase = image_size lowercase = patch_size lowercase = hidden_act lowercase = layer_norm_eps lowercase = attention_dropout lowercase = initializer_range lowercase = initializer_factor @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(__lowerCAmelCase ) lowercase , lowercase = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": lowercase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class _A ( lowerCAmelCase ): snake_case__ : Tuple = 'owlvit' snake_case__ : List[Any] = True def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=512 , __lowerCAmelCase=2.6_5_9_2 , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) if text_config is None: lowercase = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: lowercase = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) lowercase = OwlViTTextConfig(**__lowerCAmelCase ) lowercase = OwlViTVisionConfig(**__lowerCAmelCase ) lowercase = projection_dim lowercase = logit_scale_init_value lowercase = return_dict lowercase = 1.0 @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(__lowerCAmelCase ) lowercase , lowercase = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = {} lowercase = text_config lowercase = vision_config return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.text_config.to_dict() lowercase = self.vision_config.to_dict() lowercase = self.__class__.model_type return output class _A ( lowerCAmelCase ): @property def A__ ( self ): """simple docstring""" return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def A__ ( self ): """simple docstring""" return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def A__ ( self ): """simple docstring""" return 1E-4 def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = None , ): """simple docstring""" lowercase = super().generate_dummy_inputs( processor.tokenizer , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , framework=__lowerCAmelCase ) lowercase = super().generate_dummy_inputs( processor.image_processor , batch_size=__lowerCAmelCase , framework=__lowerCAmelCase ) return {**text_input_dict, **image_input_dict} @property def A__ ( self ): """simple docstring""" return 14
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0_0 ) -> int: '''simple docstring''' lowercase = 2**power lowercase = str(lowerCAmelCase__ ) lowercase = list(lowerCAmelCase__ ) lowercase = 0 for i in list_num: sum_of_num += int(lowerCAmelCase__ ) return sum_of_num if __name__ == "__main__": __lowerCAmelCase : Optional[Any] =int(input("""Enter the power of 2: """).strip()) print("""2 ^ """, power, """ = """, 2**power) __lowerCAmelCase : Dict =solution(power) print("""Sum of the digits is: """, result)
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowercase = deepcopy(__lowerCAmelCase ) elif os.path.exists(__lowerCAmelCase ): with io.open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: lowercase = json.load(__lowerCAmelCase ) else: try: lowercase = baseaa.urlsafe_baadecode(__lowerCAmelCase ).decode("""utf-8""" ) lowercase = json.loads(__lowerCAmelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}' ) lowercase = config self.set_stage_and_offload() def A__ ( self ): """simple docstring""" lowercase = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowercase = False if self.is_zeroa() or self.is_zeroa(): lowercase = set(["""cpu""", """nvme"""] ) lowercase = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowercase = True def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.config # find the config node of interest if it exists lowercase = ds_key_long.split(""".""" ) lowercase = nodes.pop() for node in nodes: lowercase = config.get(__lowerCAmelCase ) if config is None: return None, ds_key return config, ds_key def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" lowercase , lowercase = self.find_config_node(__lowerCAmelCase ) if config is None: return default return config.get(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" lowercase = self.config # find the config node of interest if it exists lowercase = ds_key_long.split(""".""" ) for node in nodes: lowercase = config lowercase = config.get(__lowerCAmelCase ) if config is None: if must_exist: raise ValueError(f'Can\'t find {ds_key_long} entry in the config: {self.config}' ) else: return # if found remove it if parent_config is not None: parent_config.pop(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.get_value(__lowerCAmelCase ) return False if value is None else bool(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.get_value(__lowerCAmelCase ) return False if value is None else not bool(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" return self._stage == 2 def A__ ( self ): """simple docstring""" return self._stage == 3 def A__ ( self ): """simple docstring""" return self._offload class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = engine def A__ ( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" self.engine.backward(__lowerCAmelCase , **__lowerCAmelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase , device_placement=__lowerCAmelCase , scaler=__lowerCAmelCase ) lowercase = hasattr(self.optimizer , """overflow""" ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def A__ ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def A__ ( self ): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=0.0_0_1 , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" lowercase = params lowercase = lr lowercase = weight_decay lowercase = kwargs class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" lowercase = optimizer lowercase = total_num_steps lowercase = warmup_num_steps lowercase = kwargs
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = tempfile.mkdtemp() lowercase = SamImageProcessor() lowercase = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def A__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A__ ( self ): """simple docstring""" lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self ): """simple docstring""" lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=__lowerCAmelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(__lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(images=__lowerCAmelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=__lowerCAmelCase ) lowercase = [torch.ones((1, 3, 5, 5) )] lowercase = [[1764, 2646]] lowercase = [[683, 1024]] lowercase = processor.post_process_masks(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowercase = processor.post_process_masks( __lowerCAmelCase , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np lowercase = [np.ones((1, 3, 5, 5) )] lowercase = processor.post_process_masks(__lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowercase = [[1, 0], [0, 1]] with self.assertRaises(__lowerCAmelCase ): lowercase = processor.post_process_masks(__lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) ) @require_vision @require_tf class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = tempfile.mkdtemp() lowercase = SamImageProcessor() lowercase = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def A__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A__ ( self ): """simple docstring""" lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self ): """simple docstring""" lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=__lowerCAmelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(__lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(images=__lowerCAmelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=__lowerCAmelCase ) lowercase = [tf.ones((1, 3, 5, 5) )] lowercase = [[1764, 2646]] lowercase = [[683, 1024]] lowercase = processor.post_process_masks(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowercase = processor.post_process_masks( __lowerCAmelCase , tf.convert_to_tensor(__lowerCAmelCase ) , tf.convert_to_tensor(__lowerCAmelCase ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np lowercase = [np.ones((1, 3, 5, 5) )] lowercase = processor.post_process_masks( __lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) lowercase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): lowercase = processor.post_process_masks( __lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) , return_tensors="""tf""" ) @require_vision @require_torchvision class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = tempfile.mkdtemp() lowercase = SamImageProcessor() lowercase = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def A__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A__ ( self ): """simple docstring""" lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=__lowerCAmelCase ) lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) lowercase = [tf.convert_to_tensor(__lowerCAmelCase )] lowercase = [torch.tensor(__lowerCAmelCase )] lowercase = [[1764, 2646]] lowercase = [[683, 1024]] lowercase = processor.post_process_masks( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors="""tf""" ) lowercase = processor.post_process_masks( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = SamProcessor(image_processor=__lowerCAmelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(__lowerCAmelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() lowercase = processor(images=__lowerCAmelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() lowercase = image_processor(__lowerCAmelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() lowercase = processor(images=__lowerCAmelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) )
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _A ( lowerCAmelCase ): snake_case__ : Dict = 'xlm-roberta-xl' def __init__( self , __lowerCAmelCase=25_0880 , __lowerCAmelCase=2560 , __lowerCAmelCase=36 , __lowerCAmelCase=32 , __lowerCAmelCase=1_0240 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=514 , __lowerCAmelCase=1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-05 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache lowercase = classifier_dropout class _A ( lowerCAmelCase ): @property def A__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowercase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __lowerCAmelCase : List[str] =TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) __lowerCAmelCase : int =[] __lowerCAmelCase : Union[str, Any] =[] __lowerCAmelCase : str ={"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} __lowerCAmelCase : Optional[Any] =[ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", """emoji""": True, }, } ] __lowerCAmelCase : Tuple =0 for log in Path().glob("""*.log"""): __lowerCAmelCase : str =0 with open(log, """r""") as f: for line in f: __lowerCAmelCase : Any =json.loads(line) if line.get("""nodeid""", """""") != "": __lowerCAmelCase : List[str] =line["""nodeid"""] if line.get("""duration""", None) is not None: __lowerCAmelCase : Optional[int] =F"""{line['duration']:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __lowerCAmelCase : List[str] =[] log.unlink() __lowerCAmelCase : Union[str, Any] ="""""" __lowerCAmelCase : Tuple =[] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" __lowerCAmelCase : Optional[Any] =[] __lowerCAmelCase : List[Any] ={} for test in failed_tests: __lowerCAmelCase : Dict =test[0].split("""::""") __lowerCAmelCase : int =data[0].split("""/""")[-1] if data[0] not in filesafailed: __lowerCAmelCase : Union[str, Any] =[data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __lowerCAmelCase : List[str] =[test[0] for test in failed_table] __lowerCAmelCase : Dict =list(set(files)) # Count number of instances in failed_tests __lowerCAmelCase : Optional[int] =[] for file in individual_files: table.append([file, len(filesafailed[file])]) __lowerCAmelCase : int =tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: __lowerCAmelCase : int ="""Too many failed tests, please see the full report in the Action results.""" __lowerCAmelCase : List[str] =len(err) + 1_0 __lowerCAmelCase : Any =message[: 3_0_0_0 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: __lowerCAmelCase : int ="""No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient __lowerCAmelCase : Dict =WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": __lowerCAmelCase : int ={ """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) __lowerCAmelCase : Tuple ={ """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) __lowerCAmelCase : Union[str, Any] ={ """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) __lowerCAmelCase : str =client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) __lowerCAmelCase : Tuple =response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __lowerCAmelCase : str ="""""" for i, row in enumerate(test_failures): if row[0] != test_class: __lowerCAmelCase : List[str] =row[0] else: __lowerCAmelCase : Optional[Any] ="""""" __lowerCAmelCase : Any ={ """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
356
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" super().__init__() self.register_modules( vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , ) def A__ ( self , __lowerCAmelCase = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" self.enable_attention_slicing(__lowerCAmelCase ) @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase = 512 , __lowerCAmelCase = 512 , __lowerCAmelCase = 50 , __lowerCAmelCase = 7.5 , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = 1 elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = len(__lowerCAmelCase ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__lowerCAmelCase )}.' ) # get prompt text embeddings lowercase = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowercase = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase , lowercase , lowercase = text_embeddings.shape lowercase = text_embeddings.repeat(1 , __lowerCAmelCase , 1 ) lowercase = text_embeddings.view(bs_embed * num_images_per_prompt , __lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase = 42 if negative_prompt is None: lowercase = [""""""] elif type(__lowerCAmelCase ) is not type(__lowerCAmelCase ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCAmelCase )} !=' f' {type(__lowerCAmelCase )}.' ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = [negative_prompt] elif batch_size != len(__lowerCAmelCase ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(__lowerCAmelCase )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: lowercase = negative_prompt lowercase = text_input_ids.shape[-1] lowercase = self.tokenizer( __lowerCAmelCase , padding="""max_length""" , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors="""pt""" , ) lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase = uncond_embeddings.shape[1] lowercase = uncond_embeddings.repeat(__lowerCAmelCase , __lowerCAmelCase , 1 ) lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt , __lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase = torch.randn( __lowerCAmelCase , generator=__lowerCAmelCase , device="""cpu""" , dtype=__lowerCAmelCase ).to(self.device ) lowercase = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device="""cpu""" , dtype=__lowerCAmelCase ).to( self.device ) else: lowercase = torch.randn( __lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) lowercase = torch.randn(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device , dtype=__lowerCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowercase = latents_reference.to(self.device ) lowercase = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase = 0 if dx < 0 else dx lowercase = 0 if dy < 0 else dy lowercase = max(-dx , 0 ) lowercase = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase = {} if accepts_eta: lowercase = eta for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase ) # predict the noise residual lowercase = self.unet(__lowerCAmelCase , __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase , lowercase = noise_pred.chunk(2 ) lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase = 1 / 0.1_8_2_1_5 * latents lowercase = self.vae.decode(__lowerCAmelCase ).sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase = self.feature_extractor(self.numpy_to_pil(__lowerCAmelCase ) , return_tensors="""pt""" ).to( self.device ) lowercase , lowercase = self.safety_checker( images=__lowerCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase = None if output_type == "pil": lowercase = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__lowerCAmelCase , nsfw_content_detected=__lowerCAmelCase )
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = HfArgumentParser(lowerCAmelCase__ ) lowercase = parser.parse_args_into_dataclasses()[0] lowercase = TensorFlowBenchmark(args=lowerCAmelCase__ ) try: lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowercase = """ """.join(str(lowerCAmelCase__ ).split(""" """ )[:-1] ) lowercase = """""" lowercase = eval(str(lowerCAmelCase__ ).split(""" """ )[-1] ) lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = full_error_msg + begin_error_msg + str(lowerCAmelCase__ ) raise ValueError(lowerCAmelCase__ ) benchmark.run() if __name__ == "__main__": main()
358
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __lowerCAmelCase : int ="""bert-base-cased""" __lowerCAmelCase : Dict ="""google/pegasus-xsum""" __lowerCAmelCase : str =[""" Sam ate lunch today.""", """Sams lunch ingredients."""] __lowerCAmelCase : Optional[Any] =["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] __lowerCAmelCase : Optional[Any] ="""patrickvonplaten/t5-tiny-random""" __lowerCAmelCase : List[Any] ="""sshleifer/bart-tiny-random""" __lowerCAmelCase : Union[str, Any] ="""sshleifer/tiny-mbart""" __lowerCAmelCase : List[str] ="""sshleifer/tiny-marian-en-de""" def UpperCAmelCase__ ( lowerCAmelCase__ :Path , lowerCAmelCase__ :list ) -> Union[str, Any]: lowercase = """\n""".join(lowerCAmelCase__ ) Path(lowerCAmelCase__ ).open("""w""" ).writelines(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase__ , f'{split}.source' ) , lowerCAmelCase__ ) _dump_articles(os.path.join(lowerCAmelCase__ , f'{split}.target' ) , lowerCAmelCase__ ) return tmp_dir class _A ( lowerCAmelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = AutoTokenizer.from_pretrained(__lowerCAmelCase ) lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in ARTICLES ) lowercase = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in SUMMARIES ) lowercase = 4 lowercase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowercase , lowercase = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. lowercase = SeqaSeqDataset( __lowerCAmelCase , data_dir=__lowerCAmelCase , type_path="""train""" , max_source_length=__lowerCAmelCase , max_target_length=__lowerCAmelCase , src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , ) lowercase = DataLoader(__lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowercase = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = AutoTokenizer.from_pretrained(__lowerCAmelCase ) lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in ARTICLES ) lowercase = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in SUMMARIES ) lowercase = 4 lowercase = LegacySeqaSeqDataset( __lowerCAmelCase , data_dir=__lowerCAmelCase , type_path="""train""" , max_source_length=20 , max_target_length=__lowerCAmelCase , ) lowercase = DataLoader(__lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def A__ ( self ): """simple docstring""" lowercase = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowercase = tmp_dir.joinpath("""train.source""" ).open().readlines() lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__lowerCAmelCase , __lowerCAmelCase , 128 , __lowerCAmelCase ) lowercase = {x.name for x in tmp_dir.iterdir()} lowercase = {x.name for x in save_dir.iterdir()} lowercase = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__lowerCAmelCase ) < len(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == 1 assert len(packed_examples[0] ) == sum(len(__lowerCAmelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def A__ ( self ): """simple docstring""" if not FAIRSEQ_AVAILABLE: return lowercase , lowercase , lowercase = self._get_dataset(max_len=64 ) lowercase = 64 lowercase = ds.make_dynamic_sampler(__lowerCAmelCase , required_batch_size_multiple=__lowerCAmelCase ) lowercase = [len(__lowerCAmelCase ) for x in batch_sampler] assert len(set(__lowerCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__lowerCAmelCase ) == len(__lowerCAmelCase ) # no dropped or added examples lowercase = DataLoader(__lowerCAmelCase , batch_sampler=__lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) lowercase = [] lowercase = [] for batch in data_loader: lowercase = batch["""input_ids"""].shape lowercase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowercase = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(__lowerCAmelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(__lowerCAmelCase ) assert num_src_per_batch[0] == max(__lowerCAmelCase ) if failures: raise AssertionError(f'too many tokens in {len(__lowerCAmelCase )} batches' ) def A__ ( self ): """simple docstring""" lowercase , lowercase , lowercase = self._get_dataset(max_len=512 ) lowercase = 2 lowercase = ds.make_sortish_sampler(__lowerCAmelCase , shuffle=__lowerCAmelCase ) lowercase = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) lowercase = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowerCAmelCase ) lowercase = tokenizer.pad_token_id def count_pad_tokens(__lowerCAmelCase , __lowerCAmelCase="input_ids" ): return [batch[k].eq(__lowerCAmelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__lowerCAmelCase , k="""labels""" ) ) < sum(count_pad_tokens(__lowerCAmelCase , k="""labels""" ) ) assert sum(count_pad_tokens(__lowerCAmelCase ) ) < sum(count_pad_tokens(__lowerCAmelCase ) ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase=1000 , __lowerCAmelCase=128 ): """simple docstring""" if os.getenv("""USE_REAL_DATA""" , __lowerCAmelCase ): lowercase = """examples/seq2seq/wmt_en_ro""" lowercase = max_len * 2 * 64 if not Path(__lowerCAmelCase ).joinpath("""train.len""" ).exists(): save_len_file(__lowerCAmelCase , __lowerCAmelCase ) else: lowercase = """examples/seq2seq/test_data/wmt_en_ro""" lowercase = max_len * 4 save_len_file(__lowerCAmelCase , __lowerCAmelCase ) lowercase = AutoTokenizer.from_pretrained(__lowerCAmelCase ) lowercase = SeqaSeqDataset( __lowerCAmelCase , data_dir=__lowerCAmelCase , type_path="""train""" , max_source_length=__lowerCAmelCase , max_target_length=__lowerCAmelCase , n_obs=__lowerCAmelCase , ) return ds, max_tokens, tokenizer def A__ ( self ): """simple docstring""" lowercase , lowercase , lowercase = self._get_dataset() lowercase = set(DistributedSortishSampler(__lowerCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__lowerCAmelCase ) ) lowercase = set(DistributedSortishSampler(__lowerCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__lowerCAmelCase ) ) assert idsa.intersection(__lowerCAmelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = AutoTokenizer.from_pretrained(__lowerCAmelCase , use_fast=__lowerCAmelCase ) if tok_name == MBART_TINY: lowercase = SeqaSeqDataset( __lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) lowercase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowercase = SeqaSeqDataset( __lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) lowercase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__lowerCAmelCase ) == 1 if tok_name == BART_TINY else len(__lowerCAmelCase ) == 0
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _A ( lowerCAmelCase ): snake_case__ : Union[str, Any] = (DDPMScheduler,) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" lowercase = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__lowerCAmelCase ) return config def A__ ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase , beta_end=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def A__ ( self ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = torch.manual_seed(0 ) for t in reversed(range(__lowerCAmelCase ) ): # 1. predict noise residual lowercase = model(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter lowercase = torch.manual_seed(0 ) for t in reversed(range(__lowerCAmelCase ) ): # 1. predict noise residual lowercase = model(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase = pred_prev_sample lowercase = torch.sum(torch.abs(__lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__lowerCAmelCase ) lowercase = scheduler.timesteps for i, timestep in enumerate(__lowerCAmelCase ): if i == len(__lowerCAmelCase ) - 1: lowercase = -1 else: lowercase = timesteps[i + 1] lowercase = scheduler.previous_timestep(__lowerCAmelCase ) lowercase = prev_t.item() self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = [100, 87, 50, 51, 0] with self.assertRaises(__lowerCAmelCase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = [100, 87, 50, 1, 0] lowercase = len(__lowerCAmelCase ) with self.assertRaises(__lowerCAmelCase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__lowerCAmelCase , timesteps=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**__lowerCAmelCase ) lowercase = [scheduler.config.num_train_timesteps] with self.assertRaises( __lowerCAmelCase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__lowerCAmelCase )
361
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={ """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class _A ( lowerCAmelCase ): snake_case__ : Dict = 'glpn' def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=[2, 2, 2, 2] , __lowerCAmelCase=[8, 4, 2, 1] , __lowerCAmelCase=[32, 64, 160, 256] , __lowerCAmelCase=[7, 3, 3, 3] , __lowerCAmelCase=[4, 2, 2, 2] , __lowerCAmelCase=[1, 2, 5, 8] , __lowerCAmelCase=[4, 4, 4, 4] , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=64 , __lowerCAmelCase=10 , __lowerCAmelCase=-1 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) lowercase = num_channels lowercase = num_encoder_blocks lowercase = depths lowercase = sr_ratios lowercase = hidden_sizes lowercase = patch_sizes lowercase = strides lowercase = mlp_ratios lowercase = num_attention_heads lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = drop_path_rate lowercase = layer_norm_eps lowercase = decoder_hidden_size lowercase = max_depth lowercase = head_in_index
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=2 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=10 , __lowerCAmelCase=3 , __lowerCAmelCase=32 * 8 , __lowerCAmelCase=32 * 8 , __lowerCAmelCase=4 , __lowerCAmelCase=64 , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = is_training lowercase = use_auxiliary_loss lowercase = num_queries lowercase = num_channels lowercase = min_size lowercase = max_size lowercase = num_labels lowercase = hidden_dim lowercase = hidden_dim def A__ ( self ): """simple docstring""" lowercase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __lowerCAmelCase ) lowercase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__lowerCAmelCase ) lowercase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__lowerCAmelCase ) > 0.5 ).float() lowercase = (torch.rand((self.batch_size, self.num_labels) , device=__lowerCAmelCase ) > 0.5).long() lowercase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self ): """simple docstring""" lowercase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowercase = self.num_queries lowercase = self.num_labels lowercase = [1, 1, 1, 1] lowercase = self.num_channels lowercase = 64 lowercase = 128 lowercase = self.hidden_dim lowercase = self.hidden_dim lowercase = self.hidden_dim return config def A__ ( self ): """simple docstring""" lowercase , lowercase , lowercase , lowercase , lowercase = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = output.encoder_hidden_states lowercase = output.pixel_decoder_hidden_states lowercase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , config.decoder_layers ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" with torch.no_grad(): lowercase = MaskaFormerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) lowercase = model(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = MaskaFormerForUniversalSegmentation(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() def comm_check_on_output(__lowerCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) lowercase = model(__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) lowercase = model( pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case__ : str = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} snake_case__ : Dict = False snake_case__ : str = False snake_case__ : Any = False snake_case__ : List[Any] = False def A__ ( self ): """simple docstring""" lowercase = MaskaFormerModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__lowerCAmelCase ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def A__ ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase = MaskaFormerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = (self.model_tester.min_size,) * 2 lowercase = { """pixel_values""": torch.randn((2, 3, *size) , device=__lowerCAmelCase ), """mask_labels""": torch.randn((2, 10, *size) , device=__lowerCAmelCase ), """class_labels""": torch.zeros(2 , 10 , device=__lowerCAmelCase ).long(), } lowercase = self.model_tester.get_config() lowercase = MaskaFormerForUniversalSegmentation(__lowerCAmelCase ).to(__lowerCAmelCase ) lowercase = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) lowercase = model(**__lowerCAmelCase , output_attentions=__lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def A__ ( self ): """simple docstring""" if not self.model_tester.is_training: return lowercase = self.all_model_classes[1] lowercase , lowercase , lowercase , lowercase , lowercase = self.model_tester.prepare_config_and_inputs() lowercase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() lowercase = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ).loss loss.backward() def A__ ( self ): """simple docstring""" lowercase = self.all_model_classes[1] lowercase , lowercase , lowercase , lowercase , lowercase = self.model_tester.prepare_config_and_inputs() lowercase = True lowercase = True lowercase = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) model.train() lowercase = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) lowercase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase : Any =1E-4 def UpperCAmelCase__ ( ) -> Any: '''simple docstring''' lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _A ( unittest.TestCase ): @cached_property def A__ ( self ): """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self ): """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self ): """simple docstring""" lowercase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) lowercase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): lowercase = model(**__lowerCAmelCase ) lowercase = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) lowercase = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) lowercase = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def A__ ( self ): """simple docstring""" lowercase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__lowerCAmelCase ).eval() lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) lowercase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): lowercase = model(**__lowerCAmelCase ) # masks_queries_logits lowercase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] lowercase = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits lowercase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def A__ ( self ): """simple docstring""" lowercase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__lowerCAmelCase ).eval() lowercase = self.default_image_processor lowercase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) lowercase = inputs["""pixel_values"""].to(__lowerCAmelCase ) lowercase = [el.to(__lowerCAmelCase ) for el in inputs["""mask_labels"""]] lowercase = [el.to(__lowerCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowercase = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __lowerCAmelCase : int =logging.get_logger(__name__) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = ["""a""", """b""", """c"""] # Defaults to last layer if both are None lowercase , lowercase = get_aligned_output_features_output_indices(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""c"""] ) self.assertEqual(__lowerCAmelCase , [2] ) # Out indices set to match out features lowercase , lowercase = get_aligned_output_features_output_indices(["""a""", """c"""] , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [0, 2] ) # Out features set to match out indices lowercase , lowercase = get_aligned_output_features_output_indices(__lowerCAmelCase , [0, 2] , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [0, 2] ) # Out features selected from negative indices lowercase , lowercase = get_aligned_output_features_output_indices(__lowerCAmelCase , [-3, -1] , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(__lowerCAmelCase , [-3, -1] ) def A__ ( self ): """simple docstring""" with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , __lowerCAmelCase ) # Out features must be a list with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(__lowerCAmelCase , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(__lowerCAmelCase , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(__lowerCAmelCase ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def A__ ( self ): """simple docstring""" lowercase = BackboneMixin() lowercase = ["""a""", """b""", """c"""] lowercase = ["""a""", """c"""] lowercase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowercase = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowercase = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] , lowerCAmelCase__ :str ) -> list[int]: '''simple docstring''' lowercase = int(lowerCAmelCase__ ) # Initialize Result lowercase = [] # Traverse through all denomination for denomination in reversed(lowerCAmelCase__ ): # Find denominations while int(lowerCAmelCase__ ) >= int(lowerCAmelCase__ ): total_value -= int(lowerCAmelCase__ ) answer.append(lowerCAmelCase__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __lowerCAmelCase : str =[] __lowerCAmelCase : Union[str, Any] ="""0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): __lowerCAmelCase : Optional[Any] =int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) __lowerCAmelCase : Optional[int] =input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter __lowerCAmelCase : Tuple =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] __lowerCAmelCase : int =input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F"""Following is minimal change for {value}: """) __lowerCAmelCase : List[Any] =find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = data def __iter__( self ): """simple docstring""" for element in self.data: yield element def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any]=True ) -> List[Any]: '''simple docstring''' lowercase = Accelerator(even_batches=lowerCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCAmelCase__ ( lowerCAmelCase__ :Accelerator , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :bool = False ) -> Dict: '''simple docstring''' if iterable: lowercase = DummyIterableDataset(torch.as_tensor(range(lowerCAmelCase__ ) ) ) else: lowercase = TensorDataset(torch.as_tensor(range(lowerCAmelCase__ ) ) ) lowercase = DataLoader(lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowercase = accelerator.prepare(lowerCAmelCase__ ) return dl def UpperCAmelCase__ ( lowerCAmelCase__ :Accelerator , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :List[int] , ) -> Dict: '''simple docstring''' lowercase = create_dataloader(accelerator=lowerCAmelCase__ , dataset_size=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowercase = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCAmelCase__ ( ) -> Any: '''simple docstring''' lowercase = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase = create_accelerator(even_batches=lowerCAmelCase__ ) verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' lowercase = create_accelerator(even_batches=lowerCAmelCase__ ) lowercase = torch.nn.Linear(1 , 1 ) lowercase = accelerator.prepare(lowerCAmelCase__ ) lowercase = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(lowerCAmelCase__ ): lowercase = ddp_model(batch[0].float() ) lowercase = output.sum() loss.backward() batch_idxs.append(lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Tuple: '''simple docstring''' with warnings.catch_warnings(record=lowerCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , lowerCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' lowercase = True lowercase = False lowercase = create_accelerator(even_batches=lowerCAmelCase__ ) lowercase = torch.nn.Linear(1 , 1 ) lowercase = accelerator.prepare(lowerCAmelCase__ ) lowercase = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): lowercase = train_dl.batch_sampler.even_batches lowercase = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase__ ( ) -> int: '''simple docstring''' lowercase = True lowercase = False lowercase = create_accelerator(even_batches=lowerCAmelCase__ ) lowercase = torch.nn.Linear(1 , 1 ) lowercase = accelerator.prepare(lowerCAmelCase__ ) create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=lowerCAmelCase__ ) lowercase = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): lowercase = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' lowercase = create_accelerator() lowercase = torch.nn.Linear(1 , 1 ) lowercase = accelerator.prepare(lowerCAmelCase__ ) create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=lowerCAmelCase__ ) with warnings.catch_warnings(record=lowerCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): pass assert issubclass(w[-1].category , lowerCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCAmelCase__ ( ) -> Tuple: '''simple docstring''' lowercase = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) lowercase = accelerator.state.distributed_type lowercase = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(lowerCAmelCase__ ) lowercase = original_state if __name__ == "__main__": main()
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" from collections import defaultdict def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' lowercase = 1 lowercase = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase__ ) if ret % 2 == 0: cuts.append(lowerCAmelCase__ ) return ret def UpperCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": __lowerCAmelCase : List[str] =1_0, 9 __lowerCAmelCase : Union[str, Any] =defaultdict(list) __lowerCAmelCase : dict[int, bool] ={} __lowerCAmelCase : list[int] =[] __lowerCAmelCase : Optional[int] =0 __lowerCAmelCase : Any =[(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (1_0, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" from PIL import Image def UpperCAmelCase__ ( lowerCAmelCase__ :Image ) -> Image: '''simple docstring''' lowercase , lowercase = image.size lowercase = 0 lowercase = image.load() for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): lowercase = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): lowercase = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCAmelCase : Tuple =mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : str = 'markuplm' def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=256 , __lowerCAmelCase=1024 , __lowerCAmelCase=216 , __lowerCAmelCase=1001 , __lowerCAmelCase=32 , __lowerCAmelCase=50 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = use_cache lowercase = classifier_dropout # additional properties lowercase = max_depth lowercase = max_xpath_tag_unit_embeddings lowercase = max_xpath_subs_unit_embeddings lowercase = tag_pad_id lowercase = subs_pad_id lowercase = xpath_unit_hidden_size
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __lowerCAmelCase : Union[str, Any] =HfArgumentParser(InitializationArguments) __lowerCAmelCase : Dict =parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __lowerCAmelCase : Optional[int] =AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __lowerCAmelCase : Union[str, Any] ={ """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) __lowerCAmelCase : Union[str, Any] =AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __lowerCAmelCase : Optional[int] =AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") __lowerCAmelCase : Dict =list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __lowerCAmelCase : Union[str, Any] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _A : snake_case__ : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) snake_case__ : Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A folder containing the training data.'} ) snake_case__ : Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A folder containing the validation data.'} ) snake_case__ : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) snake_case__ : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) snake_case__ : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def A__ ( self ): """simple docstring""" lowercase = {} if self.train_dir is not None: lowercase = self.train_dir if self.validation_dir is not None: lowercase = self.validation_dir lowercase = data_files if data_files else None @dataclass class _A : snake_case__ : str = field( default=lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowerCAmelCase )} , ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) snake_case__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case__ : str = field(default=lowerCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={'help': 'Stride to use for the encoder.'} , ) class _A : def __init__( self , __lowerCAmelCase=192 , __lowerCAmelCase=32 , __lowerCAmelCase=4 , __lowerCAmelCase=0.6 ): """simple docstring""" lowercase = input_size lowercase = mask_patch_size lowercase = model_patch_size lowercase = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) lowercase = self.input_size // self.mask_patch_size lowercase = self.mask_patch_size // self.model_patch_size lowercase = self.rand_size**2 lowercase = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ): """simple docstring""" lowercase = np.random.permutation(self.token_count )[: self.mask_count] lowercase = np.zeros(self.token_count , dtype=__lowerCAmelCase ) lowercase = 1 lowercase = mask.reshape((self.rand_size, self.rand_size) ) lowercase = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Optional[int]: '''simple docstring''' lowercase = torch.stack([example["""pixel_values"""] for example in examples] ) lowercase = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase__ ( ) -> Any: '''simple docstring''' lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase = ds["""train"""].train_test_split(data_args.train_val_split ) lowercase = split["""train"""] lowercase = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowerCAmelCase__ ) elif model_args.model_name_or_path: lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ ) else: lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowerCAmelCase__ , """decoder_type""" ): lowercase = """simmim""" # adapt config lowercase = model_args.image_size if model_args.image_size is not None else config.image_size lowercase = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCAmelCase__ ) elif model_args.model_name_or_path: lowercase = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ ) else: lowercase = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowercase = AutoModelForMaskedImageModeling.from_config(lowerCAmelCase__ ) if training_args.do_train: lowercase = ds["""train"""].column_names else: lowercase = ds["""validation"""].column_names if data_args.image_column_name is not None: lowercase = data_args.image_column_name elif "image" in column_names: lowercase = """image""" elif "img" in column_names: lowercase = """img""" else: lowercase = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase = Compose( [ Lambda(lambda lowerCAmelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowerCAmelCase__ :Union[str, Any] ): lowercase = [transforms(lowerCAmelCase__ ) for image in examples[image_column_name]] lowercase = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: lowercase = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: lowercase = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCAmelCase__ ) # Initialize our trainer lowercase = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCAmelCase__ ) trainer.save_metrics("""eval""" , lowerCAmelCase__ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) if __name__ == "__main__": main()
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class _A ( nn.Module ): snake_case__ : int snake_case__ : jnp.dtype = jnp.floataa def A__ ( self ): """simple docstring""" lowercase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase , lowercase , lowercase = hidden_states.shape lowercase = jax.image.resize( __lowerCAmelCase , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) lowercase = self.conv(__lowerCAmelCase ) return hidden_states class _A ( nn.Module ): snake_case__ : int snake_case__ : jnp.dtype = jnp.floataa def A__ ( self ): """simple docstring""" lowercase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.conv(__lowerCAmelCase ) return hidden_states class _A ( nn.Module ): snake_case__ : int snake_case__ : int = None snake_case__ : float = 0.0 snake_case__ : bool = None snake_case__ : jnp.dtype = jnp.floataa def A__ ( self ): """simple docstring""" lowercase = self.in_channels if self.out_channels is None else self.out_channels lowercase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = nn.Dense(__lowerCAmelCase , dtype=self.dtype ) lowercase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase = nn.Dropout(self.dropout_prob ) lowercase = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase = None if use_nin_shortcut: lowercase = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True ): """simple docstring""" lowercase = hidden_states lowercase = self.norma(__lowerCAmelCase ) lowercase = nn.swish(__lowerCAmelCase ) lowercase = self.conva(__lowerCAmelCase ) lowercase = self.time_emb_proj(nn.swish(__lowerCAmelCase ) ) lowercase = jnp.expand_dims(jnp.expand_dims(__lowerCAmelCase , 1 ) , 1 ) lowercase = hidden_states + temb lowercase = self.norma(__lowerCAmelCase ) lowercase = nn.swish(__lowerCAmelCase ) lowercase = self.dropout(__lowerCAmelCase , __lowerCAmelCase ) lowercase = self.conva(__lowerCAmelCase ) if self.conv_shortcut is not None: lowercase = self.conv_shortcut(__lowerCAmelCase ) return hidden_states + residual
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _A ( lowerCAmelCase ): snake_case__ : int = 'convbert' def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=768 , __lowerCAmelCase=2 , __lowerCAmelCase=9 , __lowerCAmelCase=1 , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = embedding_size lowercase = head_ratio lowercase = conv_kernel_size lowercase = num_groups lowercase = classifier_dropout class _A ( lowerCAmelCase ): @property def A__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowercase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
"""simple docstring""" import math def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( lowerCAmelCase__ :float = 0.1 ) -> int: '''simple docstring''' lowercase = 3 lowercase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" def UpperCAmelCase__ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] __lowerCAmelCase : Dict =generate_large_matrix() __lowerCAmelCase : Optional[Any] =( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ) for row in grid ) assert all(list(lowerCAmelCase__ ) == sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ) for col in zip(*lowerCAmelCase__ ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> int: '''simple docstring''' lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowercase = (left + right) // 2 lowercase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowercase = mid + 1 else: lowercase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] ) -> int: '''simple docstring''' lowercase = 0 lowercase = len(grid[0] ) for i in range(len(lowerCAmelCase__ ) ): lowercase = find_negative_index(grid[i][:bound] ) total += bound return (len(lowerCAmelCase__ ) * len(grid[0] )) - total def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] ) -> int: '''simple docstring''' lowercase = 0 for row in grid: for i, number in enumerate(lowerCAmelCase__ ): if number < 0: total += len(lowerCAmelCase__ ) - i break return total def UpperCAmelCase__ ( ) -> None: '''simple docstring''' from timeit import timeit print("""Running benchmarks""" ) lowercase = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowercase = timeit(f'{func}(grid=grid)' , setup=lowerCAmelCase__ , number=5_0_0 ) print(f'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
356
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCAmelCase : List[str] =logging.get_logger(__name__) if is_vision_available(): import PIL class _A ( lowerCAmelCase ): snake_case__ : Union[str, Any] = ['pixel_values'] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) lowercase = size if size is not None else {"""shortest_edge""": 224} lowercase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase , param_name="""crop_size""" ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase = image_std if image_std is not None else OPENAI_CLIP_STD lowercase = do_convert_rgb def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase = get_resize_output_image_size(__lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCAmelCase ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): """simple docstring""" lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(__lowerCAmelCase , param_name="""size""" , default_to_square=__lowerCAmelCase ) lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(__lowerCAmelCase , param_name="""crop_size""" , default_to_square=__lowerCAmelCase ) lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: lowercase = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase ) for image in images] if do_rescale: lowercase = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: lowercase = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] lowercase = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] lowercase = {"""pixel_values""": images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
"""simple docstring""" __lowerCAmelCase : List[str] =[4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __lowerCAmelCase : Any =[3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __lowerCAmelCase : str ={ 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> str: '''simple docstring''' assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: lowercase = year // 1_0_0 lowercase = (5 * (century % 4) + 2) % 7 lowercase = year % 1_0_0 lowercase = centurian % 1_2 lowercase = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowercase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) lowercase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = tempfile.mkdtemp() lowercase = BlipImageProcessor() lowercase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) lowercase = BlipaProcessor(__lowerCAmelCase , __lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).tokenizer def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def A__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A__ ( self ): """simple docstring""" lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self ): """simple docstring""" lowercase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) lowercase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(__lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) lowercase = """lower newer""" lowercase = processor(text=__lowerCAmelCase ) lowercase = tokenizer(__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) lowercase = """lower newer""" lowercase = self.prepare_image_inputs() lowercase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(__lowerCAmelCase ) lowercase = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) lowercase = """lower newer""" lowercase = self.prepare_image_inputs() lowercase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowerCAmelCase : List[str] =logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCAmelCase : Union[str, Any] =2_5_6 class _A ( lowerCAmelCase ): snake_case__ : Union[str, Any] = ['melgan'] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" super().__init__() # From MELGAN lowercase = math.log(1E-5 ) # Matches MelGAN training. lowercase = 4.0 # Largest value for most examples lowercase = 128 self.register_modules( notes_encoder=__lowerCAmelCase , continuous_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase , scheduler=__lowerCAmelCase , melgan=__lowerCAmelCase , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=(-1.0, 1.0) , __lowerCAmelCase=False ): """simple docstring""" lowercase , lowercase = output_range if clip: lowercase = torch.clip(__lowerCAmelCase , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=(-1.0, 1.0) , __lowerCAmelCase=False ): """simple docstring""" lowercase , lowercase = input_range lowercase = torch.clip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if clip else outputs # Scale to [0, 1]. lowercase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = input_tokens > 0 lowercase , lowercase = self.notes_encoder( encoder_input_tokens=__lowerCAmelCase , encoder_inputs_mask=__lowerCAmelCase ) lowercase , lowercase = self.continuous_encoder( encoder_inputs=__lowerCAmelCase , encoder_inputs_mask=__lowerCAmelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = noise_time if not torch.is_tensor(__lowerCAmelCase ): lowercase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: lowercase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase = self.decoder( encodings_and_masks=__lowerCAmelCase , decoder_input_tokens=__lowerCAmelCase , decoder_noise_time=__lowerCAmelCase ) return logits @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = 100 , __lowerCAmelCase = True , __lowerCAmelCase = "numpy" , __lowerCAmelCase = None , __lowerCAmelCase = 1 , ): """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__lowerCAmelCase )}.' ) lowercase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowerCAmelCase , device=self.device ) for i, encoder_input_tokens in enumerate(__lowerCAmelCase ): if i == 0: lowercase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowerCAmelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase = ones lowercase = self.scale_features( __lowerCAmelCase , output_range=[-1.0, 1.0] , clip=__lowerCAmelCase ) lowercase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__lowerCAmelCase , continuous_mask=__lowerCAmelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__lowerCAmelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__lowerCAmelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase = self.decode( encodings_and_masks=__lowerCAmelCase , input_tokens=__lowerCAmelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample lowercase = self.scale_to_features(__lowerCAmelCase , input_range=[-1.0, 1.0] ) lowercase = mel[:1] lowercase = mel.cpu().float().numpy() lowercase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase , __lowerCAmelCase ) logger.info("""Generated segment""" , __lowerCAmelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": lowercase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowerCAmelCase )
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
"""simple docstring""" from math import factorial, pi def UpperCAmelCase__ ( lowerCAmelCase__ :float , lowerCAmelCase__ :int = 3_0 ) -> float: '''simple docstring''' if not isinstance(lowerCAmelCase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowercase = float(lowerCAmelCase__ ) lowercase = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowerCAmelCase__ ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :float , lowerCAmelCase__ :int = 3_0 ) -> float: '''simple docstring''' if not isinstance(lowerCAmelCase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowercase = float(lowerCAmelCase__ ) lowercase = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
361
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
0
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __lowerCAmelCase : Optional[Any] =4 __lowerCAmelCase : int =3 class _A ( lowerCAmelCase ): pass def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> str: '''simple docstring''' for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = int(os.environ["""RANK"""] ) lowercase = int(os.environ["""WORLD_SIZE"""] ) lowercase = ArgumentParser() parser.add_argument("""--streaming""" , type=lowerCAmelCase__ ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase__ ) parser.add_argument("""--num_workers""" , type=lowerCAmelCase__ , default=0 ) lowercase = parser.parse_args() lowercase = args.streaming lowercase = args.num_workers lowercase = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]} lowercase = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ ) if not streaming: lowercase = Dataset.from_list(list(lowerCAmelCase__ ) ) lowercase = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ ) lowercase = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ ) lowercase = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar __lowerCAmelCase : Any =TypeVar("""T""") class _A ( Generic[T] ): def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = data lowercase = self lowercase = 0 class _A ( Generic[T] ): def __init__( self ): """simple docstring""" lowercase = {} def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = DisjointSetTreeNode(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.map[data] if elem_ref != elem_ref.parent: lowercase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if nodea.rank > nodea.rank: lowercase = nodea else: lowercase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" self.link(self.find_set(__lowerCAmelCase ) , self.find_set(__lowerCAmelCase ) ) class _A ( Generic[T] ): def __init__( self ): """simple docstring""" lowercase = {} def A__ ( self , __lowerCAmelCase ): """simple docstring""" if node not in self.connections: lowercase = {} def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) lowercase = weight lowercase = weight def A__ ( self ): """simple docstring""" lowercase = [] lowercase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __lowerCAmelCase : x[2] ) # creating the disjoint set lowercase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__lowerCAmelCase ) # MST generation lowercase = 0 lowercase = 0 lowercase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowercase , lowercase , lowercase = edges[index] index += 1 lowercase = disjoint_set.find_set(__lowerCAmelCase ) lowercase = disjoint_set.find_set(__lowerCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) disjoint_set.union(__lowerCAmelCase , __lowerCAmelCase ) return graph
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def UpperCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=lowerCAmelCase__ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=lowerCAmelCase__ , default=5 ) parser.add_argument("""--batch_size""" , type=lowerCAmelCase__ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=lowerCAmelCase__ , default=1 ) parser.add_argument("""--freeze""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument("""--learning_rate""" , type=lowerCAmelCase__ , default=5e-4 ) parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=lowerCAmelCase__ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=lowerCAmelCase__ , default=1_0 ) parser.add_argument("""--weight_decay""" , type=lowerCAmelCase__ , default=0.01 ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , default="""./results""" ) return parser.parse_args() __lowerCAmelCase : Dict =load("""accuracy""") def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' lowercase , lowercase = eval_pred lowercase = np.argmax(lowerCAmelCase__ , axis=1 ) return metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__() lowercase = trainer def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" if control.should_evaluate: lowercase = deepcopy(__lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def UpperCAmelCase__ ( ) -> int: '''simple docstring''' lowercase = get_args() set_seed(args.seed ) lowercase = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) lowercase = dataset.train_test_split(test_size=0.2 ) lowercase = train_test["""test"""].train_test_split(test_size=0.5 ) lowercase = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) lowercase = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase = tokenizer.eos_token lowercase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowercase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowercase = False lowercase = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(lowerCAmelCase__ :str ): lowercase = tokenizer(example["""src"""] , truncation=lowerCAmelCase__ , max_length=1_0_2_4 ) lowercase = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowercase = train_test_validation.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=train_test_validation["""train"""].column_names , ) lowercase = DataCollatorWithPadding(tokenizer=lowerCAmelCase__ ) lowercase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) lowercase = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(lowerCAmelCase__ ) ) trainer.train() if __name__ == "__main__": main()
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _A : @property def A__ ( self ): """simple docstring""" return self.get_dummy_input() @property def A__ ( self ): """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def A__ ( self , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , ): """simple docstring""" lowercase = 4 lowercase = 32 lowercase = (32, 32) lowercase = torch.manual_seed(0 ) lowercase = torch.device(__lowerCAmelCase ) lowercase = (batch_size, num_channels) + sizes lowercase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase ) lowercase = {"""hidden_states""": hidden_states} if include_temb: lowercase = 128 lowercase = randn_tensor((batch_size, temb_channels) , generator=__lowerCAmelCase , device=__lowerCAmelCase ) if include_res_hidden_states_tuple: lowercase = torch.manual_seed(1 ) lowercase = (randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase ),) if include_encoder_hidden_states: lowercase = floats_tensor((batch_size, 32, 32) ).to(__lowerCAmelCase ) if include_skip_sample: lowercase = randn_tensor(((batch_size, 3) + sizes) , generator=__lowerCAmelCase , device=__lowerCAmelCase ) return dummy_input def A__ ( self ): """simple docstring""" lowercase = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": lowercase = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) lowercase = self.dummy_input return init_dict, inputs_dict def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.prepare_init_args_and_inputs_for_common() lowercase = self.block_class(**__lowerCAmelCase ) unet_block.to(__lowerCAmelCase ) unet_block.eval() with torch.no_grad(): lowercase = unet_block(**__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = output[0] self.assertEqual(output.shape , self.output_shape ) lowercase = output[0, -1, -3:, -3:] lowercase = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) assert torch_all_close(output_slice.flatten() , __lowerCAmelCase , atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def A__ ( self ): """simple docstring""" lowercase , lowercase = self.prepare_init_args_and_inputs_for_common() lowercase = self.block_class(**__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() lowercase = model(**__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = output[0] lowercase = torch.device(__lowerCAmelCase ) lowercase = randn_tensor(output.shape , device=__lowerCAmelCase ) lowercase = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase ) loss.backward()
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
"""simple docstring""" from __future__ import annotations import requests __lowerCAmelCase : Dict =set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :str = "new" , lowerCAmelCase__ :list | None = None ) -> dict: '''simple docstring''' lowercase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCAmelCase__ ) - valid_terms ) ): lowercase = f'Invalid search term: {invalid_search_terms}' raise ValueError(lowerCAmelCase__ ) lowercase = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 4_2_9: raise requests.HTTPError lowercase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCAmelCase__ )} lowercase = {} for id_ in range(lowerCAmelCase__ ): lowercase = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=30 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=10 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=None , __lowerCAmelCase=2 , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = scope lowercase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase = (image_size // patch_size) ** 2 lowercase = num_patches + 2 def A__ ( self ): """simple docstring""" lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def A__ ( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = DeiTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = DeiTForMaskedImageModeling(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase = 1 lowercase = DeiTForMaskedImageModeling(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase = model(__lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.type_sequence_label_size lowercase = DeiTForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase = 1 lowercase = DeiTForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) snake_case__ : Optional[int] = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : int = False snake_case__ : Tuple = False def A__ ( self ): """simple docstring""" lowercase = DeiTModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" lowercase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A__ ( self ): """simple docstring""" if not self.model_tester.is_training: return lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowercase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) lowercase = model(**__lowerCAmelCase ).loss loss.backward() def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase = False lowercase = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowercase = model_class(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(__lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) lowercase = model(**__lowerCAmelCase ).loss loss.backward() def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCAmelCase ), *get_values(__lowerCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ): lowercase = problem_type["""title"""] lowercase = problem_type["""num_labels"""] lowercase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if problem_type["num_labels"] > 1: lowercase = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowercase = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCAmelCase ) as warning_list: lowercase = model(**__lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def A__ ( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = DeiTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def UpperCAmelCase__ ( ) -> List[Any]: '''simple docstring''' lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def A__ ( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def A__ ( self ): """simple docstring""" lowercase = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( __lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**__lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) lowercase = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def A__ ( self ): """simple docstring""" lowercase = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ) lowercase = inputs.pixel_values.to(__lowerCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase = model(__lowerCAmelCase )
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" import json import sys def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: lowercase = json.load(lowerCAmelCase__ ) lowercase = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(lowerCAmelCase__ ): lowercase = results[benchmark_name] lowercase = benchmark_name.split("""/""" )[-1] output_md.append(f'### Benchmark: {benchmark_file_name}' ) lowercase = """| metric |""" lowercase = """|--------|""" lowercase = """| new / old (diff) |""" for metric_name in sorted(lowerCAmelCase__ ): lowercase = benchmark_res[metric_name] lowercase = metric_vals["""new"""] lowercase = metric_vals.get("""old""" , lowerCAmelCase__ ) lowercase = metric_vals.get("""diff""" , lowerCAmelCase__ ) lowercase = f' {new_val:f}' if isinstance(lowerCAmelCase__ , (int, float) ) else """None""" if old_val is not None: val_str += f' / {old_val:f}' if isinstance(lowerCAmelCase__ , (int, float) ) else "None" if dif_val is not None: val_str += f' ({dif_val:f})' if isinstance(lowerCAmelCase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(lowerCAmelCase__ ) ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] =sys.argv[1] __lowerCAmelCase : List[Any] =sys.argv[2] format_json_to_md(input_json_file, output_md_file)
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0_0 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def UpperCAmelCase__ ( lowerCAmelCase__ :Features ) -> Optional[int]: '''simple docstring''' lowercase = np.inf def set_batch_size(lowerCAmelCase__ :FeatureType ) -> None: nonlocal batch_size if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and feature.dtype == "binary": lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowerCAmelCase__ , lowerCAmelCase__ ) return None if batch_size is np.inf else batch_size class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = path_or_paths if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else {self.split: path_or_paths} lowercase = _PACKAGED_DATASETS_MODULES["""parquet"""][1] lowercase = Parquet( cache_dir=__lowerCAmelCase , data_files=__lowerCAmelCase , features=__lowerCAmelCase , hash=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: lowercase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase = None lowercase = None lowercase = None lowercase = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , ) lowercase = self.builder.as_dataset( split=self.split , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = dataset lowercase = path_or_buf lowercase = batch_size or get_writer_batch_size(dataset.features ) lowercase = parquet_writer_kwargs def A__ ( self ): """simple docstring""" lowercase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , """wb+""" ) as buffer: lowercase = self._write(file_obj=__lowerCAmelCase , batch_size=__lowerCAmelCase , **self.parquet_writer_kwargs ) else: lowercase = self._write(file_obj=self.path_or_buf , batch_size=__lowerCAmelCase , **self.parquet_writer_kwargs ) return written def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = 0 lowercase = parquet_writer_kwargs.pop("""path_or_buf""" , __lowerCAmelCase ) lowercase = self.dataset.features.arrow_schema lowercase = pq.ParquetWriter(__lowerCAmelCase , schema=__lowerCAmelCase , **__lowerCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __lowerCAmelCase ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): lowercase = query_table( table=self.dataset._data , key=slice(__lowerCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
from __future__ import annotations import math def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCAmelCase : List[str] =[num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> list[int]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowercase = [] for num in range(len(lowerCAmelCase__ ) ): lowercase = 0 while 2 * i * i <= odd_composites[num]: lowercase = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = BlenderbotSmallTokenizer snake_case__ : Any = False def A__ ( self ): """simple docstring""" super().setUp() lowercase = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] lowercase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] lowercase = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """adapt act apte""" lowercase = """adapt act apte""" return input_text, output_text def A__ ( self ): """simple docstring""" lowercase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase = """adapt act apte""" lowercase = ["""adapt""", """act""", """ap@@""", """te"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowercase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] lowercase = """I am a small frog.""" lowercase = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )["""input_ids"""] lowercase = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def A__ ( self ): """simple docstring""" lowercase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) lowercase = """I am a small frog .""" lowercase = """.""" lowercase = tok(__lowerCAmelCase )["""input_ids"""] lowercase = tok(__lowerCAmelCase )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path __lowerCAmelCase : List[str] ="""src/transformers""" # Matches is_xxx_available() __lowerCAmelCase : Optional[int] =re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} __lowerCAmelCase : Any =re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowerCAmelCase : str =re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available __lowerCAmelCase : str =re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") __lowerCAmelCase : Tuple =re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowerCAmelCase : Any =re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", __lowerCAmelCase : Optional[Any] =re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], __lowerCAmelCase : Optional[Any] =re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo __lowerCAmelCase : Tuple =re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: __lowerCAmelCase : Optional[int] =re.compile(R"""^\s*try:""") # Catches a line with else: __lowerCAmelCase : List[str] =re.compile(R"""^\s*else:""") def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> int: '''simple docstring''' if _re_test_backend.search(lowerCAmelCase__ ) is None: return None lowercase = [b[0] for b in _re_backend.findall(lowerCAmelCase__ )] backends.sort() return "_and_".join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> List[Any]: '''simple docstring''' with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase = f.readlines() lowercase = 0 while line_index < len(lowerCAmelCase__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCAmelCase__ ): return None # First grab the objects without a specific backend in _import_structure lowercase = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCAmelCase__ ): lowercase = _re_one_line_import_struct.search(lowerCAmelCase__ ).groups()[0] lowercase = re.findall("""\[([^\]]+)\]""" , lowerCAmelCase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowercase = _re_import_struct_key_value.search(lowerCAmelCase__ ) if single_line_import_search is not None: lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowercase = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowercase = lines[line_index] if _re_import_struct_add_one.search(lowerCAmelCase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCAmelCase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCAmelCase__ ) is not None: lowercase = _re_import_struct_add_many.search(lowerCAmelCase__ ).groups()[0].split(""", """ ) lowercase = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif _re_between_brackets.search(lowerCAmelCase__ ) is not None: lowercase = _re_between_brackets.search(lowerCAmelCase__ ).groups()[0].split(""", """ ) lowercase = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif _re_quote_object.search(lowerCAmelCase__ ) is not None: objects.append(_re_quote_object.search(lowerCAmelCase__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 1_2 + """\"""" ): objects.append(line[1_3:-3] ) line_index += 1 lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase = [] while ( line_index < len(lowerCAmelCase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowercase = lines[line_index] lowercase = _re_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCAmelCase__ ): # If the line is an if is_backend_available, we grab all objects associated. lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowercase = lines[line_index] lowercase = _re_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' def find_duplicates(lowerCAmelCase__ :int ): return [k for k, v in collections.Counter(lowerCAmelCase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase = [] for key in import_dict_objects.keys(): lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase = """base imports""" if key == """none""" else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: lowercase = os.path.join(lowerCAmelCase__ , """__init__.py""" ) lowercase = parse_init(lowerCAmelCase__ ) if objects is not None: lowercase = analyze_results(*lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("""\n""".join(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) > 0: raise ValueError("""\n\n""".join(lowerCAmelCase__ ) ) def UpperCAmelCase__ ( ) -> Any: '''simple docstring''' lowercase = [] for path, directories, files in os.walk(lowerCAmelCase__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCAmelCase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCAmelCase__ ) / folder).glob("""*.py""" ) ) ) == 0: continue lowercase = str((Path(lowerCAmelCase__ ) / folder).relative_to(lowerCAmelCase__ ) ) lowercase = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCAmelCase__ ) for fname in files: if fname == "__init__.py": continue lowercase = str((Path(lowerCAmelCase__ ) / fname).relative_to(lowerCAmelCase__ ) ) lowercase = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCAmelCase__ ) return submodules __lowerCAmelCase : str =[ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def UpperCAmelCase__ ( ) -> List[Any]: '''simple docstring''' lowercase = importlib.util.spec_from_file_location( """transformers""" , os.path.join(lowerCAmelCase__ , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowercase = spec.loader.load_module() lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowerCAmelCase__ ) > 0: lowercase = """\n""".join(f'- {module}' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'{list_of_modules}\n' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[Any] = LayoutLMTokenizer snake_case__ : str = LayoutLMTokenizerFast snake_case__ : Optional[int] = True snake_case__ : Tuple = True def A__ ( self ): """simple docstring""" super().setUp() lowercase = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """UNwant\u00E9d,running""" lowercase = """unwanted, running""" return input_text, output_text def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class(self.vocab_file ) lowercase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def A__ ( self ): """simple docstring""" pass
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __lowerCAmelCase : List[Any] =yaml.safe_load( """\ name: \"\" allow_empty: false allow_empty_text: true subsections: - name: \"Dataset Card for X\" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: \"Table of Contents\" allow_empty: false allow_empty_text: false subsections: null - name: \"Dataset Description\" allow_empty: false allow_empty_text: false subsections: - name: \"Dataset Summary\" allow_empty: false allow_empty_text: false subsections: null - name: \"Supported Tasks and Leaderboards\" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null """ ) __lowerCAmelCase : Union[str, Any] ={ """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } __lowerCAmelCase : str ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Dict ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Optional[Any] ={ """name""": """root""", """text""": """""", """is_empty_text""": True, """subsections""": [ { """name""": """Dataset Card for My Dataset""", """text""": """""", """is_empty_text""": True, """subsections""": [ {"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []}, { """name""": """Dataset Description""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Dataset Summary""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": [ { """name""": """Extra Ignored Subsection""", """text""": """""", """is_empty_text""": True, """subsections""": [], } ], }, { """name""": """Supported Tasks and Leaderboards""", """text""": """""", """is_empty_text""": True, """subsections""": [], }, {"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []}, ], }, ], } ], } __lowerCAmelCase : List[str] ="""\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Optional[Any] =( """The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.""" ) __lowerCAmelCase : Optional[Any] ="""\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Dict =( """The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.""" ) __lowerCAmelCase : List[str] ="""\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Dict ="""The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.""" __lowerCAmelCase : str ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : str ="""The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).""" __lowerCAmelCase : Tuple ="""\ --- language: - zh - en --- # Dataset Card for My Dataset """ __lowerCAmelCase : Optional[Any] ="""The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'.""" __lowerCAmelCase : Optional[Any] ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text """ __lowerCAmelCase : Optional[Any] ="""The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.""" __lowerCAmelCase : Optional[Any] ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages """ __lowerCAmelCase : Union[str, Any] ="""The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.""" __lowerCAmelCase : Optional[Any] ="""\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Dict ="""The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.""" __lowerCAmelCase : List[Any] ="""\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset """ __lowerCAmelCase : List[str] ="""The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.""" __lowerCAmelCase : Optional[Any] ="""\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Dict ="""The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.""" __lowerCAmelCase : Tuple ="""""" __lowerCAmelCase : Dict ="""The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.""" __lowerCAmelCase : str ="""\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text """ __lowerCAmelCase : Tuple ="""The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.""" @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] ) -> int: '''simple docstring''' assert ReadMe.from_string(lowerCAmelCase__ , lowerCAmelCase__ ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict ) -> Union[str, Any]: '''simple docstring''' with pytest.raises(lowerCAmelCase__ , match=re.escape(expected_error.format(path="""root""" ) ) ): lowercase = ReadMe.from_string(lowerCAmelCase__ , lowerCAmelCase__ ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' with pytest.raises(lowerCAmelCase__ , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' ReadMe.from_string(lowerCAmelCase__ , lowerCAmelCase__ , suppress_parsing_errors=lowerCAmelCase__ ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase = Path(lowerCAmelCase__ ) / """README.md""" with open(lowerCAmelCase__ , """w+""" ) as readme_file: readme_file.write(lowerCAmelCase__ ) lowercase = ReadMe.from_readme(lowerCAmelCase__ , lowerCAmelCase__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase = Path(lowerCAmelCase__ ) / """README.md""" with open(lowerCAmelCase__ , """w+""" ) as readme_file: readme_file.write(lowerCAmelCase__ ) lowercase = expected_error.format(path=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ , match=re.escape(lowerCAmelCase__ ) ): lowercase = ReadMe.from_readme(lowerCAmelCase__ , lowerCAmelCase__ ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase = Path(lowerCAmelCase__ ) / """README.md""" with open(lowerCAmelCase__ , """w+""" ) as readme_file: readme_file.write(lowerCAmelCase__ ) lowercase = expected_error.format(path=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ , match=re.escape(lowerCAmelCase__ ) ): ReadMe.from_readme(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase = Path(lowerCAmelCase__ ) / """README.md""" with open(lowerCAmelCase__ , """w+""" ) as readme_file: readme_file.write(lowerCAmelCase__ ) ReadMe.from_readme(lowerCAmelCase__ , lowerCAmelCase__ , suppress_parsing_errors=lowerCAmelCase__ )
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __lowerCAmelCase : Dict =logging.get_logger(__name__) enable_full_determinism() class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : Any = UNetaDModel snake_case__ : Any = 'sample' @property def A__ ( self ): """simple docstring""" lowercase = 4 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) lowercase = torch.tensor([10] ).to(__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def A__ ( self ): """simple docstring""" return (3, 32, 32) @property def A__ ( self ): """simple docstring""" return (3, 32, 32) def A__ ( self ): """simple docstring""" lowercase = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } lowercase = self.dummy_input return init_dict, inputs_dict class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = UNetaDModel snake_case__ : List[Any] = 'sample' @property def A__ ( self ): """simple docstring""" lowercase = 4 lowercase = 4 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) lowercase = torch.tensor([10] ).to(__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def A__ ( self ): """simple docstring""" return (4, 32, 32) @property def A__ ( self ): """simple docstring""" return (4, 32, 32) def A__ ( self ): """simple docstring""" lowercase = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } lowercase = self.dummy_input return init_dict, inputs_dict def A__ ( self ): """simple docstring""" lowercase , lowercase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) lowercase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def A__ ( self ): """simple docstring""" lowercase , lowercase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) model.to(__lowerCAmelCase ) lowercase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def A__ ( self ): """simple docstring""" lowercase , lowercase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase ) model_accelerate.to(__lowerCAmelCase ) model_accelerate.eval() lowercase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase = noise.to(__lowerCAmelCase ) lowercase = torch.tensor([10] * noise.shape[0] ).to(__lowerCAmelCase ) lowercase = model_accelerate(__lowerCAmelCase , __lowerCAmelCase )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowercase , lowercase = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=__lowerCAmelCase , low_cpu_mem_usage=__lowerCAmelCase ) model_normal_load.to(__lowerCAmelCase ) model_normal_load.eval() lowercase = model_normal_load(__lowerCAmelCase , __lowerCAmelCase )["""sample"""] assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1E-3 ) def A__ ( self ): """simple docstring""" lowercase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(__lowerCAmelCase ) lowercase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase = noise.to(__lowerCAmelCase ) lowercase = torch.tensor([10] * noise.shape[0] ).to(__lowerCAmelCase ) with torch.no_grad(): lowercase = model(__lowerCAmelCase , __lowerCAmelCase ).sample lowercase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1E-3 ) ) class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = UNetaDModel snake_case__ : Union[str, Any] = 'sample' @property def A__ ( self , __lowerCAmelCase=(32, 32) ): """simple docstring""" lowercase = 4 lowercase = 3 lowercase = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) lowercase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def A__ ( self ): """simple docstring""" return (3, 32, 32) @property def A__ ( self ): """simple docstring""" return (3, 32, 32) def A__ ( self ): """simple docstring""" lowercase = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1E-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } lowercase = self.dummy_input return init_dict, inputs_dict @slow def A__ ( self ): """simple docstring""" lowercase , lowercase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__lowerCAmelCase ) lowercase = self.dummy_input lowercase = floats_tensor((4, 3) + (256, 256) ).to(__lowerCAmelCase ) lowercase = noise lowercase = model(**__lowerCAmelCase ) assert image is not None, "Make sure output is not None" @slow def A__ ( self ): """simple docstring""" lowercase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(__lowerCAmelCase ) lowercase = 4 lowercase = 3 lowercase = (256, 256) lowercase = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) lowercase = torch.tensor(batch_size * [1E-4] ).to(__lowerCAmelCase ) with torch.no_grad(): lowercase = model(__lowerCAmelCase , __lowerCAmelCase ).sample lowercase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowercase = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1E-2 ) ) def A__ ( self ): """simple docstring""" lowercase = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(__lowerCAmelCase ) lowercase = 4 lowercase = 3 lowercase = (32, 32) lowercase = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) lowercase = torch.tensor(batch_size * [1E-4] ).to(__lowerCAmelCase ) with torch.no_grad(): lowercase = model(__lowerCAmelCase , __lowerCAmelCase ).sample lowercase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowercase = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1E-2 ) ) def A__ ( self ): """simple docstring""" pass
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' return 1 if input_a == input_a else 0 def UpperCAmelCase__ ( ) -> None: '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore __lowerCAmelCase : int =namedtuple("""covid_data""", """cases deaths recovered""") def UpperCAmelCase__ ( lowerCAmelCase__ :str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: '''simple docstring''' lowercase = """//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(lowerCAmelCase__ ).content ).xpath(lowerCAmelCase__ ) ) __lowerCAmelCase : str ="""Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
356
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _A ( lowerCAmelCase ): snake_case__ : UNetaDModel snake_case__ : KarrasVeScheduler def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , __lowerCAmelCase = 1 , __lowerCAmelCase = 50 , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" lowercase = self.unet.config.sample_size lowercase = (batch_size, 3, img_size, img_size) lowercase = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowercase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowercase = self.scheduler.schedule[t] lowercase = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowercase , lowercase = self.scheduler.add_noise_to_input(__lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowercase = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowercase = self.scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowercase = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample lowercase = self.scheduler.step_correct( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , step_output.prev_sample , step_output["""derivative"""] , ) lowercase = step_output.prev_sample lowercase = (sample / 2 + 0.5).clamp(0 , 1 ) lowercase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig __lowerCAmelCase : Any ={ """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class _A ( lowerCAmelCase ): snake_case__ : List[str] = 'tapas' def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1024 , __lowerCAmelCase=[3, 256, 256, 2, 256, 256, 10] , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase=10.0 , __lowerCAmelCase=0 , __lowerCAmelCase=1.0 , __lowerCAmelCase=None , __lowerCAmelCase=1.0 , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=1.0 , __lowerCAmelCase=1.0 , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase="ratio" , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=64 , __lowerCAmelCase=32 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_sizes lowercase = initializer_range lowercase = layer_norm_eps # Fine-tuning task hyperparameters lowercase = positive_label_weight lowercase = num_aggregation_labels lowercase = aggregation_loss_weight lowercase = use_answer_as_supervision lowercase = answer_loss_importance lowercase = use_normalized_answer_loss lowercase = huber_loss_delta lowercase = temperature lowercase = aggregation_temperature lowercase = use_gumbel_for_cells lowercase = use_gumbel_for_aggregation lowercase = average_approximation_function lowercase = cell_selection_preference lowercase = answer_loss_cutoff lowercase = max_num_rows lowercase = max_num_columns lowercase = average_logits_per_cell lowercase = select_one_column lowercase = allow_empty_column_selection lowercase = init_cell_selection_weights_to_zero lowercase = reset_position_index_per_cell lowercase = disable_per_token_loss # Aggregation hyperparameters lowercase = aggregation_labels lowercase = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCAmelCase ): lowercase = {int(__lowerCAmelCase ): v for k, v in aggregation_labels.items()}
358
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
0
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :bool , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(lowerCAmelCase__ ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) def UpperCAmelCase__ ( ) -> None: '''simple docstring''' lowercase = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] lowercase = math.log(len(lowerCAmelCase__ ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> list[int]: '''simple docstring''' if num <= 0: lowercase = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCAmelCase__ ) lowercase = [True] * (num + 1) lowercase = [] lowercase = 2 lowercase = int(math.sqrt(lowerCAmelCase__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase__ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase__ ): if sieve[i] is True: lowercase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
361
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
0
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] ) -> str: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] ) -> Any: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] ) -> Optional[Any]: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] ) -> str: '''simple docstring''' lowercase = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} lowercase = features.copy() lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = tmp_path / """cache""" lowercase = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] ) -> Any: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> List[Any]: '''simple docstring''' if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = jsonl_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = [jsonl_path] lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str=("train",) ) -> Tuple: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: lowercase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] ) -> str: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] ) -> List[str]: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = JsonDatasetReader({"""train""": jsonl_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple ) -> Optional[Any]: '''simple docstring''' if split: lowercase = {split: jsonl_path} else: lowercase = """train""" lowercase = {"""train""": jsonl_path, """test""": jsonl_path} lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Optional[Any]: '''simple docstring''' return json.load(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] ) -> int: '''simple docstring''' return [json.loads(lowerCAmelCase__ ) for line in buffer] class _A : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , lines=__lowerCAmelCase ).write() buffer.seek(0 ) lowercase = load_json_function(__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(exported_content[0] , __lowerCAmelCase ) assert len(__lowerCAmelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , lines=__lowerCAmelCase , orient=__lowerCAmelCase ).write() buffer.seek(0 ) lowercase = load_json(__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCAmelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowerCAmelCase ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , lines=__lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) lowercase = load_json_function(__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(exported_content[0] , __lowerCAmelCase ) assert len(__lowerCAmelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , lines=__lowerCAmelCase , orient=__lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) lowercase = load_json(__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCAmelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowerCAmelCase ) == 10 def A__ ( self , __lowerCAmelCase ): """simple docstring""" with pytest.raises(__lowerCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = tmp_path_factory.mktemp("""data""" ) / f'test.json.{extension}' lowercase = str(shared_datadir / f'test_file.json.{extension}' ) JsonDatasetWriter(__lowerCAmelCase , __lowerCAmelCase , compression=__lowerCAmelCase ).write() with fsspec.open(__lowerCAmelCase , """rb""" , compression="""infer""" ) as f: lowercase = f.read() with fsspec.open(__lowerCAmelCase , """rb""" , compression="""infer""" ) as f: lowercase = f.read() assert exported_content == original_content
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A : snake_case__ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) snake_case__ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class _A : snake_case__ : Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) snake_case__ : Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case__ : Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def A__ ( self ): """simple docstring""" if self.train_file is not None: lowercase = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowercase = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _A : snake_case__ : PreTrainedTokenizerBase snake_case__ : Union[bool, str, PaddingStrategy] = True snake_case__ : Optional[int] = None snake_case__ : Optional[int] = None def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase = """label""" if """label""" in features[0].keys() else """labels""" lowercase = [feature.pop(__lowerCAmelCase ) for feature in features] lowercase = len(__lowerCAmelCase ) lowercase = len(features[0]["""input_ids"""] ) lowercase = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCAmelCase )] for feature in features ] lowercase = list(chain(*__lowerCAmelCase ) ) lowercase = self.tokenizer.pad( __lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten lowercase = {k: v.view(__lowerCAmelCase , __lowerCAmelCase , -1 ) for k, v in batch.items()} # Add back labels lowercase = torch.tensor(__lowerCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__ ( ) -> List[Any]: '''simple docstring''' lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowercase = {} if data_args.train_file is not None: lowercase = data_args.train_file if data_args.validation_file is not None: lowercase = data_args.validation_file lowercase = data_args.train_file.split(""".""" )[-1] lowercase = load_dataset( lowerCAmelCase__ , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowercase = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowercase = [f'ending{i}' for i in range(4 )] lowercase = """sent1""" lowercase = """sent2""" if data_args.max_seq_length is None: lowercase = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) lowercase = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) lowercase = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCAmelCase__ :Optional[Any] ): lowercase = [[context] * 4 for context in examples[context_name]] lowercase = examples[question_header_name] lowercase = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(lowerCAmelCase__ ) ] # Flatten out lowercase = list(chain(*lowerCAmelCase__ ) ) lowercase = list(chain(*lowerCAmelCase__ ) ) # Tokenize lowercase = tokenizer( lowerCAmelCase__ , lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) lowercase = raw_datasets["""train"""] if data_args.max_train_samples is not None: lowercase = min(len(lowerCAmelCase__ ) , data_args.max_train_samples ) lowercase = train_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): lowercase = train_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) lowercase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: lowercase = min(len(lowerCAmelCase__ ) , data_args.max_eval_samples ) lowercase = eval_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): lowercase = eval_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowercase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCAmelCase__ :Optional[Any] ): lowercase , lowercase = eval_predictions lowercase = np.argmax(lowerCAmelCase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowercase = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase = train_result.metrics lowercase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowercase = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics("""train""" , lowerCAmelCase__ ) trainer.save_metrics("""train""" , lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate() lowercase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowercase = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase__ ) trainer.save_metrics("""eval""" , lowerCAmelCase__ ) lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
"""simple docstring""" from manim import * class _A ( lowerCAmelCase ): def A__ ( self ): """simple docstring""" lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.2_5 , width=0.2_5 ) lowercase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = Text("""CPU""" , font_size=24 ) lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) lowercase = [mem.copy() for i in range(4 )] lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = Text("""GPU""" , font_size=24 ) lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCAmelCase ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = Text("""Model""" , font_size=24 ) lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCAmelCase ) lowercase = [] lowercase = [] lowercase = [] for i, rect in enumerate(__lowerCAmelCase ): rect.set_stroke(__lowerCAmelCase ) lowercase = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowerCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__lowerCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__lowerCAmelCase , buff=0.0 ) self.add(__lowerCAmelCase ) model_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = Text("""Loaded Checkpoint""" , font_size=24 ) lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowerCAmelCase ) lowercase = [] lowercase = [] for i, rect in enumerate(__lowerCAmelCase ): lowercase = fill.copy().set_fill(__lowerCAmelCase , opacity=0.7 ) target.move_to(__lowerCAmelCase ) ckpt_arr.append(__lowerCAmelCase ) lowercase = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) lowercase = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCAmelCase ) lowercase = MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowercase = [meta_mem.copy() for i in range(6 )] lowercase = [meta_mem.copy() for i in range(6 )] lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) lowercase = Text("""Disk""" , font_size=24 ) lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) , Write(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) ) lowercase = [] for i, rect in enumerate(__lowerCAmelCase ): lowercase = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowerCAmelCase , run_time=1.5 ) ) self.play(*__lowerCAmelCase ) self.play(FadeOut(__lowerCAmelCase ) ) lowercase = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) ) self.play( FadeOut(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) , ) self.wait()
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class _A : def __init__( self ): """simple docstring""" lowercase = [] lowercase = 0 lowercase = 0 def A__ ( self ): """simple docstring""" return self.head == self.tail def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.data.append(__lowerCAmelCase ) lowercase = self.tail + 1 def A__ ( self ): """simple docstring""" lowercase = self.data[self.head] lowercase = self.head + 1 return ret def A__ ( self ): """simple docstring""" return self.tail - self.head def A__ ( self ): """simple docstring""" print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = data lowercase = None lowercase = None lowercase = 1 def A__ ( self ): """simple docstring""" return self.data def A__ ( self ): """simple docstring""" return self.left def A__ ( self ): """simple docstring""" return self.right def A__ ( self ): """simple docstring""" return self.height def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = data def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = node def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = node def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = height def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode | None ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' if a > b: return a return b def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> MyNode: '''simple docstring''' print("""left rotation node:""" , node.get_data() ) lowercase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCAmelCase__ ) lowercase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) lowercase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> MyNode: '''simple docstring''' print("""right rotation node:""" , node.get_data() ) lowercase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCAmelCase__ ) lowercase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) lowercase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> MyNode: '''simple docstring''' lowercase = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCAmelCase__ ) ) return right_rotation(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> MyNode: '''simple docstring''' lowercase = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCAmelCase__ ) ) return left_rotation(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode | None , lowerCAmelCase__ :Any ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(lowerCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowercase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowercase = right_rotation(lowerCAmelCase__ ) else: lowercase = lr_rotation(lowerCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , lowerCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowercase = node.get_right() assert right_child is not None if data < right_child.get_data(): lowercase = rl_rotation(lowerCAmelCase__ ) else: lowercase = left_rotation(lowerCAmelCase__ ) lowercase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) return node def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> Any: '''simple docstring''' while True: lowercase = root.get_right() if right_child is None: break lowercase = right_child return root.get_data() def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode ) -> Any: '''simple docstring''' while True: lowercase = root.get_left() if left_child is None: break lowercase = left_child return root.get_data() def UpperCAmelCase__ ( lowerCAmelCase__ :MyNode , lowerCAmelCase__ :Any ) -> MyNode | None: '''simple docstring''' lowercase = root.get_left() lowercase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowercase = get_left_most(lowerCAmelCase__ ) root.set_data(lowerCAmelCase__ ) root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) elif left_child is not None: lowercase = left_child elif right_child is not None: lowercase = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) if get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowercase = left_rotation(lowerCAmelCase__ ) else: lowercase = rl_rotation(lowerCAmelCase__ ) elif get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowercase = right_rotation(lowerCAmelCase__ ) else: lowercase = lr_rotation(lowerCAmelCase__ ) lowercase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCAmelCase__ ) return root class _A : def __init__( self ): """simple docstring""" lowercase = None def A__ ( self ): """simple docstring""" return get_height(self.root ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" print("""insert:""" + str(__lowerCAmelCase ) ) lowercase = insert_node(self.root , __lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" print("""delete:""" + str(__lowerCAmelCase ) ) if self.root is None: print("""Tree is empty!""" ) return lowercase = del_node(self.root , __lowerCAmelCase ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree """simple docstring""" lowercase = """""" lowercase = MyQueue() q.push(self.root ) lowercase = self.get_height() if layer == 0: return output lowercase = 0 while not q.is_empty(): lowercase = q.pop() lowercase = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__lowerCAmelCase ) q.push(__lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowercase = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __lowerCAmelCase ) - 1: lowercase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCAmelCase__ ( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() __lowerCAmelCase : Any =AVLtree() __lowerCAmelCase : int =list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
"""simple docstring""" import argparse import struct import unittest class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = data # Initialize hash values lowercase = [ 0X6a_09e_667, 0Xbb_67a_e85, 0X3c_6ef_372, 0Xa5_4ff_53a, 0X51_0e5_27f, 0X9b_056_88c, 0X1f_83d_9ab, 0X5b_e0c_d19, ] # Initialize round constants lowercase = [ 0X42_8a2_f98, 0X71_374_491, 0Xb5_c0f_bcf, 0Xe9_b5d_ba5, 0X39_56c_25b, 0X59_f11_1f1, 0X92_3f8_2a4, 0Xab_1c5_ed5, 0Xd8_07a_a98, 0X12_835_b01, 0X24_318_5be, 0X55_0c7_dc3, 0X72_be5_d74, 0X80_deb_1fe, 0X9b_dc0_6a7, 0Xc1_9bf_174, 0Xe4_9b6_9c1, 0Xef_be4_786, 0X0f_c19_dc6, 0X24_0ca_1cc, 0X2d_e92_c6f, 0X4a_748_4aa, 0X5c_b0a_9dc, 0X76_f98_8da, 0X98_3e5_152, 0Xa8_31c_66d, 0Xb0_032_7c8, 0Xbf_597_fc7, 0Xc6_e00_bf3, 0Xd5_a79_147, 0X06_ca6_351, 0X14_292_967, 0X27_b70_a85, 0X2e_1b2_138, 0X4d_2c6_dfc, 0X53_380_d13, 0X65_0a7_354, 0X76_6a0_abb, 0X81_c2c_92e, 0X92_722_c85, 0Xa2_bfe_8a1, 0Xa8_1a6_64b, 0Xc2_4b8_b70, 0Xc7_6c5_1a3, 0Xd1_92e_819, 0Xd6_990_624, 0Xf4_0e3_585, 0X10_6aa_070, 0X19_a4c_116, 0X1e_376_c08, 0X27_487_74c, 0X34_b0b_cb5, 0X39_1c0_cb3, 0X4e_d8a_a4a, 0X5b_9cc_a4f, 0X68_2e6_ff3, 0X74_8f8_2ee, 0X78_a56_36f, 0X84_c87_814, 0X8c_c70_208, 0X90_bef_ffa, 0Xa4_506_ceb, 0Xbe_f9a_3f7, 0Xc6_717_8f2, ] lowercase = self.preprocessing(self.data ) self.final_hash() @staticmethod def A__ ( __lowerCAmelCase ): """simple docstring""" lowercase = B"""\x80""" + (B"""\x00""" * (63 - (len(__lowerCAmelCase ) + 8) % 64)) lowercase = struct.pack(""">Q""" , (len(__lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def A__ ( self ): """simple docstring""" lowercase = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase = list(struct.unpack(""">16L""" , __lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowercase = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowercase = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowercase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression lowercase = self.ror(__lowerCAmelCase , 6 ) ^ self.ror(__lowerCAmelCase , 11 ) ^ self.ror(__lowerCAmelCase , 25 ) lowercase = (e & f) ^ ((~e & 0Xff_fff_fff) & g) lowercase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 lowercase = self.ror(__lowerCAmelCase , 2 ) ^ self.ror(__lowerCAmelCase , 13 ) ^ self.ror(__lowerCAmelCase , 22 ) lowercase = (a & b) ^ (a & c) ^ (b & c) lowercase = (sa + maj) % 0X100_000_000 lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) lowercase = [a, b, c, d, e, f, g, h] # Modify final values lowercase = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes ) ] lowercase = """""".join([hex(__lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" return 0Xff_fff_fff & (value << (32 - rotations)) | (value >> rotations) class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" import hashlib lowercase = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(__lowerCAmelCase ).hash , hashlib.shaaaa(__lowerCAmelCase ).hexdigest() ) def UpperCAmelCase__ ( ) -> None: '''simple docstring''' import doctest doctest.testmod() lowercase = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) lowercase = parser.parse_args() lowercase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: lowercase = f.read() else: lowercase = bytes(lowerCAmelCase__ , """utf-8""" ) print(SHAaaa(lowerCAmelCase__ ).hash ) if __name__ == "__main__": main()
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Dict: '''simple docstring''' lowercase = SwinConfig(image_size=1_9_2 ) if "base" in model_name: lowercase = 6 lowercase = 1_2_8 lowercase = (2, 2, 1_8, 2) lowercase = (4, 8, 1_6, 3_2) elif "large" in model_name: lowercase = 1_2 lowercase = 1_9_2 lowercase = (2, 2, 1_8, 2) lowercase = (6, 1_2, 2_4, 4_8) else: raise ValueError("""Model not supported, only supports base and large variants""" ) lowercase = window_size lowercase = embed_dim lowercase = depths lowercase = num_heads return config def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if "encoder.mask_token" in name: lowercase = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: lowercase = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: lowercase = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase = """layernorm.weight""" if name == "encoder.norm.bias": lowercase = """layernorm.bias""" if "decoder" in name: pass else: lowercase = """swin.""" + name return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[2] ) lowercase = int(key_split[4] ) lowercase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[ :dim ] lowercase = val[ dim : dim * 2 ] lowercase = val[ -dim: ] else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = get_swin_config(lowerCAmelCase__ ) lowercase = SwinForMaskedImageModeling(lowerCAmelCase__ ) model.eval() lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = ViTImageProcessor(size={"""height""": 1_9_2, """width""": 1_9_2} ) lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) lowercase = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowerCAmelCase : Any =parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" import math def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :float = 1 / 1_2_3_4_5 ) -> int: '''simple docstring''' lowercase = 0 lowercase = 0 lowercase = 3 while True: lowercase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCAmelCase__ ): lowercase = int(lowerCAmelCase__ ) total_partitions += 1 if check_partition_perfect(lowerCAmelCase__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCAmelCase__ ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowercase = s_dict.pop(lowerCAmelCase__ ) elif "subsample" in key: lowercase = s_dict.pop(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase , lowercase = emb.weight.shape lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) lowercase = emb.weight.data return lin_layer def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] ) -> Optional[Any]: '''simple docstring''' lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" ) lowercase = mam_aaa["""args"""] lowercase = mam_aaa["""model"""] lowercase = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(lowerCAmelCase__ ) rename_keys(lowerCAmelCase__ ) lowercase = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowercase = args.share_decoder_input_output_embed lowercase = [int(lowerCAmelCase__ ) for i in args.conv_kernel_sizes.split(""",""" )] lowercase = SpeechaTextConfig( vocab_size=lowerCAmelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(lowerCAmelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowerCAmelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowerCAmelCase__ , num_beams=5 , max_length=2_0_0 , use_cache=lowerCAmelCase__ , decoder_start_token_id=2 , early_stopping=lowerCAmelCase__ , ) lowercase = SpeechaTextForConditionalGeneration(lowerCAmelCase__ ) lowercase , lowercase = model.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0 and not set(lowerCAmelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f' but all the following weights are missing {missing}' ) if tie_embeds: lowercase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase = lm_head_weights model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __lowerCAmelCase : Optional[Any] =parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase__ ( ) -> Generator[int, None, None]: '''simple docstring''' lowercase = {} lowercase = 2 while True: lowercase = factor_map.pop(lowerCAmelCase__ , lowerCAmelCase__ ) if factor: lowercase = factor + prime while x in factor_map: x += factor lowercase = factor else: lowercase = prime yield prime prime += 1 def UpperCAmelCase__ ( lowerCAmelCase__ :float = 1e10 ) -> int: '''simple docstring''' lowercase = sieve() lowercase = 1 while True: lowercase = next(lowerCAmelCase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCAmelCase__ ) n += 2 if __name__ == "__main__": print(solution())
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = TextToVideoSDPipeline snake_case__ : int = TEXT_TO_IMAGE_PARAMS snake_case__ : Any = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. snake_case__ : Union[str, Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase = CLIPTextModel(__lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = TextToVideoSDPipeline(**__lowerCAmelCase ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = self.get_dummy_inputs(__lowerCAmelCase ) lowercase = """np""" lowercase = sd_pipe(**__lowerCAmelCase ).frames lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowercase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowerCAmelCase , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowerCAmelCase , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) lowercase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase = pipe.to("""cuda""" ) lowercase = """Spiderman is surfing""" lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=25 , output_type="""pt""" ).frames lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) lowercase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) lowercase = pipe.to("""cuda""" ) lowercase = """Spiderman is surfing""" lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""pt""" ).frames lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Dict ={ """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" from __future__ import annotations from typing import Any class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = num_of_nodes lowercase = [] lowercase = {} def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowercase = self.find_component(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(__lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: lowercase = self.find_component(__lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = [] lowercase = 0 lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase , lowercase , lowercase = edge lowercase = self.m_component[u] lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase , lowercase , lowercase = edge lowercase = self.m_component[u] lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 lowercase = [-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}' ) def UpperCAmelCase__ ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0