code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCAmelCase : Optional[Any] ="""<<<<<<< This should probably be modified because it mentions: """ __lowerCAmelCase : Optional[Any] ="""======= >>>>>>> """ __lowerCAmelCase : Tuple =[ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] __lowerCAmelCase : Any =[ # (pattern, replacement) # Order is important here for some replacements (R"""tfds\.core""", R"""datasets"""), (R"""tf\.io\.gfile\.GFile""", R"""open"""), (R"""tf\.([\w\d]+)""", R"""datasets.Value('\1')"""), (R"""tfds\.features\.Text\(\)""", R"""datasets.Value('string')"""), (R"""tfds\.features\.Text\(""", R"""datasets.Value('string'),"""), (R"""features\s*=\s*tfds.features.FeaturesDict\(""", R"""features=datasets.Features("""), (R"""tfds\.features\.FeaturesDict\(""", R"""dict("""), (R"""The TensorFlow Datasets Authors""", R"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (R"""tfds\.""", R"""datasets."""), (R"""dl_manager\.manual_dir""", R"""self.config.data_dir"""), (R"""self\.builder_config""", R"""self.config"""), ] def UpperCAmelCase__ ( lowerCAmelCase__ :Namespace ) -> Dict: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class _A ( lowerCAmelCase ): @staticmethod def A__ ( __lowerCAmelCase ): """simple docstring""" lowercase = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=__lowerCAmelCase ) def __init__( self , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ): """simple docstring""" lowercase = get_logger("""datasets-cli/converting""" ) lowercase = tfds_path lowercase = datasets_directory def A__ ( self ): """simple docstring""" if os.path.isdir(self._tfds_path ): lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) lowercase = [] lowercase = [] lowercase = {} if os.path.isdir(self._tfds_path ): lowercase = os.listdir(__lowerCAmelCase ) else: lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) lowercase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) lowercase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not os.path.isfile(__lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(__lowerCAmelCase , encoding="""utf-8""" ) as f: lowercase = f.readlines() lowercase = [] lowercase = False lowercase = False lowercase = [] for line in lines: lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here lowercase = """""" continue elif "from absl import logging" in out_line: lowercase = """from datasets import logging\n""" elif "getLogger" in out_line: lowercase = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase = True lowercase = list(filter(lambda __lowerCAmelCase : e in out_line , __lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCAmelCase ) + """\n""" ) out_lines.append(__lowerCAmelCase ) out_lines.append(__lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase = re.sub(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , __lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) lowercase = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase = True out_lines.append(__lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase = f_name.replace(""".py""" , """""" ) lowercase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) lowercase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowerCAmelCase ) if needs_manual_update: with_manual_update.append(__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.writelines(__lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: lowercase = os.path.basename(__lowerCAmelCase ) lowercase = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(__lowerCAmelCase , __lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCAmelCase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : str =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any] ) -> List[str]: '''simple docstring''' lowercase = os.path.abspath(lowerCAmelCase__ ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model lowercase = tf.train.list_variables(lowerCAmelCase__ ) lowercase = [] lowercase = [] lowercase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' lowercase = name[1:] # figure out how many levels deep the name is lowercase = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(lowerCAmelCase__ ) # read data lowercase = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ ) names.append("""/""".join(lowerCAmelCase__ ) ) arrays.append(lowerCAmelCase__ ) logger.info(f'Read a total of {len(lowerCAmelCase__ ):,} layers' ) # Sanity check if len(set(lowerCAmelCase__ ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(lowerCAmelCase__ ) )})' ) lowercase = list(set(lowerCAmelCase__ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = full_name.split("""/""" ) lowercase = model lowercase = [] for i, m_name in enumerate(lowerCAmelCase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): lowercase = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) lowercase = getattr(lowerCAmelCase__ , """embeddings""" ) lowercase = getattr(lowerCAmelCase__ , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) lowercase = getattr(lowerCAmelCase__ , """encoder""" ) lowercase = getattr(lowerCAmelCase__ , """layer""" ) lowercase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) lowercase = getattr(lowerCAmelCase__ , """pooler""" ) lowercase = getattr(lowerCAmelCase__ , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) lowercase = getattr(lowerCAmelCase__ , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) lowercase = getattr(lowerCAmelCase__ , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) lowercase = getattr(lowerCAmelCase__ , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) lowercase = getattr(lowerCAmelCase__ , """token_type_embeddings""" ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append("""weight""" ) lowercase = getattr(lowerCAmelCase__ , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) lowercase = getattr(lowerCAmelCase__ , """attention""" ) lowercase = getattr(lowerCAmelCase__ , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) lowercase = getattr(lowerCAmelCase__ , """attention""" ) lowercase = getattr(lowerCAmelCase__ , """output""" ) lowercase = getattr(lowerCAmelCase__ , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) lowercase = getattr(lowerCAmelCase__ , """attention""" ) lowercase = getattr(lowerCAmelCase__ , """output""" ) lowercase = getattr(lowerCAmelCase__ , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) lowercase = getattr(lowerCAmelCase__ , """output""" ) lowercase = getattr(lowerCAmelCase__ , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) lowercase = getattr(lowerCAmelCase__ , """output""" ) lowercase = getattr(lowerCAmelCase__ , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) lowercase = getattr(lowerCAmelCase__ , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) lowercase = getattr(lowerCAmelCase__ , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) lowercase = getattr(lowerCAmelCase__ , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) lowercase = getattr(lowerCAmelCase__ , """intermediate""" ) lowercase = getattr(lowerCAmelCase__ , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) lowercase = getattr(lowerCAmelCase__ , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) lowercase = getattr(lowerCAmelCase__ , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) lowercase = getattr(lowerCAmelCase__ , """weight""" ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary lowercase = """.""".join(lowerCAmelCase__ ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , lowerCAmelCase__ ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , lowerCAmelCase__ ): lowercase = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase = array.transpose() if pointer.shape == array.shape: lowercase = torch.from_numpy(lowerCAmelCase__ ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' logger.info(f'Loading model based on config from {config_path}...' ) lowercase = BertConfig.from_json_file(lowerCAmelCase__ ) lowercase = BertModel(lowerCAmelCase__ ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) __lowerCAmelCase : Optional[Any] =parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
356
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase = R"""\w+[.]\d+""" lowercase = re.findall(lowerCAmelCase__ , lowerCAmelCase__ ) for pat in pats: lowercase = key.replace(lowerCAmelCase__ , """_""".join(pat.split(""".""" ) ) ) return key def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] ) -> Any: '''simple docstring''' lowercase = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": lowercase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any]=4_2 ) -> Optional[int]: '''simple docstring''' lowercase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase = flax_model.init_weights(PRNGKey(lowerCAmelCase__ ) ) lowercase = flatten_dict(lowerCAmelCase__ ) lowercase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase = rename_key(lowerCAmelCase__ ) lowercase = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowercase , lowercase = rename_key_and_reshape_tensor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown lowercase = jnp.asarray(lowerCAmelCase__ ) return unflatten_dict(lowerCAmelCase__ )
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __lowerCAmelCase : Optional[Any] ="""scheduler_config.json""" class _A ( lowerCAmelCase ): snake_case__ : str = 1 snake_case__ : int = 2 snake_case__ : str = 3 snake_case__ : List[Any] = 4 snake_case__ : Optional[int] = 5 snake_case__ : str = 6 snake_case__ : int = 7 snake_case__ : List[str] = 8 snake_case__ : Any = 9 snake_case__ : Tuple = 10 snake_case__ : str = 11 snake_case__ : List[str] = 12 snake_case__ : List[str] = 13 snake_case__ : Optional[Any] = 14 @dataclass class _A ( lowerCAmelCase ): snake_case__ : torch.FloatTensor class _A : snake_case__ : int = SCHEDULER_CONFIG_NAME snake_case__ : str = [] snake_case__ : Tuple = True @classmethod def A__ ( cls , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , **__lowerCAmelCase , ): """simple docstring""" lowercase , lowercase , lowercase = cls.load_config( pretrained_model_name_or_path=__lowerCAmelCase , subfolder=__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase , return_commit_hash=__lowerCAmelCase , **__lowerCAmelCase , ) return cls.from_config(__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False , **__lowerCAmelCase ): """simple docstring""" self.save_config(save_directory=__lowerCAmelCase , push_to_hub=__lowerCAmelCase , **__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def A__ ( cls ): """simple docstring""" lowercase = list(set([cls.__name__] + cls._compatibles ) ) lowercase = importlib.import_module(__name__.split(""".""" )[0] ) lowercase = [ getattr(__lowerCAmelCase , __lowerCAmelCase ) for c in compatible_classes_str if hasattr(__lowerCAmelCase , __lowerCAmelCase ) ] return compatible_classes
358
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCAmelCase : Dict ={"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class _A ( unittest.TestCase ): snake_case__ : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case__ : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case__ : Optional[int] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case__ : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def A__ ( self ): """simple docstring""" lowercase = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) lowercase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) lowercase = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}] ) lowercase = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] , ) lowercase = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) # Legacy behavior lowercase = text_classifier("""This is great !""" , return_all_scores=__lowerCAmelCase ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) lowercase = text_classifier("""This is great !""" , return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}]] ) lowercase = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], [{"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_1""", """score""": 0.4_9_6}], ] , ) lowercase = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.5_0_4}, {"""label""": """LABEL_0""", """score""": 0.5_0_4}, ] , ) @require_torch def A__ ( self ): """simple docstring""" import torch lowercase = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) lowercase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @require_tf def A__ ( self ): """simple docstring""" lowercase = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) lowercase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.5_0_4}] ) @slow @require_torch def A__ ( self ): """simple docstring""" lowercase = pipeline("""text-classification""" ) lowercase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) lowercase = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) lowercase = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) @slow @require_tf def A__ ( self ): """simple docstring""" lowercase = pipeline("""text-classification""" , framework="""tf""" ) lowercase = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) lowercase = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) lowercase = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.9_8_8}] ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = TextClassificationPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowercase = """HuggingFace is in""" lowercase = text_classifier(__lowerCAmelCase ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) lowercase = ["""HuggingFace is in """, """Paris is in France"""] lowercase = text_classifier(__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}, {"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowercase = text_classifier(__lowerCAmelCase , top_k=__lowerCAmelCase ) lowercase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [[{"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}] * N, [{"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}] * N] , ) lowercase = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} lowercase = text_classifier(__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , {"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowercase = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__lowerCAmelCase ): text_classifier(__lowerCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowercase = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{"""label""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
361
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
0
"""simple docstring""" import math import unittest def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def A__ ( self ): """simple docstring""" with self.assertRaises(__lowerCAmelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __lowerCAmelCase : Optional[Any] ={"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] ) -> str: '''simple docstring''' return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int]="attention" ) -> Optional[Any]: '''simple docstring''' lowercase = lowercase = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :str=False ) -> str: '''simple docstring''' if split_mlp_wi: lowercase = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase = (wi_a, wi_a) else: lowercase = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> List[str]: '''simple docstring''' return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def UpperCAmelCase__ ( lowerCAmelCase__ :dict , *, lowerCAmelCase__ :int , lowerCAmelCase__ :bool , lowerCAmelCase__ :bool = False ) -> Union[str, Any]: '''simple docstring''' lowercase = traverse_util.flatten_dict(variables["""target"""] ) lowercase = {"""/""".join(lowerCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase__ ) lowercase = collections.OrderedDict() # Shared embeddings. lowercase = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 1 (MLP). lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowercase , lowercase = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , lowerCAmelCase__ ) lowercase = layer_norm if split_mlp_wi: lowercase = wi[0].T lowercase = wi[1].T else: lowercase = wi.T lowercase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase = tax_relpos_bias_lookup( lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" ).T lowercase = old["""encoder/encoder_norm/scale"""] if not scalable_attention: lowercase = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """encoder""" ).T lowercase = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """self_attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 1 (Cross Attention). lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """encoder_decoder_attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 2 (MLP). lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowercase , lowercase = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , lowerCAmelCase__ ) lowercase = layer_norm if split_mlp_wi: lowercase = wi[0].T lowercase = wi[1].T else: lowercase = wi.T lowercase = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase = tax_relpos_bias_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" ).T lowercase = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase = old["""decoder/logits_dense/kernel"""].T return new def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool ) -> Tuple: '''simple docstring''' lowercase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowercase = state_dict["""shared.weight"""] return state_dict def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) lowercase = convert_tax_to_pytorch( lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ , scalable_attention=lowerCAmelCase__ ) lowercase = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: '''simple docstring''' lowercase = MTaConfig.from_json_file(lowerCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase = UMTaEncoderModel(lowerCAmelCase__ ) else: lowercase = UMTaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase__ ) print("""Done""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) __lowerCAmelCase : str =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
"""simple docstring""" from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __lowerCAmelCase : Any ={ """Acehnese Arabic""": """ace_Arab""", """Acehnese Latin""": """ace_Latn""", """Mesopotamian Arabic""": """acm_Arab""", """Ta'izzi-Adeni Arabic""": """acq_Arab""", """Tunisian Arabic""": """aeb_Arab""", """Afrikaans""": """afr_Latn""", """South Levantine Arabic""": """ajp_Arab""", """Akan""": """aka_Latn""", """Amharic""": """amh_Ethi""", """North Levantine Arabic""": """apc_Arab""", """Modern Standard Arabic""": """arb_Arab""", """Modern Standard Arabic Romanized""": """arb_Latn""", """Najdi Arabic""": """ars_Arab""", """Moroccan Arabic""": """ary_Arab""", """Egyptian Arabic""": """arz_Arab""", """Assamese""": """asm_Beng""", """Asturian""": """ast_Latn""", """Awadhi""": """awa_Deva""", """Central Aymara""": """ayr_Latn""", """South Azerbaijani""": """azb_Arab""", """North Azerbaijani""": """azj_Latn""", """Bashkir""": """bak_Cyrl""", """Bambara""": """bam_Latn""", """Balinese""": """ban_Latn""", """Belarusian""": """bel_Cyrl""", """Bemba""": """bem_Latn""", """Bengali""": """ben_Beng""", """Bhojpuri""": """bho_Deva""", """Banjar Arabic""": """bjn_Arab""", """Banjar Latin""": """bjn_Latn""", """Standard Tibetan""": """bod_Tibt""", """Bosnian""": """bos_Latn""", """Buginese""": """bug_Latn""", """Bulgarian""": """bul_Cyrl""", """Catalan""": """cat_Latn""", """Cebuano""": """ceb_Latn""", """Czech""": """ces_Latn""", """Chokwe""": """cjk_Latn""", """Central Kurdish""": """ckb_Arab""", """Crimean Tatar""": """crh_Latn""", """Welsh""": """cym_Latn""", """Danish""": """dan_Latn""", """German""": """deu_Latn""", """Southwestern Dinka""": """dik_Latn""", """Dyula""": """dyu_Latn""", """Dzongkha""": """dzo_Tibt""", """Greek""": """ell_Grek""", """English""": """eng_Latn""", """Esperanto""": """epo_Latn""", """Estonian""": """est_Latn""", """Basque""": """eus_Latn""", """Ewe""": """ewe_Latn""", """Faroese""": """fao_Latn""", """Fijian""": """fij_Latn""", """Finnish""": """fin_Latn""", """Fon""": """fon_Latn""", """French""": """fra_Latn""", """Friulian""": """fur_Latn""", """Nigerian Fulfulde""": """fuv_Latn""", """Scottish Gaelic""": """gla_Latn""", """Irish""": """gle_Latn""", """Galician""": """glg_Latn""", """Guarani""": """grn_Latn""", """Gujarati""": """guj_Gujr""", """Haitian Creole""": """hat_Latn""", """Hausa""": """hau_Latn""", """Hebrew""": """heb_Hebr""", """Hindi""": """hin_Deva""", """Chhattisgarhi""": """hne_Deva""", """Croatian""": """hrv_Latn""", """Hungarian""": """hun_Latn""", """Armenian""": """hye_Armn""", """Igbo""": """ibo_Latn""", """Ilocano""": """ilo_Latn""", """Indonesian""": """ind_Latn""", """Icelandic""": """isl_Latn""", """Italian""": """ita_Latn""", """Javanese""": """jav_Latn""", """Japanese""": """jpn_Jpan""", """Kabyle""": """kab_Latn""", """Jingpho""": """kac_Latn""", """Kamba""": """kam_Latn""", """Kannada""": """kan_Knda""", """Kashmiri Arabic""": """kas_Arab""", """Kashmiri Devanagari""": """kas_Deva""", """Georgian""": """kat_Geor""", """Central Kanuri Arabic""": """knc_Arab""", """Central Kanuri Latin""": """knc_Latn""", """Kazakh""": """kaz_Cyrl""", """Kabiyè""": """kbp_Latn""", """Kabuverdianu""": """kea_Latn""", """Khmer""": """khm_Khmr""", """Kikuyu""": """kik_Latn""", """Kinyarwanda""": """kin_Latn""", """Kyrgyz""": """kir_Cyrl""", """Kimbundu""": """kmb_Latn""", """Northern Kurdish""": """kmr_Latn""", """Kikongo""": """kon_Latn""", """Korean""": """kor_Hang""", """Lao""": """lao_Laoo""", """Ligurian""": """lij_Latn""", """Limburgish""": """lim_Latn""", """Lingala""": """lin_Latn""", """Lithuanian""": """lit_Latn""", """Lombard""": """lmo_Latn""", """Latgalian""": """ltg_Latn""", """Luxembourgish""": """ltz_Latn""", """Luba-Kasai""": """lua_Latn""", """Ganda""": """lug_Latn""", """Luo""": """luo_Latn""", """Mizo""": """lus_Latn""", """Standard Latvian""": """lvs_Latn""", """Magahi""": """mag_Deva""", """Maithili""": """mai_Deva""", """Malayalam""": """mal_Mlym""", """Marathi""": """mar_Deva""", """Minangkabau Arabic """: """min_Arab""", """Minangkabau Latin""": """min_Latn""", """Macedonian""": """mkd_Cyrl""", """Plateau Malagasy""": """plt_Latn""", """Maltese""": """mlt_Latn""", """Meitei Bengali""": """mni_Beng""", """Halh Mongolian""": """khk_Cyrl""", """Mossi""": """mos_Latn""", """Maori""": """mri_Latn""", """Burmese""": """mya_Mymr""", """Dutch""": """nld_Latn""", """Norwegian Nynorsk""": """nno_Latn""", """Norwegian Bokmål""": """nob_Latn""", """Nepali""": """npi_Deva""", """Northern Sotho""": """nso_Latn""", """Nuer""": """nus_Latn""", """Nyanja""": """nya_Latn""", """Occitan""": """oci_Latn""", """West Central Oromo""": """gaz_Latn""", """Odia""": """ory_Orya""", """Pangasinan""": """pag_Latn""", """Eastern Panjabi""": """pan_Guru""", """Papiamento""": """pap_Latn""", """Western Persian""": """pes_Arab""", """Polish""": """pol_Latn""", """Portuguese""": """por_Latn""", """Dari""": """prs_Arab""", """Southern Pashto""": """pbt_Arab""", """Ayacucho Quechua""": """quy_Latn""", """Romanian""": """ron_Latn""", """Rundi""": """run_Latn""", """Russian""": """rus_Cyrl""", """Sango""": """sag_Latn""", """Sanskrit""": """san_Deva""", """Santali""": """sat_Olck""", """Sicilian""": """scn_Latn""", """Shan""": """shn_Mymr""", """Sinhala""": """sin_Sinh""", """Slovak""": """slk_Latn""", """Slovenian""": """slv_Latn""", """Samoan""": """smo_Latn""", """Shona""": """sna_Latn""", """Sindhi""": """snd_Arab""", """Somali""": """som_Latn""", """Southern Sotho""": """sot_Latn""", """Spanish""": """spa_Latn""", """Tosk Albanian""": """als_Latn""", """Sardinian""": """srd_Latn""", """Serbian""": """srp_Cyrl""", """Swati""": """ssw_Latn""", """Sundanese""": """sun_Latn""", """Swedish""": """swe_Latn""", """Swahili""": """swh_Latn""", """Silesian""": """szl_Latn""", """Tamil""": """tam_Taml""", """Tatar""": """tat_Cyrl""", """Telugu""": """tel_Telu""", """Tajik""": """tgk_Cyrl""", """Tagalog""": """tgl_Latn""", """Thai""": """tha_Thai""", """Tigrinya""": """tir_Ethi""", """Tamasheq Latin""": """taq_Latn""", """Tamasheq Tifinagh""": """taq_Tfng""", """Tok Pisin""": """tpi_Latn""", """Tswana""": """tsn_Latn""", """Tsonga""": """tso_Latn""", """Turkmen""": """tuk_Latn""", """Tumbuka""": """tum_Latn""", """Turkish""": """tur_Latn""", """Twi""": """twi_Latn""", """Central Atlas Tamazight""": """tzm_Tfng""", """Uyghur""": """uig_Arab""", """Ukrainian""": """ukr_Cyrl""", """Umbundu""": """umb_Latn""", """Urdu""": """urd_Arab""", """Northern Uzbek""": """uzn_Latn""", """Venetian""": """vec_Latn""", """Vietnamese""": """vie_Latn""", """Waray""": """war_Latn""", """Wolof""": """wol_Latn""", """Xhosa""": """xho_Latn""", """Eastern Yiddish""": """ydd_Hebr""", """Yoruba""": """yor_Latn""", """Yue Chinese""": """yue_Hant""", """Chinese Simplified""": """zho_Hans""", """Chinese Traditional""": """zho_Hant""", """Standard Malay""": """zsm_Latn""", """Zulu""": """zul_Latn""", } class _A ( lowerCAmelCase ): snake_case__ : str = 'facebook/nllb-200-distilled-600M' snake_case__ : str = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case__ : Optional[int] = 'translator' snake_case__ : int = AutoTokenizer snake_case__ : str = AutoModelForSeqaSeqLM snake_case__ : List[Any] = LANGUAGE_CODES snake_case__ : Optional[Any] = ['text', 'text', 'text'] snake_case__ : List[str] = ['text'] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) lowercase = self.lang_to_code[src_lang] lowercase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __lowerCAmelCase , return_tensors="""pt""" , src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.model.generate(**__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__lowerCAmelCase )
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
"""simple docstring""" import numpy as np def UpperCAmelCase__ ( lowerCAmelCase__ :np.array ) -> np.array: '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int] ) -> Dict: '''simple docstring''' if openai_config_file == "": lowercase = OpenAIGPTConfig() else: lowercase = OpenAIGPTConfig.from_json_file(lowerCAmelCase__ ) lowercase = OpenAIGPTModel(lowerCAmelCase__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model lowercase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowercase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) __lowerCAmelCase : str =parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=lowerCAmelCase ): snake_case__ : List[Any] = ['transformers', 'torch', 'note_seq'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> int: '''simple docstring''' lowercase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowercase = 1_2_8 elif "12-12" in model_name: lowercase = 1_2 lowercase = 1_2 elif "14-14" in model_name: lowercase = 1_4 lowercase = 1_4 elif "16-16" in model_name: lowercase = 1_6 lowercase = 1_6 else: raise ValueError("""Model not supported""" ) lowercase = """huggingface/label-files""" if "speech-commands" in model_name: lowercase = 3_5 lowercase = """speech-commands-v2-id2label.json""" else: lowercase = 5_2_7 lowercase = """audioset-id2label.json""" lowercase = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> Tuple: '''simple docstring''' if "module.v" in name: lowercase = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: lowercase = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: lowercase = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: lowercase = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: lowercase = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowercase = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: lowercase = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: lowercase = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Dict: '''simple docstring''' lowercase = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any=False ) -> Optional[int]: '''simple docstring''' lowercase = get_audio_spectrogram_transformer_config(lowerCAmelCase__ ) lowercase = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict lowercase = model_name_to_url[model_name] lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" ) # remove some keys remove_keys(lowerCAmelCase__ ) # rename some keys lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) # load 🤗 model lowercase = ASTForAudioClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowercase = -4.2_677_393 if """speech-commands""" not in model_name else -6.845_978 lowercase = 4.5_689_974 if """speech-commands""" not in model_name else 5.5_654_526 lowercase = 1_0_2_4 if """speech-commands""" not in model_name else 1_2_8 lowercase = ASTFeatureExtractor(mean=lowerCAmelCase__ , std=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) if "speech-commands" in model_name: lowercase = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) lowercase = dataset[0]["""audio"""]["""array"""] else: lowercase = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) lowercase , lowercase = torchaudio.load(lowerCAmelCase__ ) lowercase = waveform.squeeze().numpy() lowercase = feature_extractor(lowerCAmelCase__ , sampling_rate=1_6_0_0_0 , return_tensors="""pt""" ) # forward pass lowercase = model(**lowerCAmelCase__ ) lowercase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowercase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowercase = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowercase = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowercase = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowercase = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowercase = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowercase = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowercase = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f'MIT/{model_name}' ) feature_extractor.push_to_hub(f'MIT/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowerCAmelCase : str =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
from typing import TYPE_CHECKING from ...utils import _LazyModule A : Any = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A : Optional[Any] = logging.get_logger(__name__) A : Any = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class __A( a , a ): snake_case_ = '''resnet''' snake_case_ = ['''basic''', '''bottleneck'''] def __init__( self , _snake_case=3 , _snake_case=64 , _snake_case=[256, 512, 1_024, 2_048] , _snake_case=[3, 4, 6, 3] , _snake_case="bottleneck" , _snake_case="relu" , _snake_case=False , _snake_case=None , _snake_case=None , **_snake_case , ) -> int: '''simple docstring''' super().__init__(**_snake_case ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) __a = num_channels __a = embedding_size __a = hidden_sizes __a = depths __a = layer_type __a = hidden_act __a = downsample_in_first_stage __a = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(_snake_case ) + 1 )] __a , __a = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names ) class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-3
33
A : Optional[Any] = tuple[float, float, float] A : Union[str, Any] = tuple[float, float, float] def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = end_pointa[0] - end_pointa[0] __a = end_pointa[1] - end_pointa[1] __a = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = ab[1] * ac[2] - ab[2] * ac[1] # *i __a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> bool: return tuple(round(a__ , a__ ) for x in vector ) == (0, 0, 0) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 10 ) -> bool: __a = create_vector(a__ , a__ ) __a = create_vector(a__ , a__ ) return is_zero_vector(get_ad_vectors_cross(a__ , a__ ) , a__ )
33
1
def __lowerCAmelCase ( a__ , a__ , a__ ) -> float: __a = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
33
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) A : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } A : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Dict: for attribute in key.split('''.''' ): __a = getattr(a__ , a__ ) if weight_type is not None: __a = getattr(a__ , a__ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = [] __a = fairseq_model.state_dict() __a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True else: for key, mapped_key in MAPPING.items(): __a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __a = True if "*" in mapped_key: __a = name.split(a__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __a = '''weight''' else: __a = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> int: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) @torch.no_grad() def __lowerCAmelCase ( a__ , a__ , a__=None , a__=None , a__=True ) -> Tuple: if config_path is not None: __a = UniSpeechSatConfig.from_pretrained(a__ ) else: __a = UniSpeechSatConfig() __a = '''''' if is_finetuned: __a = UniSpeechSatForCTC(a__ ) else: __a = UniSpeechSatForPreTraining(a__ ) __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __a = model[0].eval() recursively_load_weights(a__ , a__ ) hf_wavavec.save_pretrained(a__ ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A : Dict = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
33
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Optional[Any] = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __A( a ): snake_case_ = '''convbert''' def __init__( self , _snake_case=30_522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=1 , _snake_case=0 , _snake_case=2 , _snake_case=768 , _snake_case=2 , _snake_case=9 , _snake_case=1 , _snake_case=None , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case , ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = embedding_size __a = head_ratio __a = conv_kernel_size __a = num_groups __a = classifier_dropout class __A( a ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
33
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A( a ): @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a = bertabert.config.encoder.vocab_size __a = tokenizer.sep_token_id __a = tokenizer.cls_token_id __a = 128 __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __a = train_dataset.select(range(32 ) ) __a = val_dataset.select(range(16 ) ) __a = 4 def _map_to_encoder_decoder_inputs(_snake_case ): # Tokenizer will automatically set [BOS] <text> [EOS] __a = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_snake_case , max_length=512 ) __a = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_snake_case , max_length=128 ) __a = inputs.input_ids __a = inputs.attention_mask __a = outputs.input_ids __a = outputs.input_ids.copy() __a = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __a = outputs.attention_mask assert all(len(_snake_case ) == 512 for x in inputs.input_ids ) assert all(len(_snake_case ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_snake_case ): __a = pred.label_ids __a = pred.predictions # all unnecessary tokens are removed __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_snake_case ) )] ) / len(_snake_case ) return {"accuracy": accuracy} # map train dataset __a = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __a = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __a = self.get_auto_remove_tmp_dir() __a = SeqaSeqTrainingArguments( output_dir=_snake_case , per_device_train_batch_size=_snake_case , per_device_eval_batch_size=_snake_case , predict_with_generate=_snake_case , evaluation_strategy='''steps''' , do_train=_snake_case , do_eval=_snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __a = SeqaSeqTrainer( model=_snake_case , args=_snake_case , compute_metrics=_compute_metrics , train_dataset=_snake_case , eval_dataset=_snake_case , tokenizer=_snake_case , ) # start training trainer.train()
33
1
def __lowerCAmelCase ( a__ , a__ , a__ ) -> int: def count_of_possible_combinations(a__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> int: def count_of_possible_combinations_with_dp_array( a__ , a__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __a = sum( count_of_possible_combinations_with_dp_array(target - item , a__ ) for item in array ) __a = answer return answer __a = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> int: __a = [0] * (target + 1) __a = 1 for i in range(1 , target + 1 ): for j in range(a__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() A : Tuple = 3 A : Tuple = 5 A : List[str] = [1, 2, 5] print(combination_sum_iv(n, array, target))
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __lowerCAmelCase ( a__ , a__ , a__=None , a__=None ) -> int: if attention_mask is None: __a = tf.cast(tf.math.not_equal(a__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __A: snake_case_ = OPTConfig snake_case_ = {} snake_case_ = '''gelu''' def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=False , _snake_case=99 , _snake_case=16 , _snake_case=2 , _snake_case=4 , _snake_case=4 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=20 , _snake_case=2 , _snake_case=1 , _snake_case=0 , _snake_case=16 , _snake_case=16 , ) -> Tuple: '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id __a = embed_dim __a = word_embed_proj_dim __a = False def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __a = tf.concat([input_ids, eos_tensor] , axis=1 ) __a = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_snake_case , **self.config_updates , ) __a = prepare_opt_inputs_dict(_snake_case , _snake_case ) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Dict: '''simple docstring''' __a = TFOPTModel(config=_snake_case ) __a = inputs_dict['''input_ids'''] __a = input_ids[:1, :] __a = inputs_dict['''attention_mask'''][:1, :] __a = 1 # first forward pass __a = model(_snake_case , attention_mask=_snake_case , use_cache=_snake_case ) __a , __a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __a = tf.concat([input_ids, next_tokens] , axis=-1 ) __a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __a = model(_snake_case , attention_mask=_snake_case )[0] __a = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __a = output_from_no_past[:, -3:, random_slice_idx] __a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case , _snake_case , rtol=1E-3 ) @require_tf class __A( a , a , unittest.TestCase ): snake_case_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () snake_case_ = (TFOPTForCausalLM,) if is_tf_available() else () snake_case_ = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = 1_0 def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = TFOPTModelTester(self ) __a = ConfigTester(self , config_class=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_snake_case , _snake_case ): if hasattr(_snake_case , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_snake_case , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __a = model_class(config=_snake_case ) __a = _get_word_embedding_weight(_snake_case , model.get_input_embeddings() ) __a = _get_word_embedding_weight(_snake_case , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_snake_case ) __a = _get_word_embedding_weight(_snake_case , model.get_input_embeddings() ) __a = _get_word_embedding_weight(_snake_case , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __a = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _snake_case ) # check that weights remain the same after resizing __a = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __a = False self.assertTrue(_snake_case ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _snake_case ) __a = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __a = False self.assertTrue(_snake_case ) def __lowerCAmelCase ( a__ ) -> int: return tf.constant(a__ , dtype=tf.intaa ) @require_tf class __A( unittest.TestCase ): snake_case_ = 9_9 def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __a = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __a = input_ids.shape[0] __a = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __A( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __a = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __a = tf.not_equal(_snake_case , model.config.pad_token_id ) with tf.GradientTape(): __a = model(input_ids=_snake_case , attention_mask=_snake_case ).last_hidden_state __a = (1, 11, 512) self.assertEqual(output.shape , _snake_case ) __a = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _snake_case , atol=4E-3 ) ) __a = tf.function(_snake_case , jit_compile=_snake_case ) __a = xla_generate(_snake_case , _snake_case )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _snake_case , atol=4E-2 ) ) @require_tf @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' super().setUp() __a = '''facebook/opt-350m''' def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = TFOPTForCausalLM.from_pretrained(self.path_model ) __a = GPTaTokenizer.from_pretrained(self.path_model ) __a = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __a = tokenizer(_snake_case , return_tensors='''tf''' , padding=_snake_case , add_special_tokens=_snake_case ) __a = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __a = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-4 ) ) __a = tf.function(_snake_case , jit_compile=_snake_case ) __a = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-4 ) ) @require_tf @slow class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = '''facebook/opt-125m''' __a = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __a = [] __a = GPTaTokenizer.from_pretrained(_snake_case ) __a = TFOPTForCausalLM.from_pretrained(_snake_case ) for prompt in self.prompts: __a = tokenizer(_snake_case , return_tensors='''tf''' ).input_ids __a = model.generate(_snake_case , max_length=10 ) __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) predicted_outputs += generated_string self.assertListEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = '''facebook/opt-350m''' __a = GPTaTokenizer.from_pretrained(_snake_case ) __a = TFOPTForCausalLM.from_pretrained(_snake_case ) __a = '''left''' # use different length sentences to test batching __a = [ '''Hello, my dog is a little''', '''Today, I''', ] __a = tokenizer(_snake_case , return_tensors='''tf''' , padding=_snake_case ) __a = inputs['''input_ids'''] __a = model.generate(input_ids=_snake_case , attention_mask=inputs['''attention_mask'''] ) __a = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __a = model.generate(input_ids=_snake_case ) __a = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) __a = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __a = model.generate(input_ids=_snake_case , max_length=model.config.max_length - num_paddings ) __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_snake_case ) __a = tokenizer.decode(output_padded[0] , skip_special_tokens=_snake_case ) __a = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(_snake_case , _snake_case ) self.assertListEqual(_snake_case , [non_padded_sentence, padded_sentence] ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = '''facebook/opt-350m''' __a = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __a = [] __a = GPTaTokenizer.from_pretrained(_snake_case ) __a = TFOPTForCausalLM.from_pretrained(_snake_case ) for prompt in self.prompts: __a = tokenizer(_snake_case , return_tensors='''tf''' ).input_ids __a = model.generate(_snake_case , max_length=10 ) __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) predicted_outputs += generated_string self.assertListEqual(_snake_case , _snake_case )
33
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __A( a ): snake_case_ = 0 snake_case_ = False snake_case_ = 3.0 class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": A : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) A : Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) A : int = torch.nn.Linear(1_0_0, 2_0_0) A : Optional[int] = accelerator.prepare(model) # Check the values changed in kwargs A : List[Any] = '' A : Tuple = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
33
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool A : Any = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __A( a ): snake_case_ = '''facebook/nllb-200-distilled-600M''' snake_case_ = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) snake_case_ = '''translator''' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = LANGUAGE_CODES snake_case_ = ['''text''', '''text''', '''text'''] snake_case_ = ['''text'''] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Any: '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""" ) __a = self.lang_to_code[src_lang] __a = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( _snake_case , return_tensors='''pt''' , src_lang=_snake_case , tgt_lang=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' return self.model.generate(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[Any]: '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=_snake_case )
33
import os # Precomputes a list of the 100 first triangular numbers A : List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __lowerCAmelCase ( ) -> Tuple: __a = os.path.dirname(os.path.realpath(a__ ) ) __a = os.path.join(a__ , '''words.txt''' ) __a = '''''' with open(a__ ) as f: __a = f.readline() __a = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] __a = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
33
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A : Dict = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class __A: snake_case_ = 42 snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a , __a , __a = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Dict: '''simple docstring''' return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return self.major, self.minor, self.patch def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' if isinstance(_snake_case , _snake_case ): return Version(_snake_case ) elif isinstance(_snake_case , _snake_case ): return other raise TypeError(F"""{other} (type {type(_snake_case )}) cannot be compared to version.""" ) def __eq__( self , _snake_case ) -> Dict: '''simple docstring''' try: __a = self._validate_operand(_snake_case ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , _snake_case ) -> Tuple: '''simple docstring''' __a = self._validate_operand(_snake_case ) return self.tuple < other.tuple def __hash__( self ) -> str: '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' return self.version_str def __lowerCAmelCase ( a__ ) -> List[str]: __a = _VERSION_REG.match(a__ ) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(a__ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: return ".".join(str(a__ ) for v in version_tuple )
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : str = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['PerceiverFeatureExtractor'] A : int = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> np.ndarray: __a = cva.getAffineTransform(a__ , a__ ) return cva.warpAffine(a__ , a__ , (rows, cols) ) if __name__ == "__main__": # read original image A : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value A : Any = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A , A : List[Any] = gray_img.shape # set different points to rotate image A : str = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) A : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) A : Tuple = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) A : Tuple = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list A : Tuple = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A : Union[str, Any] = plt.figure(1) A : str = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __A( a ): snake_case_ = '''char''' snake_case_ = '''bpe''' snake_case_ = '''wp''' A : List[str] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __A( a ): snake_case_ = ['''image_processor''', '''char_tokenizer'''] snake_case_ = '''ViTImageProcessor''' snake_case_ = '''MgpstrTokenizer''' def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> str: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) __a = tokenizer __a = AutoTokenizer.from_pretrained('''gpt2''' ) __a = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(_snake_case , _snake_case ) def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Optional[Any]: '''simple docstring''' if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: __a = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None: __a = self.char_tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is None: return inputs elif images is None: return encodings else: __a = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[Any]: '''simple docstring''' __a , __a , __a = sequences __a = char_preds.size(0 ) __a , __a = self._decode_helper(_snake_case , '''char''' ) __a , __a = self._decode_helper(_snake_case , '''bpe''' ) __a , __a = self._decode_helper(_snake_case , '''wp''' ) __a = [] __a = [] for i in range(_snake_case ): __a = [char_scores[i], bpe_scores[i], wp_scores[i]] __a = [char_strs[i], bpe_strs[i], wp_strs[i]] __a = scores.index(max(_snake_case ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __a = {} __a = final_strs __a = final_scores __a = char_strs __a = bpe_strs __a = wp_strs return out def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' if format == DecodeType.CHARACTER: __a = self.char_decode __a = 1 __a = '''[s]''' elif format == DecodeType.BPE: __a = self.bpe_decode __a = 2 __a = '''#''' elif format == DecodeType.WORDPIECE: __a = self.wp_decode __a = 102 __a = '''[SEP]''' else: raise ValueError(F"""Format {format} is not supported.""" ) __a , __a = [], [] __a = pred_logits.size(0 ) __a = pred_logits.size(1 ) __a , __a = pred_logits.topk(1 , dim=-1 , largest=_snake_case , sorted=_snake_case ) __a = preds_index.view(-1 , _snake_case )[:, 1:] __a = decoder(_snake_case ) __a , __a = torch.nn.functional.softmax(_snake_case , dim=2 ).max(dim=2 ) __a = preds_max_prob[:, 1:] for index in range(_snake_case ): __a = preds_str[index].find(_snake_case ) __a = preds_str[index][:pred_eos] __a = preds_index[index].cpu().tolist() __a = pred_index.index(_snake_case ) if eos_token in pred_index else -1 __a = preds_max_prob[index][: pred_eos_index + 1] __a = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_snake_case ) conf_scores.append(_snake_case ) return dec_strs, conf_scores def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(_snake_case )] return decode_strs def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' __a = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(_snake_case )] return decode_strs
33
from string import ascii_uppercase A : Optional[int] = {char: i for i, char in enumerate(ascii_uppercase)} A : Union[str, Any] = dict(enumerate(ascii_uppercase)) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = len(a__ ) __a = 0 while True: if x == i: __a = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in message: if letter == " ": cipher_text += " " else: __a = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __a = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowerCAmelCase ( ) -> None: __a = '''THE GERMAN ATTACK''' __a = '''SECRET''' __a = generate_key(a__ , a__ ) __a = cipher_text(a__ , a__ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(a__ , a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
33
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A : List[str] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class __A( a ): def __init__( self , _snake_case , _snake_case , _snake_case=None , _snake_case=1 ) -> str: '''simple docstring''' __a = tokenizer __a = dataset __a = len(_snake_case ) if n_tasks is None else n_tasks __a = n_copies def __iter__( self ) -> Union[str, Any]: '''simple docstring''' __a = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) __a = self.tokenizer(_snake_case , padding=_snake_case , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __A( a ): def __init__( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = start_length __a = eof_strings __a = tokenizer def __call__( self , _snake_case , _snake_case , **_snake_case ) -> str: '''simple docstring''' __a = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __a = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_snake_case ) def __lowerCAmelCase ( a__ ) -> Any: __a = re.split('''(%s)''' % '''|'''.join(a__ ) , a__ ) # last string should be "" return "".join(string_list[:-2] ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ , a__=20 , **a__ ) -> Optional[Any]: __a = defaultdict(a__ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(a__ ) ): with torch.no_grad(): __a = batch['''ids'''].shape[-1] __a = accelerator.unwrap_model(a__ ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=a__ , **a__ ) # each task is generated batch_size times __a = batch['''task_id'''].repeat(a__ ) __a = accelerator.pad_across_processes( a__ , dim=1 , pad_index=tokenizer.pad_token_id ) __a , __a = accelerator.gather((generated_tokens, generated_tasks) ) __a = generated_tokens.cpu().numpy() __a = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a__ , a__ ): gen_token_dict[task].append(a__ ) __a = [[] for _ in range(a__ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __a = tokenizer.decode(a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ ) code_gens[task].append(remove_last_block(a__ ) ) return code_gens def __lowerCAmelCase ( ) -> List[str]: # Setup configuration __a = HfArgumentParser(a__ ) __a = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __a = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __a = '''false''' if args.num_workers is None: __a = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __a = Accelerator() set_seed(args.seed , device_specific=a__ ) # Load model and tokenizer __a = AutoTokenizer.from_pretrained(args.model_ckpt ) __a = tokenizer.eos_token __a = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __a = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , a__ , a__ )] ), } # Load evaluation dataset and metric __a = load_dataset('''openai_humaneval''' ) __a = load_metric('''code_eval''' ) __a = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) __a = args.n_samples // args.batch_size __a = TokenizedDataset(a__ , human_eval['''test'''] , n_copies=a__ , n_tasks=a__ ) # do not confuse args.batch_size, which is actually the num_return_sequences __a = DataLoader(a__ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __a = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception __a , __a = accelerator.prepare(a__ , a__ ) __a = complete_code( a__ , a__ , a__ , a__ , n_tasks=a__ , batch_size=args.batch_size , **a__ , ) if accelerator.is_main_process: __a = [] for task in tqdm(range(a__ ) ): __a = human_eval['''test'''][task]['''test'''] __a = F"""check({human_eval['test'][task]['entry_point']})""" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric __a , __a = code_eval_metric.compute( references=a__ , predictions=a__ , num_workers=args.num_workers ) print(F"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(a__ , a__ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
33
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') A : str = parser.parse_args() if args.model_type == "roberta": A : Union[str, Any] = RobertaForMaskedLM.from_pretrained(args.model_name) A : Any = 'roberta' elif args.model_type == "gpt2": A : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name) A : List[str] = 'transformer' A : Dict = model.state_dict() A : Any = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: A : Union[str, Any] = state_dict[F"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: A : Any = F"{prefix}.embeddings.{w}.weight" A : Union[str, Any] = state_dict[param_name] for w in ["weight", "bias"]: A : List[Any] = F"{prefix}.embeddings.LayerNorm.{w}" A : List[str] = state_dict[param_name] # Transformer Blocks # A : Optional[int] = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: A : Any = state_dict[ F"{prefix}.h.{teacher_idx}.{layer}.{w}" ] A : List[str] = state_dict[F"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: A : List[Any] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: A : Optional[int] = state_dict[F"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: A : List[Any] = state_dict[F"lm_head.dense.{w}"] A : List[str] = state_dict[F"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: A : List[str] = state_dict[F"{prefix}.ln_f.{w}"] A : Dict = state_dict['lm_head.weight'] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
33
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __A: def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ) -> List[Any]: '''simple docstring''' __a = parent __a = 13 __a = 7 __a = True __a = True __a = True __a = True __a = 99 __a = 384 __a = 2 __a = 4 __a = 37 __a = '''gelu''' __a = 0.1 __a = 0.1 __a = 512 __a = 16 __a = 2 __a = 0.02 __a = 3 __a = 4 __a = 128 __a = 2 __a = 9 __a = 1 __a = None def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = TFConvBertModel(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = [input_ids, input_mask] __a = model(_snake_case ) __a = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = TFConvBertForMaskedLM(config=_snake_case ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Dict: '''simple docstring''' __a = self.num_labels __a = TFConvBertForSequenceClassification(config=_snake_case ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = self.num_choices __a = TFConvBertForMultipleChoice(config=_snake_case ) __a = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) __a = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: '''simple docstring''' __a = self.num_labels __a = TFConvBertForTokenClassification(config=_snake_case ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: '''simple docstring''' __a = TFConvBertForQuestionAnswering(config=_snake_case ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A( a , a , unittest.TestCase ): snake_case_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = TFConvBertModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True __a = True if hasattr(_snake_case , '''use_cache''' ): __a = True __a = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) __a = getattr(self.model_tester , '''key_length''' , _snake_case ) for model_class in self.all_model_classes: __a = self._prepare_for_class(_snake_case , _snake_case ) __a = model_class(_snake_case ) __a = len(model(_snake_case ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case , saved_model=_snake_case ) __a = os.path.join(_snake_case , '''saved_model''' , '''1''' ) __a = tf.keras.models.load_model(_snake_case ) __a = model(_snake_case ) if self.is_encoder_decoder: __a = outputs['''encoder_hidden_states'''] __a = outputs['''encoder_attentions'''] else: __a = outputs['''hidden_states'''] __a = outputs['''attentions'''] self.assertEqual(len(_snake_case ) , _snake_case ) __a = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_snake_case ) , _snake_case ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True __a = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) __a = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) __a = getattr(self.model_tester , '''key_length''' , _snake_case ) __a = getattr(self.model_tester , '''key_length''' , _snake_case ) def check_decoder_attentions_output(_snake_case ): __a = len(_snake_case ) self.assertEqual(out_len % 2 , 0 ) __a = outputs.decoder_attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_snake_case ): __a = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __a = True __a = False __a = model_class(_snake_case ) __a = model(self._prepare_for_class(_snake_case , _snake_case ) ) __a = len(_snake_case ) self.assertEqual(config.output_hidden_states , _snake_case ) check_encoder_attentions_output(_snake_case ) if self.is_encoder_decoder: __a = model_class(_snake_case ) __a = model(self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(config.output_hidden_states , _snake_case ) check_decoder_attentions_output(_snake_case ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __a = True __a = model_class(_snake_case ) __a = model(self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(config.output_hidden_states , _snake_case ) check_encoder_attentions_output(_snake_case ) # Check attention is always last and order is fine __a = True __a = True __a = model_class(_snake_case ) __a = model(self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_snake_case ) ) self.assertEqual(model.config.output_hidden_states , _snake_case ) check_encoder_attentions_output(_snake_case ) @require_tf class __A( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) __a = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a = model(_snake_case )[0] __a = [1, 6, 768] self.assertEqual(output.shape , _snake_case ) __a = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _snake_case , atol=1E-4 )
33
import os import numpy import onnx def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = a.name __a = b.name __a = '''''' __a = '''''' __a = a == b __a = name_a __a = name_b return res def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> str: for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> Union[str, Any]: __a = list(model.graph.initializer ) __a = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a = inits[i].name __a = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def __lowerCAmelCase ( a__ ) -> str: __a = os.path.dirname(a__ ) __a = os.path.basename(a__ ) __a = onnx.load(os.path.join(a__ , a__ ) ) __a = list(model.graph.initializer ) __a = set() __a = {} __a = [] __a = 0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) __a = inits[j].data_type __a = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , a__ ) total_reduced_size += mem_size __a = inits[i].name __a = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: __a = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) __a = sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) __a = '''optimized_''' + model_file_name __a = os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
33
1
import logging from transformers.configuration_utils import PretrainedConfig A : Union[str, Any] = logging.getLogger(__name__) class __A( a ): snake_case_ = '''masked_bert''' def __init__( self , _snake_case=30_522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="topK" , _snake_case="constant" , _snake_case=0.0 , **_snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_snake_case , **_snake_case ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = pruning_method __a = mask_init __a = mask_scale
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __A: def __init__( self , _snake_case , ) -> Union[str, Any]: '''simple docstring''' __a = parent __a = 13 __a = 7 __a = True __a = True __a = True __a = True __a = True __a = False __a = False __a = False __a = 2 __a = 99 __a = 0 __a = 32 __a = 2 __a = 4 __a = 0.1 __a = 0.1 __a = 512 __a = 16 __a = 2 __a = 0.02 __a = 3 __a = 4 __a = '''last''' __a = True __a = None __a = 0 def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __a = None if self.use_input_lengths: __a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> Tuple: '''simple docstring''' __a = TFFlaubertModel(config=_snake_case ) __a = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} __a = model(_snake_case ) __a = [input_ids, input_mask] __a = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> Union[str, Any]: '''simple docstring''' __a = TFFlaubertWithLMHeadModel(_snake_case ) __a = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> List[str]: '''simple docstring''' __a = TFFlaubertForQuestionAnsweringSimple(_snake_case ) __a = {'''input_ids''': input_ids, '''lengths''': input_lengths} __a = model(_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> int: '''simple docstring''' __a = TFFlaubertForSequenceClassification(_snake_case ) __a = {'''input_ids''': input_ids, '''lengths''': input_lengths} __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> int: '''simple docstring''' __a = self.num_labels __a = TFFlaubertForTokenClassification(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> List[Any]: '''simple docstring''' __a = self.num_choices __a = TFFlaubertForMultipleChoice(config=_snake_case ) __a = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) __a = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class __A( a , a , unittest.TestCase ): snake_case_ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable snake_case_ = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = TFFlaubertModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , emb_dim=37 ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFFlaubertModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __A( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) __a = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __a = model(_snake_case )[0] __a = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice. __a = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
33
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A : str = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) A : int = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase ( ) -> Tuple: __a = '''https://pypi.org/pypi/diffusers/json''' __a = json.loads(request.urlopen(a__ ).read() )['''releases'''].keys() return sorted(a__ , key=lambda a__ : version.Version(a__ ) ) def __lowerCAmelCase ( ) -> List[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(a__ ) os.makedirs(a__ , exist_ok=a__ ) __a = Path(a__ ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: init_hf_modules() __a = Path(a__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a__ , exist_ok=a__ ) __a = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import .xxx` __a = re.findall('''^\s*import\s+\.(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Unique-ify return list(set(a__ ) ) def __lowerCAmelCase ( a__ ) -> Any: __a = False __a = [module_file] __a = [] # Let's recurse through all relative imports while not no_change: __a = [] for f in files_to_check: new_imports.extend(get_relative_imports(a__ ) ) __a = Path(a__ ).parent __a = [str(module_path / m ) for m in new_imports] __a = [f for f in new_import_files if f not in all_relative_imports] __a = [F"""{f}.py""" for f in new_import_files] __a = len(a__ ) == 0 all_relative_imports.extend(a__ ) return all_relative_imports def __lowerCAmelCase ( a__ ) -> str: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import xxx` __a = re.findall('''^\s*import\s+(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Only keep the top-level module __a = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all __a = list(set(a__ ) ) __a = [] for imp in imports: try: importlib.import_module(a__ ) except ImportError: missing_packages.append(a__ ) if len(a__ ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F"""{', '.join(a__ )}. Run `pip install {' '.join(a__ )}`""" ) return get_relative_imports(a__ ) def __lowerCAmelCase ( a__ , a__ ) -> Dict: __a = module_path.replace(os.path.sep , '''.''' ) __a = importlib.import_module(a__ ) if class_name is None: return find_pipeline_class(a__ ) return getattr(a__ , a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: from ..pipelines import DiffusionPipeline __a = dict(inspect.getmembers(a__ , inspect.isclass ) ) __a = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a__ ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) __a = cls return pipeline_class def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , ) -> Tuple: __a = str(a__ ) __a = os.path.join(a__ , a__ ) if os.path.isfile(a__ ): __a = module_file_or_url __a = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: __a = get_diffusers_versions() # cut ".dev0" __a = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: __a = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: __a = F"""v{revision}""" elif revision == "main": __a = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub __a = COMMUNITY_PIPELINES_URL.format(revision=a__ , pipeline=a__ ) try: __a = cached_download( a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = '''git''' __a = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached __a = hf_hub_download( a__ , a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment __a = check_imports(a__ ) # Now we move the module inside our cached dynamic modules. __a = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a__ ) __a = Path(a__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a__ , submodule_path / module_file ) for module_needed in modules_needed: __a = F"""{module_needed}.py""" shutil.copy(os.path.join(a__ , a__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a__ , a__ ): __a = use_auth_token elif use_auth_token is True: __a = HfFolder.get_token() else: __a = None __a = model_info(a__ , revision=a__ , token=a__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __a = submodule_path / commit_hash __a = full_submodule + os.path.sep + commit_hash create_dynamic_module(a__ ) if not (submodule_path / module_file).exists(): shutil.copy(a__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a__ , F"""{module_needed}.py""" , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return os.path.join(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , **a__ , ) -> Tuple: __a = get_cached_module_file( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return get_class_in_module(a__ , final_module.replace('''.py''' , '''''' ) )
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : str = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['PerceiverFeatureExtractor'] A : int = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : List[Any] = logging.get_logger(__name__) A : Optional[Any] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class __A( a ): snake_case_ = '''table-transformer''' snake_case_ = ['''past_key_values'''] snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _snake_case=True , _snake_case=None , _snake_case=3 , _snake_case=100 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=True , _snake_case="relu" , _snake_case=256 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1.0 , _snake_case=False , _snake_case="sine" , _snake_case="resnet50" , _snake_case=True , _snake_case=False , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=1 , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , **_snake_case , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_snake_case , _snake_case ): __a = backbone_config.get('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_snake_case ) # set timm attributes to None __a , __a , __a = None, None, None __a = use_timm_backbone __a = backbone_config __a = num_channels __a = num_queries __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = decoder_layerdrop __a = encoder_layers __a = auxiliary_loss __a = position_embedding_type __a = backbone __a = use_pretrained_backbone __a = dilation # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.d_model class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return 12
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : int = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ['MobileViTFeatureExtractor'] A : str = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
import functools def __lowerCAmelCase ( a__ , a__ ) -> int: __a = len(a__ ) __a = len(a__ ) @functools.cache def min_distance(a__ , a__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __a = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , a__ ) , 1 + min_distance(a__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A : Union[str, Any] = logging.get_logger(__name__) A : List[str] = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class __A( a , a ): snake_case_ = '''focalnet''' def __init__( self , _snake_case=224 , _snake_case=4 , _snake_case=3 , _snake_case=96 , _snake_case=False , _snake_case=[192, 384, 768, 768] , _snake_case=[2, 2, 6, 2] , _snake_case=[2, 2, 2, 2] , _snake_case=[3, 3, 3, 3] , _snake_case="gelu" , _snake_case=4.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case=False , _snake_case=1E-4 , _snake_case=False , _snake_case=False , _snake_case=False , _snake_case=0.02 , _snake_case=1E-5 , _snake_case=32 , _snake_case=None , _snake_case=None , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = use_conv_embed __a = hidden_sizes __a = depths __a = focal_levels __a = focal_windows __a = hidden_act __a = mlp_ratio __a = hidden_dropout_prob __a = drop_path_rate __a = use_layerscale __a = layerscale_value __a = use_post_layernorm __a = use_post_layernorm_in_modulation __a = normalize_modulator __a = initializer_range __a = layer_norm_eps __a = encoder_stride __a = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a = get_aligned_output_features_output_indices( out_features=_snake_case , out_indices=_snake_case , stage_names=self.stage_names )
33
import logging from transformers.configuration_utils import PretrainedConfig A : Union[str, Any] = logging.getLogger(__name__) class __A( a ): snake_case_ = '''masked_bert''' def __init__( self , _snake_case=30_522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="topK" , _snake_case="constant" , _snake_case=0.0 , **_snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_snake_case , **_snake_case ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = pruning_method __a = mask_init __a = mask_scale
33
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __A: def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=24 , _snake_case=2 , _snake_case=6 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=None , _snake_case=1_000 , ) -> int: '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = scope __a = range_bbox def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __a = bbox[i, j, 3] __a = bbox[i, j, 1] __a = t if bbox[i, j, 2] < bbox[i, j, 0]: __a = bbox[i, j, 2] __a = bbox[i, j, 0] __a = t __a = None if self.use_input_mask: __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> Any: '''simple docstring''' __a = LiltModel(config=_snake_case ) model.to(_snake_case ) model.eval() __a = model(_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) __a = model(_snake_case , bbox=_snake_case , token_type_ids=_snake_case ) __a = model(_snake_case , bbox=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> List[str]: '''simple docstring''' __a = self.num_labels __a = LiltForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() __a = model( _snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> List[Any]: '''simple docstring''' __a = LiltForQuestionAnswering(config=_snake_case ) model.to(_snake_case ) model.eval() __a = model( _snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __A( a , a , a , unittest.TestCase ): snake_case_ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' return True def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = LiltModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = LiltModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch @slow class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(_snake_case ) __a = torch.tensor([[1, 2]] , device=_snake_case ) __a = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=_snake_case ) # forward pass with torch.no_grad(): __a = model(input_ids=_snake_case , bbox=_snake_case ) __a = torch.Size([1, 2, 768] ) __a = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=_snake_case , ) self.assertTrue(outputs.last_hidden_state.shape , _snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , _snake_case , atol=1E-3 ) )
33
import sys def __lowerCAmelCase ( a__ ) -> Optional[int]: __a = len(a__ ) __a = [[0 for x in range(a__ )] for x in range(a__ )] __a = [[0 for x in range(a__ )] for x in range(a__ )] for chain_length in range(2 , a__ ): for a in range(1 , n - chain_length + 1 ): __a = a + chain_length - 1 __a = sys.maxsize for c in range(a__ , a__ ): __a = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __a = cost __a = c return matrix, sol def __lowerCAmelCase ( a__ , a__ , a__ ) -> Any: if i == j: print('''A''' + str(a__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(a__ , a__ , optimal_solution[i][j] ) print_optiomal_solution(a__ , optimal_solution[i][j] + 1 , a__ ) print(''')''' , end=''' ''' ) def __lowerCAmelCase ( ) -> int: __a = [30, 35, 15, 5, 10, 20, 25] __a = len(a__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __a , __a = matrix_chain_order(a__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(a__ , 1 , n - 1 ) if __name__ == "__main__": main()
33
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __lowerCAmelCase ( a__ , a__=1 ) -> Any: if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def __lowerCAmelCase ( a__ , a__=0 ) -> Any: __a = [] for old_item in old_list: __a = old_item.replace('''in_layers.0''' , '''norm1''' ) __a = new_item.replace('''in_layers.2''' , '''conv1''' ) __a = new_item.replace('''out_layers.0''' , '''norm2''' ) __a = new_item.replace('''out_layers.3''' , '''conv2''' ) __a = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) __a = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) __a = shave_segments(a__ , n_shave_prefix_segments=a__ ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def __lowerCAmelCase ( a__ , a__=0 ) -> Tuple: __a = [] for old_item in old_list: __a = old_item __a = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) __a = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) __a = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) __a = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) __a = shave_segments(a__ , n_shave_prefix_segments=a__ ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def __lowerCAmelCase ( a__ , a__ , a__ , a__=None , a__=None , a__=None ) -> str: assert isinstance(a__ , a__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): __a = old_checkpoint[path] __a = old_tensor.shape[0] // 3 __a = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) __a = old_tensor.shape[0] // config['''num_head_channels'''] // 3 __a = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) __a , __a , __a = old_tensor.split(channels // num_heads , dim=1 ) __a = query.reshape(a__ ) __a = key.reshape(a__ ) __a = value.reshape(a__ ) for path in paths: __a = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here __a = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) __a = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) __a = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: __a = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: __a = old_checkpoint[path['''old''']][:, :, 0] else: __a = old_checkpoint[path['''old''']] def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = {} __a = checkpoint['''time_embed.0.weight'''] __a = checkpoint['''time_embed.0.bias'''] __a = checkpoint['''time_embed.2.weight'''] __a = checkpoint['''time_embed.2.bias'''] __a = checkpoint['''input_blocks.0.0.weight'''] __a = checkpoint['''input_blocks.0.0.bias'''] __a = checkpoint['''out.0.weight'''] __a = checkpoint['''out.0.bias'''] __a = checkpoint['''out.2.weight'''] __a = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only __a = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) __a = { layer_id: [key for key in checkpoint if F"""input_blocks.{layer_id}""" in key] for layer_id in range(a__ ) } # Retrieves the keys for the middle blocks only __a = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) __a = { layer_id: [key for key in checkpoint if F"""middle_block.{layer_id}""" in key] for layer_id in range(a__ ) } # Retrieves the keys for the output blocks only __a = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) __a = { layer_id: [key for key in checkpoint if F"""output_blocks.{layer_id}""" in key] for layer_id in range(a__ ) } for i in range(1 , a__ ): __a = (i - 1) // (config['''num_res_blocks'''] + 1) __a = (i - 1) % (config['''num_res_blocks'''] + 1) __a = [key for key in input_blocks[i] if F"""input_blocks.{i}.0""" in key] __a = [key for key in input_blocks[i] if F"""input_blocks.{i}.1""" in key] if F"""input_blocks.{i}.0.op.weight""" in checkpoint: __a = checkpoint[ F"""input_blocks.{i}.0.op.weight""" ] __a = checkpoint[ F"""input_blocks.{i}.0.op.bias""" ] continue __a = renew_resnet_paths(a__ ) __a = {'''old''': F"""input_blocks.{i}.0""", '''new''': F"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} __a = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( a__ , a__ , a__ , additional_replacements=[meta_path, resnet_op] , config=a__ ) if len(a__ ): __a = renew_attention_paths(a__ ) __a = { '''old''': F"""input_blocks.{i}.1""", '''new''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } __a = { F"""input_blocks.{i}.1.qkv.bias""": { '''key''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, F"""input_blocks.{i}.1.qkv.weight""": { '''key''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': F"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( a__ , a__ , a__ , additional_replacements=[meta_path] , attention_paths_to_split=a__ , config=a__ , ) __a = middle_blocks[0] __a = middle_blocks[1] __a = middle_blocks[2] __a = renew_resnet_paths(a__ ) assign_to_checkpoint(a__ , a__ , a__ , config=a__ ) __a = renew_resnet_paths(a__ ) assign_to_checkpoint(a__ , a__ , a__ , config=a__ ) __a = renew_attention_paths(a__ ) __a = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( a__ , a__ , a__ , attention_paths_to_split=a__ , config=a__ ) for i in range(a__ ): __a = i // (config['''num_res_blocks'''] + 1) __a = i % (config['''num_res_blocks'''] + 1) __a = [shave_segments(a__ , 2 ) for name in output_blocks[i]] __a = {} for layer in output_block_layers: __a , __a = layer.split('''.''' )[0], shave_segments(a__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(a__ ) else: __a = [layer_name] if len(a__ ) > 1: __a = [key for key in output_blocks[i] if F"""output_blocks.{i}.0""" in key] __a = [key for key in output_blocks[i] if F"""output_blocks.{i}.1""" in key] __a = renew_resnet_paths(a__ ) __a = renew_resnet_paths(a__ ) __a = {'''old''': F"""output_blocks.{i}.0""", '''new''': F"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(a__ , a__ , a__ , additional_replacements=[meta_path] , config=a__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): __a = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) __a = checkpoint[ F"""output_blocks.{i}.{index}.conv.weight""" ] __a = checkpoint[ F"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(a__ ) == 2: __a = [] if len(a__ ): __a = renew_attention_paths(a__ ) __a = { '''old''': F"""output_blocks.{i}.1""", '''new''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } __a = { F"""output_blocks.{i}.1.qkv.bias""": { '''key''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, F"""output_blocks.{i}.1.qkv.weight""": { '''key''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': F"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( a__ , a__ , a__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=a__ , ) else: __a = renew_resnet_paths(a__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: __a = '''.'''.join(['''output_blocks''', str(a__ ), path['''old''']] ) __a = '''.'''.join(['''up_blocks''', str(a__ ), '''resnets''', str(a__ ), path['''new''']] ) __a = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": A : str = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') A : str = parser.parse_args() A : int = torch.load(args.checkpoint_path) with open(args.config_file) as f: A : int = json.loads(f.read()) A : int = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] A : str = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: A : Optional[Any] = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) A : Any = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) A : List[str] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : int = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ['MobileViTFeatureExtractor'] A : str = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() A : List[Any] = logging.get_logger(__name__) A : Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } A : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Dict: for attribute in key.split('''.''' ): __a = getattr(a__ , a__ ) if weight_type is not None: __a = getattr(a__ , a__ ).shape else: __a = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = [] __a = fairseq_model.state_dict() __a = hf_model.feature_extractor __a = hf_model.adapter for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a__ , a__ , a__ , a__ ) __a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __a = True if "*" in mapped_key: __a = name.split(a__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: __a = '''weight''' else: __a = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Any: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> str: __a = full_name.split('''adaptor.''' )[-1] __a = name.split('''.''' ) if items[1].isdigit(): __a = int(items[1] ) else: __a = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __a = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __a = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __a = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __a = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(a__ , a__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __a = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __a = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: __a , __a = emb.weight.shape __a = nn.Linear(a__ , a__ , bias=a__ ) __a = emb.weight.data return lin_layer @torch.no_grad() def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Union[str, Any]: __a = WavaVecaConfig.from_pretrained( a__ , add_adapter=a__ , adapter_stride=a__ , adapter_kernel_size=a__ , use_auth_token=a__ , output_hidden_size=a__ , ) __a = MBartConfig.from_pretrained(a__ ) # load model __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) __a = model[0].eval() # load feature extractor __a = WavaVecaFeatureExtractor.from_pretrained(a__ , use_auth_token=a__ ) # set weights for wav2vec2 encoder __a = WavaVecaModel(a__ ) recursively_load_weights_wavaveca(model.encoder , a__ ) # load decoder weights __a = MBartForCausalLM(a__ ) __a , __a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a__ ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __a = SpeechEncoderDecoderModel(encoder=a__ , decoder=a__ ) __a = False __a = MBartaaTokenizer(a__ ) tokenizer.save_pretrained(a__ ) __a = hf_wavavec.config.to_dict() __a = tokenizer.pad_token_id __a = tokenizer.bos_token_id __a = tokenizer.eos_token_id __a = '''mbart50''' __a = '''wav2vec2''' __a = tokenizer.eos_token_id __a = 25_0004 __a = tokenizer.eos_token_id __a = SpeechEncoderDecoderConfig.from_dict(a__ ) hf_wavavec.save_pretrained(a__ ) feature_extractor.save_pretrained(a__ ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1_0_2_4, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=2_5_0_0_0_4, type=int, help='`decoder_start_token_id` of model config') A : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
33
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> np.ndarray: __a = cva.getAffineTransform(a__ , a__ ) return cva.warpAffine(a__ , a__ , (rows, cols) ) if __name__ == "__main__": # read original image A : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value A : Any = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A , A : List[Any] = gray_img.shape # set different points to rotate image A : str = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) A : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) A : Tuple = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) A : Tuple = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list A : Tuple = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A : Union[str, Any] = plt.figure(1) A : str = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
33
1
def __lowerCAmelCase ( a__ , a__ ) -> int: while b: __a , __a = b, a % b return a def __lowerCAmelCase ( a__ , a__ ) -> int: return a if b == 0 else euclidean_gcd_recursive(a__ , a % b ) def __lowerCAmelCase ( ) -> List[Any]: print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
33
from __future__ import annotations def __lowerCAmelCase ( a__ , a__ = None ) -> list[list[str]]: __a = word_bank or [] # create a table __a = len(a__ ) + 1 __a = [] for _ in range(a__ ): table.append([] ) # seed value __a = [[]] # because empty string has empty combination # iterate through the indices for i in range(a__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a__ )] == word: __a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a__ )]: combination.reverse() return table[len(a__ )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
33
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __lowerCAmelCase ( a__ ) -> Union[str, Any]: __a = os.path.join(args.tf_model_dir , '''parameters.json''' ) __a = json.loads(open(a__ ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): __a = args.output + '''.pt''' __a = OrderedDict() with tf.device('''/CPU:0''' ): __a = tf.train.load_checkpoint(args.tf_model_dir ) __a = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __a = reader.get_tensor(a__ ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): __a = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): __a = 8 __a = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __a = torch.tensor(a__ ) elif key_name.startswith('''model/moe''' ): __a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): __a = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player __a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __a = torch.tensor(a__ ) elif key_name.endswith('''/softmlp/kernel''' ): __a = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player __a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __a = torch.tensor(a__ ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): __a = key_name[-9:-7] for i in range(16 ): __a = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) __a = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __a = torch.tensor(a__ ) elif key_name.startswith('''model/mlp''' ): __a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): __a = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player __a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __a = torch.tensor(a__ ) elif key_name.endswith('''/p1/bias''' ): __a = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player __a = vnp.copy() # same because it is one dimensional __a = torch.tensor(a__ ) elif key_name.endswith('''/p2/kernel''' ): __a = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player __a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __a = torch.tensor(a__ ) elif key_name.endswith('''/p2/bias''' ): __a = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player __a = vnp.copy() # same because it is one dimensional __a = torch.tensor(a__ ) elif key_name.startswith('''model/ln''' ): __a = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): __a = '''model.blocks.%d.feed_forward.norm.bias''' % player __a = vnp.copy() # same because it is one dimensional __a = torch.tensor(a__ ) elif key_name.endswith('''/g''' ): __a = '''model.blocks.%d.feed_forward.norm.weight''' % player __a = vnp.copy() # same because it is one dimensional __a = torch.tensor(a__ ) elif key_name.startswith('''model/att''' ): __a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): __a = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __a = state[:, 0, :, :] __a = state[:, 1, :, :] __a = state[:, 2, :, :] __a = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __a = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __a = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __a = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player __a = torch.tensor(a__ ) __a = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player __a = torch.tensor(a__ ) __a = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player __a = torch.tensor(a__ ) elif key_name.endswith('''/o/kernel''' ): __a = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player __a = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix __a = torch.tensor(a__ ) elif key_name.startswith('''model/an''' ): __a = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): __a = '''model.blocks.%d.self_attn.norm.bias''' % player __a = vnp.copy() # same because it is one dimensional __a = torch.tensor(a__ ) elif key_name.endswith('''/g''' ): __a = '''model.blocks.%d.self_attn.norm.weight''' % player __a = vnp.copy() # same because it is one dimensional __a = torch.tensor(a__ ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): __a = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] __a = '''model.%s.weight''' % nlayer __a = vnp.copy() # same in embedded __a = torch.tensor(a__ ) if key_name.startswith('''model/wte''' ): __a = '''lm_head.weight''' __a = vnp.copy() # same in embedded __a = torch.tensor(a__ ) elif key_name.startswith('''model/wob''' ): __a = '''final_logits_bias''' __a = vnp.copy() # same in embedded __a = state.reshape((1, -1) ) __a = torch.tensor(a__ ) elif key_name == "model/dense/kernel": __a = '''model.last_project.weight''' __a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __a = torch.tensor(a__ ) elif key_name == "model/dense_1/bias": __a = '''model.last_project.bias''' __a = vnp.copy() # same because it is one dimensional __a = torch.tensor(a__ ) torch.save(a__ , args.output ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') A : str = parser.parse_args() convert_tf_gptsan_to_pt(args)
33
from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( a__ ) -> List[str]: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += [key] setattr(a__ , '''handle_key''' , a__ ) return func return decorator def __lowerCAmelCase ( *a__ ) -> str: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += keys setattr(a__ , '''handle_key''' , a__ ) return func return decorator class __A( a ): def __new__( cls , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = super().__new__(cls , _snake_case , _snake_case , _snake_case ) if not hasattr(_snake_case , '''key_handler''' ): setattr(_snake_case , '''key_handler''' , {} ) setattr(_snake_case , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __a = getattr(_snake_case , '''handle_key''' , [] ) for key in handled_keys: __a = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> List[str]: '''simple docstring''' __a = get_character() if char != KEYMAP["undefined"]: __a = ord(_snake_case ) __a = cls.key_handler.get(_snake_case ) if handler: __a = char return handler(cls ) else: return None def __lowerCAmelCase ( cls ) -> Union[str, Any]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
33
1
from math import pow, sqrt def __lowerCAmelCase ( *a__ ) -> bool: __a = len(a__ ) > 0 and all(value > 0.0 for value in values ) return result def __lowerCAmelCase ( a__ , a__ ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(a__ , a__ , a__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(a__ , a__ , a__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
from functools import lru_cache def __lowerCAmelCase ( a__ ) -> set: __a = 2 __a = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(a__ ) if n > 1: factors.add(a__ ) return factors @lru_cache def __lowerCAmelCase ( a__ ) -> int: return len(unique_prime_factors(a__ ) ) def __lowerCAmelCase ( a__ ) -> bool: return len(set(a__ ) ) in (0, 1) def __lowerCAmelCase ( a__ ) -> list: __a = 2 while True: # Increment each value of a generated range __a = [base + i for i in range(a__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. __a = [upf_len(a__ ) for x in group] checker.append(a__ ) # If all numbers in the list are equal, return the group variable. if equality(a__ ): return group # Increment our base variable by 1 base += 1 def __lowerCAmelCase ( a__ = 4 ) -> int: __a = run(a__ ) return results[0] if len(a__ ) else None if __name__ == "__main__": print(solution())
33
A : Optional[Any] = tuple[float, float, float] A : Union[str, Any] = tuple[float, float, float] def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = end_pointa[0] - end_pointa[0] __a = end_pointa[1] - end_pointa[1] __a = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = ab[1] * ac[2] - ab[2] * ac[1] # *i __a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> bool: return tuple(round(a__ , a__ ) for x in vector ) == (0, 0, 0) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 10 ) -> bool: __a = create_vector(a__ , a__ ) __a = create_vector(a__ , a__ ) return is_zero_vector(get_ad_vectors_cross(a__ , a__ ) , a__ )
33
1
from ..utils import DummyObject, requires_backends class __A( metaclass=a ): snake_case_ = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *_snake_case , **_snake_case ) -> Tuple: '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> str: '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
33
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) A : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } A : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Dict: for attribute in key.split('''.''' ): __a = getattr(a__ , a__ ) if weight_type is not None: __a = getattr(a__ , a__ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = [] __a = fairseq_model.state_dict() __a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True else: for key, mapped_key in MAPPING.items(): __a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __a = True if "*" in mapped_key: __a = name.split(a__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __a = '''weight''' else: __a = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> int: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) @torch.no_grad() def __lowerCAmelCase ( a__ , a__ , a__=None , a__=None , a__=True ) -> Tuple: if config_path is not None: __a = UniSpeechSatConfig.from_pretrained(a__ ) else: __a = UniSpeechSatConfig() __a = '''''' if is_finetuned: __a = UniSpeechSatForCTC(a__ ) else: __a = UniSpeechSatForPreTraining(a__ ) __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __a = model[0].eval() recursively_load_weights(a__ , a__ ) hf_wavavec.save_pretrained(a__ ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A : Dict = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
33
1
import numpy class __A: def __init__( self , _snake_case , _snake_case ) -> None: '''simple docstring''' __a = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __a = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __a = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __a = numpy.random.rand(3 , 1 ) # Real output values provided. __a = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __a = numpy.zeros(output_array.shape ) def SCREAMING_SNAKE_CASE_ ( self ) -> numpy.ndarray: '''simple docstring''' __a = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __a = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __a = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def SCREAMING_SNAKE_CASE_ ( self ) -> None: '''simple docstring''' __a = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __a = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __a = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> None: '''simple docstring''' for iteration in range(1 , iterations + 1 ): __a = self.feedforward() self.back_propagation() if give_loss: __a = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = input_arr __a = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __a = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __a = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __lowerCAmelCase ( a__ ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def __lowerCAmelCase ( a__ ) -> numpy.ndarray: return (value) * (1 - (value)) def __lowerCAmelCase ( ) -> int: __a = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __a = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __a = TwoHiddenLayerNeuralNetwork( input_array=a__ , output_array=a__ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a__ , iterations=10 , give_loss=a__ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
33
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A( a ): @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a = bertabert.config.encoder.vocab_size __a = tokenizer.sep_token_id __a = tokenizer.cls_token_id __a = 128 __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __a = train_dataset.select(range(32 ) ) __a = val_dataset.select(range(16 ) ) __a = 4 def _map_to_encoder_decoder_inputs(_snake_case ): # Tokenizer will automatically set [BOS] <text> [EOS] __a = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_snake_case , max_length=512 ) __a = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_snake_case , max_length=128 ) __a = inputs.input_ids __a = inputs.attention_mask __a = outputs.input_ids __a = outputs.input_ids.copy() __a = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __a = outputs.attention_mask assert all(len(_snake_case ) == 512 for x in inputs.input_ids ) assert all(len(_snake_case ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_snake_case ): __a = pred.label_ids __a = pred.predictions # all unnecessary tokens are removed __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_snake_case ) )] ) / len(_snake_case ) return {"accuracy": accuracy} # map train dataset __a = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __a = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __a = self.get_auto_remove_tmp_dir() __a = SeqaSeqTrainingArguments( output_dir=_snake_case , per_device_train_batch_size=_snake_case , per_device_eval_batch_size=_snake_case , predict_with_generate=_snake_case , evaluation_strategy='''steps''' , do_train=_snake_case , do_eval=_snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __a = SeqaSeqTrainer( model=_snake_case , args=_snake_case , compute_metrics=_compute_metrics , train_dataset=_snake_case , eval_dataset=_snake_case , tokenizer=_snake_case , ) # start training trainer.train()
33
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : Union[str, Any] = logging.get_logger(__name__) A : List[str] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __A( a ): snake_case_ = '''deta''' snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _snake_case=None , _snake_case=900 , _snake_case=2_048 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=6 , _snake_case=1_024 , _snake_case=8 , _snake_case=0.0 , _snake_case=True , _snake_case="relu" , _snake_case=256 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1.0 , _snake_case=True , _snake_case=False , _snake_case="sine" , _snake_case=5 , _snake_case=4 , _snake_case=4 , _snake_case=True , _snake_case=300 , _snake_case=True , _snake_case=True , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=1 , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , _snake_case=0.25 , **_snake_case , ) -> str: '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_snake_case , _snake_case ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_snake_case ) __a = backbone_config __a = num_queries __a = max_position_embeddings __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = auxiliary_loss __a = position_embedding_type # deformable attributes __a = num_feature_levels __a = encoder_n_points __a = decoder_n_points __a = two_stage __a = two_stage_num_proposals __a = with_box_refine __a = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient __a = focal_alpha super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.d_model def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.__class__.model_type return output
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
from math import ceil, sqrt def __lowerCAmelCase ( a__ = 100_0000 ) -> int: __a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"{solution() = }")
33
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __A( a ): snake_case_ = 0 snake_case_ = False snake_case_ = 3.0 class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": A : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) A : Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) A : int = torch.nn.Linear(1_0_0, 2_0_0) A : Optional[int] = accelerator.prepare(model) # Check the values changed in kwargs A : List[Any] = '' A : Tuple = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
33
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __lowerCAmelCase ( a__ , a__ ) -> Dict: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __a = flax_key_tuple[:-1] + ('''weight''',) __a = torch.permute(a__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a__ ): # linear layer __a = flax_key_tuple[:-1] + ('''weight''',) __a = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __a = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: if "metadata" in layer: __a = layer.split('''metadata''' ) __a = ''''''.join(split_layer[0] )[:-1] __a = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: __a = layer.split('''kvstore''' ) __a = ''''''.join(split_layer[0] )[:-1] __a = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: __a = layer.split('''/''' ) __a = '''/'''.join(split_layer[:-1] ) __a = (split_layer[-1],) if "kvstore/path" in layer: __a = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: __a = '''file''' else: __a = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __lowerCAmelCase ( a__ , a__ ) -> Optional[int]: __a = rename_keys(a__ ) __a = {} for k, v in current_block.items(): __a = v __a = new_current_block torch.save(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ = WEIGHTS_NAME ) -> List[Any]: __a = convert_file_size_to_int(a__ ) __a = [] __a = {} __a = 0 __a = 0 os.makedirs(a__ , exist_ok=a__ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: __a = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] __a = flatten_dict(a__ , sep='''/''' ) __a = {} for layer in checkpoint_info.keys(): __a , __a , __a = get_key_and_tensorstore_dict( a__ , a__ , a__ ) if curr_real_layer_name in all_layers: __a = content else: __a = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __a = torch.tensor(a__ ) __a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __a , __a = rename_base_flax_keys(tuple(key.split('''/''' ) ) , a__ ) __a = '''/'''.join(a__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __a = os.path.join( a__ , weights_name.replace('''.bin''' , F"""-{len(a__ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(a__ , a__ ) sharded_state_dicts.append(current_block.keys() ) del current_block __a = {} __a = 0 __a = raw_weights.to(getattr(a__ , a__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __a = os.path.join(a__ , weights_name.replace('''.bin''' , F"""-{len(a__ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(a__ , a__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __a = {} __a = {} for idx, shard in enumerate(a__ ): __a = weights_name.replace( '''.bin''' , F"""-{idx+1:05d}-of-{len(a__ ):05d}.bin""" ) # len(sharded_state_dicts):05d} __a = os.path.join(a__ , weights_name.replace('''.bin''' , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(a__ , os.path.join(a__ , a__ ) ) __a = shard for key in shard: __a = shard_file # Add the metadata __a = {'''total_size''': total_size} __a = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(a__ , a__ ) , '''w''' , encoding='''utf-8''' ) as f: __a = json.dumps(a__ , indent=2 , sort_keys=a__ ) + '''\n''' f.write(a__ ) return metadata, index if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) A : Optional[Any] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __lowerCAmelCase ( ) -> Optional[Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __a = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) __a = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) __a = TaTokenizer.from_pretrained('''t5-small''' ) __a = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' __a = tokenizer(a__ , return_tensors='''pt''' ).input_ids __a = model.generate(a__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
33
import os # Precomputes a list of the 100 first triangular numbers A : List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __lowerCAmelCase ( ) -> Tuple: __a = os.path.dirname(os.path.realpath(a__ ) ) __a = os.path.join(a__ , '''words.txt''' ) __a = '''''' with open(a__ ) as f: __a = f.readline() __a = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] __a = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
33
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __A( a , a , unittest.TestCase ): snake_case_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=False ) -> Optional[int]: '''simple docstring''' __a = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class in get_values(_snake_case ): __a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __A( a ): def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ) -> Dict: '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope __a = embedding_size def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[str]: '''simple docstring''' __a = TFMobileBertModel(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_snake_case ) __a = [input_ids, input_mask] __a = model(_snake_case ) __a = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = TFMobileBertForMaskedLM(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = TFMobileBertForNextSentencePrediction(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = TFMobileBertForPreTraining(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_snake_case ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> str: '''simple docstring''' __a = self.num_labels __a = TFMobileBertForSequenceClassification(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: '''simple docstring''' __a = self.num_choices __a = TFMobileBertForMultipleChoice(config=_snake_case ) __a = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) __a = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) __a = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[str]: '''simple docstring''' __a = self.num_labels __a = TFMobileBertForTokenClassification(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[str]: '''simple docstring''' __a = TFMobileBertForQuestionAnswering(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = model(_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = TFMobileBertModelTest.TFMobileBertModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: __a = TFMobileBertModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_tf class __A( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) __a = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a = model(_snake_case )[0] __a = [1, 6, 30_522] self.assertEqual(output.shape , _snake_case ) __a = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _snake_case , atol=1E-4 )
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : str = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['PerceiverFeatureExtractor'] A : int = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
from __future__ import annotations import bisect def __lowerCAmelCase ( a__ , a__ , a__ = 0 , a__ = -1 ) -> int: if hi < 0: __a = len(a__ ) while lo < hi: __a = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __a = mid + 1 else: __a = mid return lo def __lowerCAmelCase ( a__ , a__ , a__ = 0 , a__ = -1 ) -> int: if hi < 0: __a = len(a__ ) while lo < hi: __a = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __a = mid + 1 else: __a = mid return lo def __lowerCAmelCase ( a__ , a__ , a__ = 0 , a__ = -1 ) -> None: sorted_collection.insert(bisect_left(a__ , a__ , a__ , a__ ) , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ = 0 , a__ = -1 ) -> None: sorted_collection.insert(bisect_right(a__ , a__ , a__ , a__ ) , a__ ) def __lowerCAmelCase ( a__ , a__ ) -> int | None: __a = 0 __a = len(a__ ) - 1 while left <= right: __a = left + (right - left) // 2 __a = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __a = midpoint - 1 else: __a = midpoint + 1 return None def __lowerCAmelCase ( a__ , a__ ) -> int | None: __a = bisect.bisect_left(a__ , a__ ) if index != len(a__ ) and sorted_collection[index] == item: return index return None def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> int | None: if right < left: return None __a = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(a__ , a__ , a__ , midpoint - 1 ) else: return binary_search_by_recursion(a__ , a__ , midpoint + 1 , a__ ) if __name__ == "__main__": A : List[str] = input('Enter numbers separated by comma:\n').strip() A : Optional[Any] = sorted(int(item) for item in user_input.split(',')) A : str = int(input('Enter a single number to be found in the list:\n')) A : str = binary_search(collection, target) if result is None: print(F"{target} was not found in {collection}.") else: print(F"{target} was found at position {result} in {collection}.")
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __A: def __init__( self , _snake_case , _snake_case=13 , _snake_case=10 , _snake_case=3 , _snake_case=2 , _snake_case=2 , _snake_case=2 , _snake_case=True , _snake_case=True , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=10 , _snake_case=0.02 , _snake_case=0.9 , _snake_case=None , ) -> Tuple: '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = num_channels __a = patch_size __a = tubelet_size __a = num_frames __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = mask_ratio __a = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __a = (image_size // patch_size) ** 2 __a = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __a = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = VideoMAEModel(config=_snake_case ) model.to(_snake_case ) model.eval() __a = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = VideoMAEForPreTraining(_snake_case ) model.to(_snake_case ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __a = torch.ones((self.num_masks,) ) __a = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __a = mask.expand(self.batch_size , -1 ).bool() __a = model(_snake_case , _snake_case ) # model only returns predictions for masked patches __a = mask.sum().item() __a = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A( a , a , unittest.TestCase ): snake_case_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) snake_case_ = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = VideoMAEModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=False ) -> Tuple: '''simple docstring''' __a = copy.deepcopy(_snake_case ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __a = torch.ones((self.model_tester.num_masks,) ) __a = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __a = mask.expand(self.model_tester.batch_size , -1 ).bool() __a = bool_masked_pos.to(_snake_case ) if return_labels: if model_class in [ *get_values(_snake_case ), ]: __a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = VideoMAEModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' if not self.has_attentions: pass else: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True for model_class in self.all_model_classes: __a = self.model_tester.seq_length - self.model_tester.num_masks __a = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __a = True __a = False __a = True __a = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __a = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a = True __a = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __a = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __a = len(_snake_case ) # Check attention is always last and order is fine __a = True __a = True __a = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) __a = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): __a = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __a = outputs.hidden_states __a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_snake_case ) , _snake_case ) __a = self.model_tester.seq_length - self.model_tester.num_masks __a = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def __lowerCAmelCase ( ) -> int: __a = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __a = np.load(a__ ) return list(a__ ) @require_torch @require_vision class __A( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( _snake_case ) __a = self.default_image_processor __a = prepare_video() __a = image_processor(_snake_case , return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): __a = model(**_snake_case ) # verify the logits __a = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _snake_case ) __a = torch.tensor([0.3669, -0.0688, -0.2421] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(_snake_case ) __a = self.default_image_processor __a = prepare_video() __a = image_processor(_snake_case , return_tensors='''pt''' ).to(_snake_case ) # add boolean mask, indicating which patches to mask __a = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) __a = torch.load(_snake_case ) # forward pass with torch.no_grad(): __a = model(**_snake_case ) # verify the logits __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=_snake_case ) self.assertEqual(outputs.logits.shape , _snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _snake_case , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __a = torch.tensor([0.5142] , device=_snake_case ) self.assertTrue(torch.allclose(outputs.loss , _snake_case , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __a = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=_snake_case ).to( _snake_case ) with torch.no_grad(): __a = model(**_snake_case ) __a = torch.tensor(torch.tensor([0.6469] ) , device=_snake_case ) self.assertTrue(torch.allclose(outputs.loss , _snake_case , atol=1E-4 ) )
33
from string import ascii_uppercase A : Optional[int] = {char: i for i, char in enumerate(ascii_uppercase)} A : Union[str, Any] = dict(enumerate(ascii_uppercase)) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = len(a__ ) __a = 0 while True: if x == i: __a = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in message: if letter == " ": cipher_text += " " else: __a = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __a = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowerCAmelCase ( ) -> None: __a = '''THE GERMAN ATTACK''' __a = '''SECRET''' __a = generate_key(a__ , a__ ) __a = cipher_text(a__ , a__ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(a__ , a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
33
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Any = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') A : str = parser.parse_args() if args.model_type == "roberta": A : Union[str, Any] = RobertaForMaskedLM.from_pretrained(args.model_name) A : Any = 'roberta' elif args.model_type == "gpt2": A : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name) A : List[str] = 'transformer' A : Dict = model.state_dict() A : Any = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: A : Union[str, Any] = state_dict[F"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: A : Any = F"{prefix}.embeddings.{w}.weight" A : Union[str, Any] = state_dict[param_name] for w in ["weight", "bias"]: A : List[Any] = F"{prefix}.embeddings.LayerNorm.{w}" A : List[str] = state_dict[param_name] # Transformer Blocks # A : Optional[int] = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: A : Any = state_dict[ F"{prefix}.h.{teacher_idx}.{layer}.{w}" ] A : List[str] = state_dict[F"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: A : List[Any] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: A : Optional[int] = state_dict[F"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: A : List[Any] = state_dict[F"lm_head.dense.{w}"] A : List[str] = state_dict[F"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: A : List[str] = state_dict[F"{prefix}.ln_f.{w}"] A : Dict = state_dict['lm_head.weight'] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
33
1
from __future__ import annotations def __lowerCAmelCase ( a__ , a__ ) -> list[tuple[int, int]]: __a , __a = position __a = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __a = [] for position in positions: __a , __a = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(a__ ) return permissible_positions def __lowerCAmelCase ( a__ ) -> bool: return not any(elem == 0 for row in board for elem in row ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> bool: if is_complete(a__ ): return True for position in get_valid_pos(a__ , len(a__ ) ): __a , __a = position if board[y][x] == 0: __a = curr + 1 if open_knight_tour_helper(a__ , a__ , curr + 1 ): return True __a = 0 return False def __lowerCAmelCase ( a__ ) -> list[list[int]]: __a = [[0 for i in range(a__ )] for j in range(a__ )] for i in range(a__ ): for j in range(a__ ): __a = 1 if open_knight_tour_helper(a__ , (i, j) , 1 ): return board __a = 0 __a = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(a__ ) if __name__ == "__main__": import doctest doctest.testmod()
33
import os import numpy import onnx def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = a.name __a = b.name __a = '''''' __a = '''''' __a = a == b __a = name_a __a = name_b return res def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> str: for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> Union[str, Any]: __a = list(model.graph.initializer ) __a = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a = inits[i].name __a = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def __lowerCAmelCase ( a__ ) -> str: __a = os.path.dirname(a__ ) __a = os.path.basename(a__ ) __a = onnx.load(os.path.join(a__ , a__ ) ) __a = list(model.graph.initializer ) __a = set() __a = {} __a = [] __a = 0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) __a = inits[j].data_type __a = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , a__ ) total_reduced_size += mem_size __a = inits[i].name __a = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: __a = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) __a = sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) __a = '''optimized_''' + model_file_name __a = os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
33
1
def __lowerCAmelCase ( a__ = 100_0000 ) -> int: __a = set(range(3 , a__ , 2 ) ) primes.add(2 ) for p in range(3 , a__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , a__ , a__ ) ) ) __a = [float(a__ ) for n in range(limit + 1 )] for p in primes: for n in range(a__ , limit + 1 , a__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __A( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __a = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(_snake_case )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1E-3 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __a = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(_snake_case )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _snake_case , atol=1E-3 ) )
33
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A : str = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) A : int = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase ( ) -> Tuple: __a = '''https://pypi.org/pypi/diffusers/json''' __a = json.loads(request.urlopen(a__ ).read() )['''releases'''].keys() return sorted(a__ , key=lambda a__ : version.Version(a__ ) ) def __lowerCAmelCase ( ) -> List[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(a__ ) os.makedirs(a__ , exist_ok=a__ ) __a = Path(a__ ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: init_hf_modules() __a = Path(a__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a__ , exist_ok=a__ ) __a = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import .xxx` __a = re.findall('''^\s*import\s+\.(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Unique-ify return list(set(a__ ) ) def __lowerCAmelCase ( a__ ) -> Any: __a = False __a = [module_file] __a = [] # Let's recurse through all relative imports while not no_change: __a = [] for f in files_to_check: new_imports.extend(get_relative_imports(a__ ) ) __a = Path(a__ ).parent __a = [str(module_path / m ) for m in new_imports] __a = [f for f in new_import_files if f not in all_relative_imports] __a = [F"""{f}.py""" for f in new_import_files] __a = len(a__ ) == 0 all_relative_imports.extend(a__ ) return all_relative_imports def __lowerCAmelCase ( a__ ) -> str: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import xxx` __a = re.findall('''^\s*import\s+(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Only keep the top-level module __a = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all __a = list(set(a__ ) ) __a = [] for imp in imports: try: importlib.import_module(a__ ) except ImportError: missing_packages.append(a__ ) if len(a__ ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F"""{', '.join(a__ )}. Run `pip install {' '.join(a__ )}`""" ) return get_relative_imports(a__ ) def __lowerCAmelCase ( a__ , a__ ) -> Dict: __a = module_path.replace(os.path.sep , '''.''' ) __a = importlib.import_module(a__ ) if class_name is None: return find_pipeline_class(a__ ) return getattr(a__ , a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: from ..pipelines import DiffusionPipeline __a = dict(inspect.getmembers(a__ , inspect.isclass ) ) __a = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a__ ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) __a = cls return pipeline_class def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , ) -> Tuple: __a = str(a__ ) __a = os.path.join(a__ , a__ ) if os.path.isfile(a__ ): __a = module_file_or_url __a = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: __a = get_diffusers_versions() # cut ".dev0" __a = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: __a = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: __a = F"""v{revision}""" elif revision == "main": __a = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub __a = COMMUNITY_PIPELINES_URL.format(revision=a__ , pipeline=a__ ) try: __a = cached_download( a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = '''git''' __a = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached __a = hf_hub_download( a__ , a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment __a = check_imports(a__ ) # Now we move the module inside our cached dynamic modules. __a = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a__ ) __a = Path(a__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a__ , submodule_path / module_file ) for module_needed in modules_needed: __a = F"""{module_needed}.py""" shutil.copy(os.path.join(a__ , a__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a__ , a__ ): __a = use_auth_token elif use_auth_token is True: __a = HfFolder.get_token() else: __a = None __a = model_info(a__ , revision=a__ , token=a__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __a = submodule_path / commit_hash __a = full_submodule + os.path.sep + commit_hash create_dynamic_module(a__ ) if not (submodule_path / module_file).exists(): shutil.copy(a__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a__ , F"""{module_needed}.py""" , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return os.path.join(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , **a__ , ) -> Tuple: __a = get_cached_module_file( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return get_class_in_module(a__ , final_module.replace('''.py''' , '''''' ) )
33
1
import numpy as np from PIL import Image def __lowerCAmelCase ( a__ , a__ , a__ ) -> np.ndarray: __a = np.array(a__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __a = 0 __a = 0 __a = 0 __a = 0 # compute the shape of the output matrix __a = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __a = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __a = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a = 0 __a = 0 return updated_arr def __lowerCAmelCase ( a__ , a__ , a__ ) -> np.ndarray: __a = np.array(a__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __a = 0 __a = 0 __a = 0 __a = 0 # compute the shape of the output matrix __a = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __a = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __a = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a = 0 __a = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image A : Optional[int] = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : List[Any] = logging.get_logger(__name__) A : Optional[Any] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class __A( a ): snake_case_ = '''table-transformer''' snake_case_ = ['''past_key_values'''] snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _snake_case=True , _snake_case=None , _snake_case=3 , _snake_case=100 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=True , _snake_case="relu" , _snake_case=256 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1.0 , _snake_case=False , _snake_case="sine" , _snake_case="resnet50" , _snake_case=True , _snake_case=False , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=1 , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , **_snake_case , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_snake_case , _snake_case ): __a = backbone_config.get('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_snake_case ) # set timm attributes to None __a , __a , __a = None, None, None __a = use_timm_backbone __a = backbone_config __a = num_channels __a = num_queries __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = decoder_layerdrop __a = encoder_layers __a = auxiliary_loss __a = position_embedding_type __a = backbone __a = use_pretrained_backbone __a = dilation # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.d_model class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return 12
33
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __lowerCAmelCase ( ) -> Dict: __a = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } __a = Dataset.from_dict(a__ ) return dataset class __A( a ): def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = get_dataset() __a = make_duplicate_clusters(_snake_case , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = get_dataset() __a , __a = deduplicate_dataset(_snake_case ) self.assertEqual(len(_snake_case ) , 2 ) print(_snake_case ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , _snake_case )
33
import functools def __lowerCAmelCase ( a__ , a__ ) -> int: __a = len(a__ ) __a = len(a__ ) @functools.cache def min_distance(a__ , a__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __a = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , a__ ) , 1 + min_distance(a__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A : Dict = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
import logging from transformers.configuration_utils import PretrainedConfig A : Union[str, Any] = logging.getLogger(__name__) class __A( a ): snake_case_ = '''masked_bert''' def __init__( self , _snake_case=30_522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="topK" , _snake_case="constant" , _snake_case=0.0 , **_snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_snake_case , **_snake_case ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = pruning_method __a = mask_init __a = mask_scale
33
1
A : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] A : Any = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
33
import sys def __lowerCAmelCase ( a__ ) -> Optional[int]: __a = len(a__ ) __a = [[0 for x in range(a__ )] for x in range(a__ )] __a = [[0 for x in range(a__ )] for x in range(a__ )] for chain_length in range(2 , a__ ): for a in range(1 , n - chain_length + 1 ): __a = a + chain_length - 1 __a = sys.maxsize for c in range(a__ , a__ ): __a = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __a = cost __a = c return matrix, sol def __lowerCAmelCase ( a__ , a__ , a__ ) -> Any: if i == j: print('''A''' + str(a__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(a__ , a__ , optimal_solution[i][j] ) print_optiomal_solution(a__ , optimal_solution[i][j] + 1 , a__ ) print(''')''' , end=''' ''' ) def __lowerCAmelCase ( ) -> int: __a = [30, 35, 15, 5, 10, 20, 25] __a = len(a__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __a , __a = matrix_chain_order(a__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(a__ , 1 , n - 1 ) if __name__ == "__main__": main()
33
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __A: def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=False , _snake_case=True , _snake_case="None" , _snake_case=3 , _snake_case=4 , _snake_case=None , ) -> int: '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = relative_attention __a = position_biased_input __a = pos_att_type __a = scope def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = TFDebertaVaModel(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __a = [input_ids, input_mask] __a = model(_snake_case ) __a = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = TFDebertaVaForMaskedLM(config=_snake_case ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = self.num_labels __a = TFDebertaVaForSequenceClassification(config=_snake_case ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.num_labels __a = TFDebertaVaForTokenClassification(config=_snake_case ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = TFDebertaVaForQuestionAnswering(config=_snake_case ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __a = model(_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A( a , a , unittest.TestCase ): snake_case_ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) snake_case_ = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = TFDebertaVaModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(_snake_case ) @require_tf class __A( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) __a = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __a = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __a = model(_snake_case , attention_mask=_snake_case )[0] __a = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , _snake_case , atol=1E-4 )
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : int = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ['MobileViTFeatureExtractor'] A : str = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import re from filelock import FileLock try: import nltk A : str = True except (ImportError, ModuleNotFoundError): A : Optional[Any] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __lowerCAmelCase ( a__ ) -> str: re.sub('''<n>''' , '''''' , a__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(a__ ) )
33
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> np.ndarray: __a = cva.getAffineTransform(a__ , a__ ) return cva.warpAffine(a__ , a__ , (rows, cols) ) if __name__ == "__main__": # read original image A : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value A : Any = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A , A : List[Any] = gray_img.shape # set different points to rotate image A : str = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) A : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) A : Tuple = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) A : Tuple = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list A : Tuple = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A : Union[str, Any] = plt.figure(1) A : str = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
33
1
from __future__ import annotations from collections.abc import Iterator class __A: def __init__( self , _snake_case ) -> None: '''simple docstring''' __a = value __a = None __a = None class __A: def __init__( self , _snake_case ) -> None: '''simple docstring''' __a = tree def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
33
from __future__ import annotations def __lowerCAmelCase ( a__ , a__ = None ) -> list[list[str]]: __a = word_bank or [] # create a table __a = len(a__ ) + 1 __a = [] for _ in range(a__ ): table.append([] ) # seed value __a = [[]] # because empty string has empty combination # iterate through the indices for i in range(a__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a__ )] == word: __a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a__ )]: combination.reverse() return table[len(a__ )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
33
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor A : List[Any] = logging.get_logger(__name__) class __A( a ): def __init__( self , *_snake_case , **_snake_case ) -> None: '''simple docstring''' warnings.warn( '''The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use VideoMAEImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
33
from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( a__ ) -> List[str]: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += [key] setattr(a__ , '''handle_key''' , a__ ) return func return decorator def __lowerCAmelCase ( *a__ ) -> str: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += keys setattr(a__ , '''handle_key''' , a__ ) return func return decorator class __A( a ): def __new__( cls , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = super().__new__(cls , _snake_case , _snake_case , _snake_case ) if not hasattr(_snake_case , '''key_handler''' ): setattr(_snake_case , '''key_handler''' , {} ) setattr(_snake_case , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __a = getattr(_snake_case , '''handle_key''' , [] ) for key in handled_keys: __a = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> List[str]: '''simple docstring''' __a = get_character() if char != KEYMAP["undefined"]: __a = ord(_snake_case ) __a = cls.key_handler.get(_snake_case ) if handler: __a = char return handler(cls ) else: return None def __lowerCAmelCase ( cls ) -> Union[str, Any]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
33
1
from __future__ import annotations def __lowerCAmelCase ( a__ , a__ = None ) -> list[list[str]]: __a = word_bank or [] # create a table __a = len(a__ ) + 1 __a = [] for _ in range(a__ ): table.append([] ) # seed value __a = [[]] # because empty string has empty combination # iterate through the indices for i in range(a__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a__ )] == word: __a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a__ )]: combination.reverse() return table[len(a__ )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCAmelCase ( a__ ) -> Optional[int]: random.seed(a__ ) np.random.seed(a__ ) torch.manual_seed(a__ ) torch.cuda.manual_seed_all(a__ ) # ^^ safe to call this function even if cuda is not available class __A: def __init__( self , _snake_case , _snake_case = 0.9999 , _snake_case = 0.0 , _snake_case = 0 , _snake_case = False , _snake_case = 1.0 , _snake_case = 2 / 3 , _snake_case = None , _snake_case = None , **_snake_case , ) -> Tuple: '''simple docstring''' if isinstance(_snake_case , torch.nn.Module ): __a = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case , ) __a = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __a = True if kwargs.get('''max_value''' , _snake_case ) is not None: __a = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case ) __a = kwargs['''max_value'''] if kwargs.get('''min_value''' , _snake_case ) is not None: __a = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case ) __a = kwargs['''min_value'''] __a = list(_snake_case ) __a = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , _snake_case ) is not None: __a = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case ) self.to(device=kwargs['''device'''] ) __a = None __a = decay __a = min_decay __a = update_after_step __a = use_ema_warmup __a = inv_gamma __a = power __a = 0 __a = None # set in `step()` __a = model_cls __a = model_config @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , _snake_case ) -> "EMAModel": '''simple docstring''' __a , __a = model_cls.load_config(_snake_case , return_unused_kwargs=_snake_case ) __a = model_cls.from_pretrained(_snake_case ) __a = cls(model.parameters() , model_cls=_snake_case , model_config=model.config ) ema_model.load_state_dict(_snake_case ) return ema_model def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) __a = self.model_cls.from_config(self.model_config ) __a = self.state_dict() state_dict.pop('''shadow_params''' , _snake_case ) model.register_to_config(**_snake_case ) self.copy_to(model.parameters() ) model.save_pretrained(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> float: '''simple docstring''' __a = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __a = 1 - (1 + step / self.inv_gamma) ** -self.power else: __a = (1 + step) / (10 + step) __a = min(_snake_case , self.decay ) # make sure decay is not smaller than min_decay __a = max(_snake_case , self.min_decay ) return cur_decay_value @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' if isinstance(_snake_case , torch.nn.Module ): __a = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case , ) __a = parameters.parameters() __a = list(_snake_case ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __a = self.get_decay(self.optimization_step ) __a = decay __a = 1 - decay __a = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _snake_case ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __a = deepspeed.zero.GatheredParameters(_snake_case , modifier_rank=_snake_case ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> None: '''simple docstring''' __a = list(_snake_case ) for s_param, param in zip(self.shadow_params , _snake_case ): param.data.copy_(s_param.to(param.device ).data ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case=None , _snake_case=None ) -> None: '''simple docstring''' __a = [ p.to(device=_snake_case , dtype=_snake_case ) if p.is_floating_point() else p.to(device=_snake_case ) for p in self.shadow_params ] def SCREAMING_SNAKE_CASE_ ( self ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> None: '''simple docstring''' __a = [param.detach().cpu().clone() for param in parameters] def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , _snake_case ): param.data.copy_(c_param.data ) # Better memory-wise. __a = None def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> None: '''simple docstring''' __a = copy.deepcopy(_snake_case ) __a = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) __a = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , _snake_case ): raise ValueError('''Invalid min_decay''' ) __a = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , _snake_case ): raise ValueError('''Invalid optimization_step''' ) __a = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , _snake_case ): raise ValueError('''Invalid update_after_step''' ) __a = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _snake_case ): raise ValueError('''Invalid use_ema_warmup''' ) __a = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) __a = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) __a = state_dict.get('''shadow_params''' , _snake_case ) if shadow_params is not None: __a = shadow_params if not isinstance(self.shadow_params , _snake_case ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(_snake_case , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
33
A : Optional[Any] = tuple[float, float, float] A : Union[str, Any] = tuple[float, float, float] def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = end_pointa[0] - end_pointa[0] __a = end_pointa[1] - end_pointa[1] __a = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = ab[1] * ac[2] - ab[2] * ac[1] # *i __a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> bool: return tuple(round(a__ , a__ ) for x in vector ) == (0, 0, 0) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 10 ) -> bool: __a = create_vector(a__ , a__ ) __a = create_vector(a__ , a__ ) return is_zero_vector(get_ad_vectors_cross(a__ , a__ ) , a__ )
33
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
33
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) A : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } A : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Dict: for attribute in key.split('''.''' ): __a = getattr(a__ , a__ ) if weight_type is not None: __a = getattr(a__ , a__ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = [] __a = fairseq_model.state_dict() __a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True else: for key, mapped_key in MAPPING.items(): __a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __a = True if "*" in mapped_key: __a = name.split(a__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __a = '''weight''' else: __a = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> int: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) @torch.no_grad() def __lowerCAmelCase ( a__ , a__ , a__=None , a__=None , a__=True ) -> Tuple: if config_path is not None: __a = UniSpeechSatConfig.from_pretrained(a__ ) else: __a = UniSpeechSatConfig() __a = '''''' if is_finetuned: __a = UniSpeechSatForCTC(a__ ) else: __a = UniSpeechSatForPreTraining(a__ ) __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __a = model[0].eval() recursively_load_weights(a__ , a__ ) hf_wavavec.save_pretrained(a__ ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A : Dict = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A( a ): @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a = bertabert.config.encoder.vocab_size __a = tokenizer.sep_token_id __a = tokenizer.cls_token_id __a = 128 __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __a = train_dataset.select(range(32 ) ) __a = val_dataset.select(range(16 ) ) __a = 4 def _map_to_encoder_decoder_inputs(_snake_case ): # Tokenizer will automatically set [BOS] <text> [EOS] __a = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_snake_case , max_length=512 ) __a = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_snake_case , max_length=128 ) __a = inputs.input_ids __a = inputs.attention_mask __a = outputs.input_ids __a = outputs.input_ids.copy() __a = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __a = outputs.attention_mask assert all(len(_snake_case ) == 512 for x in inputs.input_ids ) assert all(len(_snake_case ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_snake_case ): __a = pred.label_ids __a = pred.predictions # all unnecessary tokens are removed __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_snake_case ) )] ) / len(_snake_case ) return {"accuracy": accuracy} # map train dataset __a = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __a = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __a = self.get_auto_remove_tmp_dir() __a = SeqaSeqTrainingArguments( output_dir=_snake_case , per_device_train_batch_size=_snake_case , per_device_eval_batch_size=_snake_case , predict_with_generate=_snake_case , evaluation_strategy='''steps''' , do_train=_snake_case , do_eval=_snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __a = SeqaSeqTrainer( model=_snake_case , args=_snake_case , compute_metrics=_compute_metrics , train_dataset=_snake_case , eval_dataset=_snake_case , tokenizer=_snake_case , ) # start training trainer.train()
33
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig A : List[str] = logging.get_logger(__name__) # General docstring A : Optional[Any] = 'MobileNetV1Config' # Base docstring A : List[Any] = 'google/mobilenet_v1_1.0_224' A : Dict = [1, 1_0_2_4, 7, 7] # Image classification docstring A : Dict = 'google/mobilenet_v1_1.0_224' A : Tuple = 'tabby, tabby cat' A : List[Any] = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCAmelCase ( a__ , a__ , a__=None ) -> str: __a = {} if isinstance(a__ , a__ ): __a = model.mobilenet_va else: __a = model __a = '''MobilenetV1/Conv2d_0/''' __a = backbone.conv_stem.convolution.weight __a = backbone.conv_stem.normalization.bias __a = backbone.conv_stem.normalization.weight __a = backbone.conv_stem.normalization.running_mean __a = backbone.conv_stem.normalization.running_var for i in range(13 ): __a = i + 1 __a = i * 2 __a = backbone.layer[pt_index] __a = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" __a = pointer.convolution.weight __a = pointer.normalization.bias __a = pointer.normalization.weight __a = pointer.normalization.running_mean __a = pointer.normalization.running_var __a = backbone.layer[pt_index + 1] __a = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" __a = pointer.convolution.weight __a = pointer.normalization.bias __a = pointer.normalization.weight __a = pointer.normalization.running_mean __a = pointer.normalization.running_var if isinstance(a__ , a__ ): __a = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' __a = model.classifier.weight __a = model.classifier.bias return tf_to_pt_map def __lowerCAmelCase ( a__ , a__ , a__ ) -> List[str]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __a = tf.train.list_variables(a__ ) __a = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) __a = tf.train.load_variable(a__ , a__ ) __a = array # Build TF to PyTorch weights loading map __a = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue __a = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __a = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __a = array.squeeze().transpose() else: __a = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) __a = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def __lowerCAmelCase ( a__ , a__ ) -> torch.Tensor: __a , __a = features.shape[-2:] __a , __a = conv_layer.stride __a , __a = conv_layer.kernel_size if in_height % stride_height == 0: __a = max(kernel_height - stride_height , 0 ) else: __a = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __a = max(kernel_width - stride_width , 0 ) else: __a = max(kernel_width - (in_width % stride_width) , 0 ) __a = pad_along_width // 2 __a = pad_along_width - pad_left __a = pad_along_height // 2 __a = pad_along_height - pad_top __a = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class __A( nn.Module ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = 1 , _snake_case = 1 , _snake_case = False , _snake_case = True , _snake_case = True , ) -> None: '''simple docstring''' super().__init__() __a = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) __a = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __a = nn.Convad( in_channels=_snake_case , out_channels=_snake_case , kernel_size=_snake_case , stride=_snake_case , padding=_snake_case , groups=_snake_case , bias=_snake_case , padding_mode='''zeros''' , ) if use_normalization: __a = nn.BatchNormad( num_features=_snake_case , eps=config.layer_norm_eps , momentum=0.9997 , affine=_snake_case , track_running_stats=_snake_case , ) else: __a = None if use_activation: if isinstance(_snake_case , _snake_case ): __a = ACTaFN[use_activation] elif isinstance(config.hidden_act , _snake_case ): __a = ACTaFN[config.hidden_act] else: __a = config.hidden_act else: __a = None def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> torch.Tensor: '''simple docstring''' if self.config.tf_padding: __a = apply_tf_padding(_snake_case , self.convolution ) __a = self.convolution(_snake_case ) if self.normalization is not None: __a = self.normalization(_snake_case ) if self.activation is not None: __a = self.activation(_snake_case ) return features class __A( a ): snake_case_ = MobileNetVaConfig snake_case_ = load_tf_weights_in_mobilenet_va snake_case_ = '''mobilenet_v1''' snake_case_ = '''pixel_values''' snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> None: '''simple docstring''' if isinstance(_snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_snake_case , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) A : Dict = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' A : Tuple = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , a , ) class __A( a ): def __init__( self , _snake_case , _snake_case = True ) -> Dict: '''simple docstring''' super().__init__(_snake_case ) __a = config __a = 32 __a = max(int(depth * config.depth_multiplier ) , config.min_depth ) __a = MobileNetVaConvLayer( _snake_case , in_channels=config.num_channels , out_channels=_snake_case , kernel_size=3 , stride=2 , ) __a = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __a = nn.ModuleList() for i in range(13 ): __a = out_channels if strides[i] == 2 or i == 0: depth *= 2 __a = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _snake_case , in_channels=_snake_case , out_channels=_snake_case , kernel_size=3 , stride=strides[i] , groups=_snake_case , ) ) self.layer.append( MobileNetVaConvLayer( _snake_case , in_channels=_snake_case , out_channels=_snake_case , kernel_size=1 , ) ) __a = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case = None , _snake_case = None , _snake_case = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __a = self.conv_stem(_snake_case ) __a = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __a = layer_module(_snake_case ) if output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = hidden_states if self.pooler is not None: __a = torch.flatten(self.pooler(_snake_case ) , start_dim=1 ) else: __a = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case , pooler_output=_snake_case , hidden_states=_snake_case , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , a , ) class __A( a ): def __init__( self , _snake_case ) -> None: '''simple docstring''' super().__init__(_snake_case ) __a = config.num_labels __a = MobileNetVaModel(_snake_case ) __a = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __a = nn.Dropout(config.classifier_dropout_prob , inplace=_snake_case ) __a = nn.Linear(_snake_case , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.mobilenet_va(_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case ) __a = outputs.pooler_output if return_dict else outputs[1] __a = self.classifier(self.dropout(_snake_case ) ) __a = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __a = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __a = '''single_label_classification''' else: __a = '''multi_label_classification''' if self.config.problem_type == "regression": __a = MSELoss() if self.num_labels == 1: __a = loss_fct(logits.squeeze() , labels.squeeze() ) else: __a = loss_fct(_snake_case , _snake_case ) elif self.config.problem_type == "single_label_classification": __a = CrossEntropyLoss() __a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __a = BCEWithLogitsLoss() __a = loss_fct(_snake_case , _snake_case ) if not return_dict: __a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states , )
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import math import sys import cva import numpy as np def __lowerCAmelCase ( a__ , a__ ) -> np.ndarray: # For applying gaussian function for each element in matrix. __a = math.sqrt(a__ ) __a = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> np.ndarray: __a = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __lowerCAmelCase ( a__ , a__ ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __a = np.zeros((kernel_size, kernel_size) ) for i in range(0 , a__ ): for j in range(0 , a__ ): __a = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , ) -> np.ndarray: __a = np.zeros(img.shape ) __a = get_gauss_kernel(a__ , a__ ) __a , __a = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __a = get_slice(a__ , a__ , a__ , a__ ) __a = img_s - img_s[kernel_size // 2, kernel_size // 2] __a = vec_gaussian(a__ , a__ ) __a = np.multiply(a__ , a__ ) __a = np.multiply(a__ , a__ ) __a = np.sum(a__ ) / np.sum(a__ ) __a = val return imga def __lowerCAmelCase ( a__ ) -> tuple: __a = args[1] if args[1:] else '''../image_data/lena.jpg''' __a = float(args[2] ) if args[2:] else 1.0 __a = float(args[3] ) if args[3:] else 1.0 if args[4:]: __a = int(args[4] ) __a = kernel_size + abs(kernel_size % 2 - 1 ) else: __a = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": A , A , A , A : Optional[int] = parse_args(sys.argv) A : Tuple = cva.imread(filename, 0) cva.imshow('input image', img) A : Tuple = img / 2_5_5 A : Optional[int] = out.astype('float32') A : Any = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) A : Optional[int] = out * 2_5_5 A : int = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
33
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __A( a ): snake_case_ = 0 snake_case_ = False snake_case_ = 3.0 class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": A : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) A : Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) A : int = torch.nn.Linear(1_0_0, 2_0_0) A : Optional[int] = accelerator.prepare(model) # Check the values changed in kwargs A : List[Any] = '' A : Tuple = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
33
1
def __lowerCAmelCase ( a__ ) -> None: __a = generate_pascal_triangle(a__ ) for row_idx in range(a__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def __lowerCAmelCase ( a__ ) -> list[list[int]]: if not isinstance(a__ , a__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __a = [] for current_row_idx in range(a__ ): __a = populate_current_row(a__ , a__ ) triangle.append(a__ ) return triangle def __lowerCAmelCase ( a__ , a__ ) -> list[int]: __a = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __a , __a = 1, 1 for current_col_idx in range(1 , a__ ): calculate_current_element( a__ , a__ , a__ , a__ ) return current_row def __lowerCAmelCase ( a__ , a__ , a__ , a__ , ) -> None: __a = triangle[current_row_idx - 1][current_col_idx - 1] __a = triangle[current_row_idx - 1][current_col_idx] __a = above_to_left_elt + above_to_right_elt def __lowerCAmelCase ( a__ ) -> list[list[int]]: if not isinstance(a__ , a__ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __a = [[1]] for row_index in range(1 , a__ ): __a = [0] + result[-1] + [0] __a = row_index + 1 # Calculate the number of distinct elements in a row __a = sum(divmod(a__ , 2 ) ) __a = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __a = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __a = row_first_half + row_second_half result.append(a__ ) return result def __lowerCAmelCase ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(a__ , a__ ) -> None: __a = F"""{func.__name__}({value})""" __a = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(a__ , a__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
33
import os # Precomputes a list of the 100 first triangular numbers A : List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __lowerCAmelCase ( ) -> Tuple: __a = os.path.dirname(os.path.realpath(a__ ) ) __a = os.path.join(a__ , '''words.txt''' ) __a = '''''' with open(a__ ) as f: __a = f.readline() __a = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] __a = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
33
1
from string import ascii_uppercase A : Optional[int] = {char: i for i, char in enumerate(ascii_uppercase)} A : Union[str, Any] = dict(enumerate(ascii_uppercase)) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = len(a__ ) __a = 0 while True: if x == i: __a = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in message: if letter == " ": cipher_text += " " else: __a = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __a = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowerCAmelCase ( ) -> None: __a = '''THE GERMAN ATTACK''' __a = '''SECRET''' __a = generate_key(a__ , a__ ) __a = cipher_text(a__ , a__ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(a__ , a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : str = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['PerceiverFeatureExtractor'] A : int = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __lowerCAmelCase ( a__ , a__ ) -> Optional[int]: assert isinstance(a__ , a__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> str: __a = tmp_path / '''cache''' __a = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=a__ , keep_in_memory=a__ ).read() _check_sql_dataset(a__ , a__ ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ ) -> Union[str, Any]: __a = tmp_path / '''cache''' __a = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __a = features.copy() if features else default_expected_features __a = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) __a = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=a__ , cache_dir=a__ ).read() _check_sql_dataset(a__ , a__ ) def __lowerCAmelCase ( a__ ) -> int: with contextlib.closing(sqlitea.connect(a__ ) ) as con: __a = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def __lowerCAmelCase ( a__ , a__ , a__ ) -> List[Any]: __a = tmp_path / '''cache''' __a = os.path.join(a__ , '''tmp.sql''' ) __a = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=a__ ).read() SqlDatasetWriter(a__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() __a = iter_sql_file(a__ ) __a = iter_sql_file(a__ ) for rowa, rowa in zip(a__ , a__ ): assert rowa == rowa @require_sqlalchemy def __lowerCAmelCase ( a__ , a__ , a__ ) -> str: __a = tmp_path / '''cache''' __a = os.path.join(a__ , '''tmp.sql''' ) __a = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=a__ ).read() SqlDatasetWriter(a__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() __a = iter_sql_file(a__ ) __a = iter_sql_file(a__ ) for rowa, rowa in zip(a__ , a__ ): assert rowa == rowa @require_sqlalchemy def __lowerCAmelCase ( a__ , a__ , a__ ) -> str: __a = tmp_path / '''cache''' __a = os.path.join(a__ , '''tmp.sql''' ) __a = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=a__ ).read() with pytest.raises(a__ ): SqlDatasetWriter(a__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A( a , unittest.TestCase ): snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] snake_case_ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] snake_case_ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] snake_case_ = False @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __a = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __a = UNetaDConditionModel(**_snake_case ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __a = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.dummy_unet __a = self.dummy_movq __a = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __a = DDIMScheduler(**_snake_case ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=0 ) -> Optional[Any]: '''simple docstring''' __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_snake_case ) ).to(_snake_case ) __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _snake_case ) # create init_image __a = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_snake_case ) ).convert('''RGB''' ).resize((256, 256) ) # create hint __a = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith('''mps''' ): __a = torch.manual_seed(_snake_case ) else: __a = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __a = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = '''cpu''' __a = self.get_dummy_components() __a = self.pipeline_class(**_snake_case ) __a = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __a = pipe(**self.get_dummy_inputs(_snake_case ) ) __a = output.images __a = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __a = init_image.resize((512, 512) ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) __a = torch.from_numpy(np.array(_snake_case ) ).float() / 255.0 __a = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __a = '''A robot, 4k photo''' __a = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) __a = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) __a = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) __a = torch.Generator(device='''cpu''' ).manual_seed(0 ) __a , __a = pipe_prior( _snake_case , image=_snake_case , strength=0.85 , generator=_snake_case , negative_prompt='''''' , ).to_tuple() __a = pipeline( image=_snake_case , image_embeds=_snake_case , negative_image_embeds=_snake_case , hint=_snake_case , generator=_snake_case , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
33
from string import ascii_uppercase A : Optional[int] = {char: i for i, char in enumerate(ascii_uppercase)} A : Union[str, Any] = dict(enumerate(ascii_uppercase)) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = len(a__ ) __a = 0 while True: if x == i: __a = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in message: if letter == " ": cipher_text += " " else: __a = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __a = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowerCAmelCase ( ) -> None: __a = '''THE GERMAN ATTACK''' __a = '''SECRET''' __a = generate_key(a__ , a__ ) __a = cipher_text(a__ , a__ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(a__ , a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
33
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __A: def __init__( self , _snake_case , ) -> Tuple: '''simple docstring''' __a = parent __a = 13 __a = 7 __a = True __a = True __a = True __a = 99 __a = 32 __a = 2 __a = 4 __a = 37 __a = '''gelu''' __a = 0.1 __a = 0.1 __a = 512 __a = 16 __a = 2 __a = 0.02 __a = 3 __a = 4 __a = None def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = self.prepare_config_and_inputs() __a = True __a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = TFEsmModel(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __a = model(_snake_case ) __a = [input_ids, input_mask] __a = model(_snake_case ) __a = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> Optional[Any]: '''simple docstring''' __a = True __a = TFEsmModel(config=_snake_case ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } __a = model(_snake_case ) __a = [input_ids, input_mask] __a = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed __a = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: '''simple docstring''' __a = TFEsmForMaskedLM(config=_snake_case ) __a = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: '''simple docstring''' __a = self.num_labels __a = TFEsmForTokenClassification(config=_snake_case ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __a = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __A( a , a , unittest.TestCase ): snake_case_ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case_ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = TFEsmModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer __a = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: __a = model.get_output_embeddings() assert x is None __a = model.get_bias() assert name is None @require_tf class __A( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) __a = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a = model(_snake_case )[0] __a = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. __a = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) __a = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __a = model(_snake_case )[0] # compare the actual values for a slice. __a = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
33
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') A : str = parser.parse_args() if args.model_type == "roberta": A : Union[str, Any] = RobertaForMaskedLM.from_pretrained(args.model_name) A : Any = 'roberta' elif args.model_type == "gpt2": A : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name) A : List[str] = 'transformer' A : Dict = model.state_dict() A : Any = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: A : Union[str, Any] = state_dict[F"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: A : Any = F"{prefix}.embeddings.{w}.weight" A : Union[str, Any] = state_dict[param_name] for w in ["weight", "bias"]: A : List[Any] = F"{prefix}.embeddings.LayerNorm.{w}" A : List[str] = state_dict[param_name] # Transformer Blocks # A : Optional[int] = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: A : Any = state_dict[ F"{prefix}.h.{teacher_idx}.{layer}.{w}" ] A : List[str] = state_dict[F"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: A : List[Any] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: A : Optional[int] = state_dict[F"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: A : List[Any] = state_dict[F"lm_head.dense.{w}"] A : List[str] = state_dict[F"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: A : List[str] = state_dict[F"{prefix}.ln_f.{w}"] A : Dict = state_dict['lm_head.weight'] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
33
1
def __lowerCAmelCase ( a__ ) -> int: if n == 1 or not isinstance(a__ , a__ ): return 0 elif n == 2: return 1 else: __a = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowerCAmelCase ( a__ ) -> int: __a = 0 __a = 2 while digits < n: index += 1 __a = len(str(fibonacci(a__ ) ) ) return index def __lowerCAmelCase ( a__ = 1000 ) -> int: return fibonacci_digits_index(a__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
33
import os import numpy import onnx def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = a.name __a = b.name __a = '''''' __a = '''''' __a = a == b __a = name_a __a = name_b return res def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> str: for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> Union[str, Any]: __a = list(model.graph.initializer ) __a = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a = inits[i].name __a = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def __lowerCAmelCase ( a__ ) -> str: __a = os.path.dirname(a__ ) __a = os.path.basename(a__ ) __a = onnx.load(os.path.join(a__ , a__ ) ) __a = list(model.graph.initializer ) __a = set() __a = {} __a = [] __a = 0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) __a = inits[j].data_type __a = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , a__ ) total_reduced_size += mem_size __a = inits[i].name __a = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: __a = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) __a = sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) __a = '''optimized_''' + model_file_name __a = os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
33
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm A : Optional[int] = logging.get_logger(__name__) @dataclass class __A( a ): snake_case_ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_snake_case ) -> Union[str, Any]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __a = deprecated_arg[3:] setattr(self , _snake_case , not kwargs.pop(_snake_case ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) __a = kwargs.pop('''torchscript''' , self.torchscript ) __a = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) __a = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**_snake_case ) snake_case_ = field(default=a , metadata={'''help''': '''Trace the models using torchscript'''} ) snake_case_ = field(default=a , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) snake_case_ = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple["torch.device", int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: __a = torch.device('''cpu''' ) __a = 0 elif is_torch_tpu_available(): __a = xm.xla_device() __a = 0 else: __a = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __a = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self ) -> "torch.device": '''simple docstring''' requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return self.n_gpu > 0
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A: def __init__( self , _snake_case , _snake_case=3 , _snake_case=32 , _snake_case=3 , _snake_case=10 , _snake_case=[10, 20, 30, 40] , _snake_case=[1, 1, 2, 1] , _snake_case=True , _snake_case=True , _snake_case="relu" , _snake_case=3 , _snake_case=None , ) -> Optional[Any]: '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = num_channels __a = embeddings_size __a = hidden_sizes __a = depths __a = is_training __a = use_labels __a = hidden_act __a = num_labels __a = scope __a = len(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[str]: '''simple docstring''' __a = TFResNetModel(config=_snake_case ) __a = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.num_labels __a = TFResNetForImageClassification(_snake_case ) __a = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A( a , a , unittest.TestCase ): snake_case_ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () snake_case_ = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = TFResNetModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ) __a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): __a = model_class(_snake_case ) __a = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __a = layer_type __a = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __lowerCAmelCase ( ) -> Union[str, Any]: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_snake_case , return_tensors='''tf''' ) # forward pass __a = model(**_snake_case ) # verify the logits __a = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _snake_case ) __a = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1E-4 ) )
33
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A : str = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) A : int = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase ( ) -> Tuple: __a = '''https://pypi.org/pypi/diffusers/json''' __a = json.loads(request.urlopen(a__ ).read() )['''releases'''].keys() return sorted(a__ , key=lambda a__ : version.Version(a__ ) ) def __lowerCAmelCase ( ) -> List[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(a__ ) os.makedirs(a__ , exist_ok=a__ ) __a = Path(a__ ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: init_hf_modules() __a = Path(a__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a__ , exist_ok=a__ ) __a = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import .xxx` __a = re.findall('''^\s*import\s+\.(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Unique-ify return list(set(a__ ) ) def __lowerCAmelCase ( a__ ) -> Any: __a = False __a = [module_file] __a = [] # Let's recurse through all relative imports while not no_change: __a = [] for f in files_to_check: new_imports.extend(get_relative_imports(a__ ) ) __a = Path(a__ ).parent __a = [str(module_path / m ) for m in new_imports] __a = [f for f in new_import_files if f not in all_relative_imports] __a = [F"""{f}.py""" for f in new_import_files] __a = len(a__ ) == 0 all_relative_imports.extend(a__ ) return all_relative_imports def __lowerCAmelCase ( a__ ) -> str: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import xxx` __a = re.findall('''^\s*import\s+(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Only keep the top-level module __a = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all __a = list(set(a__ ) ) __a = [] for imp in imports: try: importlib.import_module(a__ ) except ImportError: missing_packages.append(a__ ) if len(a__ ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F"""{', '.join(a__ )}. Run `pip install {' '.join(a__ )}`""" ) return get_relative_imports(a__ ) def __lowerCAmelCase ( a__ , a__ ) -> Dict: __a = module_path.replace(os.path.sep , '''.''' ) __a = importlib.import_module(a__ ) if class_name is None: return find_pipeline_class(a__ ) return getattr(a__ , a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: from ..pipelines import DiffusionPipeline __a = dict(inspect.getmembers(a__ , inspect.isclass ) ) __a = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a__ ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) __a = cls return pipeline_class def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , ) -> Tuple: __a = str(a__ ) __a = os.path.join(a__ , a__ ) if os.path.isfile(a__ ): __a = module_file_or_url __a = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: __a = get_diffusers_versions() # cut ".dev0" __a = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: __a = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: __a = F"""v{revision}""" elif revision == "main": __a = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub __a = COMMUNITY_PIPELINES_URL.format(revision=a__ , pipeline=a__ ) try: __a = cached_download( a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = '''git''' __a = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached __a = hf_hub_download( a__ , a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment __a = check_imports(a__ ) # Now we move the module inside our cached dynamic modules. __a = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a__ ) __a = Path(a__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a__ , submodule_path / module_file ) for module_needed in modules_needed: __a = F"""{module_needed}.py""" shutil.copy(os.path.join(a__ , a__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a__ , a__ ): __a = use_auth_token elif use_auth_token is True: __a = HfFolder.get_token() else: __a = None __a = model_info(a__ , revision=a__ , token=a__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __a = submodule_path / commit_hash __a = full_submodule + os.path.sep + commit_hash create_dynamic_module(a__ ) if not (submodule_path / module_file).exists(): shutil.copy(a__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a__ , F"""{module_needed}.py""" , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return os.path.join(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , **a__ , ) -> Tuple: __a = get_cached_module_file( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return get_class_in_module(a__ , final_module.replace('''.py''' , '''''' ) )
33
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __A: def __init__( self , _snake_case , _snake_case=2 , _snake_case=True , _snake_case=False , _snake_case=10 , _snake_case=3 , _snake_case=32 * 8 , _snake_case=32 * 8 , _snake_case=4 , _snake_case=64 , ) -> str: '''simple docstring''' __a = parent __a = batch_size __a = is_training __a = use_auxiliary_loss __a = num_queries __a = num_channels __a = min_size __a = max_size __a = num_labels __a = hidden_dim __a = hidden_dim def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _snake_case ) __a = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_snake_case ) __a = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_snake_case ) > 0.5 ).float() __a = (torch.rand((self.batch_size, self.num_labels) , device=_snake_case ) > 0.5).long() __a = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __a = self.num_queries __a = self.num_labels __a = [1, 1, 1, 1] __a = self.num_channels __a = 64 __a = 128 __a = self.hidden_dim __a = self.hidden_dim __a = self.hidden_dim return config def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a , __a , __a , __a , __a = self.prepare_config_and_inputs() __a = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> str: '''simple docstring''' __a = output.encoder_hidden_states __a = output.pixel_decoder_hidden_states __a = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_snake_case ) , config.decoder_layers ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case=False ) -> Any: '''simple docstring''' with torch.no_grad(): __a = MaskaFormerModel(config=_snake_case ) model.to(_snake_case ) model.eval() __a = model(pixel_values=_snake_case , pixel_mask=_snake_case ) __a = model(_snake_case , output_hidden_states=_snake_case ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = MaskaFormerForUniversalSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() def comm_check_on_output(_snake_case ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __a = model(pixel_values=_snake_case , pixel_mask=_snake_case ) __a = model(_snake_case ) comm_check_on_output(_snake_case ) __a = model( pixel_values=_snake_case , pixel_mask=_snake_case , mask_labels=_snake_case , class_labels=_snake_case ) comm_check_on_output(_snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __A( a , a , unittest.TestCase ): snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = MaskaFormerModelTester(self ) __a = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_snake_case , **_snake_case , output_hidden_states=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_snake_case ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __a = MaskaFormerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = (self.model_tester.min_size,) * 2 __a = { '''pixel_values''': torch.randn((2, 3, *size) , device=_snake_case ), '''mask_labels''': torch.randn((2, 10, *size) , device=_snake_case ), '''class_labels''': torch.zeros(2 , 10 , device=_snake_case ).long(), } __a = self.model_tester.get_config() __a = MaskaFormerForUniversalSegmentation(_snake_case ).to(_snake_case ) __a = model(**_snake_case ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_snake_case , **_snake_case , output_hidden_states=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_snake_case ).to(_snake_case ) __a = model(**_snake_case , output_attentions=_snake_case ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' if not self.model_tester.is_training: return __a = self.all_model_classes[1] __a , __a , __a , __a , __a = self.model_tester.prepare_config_and_inputs() __a = model_class(_snake_case ) model.to(_snake_case ) model.train() __a = model(_snake_case , mask_labels=_snake_case , class_labels=_snake_case ).loss loss.backward() def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.all_model_classes[1] __a , __a , __a , __a , __a = self.model_tester.prepare_config_and_inputs() __a = True __a = True __a = model_class(_snake_case ).to(_snake_case ) model.train() __a = model(_snake_case , mask_labels=_snake_case , class_labels=_snake_case ) __a = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __a = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __a = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __a = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A : Any = 1E-4 def __lowerCAmelCase ( ) -> int: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __A( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_snake_case ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(_snake_case , return_tensors='''pt''' ).to(_snake_case ) __a = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_snake_case , (1, 3, 384, 384) ) with torch.no_grad(): __a = model(**_snake_case ) __a = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _snake_case , atol=_snake_case ) ) __a = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _snake_case , atol=_snake_case ) ) __a = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _snake_case , atol=_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_snake_case ).eval() __a = self.default_image_processor __a = prepare_img() __a = image_processor(_snake_case , return_tensors='''pt''' ).to(_snake_case ) __a = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_snake_case , (1, 3, 384, 384) ) with torch.no_grad(): __a = model(**_snake_case ) # masks_queries_logits __a = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __a = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __a = torch.tensor(_snake_case ).to(_snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _snake_case , atol=_snake_case ) ) # class_queries_logits __a = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __a = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _snake_case , atol=_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_snake_case ).eval() __a = self.default_image_processor __a = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) __a = inputs['''pixel_values'''].to(_snake_case ) __a = [el.to(_snake_case ) for el in inputs['''mask_labels''']] __a = [el.to(_snake_case ) for el in inputs['''class_labels''']] with torch.no_grad(): __a = model(**_snake_case ) self.assertTrue(outputs.loss is not None )
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : List[Any] = logging.get_logger(__name__) A : Optional[Any] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class __A( a ): snake_case_ = '''table-transformer''' snake_case_ = ['''past_key_values'''] snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _snake_case=True , _snake_case=None , _snake_case=3 , _snake_case=100 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=True , _snake_case="relu" , _snake_case=256 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1.0 , _snake_case=False , _snake_case="sine" , _snake_case="resnet50" , _snake_case=True , _snake_case=False , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=1 , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , **_snake_case , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_snake_case , _snake_case ): __a = backbone_config.get('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_snake_case ) # set timm attributes to None __a , __a , __a = None, None, None __a = use_timm_backbone __a = backbone_config __a = num_channels __a = num_queries __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = decoder_layerdrop __a = encoder_layers __a = auxiliary_loss __a = position_embedding_type __a = backbone __a = use_pretrained_backbone __a = dilation # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.d_model class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return 12
33
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A : Optional[int] = logging.get_logger('transformers.models.encodec') A : List[Any] = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } A : Dict = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } A : Dict = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } A : List[Any] = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } A : Dict = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } A : Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A : Any = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A : Union[str, Any] = [] A : List[str] = [] def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Optional[int]: for attribute in key.split('''.''' ): __a = getattr(a__ , a__ ) if weight_type is not None: __a = getattr(a__ , a__ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value elif weight_type == "running_mean": __a = value elif weight_type == "running_var": __a = value elif weight_type == "num_batches_tracked": __a = value elif weight_type == "weight_ih_l0": __a = value elif weight_type == "weight_hh_l0": __a = value elif weight_type == "bias_ih_l0": __a = value elif weight_type == "bias_hh_l0": __a = value elif weight_type == "weight_ih_l1": __a = value elif weight_type == "weight_hh_l1": __a = value elif weight_type == "bias_ih_l1": __a = value elif weight_type == "bias_hh_l1": __a = value else: __a = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def __lowerCAmelCase ( a__ , a__ ) -> Union[str, Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __a , __a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: __a = [] if model_name == "encodec_24khz" or "encodec_32khz": __a = MAPPING_24K elif model_name == "encodec_48khz": __a = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(a__ , a__ ): logger.info(F"""{name} was ignored""" ) continue __a = False for key, mapped_key in MAPPING.items(): if "*" in key: __a , __a = key.split('''.*.''' ) if prefix in name and suffix in name: __a = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue __a = True if "*" in mapped_key: __a = name.split(a__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "weight_ih_l0" in name: __a = '''weight_ih_l0''' elif "weight_hh_l0" in name: __a = '''weight_hh_l0''' elif "bias_ih_l0" in name: __a = '''bias_ih_l0''' elif "bias_hh_l0" in name: __a = '''bias_hh_l0''' elif "weight_ih_l1" in name: __a = '''weight_ih_l1''' elif "weight_hh_l1" in name: __a = '''weight_hh_l1''' elif "bias_ih_l1" in name: __a = '''bias_ih_l1''' elif "bias_hh_l1" in name: __a = '''bias_hh_l1''' elif "bias" in name: __a = '''bias''' elif "weight" in name: __a = '''weight''' elif "running_mean" in name: __a = '''running_mean''' elif "running_var" in name: __a = '''running_var''' elif "num_batches_tracked" in name: __a = '''num_batches_tracked''' else: __a = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def __lowerCAmelCase ( a__ , a__ , a__ , a__=None , a__=None , ) -> Optional[Any]: if config_path is not None: __a = EncodecConfig.from_pretrained(a__ ) else: __a = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __a = [8, 5, 4, 4] __a = [2.2] __a = 64 __a = 3_2000 __a = 2048 __a = False __a = False __a = False elif model_name == "encodec_48khz": __a = [8, 5, 4, 2] __a = [3.0, 6.0, 12.0, 24.0] __a = 4_8000 __a = 2 __a = False __a = '''time_group_norm''' __a = True __a = 1.0 __a = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) __a = EncodecModel(a__ ) __a = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(a__ ) __a = torch.load(a__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __a = original_checkpoint['''best_state'''] recursively_load_weights(a__ , a__ , a__ ) model.save_pretrained(a__ ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(a__ ) model.push_to_hub(a__ ) if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) A : Tuple = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
33
import functools def __lowerCAmelCase ( a__ , a__ ) -> int: __a = len(a__ ) __a = len(a__ ) @functools.cache def min_distance(a__ , a__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __a = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , a__ ) , 1 + min_distance(a__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
33
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets A : Optional[Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' A : List[str] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' A : str = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=True , _snake_case=False ) -> Optional[Any]: '''simple docstring''' if rouge_types is None: __a = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] __a = rouge_scorer.RougeScorer(rouge_types=_snake_case , use_stemmer=_snake_case ) if use_aggregator: __a = scoring.BootstrapAggregator() else: __a = [] for ref, pred in zip(_snake_case , _snake_case ): __a = scorer.score(_snake_case , _snake_case ) if use_aggregator: aggregator.add_scores(_snake_case ) else: scores.append(_snake_case ) if use_aggregator: __a = aggregator.aggregate() else: __a = {} for key in scores[0]: __a = [score[key] for score in scores] return result
33
import logging from transformers.configuration_utils import PretrainedConfig A : Union[str, Any] = logging.getLogger(__name__) class __A( a ): snake_case_ = '''masked_bert''' def __init__( self , _snake_case=30_522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="topK" , _snake_case="constant" , _snake_case=0.0 , **_snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_snake_case , **_snake_case ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = pruning_method __a = mask_init __a = mask_scale
33
1
from collections import defaultdict def __lowerCAmelCase ( a__ , a__ ) -> bool: __a = first_str.lower().strip() __a = second_str.lower().strip() # Remove whitespace __a = first_str.replace(''' ''' , '''''' ) __a = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(a__ ) != len(a__ ): return False # Default values for count should be 0 __a = defaultdict(a__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(a__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() A : Tuple = input('Enter the first string ').strip() A : str = input('Enter the second string ').strip() A : int = check_anagrams(input_a, input_b) print(F"{input_a} and {input_b} are {'' if status else 'not '}anagrams.")
33
import sys def __lowerCAmelCase ( a__ ) -> Optional[int]: __a = len(a__ ) __a = [[0 for x in range(a__ )] for x in range(a__ )] __a = [[0 for x in range(a__ )] for x in range(a__ )] for chain_length in range(2 , a__ ): for a in range(1 , n - chain_length + 1 ): __a = a + chain_length - 1 __a = sys.maxsize for c in range(a__ , a__ ): __a = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __a = cost __a = c return matrix, sol def __lowerCAmelCase ( a__ , a__ , a__ ) -> Any: if i == j: print('''A''' + str(a__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(a__ , a__ , optimal_solution[i][j] ) print_optiomal_solution(a__ , optimal_solution[i][j] + 1 , a__ ) print(''')''' , end=''' ''' ) def __lowerCAmelCase ( ) -> int: __a = [30, 35, 15, 5, 10, 20, 25] __a = len(a__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __a , __a = matrix_chain_order(a__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(a__ , 1 , n - 1 ) if __name__ == "__main__": main()
33
1
class __A: def __init__( self ) -> Any: '''simple docstring''' __a = {} def SCREAMING_SNAKE_CASE_ ( self ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_snake_case , ''' -> ''' , ''' -> '''.join([str(_snake_case ) for j in self.vertex[i]] ) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_snake_case ) else: # else make a new vertex __a = [to_vertex] def SCREAMING_SNAKE_CASE_ ( self ) -> None: '''simple docstring''' __a = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> None: '''simple docstring''' __a = True print(_snake_case , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_snake_case , _snake_case ) if __name__ == "__main__": A : List[str] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : int = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ['MobileViTFeatureExtractor'] A : str = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): A : Union[str, Any] = True from torch.cuda.amp import autocast A : Union[str, Any] = logging.getLogger(__name__) @dataclass class __A: snake_case_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) snake_case_ = field( default=a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) snake_case_ = field( default=a , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) snake_case_ = field( default=a , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) snake_case_ = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) snake_case_ = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) snake_case_ = field( default=0.999_995 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def __lowerCAmelCase ( a__ , a__ ) -> Union[str, Any]: logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a = logging.WARNING if model_args.verbose_logging: __a = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __a = logging.INFO logger.setLevel(a__ ) @dataclass class __A: snake_case_ = field( default=a , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) snake_case_ = field( default=a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) snake_case_ = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) snake_case_ = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) snake_case_ = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) snake_case_ = field( default=a , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) snake_case_ = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) snake_case_ = field( default=a , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) snake_case_ = field( default=20.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class __A: snake_case_ = 42 snake_case_ = 42 snake_case_ = "longest" snake_case_ = None snake_case_ = None def __call__( self , _snake_case ) -> Dict[str, torch.Tensor]: '''simple docstring''' __a = self.feature_extractor.pad( _snake_case , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) __a = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) __a = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __a = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) __a = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __a = 1 __a = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __a = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_snake_case , min_masks=2 , ) return batch class __A( a ): def __init__( self , *_snake_case , _snake_case=1 , _snake_case=0 , _snake_case=1.0 , **_snake_case ) -> Any: '''simple docstring''' super().__init__(*_snake_case , **_snake_case ) __a = 0 __a = max_gumbel_temp __a = min_gumbel_temp __a = gumbel_temp_decay def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> torch.Tensor: '''simple docstring''' model.train() __a = self._prepare_inputs(_snake_case ) if self.use_amp: with autocast(): __a = self.compute_loss(_snake_case , _snake_case ) else: __a = self.compute_loss(_snake_case , _snake_case ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __a = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __a = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __a = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_snake_case ).backward() elif self.use_apex: with amp.scale_loss(_snake_case , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_snake_case ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __lowerCAmelCase ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __a , __a , __a = parser.parse_args_into_dataclasses() configure_logger(a__ , a__ ) # Downloading and loading a dataset from the hub. __a = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __a = DatasetDict() __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __a = DatasetDict() __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __a = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=a__ ) def prepare_dataset(a__ ): # check that all files have the correct sampling rate __a , __a = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __a = datasets.map( a__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long __a = vectorized_datasets.filter( lambda a__ : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(a__ ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __a = vectorized_datasets.map( a__ , batched=a__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __a = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) __a = WavaVecaForPreTraining(a__ ) __a = DataCollatorForWavaVecaPretraining(model=a__ , feature_extractor=a__ ) __a = WavaVecaPreTrainer( model=a__ , data_collator=a__ , args=a__ , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=a__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
33
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> np.ndarray: __a = cva.getAffineTransform(a__ , a__ ) return cva.warpAffine(a__ , a__ , (rows, cols) ) if __name__ == "__main__": # read original image A : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value A : Any = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A , A : List[Any] = gray_img.shape # set different points to rotate image A : str = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) A : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) A : Tuple = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) A : Tuple = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list A : Tuple = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A : Union[str, Any] = plt.figure(1) A : str = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
33
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name A : int = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __lowerCAmelCase ( a__ , a__ , a__=8 ) -> List[Any]: __a = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __a = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __A( a ): def __init__( self , _snake_case , _snake_case , _snake_case , ) -> Any: '''simple docstring''' super().__init__() self.register_modules( unet=_snake_case , scheduler=_snake_case , movq=_snake_case , ) __a = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> str: '''simple docstring''' if latents is None: __a = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __a = latents.to(_snake_case ) __a = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> int: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device(F"""cuda:{gpu_id}""" ) __a = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> Dict: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __a = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __a = None for cpu_offloaded_model in [self.unet, self.movq]: __a , __a = cpu_offload_with_hook(_snake_case , _snake_case , prev_module_hook=_snake_case ) # We'll offload the last model manually. __a = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_snake_case , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_snake_case ) def __call__( self , _snake_case , _snake_case , _snake_case , _snake_case = 512 , _snake_case = 512 , _snake_case = 100 , _snake_case = 4.0 , _snake_case = 1 , _snake_case = None , _snake_case = None , _snake_case = "pil" , _snake_case = True , ) -> Union[str, Any]: '''simple docstring''' __a = self._execution_device __a = guidance_scale > 1.0 if isinstance(_snake_case , _snake_case ): __a = torch.cat(_snake_case , dim=0 ) if isinstance(_snake_case , _snake_case ): __a = torch.cat(_snake_case , dim=0 ) if isinstance(_snake_case , _snake_case ): __a = torch.cat(_snake_case , dim=0 ) __a = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __a = image_embeds.repeat_interleave(_snake_case , dim=0 ) __a = negative_image_embeds.repeat_interleave(_snake_case , dim=0 ) __a = hint.repeat_interleave(_snake_case , dim=0 ) __a = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_snake_case ) __a = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_snake_case ) self.scheduler.set_timesteps(_snake_case , device=_snake_case ) __a = self.scheduler.timesteps __a = self.movq.config.latent_channels __a , __a = downscale_height_and_width(_snake_case , _snake_case , self.movq_scale_factor ) # create initial latent __a = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _snake_case , _snake_case , _snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(_snake_case ) ): # expand the latents if we are doing classifier free guidance __a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a = {'''image_embeds''': image_embeds, '''hint''': hint} __a = self.unet( sample=_snake_case , timestep=_snake_case , encoder_hidden_states=_snake_case , added_cond_kwargs=_snake_case , return_dict=_snake_case , )[0] if do_classifier_free_guidance: __a , __a = noise_pred.split(latents.shape[1] , dim=1 ) __a , __a = noise_pred.chunk(2 ) __a , __a = variance_pred.chunk(2 ) __a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __a = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __a , __a = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step( _snake_case , _snake_case , _snake_case , generator=_snake_case , )[0] # post-processing __a = self.movq.decode(_snake_case , force_not_quantize=_snake_case )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __a = image * 0.5 + 0.5 __a = image.clamp(0 , 1 ) __a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __a = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
33
from __future__ import annotations def __lowerCAmelCase ( a__ , a__ = None ) -> list[list[str]]: __a = word_bank or [] # create a table __a = len(a__ ) + 1 __a = [] for _ in range(a__ ): table.append([] ) # seed value __a = [[]] # because empty string has empty combination # iterate through the indices for i in range(a__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a__ )] == word: __a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a__ )]: combination.reverse() return table[len(a__ )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( a__ ) -> List[str]: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += [key] setattr(a__ , '''handle_key''' , a__ ) return func return decorator def __lowerCAmelCase ( *a__ ) -> str: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += keys setattr(a__ , '''handle_key''' , a__ ) return func return decorator class __A( a ): def __new__( cls , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = super().__new__(cls , _snake_case , _snake_case , _snake_case ) if not hasattr(_snake_case , '''key_handler''' ): setattr(_snake_case , '''key_handler''' , {} ) setattr(_snake_case , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __a = getattr(_snake_case , '''handle_key''' , [] ) for key in handled_keys: __a = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> List[str]: '''simple docstring''' __a = get_character() if char != KEYMAP["undefined"]: __a = ord(_snake_case ) __a = cls.key_handler.get(_snake_case ) if handler: __a = char return handler(cls ) else: return None def __lowerCAmelCase ( cls ) -> Union[str, Any]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
33
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __A( a , a ): snake_case_ = '''pixel_values''' snake_case_ = False snake_case_ = TimmBackboneConfig def __init__( self , _snake_case , **_snake_case ) -> Optional[int]: '''simple docstring''' requires_backends(self , '''timm''' ) super().__init__(_snake_case ) __a = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(_snake_case , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) __a = getattr(_snake_case , '''use_pretrained_backbone''' , _snake_case ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. __a = config.out_indices if getattr(_snake_case , '''out_indices''' , _snake_case ) is not None else (-1,) __a = timm.create_model( config.backbone , pretrained=_snake_case , features_only=config.features_only , in_chans=config.num_channels , out_indices=_snake_case , **_snake_case , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __a = self._backbone.return_layers __a = {layer['''module''']: str(_snake_case ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig __a = kwargs.pop('''config''' , TimmBackboneConfig() ) __a = kwargs.pop('''use_timm_backbone''' , _snake_case ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) __a = kwargs.pop('''num_channels''' , config.num_channels ) __a = kwargs.pop('''features_only''' , config.features_only ) __a = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) __a = kwargs.pop('''out_indices''' , config.out_indices ) __a = TimmBackboneConfig( backbone=_snake_case , num_channels=_snake_case , features_only=_snake_case , use_pretrained_backbone=_snake_case , out_indices=_snake_case , ) return super()._from_config(_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' __a = return_dict if return_dict is not None else self.config.use_return_dict __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __a = self._all_layers __a = self._backbone(_snake_case , **_snake_case ) __a = self._return_layers __a = tuple(hidden_states[i] for i in self.out_indices ) else: __a = self._backbone(_snake_case , **_snake_case ) __a = None __a = tuple(_snake_case ) __a = tuple(_snake_case ) if hidden_states is not None else None if not return_dict: __a = (feature_maps,) if output_hidden_states: __a = output + (hidden_states,) return output return BackboneOutput(feature_maps=_snake_case , hidden_states=_snake_case , attentions=_snake_case )
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
from __future__ import annotations def __lowerCAmelCase ( a__ , a__ = None , a__ = None ) -> None: if start is None: __a = 0 if end is None: __a = len(a__ ) - 1 if start >= end: return __a = (start + end) // 2 slowsort(a__ , a__ , a__ ) slowsort(a__ , mid + 1 , a__ ) if sequence[end] < sequence[mid]: __a , __a = sequence[mid], sequence[end] slowsort(a__ , a__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
33
A : Optional[Any] = tuple[float, float, float] A : Union[str, Any] = tuple[float, float, float] def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = end_pointa[0] - end_pointa[0] __a = end_pointa[1] - end_pointa[1] __a = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = ab[1] * ac[2] - ab[2] * ac[1] # *i __a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> bool: return tuple(round(a__ , a__ ) for x in vector ) == (0, 0, 0) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 10 ) -> bool: __a = create_vector(a__ , a__ ) __a = create_vector(a__ , a__ ) return is_zero_vector(get_ad_vectors_cross(a__ , a__ ) , a__ )
33
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig A : Union[str, Any] = logging.get_logger(__name__) # General docstring A : Tuple = 'RegNetConfig' # Base docstring A : Dict = 'facebook/regnet-y-040' A : Optional[int] = [1, 1_0_8_8, 7, 7] # Image classification docstring A : Tuple = 'facebook/regnet-y-040' A : List[str] = 'tabby, tabby cat' A : Optional[int] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A( tf.keras.layers.Layer ): def __init__( self , _snake_case , _snake_case = 3 , _snake_case = 1 , _snake_case = 1 , _snake_case = "relu" , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __a = tf.keras.layers.ConvaD( filters=_snake_case , kernel_size=_snake_case , strides=_snake_case , padding='''VALID''' , groups=_snake_case , use_bias=_snake_case , name='''convolution''' , ) __a = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) __a = ACTaFN[activation] if activation is not None else tf.identity def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' __a = self.convolution(self.padding(_snake_case ) ) __a = self.normalization(_snake_case ) __a = self.activation(_snake_case ) return hidden_state class __A( tf.keras.layers.Layer ): def __init__( self , _snake_case , **_snake_case ) -> str: '''simple docstring''' super().__init__(**_snake_case ) __a = config.num_channels __a = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = shape_list(_snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __a = tf.transpose(_snake_case , perm=(0, 2, 3, 1) ) __a = self.embedder(_snake_case ) return hidden_state class __A( tf.keras.layers.Layer ): def __init__( self , _snake_case , _snake_case = 2 , **_snake_case ) -> List[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = tf.keras.layers.ConvaD( filters=_snake_case , kernel_size=1 , strides=_snake_case , use_bias=_snake_case , name='''convolution''' ) __a = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = False ) -> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(_snake_case ) , training=_snake_case ) class __A( tf.keras.layers.Layer ): def __init__( self , _snake_case , _snake_case , **_snake_case ) -> Optional[int]: '''simple docstring''' super().__init__(**_snake_case ) __a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_snake_case , name='''pooler''' ) __a = [ tf.keras.layers.ConvaD(filters=_snake_case , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=_snake_case , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = self.pooler(_snake_case ) for layer_module in self.attention: __a = layer_module(_snake_case ) __a = hidden_state * pooled return hidden_state class __A( tf.keras.layers.Layer ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 1 , **_snake_case ) -> List[Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = in_channels != out_channels or stride != 1 __a = max(1 , out_channels // config.groups_width ) __a = ( TFRegNetShortCut(_snake_case , stride=_snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __a = [ TFRegNetConvLayer(_snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _snake_case , stride=_snake_case , groups=_snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(_snake_case , kernel_size=1 , activation=_snake_case , name='''layer.2''' ), ] __a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' __a = hidden_state for layer_module in self.layers: __a = layer_module(_snake_case ) __a = self.shortcut(_snake_case ) hidden_state += residual __a = self.activation(_snake_case ) return hidden_state class __A( tf.keras.layers.Layer ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 1 , **_snake_case ) -> Any: '''simple docstring''' super().__init__(**_snake_case ) __a = in_channels != out_channels or stride != 1 __a = max(1 , out_channels // config.groups_width ) __a = ( TFRegNetShortCut(_snake_case , stride=_snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) __a = [ TFRegNetConvLayer(_snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _snake_case , stride=_snake_case , groups=_snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(_snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(_snake_case , kernel_size=1 , activation=_snake_case , name='''layer.3''' ), ] __a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = hidden_state for layer_module in self.layers: __a = layer_module(_snake_case ) __a = self.shortcut(_snake_case ) hidden_state += residual __a = self.activation(_snake_case ) return hidden_state class __A( tf.keras.layers.Layer ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 2 , _snake_case = 2 , **_snake_case ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __a = [ # downsampling is done in the first layer with stride of 2 layer(_snake_case , _snake_case , _snake_case , stride=_snake_case , name='''layers.0''' ), *[layer(_snake_case , _snake_case , _snake_case , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' for layer_module in self.layers: __a = layer_module(_snake_case ) return hidden_state class __A( tf.keras.layers.Layer ): def __init__( self , _snake_case , **_snake_case ) -> Tuple: '''simple docstring''' super().__init__(**_snake_case ) __a = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) __a = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_snake_case , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_snake_case , _snake_case , _snake_case , depth=_snake_case , name=F"""stages.{i+1}""" ) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = False , _snake_case = True ) -> TFBaseModelOutputWithNoAttention: '''simple docstring''' __a = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __a = hidden_states + (hidden_state,) __a = stage_module(_snake_case ) if output_hidden_states: __a = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_snake_case , hidden_states=_snake_case ) @keras_serializable class __A( tf.keras.layers.Layer ): snake_case_ = RegNetConfig def __init__( self , _snake_case , **_snake_case ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_snake_case ) __a = config __a = TFRegNetEmbeddings(_snake_case , name='''embedder''' ) __a = TFRegNetEncoder(_snake_case , name='''encoder''' ) __a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_snake_case , name='''pooler''' ) @unpack_inputs def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.embedder(_snake_case , training=_snake_case ) __a = self.encoder( _snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , training=_snake_case ) __a = encoder_outputs[0] __a = self.pooler(_snake_case ) # Change to NCHW output format have uniformity in the modules __a = tf.transpose(_snake_case , perm=(0, 3, 1, 2) ) __a = tf.transpose(_snake_case , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __a = tuple([tf.transpose(_snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case , pooler_output=_snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __A( a ): snake_case_ = RegNetConfig snake_case_ = '''regnet''' snake_case_ = '''pixel_values''' @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} A : Tuple = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' A : str = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , a , ) class __A( a ): def __init__( self , _snake_case , *_snake_case , **_snake_case ) -> str: '''simple docstring''' super().__init__(_snake_case , *_snake_case , **_snake_case ) __a = TFRegNetMainLayer(_snake_case , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.regnet( pixel_values=_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , training=_snake_case , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , a , ) class __A( a , a ): def __init__( self , _snake_case , *_snake_case , **_snake_case ) -> int: '''simple docstring''' super().__init__(_snake_case , *_snake_case , **_snake_case ) __a = config.num_labels __a = TFRegNetMainLayer(_snake_case , name='''regnet''' ) # classification head __a = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' __a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a = return_dict if return_dict is not None else self.config.use_return_dict __a = self.regnet( _snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , training=_snake_case ) __a = outputs.pooler_output if return_dict else outputs[1] __a = self.classifier[0](_snake_case ) __a = self.classifier[1](_snake_case ) __a = None if labels is None else self.hf_compute_loss(labels=_snake_case , logits=_snake_case ) if not return_dict: __a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states )
33
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() A : str = logging.get_logger(__name__) A : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } A : Optional[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> Dict: for attribute in key.split('''.''' ): __a = getattr(a__ , a__ ) if weight_type is not None: __a = getattr(a__ , a__ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = [] __a = fairseq_model.state_dict() __a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) __a = True else: for key, mapped_key in MAPPING.items(): __a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __a = True if "*" in mapped_key: __a = name.split(a__ )[0].split('''.''' )[-2] __a = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: __a = '''weight_g''' elif "weight_v" in name: __a = '''weight_v''' elif "bias" in name: __a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __a = '''weight''' else: __a = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> int: __a = full_name.split('''conv_layers.''' )[-1] __a = name.split('''.''' ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __a = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) @torch.no_grad() def __lowerCAmelCase ( a__ , a__ , a__=None , a__=None , a__=True ) -> Tuple: if config_path is not None: __a = UniSpeechSatConfig.from_pretrained(a__ ) else: __a = UniSpeechSatConfig() __a = '''''' if is_finetuned: __a = UniSpeechSatForCTC(a__ ) else: __a = UniSpeechSatForPreTraining(a__ ) __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __a = model[0].eval() recursively_load_weights(a__ , a__ ) hf_wavavec.save_pretrained(a__ ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A : Dict = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
33
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class __A( a ): snake_case_ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''text''': Value('''string''' )} ) snake_case_ = Features({} ) snake_case_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
33
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A( a ): @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a = bertabert.config.encoder.vocab_size __a = tokenizer.sep_token_id __a = tokenizer.cls_token_id __a = 128 __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __a = train_dataset.select(range(32 ) ) __a = val_dataset.select(range(16 ) ) __a = 4 def _map_to_encoder_decoder_inputs(_snake_case ): # Tokenizer will automatically set [BOS] <text> [EOS] __a = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_snake_case , max_length=512 ) __a = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_snake_case , max_length=128 ) __a = inputs.input_ids __a = inputs.attention_mask __a = outputs.input_ids __a = outputs.input_ids.copy() __a = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __a = outputs.attention_mask assert all(len(_snake_case ) == 512 for x in inputs.input_ids ) assert all(len(_snake_case ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_snake_case ): __a = pred.label_ids __a = pred.predictions # all unnecessary tokens are removed __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_snake_case ) )] ) / len(_snake_case ) return {"accuracy": accuracy} # map train dataset __a = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __a = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __a = self.get_auto_remove_tmp_dir() __a = SeqaSeqTrainingArguments( output_dir=_snake_case , per_device_train_batch_size=_snake_case , per_device_eval_batch_size=_snake_case , predict_with_generate=_snake_case , evaluation_strategy='''steps''' , do_train=_snake_case , do_eval=_snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __a = SeqaSeqTrainer( model=_snake_case , args=_snake_case , compute_metrics=_compute_metrics , train_dataset=_snake_case , eval_dataset=_snake_case , tokenizer=_snake_case , ) # start training trainer.train()
33
1
A : Optional[int] = [ (1_0_0_0, 'M'), (9_0_0, 'CM'), (5_0_0, 'D'), (4_0_0, 'CD'), (1_0_0, 'C'), (9_0, 'XC'), (5_0, 'L'), (4_0, 'XL'), (1_0, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __lowerCAmelCase ( a__ ) -> int: __a = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} __a = 0 __a = 0 while place < len(a__ ): if (place + 1 < len(a__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __lowerCAmelCase ( a__ ) -> str: __a = [] for arabic, roman in ROMAN: ((__a) , (__a)) = divmod(a__ , a__ ) result.append(roman * factor ) if number == 0: break return "".join(a__ ) if __name__ == "__main__": import doctest doctest.testmod()
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
def __lowerCAmelCase ( a__ , a__ ) -> Tuple: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) __a = (boundary[1] - boundary[0]) / steps __a = boundary[0] __a = boundary[1] __a = make_points(a__ , a__ , a__ ) __a = 0.0 y += (h / 2.0) * f(a__ ) for i in x_i: # print(i) y += h * f(a__ ) y += (h / 2.0) * f(a__ ) return y def __lowerCAmelCase ( a__ , a__ , a__ ) -> Any: __a = a + h while x < (b - h): yield x __a = x + h def __lowerCAmelCase ( a__ ) -> Union[str, Any]: # enter your function here __a = (x - 0) * (x - 0) return y def __lowerCAmelCase ( ) -> List[str]: __a = 0.0 # Lower bound of integration __a = 1.0 # Upper bound of integration __a = 10.0 # define number of steps or resolution __a = [a, b] # define boundary of integration __a = method_a(a__ , a__ ) print(F"""y = {y}""" ) if __name__ == "__main__": main()
33
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __A( a ): snake_case_ = 0 snake_case_ = False snake_case_ = 3.0 class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": A : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) A : Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) A : int = torch.nn.Linear(1_0_0, 2_0_0) A : Optional[int] = accelerator.prepare(model) # Check the values changed in kwargs A : List[Any] = '' A : Tuple = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
33
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 A : List[str] = get_tests_dir('fixtures') class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = mock.Mock() __a = 500 __a = {} __a = HTTPError __a = {} # Download this model to make sure it's in the cache. __a = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_snake_case ) as mock_head: __a = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' with self.assertRaises(_snake_case ): # config is in subfolder, the following should not work without specifying the subfolder __a = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) __a = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_snake_case ) @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Optional[Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> str: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = ViTImageProcessor.from_pretrained(_snake_case ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) __a = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _snake_case , repo_id='''test-image-processor''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = ViTImageProcessor.from_pretrained(_snake_case ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) __a = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _snake_case , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_snake_case , getattr(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' CustomImageProcessor.register_for_auto_class() __a = CustomImageProcessor.from_pretrained(_snake_case ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) __a = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
33
import os # Precomputes a list of the 100 first triangular numbers A : List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __lowerCAmelCase ( ) -> Tuple: __a = os.path.dirname(os.path.realpath(a__ ) ) __a = os.path.join(a__ , '''words.txt''' ) __a = '''''' with open(a__ ) as f: __a = f.readline() __a = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] __a = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
33
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) A : Dict = parser.parse_args() A : Tuple = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) A : List[Any] = CLIPImageProcessor() A : Any = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') A : Dict = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A : str = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['PerceiverFeatureExtractor'] A : int = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
def __lowerCAmelCase ( a__ ) -> list: for i in range(len(a__ ) - 1 , 0 , -1 ): __a = False for j in range(a__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __a , __a = unsorted[j - 1], unsorted[j] __a = True for j in range(a__ ): if unsorted[j] > unsorted[j + 1]: __a , __a = unsorted[j + 1], unsorted[j] __a = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() A : Optional[int] = [int(item) for item in user_input.split(',')] print(F"{cocktail_shaker_sort(unsorted) = }")
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __A( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=400 , _snake_case=True , _snake_case=32 , _snake_case=True , ) -> List[str]: '''simple docstring''' __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size_divisor __a = do_rescale def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __A( a , unittest.TestCase ): snake_case_ = GLPNImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = GLPNImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(_snake_case , '''size_divisor''' ) ) self.assertTrue(hasattr(_snake_case , '''resample''' ) ) self.assertTrue(hasattr(_snake_case , '''do_rescale''' ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
33
from string import ascii_uppercase A : Optional[int] = {char: i for i, char in enumerate(ascii_uppercase)} A : Union[str, Any] = dict(enumerate(ascii_uppercase)) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = len(a__ ) __a = 0 while True: if x == i: __a = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in message: if letter == " ": cipher_text += " " else: __a = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowerCAmelCase ( a__ , a__ ) -> str: __a = '''''' __a = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __a = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowerCAmelCase ( ) -> None: __a = '''THE GERMAN ATTACK''' __a = '''SECRET''' __a = generate_key(a__ , a__ ) __a = cipher_text(a__ , a__ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(a__ , a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
33
1
import pytest import datasets # Import fixture modules as plugins A : Dict = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def __lowerCAmelCase ( a__ , a__ ) -> List[str]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __lowerCAmelCase ( a__ ) -> str: config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=a__ ) def __lowerCAmelCase ( a__ , a__ ) -> Tuple: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __a = tmp_path_factory.getbasetemp() / '''cache''' __a = test_hf_cache_home / '''datasets''' __a = test_hf_cache_home / '''metrics''' __a = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(a__ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(a__ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(a__ ) ) __a = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(a__ ) ) __a = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(a__ ) ) @pytest.fixture(autouse=a__ , scope='''session''' ) def __lowerCAmelCase ( ) -> Dict: datasets.disable_progress_bar() @pytest.fixture(autouse=a__ ) def __lowerCAmelCase ( a__ ) -> Dict: # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , a__ ) @pytest.fixture def __lowerCAmelCase ( a__ ) -> Any: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , a__ )
33
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') A : str = parser.parse_args() if args.model_type == "roberta": A : Union[str, Any] = RobertaForMaskedLM.from_pretrained(args.model_name) A : Any = 'roberta' elif args.model_type == "gpt2": A : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name) A : List[str] = 'transformer' A : Dict = model.state_dict() A : Any = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: A : Union[str, Any] = state_dict[F"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: A : Any = F"{prefix}.embeddings.{w}.weight" A : Union[str, Any] = state_dict[param_name] for w in ["weight", "bias"]: A : List[Any] = F"{prefix}.embeddings.LayerNorm.{w}" A : List[str] = state_dict[param_name] # Transformer Blocks # A : Optional[int] = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: A : Any = state_dict[ F"{prefix}.h.{teacher_idx}.{layer}.{w}" ] A : List[str] = state_dict[F"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: A : List[Any] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: A : Optional[int] = state_dict[F"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: A : List[Any] = state_dict[F"lm_head.dense.{w}"] A : List[str] = state_dict[F"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: A : List[str] = state_dict[F"{prefix}.ln_f.{w}"] A : Dict = state_dict['lm_head.weight'] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
33
1
import operator as op A : int = 'scaler.pt' A : List[str] = 'pytorch_model' A : List[str] = 'random_states' A : List[str] = 'optimizer' A : Dict = 'scheduler' A : Optional[Any] = 'pytorch_model.bin' A : Any = 'pytorch_model.bin.index.json' A : Any = 'model.safetensors' A : Union[str, Any] = 'model.safetensors.index.json' A : Union[str, Any] = '1.10.2' A : List[Any] = 'py38' A : int = '4.17.0' A : List[Any] = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] A : List[Any] = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] A : List[Any] = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] A : Dict = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] A : Dict = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] A : Dict = '2.0.1' A : str = ['pdsh', 'standard', 'openmpi', 'mvapich'] A : int = ['default', 'reduce-overhead', 'max-autotune'] A : Optional[Any] = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 A : int = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] A : Tuple = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] A : Optional[Any] = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
33
import os import numpy import onnx def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = a.name __a = b.name __a = '''''' __a = '''''' __a = a == b __a = name_a __a = name_b return res def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> str: for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> Union[str, Any]: __a = list(model.graph.initializer ) __a = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a = inits[i].name __a = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def __lowerCAmelCase ( a__ ) -> str: __a = os.path.dirname(a__ ) __a = os.path.basename(a__ ) __a = onnx.load(os.path.join(a__ , a__ ) ) __a = list(model.graph.initializer ) __a = set() __a = {} __a = [] __a = 0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) __a = inits[j].data_type __a = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , a__ ) total_reduced_size += mem_size __a = inits[i].name __a = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: __a = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) __a = sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) __a = '''optimized_''' + model_file_name __a = os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
33
1
def __lowerCAmelCase ( a__ , a__ ) -> Any: __a = [1] for i in range(2 , a__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __a = [] __a = list(range(a__ ) ) # Find permutation while factorials: __a = factorials.pop() __a , __a = divmod(a__ , a__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
def __lowerCAmelCase ( a__ , a__ ) -> str: if not (isinstance(a__ , a__ ) and isinstance(a__ , a__ )): raise ValueError('''longest_common_substring() takes two strings for inputs''' ) __a = len(a__ ) __a = len(a__ ) __a = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __a = 0 __a = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __a = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __a = i __a = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
33
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A : str = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) A : int = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase ( ) -> Tuple: __a = '''https://pypi.org/pypi/diffusers/json''' __a = json.loads(request.urlopen(a__ ).read() )['''releases'''].keys() return sorted(a__ , key=lambda a__ : version.Version(a__ ) ) def __lowerCAmelCase ( ) -> List[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(a__ ) os.makedirs(a__ , exist_ok=a__ ) __a = Path(a__ ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: init_hf_modules() __a = Path(a__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a__ , exist_ok=a__ ) __a = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __lowerCAmelCase ( a__ ) -> Dict: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import .xxx` __a = re.findall('''^\s*import\s+\.(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Unique-ify return list(set(a__ ) ) def __lowerCAmelCase ( a__ ) -> Any: __a = False __a = [module_file] __a = [] # Let's recurse through all relative imports while not no_change: __a = [] for f in files_to_check: new_imports.extend(get_relative_imports(a__ ) ) __a = Path(a__ ).parent __a = [str(module_path / m ) for m in new_imports] __a = [f for f in new_import_files if f not in all_relative_imports] __a = [F"""{f}.py""" for f in new_import_files] __a = len(a__ ) == 0 all_relative_imports.extend(a__ ) return all_relative_imports def __lowerCAmelCase ( a__ ) -> str: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.read() # Imports of the form `import xxx` __a = re.findall('''^\s*import\s+(\S+)\s*$''' , a__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , a__ , flags=re.MULTILINE ) # Only keep the top-level module __a = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all __a = list(set(a__ ) ) __a = [] for imp in imports: try: importlib.import_module(a__ ) except ImportError: missing_packages.append(a__ ) if len(a__ ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F"""{', '.join(a__ )}. Run `pip install {' '.join(a__ )}`""" ) return get_relative_imports(a__ ) def __lowerCAmelCase ( a__ , a__ ) -> Dict: __a = module_path.replace(os.path.sep , '''.''' ) __a = importlib.import_module(a__ ) if class_name is None: return find_pipeline_class(a__ ) return getattr(a__ , a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: from ..pipelines import DiffusionPipeline __a = dict(inspect.getmembers(a__ , inspect.isclass ) ) __a = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a__ ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) __a = cls return pipeline_class def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , ) -> Tuple: __a = str(a__ ) __a = os.path.join(a__ , a__ ) if os.path.isfile(a__ ): __a = module_file_or_url __a = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: __a = get_diffusers_versions() # cut ".dev0" __a = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: __a = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: __a = F"""v{revision}""" elif revision == "main": __a = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub __a = COMMUNITY_PIPELINES_URL.format(revision=a__ , pipeline=a__ ) try: __a = cached_download( a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = '''git''' __a = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached __a = hf_hub_download( a__ , a__ , cache_dir=a__ , force_download=a__ , proxies=a__ , resume_download=a__ , local_files_only=a__ , use_auth_token=a__ , ) __a = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment __a = check_imports(a__ ) # Now we move the module inside our cached dynamic modules. __a = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a__ ) __a = Path(a__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a__ , submodule_path / module_file ) for module_needed in modules_needed: __a = F"""{module_needed}.py""" shutil.copy(os.path.join(a__ , a__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a__ , a__ ): __a = use_auth_token elif use_auth_token is True: __a = HfFolder.get_token() else: __a = None __a = model_info(a__ , revision=a__ , token=a__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __a = submodule_path / commit_hash __a = full_submodule + os.path.sep + commit_hash create_dynamic_module(a__ ) if not (submodule_path / module_file).exists(): shutil.copy(a__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a__ , F"""{module_needed}.py""" , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return os.path.join(a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ = None , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , **a__ , ) -> Tuple: __a = get_cached_module_file( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) return get_class_in_module(a__ , final_module.replace('''.py''' , '''''' ) )
33
1
import string from math import logaa def __lowerCAmelCase ( a__ , a__ ) -> int: __a = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) __a = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __lowerCAmelCase ( a__ , a__ ) -> tuple[int, int]: __a = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' __a = corpus_without_punctuation.split('''\n''' ) __a = term.lower() return (len([doc for doc in docs if term in doc] ), len(a__ )) def __lowerCAmelCase ( a__ , a__ , a__=False ) -> float: if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def __lowerCAmelCase ( a__ , a__ ) -> float: return round(tf * idf , 3 )
33
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : List[Any] = logging.get_logger(__name__) A : Optional[Any] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class __A( a ): snake_case_ = '''table-transformer''' snake_case_ = ['''past_key_values'''] snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _snake_case=True , _snake_case=None , _snake_case=3 , _snake_case=100 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=6 , _snake_case=2_048 , _snake_case=8 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=True , _snake_case="relu" , _snake_case=256 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1.0 , _snake_case=False , _snake_case="sine" , _snake_case="resnet50" , _snake_case=True , _snake_case=False , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=1 , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , **_snake_case , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_snake_case , _snake_case ): __a = backbone_config.get('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_snake_case ) # set timm attributes to None __a , __a , __a = None, None, None __a = use_timm_backbone __a = backbone_config __a = num_channels __a = num_queries __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = init_xavier_std __a = encoder_layerdrop __a = decoder_layerdrop __a = encoder_layers __a = auxiliary_loss __a = position_embedding_type __a = backbone __a = use_pretrained_backbone __a = dilation # Hungarian matcher __a = class_cost __a = bbox_cost __a = giou_cost # Loss coefficients __a = mask_loss_coefficient __a = dice_loss_coefficient __a = bbox_loss_coefficient __a = giou_loss_coefficient __a = eos_coefficient super().__init__(is_encoder_decoder=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return self.d_model class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return 12
33
1