code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : str ={ """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class _A ( A__ , A__ ): snake_case__ : List[str] = "focalnet" def __init__( self , __lowerCAmelCase=224 , __lowerCAmelCase=4 , __lowerCAmelCase=3 , __lowerCAmelCase=96 , __lowerCAmelCase=False , __lowerCAmelCase=[192, 384, 768, 768] , __lowerCAmelCase=[2, 2, 6, 2] , __lowerCAmelCase=[2, 2, 2, 2] , __lowerCAmelCase=[3, 3, 3, 3] , __lowerCAmelCase="gelu" , __lowerCAmelCase=4.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=False , __lowerCAmelCase=1E-4 , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=32 , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__A ) lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = embed_dim lowercase = use_conv_embed lowercase = hidden_sizes lowercase = depths lowercase = focal_levels lowercase = focal_windows lowercase = hidden_act lowercase = mlp_ratio lowercase = hidden_dropout_prob lowercase = drop_path_rate lowercase = use_layerscale lowercase = layerscale_value lowercase = use_post_layernorm lowercase = use_post_layernorm_in_modulation lowercase = normalize_modulator lowercase = initializer_range lowercase = layer_norm_eps lowercase = encoder_stride lowercase = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] lowercase = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( _UpperCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = MgpstrTokenizer snake_case__ : Optional[int] = False snake_case__ : Tuple = {} snake_case__ : Dict = False def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = '''tester''' lowercase = '''tester''' return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowercase = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowercase = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) lowercase = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowercase = self.get_input_output_texts(_UpperCAmelCase ) lowercase = tokenizer.tokenize(_UpperCAmelCase ) lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) lowercase = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def A__ ( self ): """simple docstring""" pass
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( A__ , unittest.TestCase ): snake_case__ : List[Any] = FunnelTokenizer snake_case__ : Dict = FunnelTokenizerFast snake_case__ : List[Any] = True snake_case__ : Any = True def A__ ( self ): """simple docstring""" super().setUp() lowercase = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """UNwant\u00E9d,running""" lowercase = """unwanted, running""" return input_text, output_text def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class(self.vocab_file ) lowercase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__snake_case , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [7, 4, 5, 10, 8, 9] ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: lowercase = tokenizer("""UNwant\u00E9d,running""" ) lowercase = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) lowercase = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={ """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class _A ( a__ , a__ ): snake_case__ : Tuple = 'bit' snake_case__ : Any = ['preactivation', 'bottleneck'] snake_case__ : List[Any] = ['SAME', 'VALID'] def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=64 , __lowerCAmelCase=[256, 512, 1024, 2048] , __lowerCAmelCase=[3, 4, 6, 3] , __lowerCAmelCase="preactivation" , __lowerCAmelCase="relu" , __lowerCAmelCase=None , __lowerCAmelCase=32 , __lowerCAmelCase=0.0 , __lowerCAmelCase=False , __lowerCAmelCase=32 , __lowerCAmelCase=1 , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**_lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowercase = global_padding.upper() else: raise ValueError(f'Padding strategy {global_padding} not supported' ) lowercase = num_channels lowercase = embedding_size lowercase = hidden_sizes lowercase = depths lowercase = layer_type lowercase = hidden_act lowercase = global_padding lowercase = num_groups lowercase = drop_path_rate lowercase = embedding_dynamic_padding lowercase = output_stride lowercase = width_factor lowercase = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(_lowerCamelCase ) + 1 )] lowercase = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
"""simple docstring""" import logging from transformers import PretrainedConfig __lowerCAmelCase : Union[str, Any] =logging.getLogger(__name__) __lowerCAmelCase : Dict ={ """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class _A ( lowercase__ ): snake_case__ : Tuple = '''bertabs''' def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=512 , __lowerCAmelCase=6 , __lowerCAmelCase=512 , __lowerCAmelCase=8 , __lowerCAmelCase=512 , __lowerCAmelCase=0.2 , __lowerCAmelCase=6 , __lowerCAmelCase=768 , __lowerCAmelCase=8 , __lowerCAmelCase=2048 , __lowerCAmelCase=0.2 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**_a ) lowercase = vocab_size lowercase = max_pos lowercase = enc_layers lowercase = enc_hidden_size lowercase = enc_heads lowercase = enc_ff_size lowercase = enc_dropout lowercase = dec_layers lowercase = dec_hidden_size lowercase = dec_heads lowercase = dec_ff_size lowercase = dec_dropout
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) __lowerCAmelCase : List[str] ="""Hello, World!""" __lowerCAmelCase : Any ="""en_XX""" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :bool ) -> str: '''simple docstring''' lowercase = Path("""data_bin""" ) lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__snake_case ).parent ) , checkpoint_file=Path(__snake_case ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(__snake_case ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(__snake_case ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(__snake_case ) lowercase = xmod.model.encoder.sentence_encoder lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowercase = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , __snake_case ) lowercase = XmodForSequenceClassification(__snake_case ) if classification_head else XmodForMaskedLM(__snake_case ) model.eval() # Now let's copy all the weights. # Embeddings lowercase = xmod_sent_encoder.embed_tokens.weight lowercase = xmod_sent_encoder.embed_positions.weight lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowercase = xmod_sent_encoder.layernorm_embedding.weight lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase = model.roberta.encoder.layer[i] lowercase = xmod_sent_encoder.layers[i] # self attention lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) lowercase = xmod_layer.self_attn.q_proj.weight lowercase = xmod_layer.self_attn.q_proj.bias lowercase = xmod_layer.self_attn.k_proj.weight lowercase = xmod_layer.self_attn.k_proj.bias lowercase = xmod_layer.self_attn.v_proj.weight lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) lowercase = xmod_layer.self_attn.out_proj.weight lowercase = xmod_layer.self_attn.out_proj.bias lowercase = xmod_layer.self_attn_layer_norm.weight lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) lowercase = xmod_layer.fca.weight lowercase = xmod_layer.fca.bias # output lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) lowercase = xmod_layer.fca.weight lowercase = xmod_layer.fca.bias lowercase = xmod_layer.final_layer_norm.weight lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowercase = xmod_layer.adapter_layer_norm.weight lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowercase = bert_output.adapter_modules[lang_code] lowercase = xmod_layer.adapter_modules[lang_code] lowercase = from_adapter.fca.weight lowercase = from_adapter.fca.bias lowercase = from_adapter.fca.weight lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowercase = xmod_sent_encoder.layer_norm.weight lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: lowercase = xmod.model.classification_heads["""mnli"""].dense.weight lowercase = xmod.model.classification_heads["""mnli"""].dense.bias lowercase = xmod.model.classification_heads["""mnli"""].out_proj.weight lowercase = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowercase = xmod.model.encoder.lm_head.dense.weight lowercase = xmod.model.encoder.lm_head.dense.bias lowercase = xmod.model.encoder.lm_head.layer_norm.weight lowercase = xmod.model.encoder.lm_head.layer_norm.bias lowercase = xmod.model.encoder.lm_head.weight lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase = xmod.encode(__snake_case ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__snake_case ) lowercase = model(__snake_case )[0] if classification_head: lowercase = xmod.model.classification_heads["""mnli"""](xmod.extract_features(__snake_case ) ) else: lowercase = xmod.model(__snake_case , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 lowercase = torch.allclose(__snake_case , __snake_case , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(__snake_case ).mkdir(parents=__snake_case , exist_ok=__snake_case ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) __lowerCAmelCase : int =parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
356
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
0
from manim import * class _A ( lowerCAmelCase ): def A__ ( self ): """simple docstring""" lowercase = Rectangle(height=0.5 , width=0.5 ) lowercase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowercase = [mem.copy() for i in range(6 )] lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) lowercase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) lowercase = VGroup(_snake_case , _snake_case ).arrange(_snake_case , buff=0 ) lowercase = Text("""CPU""" , font_size=24 ) lowercase = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) lowercase = [mem.copy() for i in range(4 )] lowercase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) lowercase = Text("""GPU""" , font_size=24 ) lowercase = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) gpu.move_to([-1, -1, 0] ) self.add(_snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) lowercase = Text("""Model""" , font_size=24 ) lowercase = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.add(_snake_case ) lowercase = [] for i, rect in enumerate(_snake_case ): rect.set_stroke(_snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowercase = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(_snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_snake_case , buff=0.0 ) self.add(_snake_case ) cpu_targs.append(_snake_case ) lowercase = [mem.copy() for i in range(6 )] lowercase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) lowercase = Text("""Loaded Checkpoint""" , font_size=24 ) lowercase = Group(_snake_case , _snake_case ).arrange(_snake_case , aligned_edge=_snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_snake_case , _snake_case ) lowercase = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowercase = MarkupText( f'Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case ) , Write(_snake_case ) ) self.play(Write(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) ) lowercase = [] lowercase = [] for i, rect in enumerate(_snake_case ): lowercase = fill.copy().set_fill(_snake_case , opacity=0.7 ) target.move_to(_snake_case ) first_animations.append(GrowFromCenter(_snake_case , run_time=1 ) ) lowercase = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_snake_case , run_time=1.5 ) ) self.play(*_snake_case ) self.play(*_snake_case ) self.wait()
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __lowerCAmelCase : Optional[Any] ='pt' elif is_tf_available(): __lowerCAmelCase : Optional[int] ='tf' else: __lowerCAmelCase : List[Any] ='jax' class _A ( lowercase__ , unittest.TestCase ): snake_case__ : Any = ByTaTokenizer snake_case__ : Optional[int] = False def A__ ( self ): """simple docstring""" super().setUp() lowercase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A__ ( self ): """simple docstring""" return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=20 , __lowerCAmelCase=5 ): """simple docstring""" lowercase = [] for i in range(len(_UpperCamelCase ) ): try: lowercase = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase = list(filter(lambda __lowerCAmelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , _UpperCamelCase ) ) lowercase = list(filter(lambda __lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCamelCase ) , _UpperCamelCase ) ) if max_length is not None and len(_UpperCamelCase ) > max_length: lowercase = toks[:max_length] if min_length is not None and len(_UpperCamelCase ) < min_length and len(_UpperCamelCase ) > 0: while len(_UpperCamelCase ) < min_length: lowercase = toks + toks # toks_str = [t[1] for t in toks] lowercase = [t[0] for t in toks] # Ensure consistency lowercase = tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) if " " not in output_txt and len(_UpperCamelCase ) > 1: lowercase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCamelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCamelCase ) ) if with_prefix_space: lowercase = """ """ + output_txt lowercase = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) return output_txt, output_ids def A__ ( self ): """simple docstring""" lowercase = self.ta_base_tokenizer lowercase = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) lowercase = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def A__ ( self ): """simple docstring""" lowercase = self.ta_base_tokenizer lowercase = """Unicode €.""" lowercase = tokenizer(_UpperCamelCase ) lowercase = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , _UpperCamelCase ) # decoding lowercase = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , """Unicode €.</s>""" ) lowercase = tokenizer("""e è é ê ë""" ) lowercase = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , _UpperCamelCase ) # decoding lowercase = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def A__ ( self ): """simple docstring""" lowercase = self.ta_base_tokenizer lowercase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off lowercase = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase = tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) if FRAMEWORK != "jax": lowercase = list(batch.input_ids.numpy()[0] ) else: lowercase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def A__ ( self ): """simple docstring""" lowercase = self.ta_base_tokenizer lowercase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase = tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , _UpperCamelCase ) self.assertIn("""attention_mask""" , _UpperCamelCase ) self.assertNotIn("""decoder_input_ids""" , _UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , _UpperCamelCase ) def A__ ( self ): """simple docstring""" lowercase = self.ta_base_tokenizer lowercase = [ """Summary of the text.""", """Another summary.""", ] lowercase = tokenizer( text_target=_UpperCamelCase , max_length=32 , padding="""max_length""" , truncation=_UpperCamelCase , return_tensors=_UpperCamelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def A__ ( self ): """simple docstring""" lowercase = self.ta_base_tokenizer lowercase = ["""A long paragraph for summarization. </s>"""] lowercase = ["""Summary of the text. </s>"""] # fmt: off lowercase = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase = tokenizer(_UpperCamelCase , text_target=_UpperCamelCase ) self.assertEqual(_UpperCamelCase , batch["""input_ids"""][0] ) self.assertEqual(_UpperCamelCase , batch["""labels"""][0] ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowercase = tempfile.mkdtemp() lowercase = """ He is very happy, UNwant\u00E9d,running""" lowercase = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) lowercase = tokenizer.__class__.from_pretrained(_UpperCamelCase ) lowercase = after_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) shutil.rmtree(_UpperCamelCase ) lowercase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowercase = tempfile.mkdtemp() lowercase = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) lowercase = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) lowercase = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) lowercase = tokenizer.__class__.from_pretrained(_UpperCamelCase ) lowercase = after_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase = tokenizer.__class__.from_pretrained(_UpperCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCamelCase ) def A__ ( self ): """simple docstring""" lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCamelCase ) with open(os.path.join(_UpperCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: lowercase = json.load(_UpperCamelCase ) with open(os.path.join(_UpperCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: lowercase = json.load(_UpperCamelCase ) lowercase = [f'<extra_id_{i}>' for i in range(125 )] lowercase = added_tokens_extra_ids + [ """an_additional_special_token""" ] lowercase = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(_UpperCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_UpperCamelCase , _UpperCamelCase ) with open(os.path.join(_UpperCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_UpperCamelCase , _UpperCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase = tokenizer_class.from_pretrained( _UpperCamelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_UpperCamelCase )] lowercase = tokenizer_class.from_pretrained( _UpperCamelCase , additional_special_tokens=_UpperCamelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def A__ ( self ): """simple docstring""" lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCamelCase ) lowercase = tokenizer_class.from_pretrained(_UpperCamelCase ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizers(fast=_UpperCamelCase , do_lower_case=_UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowercase = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] lowercase = tokenizer.convert_tokens_to_string(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowercase = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] lowercase = 0 lowercase = tokenizer.convert_ids_to_tokens( _UpperCamelCase , skip_special_tokens=_UpperCamelCase ) for attr in attributes_list: setattr(_UpperCamelCase , attr + """_id""" , _UpperCamelCase ) self.assertEqual(getattr(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(getattr(_UpperCamelCase , attr + """_id""" ) , _UpperCamelCase ) setattr(_UpperCamelCase , attr + """_id""" , _UpperCamelCase ) self.assertEqual(getattr(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(getattr(_UpperCamelCase , attr + """_id""" ) , _UpperCamelCase ) setattr(_UpperCamelCase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(_UpperCamelCase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(_UpperCamelCase , """additional_special_tokens_ids""" ) , [] ) setattr(_UpperCamelCase , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCamelCase , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCamelCase , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
358
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: '''simple docstring''' try: lowercase = int(lowerCAmelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowercase = 1 lowercase = 2 while i * i <= n: while n % i == 0: lowercase = i n //= i i += 1 if n > 1: lowercase = n return int(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
"""simple docstring""" import argparse import copy def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Optional[Any]: lowercase = {} with open(__lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase = [] _list.append([line.split()[1], line.split()[2]] ) lowercase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase = [] _list.append([line.split()[0], line.split()[2]] ) lowercase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]: with open(__lowerCamelCase ) as f: lowercase = f.read(1 ) lowercase = start_node lowercase = [] lowercase = start_node lowercase = 0 while visiting not in first_solution: lowercase = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__lowerCamelCase ) and k[0] not in first_solution: lowercase = k[1] lowercase = k[0] first_solution.append(__lowerCamelCase ) lowercase = distance_of_first_solution + int(__lowerCamelCase ) lowercase = best_node first_solution.append(__lowerCamelCase ) lowercase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ) -> Optional[Any]: lowercase = [] for n in solution[1:-1]: lowercase = solution.index(__lowerCamelCase ) for kn in solution[1:-1]: lowercase = solution.index(__lowerCamelCase ) if n == kn: continue lowercase = copy.deepcopy(__lowerCamelCase ) lowercase = kn lowercase = n lowercase = 0 for k in _tmp[:-1]: lowercase = _tmp[_tmp.index(__lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase = distance + int(i[1] ) _tmp.append(__lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: lowercase = 1 lowercase = first_solution lowercase = [] lowercase = distance_of_first_solution lowercase = solution while count <= iters: lowercase = find_neighborhood(__lowerCamelCase , __lowerCamelCase ) lowercase = 0 lowercase = neighborhood[index_of_best_solution] lowercase = len(__lowerCamelCase ) - 1 lowercase = False while not found: lowercase = 0 while i < len(__lowerCamelCase ): if best_solution[i] != solution[i]: lowercase = best_solution[i] lowercase = solution[i] break lowercase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase = True lowercase = best_solution[:-1] lowercase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase = cost lowercase = solution else: lowercase = index_of_best_solution + 1 lowercase = neighborhood[index_of_best_solution] if len(__lowerCamelCase ) >= size: tabu_list.pop(0 ) lowercase = count + 1 return best_solution_ever, best_cost def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any]=None ) -> Tuple: lowercase = generate_neighbours(args.File ) lowercase = generate_first_solution( args.File , __lowerCamelCase ) lowercase = tabu_search( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __lowerCAmelCase : Union[str, Any] =tuple[int, int] class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = vertices lowercase = { (min(_a ), max(_a )): weight for edge, weight in edges.items() } def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowercase = weight def A__ ( self ): """simple docstring""" lowercase = Graph({min(self.vertices )} , {} ) lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowercase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowercase = edge lowercase = weight subgraph.add_edge(_a , _a ) return subgraph def UpperCAmelCase__ ( lowerCAmelCase__ :str = "p107_network.txt" ) -> int: '''simple docstring''' lowercase = os.path.abspath(os.path.dirname(lowerCAmelCase__ ) ) lowercase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = {} lowercase = 4_2 lowercase = 4_2 lowercase = 4_2 with open(lowerCAmelCase__ ) as f: lowercase = f.read().strip().split("""\n""" ) lowercase = [line.split(""",""" ) for line in data] for edgea in range(1 , len(lowerCAmelCase__ ) ): for edgea in range(lowerCAmelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": lowercase = int(adjaceny_matrix[edgea][edgea] ) lowercase = Graph(set(range(len(lowerCAmelCase__ ) ) ) , lowerCAmelCase__ ) lowercase = graph.prims_algorithm() lowercase = sum(graph.edges.values() ) lowercase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
361
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class _A ( lowerCAmelCase ): snake_case__ : Dict = 'deberta-v2' def __init__( self , __lowerCAmelCase=12_8100 , __lowerCAmelCase=1536 , __lowerCAmelCase=24 , __lowerCAmelCase=24 , __lowerCAmelCase=6144 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-7 , __lowerCAmelCase=False , __lowerCAmelCase=-1 , __lowerCAmelCase=0 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=0 , __lowerCAmelCase="gelu" , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = relative_attention lowercase = max_relative_positions lowercase = pad_token_id lowercase = position_biased_input # Backwards compatibility if type(__lowerCAmelCase ) == str: lowercase = [x.strip() for x in pos_att_type.lower().split("""|""" )] lowercase = pos_att_type lowercase = vocab_size lowercase = layer_norm_eps lowercase = kwargs.get("""pooler_hidden_size""" , __lowerCAmelCase ) lowercase = pooler_dropout lowercase = pooler_hidden_act class _A ( lowerCAmelCase ): @property def A__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowercase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def A__ ( self ): """simple docstring""" return 12 def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = 3 , __lowerCAmelCase = 40 , __lowerCAmelCase = 40 , __lowerCAmelCase = None , ): """simple docstring""" lowercase = super().generate_dummy_inputs(preprocessor=__lowerCAmelCase , framework=__lowerCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Optional[int]: '''simple docstring''' lowercase = [0] * len(a_ ) lowercase = [] lowercase = [1] * len(a_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a_ ) ): if indegree[i] == 0: queue.append(a_ ) while queue: lowercase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(a_ ) print(max(a_ ) ) # Adjacency list of Graph __lowerCAmelCase : Optional[int] ={0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __lowerCAmelCase : int =["""small""", """medium""", """large"""] __lowerCAmelCase : List[str] ="""lm_head.decoder.weight""" __lowerCAmelCase : int ="""lm_head.weight""" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> List[str]: '''simple docstring''' lowercase = torch.load(__a ) lowercase = d.pop(__a ) os.makedirs(__a , exist_ok=__a ) torch.save(__a , os.path.join(__a , __a ) ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) __lowerCAmelCase : int =parser.parse_args() for MODEL in DIALOGPT_MODELS: __lowerCAmelCase : Optional[Any] =os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") __lowerCAmelCase : Optional[Any] =F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Any =logging.get_logger(__name__) __lowerCAmelCase : str ={ """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _A ( __SCREAMING_SNAKE_CASE ): snake_case__ : int = "lxmert" snake_case__ : int = {} def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=9500 , __lowerCAmelCase=1600 , __lowerCAmelCase=400 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=9 , __lowerCAmelCase=5 , __lowerCAmelCase=5 , __lowerCAmelCase=2048 , __lowerCAmelCase=4 , __lowerCAmelCase=6.6_7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size lowercase = hidden_size lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = num_qa_labels lowercase = num_object_labels lowercase = num_attr_labels lowercase = l_layers lowercase = x_layers lowercase = r_layers lowercase = visual_feat_dim lowercase = visual_pos_dim lowercase = visual_loss_normalizer lowercase = task_matched lowercase = task_mask_lm lowercase = task_obj_predict lowercase = task_qa lowercase = visual_obj_loss lowercase = visual_attr_loss lowercase = visual_feat_loss lowercase = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**__UpperCAmelCase )
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Tuple ={"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] =[ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __lowerCAmelCase : int =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase : int ={ 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_2_8, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 5_0, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 1_0, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 1_0, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _A ( unittest.TestCase ): @classmethod def A__ ( cls ): """simple docstring""" lowercase = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def A__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def A__ ( self ): """simple docstring""" lowercase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) lowercase = BertConfig.from_pretrained(f'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id="""test-config""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) lowercase = BertConfig.from_pretrained(f'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def A__ ( self ): """simple docstring""" lowercase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) lowercase = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="""valid_org/test-config-org""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) lowercase = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def A__ ( self ): """simple docstring""" CustomConfig.register_for_auto_class() lowercase = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) lowercase = AutoConfig.from_pretrained(f'{USER}/test-dynamic-config' , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase = c.n_embd + 1 # int lowercase = c.resid_pdrop + 1.0 # float lowercase = not c.scale_attn_weights # bool lowercase = c.summary_type + """foo""" # str c.update_from_string( f'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.summary_type , """mismatch for key: summary_type""" ) def A__ ( self ): """simple docstring""" lowercase = PretrainedConfig() lowercase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _SCREAMING_SNAKE_CASE , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) lowercase = [key for key, value in config_common_kwargs.items() if value == getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" f' {", ".join(_SCREAMING_SNAKE_CASE )}.' ) def A__ ( self ): """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder lowercase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) lowercase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def A__ ( self ): """simple docstring""" lowercase = mock.Mock() lowercase = 500 lowercase = {} lowercase = HTTPError lowercase = {} # Download this model to make sure it's in the cache. lowercase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: lowercase = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self ): """simple docstring""" lowercase = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def A__ ( self ): """simple docstring""" lowercase = AutoConfig.from_pretrained("""bert-base-cased""" ) lowercase = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_SCREAMING_SNAKE_CASE ) lowercase = 2 json.dump(configuration.to_dict() , open(os.path.join(_SCREAMING_SNAKE_CASE , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase = ["""config.42.0.0.json"""] lowercase = 768 configuration.save_pretrained(_SCREAMING_SNAKE_CASE ) shutil.move(os.path.join(_SCREAMING_SNAKE_CASE , """config.4.0.0.json""" ) , os.path.join(_SCREAMING_SNAKE_CASE , """config.42.0.0.json""" ) ) lowercase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 768 ) def A__ ( self ): """simple docstring""" lowercase = """hf-internal-testing/test-two-configs""" import transformers as new_transformers lowercase = """v4.0.0""" lowercase , lowercase = new_transformers.models.auto.AutoConfig.from_pretrained( _SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_SCREAMING_SNAKE_CASE , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase = """v3.0.0""" lowercase = old_transformers.models.auto.AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(old_configuration.hidden_size , 768 )
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __lowerCAmelCase : str =datasets.utils.logging.get_logger(__name__) @dataclass class _A ( datasets.BuilderConfig ): snake_case__ : Optional[datasets.Features] = None snake_case__ : str = "utf-8" snake_case__ : Optional[str] = None snake_case__ : Optional[str] = None snake_case__ : bool = True # deprecated snake_case__ : Optional[int] = None # deprecated snake_case__ : int = 10 << 20 # 10MB snake_case__ : Optional[bool] = None class _A ( datasets.ArrowBasedBuilder ): snake_case__ : Tuple = JsonConfig def A__ ( self ): """simple docstring""" if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) lowercase = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowercase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): lowercase = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase = [files] lowercase = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] lowercase = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase = [files] lowercase = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={"""files""": files} ) ) return splits def A__ ( self , __lowerCAmelCase ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowercase = self.config.features.arrow_schema.field(_lowerCamelCase ).type lowercase = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def A__ ( self , __lowerCAmelCase ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase = json.load(_lowerCamelCase ) # We keep only the field we are interested in lowercase = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): lowercase = set().union(*[row.keys() for row in dataset] ) lowercase = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: lowercase = dataset lowercase = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , """rb""" ) as f: lowercase = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase = max(self.config.chunksize // 32 , 16 << 10 ) lowercase = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: lowercase = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode("""utf-8""" ) try: while True: try: lowercase = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: lowercase = set().union(*[row.keys() for row in dataset] ) lowercase = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} lowercase = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> Union[str, Any]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(__SCREAMING_SNAKE_CASE ): lowercase = row[0] for column_index, column in enumerate(__SCREAMING_SNAKE_CASE ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__SCREAMING_SNAKE_CASE ) continue for column_index in range(len(__SCREAMING_SNAKE_CASE ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__SCREAMING_SNAKE_CASE ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __SCREAMING_SNAKE_CASE ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> Any: '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(__SCREAMING_SNAKE_CASE ) + 1 if any(len(__SCREAMING_SNAKE_CASE ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(__SCREAMING_SNAKE_CASE ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(__SCREAMING_SNAKE_CASE ): if 0 not in row: lowercase = data_set.pop(__SCREAMING_SNAKE_CASE ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , __SCREAMING_SNAKE_CASE ) lowercase = data_set.copy() lowercase = simplify(__SCREAMING_SNAKE_CASE ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(__SCREAMING_SNAKE_CASE ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__SCREAMING_SNAKE_CASE ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(__SCREAMING_SNAKE_CASE ): current_solution -= column * solutions[column_index] solutions.append(__SCREAMING_SNAKE_CASE ) lowercase = [] for item in solutions: final.append(float(round(__SCREAMING_SNAKE_CASE , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : str =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = int(number**0.5 ) return number == sq * sq def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> tuple[int, int]: '''simple docstring''' lowercase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowercase = x_den * y_den * z_den lowercase = gcd(UpperCAmelCase__ , UpperCAmelCase__ ) top //= hcf bottom //= hcf return top, bottom def UpperCAmelCase__ ( lowerCAmelCase__ :int = 3_5 ) -> int: '''simple docstring''' lowercase = set() lowercase = 42 lowercase = Fraction(0 ) lowercase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowercase = x_num * y_den + x_den * y_num lowercase = x_den * y_den lowercase = gcd(UpperCAmelCase__ , UpperCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) unique_s.add(UpperCAmelCase__ ) # n=2 lowercase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowercase = x_den * x_den * y_den * y_den if is_sq(UpperCAmelCase__ ) and is_sq(UpperCAmelCase__ ): lowercase = int(sqrt(UpperCAmelCase__ ) ) lowercase = int(sqrt(UpperCAmelCase__ ) ) lowercase = gcd(UpperCAmelCase__ , UpperCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) unique_s.add(UpperCAmelCase__ ) # n=-1 lowercase = x_num * y_num lowercase = x_den * y_num + x_num * y_den lowercase = gcd(UpperCAmelCase__ , UpperCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) unique_s.add(UpperCAmelCase__ ) # n=2 lowercase = x_num * x_num * y_num * y_num lowercase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(UpperCAmelCase__ ) and is_sq(UpperCAmelCase__ ): lowercase = int(sqrt(UpperCAmelCase__ ) ) lowercase = int(sqrt(UpperCAmelCase__ ) ) lowercase = gcd(UpperCAmelCase__ , UpperCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) unique_s.add(UpperCAmelCase__ ) for num, den in unique_s: total += Fraction(UpperCAmelCase__ , UpperCAmelCase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> int: '''simple docstring''' return len(set(__a ) ) == len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] ) -> Dict: '''simple docstring''' lowercase = FileLock(str(tmpdir / """foo.lock""" ) ) lowercase = FileLock(str(tmpdir / """foo.lock""" ) ) lowercase = 0.01 with locka.acquire(): with pytest.raises(__lowerCamelCase ): lowercase = time.time() locka.acquire(__lowerCamelCase ) assert time.time() - _start > timeout def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = "a" * 1_0_0_0 + ".lock" lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(__lowerCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCamelCase ): locka.acquire(0 )
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] ={ """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _A ( __snake_case ): snake_case__ : str = 'pegasus' snake_case__ : List[str] = ['past_key_values'] snake_case__ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __lowerCAmelCase=5_0265 , __lowerCAmelCase=1024 , __lowerCAmelCase=12 , __lowerCAmelCase=4096 , __lowerCAmelCase=16 , __lowerCAmelCase=12 , __lowerCAmelCase=4096 , __lowerCAmelCase=16 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="gelu" , __lowerCAmelCase=1024 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=0 , __lowerCAmelCase=False , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=1 , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size lowercase = max_position_embeddings lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = use_cache lowercase = encoder_layers lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , forced_eos_token_id=a_ , **a_ , ) @property def A__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def A__ ( self ): """simple docstring""" return self.d_model
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __lowerCAmelCase : Union[str, Any] =logging.getLogger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[Any] = None , lowerCAmelCase__ :List[Any] = None , lowerCAmelCase__ :List[Any] = None , lowerCAmelCase__ :Optional[Any] = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :Tuple = False , ) -> Any: '''simple docstring''' lowercase = bnb_quantization_config.load_in_abit lowercase = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) lowercase = [] # custom device map if isinstance(_A , _A ) and len(device_map.keys() ) > 1: lowercase = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowercase = get_keys_to_not_convert(_A ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_A ) lowercase = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowercase = [] lowercase = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_A ) # compatibility with peft lowercase = load_in_abit lowercase = load_in_abit lowercase = get_parameter_device(_A ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) lowercase = replace_with_bnb_layers(_A , _A , modules_to_not_convert=_A ) # convert param to the right dtype lowercase = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowercase = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) lowercase = getattr(_A , _A , _A ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_A ): param.to(_A ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): lowercase = replace_with_bnb_layers( _A , _A , modules_to_not_convert=_A ) lowercase = get_quantized_model_device_map( _A , _A , _A , max_memory=_A , no_split_module_classes=_A , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowercase = True lowercase = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( _A , _A , _A , dtype=bnb_quantization_config.torch_dtype , offload_folder=_A , offload_state_dict=_A , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_A , device_map=_A , offload_dir=_A ) def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Any , lowerCAmelCase__ :str=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Optional[int]=None ) -> Optional[int]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): lowercase = {'': torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{\'\':torch.cuda.current_device()}`.""" ) if isinstance(_A , _A ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or """ """\'sequential\'.""" ) lowercase = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowercase = {} lowercase = special_dtypes lowercase = no_split_module_classes lowercase = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowercase = get_balanced_memory( _A , low_zero=(device_map == """balanced_low_0""") , max_memory=_A , **_A , ) lowercase = max_memory lowercase = infer_auto_device_map(_A , **_A ) if isinstance(_A , _A ): # check if don't have any quantized module on the cpu lowercase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowercase = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :List[str]=None ) -> Optional[int]: '''simple docstring''' if modules_to_not_convert is None: lowercase = [] lowercase = _replace_with_bnb_layers( _A , _A , _A , _A ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Tuple=None , ) -> Dict: '''simple docstring''' lowercase = False for name, module in model.named_children(): if current_key_name is None: lowercase = [] current_key_name.append(_A ) if isinstance(_A , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowercase = '.'.join(_A ) lowercase = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowercase = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowercase = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_A , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowercase = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can\'t be both False""" ) lowercase = module.weight.data if module.bias is not None: lowercase = module.bias.data bnb_module.requires_grad_(_A ) setattr(_A , _A , _A ) lowercase = True if len(list(module.children() ) ) > 0: lowercase = _replace_with_bnb_layers( _A , _A , _A , _A ) lowercase = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with init_empty_weights(): lowercase = deepcopy(_A ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowercase = find_tied_parameters(_A ) # For compatibility with Accelerate < 0.18 if isinstance(_A , _A ): lowercase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase = sum(_A , [] ) lowercase = len(_A ) > 0 # Check if it is a base model lowercase = False if hasattr(_A , """base_model_prefix""" ): lowercase = not hasattr(_A , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase = list(model.named_children() ) lowercase = [list_modules[-1][0]] # add last module together with tied weights lowercase = set(_A ) - set(_A ) lowercase = list(set(_A ) ) + list(_A ) # remove ".weight" from the keys lowercase = ['.weight', '.bias'] lowercase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase = name.replace(_A , """""" ) filtered_module_names.append(_A ) return filtered_module_names def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> Tuple: '''simple docstring''' for m in model.modules(): if isinstance(_A , bnb.nn.Linearabit ): return True return False def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> List[Any]: '''simple docstring''' return next(parameter.parameters() ).device def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> Optional[int]: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(_A , _A , 0 , dtype=_A , value=_A ) lowercase = param_name lowercase = model if "." in tensor_name: lowercase = tensor_name.split(""".""" ) for split in splits[:-1]: lowercase = getattr(_A , _A ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) lowercase = new_module lowercase = splits[-1] # offload weights lowercase = False offload_weight(module._parameters[tensor_name] , _A , _A , index=_A ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , _A , index=_A , ) else: offload_weight(_A , _A , _A , index=_A ) offload_weight(_A , param_name.replace("""weight""" , """SCB""" ) , _A , index=_A ) set_module_tensor_to_device(_A , _A , """meta""" , dtype=_A , value=torch.empty(*param.size() ) )
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase = len(__UpperCAmelCase ) - 1 def A__ ( self , __lowerCAmelCase ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__UpperCAmelCase ) , 5 ) == 1 return output_values def A__ ( self , __lowerCAmelCase ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase = self.basis_function(__UpperCAmelCase ) lowercase = 0.0 lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A__ ( self , __lowerCAmelCase = 0.0_1 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore lowercase = [] # x coordinates of points to plot lowercase = [] # y coordinates of points to plot lowercase = 0.0 while t <= 1: lowercase = self.bezier_curve_function(__UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase = [i[0] for i in self.list_of_points] lowercase = [i[1] for i in self.list_of_points] plt.plot( __UpperCAmelCase , __UpperCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(__UpperCAmelCase , __UpperCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' lowercase = AlbertConfig.from_json_file(snake_case_ ) print(f'Building PyTorch model from configuration: {config}' ) lowercase = AlbertForPreTraining(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_albert(snake_case_ , snake_case_ , snake_case_ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase : str =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class _A ( __UpperCamelCase , __UpperCamelCase ): snake_case__ : Optional[int] = 1 @register_to_config def __init__( self , __lowerCAmelCase = 1000 , __lowerCAmelCase = None ): """simple docstring""" self.set_timesteps(__lowerCAmelCase ) # standard deviation of the initial noise distribution lowercase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase = 4 # running values lowercase = [] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = num_inference_steps lowercase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase = torch.sin(steps * math.pi / 2 ) ** 2 lowercase = (1.0 - self.betas**2) ** 0.5 lowercase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase = timesteps.to(__lowerCAmelCase ) lowercase = [] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) lowercase = (self.timesteps == timestep).nonzero().item() lowercase = timestep_index + 1 lowercase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__lowerCAmelCase ) if len(self.ets ) == 1: lowercase = self.ets[-1] elif len(self.ets ) == 2: lowercase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase = self._get_prev_sample(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return sample def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.alphas[timestep_index] lowercase = self.betas[timestep_index] lowercase = self.alphas[prev_timestep_index] lowercase = self.betas[prev_timestep_index] lowercase = (sample - sigma * ets) / max(__lowerCAmelCase , 1E-8 ) lowercase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
356
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowerCAmelCase : Optional[int] =(7_2_0, 1_2_8_0) # Height, Width __lowerCAmelCase : Any =(0.4, 0.6) # if height or width lower than this scale, drop it. __lowerCAmelCase : Tuple =1 / 1_0_0 __lowerCAmelCase : Union[str, Any] ="""""" __lowerCAmelCase : Union[str, Any] ="""""" __lowerCAmelCase : Dict ="""""" __lowerCAmelCase : int =2_5_0 def UpperCAmelCase__ ( ) -> int: '''simple docstring''' lowercase , lowercase = get_dataset(A__ , A__ ) for index in range(A__ ): lowercase = random.sample(range(len(A__ ) ) , 4 ) lowercase , lowercase , lowercase = update_image_and_anno( A__ , A__ , A__ , A__ , A__ , filter_scale=A__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase = random_chars(3_2 ) lowercase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowercase = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , A__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) lowercase = [] for anno in new_annos: lowercase = anno[3] - anno[1] lowercase = anno[4] - anno[2] lowercase = anno[1] + width / 2 lowercase = anno[2] + height / 2 lowercase = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(A__ ) with open(f'{file_root}.txt' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> int: '''simple docstring''' lowercase = [] lowercase = [] for label_file in glob.glob(os.path.join(A__ , """*.txt""" ) ): lowercase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(A__ ) as in_file: lowercase = in_file.readlines() lowercase = os.path.join(A__ , f'{label_name}.jpg' ) lowercase = [] for obj_list in obj_lists: lowercase = obj_list.rstrip("""\n""" ).split(""" """ ) lowercase = float(obj[1] ) - float(obj[3] ) / 2 lowercase = float(obj[2] ) - float(obj[4] ) / 2 lowercase = float(obj[1] ) + float(obj[3] ) / 2 lowercase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(A__ ) labels.append(A__ ) return img_paths, labels def UpperCAmelCase__ ( lowerCAmelCase__ :list , lowerCAmelCase__ :list , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :tuple[int, int] , lowerCAmelCase__ :tuple[float, float] , lowerCAmelCase__ :float = 0.0 , ) -> int: '''simple docstring''' lowercase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase = int(scale_x * output_size[1] ) lowercase = int(scale_y * output_size[0] ) lowercase = [] lowercase = [] for i, index in enumerate(A__ ): lowercase = all_img_list[index] path_list.append(A__ ) lowercase = all_annos[index] lowercase = cva.imread(A__ ) if i == 0: # top-left lowercase = cva.resize(A__ , (divid_point_x, divid_point_y) ) lowercase = img for bbox in img_annos: lowercase = bbox[1] * scale_x lowercase = bbox[2] * scale_y lowercase = bbox[3] * scale_x lowercase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase = cva.resize(A__ , (output_size[1] - divid_point_x, divid_point_y) ) lowercase = img for bbox in img_annos: lowercase = scale_x + bbox[1] * (1 - scale_x) lowercase = bbox[2] * scale_y lowercase = scale_x + bbox[3] * (1 - scale_x) lowercase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase = cva.resize(A__ , (divid_point_x, output_size[0] - divid_point_y) ) lowercase = img for bbox in img_annos: lowercase = bbox[1] * scale_x lowercase = scale_y + bbox[2] * (1 - scale_y) lowercase = bbox[3] * scale_x lowercase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase = cva.resize( A__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase = img for bbox in img_annos: lowercase = scale_x + bbox[1] * (1 - scale_x) lowercase = scale_y + bbox[2] * (1 - scale_y) lowercase = scale_x + bbox[3] * (1 - scale_x) lowercase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" lowercase = ascii_lowercase + digits return "".join(random.choice(A__ ) for _ in range(A__ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
"""simple docstring""" import string import numpy def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ) -> Dict: '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , lowerCAmelCase__ ) class _A : snake_case__ : List[Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) snake_case__ : List[Any] = numpy.vectorize(lambda lowerCAmelCase : x % 36 ) snake_case__ : Union[str, Any] = numpy.vectorize(lowerCAmelCase_ ) def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.modulus(__lowerCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase = encrypt_key.shape[0] def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.key_string.index(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.key_string[round(__lowerCAmelCase )] def A__ ( self ): """simple docstring""" lowercase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase = det % len(self.key_string ) lowercase = len(self.key_string ) if greatest_common_divisor(__lowerCAmelCase , len(self.key_string ) ) != 1: lowercase = ( f'determinant modular {req_l} of encryption key({det}) ' f'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = [char for char in text.upper() if char in self.key_string] lowercase = chars[-1] while len(__lowerCAmelCase ) % self.break_key != 0: chars.append(__lowerCAmelCase ) return "".join(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.process_text(text.upper() ) lowercase = """""" for i in range(0 , len(__lowerCAmelCase ) - self.break_key + 1 , self.break_key ): lowercase = text[i : i + self.break_key] lowercase = [self.replace_letters(__lowerCAmelCase ) for char in batch] lowercase = numpy.array([vec] ).T lowercase = self.modulus(self.encrypt_key.dot(__lowerCAmelCase ) ).T.tolist()[ 0 ] lowercase = """""".join( self.replace_digits(__lowerCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def A__ ( self ): """simple docstring""" lowercase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase = det % len(self.key_string ) lowercase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowercase = i break lowercase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowerCAmelCase ) ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.make_decrypt_key() lowercase = self.process_text(text.upper() ) lowercase = """""" for i in range(0 , len(__lowerCAmelCase ) - self.break_key + 1 , self.break_key ): lowercase = text[i : i + self.break_key] lowercase = [self.replace_letters(__lowerCAmelCase ) for char in batch] lowercase = numpy.array([vec] ).T lowercase = self.modulus(decrypt_key.dot(__lowerCAmelCase ) ).T.tolist()[0] lowercase = """""".join( self.replace_digits(__lowerCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def UpperCAmelCase__ ( ) -> List[Any]: '''simple docstring''' lowercase = int(input("""Enter the order of the encryption key: """ ) ) lowercase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(lowerCAmelCase__ ): lowercase = [int(lowerCAmelCase__ ) for x in input().split()] hill_matrix.append(lowerCAmelCase__ ) lowercase = HillCipher(numpy.array(lowerCAmelCase__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) lowercase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": lowercase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(lowerCAmelCase__ ) ) elif option == "2": lowercase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
358
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
0
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCAmelCase : Optional[List[str]] =None __lowerCAmelCase : List[Any] ="<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCAmelCase : Tuple =[ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class _A : snake_case__ : bool = True snake_case__ : Optional[str] = None # Automatically constructed snake_case__ : ClassVar[str] = "PIL.Image.Image" snake_case__ : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) snake_case__ : str = field(default='Image' , init=SCREAMING_SNAKE_CASE__ , repr=SCREAMING_SNAKE_CASE__ ) def __call__( self ): """simple docstring""" return self.pa_type def A__ ( self , __lowerCAmelCase ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(a_ , a_ ): lowercase = np.array(a_ ) if isinstance(a_ , a_ ): return {"path": value, "bytes": None} elif isinstance(a_ , a_ ): return {"path": None, "bytes": value} elif isinstance(a_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(a_ ) elif isinstance(a_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(a_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase = {} lowercase , lowercase = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(a_ ): lowercase = PIL.Image.open(a_ ) else: lowercase = path.split("""::""" )[-1] try: lowercase = string_to_dict(a_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase = token_per_repo_id.get(a_ ) except ValueError: lowercase = None with xopen(a_ , """rb""" , use_auth_token=a_ ) as f: lowercase = BytesIO(f.read() ) lowercase = PIL.Image.open(bytes_ ) else: lowercase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def A__ ( self ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if pa.types.is_string(storage.type ): lowercase = pa.array([None] * len(a_ ) , type=pa.binary() ) lowercase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase = pa.array([None] * len(a_ ) , type=pa.string() ) lowercase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase = storage.field("""bytes""" ) else: lowercase = pa.array([None] * len(a_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase = storage.field("""path""" ) else: lowercase = pa.array([None] * len(a_ ) , type=pa.string() ) lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase = pa.array( [encode_np_array(np.array(a_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase = pa.array([None] * len(a_ ) , type=pa.string() ) lowercase = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(__lowerCAmelCase ): with xopen(a_ , """rb""" ) as f: lowercase = f.read() return bytes_ lowercase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type ) def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCAmelCase__ ( lowerCAmelCase__ :"PIL.Image.Image" ) -> bytes: '''simple docstring''' lowercase = BytesIO() if image.format in list_image_compression_formats(): lowercase = image.format else: lowercase = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(_UpperCamelCase , format=_UpperCamelCase ) return buffer.getvalue() def UpperCAmelCase__ ( lowerCAmelCase__ :"PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(_UpperCamelCase , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def UpperCAmelCase__ ( lowerCAmelCase__ :np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase = array.dtype lowercase = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase = dtype.kind lowercase = dtype.itemsize lowercase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase = dtype_byteorder + dtype_kind + str(_UpperCamelCase ) lowercase = np.dtype(_UpperCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) lowercase = PIL.Image.fromarray(array.astype(_UpperCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCamelCase )} def UpperCAmelCase__ ( lowerCAmelCase__ :Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase , lowercase = first_non_null_value(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCamelCase , np.ndarray ): lowercase = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] elif isinstance(_UpperCamelCase , PIL.Image.Image ): lowercase = no_op_if_value_is_null(_UpperCamelCase ) return [obj_to_image_dict_func(_UpperCamelCase ) for obj in objs] else: return objs else: return objs
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _A ( lowerCAmelCase ): snake_case__ : Tuple = ['image_processor', 'tokenizer'] snake_case__ : List[Any] = 'BlipImageProcessor' snake_case__ : Tuple = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = False super().__init__(_snake_case , _snake_case ) lowercase = self.image_processor def __call__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowercase = self.tokenizer lowercase = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) return text_encoding # add pixel_values lowercase = self.image_processor(_snake_case , return_tensors=_snake_case ) if text is not None: lowercase = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) else: lowercase = None if text_encoding is not None: encoding_image_processor.update(_snake_case ) return encoding_image_processor def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def A__ ( self ): """simple docstring""" lowercase = self.tokenizer.model_input_names lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class _A ( __snake_case ): snake_case__ : List[str] = 'falcon' snake_case__ : Any = ['past_key_values'] def __init__( self , __lowerCAmelCase=6_5024 , __lowerCAmelCase=4544 , __lowerCAmelCase=32 , __lowerCAmelCase=71 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=True , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=11 , __lowerCAmelCase=11 , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size # Backward compatibility with n_embed kwarg lowercase = kwargs.pop("""n_embed""" , __lowerCAmelCase ) lowercase = hidden_size if n_embed is None else n_embed lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = layer_norm_epsilon lowercase = initializer_range lowercase = use_cache lowercase = hidden_dropout lowercase = attention_dropout lowercase = bos_token_id lowercase = eos_token_id lowercase = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase = alibi lowercase = new_decoder_architecture lowercase = multi_query # Ignored when new_decoder_architecture is True lowercase = parallel_attn lowercase = bias super().__init__(bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" return self.hidden_size // self.num_attention_heads @property def A__ ( self ): """simple docstring""" return not self.alibi
361
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
0
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def UpperCAmelCase__ ( lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = cva.getAffineTransform(UpperCamelCase__ , UpperCamelCase__ ) return cva.warpAffine(UpperCamelCase__ , UpperCamelCase__ , (rows, cols) ) if __name__ == "__main__": # read original image __lowerCAmelCase : Tuple =cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value __lowerCAmelCase : int =cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __lowerCAmelCase , __lowerCAmelCase : Tuple =gray_img.shape # set different points to rotate image __lowerCAmelCase : Any =np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) __lowerCAmelCase : Dict =np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) __lowerCAmelCase : Union[str, Any] =np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) __lowerCAmelCase : Tuple =np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list __lowerCAmelCase : Dict =[ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __lowerCAmelCase : str =plt.figure(1) __lowerCAmelCase : List[Any] =["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _A ( SCREAMING_SNAKE_CASE__ ): def A__ ( self ): """simple docstring""" lowercase = tempfile.mkdtemp() lowercase = 8 # DPR tok lowercase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) lowercase = os.path.join(_SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok lowercase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) lowercase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase = {"unk_token": "<unk>"} lowercase = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) lowercase = os.path.join(_SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(_SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) def A__ ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def A__ ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def A__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def A__ ( self ): """simple docstring""" lowercase = os.path.join(self.tmpdirname , """rag_tokenizer""" ) lowercase = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowercase = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_SCREAMING_SNAKE_CASE ) rag_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) lowercase = RagTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _SCREAMING_SNAKE_CASE ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def A__ ( self ): """simple docstring""" lowercase = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) lowercase = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowercase = tokenizer(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow def A__ ( self ): """simple docstring""" lowercase = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) lowercase = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowercase = tokenizer(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): snake_case__ : Optional[Any] = StableUnCLIPPipeline snake_case__ : str = TEXT_TO_IMAGE_PARAMS snake_case__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false snake_case__ : str = False def A__ ( self ): """simple docstring""" lowercase = 32 lowercase = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowercase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=UpperCAmelCase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCAmelCase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCAmelCase_ , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) lowercase = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase_ ) lowercase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase_ , layers_per_block=1 , upcast_attention=UpperCAmelCase_ , use_linear_projection=UpperCAmelCase_ , ) torch.manual_seed(0 ) lowercase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase = AutoencoderKL() lowercase = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" if str(UpperCAmelCase_ ).startswith("""mps""" ): lowercase = torch.manual_seed(UpperCAmelCase_ ) else: lowercase = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowercase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def A__ ( self ): """simple docstring""" lowercase = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase_ ) def A__ ( self ): """simple docstring""" lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase_ ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) lowercase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase = pipe("""anime turle""" , generator=UpperCAmelCase_ , output_type="""np""" ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) lowercase = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase = grid[0] for row_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): lowercase = grid[row_n] lowercase = fill_row(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase = grid[row_n] return grid[-1][-1] def UpperCAmelCase__ ( lowerCAmelCase__ :list , lowerCAmelCase__ :list ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _A ( unittest.TestCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=18 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=[0.5, 0.5, 0.5] , ): """simple docstring""" lowercase = size if size is not None else {"""shortest_edge""": 18} lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = do_normalize lowercase = image_mean lowercase = image_std def A__ ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _A ( UpperCamelCase__ , unittest.TestCase ): snake_case__ : Dict = LevitImageProcessor if is_vision_available() else None def A__ ( self ): """simple docstring""" lowercase = LevitImageProcessingTester(self ) @property def A__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ): """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) def A__ ( self ): """simple docstring""" lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ ( self ): """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ ( self ): """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowercase = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
"""simple docstring""" import string import numpy def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , __lowerCamelCase ) class _A : snake_case__ : List[Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) snake_case__ : List[str] = numpy.vectorize(lambda lowerCAmelCase : x % 36 ) snake_case__ : Tuple = numpy.vectorize(A_ ) def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.modulus(_lowerCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase = encrypt_key.shape[0] def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.key_string.index(_lowerCamelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.key_string[round(_lowerCamelCase )] def A__ ( self ): """simple docstring""" lowercase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase = det % len(self.key_string ) lowercase = len(self.key_string ) if greatest_common_divisor(_lowerCamelCase , len(self.key_string ) ) != 1: lowercase = ( f'determinant modular {req_l} of encryption key({det}) ' f'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(_lowerCamelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = [char for char in text.upper() if char in self.key_string] lowercase = chars[-1] while len(_lowerCamelCase ) % self.break_key != 0: chars.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.process_text(text.upper() ) lowercase = """""" for i in range(0 , len(_lowerCamelCase ) - self.break_key + 1 , self.break_key ): lowercase = text[i : i + self.break_key] lowercase = [self.replace_letters(_lowerCamelCase ) for char in batch] lowercase = numpy.array([vec] ).T lowercase = self.modulus(self.encrypt_key.dot(_lowerCamelCase ) ).T.tolist()[ 0 ] lowercase = """""".join( self.replace_digits(_lowerCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def A__ ( self ): """simple docstring""" lowercase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase = det % len(self.key_string ) lowercase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowercase = i break lowercase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_lowerCamelCase ) ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.make_decrypt_key() lowercase = self.process_text(text.upper() ) lowercase = """""" for i in range(0 , len(_lowerCamelCase ) - self.break_key + 1 , self.break_key ): lowercase = text[i : i + self.break_key] lowercase = [self.replace_letters(_lowerCamelCase ) for char in batch] lowercase = numpy.array([vec] ).T lowercase = self.modulus(decrypt_key.dot(_lowerCamelCase ) ).T.tolist()[0] lowercase = """""".join( self.replace_digits(_lowerCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def UpperCAmelCase__ ( ) -> None: '''simple docstring''' lowercase = int(input("""Enter the order of the encryption key: """ ) ) lowercase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(__lowerCamelCase ): lowercase = [int(__lowerCamelCase ) for x in input().split()] hill_matrix.append(__lowerCamelCase ) lowercase = HillCipher(numpy.array(__lowerCamelCase ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) lowercase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": lowercase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(__lowerCamelCase ) ) elif option == "2": lowercase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*_a , **_a ) lowercase = {} def A__ ( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = super().add_tokens(_a , *_a , **_a ) if num_added_tokens == 0: raise ValueError( f'The tokenizer already contains the token {placeholder_token}. Please pass a different' """ `placeholder_token` that is not already in the tokenizer.""" ) def A__ ( self , __lowerCAmelCase , *__lowerCAmelCase , __lowerCAmelCase=1 , **__lowerCAmelCase ): """simple docstring""" lowercase = [] if num_vec_per_token == 1: self.try_adding_tokens(_a , *_a , **_a ) output.append(_a ) else: lowercase = [] for i in range(_a ): lowercase = placeholder_token + f'_{i}' self.try_adding_tokens(_a , *_a , **_a ) output.append(_a ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'The tokenizer already has placeholder token {token} that can get confused with' f' {placeholder_token}keep placeholder tokens independent' ) lowercase = output def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=1.0 ): """simple docstring""" if isinstance(_a , _a ): lowercase = [] for i in range(len(_a ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_a ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowercase = self.token_map[placeholder_token] lowercase = tokens[: 1 + int(len(_a ) * prop_tokens_to_load )] if vector_shuffle: lowercase = copy.copy(_a ) random.shuffle(_a ) lowercase = text.replace(_a , """ """.join(_a ) ) return text def __call__( self , __lowerCAmelCase , *__lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=1.0 , **__lowerCAmelCase ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( _a , vector_shuffle=_a , prop_tokens_to_load=_a ) , *_a , **_a , ) def A__ ( self , __lowerCAmelCase , *__lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=1.0 , **__lowerCAmelCase ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( _a , vector_shuffle=_a , prop_tokens_to_load=_a ) , *_a , **_a , )
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" import os __lowerCAmelCase : List[str] ={"""I""": 1, """V""": 5, """X""": 1_0, """L""": 5_0, """C""": 1_0_0, """D""": 5_0_0, """M""": 1_0_0_0} def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 lowercase = 0 while index < len(lowerCAmelCase__ ) - 1: lowercase = SYMBOLS[numerals[index]] lowercase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' lowercase = "" lowercase = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 lowercase = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 lowercase = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( lowerCAmelCase__ :str = "/p089_roman.txt" ) -> Optional[int]: '''simple docstring''' lowercase = 0 with open(os.path.dirname(lowerCAmelCase__ ) + roman_numerals_filename ) as filea: lowercase = filea.readlines() for line in lines: lowercase = line.strip() lowercase = parse_roman_numerals(lowerCAmelCase__ ) lowercase = generate_roman_numerals(lowerCAmelCase__ ) savings += len(lowerCAmelCase__ ) - len(lowerCAmelCase__ ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' lowercase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
import flax.linen as nn import jax import jax.numpy as jnp class _A ( nn.Module ): snake_case__ : int snake_case__ : jnp.dtype = jnp.floataa def A__ ( self ): """simple docstring""" lowercase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase = hidden_states.shape lowercase = jax.image.resize( __lowercase , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) lowercase = self.conv(__lowercase ) return hidden_states class _A ( nn.Module ): snake_case__ : int snake_case__ : jnp.dtype = jnp.floataa def A__ ( self ): """simple docstring""" lowercase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.conv(__lowercase ) return hidden_states class _A ( nn.Module ): snake_case__ : int snake_case__ : int = None snake_case__ : float = 0.0 snake_case__ : bool = None snake_case__ : jnp.dtype = jnp.floataa def A__ ( self ): """simple docstring""" lowercase = self.in_channels if self.out_channels is None else self.out_channels lowercase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase = nn.Conv( __lowercase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = nn.Dense(__lowercase , dtype=self.dtype ) lowercase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase = nn.Dropout(self.dropout_prob ) lowercase = nn.Conv( __lowercase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase = None if use_nin_shortcut: lowercase = nn.Conv( __lowercase , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True ): """simple docstring""" lowercase = hidden_states lowercase = self.norma(__lowercase ) lowercase = nn.swish(__lowercase ) lowercase = self.conva(__lowercase ) lowercase = self.time_emb_proj(nn.swish(__lowercase ) ) lowercase = jnp.expand_dims(jnp.expand_dims(__lowercase , 1 ) , 1 ) lowercase = hidden_states + temb lowercase = self.norma(__lowercase ) lowercase = nn.swish(__lowercase ) lowercase = self.dropout(__lowercase , __lowercase ) lowercase = self.conva(__lowercase ) if self.conv_shortcut is not None: lowercase = self.conv_shortcut(__lowercase ) return hidden_states + residual
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCAmelCase : str =logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __UpperCamelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: lowercase = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate("""steps_offset!=1""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) lowercase = dict(scheduler.config ) lowercase = 1 lowercase = FrozenDict(__lowerCAmelCase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: lowercase = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) lowercase = dict(scheduler.config ) lowercase = True lowercase = FrozenDict(__lowerCAmelCase ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=__lowerCAmelCase , segmentation_processor=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , ) def A__ ( self , __lowerCAmelCase = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" self.enable_attention_slicing(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowercase = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self ): """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 512 , __lowerCAmelCase = 512 , __lowerCAmelCase = 50 , __lowerCAmelCase = 7.5 , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 1 , **__lowerCAmelCase , ): """simple docstring""" lowercase = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) lowercase = self.segmentation_model(**__lowerCAmelCase ) lowercase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase = self.numpy_to_pil(__lowerCAmelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , height=__lowerCAmelCase , width=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , negative_prompt=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , eta=__lowerCAmelCase , generator=__lowerCAmelCase , latents=__lowerCAmelCase , output_type=__lowerCAmelCase , return_dict=__lowerCAmelCase , callback=__lowerCAmelCase , callback_steps=__lowerCAmelCase , )
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=64 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = embedding_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope def A__ ( self ): """simple docstring""" lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = MegatronBertModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) lowercase = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) lowercase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = MegatronBertForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = MegatronBertForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = MegatronBertForNextSentencePrediction(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = MegatronBertForPreTraining(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , next_sentence_label=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = MegatronBertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = MegatronBertForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = MegatronBertForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_choices lowercase = MegatronBertForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): snake_case__ : Optional[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) snake_case__ : Dict = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Tuple = True # test_resize_embeddings = False snake_case__ : Optional[int] = False def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" lowercase = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE ): lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) return inputs_dict def A__ ( self ): """simple docstring""" lowercase = MegatronBertModelTester(self ) lowercase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__SCREAMING_SNAKE_CASE ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__SCREAMING_SNAKE_CASE ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__SCREAMING_SNAKE_CASE ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__SCREAMING_SNAKE_CASE ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> Optional[Any]: '''simple docstring''' return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) __lowerCAmelCase : Tuple =1E-4 @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""" ) def A__ ( self ): """simple docstring""" lowercase = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: lowercase = os.path.join(os.environ["""MYDIR"""] , __SCREAMING_SNAKE_CASE ) lowercase = MegatronBertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.half() lowercase = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowercase = model(__SCREAMING_SNAKE_CASE )[0] lowercase = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) lowercase = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): lowercase = output[0, ii, jj] lowercase = expected[3 * ii + jj] lowercase = """ii={} jj={} a={} b={}""".format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertTrue(math.isclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rel_tol=__SCREAMING_SNAKE_CASE , abs_tol=__SCREAMING_SNAKE_CASE ) , msg=__SCREAMING_SNAKE_CASE )
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __lowerCAmelCase : Any =logging.get_logger(__name__) class _A ( snake_case_ ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _A ( lowerCAmelCase ): snake_case__ : Optional[int] = (PNDMScheduler,) snake_case__ : int = (('num_inference_steps', 50),) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" lowercase = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_lowerCAmelCase ) return config def A__ ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config(**_lowerCAmelCase ) lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals lowercase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) lowercase = scheduler_class.from_pretrained(_lowerCAmelCase ) new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals lowercase = dummy_past_residuals[:] lowercase = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = new_scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = new_scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self ): """simple docstring""" pass def A__ ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ): """simple docstring""" lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCAmelCase ) lowercase = scheduler_class.from_pretrained(_lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase = dummy_past_residuals[:] lowercase = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = new_scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = new_scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A__ ( self , **__lowerCAmelCase ): """simple docstring""" lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**_lowerCAmelCase ) lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = 10 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase = scheduler.step_plms(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def A__ ( self ): """simple docstring""" lowercase = dict(self.forward_default_kwargs ) lowercase = kwargs.pop("""num_inference_steps""" , _lowerCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) lowercase = self.dummy_sample lowercase = 0.1 * sample if num_inference_steps is not None and hasattr(_lowerCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(_lowerCAmelCase , """set_timesteps""" ): lowercase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] lowercase = dummy_past_residuals[:] lowercase = scheduler.step_prk(_lowerCAmelCase , 0 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = scheduler.step_prk(_lowerCAmelCase , 1 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase = scheduler.step_plms(_lowerCAmelCase , 0 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample lowercase = scheduler.step_plms(_lowerCAmelCase , 1 , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def A__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(steps_offset=1 ) lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def A__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] , [0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def A__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def A__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def A__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_lowerCAmelCase ) def A__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = 27 for scheduler_class in self.scheduler_classes: lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(_lowerCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase = scheduler.step_prk(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample def A__ ( self ): """simple docstring""" with self.assertRaises(_lowerCAmelCase ): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A__ ( self ): """simple docstring""" lowercase = self.full_loop() lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.full_loop(prediction_type="""v_prediction""" ) lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.0_1 ) lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1E-3 def A__ ( self ): """simple docstring""" lowercase = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.0_1 ) lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1E-3
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict ) -> Tuple: '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(_A , n - 1 , _A ) * a) % mod else: lowercase = binary_exponentiation(_A , n / 2 , _A ) return (b * b) % mod # a prime number __lowerCAmelCase : Optional[int] =7_0_1 __lowerCAmelCase : Dict =1_0_0_0_0_0_0_0_0_0 __lowerCAmelCase : Optional[int] =1_0 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Any =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _A ( __lowerCAmelCase , unittest.TestCase ): snake_case__ : Tuple = XLNetTokenizer snake_case__ : Tuple = XLNetTokenizerFast snake_case__ : Optional[int] = True snake_case__ : str = True def A__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase = XLNetTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self ): """simple docstring""" lowercase = '''<s>''' lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def A__ ( self ): """simple docstring""" lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(lowerCamelCase__ ) , 1006 ) def A__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A__ ( self ): """simple docstring""" lowercase = XLNetTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [285, 46, 10, 170, 382] ) lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) lowercase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def A__ ( self ): """simple docstring""" lowercase = XLNetTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def A__ ( self ): """simple docstring""" lowercase = XLNetTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def A__ ( self ): """simple docstring""" lowercase = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCamelCase__ ) lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCamelCase__ ) lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) lowercase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def A__ ( self ): """simple docstring""" lowercase = {'''input_ids''': [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
356
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : str =logging.get_logger() @dataclass class _A : snake_case__ : nn.Module snake_case__ : List[nn.Module] = field(default_factory=lowerCamelCase__ ) snake_case__ : list = field(default_factory=lowerCamelCase__ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = len(list(m.modules() ) ) == 1 or isinstance(lowercase__ , nn.Convad ) or isinstance(lowercase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowercase__ ) def __call__( self , __lowerCAmelCase ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowercase__ ) [x.remove() for x in self.handles] return self @property def A__ ( self ): """simple docstring""" return list(filter(lambda __lowerCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _A : snake_case__ : nn.Module snake_case__ : nn.Module snake_case__ : int = 1 snake_case__ : List = field(default_factory=lowerCamelCase__ ) snake_case__ : List = field(default_factory=lowerCamelCase__ ) snake_case__ : bool = True def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase = Tracker(self.dest )(lowercase__ ).parametrized lowercase = Tracker(self.src )(lowercase__ ).parametrized lowercase = list(filter(lambda __lowerCAmelCase : type(lowercase__ ) not in self.src_skip , lowercase__ ) ) lowercase = list(filter(lambda __lowerCAmelCase : type(lowercase__ ) not in self.dest_skip , lowercase__ ) ) if len(lowercase__ ) != len(lowercase__ ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(lowercase__ )} operations while' f' destination module has {len(lowercase__ )}.' ) for dest_m, src_m in zip(lowercase__ , lowercase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class _A ( nn.Module ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__() lowercase = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), f'Unexpected layer name {k}' lowercase = len(lowercase__ ) + 1 feature_blocks.append((f'res{block_index}', v) ) lowercase = nn.ModuleDict(lowercase__ ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return get_trunk_forward_outputs( lowercase__ , out_feat_keys=lowercase__ , feature_blocks=self._feature_blocks , ) class _A ( lowerCamelCase__ ): def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , __lowerCAmelCase ): """simple docstring""" if x not in self: lowercase = self.convert_name_to_timm(lowercase__ ) lowercase = partial(lambda: (timm.create_model(lowercase__ , pretrained=lowercase__ ).eval(), None) ) else: lowercase = super().__getitem__(lowercase__ ) return val class _A ( lowerCamelCase__ ): def __getitem__( self , __lowerCAmelCase ): """simple docstring""" if "seer" in x and "in1k" not in x: lowercase = RegNetModel else: lowercase = RegNetForImageClassification return val def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str ) -> Optional[Any]: '''simple docstring''' for from_key, to_key in keys: lowercase = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict = True , ) -> Any: '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): lowercase , lowercase = from_model_func() lowercase = our_model_func(A__ ).eval() lowercase = ModuleTransfer(src=A__ , dest=A__ , raise_if_mismatch=A__ ) lowercase = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(A__ ) if from_state_dict is not None: lowercase = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: lowercase = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] lowercase = manually_copy_vissl_head(A__ , our_model.state_dict() , A__ ) our_model.load_state_dict(A__ ) lowercase = our_model(A__ , output_hidden_states=A__ ) lowercase = ( our_outputs.logits if isinstance(A__ , A__ ) else our_outputs.last_hidden_state ) lowercase = from_model(A__ ) lowercase = from_output[-1] if type(A__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: lowercase = our_outputs.hidden_states[-1] assert torch.allclose(A__ , A__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=A__ , ) lowercase = 2_2_4 if """seer""" not in name else 3_8_4 # we can use the convnext one lowercase = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=A__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=A__ , ) print(f'Pushed {name}' ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] = None , lowerCAmelCase__ :Any = True ) -> Optional[Any]: '''simple docstring''' lowercase = """imagenet-1k-id2label.json""" lowercase = 1_0_0_0 lowercase = (1, num_labels) lowercase = """huggingface/label-files""" lowercase = num_labels lowercase = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase = {int(A__ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} lowercase = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ ) lowercase = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } lowercase = NameToOurModelFuncMap() lowercase = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict ) -> Tuple[nn.Module, Dict]: lowercase = torch.hub.load_state_dict_from_url(A__ , model_dir=str(A__ ) , map_location="""cpu""" ) lowercase = model_func() # check if we have a head, if yes add it lowercase = files["""classy_state_dict"""]["""base_model"""]["""model"""] lowercase = model_state_dict["""trunk"""] model.load_state_dict(A__ ) return model.eval(), model_state_dict["heads"] # pretrained lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.52 ) ) ) , ) # IN1K finetuned lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowercase = partial( A__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( A__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , A__ , A__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( A__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , A__ , A__ , A__ , ) return config, expected_shape if __name__ == "__main__": __lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __lowerCAmelCase : List[str] =parser.parse_args() __lowerCAmelCase : Optional[int] =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> list: '''simple docstring''' lowercase = word.split() def justify(lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] ) -> str: lowercase = max_width - width lowercase = len(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowercase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowercase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowercase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_UpperCAmelCase ): num_spaces_between_words_list[i] += 1 lowercase = [] for i in range(_UpperCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_UpperCAmelCase ) lowercase = [] lowercase = [] lowercase = 0 for word in words: if width + len(_UpperCAmelCase ) + len(_UpperCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_UpperCAmelCase ) width += len(_UpperCAmelCase ) else: # justify the line and add it to result answer.append(justify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) # reset new line and new width lowercase = [word], len(_UpperCAmelCase ) lowercase = max_width - width - len(_UpperCAmelCase ) answer.append(""" """.join(_UpperCAmelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
358
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCAmelCase : List[Any] =["""text""", """image""", """audio"""] def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(a__ , a__ ): inputs.append(create_inputs(a__ ) ) else: raise ValueError(f'Invalid type requested: {input_type}' ) return inputs def UpperCAmelCase__ ( lowerCAmelCase__ :List ) -> Any: '''simple docstring''' lowercase = [] for output in outputs: if isinstance(a__ , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(a__ , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(a__ , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'Invalid output: {output}' ) return output_types @is_tool_test class _A : def A__ ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) lowercase = self.tool.inputs for _input in inputs: if isinstance(_input , __UpperCamelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def A__ ( self ): """simple docstring""" lowercase = create_inputs(self.tool.inputs ) lowercase = self.tool(*__UpperCamelCase ) # There is a single output if len(self.tool.outputs ) == 1: lowercase = [outputs] self.assertListEqual(output_types(__UpperCamelCase ) , self.tool.outputs ) def A__ ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def A__ ( self ): """simple docstring""" lowercase = create_inputs(self.tool.inputs ) lowercase = self.tool(*__UpperCamelCase ) if not isinstance(__UpperCamelCase , __UpperCamelCase ): lowercase = [outputs] self.assertEqual(len(__UpperCamelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(__UpperCamelCase , self.tool.outputs ): lowercase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) def A__ ( self ): """simple docstring""" lowercase = create_inputs(self.tool.inputs ) lowercase = [] for _input, input_type in zip(__UpperCamelCase , self.tool.inputs ): if isinstance(__UpperCamelCase , __UpperCamelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase = self.tool(*__UpperCamelCase ) if not isinstance(__UpperCamelCase , __UpperCamelCase ): lowercase = [outputs] self.assertEqual(len(__UpperCamelCase ) , len(self.tool.outputs ) )
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar __lowerCAmelCase : Dict =TypeVar("""T""") class _A ( Generic[T] ): def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = data lowercase = self lowercase = 0 class _A ( Generic[T] ): def __init__( self ): """simple docstring""" lowercase = {} def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = DisjointSetTreeNode(UpperCAmelCase__ ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.map[data] if elem_ref != elem_ref.parent: lowercase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if nodea.rank > nodea.rank: lowercase = nodea else: lowercase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" self.link(self.find_set(UpperCAmelCase__ ) , self.find_set(UpperCAmelCase__ ) ) class _A ( Generic[T] ): def __init__( self ): """simple docstring""" lowercase = {} def A__ ( self , __lowerCAmelCase ): """simple docstring""" if node not in self.connections: lowercase = {} def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" self.add_node(UpperCAmelCase__ ) self.add_node(UpperCAmelCase__ ) lowercase = weight lowercase = weight def A__ ( self ): """simple docstring""" lowercase = [] lowercase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __lowerCAmelCase : x[2] ) # creating the disjoint set lowercase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(UpperCAmelCase__ ) # MST generation lowercase = 0 lowercase = 0 lowercase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowercase , lowercase , lowercase = edges[index] index += 1 lowercase = disjoint_set.find_set(UpperCAmelCase__ ) lowercase = disjoint_set.find_set(UpperCAmelCase__ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) disjoint_set.union(UpperCAmelCase__ , UpperCAmelCase__ ) return graph
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __lowerCAmelCase : Tuple =None __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase : Optional[Any] ={ "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 __lowerCAmelCase : Optional[int] ={ "t5-small": 5_1_2, "t5-base": 5_1_2, "t5-large": 5_1_2, "t5-3b": 5_1_2, "t5-11b": 5_1_2, } class _A ( UpperCamelCase_ ): snake_case__ : Tuple = VOCAB_FILES_NAMES snake_case__ : int = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[int] = ["""input_ids""", """attention_mask"""] snake_case__ : List[str] = TaTokenizer snake_case__ : List[int] = [] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=100 , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: lowercase = [f'<extra_id_{i}>' for i in range(_a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase = len(set(filter(lambda __lowerCAmelCase : bool("""extra_id_""" in str(_a ) ) , _a ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( _a , tokenizer_file=_a , eos_token=_a , unk_token=_a , pad_token=_a , extra_ids=_a , additional_special_tokens=_a , **_a , ) lowercase = vocab_file lowercase = False if not self.vocab_file else True lowercase = extra_ids @staticmethod def A__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , _a , ) return max_model_length def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A__ ( self ): """simple docstring""" return list( set(filter(lambda __lowerCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , _a ) ) is not None , self.additional_special_tokens ) ) ) def A__ ( self ): """simple docstring""" return [self.convert_tokens_to_ids(_a ) for token in self.get_sentinel_tokens()]
361
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
0
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _A ( nn.Module ): def __init__( self , __lowerCAmelCase = 16 , __lowerCAmelCase = 88 , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 32 , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "geglu" , __lowerCAmelCase = None , ): """simple docstring""" super().__init__() lowercase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowercase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowercase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowercase = [1, 0] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = True , ): """simple docstring""" lowercase = hidden_states lowercase = [] lowercase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowercase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowercase = self.transformer_index_for_condition[i] lowercase = self.transformers[transformer_index]( __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowercase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowercase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] = 1_0 , lowerCAmelCase__ :Tuple = 1_0_0_0 , lowerCAmelCase__ :str = True ) -> int: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict ) -> None: '''simple docstring''' assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(lowerCAmelCase__ :List[str] ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) lowercase = lower lowercase = higher lowercase = [] while True: lowercase = get_avg(__snake_case , __snake_case ) last_numbers.append(__snake_case ) if answer(__snake_case ) == "low": lowercase = number elif answer(__snake_case ) == "high": lowercase = number else: break print(f'guess the number : {last_numbers[-1]}' ) print(f'details : {last_numbers!s}' ) def UpperCAmelCase__ ( ) -> None: '''simple docstring''' lowercase = int(input("""Enter lower value : """ ).strip() ) lowercase = int(input("""Enter high value : """ ).strip() ) lowercase = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(__snake_case , __snake_case , __snake_case ) if __name__ == "__main__": main()
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str , **lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' lowercase = AutoConfig.from_pretrained(_a , **_a ) lowercase = AutoModelForSeqaSeqLM.from_config(_a ) model.save_pretrained(_a ) AutoTokenizer.from_pretrained(_a ).save_pretrained(_a ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCAmelCase : Tuple =1_6 __lowerCAmelCase : Optional[Any] =3_2 def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] = 1_6 , lowerCAmelCase__ :int = "bert-base-cased" ) -> Optional[int]: '''simple docstring''' lowercase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase__ :List[str] ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=SCREAMING_SNAKE_CASE_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase__ :Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Any ) -> Any: '''simple docstring''' model.eval() lowercase = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**SCREAMING_SNAKE_CASE_ ) lowercase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase , lowercase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE_ ) - 1: lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) lowercase = metric.compute() return eval_metric["accuracy"] def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config["""lr"""] lowercase = int(config["""num_epochs"""] ) lowercase = int(config["""seed"""] ) lowercase = int(config["""batch_size"""] ) lowercase = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE_ ) lowercase , lowercase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) # Instantiate optimizer lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) if accelerator.state.deepspeed_plugin is not None: lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowercase = 1 lowercase = (len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE_ , ) else: lowercase = DummyScheduler(SCREAMING_SNAKE_CASE_ , total_num_steps=SCREAMING_SNAKE_CASE_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # We need to keep track of how many total steps we have iterated over lowercase = 0 # We also need to keep track of the stating epoch so files are named properly lowercase = 0 lowercase = evaluate.load("""glue""" , """mrpc""" ) lowercase = num_epochs if args.partial_train_epoch is not None: lowercase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowercase = args.resume_from_checkpoint.split("""epoch_""" )[1] lowercase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowercase = int(SCREAMING_SNAKE_CASE_ ) + 1 lowercase = evaluation_loop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.print("""resumed checkpoint performance:""" , SCREAMING_SNAKE_CASE_ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: lowercase = json.load(SCREAMING_SNAKE_CASE_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowercase = {} for epoch in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowercase = model(**SCREAMING_SNAKE_CASE_ ) lowercase = outputs.loss lowercase = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowercase = f'epoch_{epoch}' lowercase = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) lowercase = evaluation_loop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase = accuracy lowercase = lr_scheduler.get_lr()[0] lowercase = optimizer.param_groups[0]["""lr"""] lowercase = epoch lowercase = overall_step accelerator.print(f'epoch {epoch}:' , SCREAMING_SNAKE_CASE_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=SCREAMING_SNAKE_CASE_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=SCREAMING_SNAKE_CASE_ , ) parser.add_argument( """--output_dir""" , type=SCREAMING_SNAKE_CASE_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=SCREAMING_SNAKE_CASE_ , default=2 , help="""Number of train epochs.""" , ) lowercase = parser.parse_args() lowercase = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _A ( lowerCamelCase_ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = dataset lowercase = process lowercase = params def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.dataset[i] lowercase = self.process(_UpperCAmelCase , **self.params ) return processed class _A ( lowerCamelCase_ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" lowercase = loader lowercase = infer lowercase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowercase = None lowercase = loader_batch_size # Internal bookkeeping lowercase = None lowercase = None def __len__( self ): """simple docstring""" return len(self.loader ) def __iter__( self ): """simple docstring""" lowercase = iter(self.loader ) return self def A__ ( self ): """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice lowercase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowercase = {} for k, element in self._loader_batch_data.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # Convert ModelOutput to tuple first lowercase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowercase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_UpperCAmelCase , _UpperCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowercase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around lowercase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowercase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowercase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. lowercase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowercase = self._loader_batch_data.__class__(_UpperCAmelCase ) self._loader_batch_index += 1 return result def A__ ( self ): """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowercase = next(self.iterator ) lowercase = self.infer(_UpperCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_UpperCAmelCase , torch.Tensor ): lowercase = processed else: lowercase = list(processed.keys() )[0] lowercase = processed[key] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase = len(_UpperCAmelCase ) else: lowercase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowercase = observed_batch_size # Setting internal index to unwrap the batch lowercase = processed lowercase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _A ( lowerCamelCase_ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" super().__init__(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __iter__( self ): """simple docstring""" lowercase = iter(self.loader ) lowercase = None return self def A__ ( self ): """simple docstring""" if self.subiterator is None: lowercase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item lowercase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowercase = self.infer(next(self.iterator ) , **self.params ) lowercase = next(self.subiterator ) return processed class _A ( lowerCamelCase_ ): def __iter__( self ): """simple docstring""" lowercase = iter(self.loader ) return self def A__ ( self ): """simple docstring""" lowercase = False lowercase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowercase = self.loader_batch_item() lowercase = item.pop("""is_last""" ) accumulator.append(_UpperCAmelCase ) if is_last: return accumulator while not is_last: lowercase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_UpperCAmelCase , torch.Tensor ): lowercase = processed else: lowercase = list(processed.keys() )[0] lowercase = processed[key] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase = len(_UpperCAmelCase ) else: lowercase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowercase = observed_batch_size lowercase = processed lowercase = 0 while self._loader_batch_index < self.loader_batch_size: lowercase = self.loader_batch_item() lowercase = item.pop("""is_last""" ) accumulator.append(_UpperCAmelCase ) if is_last: return accumulator else: lowercase = processed lowercase = item.pop("""is_last""" ) accumulator.append(_UpperCAmelCase ) return accumulator class _A ( lowerCamelCase_ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = dataset lowercase = key def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , __lowerCAmelCase ): """simple docstring""" return self.dataset[i][self.key] class _A ( lowerCamelCase_ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = dataset lowercase = keya lowercase = keya def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , __lowerCAmelCase ): """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class _A ( _a ): snake_case__ : str = """instructblip_vision_model""" def __init__( self , __lowerCAmelCase=1408 , __lowerCAmelCase=6144 , __lowerCAmelCase=39 , __lowerCAmelCase=16 , __lowerCAmelCase=224 , __lowerCAmelCase=14 , __lowerCAmelCase="gelu" , __lowerCAmelCase=1E-6 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1E-10 , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCamelCase ) lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = patch_size lowercase = image_size lowercase = initializer_range lowercase = attention_dropout lowercase = layer_norm_eps lowercase = hidden_act lowercase = qkv_bias @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(__lowerCamelCase ) lowercase = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": lowercase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _A ( _a ): snake_case__ : str = """instructblip_qformer""" def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase="absolute" , __lowerCAmelCase=2 , __lowerCAmelCase=1408 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = cross_attention_frequency lowercase = encoder_hidden_size @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" cls._set_token_in_kwargs(__lowerCamelCase ) lowercase = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": lowercase = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _A ( _a ): snake_case__ : Tuple = """instructblip""" snake_case__ : Optional[Any] = True def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=32 , **__lowerCAmelCase ): """simple docstring""" super().__init__(**__lowerCamelCase ) if vision_config is None: lowercase = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: lowercase = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: lowercase = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowercase = InstructBlipVisionConfig(**__lowerCamelCase ) lowercase = InstructBlipQFormerConfig(**__lowerCamelCase ) lowercase = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowercase = CONFIG_MAPPING[text_model_type](**__lowerCamelCase ) lowercase = self.text_config.tie_word_embeddings lowercase = self.text_config.is_encoder_decoder lowercase = num_query_tokens lowercase = self.vision_config.hidden_size lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase = 1.0 lowercase = 0.0_2 @classmethod def A__ ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__lowerCamelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.vision_config.to_dict() lowercase = self.qformer_config.to_dict() lowercase = self.text_config.to_dict() lowercase = self.__class__.model_type return output
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __lowerCAmelCase : Any =data_utils.TransfoXLTokenizer __lowerCAmelCase : List[Any] =data_utils.TransfoXLCorpus __lowerCAmelCase : Optional[Any] =data_utils __lowerCAmelCase : List[Any] =data_utils def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple ) -> List[Any]: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCamelCase , """rb""" ) as fp: lowercase = pickle.load(_lowerCamelCase , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowercase = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(f'Save vocabulary to {pytorch_vocab_dump_path}' ) lowercase = corpus.vocab.__dict__ torch.save(_lowerCamelCase , _lowerCamelCase ) lowercase = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , _lowerCamelCase ) lowercase = pytorch_dump_folder_path + "/" + CORPUS_NAME print(f'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_lowerCamelCase , _lowerCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowercase = os.path.abspath(_lowerCamelCase ) lowercase = os.path.abspath(_lowerCamelCase ) print(f'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": lowercase = TransfoXLConfig() else: lowercase = TransfoXLConfig.from_json_file(_lowerCamelCase ) print(f'Building PyTorch model from configuration: {config}' ) lowercase = TransfoXLLMHeadModel(_lowerCamelCase ) lowercase = load_tf_weights_in_transfo_xl(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model lowercase = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowercase = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'Save PyTorch model to {os.path.abspath(_lowerCamelCase )}' ) torch.save(model.state_dict() , _lowerCamelCase ) print(f'Save configuration file to {os.path.abspath(_lowerCamelCase )}' ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCAmelCase : Any =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) __lowerCAmelCase : Dict =parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' lowercase = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase__ , max_perimeter + 1 ): lowercase = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase__ ): lowercase = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] = 1_0_0_0 ) -> str: '''simple docstring''' lowercase = pythagorean_triple(lowerCAmelCase__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"""Perimeter {solution()} has maximum solutions""")
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) class _A ( a_ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = feature_size lowercase = sampling_rate lowercase = padding_value lowercase = kwargs.pop("""padding_side""" , """right""" ) lowercase = kwargs.pop("""return_attention_mask""" , __lowerCAmelCase ) super().__init__(**__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): """simple docstring""" if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowercase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) lowercase = processed_features[self.model_input_names[0]] lowercase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__lowerCAmelCase ) == 0: if return_attention_mask: lowercase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowercase = required_input[0] if isinstance(__lowerCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowercase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__lowerCAmelCase ): lowercase = required_input[index][0] if return_tensors is None: if is_tf_tensor(__lowerCAmelCase ): lowercase = """tf""" elif is_torch_tensor(__lowerCAmelCase ): lowercase = """pt""" elif isinstance(__lowerCAmelCase , (int, float, list, tuple, np.ndarray) ): lowercase = """np""" else: raise ValueError( f'type of {first_element} unknown: {type(__lowerCAmelCase )}. ' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowercase = to_numpy(__lowerCAmelCase ) else: lowercase = [to_numpy(__lowerCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy lowercase = self._get_padding_strategies(padding=__lowerCAmelCase , max_length=__lowerCAmelCase ) lowercase = processed_features[self.model_input_names[0]] lowercase = len(__lowerCAmelCase ) if not all(len(__lowerCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) lowercase = [] for i in range(__lowerCAmelCase ): lowercase = {k: v[i] for k, v in processed_features.items()} # truncation lowercase = self._truncate( __lowerCAmelCase , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , truncation=__lowerCAmelCase , ) truncated_inputs.append(__lowerCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowercase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowercase = PaddingStrategy.MAX_LENGTH lowercase = {} for i in range(__lowerCAmelCase ): # padding lowercase = self._pad( truncated_inputs[i] , max_length=__lowerCAmelCase , padding_strategy=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: lowercase = [] if value.dtype is np.dtype(np.floataa ): lowercase = value.astype(np.floataa ) batch_outputs[key].append(__lowerCAmelCase ) return BatchFeature(__lowerCAmelCase , tensor_type=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , __lowerCAmelCase = None , __lowerCAmelCase = None , ): """simple docstring""" lowercase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowercase = len(__lowerCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__lowerCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowercase = np.ones(len(__lowerCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: lowercase = max_length - len(__lowerCAmelCase ) if self.padding_side == "right": if return_attention_mask: lowercase = np.pad( processed_features["""attention_mask"""] , (0, difference) ) lowercase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowercase = np.pad( __lowerCAmelCase , __lowerCAmelCase , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowercase = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) lowercase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowercase = np.pad( __lowerCAmelCase , __lowerCAmelCase , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) lowercase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase = len(__lowerCAmelCase ) > max_length if needs_to_be_truncated: lowercase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowercase = processed_features["""attention_mask"""][:max_length] return processed_features def A__ ( self , __lowerCAmelCase=False , __lowerCAmelCase=None ): """simple docstring""" if padding is not False: if padding is True: lowercase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = PaddingStrategy(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = padding else: lowercase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger("""transformers.models.speecht5""") __lowerCAmelCase : Optional[int] ={ """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } __lowerCAmelCase : List[Any] ={ """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } __lowerCAmelCase : Optional[int] ={ """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } __lowerCAmelCase : Dict ={ """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } __lowerCAmelCase : Optional[Any] ={ """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } __lowerCAmelCase : List[Any] ={ """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } __lowerCAmelCase : Optional[Any] ={ """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } __lowerCAmelCase : Dict ={ """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } __lowerCAmelCase : Optional[int] ={ **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __lowerCAmelCase : Tuple ={ **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCAmelCase : str ={ **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __lowerCAmelCase : Optional[int] =[] __lowerCAmelCase : Any =[ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] __lowerCAmelCase : int =IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] __lowerCAmelCase : Union[str, Any] =IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] __lowerCAmelCase : Dict =IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' for attribute in key.split(""".""" ): lowercase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase = value elif weight_type == "weight_g": lowercase = value elif weight_type == "weight_v": lowercase = value elif weight_type == "bias": lowercase = value elif weight_type == "running_mean": lowercase = value elif weight_type == "running_var": lowercase = value elif weight_type == "num_batches_tracked": lowercase = value else: lowercase = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] ) -> Any: '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict ) -> Union[str, Any]: '''simple docstring''' lowercase = [] if task == "s2t": lowercase = hf_model.speechta.encoder.prenet.feature_encoder lowercase = MAPPING_S2T lowercase = IGNORE_KEYS_S2T elif task == "t2s": lowercase = None lowercase = MAPPING_T2S lowercase = IGNORE_KEYS_T2S elif task == "s2s": lowercase = hf_model.speechta.encoder.prenet.feature_encoder lowercase = MAPPING_S2S lowercase = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(f'{name} was ignored' ) continue lowercase = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == """group""" , ) lowercase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase = key.split(""".*.""" ) if prefix in name and suffix in name: lowercase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase = True if "*" in mapped_key: lowercase = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] lowercase = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase = "weight_g" elif "weight_v" in name: lowercase = "weight_v" elif "bias" in name: lowercase = "bias" elif "weight" in name: lowercase = "weight" elif "running_mean" in name: lowercase = "running_mean" elif "running_var" in name: lowercase = "running_var" elif "num_batches_tracked" in name: lowercase = "num_batches_tracked" else: lowercase = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' lowercase = full_name.split("""conv_layers.""" )[-1] lowercase = name.split(""".""" ) lowercase = int(items[0] ) lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) lowercase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Optional[int]=None , ) -> Any: '''simple docstring''' if config_path is not None: lowercase = SpeechTaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: lowercase = SpeechTaConfig() if task == "s2t": lowercase = config.max_text_positions lowercase = SpeechTaForSpeechToText(_SCREAMING_SNAKE_CASE ) elif task == "t2s": lowercase = 1_8_7_6 lowercase = 6_0_0 lowercase = config.max_speech_positions lowercase = SpeechTaForTextToSpeech(_SCREAMING_SNAKE_CASE ) elif task == "s2s": lowercase = 1_8_7_6 lowercase = config.max_speech_positions lowercase = SpeechTaForSpeechToSpeech(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: lowercase = SpeechTaTokenizer(_SCREAMING_SNAKE_CASE , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowercase = AddedToken("""<mask>""" , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) lowercase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) lowercase = SpeechTaFeatureExtractor() lowercase = SpeechTaProcessor(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) lowercase = torch.load(_SCREAMING_SNAKE_CASE ) recursively_load_weights(fairseq_checkpoint["""model"""] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> Any: '''simple docstring''' try: lowercase = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowercase = 2 lowercase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase = i while n % i == 0: lowercase = n // i i += 1 return int(UpperCamelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline __lowerCAmelCase : List[Any] =version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :tuple , lowerCAmelCase__ :Path , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict=False , ) -> int: '''simple docstring''' output_path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCAmelCase_ , UpperCAmelCase_ , f=output_path.as_posix() , input_names=UpperCAmelCase_ , output_names=UpperCAmelCase_ , dynamic_axes=UpperCAmelCase_ , do_constant_folding=UpperCAmelCase_ , use_external_data_format=UpperCAmelCase_ , enable_onnx_checker=UpperCAmelCase_ , opset_version=UpperCAmelCase_ , ) else: export( UpperCAmelCase_ , UpperCAmelCase_ , f=output_path.as_posix() , input_names=UpperCAmelCase_ , output_names=UpperCAmelCase_ , dynamic_axes=UpperCAmelCase_ , do_constant_folding=UpperCAmelCase_ , opset_version=UpperCAmelCase_ , ) @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :bool = False ) -> List[Any]: '''simple docstring''' lowercase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: lowercase = """cpu""" lowercase = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ , torch_dtype=UpperCAmelCase_ ).to(UpperCAmelCase_ ) lowercase = Path(UpperCAmelCase_ ) # TEXT ENCODER lowercase = pipeline.text_encoder.config.max_position_embeddings lowercase = pipeline.text_encoder.config.hidden_size lowercase = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCAmelCase_ , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=UpperCAmelCase_ , ) del pipeline.text_encoder # UNET lowercase = pipeline.unet.config.in_channels lowercase = pipeline.unet.config.sample_size lowercase = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ), torch.randn(2 ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ), torch.randn(2 , UpperCAmelCase_ , UpperCAmelCase_ ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ), False, ) , output_path=UpperCAmelCase_ , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=UpperCAmelCase_ , use_external_data_format=UpperCAmelCase_ , ) lowercase = str(unet_path.absolute().as_posix() ) lowercase = os.path.dirname(UpperCAmelCase_ ) lowercase = onnx.load(UpperCAmelCase_ ) # clean up existing tensor files shutil.rmtree(UpperCAmelCase_ ) os.mkdir(UpperCAmelCase_ ) # collate external tensor files into one onnx.save_model( UpperCAmelCase_ , UpperCAmelCase_ , save_as_external_data=UpperCAmelCase_ , all_tensors_to_one_file=UpperCAmelCase_ , location="""weights.pb""" , convert_attribute=UpperCAmelCase_ , ) del pipeline.unet # VAE ENCODER lowercase = pipeline.vae lowercase = vae_encoder.config.in_channels lowercase = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase = lambda lowerCAmelCase__ , lowerCAmelCase__ : vae_encoder.encode(UpperCAmelCase_ , UpperCAmelCase_ )[0].sample() onnx_export( UpperCAmelCase_ , model_args=( torch.randn(1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=UpperCAmelCase_ , ) # VAE DECODER lowercase = pipeline.vae lowercase = vae_decoder.config.latent_channels lowercase = vae_decoder.config.out_channels # forward only through the decoder part lowercase = vae_encoder.decode onnx_export( UpperCAmelCase_ , model_args=( torch.randn(1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=UpperCAmelCase_ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase = pipeline.safety_checker lowercase = safety_checker.config.vision_config.num_channels lowercase = safety_checker.config.vision_config.image_size lowercase = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ), torch.randn(1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=UpperCAmelCase_ , ) del pipeline.safety_checker lowercase = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) lowercase = pipeline.feature_extractor else: lowercase = None lowercase = None lowercase = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCAmelCase_ ) print("""ONNX pipeline saved to""" , UpperCAmelCase_ ) del pipeline del onnx_pipeline lowercase = OnnxStableDiffusionPipeline.from_pretrained(UpperCAmelCase_ , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=1_4, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") __lowerCAmelCase : Optional[Any] =parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Union[str, Any] ={ '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Tuple = ['pixel_values'] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PIL.Image.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowercase = size if size is not None else {"""height""": 256, """width""": 256} lowercase = get_size_dict(lowerCamelCase_ ) lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase = get_size_dict(lowerCamelCase_ , param_name="""crop_size""" ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PIL.Image.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( lowerCamelCase_ , size=(size["""height"""], size["""width"""]) , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): """simple docstring""" lowercase = do_resize if do_resize is not None else self.do_resize lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = size if size is not None else self.size lowercase = get_size_dict(lowerCamelCase_ ) lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(lowerCamelCase_ , param_name="""crop_size""" ) lowercase = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: lowercase = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: lowercase = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowercase = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowercase = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowercase = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _A : snake_case__ : List[str] = BlenderbotConfig snake_case__ : List[str] = {} snake_case__ : Dict = 'gelu' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=20 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = eos_token_id lowercase = pad_token_id lowercase = bos_token_id def A__ ( self ): """simple docstring""" lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = TFBlenderbotModel(config=lowercase_ ).get_decoder() lowercase = inputs_dict["""input_ids"""] lowercase = input_ids[:1, :] lowercase = inputs_dict["""attention_mask"""][:1, :] lowercase = inputs_dict["""head_mask"""] lowercase = 1 # first forward pass lowercase = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ ) lowercase , lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase = model(lowercase_ , attention_mask=lowercase_ )[0] lowercase = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase = output_from_no_past[:, -3:, random_slice_idx] lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1E-3 ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Any=None , ) -> int: '''simple docstring''' if attention_mask is None: lowercase = tf.cast(tf.math.not_equal(__UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _A ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case__ : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () snake_case__ : str = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () snake_case__ : str = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) snake_case__ : Optional[int] = True snake_case__ : Any = False snake_case__ : Any = False def A__ ( self ): """simple docstring""" lowercase = TFBlenderbotModelTester(self ) lowercase = ConfigTester(self , config_class=lowercase_ ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) @require_tokenizers @require_tf class _A ( unittest.TestCase ): snake_case__ : Dict = ['My friends are cool but they eat too many carbs.'] snake_case__ : Union[str, Any] = 'facebook/blenderbot-400M-distill' @cached_property def A__ ( self ): """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def A__ ( self ): """simple docstring""" lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer(self.src_text , return_tensors="""tf""" ) lowercase = self.model.generate( model_inputs.input_ids , ) lowercase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) __lowerCAmelCase : Tuple =logging.getLogger(__name__) __lowerCAmelCase : Dict ={'''facebook/bart-base''': BartForConditionalGeneration} __lowerCAmelCase : Union[str, Any] ={'''facebook/bart-base''': BartTokenizer} def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=lowercase_ , default=lowercase_ , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=lowercase_ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=lowercase_ , default=lowercase_ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=lowercase_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase_ , ) parser.add_argument( """--config_name""" , type=lowercase_ , default=lowercase_ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=lowercase_ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=lowercase_ , default=lowercase_ , help="""Where to store the final ONNX file.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any]="cpu" ) -> Any: '''simple docstring''' lowercase = model_dict[model_name].from_pretrained(lowercase_ ).to(lowercase_ ) lowercase = tokenizer_dict[model_name].from_pretrained(lowercase_ ) if model_name in ["facebook/bart-base"]: lowercase = 0 lowercase = None lowercase = 0 return huggingface_model, tokenizer def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Any ) -> List[str]: '''simple docstring''' model.eval() lowercase = None lowercase = torch.jit.script(BARTBeamSearchGenerator(lowercase_ ) ) with torch.no_grad(): lowercase = """My friends are cool but they eat too many carbs.""" lowercase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device ) lowercase = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=lowercase_ , max_length=lowercase_ , early_stopping=lowercase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowercase_ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , lowercase_ , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=lowercase_ , ) logger.info("""Model exported to {}""".format(lowercase_ ) ) lowercase = remove_dup_initializers(os.path.abspath(lowercase_ ) ) logger.info("""Deduplicated and optimized model written to {}""".format(lowercase_ ) ) lowercase = onnxruntime.InferenceSession(lowercase_ ) lowercase = ort_sess.run( lowercase_ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(lowercase_ ), """max_length""": np.array(lowercase_ ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' lowercase = parse_args() lowercase = 5 lowercase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowercase = torch.device(args.device ) lowercase , lowercase = load_model_tokenizer(args.model_name_or_path , lowercase_ ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(lowercase_ ) if args.max_length: lowercase = args.max_length if args.num_beams: lowercase = args.num_beams if args.output_file_path: lowercase = args.output_file_path else: lowercase = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": main()
356
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : int ={ '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __lowerCAmelCase : List[Any] =importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __lowerCAmelCase : int =[ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> int: '''simple docstring''' if "://" in dataset_path: lowercase = dataset_path.split("""://""" )[1] return dataset_path def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> int: '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' lowercase = not is_remote_filesystem(_lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowercase ) , fs._strip_protocol(_lowercase ) ) else: fs.mv(_lowercase , _lowercase , recursive=_lowercase ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase = None lowercase = None lowercase = threading.Lock()
358
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
0
"""simple docstring""" import os from collections.abc import Iterator def UpperCAmelCase__ ( lowerCAmelCase__ :str = "." ) -> str: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(lowerCAmelCase__ ): lowercase = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowerCAmelCase__ )[1] in (".py", ".ipynb"): yield os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ).lstrip("""./""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Any: '''simple docstring''' return f'{i * " "}*' if i else "\n##" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> str: '''simple docstring''' lowercase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowerCAmelCase__ ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(lowerCAmelCase__ )} {new_part.replace("_" , " " ).title()}' ) return new_path def UpperCAmelCase__ ( lowerCAmelCase__ :str = "." ) -> Optional[int]: '''simple docstring''' lowercase = """""" for filepath in sorted(good_file_paths(lowerCAmelCase__ ) ): lowercase = os.path.split(lowerCAmelCase__ ) if filepath != old_path: lowercase = print_path(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase = f'{filepath}/{filename}'.replace(""" """ , """%20""" ) lowercase = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f'{md_prefix(lowerCAmelCase__ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md(""".""")
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : Union[str, Any] ={"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): snake_case__ : Dict = StableUnCLIPPipeline snake_case__ : int = TEXT_TO_IMAGE_PARAMS snake_case__ : int = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false snake_case__ : Optional[Any] = False def A__ ( self ): """simple docstring""" lowercase = 32 lowercase = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowercase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case__ , projection_dim=snake_case__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=snake_case__ , num_layers=1 , ) torch.manual_seed(0 ) lowercase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=snake_case__ , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) lowercase = StableUnCLIPImageNormalizer(embedding_dim=snake_case__ ) lowercase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case__ , layers_per_block=1 , upcast_attention=snake_case__ , use_linear_projection=snake_case__ , ) torch.manual_seed(0 ) lowercase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=snake_case__ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase = AutoencoderKL() lowercase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" if str(snake_case__ ).startswith("""mps""" ): lowercase = torch.manual_seed(snake_case__ ) else: lowercase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A__ ( self ): """simple docstring""" lowercase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=snake_case__ ) def A__ ( self ): """simple docstring""" lowercase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=snake_case__ ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) lowercase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase = pipe("""anime turle""" , generator=snake_case__ , output_type="""np""" ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def A__ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) lowercase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
361
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
0
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil __lowerCAmelCase : Union[str, Any] =1_0_0 __lowerCAmelCase : Optional[Any] =set(range(3, NUM_PRIMES, 2)) primes.add(2) __lowerCAmelCase : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase = set() lowercase = 42 lowercase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCAmelCase__ ( lowerCAmelCase__ :int = 5_0_0_0 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , _lowercase ): if len(partition(_lowercase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" from copy import deepcopy class _A : def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None ): """simple docstring""" if arr is None and size is not None: lowercase = size lowercase = [0] * size elif arr is not None: self.init(a__ ) else: raise ValueError("""Either arr or size must be specified""" ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = len(a__ ) lowercase = deepcopy(a__ ) for i in range(1 , self.size ): lowercase = self.next_(a__ ) if j < self.size: self.tree[j] += self.tree[i] def A__ ( self ): """simple docstring""" lowercase = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): lowercase = self.next_(a__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def A__ ( __lowerCAmelCase ): """simple docstring""" return index + (index & (-index)) @staticmethod def A__ ( __lowerCAmelCase ): """simple docstring""" return index - (index & (-index)) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowercase = self.next_(a__ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" self.add(a__ , value - self.get(a__ ) ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if right == 0: return 0 lowercase = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowercase = self.prev(a__ ) return result def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" return self.prefix(a__ ) - self.prefix(a__ ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.query(a__ , index + 1 ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" value -= self.tree[0] if value < 0: return -1 lowercase = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowercase = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __lowerCAmelCase : Union[str, Any] =1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=16 , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=14 , __lowerCAmelCase=10 , __lowerCAmelCase=19 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=True , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=[1, 2, 3, 4, 5] , __lowerCAmelCase=25 , __lowerCAmelCase=5 , ): """simple docstring""" lowercase = d_model lowercase = parent lowercase = batch_size lowercase = prediction_length lowercase = context_length lowercase = cardinality lowercase = num_time_features lowercase = lags_sequence lowercase = embedding_dimension lowercase = is_training lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = context_length lowercase = prediction_length + label_length lowercase = label_length lowercase = moving_average lowercase = autocorrelation_factor def A__ ( self ): """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = config.context_length + max(config.lags_sequence ) lowercase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowercase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowercase = floats_tensor([self.batch_size, _past_length] ) lowercase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowercase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowercase = floats_tensor([self.batch_size, config.prediction_length] ) lowercase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def A__ ( self ): """simple docstring""" lowercase = self.get_config() lowercase = self.prepare_autoformer_inputs_dict(lowerCAmelCase_ ) return config, inputs_dict def A__ ( self ): """simple docstring""" lowercase , lowercase = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = AutoformerModel(config=lowerCAmelCase_ ).to(lowerCAmelCase_ ).eval() lowercase = model(**lowerCAmelCase_ ) lowercase = outputs.encoder_last_hidden_state lowercase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowercase = model.get_encoder() encoder.save_pretrained(lowerCAmelCase_ ) lowercase = AutoformerEncoder.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) lowercase , lowercase , lowercase , lowercase , lowercase = model.create_network_inputs(**lowerCAmelCase_ ) lowercase , lowercase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowercase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowercase = encoder(inputs_embeds=lowerCAmelCase_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowercase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowercase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowercase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowercase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase = model.get_decoder() decoder.save_pretrained(lowerCAmelCase_ ) lowercase = AutoformerDecoder.from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) lowercase = decoder( trend=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _A ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): snake_case__ : Union[str, Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () snake_case__ : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () snake_case__ : Optional[int] = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} snake_case__ : Any = False snake_case__ : Optional[int] = False snake_case__ : Dict = False snake_case__ : Any = False snake_case__ : str = False snake_case__ : Any = False def A__ ( self ): """simple docstring""" lowercase = AutoformerModelTester(self ) lowercase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowercase = model_class(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) lowercase , lowercase = model_class.from_pretrained(lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) self.assertEqual(info["""missing_keys"""] , [] ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCAmelCase_ ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" lowercase = inspect.signature(getattr(lowerCAmelCase_ , """forward""" ) ) # The main input is the name of the argument after `self` lowercase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCAmelCase_ ) def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(lowerCAmelCase_ ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(lowerCAmelCase_ )] , lowerCAmelCase_ ) def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True lowercase = getattr(self.model_tester , """seq_length""" , lowerCAmelCase_ ) lowercase = getattr(self.model_tester , """decoder_seq_length""" , lowerCAmelCase_ ) lowercase = getattr(self.model_tester , """encoder_seq_length""" , lowerCAmelCase_ ) lowercase = getattr(self.model_tester , """d_model""" , lowerCAmelCase_ ) lowercase = getattr(self.model_tester , """num_attention_heads""" , lowerCAmelCase_ ) lowercase = d_model // num_attention_heads for model_class in self.all_model_classes: lowercase = True lowercase = False lowercase = True lowercase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) lowercase = outputs.encoder_attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowercase = len(lowerCAmelCase_ ) lowercase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # decoder attentions lowercase = outputs.decoder_attentions self.assertIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowercase = outputs.cross_attentions self.assertIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 2 , len(lowerCAmelCase_ ) ) lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ): """simple docstring""" super().test_retain_grad_hidden_states_attentions() def UpperCAmelCase__ ( lowerCAmelCase__ :str="train-batch.pt" ) -> Optional[Any]: '''simple docstring''' lowercase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=snake_case__ , repo_type="""dataset""" ) lowercase = torch.load(snake_case__ , map_location=snake_case__ ) return batch @require_torch @slow class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCAmelCase_ ) lowercase = prepare_batch() with torch.no_grad(): lowercase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] lowercase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) lowercase = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_ ) ) def A__ ( self ): """simple docstring""" lowercase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCAmelCase_ ) lowercase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowercase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state lowercase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCAmelCase_ ) lowercase = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_ ) ) def A__ ( self ): """simple docstring""" lowercase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCAmelCase_ ) lowercase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowercase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) lowercase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCAmelCase_ ) lowercase = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=lowerCAmelCase_ ) lowercase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCAmelCase_ , rtol=1E-1 ) )
364
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = {} lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any: '''simple docstring''' from dall_e import Encoder lowercase = Encoder() if os.path.exists(lowerCAmelCase__ ): lowercase = torch.load(lowerCAmelCase__ ) else: lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowercase = hf_model.state_dict() lowercase = count_parameters(lowerCAmelCase__ ) lowercase = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCAmelCase : Any =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
32
0
"""simple docstring""" from numpy import exp, pi, sqrt def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :float = 1.0 ) -> Union[str, Any]: '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" import enum import shutil import sys __lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size() __lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class _A ( enum.Enum ): snake_case__ : Tuple = 0 snake_case__ : List[str] = 1 def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]: '''simple docstring''' sys.stdout.write(str(lowerCAmelCase__ ) + end ) sys.stdout.flush() def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]: '''simple docstring''' forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' forceWrite("""\r""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]: '''simple docstring''' forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__ ( ) -> Dict: '''simple docstring''' reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
32
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") __lowerCAmelCase : List[Any] =logging.getLogger(__name__) @dataclass class _A : snake_case__ : Union[str, Any] = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) snake_case__ : List[Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) snake_case__ : Optional[Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) snake_case__ : Union[str, Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) snake_case__ : Dict = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) snake_case__ : List[Any] = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case__ : List[Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class _A : snake_case__ : str = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The input training data file (a text file).'} ) snake_case__ : Tuple = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) snake_case__ : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) snake_case__ : Dict = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) snake_case__ : str = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) snake_case__ : Union[str, Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) snake_case__ : List[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case__ : Union[str, Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def A__ ( self ): """simple docstring""" if self.train_file is not None: lowercase = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowercase = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _A : snake_case__ : Tuple = 42 snake_case__ : str = True snake_case__ : Union[str, Any] = None snake_case__ : Optional[int] = None def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase = [feature.pop(UpperCamelCase__ ) for feature in features] lowercase = len(UpperCamelCase__ ) lowercase = len(features[0]["""input_ids"""] ) lowercase = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCamelCase__ )] for feature in features ] lowercase = list(chain(*UpperCamelCase__ ) ) lowercase = self.tokenizer.pad( UpperCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten lowercase = {k: v.view(UpperCamelCase__ , UpperCamelCase__ , -1 ) for k, v in batch.items()} # Add back labels lowercase = torch.tensor(UpperCamelCase__ , dtype=torch.intaa ) return batch def UpperCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowercase = {} if data_args.train_file is not None: lowercase = data_args.train_file if data_args.validation_file is not None: lowercase = data_args.validation_file lowercase = data_args.train_file.split(""".""" )[-1] lowercase = load_dataset( SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowercase = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowercase = [f'ending{i}' for i in range(4 )] lowercase = '''sent1''' lowercase = '''sent2''' if data_args.max_seq_length is None: lowercase = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) lowercase = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) lowercase = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCAmelCase__ :Union[str, Any] ): lowercase = [[context] * 4 for context in examples[context_name]] lowercase = examples[question_header_name] lowercase = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(SCREAMING_SNAKE_CASE__ ) ] # Flatten out lowercase = list(chain(*SCREAMING_SNAKE_CASE__ ) ) lowercase = list(chain(*SCREAMING_SNAKE_CASE__ ) ) # Tokenize lowercase = tokenizer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) lowercase = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowercase = min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_train_samples ) lowercase = train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): lowercase = train_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) lowercase = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowercase = min(len(SCREAMING_SNAKE_CASE__ ) , data_args.max_eval_samples ) lowercase = eval_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): lowercase = eval_dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowercase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCAmelCase__ :Optional[Any] ): lowercase = eval_predictions lowercase = np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowercase = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase = train_result.metrics lowercase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) lowercase = min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics("""train""" , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""train""" , SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase = trainer.evaluate() lowercase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE__ ) lowercase = min(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) lowercase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
366
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""only integers accepted as input""" ) else: lowercase = str(abs(lowerCAmelCase__ ) ) lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )] for index in range(len(lowerCAmelCase__ ) ): num_transpositions[index].pop(lowerCAmelCase__ ) return max( int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
0
"""simple docstring""" from collections import defaultdict def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple ) -> bool: '''simple docstring''' lowercase = first_str.lower().strip() lowercase = second_str.lower().strip() # Remove whitespace lowercase = first_str.replace(""" """ , """""" ) lowercase = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): return False # Default values for count should be 0 lowercase = defaultdict(lowerCamelCase_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCamelCase_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __lowerCAmelCase : Optional[int] =input("""Enter the first string """).strip() __lowerCAmelCase : List[str] =input("""Enter the second string """).strip() __lowerCAmelCase : Optional[Any] =check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
367
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
0
"""simple docstring""" from collections import deque from .hash_table import HashTable class _A ( __a ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(UpperCamelCase__ ) lowercase = self.values[key] def A__ ( self ): """simple docstring""" return ( sum(self.charge_factor - len(UpperCamelCase__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(UpperCamelCase__ ) == 0 ): return key return super()._collision_resolution(UpperCamelCase__ , UpperCamelCase__ )
368
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = credit_card_number lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowercase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool: '''simple docstring''' lowercase = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(lowerCAmelCase__ ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
32
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def A__ ( self ): """simple docstring""" lowercase = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowercase = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowercase = model(_lowercase )["""last_hidden_state"""] lowercase = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. lowercase = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
369
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) lowercase = output.images lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert isinstance(pipe.scheduler , __lowerCAmelCase ) assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCAmelCase ) lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) lowercase = 40_0366_0346 lowercase = 7 # without safety guidance (sld_guidance_scale = 0) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase ) lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = """padme amidala taking a bath artwork, safe for work, no nudity""" lowercase = 27_3497_1755 lowercase = 7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) lowercase = 10_4435_5234 lowercase = 12 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowercase = torch.manual_seed(__lowerCAmelCase ) lowercase = sd_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowercase = output.images lowercase = image[0, -3:, -3:, -1] lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
32
0
"""simple docstring""" from __future__ import annotations import requests __lowerCAmelCase : List[Any] =set( """approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports""".split() ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :str = "new" , lowerCAmelCase__ :list | None = None ) -> Tuple: '''simple docstring''' lowercase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a__ ) - valid_terms ) ): lowercase = f'Invalid search term: {invalid_search_terms}' raise ValueError(a__ ) lowercase = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 4_2_9: raise requests.HTTPError lowercase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a__ )} lowercase = {} for id_ in range(a__ ): lowercase = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
370
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]: '''simple docstring''' lowercase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase = column continue lowercase = column / magnitude # Subtract to cancel term lowercase = current_set[0] lowercase = [first_row] lowercase = current_set[1::] for row in current_set: lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase = final_set[0] lowercase = [] lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase = resultant return final_set def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list: '''simple docstring''' if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase = equations.copy() if any(0 in row for row in data_set ): lowercase = data_set.copy() lowercase = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) lowercase = data_set.copy() lowercase = simplify(lowerCAmelCase__ ) lowercase = simplified[::-1] lowercase = [] for row in simplified: lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase = temp_row[1::] lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
32
0
import socket def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase = socket.gethostname() lowercase = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: lowercase = sock.recv(1_0_2_4 ) if not data: break out_file.write(__a ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
371
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _A ( lowerCAmelCase ): def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self , __lowerCAmelCase=None ): """simple docstring""" lowercase = {} if top_k is not None: lowercase = top_k return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = load_image(__lowerCAmelCase ) lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.model(**__lowerCAmelCase ) return model_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ): """simple docstring""" if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) lowercase , lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
32
0
"""simple docstring""" __lowerCAmelCase : Union[str, Any] ={ "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def UpperCAmelCase__ ( lowerCAmelCase__ :dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = set() # keep track of all the paths to be checked lowercase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase = queue.pop(0 ) # get the last node from the path lowercase = path[-1] if node not in explored: lowercase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase = list(A__ ) new_path.append(A__ ) queue.append(A__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A__ ) # in case there's no path between the 2 nodes return [] def UpperCAmelCase__ ( lowerCAmelCase__ :dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any ) -> List[Any]: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase = [start] lowercase = set(A__ ) # Keep tab on distances from `start` node. lowercase = {start: 0, target: -1} while queue: lowercase = queue.pop(0 ) if node == target: lowercase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A__ ) queue.append(A__ ) lowercase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=sys.maxsize ): """simple docstring""" lowercase = '''bilinear''' lowercase = max_size lowercase = short_edge_length def __call__( self , __lowerCAmelCase ): """simple docstring""" lowercase = [] for img in imgs: lowercase = img.shape[:2] # later: provide list and randomly choose index for resize lowercase = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase = size * 1.0 / min(snake_case_ , snake_case_ ) if h < w: lowercase = size, scale * w else: lowercase = scale * h, size if max(snake_case_ , snake_case_ ) > self.max_size: lowercase = self.max_size * 1.0 / max(snake_case_ , snake_case_ ) lowercase = newh * scale lowercase = neww * scale lowercase = int(neww + 0.5 ) lowercase = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase = Image.fromarray(snake_case_ ) lowercase = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase = np.asarray(snake_case_ ) else: lowercase = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase = nn.functional.interpolate( snake_case_ , (newh, neww) , mode=self.interp_method , align_corners=snake_case_ ).squeeze(0 ) img_augs.append(snake_case_ ) return img_augs class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase = cfg.INPUT.FORMAT lowercase = cfg.SIZE_DIVISIBILITY lowercase = cfg.PAD_VALUE lowercase = cfg.INPUT.MAX_SIZE_TEST lowercase = cfg.MODEL.DEVICE lowercase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase = lambda __lowerCAmelCase : (x - self.pixel_mean) / self.pixel_std def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = tuple(max(snake_case_ ) for s in zip(*[img.shape for img in images] ) ) lowercase = [im.shape[-2:] for im in images] lowercase = [ nn.functional.pad( snake_case_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case_ , snake_case_ ) ] return torch.stack(snake_case_ ), torch.tensor(snake_case_ ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" with torch.no_grad(): if not isinstance(snake_case_ , snake_case_ ): lowercase = [images] if single_image: assert len(snake_case_ ) == 1 for i in range(len(snake_case_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case_ , images.pop(snake_case_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case_ , torch.as_tensor(img_tensorize(images.pop(snake_case_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase = torch.tensor([im.shape[:2] for im in images] ) lowercase = self.aug(snake_case_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase = [self.normalizer(snake_case_ ) for x in images] # now pad them to do the following operations lowercase = self.pad(snake_case_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase = torch.true_divide(snake_case_ , snake_case_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple[int, int] ) -> str: '''simple docstring''' assert torch.isfinite(lowerCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" lowercase = box_size tensor[:, 0].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 1].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 2].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 3].clamp_(min=0 , max=lowerCAmelCase__ )
351
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = GPTSanJapaneseTokenizer snake_case__ : int = False snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False} def A__ ( self ): """simple docstring""" super().setUp() # fmt: off lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCAmelCase ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀""" lowercase = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase ) lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" pass # TODO add if relevant def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、世界。 こんばんは、㔺界。""" lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] lowercase = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() # Testing tokenization lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。""" lowercase = tokenizer.encode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = """こんにちは、世界。こんばんは、世界。😀""" lowercase = tokenizer.encode(prefix_text + input_text ) lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) lowercase = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization lowercase = """こんにちは、世界。""" lowercase = """こんばんは、㔺界。😀""" lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2 lowercase = [1] + [0] * (len_prefix + len_text + 1) lowercase = [1] * (len_prefix + len_text + 1) + [0] lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase = tokenizer(prefix_text + input_text ).token_type_ids lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = tokenizer.encode("""あンいワ""" ) lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def A__ ( self ): """simple docstring""" lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase ) lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase ) # fmt: off lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , __lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" pass
32
0
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __lowerCAmelCase : List[str] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :nn.ModuleList , lowerCAmelCase__ :nn.ModuleList , lowerCAmelCase__ :List[int] ) -> Optional[int]: '''simple docstring''' lowercase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ), f'{len(lowerCAmelCase__ )} != {len(lowerCAmelCase__ )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __lowerCAmelCase : Any ={ # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __lowerCAmelCase : List[Any] ={ # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict ) -> List[Any]: '''simple docstring''' try: lowercase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' f' {n_student}' ) return list(range(lowerCAmelCase__ ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> str: '''simple docstring''' if n_student > n_teacher: raise ValueError(f'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(lowerCAmelCase__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, PreTrainedModel] , lowerCAmelCase__ :Union[str, Path] = "student" , lowerCAmelCase__ :Union[int, None] = None , lowerCAmelCase__ :Union[int, None] = None , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :int=None , lowerCAmelCase__ :Union[str, Any]=None , **lowerCAmelCase__ :str , ) -> List[str]: '''simple docstring''' lowercase = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): AutoTokenizer.from_pretrained(lowerCAmelCase__ ).save_pretrained(lowerCAmelCase__ ) # purely for convenience lowercase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ).eval() else: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), f'teacher must be a model or string got type {type(lowerCAmelCase__ )}' lowercase = teacher.config.to_diff_dict() try: lowercase , lowercase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowercase = teacher_e if d is None: lowercase = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): lowercase , lowercase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowercase , lowercase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowercase = teacher_e if d is None: lowercase = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase__ ) # Copy weights lowercase = teacher.config_class(**lowerCAmelCase__ ) lowercase = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowercase = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowercase , lowercase = list(range(lowerCAmelCase__ ) ), list(range(lowerCAmelCase__ ) ) logger.info( f'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' f' {save_path}' ) student.save_pretrained(lowerCAmelCase__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowercase = pick_layers_to_copy(lowerCAmelCase__ , lowerCAmelCase__ ) if d_layers_to_copy is None: lowercase = pick_layers_to_copy(lowerCAmelCase__ , lowerCAmelCase__ ) try: if hasattr( lowerCAmelCase__ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase__ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase__ ) logger.info( f'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) lowercase = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""] __lowerCAmelCase : List[str] =["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =[ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =[ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=lowercase_ ): snake_case__ : Optional[int] = ["keras_nlp"] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(self , ["""keras_nlp"""] )
353
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = load_from_cache_file lowercase = file_format lowercase = Spark( df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
32
0
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCAmelCase : Optional[Any] ="""2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCAmelCase : Optional[int] =concatenate_datasets __lowerCAmelCase : Union[str, Any] =DownloadConfig __lowerCAmelCase : List[str] =DownloadManager __lowerCAmelCase : List[str] =DownloadMode __lowerCAmelCase : Any =DownloadConfig __lowerCAmelCase : List[Any] =DownloadMode __lowerCAmelCase : int =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _A ( lowerCamelCase__ ): snake_case__ : List[Any] = 'gpt_neox_japanese' def __init__( self , __lowerCAmelCase=3_2000 , __lowerCAmelCase=2560 , __lowerCAmelCase=32 , __lowerCAmelCase=32 , __lowerCAmelCase=4 , __lowerCAmelCase="gelu" , __lowerCAmelCase=1.0_0 , __lowerCAmelCase=1_0000 , __lowerCAmelCase=2048 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=True , __lowerCAmelCase=3_1996 , __lowerCAmelCase=3_1999 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_multiple_size lowercase = hidden_act lowercase = rotary_pct lowercase = rotary_emb_base lowercase = initializer_range lowercase = layer_norm_eps lowercase = use_cache lowercase = attention_dropout lowercase = hidden_dropout
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __lowerCAmelCase : Dict =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Optional[Any] = ["""pixel_values"""] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = 8 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**_A ) lowercase = do_rescale lowercase = rescale_factor lowercase = do_pad lowercase = pad_size def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase ): """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = get_image_size(_A ) lowercase = (old_height // size + 1) * size - old_height lowercase = (old_width // size + 1) * size - old_width return pad(_A , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_A ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): """simple docstring""" lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_pad if do_pad is not None else self.do_pad lowercase = pad_size if pad_size is not None else self.pad_size lowercase = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(_A ) for image in images] if do_rescale: lowercase = [self.rescale(image=_A , scale=_A ) for image in images] if do_pad: lowercase = [self.pad(_A , size=_A ) for image in images] lowercase = [to_channel_dimension_format(_A , _A ) for image in images] lowercase = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
356
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __lowerCAmelCase : Optional[int] ={ 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any]=None ) -> List[Any]: '''simple docstring''' lowercase = XLNetConfig.from_json_file(_A ) lowercase = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) lowercase = finetuning_task lowercase = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase = XLNetForSequenceClassification(_A ) elif "squad" in finetuning_task: lowercase = finetuning_task lowercase = XLNetForQuestionAnswering(_A ) else: lowercase = XLNetLMHeadModel(_A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_A , _A , _A ) # Save pytorch-model lowercase = os.path.join(_A , _A ) lowercase = os.path.join(_A , _A ) print(f'Save PyTorch model to {os.path.abspath(_A )}' ) torch.save(model.state_dict() , _A ) print(f'Save configuration file to {os.path.abspath(_A )}' ) with open(_A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) __lowerCAmelCase : Any =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
357
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = KandinskyInpaintPipeline snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ : Optional[int] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ : Tuple = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ : Dict = False @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return 32 @property def A__ ( self ): """simple docstring""" return self.time_input_dim @property def A__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def A__ ( self ): """simple docstring""" return 100 @property def A__ ( self ): """simple docstring""" lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase = MultilingualCLIP(__lowerCAmelCase ) lowercase = text_encoder.eval() return text_encoder @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**__lowerCAmelCase ) return model @property def A__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ): """simple docstring""" lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , ) lowercase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) lowercase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def A__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((768, 768) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCAmelCase ) lowercase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( __lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( __lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
32
0
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): lowercase = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowercase = np.concatenate(lowerCAmelCase__ , axis=0 ) lowercase = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_5_5.0 lowercase = image.transpose(0 , 3 , 1 , 2 ) lowercase = 2.0 * image - 1.0 lowercase = torch.from_numpy(lowerCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): lowercase = torch.cat(lowerCAmelCase__ , dim=0 ) return image def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int=0.9_995 ) -> Tuple: '''simple docstring''' if not isinstance(lowerCAmelCase__ , np.ndarray ): lowercase = True lowercase = va.device lowercase = va.cpu().numpy() lowercase = va.cpu().numpy() lowercase = np.sum(va * va / (np.linalg.norm(lowerCAmelCase__ ) * np.linalg.norm(lowerCAmelCase__ )) ) if np.abs(lowerCAmelCase__ ) > DOT_THRESHOLD: lowercase = (1 - t) * va + t * va else: lowercase = np.arccos(lowerCAmelCase__ ) lowercase = np.sin(lowerCAmelCase__ ) lowercase = theta_a * t lowercase = np.sin(lowerCAmelCase__ ) lowercase = np.sin(theta_a - theta_t ) / sin_theta_a lowercase = sin_theta_t / sin_theta_a lowercase = sa * va + sa * va if inputs_are_torch: lowercase = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) return va def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> int: '''simple docstring''' lowercase = F.normalize(lowerCAmelCase__ , dim=-1 ) lowercase = F.normalize(lowerCAmelCase__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple ) -> Any: '''simple docstring''' for param in model.parameters(): lowercase = value class _A ( SCREAMING_SNAKE_CASE__ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ): """simple docstring""" super().__init__() self.register_modules( vae=A__ , text_encoder=A__ , clip_model=A__ , tokenizer=A__ , unet=A__ , scheduler=A__ , feature_extractor=A__ , coca_model=A__ , coca_tokenizer=A__ , coca_transform=A__ , ) lowercase = ( feature_extractor.size if isinstance(feature_extractor.size , A__ ) else feature_extractor.size["""shortest_edge"""] ) lowercase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A__ ) set_requires_grad(self.clip_model , A__ ) def A__ ( self , __lowerCAmelCase = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A__ ) def A__ ( self ): """simple docstring""" self.enable_attention_slicing(A__ ) def A__ ( self ): """simple docstring""" set_requires_grad(self.vae , A__ ) def A__ ( self ): """simple docstring""" set_requires_grad(self.vae , A__ ) def A__ ( self ): """simple docstring""" set_requires_grad(self.unet , A__ ) def A__ ( self ): """simple docstring""" set_requires_grad(self.unet , A__ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min(int(num_inference_steps * strength ) , A__ ) lowercase = max(num_inference_steps - init_timestep , 0 ) lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" if not isinstance(A__ , torch.Tensor ): raise ValueError(f'`image` has to be of type `torch.Tensor` but is {type(A__ )}' ) lowercase = image.to(device=A__ , dtype=A__ ) if isinstance(A__ , A__ ): lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A__ ) ] lowercase = torch.cat(A__ , dim=0 ) else: lowercase = self.vae.encode(A__ ).latent_dist.sample(A__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase = 0.1_8_2_1_5 * init_latents lowercase = init_latents.repeat_interleave(A__ , dim=0 ) lowercase = randn_tensor(init_latents.shape , generator=A__ , device=A__ , dtype=A__ ) # get latents lowercase = self.scheduler.add_noise(A__ , A__ , A__ ) lowercase = init_latents return latents def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = self.coca_transform(A__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.feature_extractor.preprocess(A__ ) lowercase = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() lowercase = self.clip_model.get_image_features(A__ ) lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A__ ) lowercase = image_embeddings_clip.repeat_interleave(A__ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" lowercase = latents.detach().requires_grad_() lowercase = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual lowercase = self.unet(A__ , A__ , encoder_hidden_states=A__ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase = self.scheduler.alphas_cumprod[timestep] lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase = torch.sqrt(A__ ) lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A__ ): lowercase = self.scheduler.sigmas[index] lowercase = latents - sigma * noise_pred else: raise ValueError(f'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase = 1 / 0.1_8_2_1_5 * sample lowercase = self.vae.decode(A__ ).sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) lowercase = transforms.Resize(self.feature_extractor_size )(A__ ) lowercase = self.normalize(A__ ).to(latents.dtype ) lowercase = self.clip_model.get_image_features(A__ ) lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A__ ) lowercase = spherical_dist_loss(A__ , A__ ).mean() * clip_guidance_scale lowercase = -torch.autograd.grad(A__ , A__ )[0] if isinstance(self.scheduler , A__ ): lowercase = latents.detach() + grads * (sigma**2) lowercase = noise_pred_original else: lowercase = noise_pred_original - torch.sqrt(A__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 512 , __lowerCAmelCase = 512 , __lowerCAmelCase = 0.6 , __lowerCAmelCase = 50 , __lowerCAmelCase = 7.5 , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 100 , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , __lowerCAmelCase = 0.8 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , ): """simple docstring""" if isinstance(A__ , A__ ) and len(A__ ) != batch_size: raise ValueError(f'You have passed {batch_size} batch_size, but only {len(A__ )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(A__ , torch.Generator ) and batch_size > 1: lowercase = [generator] + [None] * (batch_size - 1) lowercase = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] lowercase = [x[0] for x in coca_is_none if x[1]] lowercase = """, """.join(A__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A__ ): raise ValueError( f'Content prompt is None and CoCa [{coca_is_none_str}] is None.' f'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) lowercase = self.get_image_description(A__ ) if style_prompt is None: if len(A__ ): raise ValueError( f'Style prompt is None and CoCa [{coca_is_none_str}] is None.' f' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) lowercase = self.get_image_description(A__ ) # get prompt text embeddings for content and style lowercase = self.tokenizer( A__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=A__ , return_tensors="""pt""" , ) lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase = self.tokenizer( A__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=A__ , return_tensors="""pt""" , ) lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase = slerp(A__ , A__ , A__ ) # duplicate text embeddings for each generation per prompt lowercase = text_embeddings.repeat_interleave(A__ , dim=0 ) # set timesteps lowercase = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase = {} if accepts_offset: lowercase = 1 self.scheduler.set_timesteps(A__ , **A__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase , lowercase = self.get_timesteps(A__ , A__ , self.device ) lowercase = timesteps[:1].repeat(A__ ) # Preprocess image lowercase = preprocess(A__ , A__ , A__ ) lowercase = self.prepare_latents( A__ , A__ , A__ , text_embeddings.dtype , self.device , A__ ) lowercase = preprocess(A__ , A__ , A__ ) lowercase = self.prepare_latents( A__ , A__ , A__ , text_embeddings.dtype , self.device , A__ ) lowercase = slerp(A__ , A__ , A__ ) if clip_guidance_scale > 0: lowercase = self.get_clip_image_embeddings(A__ , A__ ) lowercase = self.get_clip_image_embeddings(A__ , A__ ) lowercase = slerp( A__ , A__ , A__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase = content_text_input.input_ids.shape[-1] lowercase = self.tokenizer([""""""] , padding="""max_length""" , max_length=A__ , return_tensors="""pt""" ) lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase = uncond_embeddings.repeat_interleave(A__ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase = torch.randn(A__ , generator=A__ , device="""cpu""" , dtype=A__ ).to( self.device ) else: lowercase = torch.randn(A__ , generator=A__ , device=self.device , dtype=A__ ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase = {} if accepts_eta: lowercase = eta # check if the scheduler accepts generator lowercase = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase = generator with self.progress_bar(total=A__ ): for i, t in enumerate(A__ ): # expand the latents if we are doing classifier free guidance lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual lowercase = self.unet(A__ , A__ , encoder_hidden_states=A__ ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase , lowercase = noise_pred.chunk(2 ) lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase , lowercase = self.cond_fn( A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) # compute the previous noisy sample x_t -> x_t-1 lowercase = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase = 1 / 0.1_8_2_1_5 * latents lowercase = self.vae.decode(A__ ).sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(A__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A__ , nsfw_content_detected=A__ )
358
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class _A ( lowerCAmelCase ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) snake_case__ : bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) snake_case__ : Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) snake_case__ : Optional[str] = field( default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
32
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _A ( __a ): snake_case__ : int = ["""image_processor""", """tokenizer"""] snake_case__ : Union[str, Any] = """BlipImageProcessor""" snake_case__ : List[str] = """AutoTokenizer""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = False super().__init__(a__ , a__ ) lowercase = self.image_processor def __call__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowercase = self.tokenizer lowercase = self.tokenizer( text=a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , stride=a__ , pad_to_multiple_of=a__ , return_attention_mask=a__ , return_overflowing_tokens=a__ , return_special_tokens_mask=a__ , return_offsets_mapping=a__ , return_token_type_ids=a__ , return_length=a__ , verbose=a__ , return_tensors=a__ , **a__ , ) return text_encoding # add pixel_values lowercase = self.image_processor(a__ , return_tensors=a__ ) if text is not None: lowercase = self.tokenizer( text=a__ , add_special_tokens=a__ , padding=a__ , truncation=a__ , max_length=a__ , stride=a__ , pad_to_multiple_of=a__ , return_attention_mask=a__ , return_overflowing_tokens=a__ , return_special_tokens_mask=a__ , return_offsets_mapping=a__ , return_token_type_ids=a__ , return_length=a__ , verbose=a__ , return_tensors=a__ , **a__ , ) else: lowercase = None if text_encoding is not None: encoding_image_processor.update(a__ ) return encoding_image_processor def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def A__ ( self ): """simple docstring""" lowercase = self.tokenizer.model_input_names lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _A : def A__ ( self , __lowerCAmelCase ): """simple docstring""" raise NotImplementedError() def A__ ( self ): """simple docstring""" raise NotImplementedError() class _A ( lowerCamelCase__ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , **__lowerCAmelCase ): """simple docstring""" lowercase = tokenizer lowercase = skip_prompt lowercase = decode_kwargs # variables used in the streaming process lowercase = [] lowercase = 0 lowercase = True def A__ ( self , __lowerCAmelCase ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowercase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowercase = text[self.print_len :] lowercase = [] lowercase = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def A__ ( self ): """simple docstring""" if len(self.token_cache ) > 0: lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowercase = text[self.print_len :] lowercase = [] lowercase = 0 else: lowercase = '''''' lowercase = True self.on_finalized_text(__A , stream_end=__A ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" print(__A , flush=__A , end="""""" if not stream_end else None ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False class _A ( lowerCamelCase__ ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase ): """simple docstring""" super().__init__(__A , __A , **__A ) lowercase = Queue() lowercase = None lowercase = timeout def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" self.text_queue.put(__A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): """simple docstring""" return self def A__ ( self ): """simple docstring""" lowercase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
360
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
0
"""simple docstring""" from __future__ import annotations __lowerCAmelCase : Dict =[-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] __lowerCAmelCase : Optional[int] =[-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> list[float]: '''simple docstring''' lowercase = [] lowercase = len(__snake_case ) for i in range(__snake_case ): lowercase = -1 for j in range(i + 1 , __snake_case ): if arr[i] < arr[j]: lowercase = arr[j] break result.append(__snake_case ) return result def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> list[float]: '''simple docstring''' lowercase = [] for i, outer in enumerate(__snake_case ): lowercase = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase = inner break result.append(__snake_case ) return result def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> list[float]: '''simple docstring''' lowercase = len(__snake_case ) lowercase = [] lowercase = [-1] * arr_size for index in reversed(range(__snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __lowerCAmelCase : List[str] =( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
361
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowerCAmelCase : List[str] =logging.getLogger(__name__) __lowerCAmelCase : Dict =tf.data.AUTOTUNE def UpperCAmelCase__ ( ) -> List[str]: '''simple docstring''' lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , ) parser.add_argument( """--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , ) parser.add_argument( """--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , ) parser.add_argument( """--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , ) parser.add_argument( """--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , ) parser.add_argument( """--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , ) parser.add_argument( """--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , ) parser.add_argument( """--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , ) parser.add_argument( """--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , ) parser.add_argument( """--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , ) parser.add_argument( """--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , ) parser.add_argument( """--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , ) parser.add_argument( """--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , ) parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" ) lowercase = parser.parse_args() return args def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: '''simple docstring''' try: if args.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(lowerCAmelCase__ ) tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ ) return tpu def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = 0 for file in file_list: lowercase = file.split("""/""" )[-1] lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 ) lowercase = int(lowerCAmelCase__ ) num_samples += sample_count return num_samples def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: '''simple docstring''' lowercase = count_samples(lowerCAmelCase__ ) lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ ) if shuffle: lowercase = dataset.shuffle(len(lowerCAmelCase__ ) ) lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) if shuffle: assert shuffle_buffer_size is not None lowercase = dataset.shuffle(args.shuffle_buffer_size ) lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ ) lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ ) lowercase = dataset.prefetch(lowerCAmelCase__ ) return dataset def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' if not args.no_tpu: lowercase = initialize_tpu(lowerCAmelCase__ ) lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ ) else: lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) lowercase = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase = tokenizer.vocab_size lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) ) if not training_records: raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' ) lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) ) if not eval_records: raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' ) lowercase = count_samples(lowerCAmelCase__ ) lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase = create_optimizer( num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] ) def decode_fn(lowerCAmelCase__ :Any ): lowercase = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" ) def mask_with_collator(lowerCAmelCase__ :Dict ): # TF really needs an isin() function lowercase = ( ~tf.cast(batch["""attention_mask"""] , tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) lowercase , lowercase = data_collator.tf_mask_tokens( batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , ) return batch lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase = prepare_dataset( lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) lowercase = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) ) model.fit( lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =parse_args() main(args)
32
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Union[str, Any] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __lowerCAmelCase : int =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
0