code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class _A ( pl.LightningModule ):
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
super().__init__()
lowercase = model
lowercase = 2
lowercase = nn.Linear(self.model.config.hidden_size , self.num_labels )
def A__ ( self ):
"""simple docstring"""
pass
def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> Any:
'''simple docstring'''
lowercase = LongformerModel.from_pretrained(lowerCAmelCase__ )
lowercase = LightningModel(lowerCAmelCase__ )
lowercase = torch.load(lowerCAmelCase__ , map_location=torch.device("""cpu""" ) )
lightning_model.load_state_dict(ckpt["""state_dict"""] )
# init longformer question answering model
lowercase = LongformerForQuestionAnswering.from_pretrained(lowerCAmelCase__ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(lowerCAmelCase__ )
print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' )
if __name__ == "__main__":
__lowerCAmelCase : Any =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--longformer_model""",
default=None,
type=str,
required=True,
help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""",
)
parser.add_argument(
"""--longformer_question_answering_ckpt_path""",
default=None,
type=str,
required=True,
help="""Path the official PyTorch Lightning Checkpoint.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
__lowerCAmelCase : Tuple =parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 32
|
"""simple docstring"""
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__lowerCAmelCase : List[str] =logging.getLogger(__name__)
__lowerCAmelCase : Dict =tf.data.AUTOTUNE
def UpperCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , )
parser.add_argument(
"""--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , )
parser.add_argument(
"""--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , )
parser.add_argument(
"""--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , )
parser.add_argument(
"""--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , )
parser.add_argument(
"""--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , )
parser.add_argument(
"""--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , )
parser.add_argument(
"""--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , )
parser.add_argument(
"""--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , )
parser.add_argument(
"""--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , )
parser.add_argument(
"""--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , )
parser.add_argument(
"""--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , )
parser.add_argument(
"""--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , )
parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" )
lowercase = parser.parse_args()
return args
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]:
'''simple docstring'''
try:
if args.tpu_name:
lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
lowercase = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(lowerCAmelCase__ )
tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ )
return tpu
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = 0
for file in file_list:
lowercase = file.split("""/""" )[-1]
lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 )
lowercase = int(lowerCAmelCase__ )
num_samples += sample_count
return num_samples
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]:
'''simple docstring'''
lowercase = count_samples(lowerCAmelCase__ )
lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ )
if shuffle:
lowercase = dataset.shuffle(len(lowerCAmelCase__ ) )
lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) )
lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ )
if shuffle:
assert shuffle_buffer_size is not None
lowercase = dataset.shuffle(args.shuffle_buffer_size )
lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ )
lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ )
lowercase = dataset.prefetch(lowerCAmelCase__ )
return dataset
def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]:
'''simple docstring'''
if not args.no_tpu:
lowercase = initialize_tpu(lowerCAmelCase__ )
lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ )
else:
lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
lowercase = AutoTokenizer.from_pretrained(args.tokenizer )
lowercase = AutoConfig.from_pretrained(args.pretrained_model_config )
lowercase = tokenizer.vocab_size
lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) )
if not training_records:
raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' )
lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' )
lowercase = count_samples(lowerCAmelCase__ )
lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
lowercase = steps_per_epoch * args.num_epochs
with strategy.scope():
lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
lowercase , lowercase = create_optimizer(
num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] )
def decode_fn(lowerCAmelCase__ :Any ):
lowercase = {
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
lowercase = DataCollatorForLanguageModeling(
tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" )
def mask_with_collator(lowerCAmelCase__ :Dict ):
# TF really needs an isin() function
lowercase = (
~tf.cast(batch["""attention_mask"""] , tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
lowercase , lowercase = data_collator.tf_mask_tokens(
batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , )
return batch
lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync
lowercase = prepare_dataset(
lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , )
lowercase = prepare_dataset(
lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , )
lowercase = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) )
model.fit(
lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__lowerCAmelCase : Optional[int] =parse_args()
main(args)
| 32
| 1
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _A ( metaclass=lowerCAmelCase ):
snake_case__ : List[Any] = ['transformers', 'torch', 'note_seq']
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(self , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
| 32
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase : List[Any] ={
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[Any] =[
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
| 1
|
"""simple docstring"""
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
__lowerCAmelCase : str =logging.get_logger(__name__)
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase = R"""\w+[.]\d+"""
lowercase = re.findall(lowerCAmelCase__ , lowerCAmelCase__ )
for pat in pats:
lowercase = key.replace(lowerCAmelCase__ , """_""".join(pat.split(""".""" ) ) )
return key
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] ) -> Any:
'''simple docstring'''
lowercase = pt_tuple_key[:-1] + ("""scale""",)
if (
any("""norm""" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
lowercase = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
lowercase = pt_tuple_key[:-1] + ("""scale""",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
lowercase = pt_tuple_key[:-1] + ("""embedding""",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowercase = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
lowercase = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowercase = pt_tuple_key[:-1] + ("""kernel""",)
if pt_tuple_key[-1] == "weight":
lowercase = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowercase = pt_tuple_key[:-1] + ("""weight""",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowercase = pt_tuple_key[:-1] + ("""bias""",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any]=4_2 ) -> Optional[int]:
'''simple docstring'''
lowercase = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
lowercase = flax_model.init_weights(PRNGKey(lowerCAmelCase__ ) )
lowercase = flatten_dict(lowerCAmelCase__ )
lowercase = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase = rename_key(lowerCAmelCase__ )
lowercase = tuple(renamed_pt_key.split(""".""" ) )
# Correctly rename weight parameters
lowercase , lowercase = rename_key_and_reshape_tensor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# also add unexpected weight so that warning is thrown
lowercase = jnp.asarray(lowerCAmelCase__ )
return unflatten_dict(lowerCAmelCase__ )
| 32
|
"""simple docstring"""
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCAmelCase : Tuple ={
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
class _A ( lowerCAmelCase ):
snake_case__ : Dict = 'mask2former'
snake_case__ : Union[str, Any] = ['swin']
snake_case__ : Any = {'hidden_size': 'hidden_dim'}
def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" )
lowercase = CONFIG_MAPPING["""swin"""](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = backbone_config.pop("""model_type""" )
lowercase = CONFIG_MAPPING[backbone_model_type]
lowercase = config_class.from_dict(__lowerCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '
f'Supported model types: {",".join(self.backbones_supported )}' )
lowercase = backbone_config
lowercase = feature_size
lowercase = mask_feature_size
lowercase = hidden_dim
lowercase = encoder_feedforward_dim
lowercase = activation_function
lowercase = encoder_layers
lowercase = decoder_layers
lowercase = num_attention_heads
lowercase = dropout
lowercase = dim_feedforward
lowercase = pre_norm
lowercase = enforce_input_projection
lowercase = common_stride
lowercase = ignore_value
lowercase = num_queries
lowercase = no_object_weight
lowercase = class_weight
lowercase = mask_weight
lowercase = dice_weight
lowercase = train_num_points
lowercase = oversample_ratio
lowercase = importance_sample_ratio
lowercase = init_std
lowercase = init_xavier_std
lowercase = use_auxiliary_loss
lowercase = feature_strides
lowercase = output_auxiliary_logits
lowercase = decoder_layers
super().__init__(**__lowerCAmelCase )
@classmethod
def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return cls(
backbone_config=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
lowercase = copy.deepcopy(self.__dict__ )
lowercase = self.backbone_config.to_dict()
lowercase = self.__class__.model_type
return output
| 32
| 1
|
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
snake_case__ : Union[str, Any] = IFInpaintingPipeline
snake_case__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'}
snake_case__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
snake_case__ : Optional[Any] = PipelineTesterMixin.required_optional_params - {'latents'}
def A__ ( self ):
"""simple docstring"""
return self._get_dummy_components()
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ):
"""simple docstring"""
if str(__lowerCAmelCase ).startswith("""mps""" ):
lowercase = torch.manual_seed(__lowerCAmelCase )
else:
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def A__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def A__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def A__ ( self ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def A__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def A__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def A__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 32
|
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ )
return new.join(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = {}
lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' )
if "res_path" in key:
lowercase = key.replace("""res_path.""" , """res_path.path.""" )
if key.endswith(""".w""" ):
lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 )
if key.endswith(""".b""" ):
lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 )
lowercase = value.float()
return upgrade
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any:
'''simple docstring'''
from dall_e import Encoder
lowercase = Encoder()
if os.path.exists(lowerCAmelCase__ ):
lowercase = torch.load(lowerCAmelCase__ )
else:
lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = ckpt.state_dict()
encoder.load_state_dict(lowerCAmelCase__ )
if config_path is not None:
lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ )
else:
lowercase = FlavaImageCodebookConfig()
lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval()
lowercase = encoder.state_dict()
lowercase = upgrade_state_dict(lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
lowercase = hf_model.state_dict()
lowercase = count_parameters(lowerCAmelCase__ )
lowercase = count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(lowerCAmelCase__ )
else:
return hf_state_dict
if __name__ == "__main__":
__lowerCAmelCase : Tuple =argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
__lowerCAmelCase : Any =parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 32
| 1
|
"""simple docstring"""
import random
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool:
'''simple docstring'''
lowercase = num - 1
lowercase = 0
while s % 2 == 0:
lowercase = s // 2
t += 1
for _ in range(5 ):
lowercase = random.randrange(2 , num - 1 )
lowercase = pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if v != 1:
lowercase = 0
while v != (num - 1):
if i == t - 1:
return False
else:
lowercase = i + 1
lowercase = (v**2) % num
return True
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool:
'''simple docstring'''
if num < 2:
return False
lowercase = [
2,
3,
5,
7,
1_1,
1_3,
1_7,
1_9,
2_3,
2_9,
3_1,
3_7,
4_1,
4_3,
4_7,
5_3,
5_9,
6_1,
6_7,
7_1,
7_3,
7_9,
8_3,
8_9,
9_7,
1_0_1,
1_0_3,
1_0_7,
1_0_9,
1_1_3,
1_2_7,
1_3_1,
1_3_7,
1_3_9,
1_4_9,
1_5_1,
1_5_7,
1_6_3,
1_6_7,
1_7_3,
1_7_9,
1_8_1,
1_9_1,
1_9_3,
1_9_7,
1_9_9,
2_1_1,
2_2_3,
2_2_7,
2_2_9,
2_3_3,
2_3_9,
2_4_1,
2_5_1,
2_5_7,
2_6_3,
2_6_9,
2_7_1,
2_7_7,
2_8_1,
2_8_3,
2_9_3,
3_0_7,
3_1_1,
3_1_3,
3_1_7,
3_3_1,
3_3_7,
3_4_7,
3_4_9,
3_5_3,
3_5_9,
3_6_7,
3_7_3,
3_7_9,
3_8_3,
3_8_9,
3_9_7,
4_0_1,
4_0_9,
4_1_9,
4_2_1,
4_3_1,
4_3_3,
4_3_9,
4_4_3,
4_4_9,
4_5_7,
4_6_1,
4_6_3,
4_6_7,
4_7_9,
4_8_7,
4_9_1,
4_9_9,
5_0_3,
5_0_9,
5_2_1,
5_2_3,
5_4_1,
5_4_7,
5_5_7,
5_6_3,
5_6_9,
5_7_1,
5_7_7,
5_8_7,
5_9_3,
5_9_9,
6_0_1,
6_0_7,
6_1_3,
6_1_7,
6_1_9,
6_3_1,
6_4_1,
6_4_3,
6_4_7,
6_5_3,
6_5_9,
6_6_1,
6_7_3,
6_7_7,
6_8_3,
6_9_1,
7_0_1,
7_0_9,
7_1_9,
7_2_7,
7_3_3,
7_3_9,
7_4_3,
7_5_1,
7_5_7,
7_6_1,
7_6_9,
7_7_3,
7_8_7,
7_9_7,
8_0_9,
8_1_1,
8_2_1,
8_2_3,
8_2_7,
8_2_9,
8_3_9,
8_5_3,
8_5_7,
8_5_9,
8_6_3,
8_7_7,
8_8_1,
8_8_3,
8_8_7,
9_0_7,
9_1_1,
9_1_9,
9_2_9,
9_3_7,
9_4_1,
9_4_7,
9_5_3,
9_6_7,
9_7_1,
9_7_7,
9_8_3,
9_9_1,
9_9_7,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_2_4 ) -> int:
'''simple docstring'''
while True:
lowercase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(lowerCAmelCase__ ):
return num
if __name__ == "__main__":
__lowerCAmelCase : Optional[int] =generate_large_prime()
print(("""Prime number:""", num))
print(("""is_prime_low_num:""", is_prime_low_num(num)))
| 32
|
"""simple docstring"""
import enum
import shutil
import sys
__lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size()
__lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""}
class _A ( enum.Enum ):
snake_case__ : Tuple = 0
snake_case__ : List[str] = 1
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]:
'''simple docstring'''
sys.stdout.write(str(lowerCAmelCase__ ) + end )
sys.stdout.flush()
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]:
'''simple docstring'''
forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
forceWrite("""\r""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def UpperCAmelCase__ ( ) -> int:
'''simple docstring'''
forceWrite(""" """ * TERMINAL_WIDTH )
reset_cursor()
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
reset_cursor()
forceWrite("""-""" * TERMINAL_WIDTH )
| 32
| 1
|
"""simple docstring"""
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
__lowerCAmelCase : str =logging.getLogger(__name__)
def UpperCAmelCase__ ( lowerCAmelCase__ :torch.nn.Module , lowerCAmelCase__ :BnbQuantizationConfig , lowerCAmelCase__ :Union[str, os.PathLike] = None , lowerCAmelCase__ :Optional[Dict[str, Union[int, str, torch.device]]] = None , lowerCAmelCase__ :Optional[List[str]] = None , lowerCAmelCase__ :Optional[Dict[Union[int, str], Union[int, str]]] = None , lowerCAmelCase__ :Optional[Union[str, os.PathLike]] = None , lowerCAmelCase__ :bool = False , ) -> int:
'''simple docstring'''
lowercase = bnb_quantization_config.load_in_abit
lowercase = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
"""You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"""
""" make sure you have the latest version of `bitsandbytes` installed.""" )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
"""You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"""
"""make sure you have the latest version of `bitsandbytes` installed.""" )
lowercase = []
# custom device map
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1:
lowercase = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
lowercase = get_keys_to_not_convert(lowerCAmelCase__ )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ )
lowercase = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
lowercase = []
lowercase = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(lowerCAmelCase__ )
# compatibility with peft
lowercase = load_in_abit
lowercase = load_in_abit
lowercase = get_parameter_device(lowerCAmelCase__ )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
"""It is not recommended to quantize a loaded model. """
"""The model should be instantiated under the `init_empty_weights` context manager.""" )
lowercase = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ )
# convert param to the right dtype
lowercase = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
lowercase = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" )
lowercase = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(lowerCAmelCase__ ):
param.to(lowerCAmelCase__ )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info(
f'The model device type is {model_device.type}. However, cuda is needed for quantization.'
"""We move the model to cuda.""" )
return model
elif weights_location is None:
raise RuntimeError(
f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' )
else:
with init_empty_weights():
lowercase = replace_with_bnb_layers(
lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ )
lowercase = get_quantized_model_device_map(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
lowercase = True
lowercase = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] )
load_checkpoint_in_model(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , )
return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :int=None ) -> str:
'''simple docstring'''
if device_map is None:
if torch.cuda.is_available():
lowercase = {"""""": torch.cuda.current_device()}
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"""If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """
"""'sequential'.""" )
lowercase = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
lowercase = {}
lowercase = special_dtypes
lowercase = no_split_module_classes
lowercase = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
lowercase = get_balanced_memory(
lowerCAmelCase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , )
lowercase = max_memory
lowercase = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
# check if don't have any quantized module on the cpu
lowercase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
lowercase = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
"""
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
these modules in `torch_dtype`, you need to pass a custom `device_map` to
`load_and_quantize_model`. Check
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
for more details.
""" )
else:
logger.info(
"""Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" )
del device_map_without_some_modules
return device_map
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Tuple=None ) -> int:
'''simple docstring'''
if modules_to_not_convert is None:
lowercase = []
lowercase , lowercase = _replace_with_bnb_layers(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if not has_been_replaced:
logger.warning(
"""You are loading your model in 8bit or 4bit but no linear modules were found in your model."""
""" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."""
""" Please double check your model architecture, or submit an issue on github if you think this is"""
""" a bug.""" )
return model
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :str=None , ) -> int:
'''simple docstring'''
lowercase = False
for name, module in model.named_children():
if current_key_name is None:
lowercase = []
current_key_name.append(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
lowercase = """.""".join(lowerCAmelCase__ )
lowercase = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
lowercase = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
lowercase = bnb.nn.LinearabitLt(
module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , )
elif bnb_quantization_config.load_in_abit:
lowercase = bnb.nn.Linearabit(
module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , )
else:
raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" )
lowercase = module.weight.data
if module.bias is not None:
lowercase = module.bias.data
bnb_module.requires_grad_(lowerCAmelCase__ )
setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
lowercase = True
if len(list(module.children() ) ) > 0:
lowercase , lowercase = _replace_with_bnb_layers(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
lowercase = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Any:
'''simple docstring'''
with init_empty_weights():
lowercase = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
lowercase = find_tied_parameters(lowerCAmelCase__ )
# For compatibility with Accelerate < 0.18
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
lowercase = sum(lowerCAmelCase__ , [] )
lowercase = len(lowerCAmelCase__ ) > 0
# Check if it is a base model
lowercase = False
if hasattr(lowerCAmelCase__ , """base_model_prefix""" ):
lowercase = not hasattr(lowerCAmelCase__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
lowercase = list(model.named_children() )
lowercase = [list_modules[-1][0]]
# add last module together with tied weights
lowercase = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ )
lowercase = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ )
# remove ".weight" from the keys
lowercase = [""".weight""", """.bias"""]
lowercase = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
lowercase = name.replace(lowerCAmelCase__ , """""" )
filtered_module_names.append(lowerCAmelCase__ )
return filtered_module_names
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]:
'''simple docstring'''
for m in model.modules():
if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ):
return True
return False
def UpperCAmelCase__ ( lowerCAmelCase__ :nn.Module ) -> Any:
'''simple docstring'''
return next(parameter.parameters() ).device
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict ) -> List[str]:
'''simple docstring'''
if fpaa_statistics is None:
set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ )
lowercase = param_name
lowercase = model
if "." in tensor_name:
lowercase = tensor_name.split(""".""" )
for split in splits[:-1]:
lowercase = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if new_module is None:
raise ValueError(f'{module} has no attribute {split}.' )
lowercase = new_module
lowercase = splits[-1]
# offload weights
lowercase = False
offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ )
if hasattr(module._parameters[tensor_name] , """SCB""" ):
offload_weight(
module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase__ , index=lowerCAmelCase__ , )
else:
offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ )
offload_weight(lowerCAmelCase__ , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase__ , index=lowerCAmelCase__ )
set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , """meta""" , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""only integers accepted as input""" )
else:
lowercase = str(abs(lowerCAmelCase__ ) )
lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )]
for index in range(len(lowerCAmelCase__ ) ):
num_transpositions[index].pop(lowerCAmelCase__ )
return max(
int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 32
| 1
|
"""simple docstring"""
__lowerCAmelCase : Any =6_5_5_2_1
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> int:
'''simple docstring'''
lowercase = 1
lowercase = 0
for plain_chr in plain_text:
lowercase = (a + ord(lowerCAmelCase__ )) % MOD_ADLER
lowercase = (b + a) % MOD_ADLER
return (b << 1_6) | a
| 32
|
"""simple docstring"""
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
__lowerCAmelCase : List[Any] =numpy.array([0, 0])
__lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254])
__lowerCAmelCase : List[Any] =numpy.array([1, 0])
__lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]:
'''simple docstring'''
lowercase = initial_vectors
for _ in range(lowerCAmelCase__ ):
lowercase = iteration_step(lowerCAmelCase__ )
return vectors
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]:
'''simple docstring'''
lowercase = []
for i, start_vector in enumerate(vectors[:-1] ):
lowercase = vectors[i + 1]
new_vectors.append(lowerCAmelCase__ )
lowercase = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray:
'''simple docstring'''
lowercase = numpy.radians(lowerCAmelCase__ )
lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ )
lowercase = numpy.array(((c, -s), (s, c)) )
return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None:
'''simple docstring'''
lowercase = plt.gca()
axes.set_aspect("""equal""" )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
lowercase , lowercase = zip(*lowerCAmelCase__ )
plt.plot(lowerCAmelCase__ , lowerCAmelCase__ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 32
| 1
|
"""simple docstring"""
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
__lowerCAmelCase : Dict ="""\
@misc{chen2021evaluating,
title={Evaluating Large Language Models Trained on Code},
author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \
and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \
and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \
and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \
and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \
and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \
and Mohammad Bavarian and Clemens Winter and Philippe Tillet \
and Felipe Petroski Such and Dave Cummings and Matthias Plappert \
and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \
and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \
and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \
and William Saunders and Christopher Hesse and Andrew N. Carr \
and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \
and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \
and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \
and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},
year={2021},
eprint={2107.03374},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
"""
__lowerCAmelCase : List[Any] ="""\
This metric implements the evaluation harness for the HumanEval problem solving dataset
described in the paper \"Evaluating Large Language Models Trained on Code\"
(https://arxiv.org/abs/2107.03374).
"""
__lowerCAmelCase : int ="""
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of candidates to evaluate. Each candidates should be a list
of strings with several code candidates to solve the problem.
references: a list with a test for each prediction. Each test should evaluate the
correctness of a code candidate.
k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])
num_workers: number of workers used to evaluate the canidate programs (Default: 4).
timeout:
Returns:
pass_at_k: dict with pass rates for each k
results: dict with granular results of each unittest
Examples:
>>> code_eval = datasets.load_metric(\"code_eval\")
>>> test_cases = [\"assert add(2,3)==5\"]
>>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]
>>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
>>> print(pass_at_k)
{'pass@1': 0.5, 'pass@2': 1.0}
"""
__lowerCAmelCase : List[str] ="""
################################################################################
!!!WARNING!!!
################################################################################
The \"code_eval\" metric executes untrusted model-generated code in Python.
Although it is highly unlikely that model-generated code will do something
overtly malicious in response to this test suite, model-generated code may act
destructively due to a lack of model capability or alignment.
Users are strongly encouraged to sandbox this evaluation suite so that it
does not perform destructive actions on their host or network. For more
information on how OpenAI sandboxes its code, see the paper \"Evaluating Large
Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374).
Once you have read this disclaimer and taken appropriate precautions,
set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this
with:
>>> import os
>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"
################################################################################\
"""
__lowerCAmelCase : int ="""The MIT License
Copyright (c) OpenAI (https://openai.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the \"Software\"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE."""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
def A__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=[1, 10, 100] , __lowerCAmelCase=4 , __lowerCAmelCase=3.0 ):
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=__lowerCAmelCase ) as executor:
lowercase = []
lowercase = Counter()
lowercase = 0
lowercase = defaultdict(__lowerCAmelCase )
for task_id, (candidates, test_case) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ):
for candidate in candidates:
lowercase = candidate + """\n""" + test_case
lowercase = (test_program, timeout, task_id, completion_id[task_id])
lowercase = executor.submit(__lowerCAmelCase , *__lowerCAmelCase )
futures.append(__lowerCAmelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(__lowerCAmelCase ):
lowercase = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
lowercase , lowercase = [], []
for result in results.values():
result.sort()
lowercase = [r[1]["""passed"""] for r in result]
total.append(len(__lowerCAmelCase ) )
correct.append(sum(__lowerCAmelCase ) )
lowercase = np.array(__lowerCAmelCase )
lowercase = np.array(__lowerCAmelCase )
lowercase = k
lowercase = {f'pass@{k}': estimate_pass_at_k(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
def estimator(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = itertools.repeat(lowerCAmelCase__ , len(lowerCAmelCase__ ) )
else:
assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ )
lowercase = iter(lowerCAmelCase__ )
return np.array([estimator(int(lowerCAmelCase__ ) , int(lowerCAmelCase__ ) , lowerCAmelCase__ ) for n, c in zip(lowerCAmelCase__ , lowerCAmelCase__ )] )
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = credit_card_number
lowercase = 0
lowercase = len(lowerCAmelCase__ ) - 2
for i in range(lowerCAmelCase__ , -1 , -2 ):
# double the value of every second digit
lowercase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 1_0
digit += 1
lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 1_0 == 0
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = f'{credit_card_number} is an invalid credit card number because'
if not credit_card_number.isdigit():
print(f'{error_message} it has nonnumerical characters.' )
return False
if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6:
print(f'{error_message} of its length.' )
return False
if not validate_initial_digits(lowerCAmelCase__ ):
print(f'{error_message} of its first two digits.' )
return False
if not luhn_validation(lowerCAmelCase__ ):
print(f'{error_message} it fails the Luhn check.' )
return False
print(f'{credit_card_number} is a valid credit card number.' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 32
| 1
|
"""simple docstring"""
from __future__ import annotations
import math
from collections.abc import Callable
def UpperCAmelCase__ ( lowerCAmelCase__ :Callable[[int | float], int | float] , lowerCAmelCase__ :int | float , lowerCAmelCase__ :int | float , lowerCAmelCase__ :int = 1_0_0 , ) -> float:
'''simple docstring'''
lowercase = x_start
lowercase = fnc(lowerCAmelCase__ )
lowercase = 0.0
for _ in range(lowerCAmelCase__ ):
# Approximates curve as a sequence of linear lines and sums their length
lowercase = (x_end - x_start) / steps + xa
lowercase = fnc(lowerCAmelCase__ )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
lowercase = xa
lowercase = fxa
return length
if __name__ == "__main__":
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> Any:
'''simple docstring'''
return math.sin(1_0 * x )
print("""f(x) = sin(10 * x)""")
print("""The length of the curve from x = -10 to x = 10 is:""")
__lowerCAmelCase : Dict =1_0
while i <= 1_0_0_0_0_0:
print(F"""With {i} steps: {line_length(f, -1_0, 1_0, i)}""")
i *= 1_0
| 32
|
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def A__ ( self ):
"""simple docstring"""
lowercase = 1
lowercase = 3
lowercase = (32, 32)
lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase )
return image
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(__lowerCAmelCase )
@property
def A__ ( self ):
"""simple docstring"""
def extract(*__lowerCAmelCase , **__lowerCAmelCase ):
class _A :
def __init__( self ):
"""simple docstring"""
lowercase = torch.ones([0] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
self.pixel_values.to(__lowerCAmelCase )
return self
return Out()
return extract
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase = self.dummy_cond_unet
lowercase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
lowercase = output.images
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase = self.dummy_cond_unet
lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
lowercase = output.images
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase )
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
assert isinstance(pipe.scheduler , __lowerCAmelCase )
assert pipe.safety_checker is None
lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCAmelCase )
lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def A__ ( self ):
"""simple docstring"""
lowercase = self.dummy_cond_unet
lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
lowercase = unet.half()
lowercase = vae.half()
lowercase = bert.half()
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase )
lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
lowercase = 40_0366_0346
lowercase = 7
# without safety guidance (sld_guidance_scale = 0)
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase )
lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """padme amidala taking a bath artwork, safe for work, no nudity"""
lowercase = 27_3497_1755
lowercase = 7
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
lowercase = 10_4435_5234
lowercase = 12
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 32
| 1
|
"""simple docstring"""
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
__lowerCAmelCase : Union[str, Any] ="""\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
__lowerCAmelCase : Dict ="""\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
__lowerCAmelCase : List[str] ="""
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
def A__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[
"""https://arxiv.org/abs/2102.01454""",
"""https://github.com/krishnap25/mauve""",
] , )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="auto" , __lowerCAmelCase=-1 , __lowerCAmelCase=0.9 , __lowerCAmelCase=5 , __lowerCAmelCase=500 , __lowerCAmelCase="gpt2-large" , __lowerCAmelCase=-1 , __lowerCAmelCase=1024 , __lowerCAmelCase=25 , __lowerCAmelCase=5 , __lowerCAmelCase=True , __lowerCAmelCase=25 , ):
"""simple docstring"""
lowercase = compute_mauve(
p_text=__lowerCAmelCase , q_text=__lowerCAmelCase , p_features=__lowerCAmelCase , q_features=__lowerCAmelCase , p_tokens=__lowerCAmelCase , q_tokens=__lowerCAmelCase , num_buckets=__lowerCAmelCase , pca_max_data=__lowerCAmelCase , kmeans_explained_var=__lowerCAmelCase , kmeans_num_redo=__lowerCAmelCase , kmeans_max_iter=__lowerCAmelCase , featurize_model_name=__lowerCAmelCase , device_id=__lowerCAmelCase , max_text_length=__lowerCAmelCase , divergence_curve_discretization_size=__lowerCAmelCase , mauve_scaling_factor=__lowerCAmelCase , verbose=__lowerCAmelCase , seed=__lowerCAmelCase , )
return out
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]:
'''simple docstring'''
lowercase = current_set.copy()
for row_index, row in enumerate(lowerCAmelCase__ ):
lowercase = row[0]
for column_index, column in enumerate(lowerCAmelCase__ ):
if magnitude == 0:
lowercase = column
continue
lowercase = column / magnitude
# Subtract to cancel term
lowercase = current_set[0]
lowercase = [first_row]
lowercase = current_set[1::]
for row in current_set:
lowercase = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(lowerCAmelCase__ )
continue
for column_index in range(len(lowerCAmelCase__ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(lowerCAmelCase__ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
lowercase = final_set[0]
lowercase = []
lowercase = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
lowercase = simplify(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , lowerCAmelCase__ )
lowercase = resultant
return final_set
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list:
'''simple docstring'''
if len(lowerCAmelCase__ ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
lowercase = len(lowerCAmelCase__ ) + 1
if any(len(lowerCAmelCase__ ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(lowerCAmelCase__ ) == 1:
return [equations[0][-1] / equations[0][0]]
lowercase = equations.copy()
if any(0 in row for row in data_set ):
lowercase = data_set.copy()
lowercase = []
for row_index, row in enumerate(lowerCAmelCase__ ):
if 0 not in row:
lowercase = data_set.pop(lowerCAmelCase__ )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 , lowerCAmelCase__ )
lowercase = data_set.copy()
lowercase = simplify(lowerCAmelCase__ )
lowercase = simplified[::-1]
lowercase = []
for row in simplified:
lowercase = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(lowerCAmelCase__ ) == 0:
solutions.append(0 )
continue
lowercase = temp_row[1::]
lowercase = temp_row[::-1]
for column_index, column in enumerate(lowerCAmelCase__ ):
current_solution -= column * solutions[column_index]
solutions.append(lowerCAmelCase__ )
lowercase = []
for item in solutions:
final.append(float(round(lowerCAmelCase__ , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : List[str] =[
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 32
| 1
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__lowerCAmelCase : int =logging.get_logger(__name__)
class _A ( lowerCAmelCase ):
snake_case__ : List[str] = ['input_features', 'attention_mask']
def __init__( self , __lowerCAmelCase=80 , __lowerCAmelCase=1_6000 , __lowerCAmelCase=80 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , **__lowerCAmelCase )
lowercase = num_mel_bins
lowercase = do_ceptral_normalize
lowercase = normalize_means
lowercase = normalize_vars
lowercase = True
def A__ ( self , __lowerCAmelCase , ):
"""simple docstring"""
lowercase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
lowercase = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 )
lowercase = ta_kaldi.fbank(__lowerCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def A__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = 0.0 , ):
"""simple docstring"""
if normalize_means:
lowercase = x[:input_length].mean(axis=0 )
lowercase = np.subtract(__lowerCAmelCase , __lowerCAmelCase )
if normalize_vars:
lowercase = x[:input_length].std(axis=0 )
lowercase = np.divide(__lowerCAmelCase , __lowerCAmelCase )
if input_length < x.shape[0]:
lowercase = padding_value
# make sure array is in float32
lowercase = x.astype(np.floataa )
return x
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
lowercase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(__lowerCAmelCase , __lowerCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(__lowerCAmelCase , __lowerCAmelCase )
]
def __call__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
f' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
lowercase = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'Only mono-channel audio is supported for input to {self}' )
lowercase = is_batched_numpy or (
isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ):
lowercase = np.asarray(__lowerCAmelCase , dtype=np.floataa )
elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase = [raw_speech]
# extract fbank features
lowercase = [self._extract_fbank_features(__lowerCAmelCase ) for waveform in raw_speech]
# convert into correct format for padding
lowercase = BatchFeature({"""input_features""": features} )
lowercase = self.pad(
__lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , )
# make sure list is in array format
lowercase = padded_inputs.get("""input_features""" )
if isinstance(input_features[0] , __lowerCAmelCase ):
lowercase = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in input_features]
lowercase = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
lowercase = [np.asarray(__lowerCAmelCase , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
lowercase = (
np.array(__lowerCAmelCase , dtype=np.intaa )
if self._get_padding_strategies(__lowerCAmelCase , max_length=__lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
lowercase = self.normalize(
padded_inputs["""input_features"""] , attention_mask=__lowerCAmelCase )
if return_tensors is not None:
lowercase = padded_inputs.convert_to_tensors(__lowerCAmelCase )
return padded_inputs
| 32
|
"""simple docstring"""
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase )
class _A ( lowerCAmelCase ):
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def A__ ( self , __lowerCAmelCase=None ):
"""simple docstring"""
lowercase = {}
if top_k is not None:
lowercase = top_k
return {}, {}, postprocess_params
def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return super().__call__(__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = load_image(__lowerCAmelCase )
lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework )
return model_inputs
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = self.model(**__lowerCAmelCase )
return model_outputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
lowercase = self.model.config.num_labels
if self.framework == "pt":
lowercase = model_outputs.logits.softmax(-1 )[0]
lowercase , lowercase = probs.topk(__lowerCAmelCase )
elif self.framework == "tf":
lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0]
lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase )
lowercase , lowercase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
lowercase = scores.tolist()
lowercase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
| 32
| 1
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Dict:
'''simple docstring'''
lowercase = SwinConfig(image_size=1_9_2 )
if "base" in model_name:
lowercase = 6
lowercase = 1_2_8
lowercase = (2, 2, 1_8, 2)
lowercase = (4, 8, 1_6, 3_2)
elif "large" in model_name:
lowercase = 1_2
lowercase = 1_9_2
lowercase = (2, 2, 1_8, 2)
lowercase = (6, 1_2, 2_4, 4_8)
else:
raise ValueError("""Model not supported, only supports base and large variants""" )
lowercase = window_size
lowercase = embed_dim
lowercase = depths
lowercase = num_heads
return config
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
if "encoder.mask_token" in name:
lowercase = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" )
if "encoder.patch_embed.proj" in name:
lowercase = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "encoder.patch_embed.norm" in name:
lowercase = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" )
if "attn.proj" in name:
lowercase = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowercase = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowercase = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowercase = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowercase = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
lowercase = """layernorm.weight"""
if name == "encoder.norm.bias":
lowercase = """layernorm.bias"""
if "decoder" in name:
pass
else:
lowercase = """swin.""" + name
return name
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple ) -> int:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase = orig_state_dict.pop(lowerCAmelCase__ )
if "attn_mask" in key:
pass
elif "qkv" in key:
lowercase = key.split(""".""" )
lowercase = int(key_split[2] )
lowercase = int(key_split[4] )
lowercase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[
dim : dim * 2, :
]
lowercase = val[-dim:, :]
else:
lowercase = val[
:dim
]
lowercase = val[
dim : dim * 2
]
lowercase = val[
-dim:
]
else:
lowercase = val
return orig_state_dict
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""]
lowercase = get_swin_config(lowerCAmelCase__ )
lowercase = SwinForMaskedImageModeling(lowerCAmelCase__ )
model.eval()
lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ )
lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase = ViTImageProcessor(size={"""height""": 1_9_2, """width""": 1_9_2} )
lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
lowercase = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" )
with torch.no_grad():
lowercase = model(**lowerCAmelCase__ ).logits
print(outputs.keys() )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print(f'Pushing model and image processor for {model_name} to hub' )
model.push_to_hub(f'microsoft/{model_name}' )
image_processor.push_to_hub(f'microsoft/{model_name}' )
if __name__ == "__main__":
__lowerCAmelCase : List[str] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""swin-base-simmim-window6-192""",
type=str,
choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""],
help="""Name of the Swin SimMIM model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""",
type=str,
help="""Path to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
__lowerCAmelCase : Any =parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 32
|
"""simple docstring"""
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"""The `image_to_image.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionImg2ImgPipeline` instead."""
)
| 32
| 1
|
"""simple docstring"""
import os
from tempfile import TemporaryDirectory
from unittest import TestCase
import pytest
from absl.testing import parameterized
from datasets import config
from datasets.arrow_reader import HF_GCP_BASE_URL
from datasets.builder import DatasetBuilder
from datasets.dataset_dict import IterableDatasetDict
from datasets.iterable_dataset import IterableDataset
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.file_utils import cached_path
__lowerCAmelCase : Dict =[
{"""dataset""": """wikipedia""", """config_name""": """20220301.de"""},
{"""dataset""": """wikipedia""", """config_name""": """20220301.en"""},
{"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""},
{"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""},
{"""dataset""": """wikipedia""", """config_name""": """20220301.it"""},
{"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""},
{"""dataset""": """snli""", """config_name""": """plain_text"""},
{"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""},
{"""dataset""": """wiki40b""", """config_name""": """en"""},
{"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""},
{"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""},
{"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""},
{"""dataset""": """natural_questions""", """config_name""": """default"""},
]
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str]=True ) -> List[str]:
'''simple docstring'''
if with_config:
return [
{
"testcase_name": d["dataset"] + "/" + d["config_name"],
"dataset": d["dataset"],
"config_name": d["config_name"],
}
for d in DATASETS_ON_HF_GCP
]
else:
return [
{"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP}
]
@parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=lowerCAmelCase ) )
class _A ( lowerCAmelCase ):
snake_case__ : List[Any] = None
snake_case__ : Optional[Any] = None
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
with TemporaryDirectory() as tmp_dir:
lowercase = dataset_module_factory(__lowerCAmelCase , cache_dir=__lowerCAmelCase )
lowercase = import_main_class(dataset_module.module_path , dataset=__lowerCAmelCase )
lowercase = builder_cls(
cache_dir=__lowerCAmelCase , config_name=__lowerCAmelCase , hash=dataset_module.hash , )
lowercase = """/""".join(
[
HF_GCP_BASE_URL,
builder_instance._relative_data_dir(with_hash=__lowerCAmelCase ).replace(os.sep , """/""" ),
config.DATASET_INFO_FILENAME,
] )
lowercase = cached_path(__lowerCAmelCase , cache_dir=__lowerCAmelCase )
self.assertTrue(os.path.exists(__lowerCAmelCase ) )
@pytest.mark.integration
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple"""
lowercase = dataset_module_factory("""wikipedia""" , cache_dir=lowerCAmelCase__ )
lowercase = import_main_class(dataset_module.module_path )
lowercase = builder_cls(
cache_dir=lowerCAmelCase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , )
# use the HF cloud storage, not the original download_and_prepare that uses apache-beam
lowercase = None
builder_instance.download_and_prepare()
lowercase = builder_instance.as_dataset()
assert ds
@pytest.mark.integration
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[str]:
'''simple docstring'''
lowercase = dataset_module_factory("""wikipedia""" , cache_dir=lowerCAmelCase__ )
lowercase = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase__ )
lowercase = builder_cls(
cache_dir=lowerCAmelCase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , )
lowercase = builder_instance.as_streaming_dataset()
assert ds
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
assert "train" in ds
assert isinstance(ds["""train"""] , lowerCAmelCase__ )
assert next(iter(ds["""train"""] ) )
| 32
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : Optional[int] = GPTSanJapaneseTokenizer
snake_case__ : int = False
snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False}
def A__ ( self ):
"""simple docstring"""
super().setUp()
# fmt: off
lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""]
# fmt: on
lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀
lowercase = {"""unk_token""": """<unk>"""}
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
with open(self.emoji_file , """w""" ) as emoji_writer:
emoji_writer.write(json.dumps(__lowerCAmelCase ) )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀"""
lowercase = """こんにちは、世界。 \nこんばんは、世界。😀"""
return input_text, output_text
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase )
lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
return text, ids
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_tokenizer()
# Testing tokenization
lowercase = """こんにちは、世界。 こんばんは、㔺界。"""
lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""]
lowercase = tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# Testing conversion to ids without special tokens
lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# Testing conversion to ids with special tokens
lowercase = tokens + [tokenizer.unk_token]
lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_tokenizer()
# Testing tokenization
lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。"""
lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。"""
lowercase = tokenizer.encode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
lowercase = """こんにちは、世界。"""
lowercase = """こんばんは、㔺界。😀"""
lowercase = """こんにちは、世界。こんばんは、世界。😀"""
lowercase = tokenizer.encode(prefix_text + input_text )
lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text )
lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
lowercase = """こんにちは、世界。"""
lowercase = """こんばんは、㔺界。😀"""
lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2
lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2
lowercase = [1] + [0] * (len_prefix + len_text + 1)
lowercase = [1] * (len_prefix + len_text + 1) + [0]
lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
lowercase = tokenizer(prefix_text + input_text ).token_type_ids
lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids
lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
lowercase = tokenizer.encode("""あンいワ""" )
lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" )
lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" )
self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) )
self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) )
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]]
lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase )
lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase )
# fmt: off
lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]]
lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , __lowerCAmelCase )
self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase )
self.assertListEqual(x_token.attention_mask , __lowerCAmelCase )
self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase )
self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase )
self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
pass
def A__ ( self ):
"""simple docstring"""
pass
| 32
| 1
|
"""simple docstring"""
import math
import flax.linen as nn
import jax.numpy as jnp
def UpperCAmelCase__ ( lowerCAmelCase__ :jnp.ndarray , lowerCAmelCase__ :int , lowerCAmelCase__ :float = 1 , lowerCAmelCase__ :float = 1 , lowerCAmelCase__ :float = 1.0e4 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :float = 1.0 , ) -> jnp.ndarray:
'''simple docstring'''
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, f'Embedding dimension {embedding_dim} should be even'
lowercase = float(embedding_dim // 2 )
lowercase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
lowercase = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase__ , dtype=jnp.floataa ) * -log_timescale_increment )
lowercase = jnp.expand_dims(lowerCAmelCase__ , 1 ) * jnp.expand_dims(lowerCAmelCase__ , 0 )
# scale embeddings
lowercase = scale * emb
if flip_sin_to_cos:
lowercase = jnp.concatenate([jnp.cos(lowerCAmelCase__ ), jnp.sin(lowerCAmelCase__ )] , axis=1 )
else:
lowercase = jnp.concatenate([jnp.sin(lowerCAmelCase__ ), jnp.cos(lowerCAmelCase__ )] , axis=1 )
lowercase = jnp.reshape(lowerCAmelCase__ , [jnp.shape(lowerCAmelCase__ )[0], embedding_dim] )
return signal
class _A ( nn.Module ):
snake_case__ : int = 32
snake_case__ : jnp.dtype = jnp.floataa
@nn.compact
def __call__( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(__lowerCAmelCase )
lowercase = nn.silu(__lowerCAmelCase )
lowercase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(__lowerCAmelCase )
return temb
class _A ( nn.Module ):
snake_case__ : int = 32
snake_case__ : bool = False
snake_case__ : float = 1
@nn.compact
def __call__( self , __lowerCAmelCase ):
"""simple docstring"""
return get_sinusoidal_embeddings(
__lowerCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
| 32
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""]
__lowerCAmelCase : List[str] =["""ViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str =[
"""VIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTForImageClassification""",
"""ViTForMaskedImageModeling""",
"""ViTModel""",
"""ViTPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any =[
"""TFViTForImageClassification""",
"""TFViTModel""",
"""TFViTPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Dict =[
"""FlaxViTForImageClassification""",
"""FlaxViTModel""",
"""FlaxViTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
__lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
| 1
|
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ )
return new.join(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = {}
lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' )
if "res_path" in key:
lowercase = key.replace("""res_path.""" , """res_path.path.""" )
if key.endswith(""".w""" ):
lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 )
if key.endswith(""".b""" ):
lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 )
lowercase = value.float()
return upgrade
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any:
'''simple docstring'''
from dall_e import Encoder
lowercase = Encoder()
if os.path.exists(lowerCAmelCase__ ):
lowercase = torch.load(lowerCAmelCase__ )
else:
lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = ckpt.state_dict()
encoder.load_state_dict(lowerCAmelCase__ )
if config_path is not None:
lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ )
else:
lowercase = FlavaImageCodebookConfig()
lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval()
lowercase = encoder.state_dict()
lowercase = upgrade_state_dict(lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
lowercase = hf_model.state_dict()
lowercase = count_parameters(lowerCAmelCase__ )
lowercase = count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(lowerCAmelCase__ )
else:
return hf_state_dict
if __name__ == "__main__":
__lowerCAmelCase : Tuple =argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
__lowerCAmelCase : Any =parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 32
|
"""simple docstring"""
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(
split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , )
lowercase = load_from_cache_file
lowercase = file_format
lowercase = Spark(
df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=__lowerCAmelCase , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 32
| 1
|
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
__lowerCAmelCase : List[str] =logging.get_logger(__name__)
__lowerCAmelCase : int =OrderedDict(
[
# Base model mapping
("""albert""", """FlaxAlbertModel"""),
("""bart""", """FlaxBartModel"""),
("""beit""", """FlaxBeitModel"""),
("""bert""", """FlaxBertModel"""),
("""big_bird""", """FlaxBigBirdModel"""),
("""blenderbot""", """FlaxBlenderbotModel"""),
("""blenderbot-small""", """FlaxBlenderbotSmallModel"""),
("""clip""", """FlaxCLIPModel"""),
("""distilbert""", """FlaxDistilBertModel"""),
("""electra""", """FlaxElectraModel"""),
("""gpt-sw3""", """FlaxGPT2Model"""),
("""gpt2""", """FlaxGPT2Model"""),
("""gpt_neo""", """FlaxGPTNeoModel"""),
("""gptj""", """FlaxGPTJModel"""),
("""longt5""", """FlaxLongT5Model"""),
("""marian""", """FlaxMarianModel"""),
("""mbart""", """FlaxMBartModel"""),
("""mt5""", """FlaxMT5Model"""),
("""opt""", """FlaxOPTModel"""),
("""pegasus""", """FlaxPegasusModel"""),
("""regnet""", """FlaxRegNetModel"""),
("""resnet""", """FlaxResNetModel"""),
("""roberta""", """FlaxRobertaModel"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""),
("""roformer""", """FlaxRoFormerModel"""),
("""t5""", """FlaxT5Model"""),
("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""),
("""vit""", """FlaxViTModel"""),
("""wav2vec2""", """FlaxWav2Vec2Model"""),
("""whisper""", """FlaxWhisperModel"""),
("""xglm""", """FlaxXGLMModel"""),
("""xlm-roberta""", """FlaxXLMRobertaModel"""),
]
)
__lowerCAmelCase : List[Any] =OrderedDict(
[
# Model for pre-training mapping
("""albert""", """FlaxAlbertForPreTraining"""),
("""bart""", """FlaxBartForConditionalGeneration"""),
("""bert""", """FlaxBertForPreTraining"""),
("""big_bird""", """FlaxBigBirdForPreTraining"""),
("""electra""", """FlaxElectraForPreTraining"""),
("""longt5""", """FlaxLongT5ForConditionalGeneration"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""mt5""", """FlaxMT5ForConditionalGeneration"""),
("""roberta""", """FlaxRobertaForMaskedLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""),
("""roformer""", """FlaxRoFormerForMaskedLM"""),
("""t5""", """FlaxT5ForConditionalGeneration"""),
("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""),
("""whisper""", """FlaxWhisperForConditionalGeneration"""),
("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""),
]
)
__lowerCAmelCase : List[str] =OrderedDict(
[
# Model for Masked LM mapping
("""albert""", """FlaxAlbertForMaskedLM"""),
("""bart""", """FlaxBartForConditionalGeneration"""),
("""bert""", """FlaxBertForMaskedLM"""),
("""big_bird""", """FlaxBigBirdForMaskedLM"""),
("""distilbert""", """FlaxDistilBertForMaskedLM"""),
("""electra""", """FlaxElectraForMaskedLM"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""roberta""", """FlaxRobertaForMaskedLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""),
("""roformer""", """FlaxRoFormerForMaskedLM"""),
("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""),
]
)
__lowerCAmelCase : Tuple =OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("""bart""", """FlaxBartForConditionalGeneration"""),
("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""),
("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""),
("""encoder-decoder""", """FlaxEncoderDecoderModel"""),
("""longt5""", """FlaxLongT5ForConditionalGeneration"""),
("""marian""", """FlaxMarianMTModel"""),
("""mbart""", """FlaxMBartForConditionalGeneration"""),
("""mt5""", """FlaxMT5ForConditionalGeneration"""),
("""pegasus""", """FlaxPegasusForConditionalGeneration"""),
("""t5""", """FlaxT5ForConditionalGeneration"""),
]
)
__lowerCAmelCase : int =OrderedDict(
[
# Model for Image-classsification
("""beit""", """FlaxBeitForImageClassification"""),
("""regnet""", """FlaxRegNetForImageClassification"""),
("""resnet""", """FlaxResNetForImageClassification"""),
("""vit""", """FlaxViTForImageClassification"""),
]
)
__lowerCAmelCase : List[Any] =OrderedDict(
[
("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""),
]
)
__lowerCAmelCase : List[Any] =OrderedDict(
[
# Model for Causal LM mapping
("""bart""", """FlaxBartForCausalLM"""),
("""bert""", """FlaxBertForCausalLM"""),
("""big_bird""", """FlaxBigBirdForCausalLM"""),
("""electra""", """FlaxElectraForCausalLM"""),
("""gpt-sw3""", """FlaxGPT2LMHeadModel"""),
("""gpt2""", """FlaxGPT2LMHeadModel"""),
("""gpt_neo""", """FlaxGPTNeoForCausalLM"""),
("""gptj""", """FlaxGPTJForCausalLM"""),
("""opt""", """FlaxOPTForCausalLM"""),
("""roberta""", """FlaxRobertaForCausalLM"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""),
("""xglm""", """FlaxXGLMForCausalLM"""),
("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""),
]
)
__lowerCAmelCase : List[Any] =OrderedDict(
[
# Model for Sequence Classification mapping
("""albert""", """FlaxAlbertForSequenceClassification"""),
("""bart""", """FlaxBartForSequenceClassification"""),
("""bert""", """FlaxBertForSequenceClassification"""),
("""big_bird""", """FlaxBigBirdForSequenceClassification"""),
("""distilbert""", """FlaxDistilBertForSequenceClassification"""),
("""electra""", """FlaxElectraForSequenceClassification"""),
("""mbart""", """FlaxMBartForSequenceClassification"""),
("""roberta""", """FlaxRobertaForSequenceClassification"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""),
("""roformer""", """FlaxRoFormerForSequenceClassification"""),
("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""),
]
)
__lowerCAmelCase : Dict =OrderedDict(
[
# Model for Question Answering mapping
("""albert""", """FlaxAlbertForQuestionAnswering"""),
("""bart""", """FlaxBartForQuestionAnswering"""),
("""bert""", """FlaxBertForQuestionAnswering"""),
("""big_bird""", """FlaxBigBirdForQuestionAnswering"""),
("""distilbert""", """FlaxDistilBertForQuestionAnswering"""),
("""electra""", """FlaxElectraForQuestionAnswering"""),
("""mbart""", """FlaxMBartForQuestionAnswering"""),
("""roberta""", """FlaxRobertaForQuestionAnswering"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""),
("""roformer""", """FlaxRoFormerForQuestionAnswering"""),
("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""),
]
)
__lowerCAmelCase : Optional[Any] =OrderedDict(
[
# Model for Token Classification mapping
("""albert""", """FlaxAlbertForTokenClassification"""),
("""bert""", """FlaxBertForTokenClassification"""),
("""big_bird""", """FlaxBigBirdForTokenClassification"""),
("""distilbert""", """FlaxDistilBertForTokenClassification"""),
("""electra""", """FlaxElectraForTokenClassification"""),
("""roberta""", """FlaxRobertaForTokenClassification"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""),
("""roformer""", """FlaxRoFormerForTokenClassification"""),
("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""),
]
)
__lowerCAmelCase : Dict =OrderedDict(
[
# Model for Multiple Choice mapping
("""albert""", """FlaxAlbertForMultipleChoice"""),
("""bert""", """FlaxBertForMultipleChoice"""),
("""big_bird""", """FlaxBigBirdForMultipleChoice"""),
("""distilbert""", """FlaxDistilBertForMultipleChoice"""),
("""electra""", """FlaxElectraForMultipleChoice"""),
("""roberta""", """FlaxRobertaForMultipleChoice"""),
("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""),
("""roformer""", """FlaxRoFormerForMultipleChoice"""),
("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""),
]
)
__lowerCAmelCase : Optional[int] =OrderedDict(
[
("""bert""", """FlaxBertForNextSentencePrediction"""),
]
)
__lowerCAmelCase : int =OrderedDict(
[
("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""),
("""whisper""", """FlaxWhisperForConditionalGeneration"""),
]
)
__lowerCAmelCase : Dict =OrderedDict(
[
("""whisper""", """FlaxWhisperForAudioClassification"""),
]
)
__lowerCAmelCase : Optional[Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
__lowerCAmelCase : Any =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
__lowerCAmelCase : Optional[int] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
__lowerCAmelCase : Any =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
__lowerCAmelCase : Union[str, Any] =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
__lowerCAmelCase : Dict =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
__lowerCAmelCase : str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
__lowerCAmelCase : Any =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
__lowerCAmelCase : Any =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
__lowerCAmelCase : int =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
__lowerCAmelCase : str =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
__lowerCAmelCase : Any =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
__lowerCAmelCase : Union[str, Any] =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
__lowerCAmelCase : Optional[Any] =_LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class _A ( _BaseAutoModelClass ):
snake_case__ : Union[str, Any] = FLAX_MODEL_MAPPING
__lowerCAmelCase : Tuple =auto_class_update(FlaxAutoModel)
class _A ( _BaseAutoModelClass ):
snake_case__ : List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
__lowerCAmelCase : Optional[Any] =auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""")
class _A ( _BaseAutoModelClass ):
snake_case__ : Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
__lowerCAmelCase : Optional[int] =auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""")
class _A ( _BaseAutoModelClass ):
snake_case__ : List[str] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
__lowerCAmelCase : List[str] =auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""")
class _A ( _BaseAutoModelClass ):
snake_case__ : Union[str, Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
__lowerCAmelCase : int =auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base"""
)
class _A ( _BaseAutoModelClass ):
snake_case__ : str = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__lowerCAmelCase : Optional[Any] =auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="""sequence classification"""
)
class _A ( _BaseAutoModelClass ):
snake_case__ : List[str] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
__lowerCAmelCase : List[Any] =auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""")
class _A ( _BaseAutoModelClass ):
snake_case__ : Optional[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
__lowerCAmelCase : Union[str, Any] =auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="""token classification"""
)
class _A ( _BaseAutoModelClass ):
snake_case__ : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
__lowerCAmelCase : List[Any] =auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""")
class _A ( _BaseAutoModelClass ):
snake_case__ : Optional[Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
__lowerCAmelCase : str =auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction"""
)
class _A ( _BaseAutoModelClass ):
snake_case__ : int = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__lowerCAmelCase : Dict =auto_class_update(
FlaxAutoModelForImageClassification, head_doc="""image classification"""
)
class _A ( _BaseAutoModelClass ):
snake_case__ : int = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
__lowerCAmelCase : Tuple =auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""")
class _A ( _BaseAutoModelClass ):
snake_case__ : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
__lowerCAmelCase : int =auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling"""
)
| 32
|
"""simple docstring"""
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("""socket.socket""" )
@patch("""builtins.open""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = Mock()
lowercase = conn, Mock()
lowercase = iter([1, None] )
lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ )
# ===== invoke =====
send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 32
| 1
|
"""simple docstring"""
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
__lowerCAmelCase : str =collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
__lowerCAmelCase : str ="""https://storage.googleapis.com/cvdf-datasets/mnist/"""
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Optional[int]:
'''simple docstring'''
lowercase = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" )
return numpy.frombuffer(bytestream.read(4 ) , dtype=lowerCAmelCase__ )[0]
@deprecated(lowerCAmelCase__ , """Please use tf.data to implement this functionality.""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
print("""Extracting""" , f.name )
with gzip.GzipFile(fileobj=lowerCAmelCase__ ) as bytestream:
lowercase = _readaa(lowerCAmelCase__ )
if magic != 2_0_5_1:
raise ValueError(
"""Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) )
lowercase = _readaa(lowerCAmelCase__ )
lowercase = _readaa(lowerCAmelCase__ )
lowercase = _readaa(lowerCAmelCase__ )
lowercase = bytestream.read(rows * cols * num_images )
lowercase = numpy.frombuffer(lowerCAmelCase__ , dtype=numpy.uinta )
lowercase = data.reshape(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 1 )
return data
@deprecated(lowerCAmelCase__ , """Please use tf.one_hot on tensors.""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> List[Any]:
'''simple docstring'''
lowercase = labels_dense.shape[0]
lowercase = numpy.arange(lowerCAmelCase__ ) * num_classes
lowercase = numpy.zeros((num_labels, num_classes) )
lowercase = 1
return labels_one_hot
@deprecated(lowerCAmelCase__ , """Please use tf.data to implement this functionality.""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :int=1_0 ) -> Dict:
'''simple docstring'''
print("""Extracting""" , f.name )
with gzip.GzipFile(fileobj=lowerCAmelCase__ ) as bytestream:
lowercase = _readaa(lowerCAmelCase__ )
if magic != 2_0_4_9:
raise ValueError(
"""Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) )
lowercase = _readaa(lowerCAmelCase__ )
lowercase = bytestream.read(lowerCAmelCase__ )
lowercase = numpy.frombuffer(lowerCAmelCase__ , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(lowerCAmelCase__ , lowerCAmelCase__ )
return labels
class _A :
@deprecated(
__lowerCAmelCase , """Please use alternatives such as official/mnist/_DataSet.py"""
""" from tensorflow/models.""" , )
def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=dtypes.floataa , __lowerCAmelCase=True , __lowerCAmelCase=None , ):
"""simple docstring"""
lowercase , lowercase = random_seed.get_seed(__lowerCAmelCase )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
lowercase = dtypes.as_dtype(__lowerCAmelCase ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype )
if fake_data:
lowercase = 1_0000
lowercase = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f'images.shape: {images.shape} labels.shape: {labels.shape}'
lowercase = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
lowercase = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
lowercase = images.astype(numpy.floataa )
lowercase = numpy.multiply(__lowerCAmelCase , 1.0 / 2_5_5.0 )
lowercase = images
lowercase = labels
lowercase = 0
lowercase = 0
@property
def A__ ( self ):
"""simple docstring"""
return self._images
@property
def A__ ( self ):
"""simple docstring"""
return self._labels
@property
def A__ ( self ):
"""simple docstring"""
return self._num_examples
@property
def A__ ( self ):
"""simple docstring"""
return self._epochs_completed
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=True ):
"""simple docstring"""
if fake_data:
lowercase = [1] * 784
lowercase = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(__lowerCAmelCase )],
[fake_label for _ in range(__lowerCAmelCase )],
)
lowercase = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
lowercase = numpy.arange(self._num_examples )
numpy.random.shuffle(__lowerCAmelCase )
lowercase = self.images[perma]
lowercase = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
lowercase = self._num_examples - start
lowercase = self._images[start : self._num_examples]
lowercase = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
lowercase = numpy.arange(self._num_examples )
numpy.random.shuffle(__lowerCAmelCase )
lowercase = self.images[perm]
lowercase = self.labels[perm]
# Start next epoch
lowercase = 0
lowercase = batch_size - rest_num_examples
lowercase = self._index_in_epoch
lowercase = self._images[start:end]
lowercase = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
lowercase = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(lowerCAmelCase__ , """Please write your own downloading logic.""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> Union[str, Any]:
'''simple docstring'''
if not gfile.Exists(lowerCAmelCase__ ):
gfile.MakeDirs(lowerCAmelCase__ )
lowercase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
if not gfile.Exists(lowerCAmelCase__ ):
urllib.request.urlretrieve(lowerCAmelCase__ , lowerCAmelCase__ ) # noqa: S310
with gfile.GFile(lowerCAmelCase__ ) as f:
lowercase = f.size()
print("""Successfully downloaded""" , lowerCAmelCase__ , lowerCAmelCase__ , """bytes.""" )
return filepath
@deprecated(
lowerCAmelCase__ , """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Any=dtypes.floataa , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :List[Any]=5_0_0_0 , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :Union[str, Any]=DEFAULT_SOURCE_URL , ) -> str:
'''simple docstring'''
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=lowerCAmelCase__ , one_hot=lowerCAmelCase__ , dtype=lowerCAmelCase__ , seed=lowerCAmelCase__ )
lowercase = fake()
lowercase = fake()
lowercase = fake()
return _Datasets(train=lowerCAmelCase__ , validation=lowerCAmelCase__ , test=lowerCAmelCase__ )
if not source_url: # empty string check
lowercase = DEFAULT_SOURCE_URL
lowercase = """train-images-idx3-ubyte.gz"""
lowercase = """train-labels-idx1-ubyte.gz"""
lowercase = """t10k-images-idx3-ubyte.gz"""
lowercase = """t10k-labels-idx1-ubyte.gz"""
lowercase = _maybe_download(
lowerCAmelCase__ , lowerCAmelCase__ , source_url + train_images_file )
with gfile.Open(lowerCAmelCase__ , """rb""" ) as f:
lowercase = _extract_images(lowerCAmelCase__ )
lowercase = _maybe_download(
lowerCAmelCase__ , lowerCAmelCase__ , source_url + train_labels_file )
with gfile.Open(lowerCAmelCase__ , """rb""" ) as f:
lowercase = _extract_labels(lowerCAmelCase__ , one_hot=lowerCAmelCase__ )
lowercase = _maybe_download(
lowerCAmelCase__ , lowerCAmelCase__ , source_url + test_images_file )
with gfile.Open(lowerCAmelCase__ , """rb""" ) as f:
lowercase = _extract_images(lowerCAmelCase__ )
lowercase = _maybe_download(
lowerCAmelCase__ , lowerCAmelCase__ , source_url + test_labels_file )
with gfile.Open(lowerCAmelCase__ , """rb""" ) as f:
lowercase = _extract_labels(lowerCAmelCase__ , one_hot=lowerCAmelCase__ )
if not 0 <= validation_size <= len(lowerCAmelCase__ ):
lowercase = (
"""Validation size should be between 0 and """
f'{len(lowerCAmelCase__ )}. Received: {validation_size}.'
)
raise ValueError(lowerCAmelCase__ )
lowercase = train_images[:validation_size]
lowercase = train_labels[:validation_size]
lowercase = train_images[validation_size:]
lowercase = train_labels[validation_size:]
lowercase = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed}
lowercase = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
lowercase = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
lowercase = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
return _Datasets(train=lowerCAmelCase__ , validation=lowerCAmelCase__ , test=lowerCAmelCase__ )
| 32
|
"""simple docstring"""
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase : List[Any] =logging.get_logger(__name__)
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int:
'''simple docstring'''
lowercase = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""),
("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""),
("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""),
("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""),
("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""),
("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""),
] )
return rename_keys
def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' )
lowercase = in_proj_weight[
: encoder_config.hidden_size, :
]
lowercase = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
lowercase = in_proj_weight[
-encoder_config.hidden_size :, :
]
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]:
'''simple docstring'''
lowercase = dct.pop(lowerCAmelCase__ )
lowercase = val
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]:
'''simple docstring'''
if "handwritten" in checkpoint_url:
lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg"""
lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" )
return im
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ )
lowercase = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
lowercase = 7_6_8
elif "large" in checkpoint_url:
# use ViT-large encoder
lowercase = 1_0_2_4
lowercase = 4_0_9_6
lowercase = 2_4
lowercase = 1_6
lowercase = 1_0_2_4
else:
raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
lowercase = False
lowercase = """relu"""
lowercase = 1_0_2_4
lowercase = True
lowercase = False
lowercase = False
# load HuggingFace model
lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ )
lowercase = TrOCRForCausalLM(lowerCAmelCase__ )
lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ )
model.eval()
# load state_dict of original model, rename some keys
lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""]
lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
lowercase = state_dict.pop(lowerCAmelCase__ )
if key.startswith("""decoder""" ) and "output_projection" not in key:
lowercase = val
else:
lowercase = val
# load state dict
model.load_state_dict(lowerCAmelCase__ )
# Check outputs on an image
lowercase = ViTImageProcessor(size=encoder_config.image_size )
lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" )
lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values
# verify logits
lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ )
lowercase = outputs.logits
lowercase = torch.Size([1, 1, 5_0_2_6_5] )
if "trocr-base-handwritten" in checkpoint_url:
lowercase = torch.tensor(
[-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] )
elif "trocr-large-handwritten" in checkpoint_url:
lowercase = torch.tensor(
[-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] )
elif "trocr-base-printed" in checkpoint_url:
lowercase = torch.tensor(
[-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] )
elif "trocr-large-printed" in checkpoint_url:
lowercase = torch.tensor(
[-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected"
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase__ )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_url""",
default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""",
type=str,
help="""URL to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
__lowerCAmelCase : Dict =parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 32
| 1
|
"""simple docstring"""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class _A :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=30 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=10 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=None , __lowerCAmelCase=2 , ):
"""simple docstring"""
lowercase = parent
lowercase = batch_size
lowercase = image_size
lowercase = patch_size
lowercase = num_channels
lowercase = is_training
lowercase = use_labels
lowercase = hidden_size
lowercase = num_hidden_layers
lowercase = num_attention_heads
lowercase = intermediate_size
lowercase = hidden_act
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = type_sequence_label_size
lowercase = initializer_range
lowercase = scope
lowercase = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
lowercase = (image_size // patch_size) ** 2
lowercase = num_patches + 2
def A__ ( self ):
"""simple docstring"""
lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase = None
if self.use_labels:
lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase = self.get_config()
return config, pixel_values, labels
def A__ ( self ):
"""simple docstring"""
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = TFDeiTModel(config=__lowerCAmelCase )
lowercase = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = TFDeiTForMaskedImageModeling(config=__lowerCAmelCase )
lowercase = model(__lowerCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowercase = 1
lowercase = TFDeiTForMaskedImageModeling(__lowerCAmelCase )
lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowercase = model(__lowerCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = self.type_sequence_label_size
lowercase = TFDeiTForImageClassification(__lowerCAmelCase )
lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowercase = 1
lowercase = TFDeiTForImageClassification(__lowerCAmelCase )
lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A__ ( self ):
"""simple docstring"""
lowercase = self.prepare_config_and_inputs()
lowercase , lowercase , lowercase = config_and_inputs
lowercase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
snake_case__ : List[str] = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case__ : Any = (
{
'feature-extraction': TFDeiTModel,
'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case__ : Optional[Any] = False
snake_case__ : Any = False
snake_case__ : Union[str, Any] = False
snake_case__ : Tuple = False
def A__ ( self ):
"""simple docstring"""
lowercase = TFDeiTModelTester(self )
lowercase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 )
def A__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""DeiT does not use inputs_embeds""" )
def A__ ( self ):
"""simple docstring"""
pass
def A__ ( self ):
"""simple docstring"""
lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase = model_class(__lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowercase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCAmelCase , tf.keras.layers.Dense ) )
def A__ ( self ):
"""simple docstring"""
lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase = model_class(__lowerCAmelCase )
lowercase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase = [*signature.parameters.keys()]
lowercase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ):
"""simple docstring"""
lowercase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def A__ ( self ):
"""simple docstring"""
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase = TFDeiTModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def UpperCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def A__ ( self ):
"""simple docstring"""
return (
DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
if is_vision_available()
else None
)
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" )
lowercase = self.default_image_processor
lowercase = prepare_img()
lowercase = image_processor(images=__lowerCAmelCase , return_tensors="""tf""" )
# forward pass
lowercase = model(**__lowerCAmelCase )
# verify the logits
lowercase = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCAmelCase )
lowercase = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool:
'''simple docstring'''
lowercase = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(2_7))
print(perfect_cube(4))
| 32
| 1
|
"""simple docstring"""
import math
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool:
'''simple docstring'''
lowercase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :float = 1 / 1_2_3_4_5 ) -> int:
'''simple docstring'''
lowercase = 0
lowercase = 0
lowercase = 3
while True:
lowercase = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(lowerCAmelCase__ ):
lowercase = int(lowerCAmelCase__ )
total_partitions += 1
if check_partition_perfect(lowerCAmelCase__ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(lowerCAmelCase__ )
integer += 1
if __name__ == "__main__":
print(F"""{solution() = }""")
| 32
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : str = KandinskyInpaintPipeline
snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image']
snake_case__ : Optional[int] = [
'prompt',
'negative_prompt',
'image_embeds',
'negative_image_embeds',
'image',
'mask_image',
]
snake_case__ : Tuple = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'negative_prompt',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
snake_case__ : Dict = False
@property
def A__ ( self ):
"""simple docstring"""
return 32
@property
def A__ ( self ):
"""simple docstring"""
return 32
@property
def A__ ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def A__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def A__ ( self ):
"""simple docstring"""
return 100
@property
def A__ ( self ):
"""simple docstring"""
lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
lowercase = MultilingualCLIP(__lowerCAmelCase )
lowercase = text_encoder.eval()
return text_encoder
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = {
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
lowercase = UNetaDConditionModel(**__lowerCAmelCase )
return model
@property
def A__ ( self ):
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self ):
"""simple docstring"""
lowercase = self.dummy_text_encoder
lowercase = self.dummy_tokenizer
lowercase = self.dummy_unet
lowercase = self.dummy_movq
lowercase = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , )
lowercase = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ):
"""simple docstring"""
lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase )
# create init_image
lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) )
# create mask
lowercase = np.ones((64, 64) , dtype=np.floataa )
lowercase = 0
if str(__lowerCAmelCase ).startswith("""mps""" ):
lowercase = torch.manual_seed(__lowerCAmelCase )
else:
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
lowercase = {
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu"""
lowercase = self.get_dummy_components()
lowercase = self.pipeline_class(**__lowerCAmelCase )
lowercase = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) )
lowercase = output.images
lowercase = pipe(
**self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
print(f'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
lowercase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def A__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ):
"""simple docstring"""
lowercase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
lowercase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
lowercase = np.ones((768, 768) , dtype=np.floataa )
lowercase = 0
lowercase = """a hat"""
lowercase = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCAmelCase )
lowercase = KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
lowercase = pipeline.to(__lowerCAmelCase )
pipeline.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowercase , lowercase = pipe_prior(
__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
lowercase = pipeline(
__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , )
lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
| 32
| 1
|
"""simple docstring"""
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
__lowerCAmelCase : str =5_0_0_0_0
__lowerCAmelCase : List[Any] =5_0_0_0
__lowerCAmelCase , __lowerCAmelCase : Optional[Any] =os.path.split(__file__)
__lowerCAmelCase : List[str] =os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def UpperCAmelCase__ ( lowerCAmelCase__ :datasets.Dataset , lowerCAmelCase__ :Union[str, Any] ) -> str:
'''simple docstring'''
for i in range(lowerCAmelCase__ ):
lowercase = dataset[i]
@get_duration
def UpperCAmelCase__ ( lowerCAmelCase__ :datasets.Dataset , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str ) -> List[str]:
'''simple docstring'''
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ):
lowercase = dataset[i : i + batch_size]
@get_duration
def UpperCAmelCase__ ( lowerCAmelCase__ :datasets.Dataset , lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple ) -> Dict:
'''simple docstring'''
with dataset.formatted_as(type=lowerCAmelCase__ ):
for i in range(lowerCAmelCase__ ):
lowercase = dataset[i]
@get_duration
def UpperCAmelCase__ ( lowerCAmelCase__ :datasets.Dataset , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict ) -> int:
'''simple docstring'''
with dataset.formatted_as(type=lowerCAmelCase__ ):
for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = dataset[i : i + batch_size]
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES}
lowercase = [
(read, {"""length""": SMALL_TEST}),
(read, {"""length""": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0_0}),
(read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}),
(read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0_0_0}),
]
lowercase = [
(read, {"""length""": SMALL_TEST}),
(read, {"""length""": SPEED_TEST_N_EXAMPLES}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0}),
(read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0_0}),
(read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0}),
(read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0_0_0}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print("""generating dataset""" )
lowercase = datasets.Features(
{"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} )
lowercase = generate_example_dataset(
os.path.join(lowerCAmelCase__ , """dataset.arrow""" ) , lowerCAmelCase__ , num_examples=lowerCAmelCase__ , seq_shapes={"""list""": (1_0_0,)} , )
print("""first set of iterations""" )
for func, kwargs in functions:
print(func.__name__ , str(lowerCAmelCase__ ) )
lowercase = func(lowerCAmelCase__ , **lowerCAmelCase__ )
print("""shuffling dataset""" )
lowercase = dataset.shuffle()
print("""Second set of iterations (after shuffling""" )
for func, kwargs in functions_shuffled:
print("""shuffled """ , func.__name__ , str(lowerCAmelCase__ ) )
lowercase = func(
lowerCAmelCase__ , **lowerCAmelCase__ )
with open(lowerCAmelCase__ , """wb""" ) as f:
f.write(json.dumps(lowerCAmelCase__ ).encode("""utf-8""" ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 32
|
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
__lowerCAmelCase : Optional[Any] =logging.getLogger(__name__)
@dataclass
class _A ( lowerCAmelCase ):
snake_case__ : Optional[float] = field(
default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} )
snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} )
snake_case__ : bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} )
snake_case__ : Optional[str] = field(
default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
| 32
| 1
|
"""simple docstring"""
# Imports
import numpy as np
class _A :
def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ):
"""simple docstring"""
self.set_matricies(red=__lowerCAmelCase , green=__lowerCAmelCase , blue=__lowerCAmelCase , red_edge=__lowerCAmelCase , nir=__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ):
"""simple docstring"""
if red is not None:
lowercase = red
if green is not None:
lowercase = green
if blue is not None:
lowercase = blue
if red_edge is not None:
lowercase = red_edge
if nir is not None:
lowercase = nir
return True
def A__ ( self , __lowerCAmelCase="" , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ):
"""simple docstring"""
self.set_matricies(red=__lowerCAmelCase , green=__lowerCAmelCase , blue=__lowerCAmelCase , red_edge=__lowerCAmelCase , nir=__lowerCAmelCase )
lowercase = {
"""ARVI2""": self.arvaa,
"""CCCI""": self.ccci,
"""CVI""": self.cvi,
"""GLI""": self.gli,
"""NDVI""": self.ndvi,
"""BNDVI""": self.bndvi,
"""redEdgeNDVI""": self.red_edge_ndvi,
"""GNDVI""": self.gndvi,
"""GBNDVI""": self.gbndvi,
"""GRNDVI""": self.grndvi,
"""RBNDVI""": self.rbndvi,
"""PNDVI""": self.pndvi,
"""ATSAVI""": self.atsavi,
"""BWDRVI""": self.bwdrvi,
"""CIgreen""": self.ci_green,
"""CIrededge""": self.ci_rededge,
"""CI""": self.ci,
"""CTVI""": self.ctvi,
"""GDVI""": self.gdvi,
"""EVI""": self.evi,
"""GEMI""": self.gemi,
"""GOSAVI""": self.gosavi,
"""GSAVI""": self.gsavi,
"""Hue""": self.hue,
"""IVI""": self.ivi,
"""IPVI""": self.ipvi,
"""I""": self.i,
"""RVI""": self.rvi,
"""MRVI""": self.mrvi,
"""MSAVI""": self.m_savi,
"""NormG""": self.norm_g,
"""NormNIR""": self.norm_nir,
"""NormR""": self.norm_r,
"""NGRDI""": self.ngrdi,
"""RI""": self.ri,
"""S""": self.s,
"""IF""": self._if,
"""DVI""": self.dvi,
"""TVI""": self.tvi,
"""NDRE""": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("""Index not in the list!""" )
return False
def A__ ( self ):
"""simple docstring"""
return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red)))
def A__ ( self ):
"""simple docstring"""
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def A__ ( self ):
"""simple docstring"""
return self.nir * (self.red / (self.green**2))
def A__ ( self ):
"""simple docstring"""
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def A__ ( self ):
"""simple docstring"""
return (self.nir - self.red) / (self.nir + self.red)
def A__ ( self ):
"""simple docstring"""
return (self.nir - self.blue) / (self.nir + self.blue)
def A__ ( self ):
"""simple docstring"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
def A__ ( self ):
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green)
def A__ ( self ):
"""simple docstring"""
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def A__ ( self ):
"""simple docstring"""
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def A__ ( self ):
"""simple docstring"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def A__ ( self ):
"""simple docstring"""
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def A__ ( self , __lowerCAmelCase=0.0_8 , __lowerCAmelCase=1.2_2 , __lowerCAmelCase=0.0_3 ):
"""simple docstring"""
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def A__ ( self ):
"""simple docstring"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def A__ ( self ):
"""simple docstring"""
return (self.nir / self.green) - 1
def A__ ( self ):
"""simple docstring"""
return (self.nir / self.redEdge) - 1
def A__ ( self ):
"""simple docstring"""
return (self.red - self.blue) / self.red
def A__ ( self ):
"""simple docstring"""
lowercase = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def A__ ( self ):
"""simple docstring"""
return self.nir - self.green
def A__ ( self ):
"""simple docstring"""
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def A__ ( self ):
"""simple docstring"""
lowercase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red)
def A__ ( self , __lowerCAmelCase=0.1_6 ):
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green + y)
def A__ ( self , __lowerCAmelCase=0.5 ):
"""simple docstring"""
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def A__ ( self ):
"""simple docstring"""
return np.arctan(
((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) )
def A__ ( self , __lowerCAmelCase=None , __lowerCAmelCase=None ):
"""simple docstring"""
return (self.nir - b) / (a * self.red)
def A__ ( self ):
"""simple docstring"""
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def A__ ( self ):
"""simple docstring"""
return (self.red + self.green + self.blue) / 3_0.5
def A__ ( self ):
"""simple docstring"""
return self.nir / self.red
def A__ ( self ):
"""simple docstring"""
return (self.rvi() - 1) / (self.rvi() + 1)
def A__ ( self ):
"""simple docstring"""
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def A__ ( self ):
"""simple docstring"""
return self.green / (self.nir + self.red + self.green)
def A__ ( self ):
"""simple docstring"""
return self.nir / (self.nir + self.red + self.green)
def A__ ( self ):
"""simple docstring"""
return self.red / (self.nir + self.red + self.green)
def A__ ( self ):
"""simple docstring"""
return (self.green - self.red) / (self.green + self.red)
def A__ ( self ):
"""simple docstring"""
return (self.red - self.green) / (self.red + self.green)
def A__ ( self ):
"""simple docstring"""
lowercase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
lowercase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def A__ ( self ):
"""simple docstring"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def A__ ( self ):
"""simple docstring"""
return self.nir / self.red
def A__ ( self ):
"""simple docstring"""
return (self.ndvi() + 0.5) ** (1 / 2)
def A__ ( self ):
"""simple docstring"""
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 32
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict:
'''simple docstring'''
if "img_encoder.pos_embed" in name:
lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" )
if "img_encoder.patch_embed.proj" in name:
lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" )
if "img_encoder.patch_embed.norm" in name:
lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" )
if "img_encoder.layers" in name:
lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" )
if "blocks" in name and "res" not in name:
lowercase = name.replace("""blocks""" , """layers""" )
if "attn" in name and "pre_assign" not in name:
lowercase = name.replace("""attn""" , """self_attn""" )
if "proj" in name and "self_attn" in name and "text" not in name:
lowercase = name.replace("""proj""" , """out_proj""" )
if "pre_assign_attn.attn.proj" in name:
lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" )
if "norm1" in name:
lowercase = name.replace("""norm1""" , """layer_norm1""" )
if "norm2" in name and "pre_assign" not in name:
lowercase = name.replace("""norm2""" , """layer_norm2""" )
if "img_encoder.norm" in name:
lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" )
# text encoder
if "text_encoder.token_embedding" in name:
lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" )
if "text_encoder.positional_embedding" in name:
lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "text_encoder.transformer.resblocks." in name:
lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" )
if "ln_1" in name:
lowercase = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
lowercase = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
lowercase = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
lowercase = name.replace("""c_proj""" , """fc2""" )
if "text_encoder" in name:
lowercase = name.replace("""text_encoder""" , """text_model""" )
if "ln_final" in name:
lowercase = name.replace("""ln_final""" , """final_layer_norm""" )
# projection layers
if "img_projector.linear_hidden." in name:
lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" )
if "img_projector.linear_out." in name:
lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" )
if "text_projector.linear_hidden" in name:
lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" )
if "text_projector.linear_out" in name:
lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" )
return name
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase = orig_state_dict.pop(lowerCAmelCase__ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowercase = key.split(""".""" )
lowercase , lowercase = int(key_split[2] ), int(key_split[4] )
lowercase = config.vision_config.hidden_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[dim : dim * 2, :]
lowercase = val[-dim:, :]
else:
lowercase = val[:dim]
lowercase = val[dim : dim * 2]
lowercase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowercase = key.split(""".""" )
lowercase = int(key_split[3] )
lowercase = config.text_config.hidden_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[
dim : dim * 2, :
]
lowercase = val[-dim:, :]
else:
lowercase = val[:dim]
lowercase = val[dim : dim * 2]
lowercase = val[-dim:]
else:
lowercase = rename_key(lowerCAmelCase__ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowercase = val.squeeze_()
else:
lowercase = val
return orig_state_dict
def UpperCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str:
'''simple docstring'''
lowercase = GroupViTConfig()
lowercase = GroupViTModel(lowerCAmelCase__ ).eval()
lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""]
lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0)
# verify result
lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
lowercase = prepare_img()
lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" )
with torch.no_grad():
lowercase = model(**lowerCAmelCase__ )
if model_name == "groupvit-gcc-yfcc":
lowercase = torch.tensor([[13.3_523, 6.3_629]] )
elif model_name == "groupvit-gcc-redcaps":
lowercase = torch.tensor([[16.1_873, 8.6_230]] )
else:
raise ValueError(f'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 )
processor.save_pretrained(lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
print("""Successfully saved processor and model to""" , lowerCAmelCase__ )
if push_to_hub:
print("""Pushing to the hub...""" )
processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
if __name__ == "__main__":
__lowerCAmelCase : str =argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
__lowerCAmelCase : int =parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 32
| 1
|
"""simple docstring"""
import re
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> list:
'''simple docstring'''
return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_ )]
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> str:
'''simple docstring'''
lowercase = split_input(str_ )
return "".join(
["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool , lowerCAmelCase__ :str ) -> str:
'''simple docstring'''
try:
lowercase = split_input(lowerCAmelCase__ )
if upper:
lowercase = """""".join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
lowercase = """""".join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> str:
'''simple docstring'''
return to_simple_case(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> str:
'''simple docstring'''
try:
lowercase = to_simple_case(lowerCAmelCase__ )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool ) -> str:
'''simple docstring'''
return to_complex_case(lowerCAmelCase__ , lowerCAmelCase__ , """_""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool ) -> str:
'''simple docstring'''
return to_complex_case(lowerCAmelCase__ , lowerCAmelCase__ , """-""" )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 32
|
"""simple docstring"""
class _A :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = None
lowercase = None
lowercase = graph
self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase )
lowercase = len(__lowerCAmelCase )
lowercase = None
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if sources is int:
lowercase = [sources]
if sinks is int:
lowercase = [sinks]
if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0:
return
lowercase = sources[0]
lowercase = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1:
lowercase = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
lowercase = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
lowercase = max_input_flow
lowercase = 0
lowercase = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
lowercase = max_input_flow
lowercase = size - 1
def A__ ( self ):
"""simple docstring"""
if self.maximum_flow_algorithm is None:
raise Exception("""You need to set maximum flow algorithm before.""" )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = algorithm(self )
class _A :
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = flow_network
lowercase = flow_network.verticesCount
lowercase = flow_network.sourceIndex
lowercase = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
lowercase = flow_network.graph
lowercase = False
def A__ ( self ):
"""simple docstring"""
if not self.executed:
self._algorithm()
lowercase = True
def A__ ( self ):
"""simple docstring"""
pass
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
super().__init__(__lowerCAmelCase )
# use this to save your result
lowercase = -1
def A__ ( self ):
"""simple docstring"""
if not self.executed:
raise Exception("""You should execute algorithm before using its result!""" )
return self.maximum_flow
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
super().__init__(__lowerCAmelCase )
lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )]
lowercase = [0] * self.verticies_count
lowercase = [0] * self.verticies_count
def A__ ( self ):
"""simple docstring"""
lowercase = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
lowercase = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
lowercase = 0
while i < len(__lowerCAmelCase ):
lowercase = vertices_list[i]
lowercase = self.heights[vertex_index]
self.process_vertex(__lowerCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) )
lowercase = 0
else:
i += 1
lowercase = sum(self.preflow[self.source_index] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(__lowerCAmelCase , __lowerCAmelCase )
self.relabel(__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
lowercase = self.heights[to_index]
if min_height is not None:
lowercase = min_height + 1
if __name__ == "__main__":
__lowerCAmelCase : int =[0]
__lowerCAmelCase : List[Any] =[3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
__lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
__lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
__lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow()
print(F"""maximum flow is {maximum_flow}""")
| 32
| 1
|
"""simple docstring"""
from __future__ import annotations
import math
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> list[int]:
'''simple docstring'''
if num <= 0:
lowercase = f'{num}: Invalid input, please enter a positive integer.'
raise ValueError(lowerCAmelCase__ )
lowercase = [True] * (num + 1)
lowercase = []
lowercase = 2
lowercase = int(math.sqrt(lowerCAmelCase__ ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(lowerCAmelCase__ )
# Set multiples of start be False
for i in range(start * start , num + 1 , lowerCAmelCase__ ):
if sieve[i] is True:
lowercase = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(lowerCAmelCase__ )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
| 32
|
"""simple docstring"""
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__lowerCAmelCase : List[str] =logging.getLogger(__name__)
__lowerCAmelCase : Dict =tf.data.AUTOTUNE
def UpperCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , )
parser.add_argument(
"""--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , )
parser.add_argument(
"""--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , )
parser.add_argument(
"""--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , )
parser.add_argument(
"""--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , )
parser.add_argument(
"""--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , )
parser.add_argument(
"""--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , )
parser.add_argument(
"""--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , )
parser.add_argument(
"""--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , )
parser.add_argument(
"""--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , )
parser.add_argument(
"""--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , )
parser.add_argument(
"""--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , )
parser.add_argument(
"""--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , )
parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" )
lowercase = parser.parse_args()
return args
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]:
'''simple docstring'''
try:
if args.tpu_name:
lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
lowercase = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(lowerCAmelCase__ )
tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ )
return tpu
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = 0
for file in file_list:
lowercase = file.split("""/""" )[-1]
lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 )
lowercase = int(lowerCAmelCase__ )
num_samples += sample_count
return num_samples
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]:
'''simple docstring'''
lowercase = count_samples(lowerCAmelCase__ )
lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ )
if shuffle:
lowercase = dataset.shuffle(len(lowerCAmelCase__ ) )
lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) )
lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ )
if shuffle:
assert shuffle_buffer_size is not None
lowercase = dataset.shuffle(args.shuffle_buffer_size )
lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ )
lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ )
lowercase = dataset.prefetch(lowerCAmelCase__ )
return dataset
def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]:
'''simple docstring'''
if not args.no_tpu:
lowercase = initialize_tpu(lowerCAmelCase__ )
lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ )
else:
lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
lowercase = AutoTokenizer.from_pretrained(args.tokenizer )
lowercase = AutoConfig.from_pretrained(args.pretrained_model_config )
lowercase = tokenizer.vocab_size
lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) )
if not training_records:
raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' )
lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' )
lowercase = count_samples(lowerCAmelCase__ )
lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
lowercase = steps_per_epoch * args.num_epochs
with strategy.scope():
lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
lowercase , lowercase = create_optimizer(
num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] )
def decode_fn(lowerCAmelCase__ :Any ):
lowercase = {
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
lowercase = DataCollatorForLanguageModeling(
tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" )
def mask_with_collator(lowerCAmelCase__ :Dict ):
# TF really needs an isin() function
lowercase = (
~tf.cast(batch["""attention_mask"""] , tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
lowercase , lowercase = data_collator.tf_mask_tokens(
batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , )
return batch
lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync
lowercase = prepare_dataset(
lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , )
lowercase = prepare_dataset(
lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , )
lowercase = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) )
model.fit(
lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__lowerCAmelCase : Optional[int] =parse_args()
main(args)
| 32
| 1
|
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
__lowerCAmelCase : Optional[Any] =logging.getLogger(__name__)
@dataclass
class _A ( lowerCAmelCase ):
snake_case__ : Optional[float] = field(
default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} )
snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} )
snake_case__ : bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} )
snake_case__ : Optional[str] = field(
default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
| 32
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase : List[Any] ={
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[Any] =[
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
| 1
|
"""simple docstring"""
import os
# Precomputes a list of the 100 first triangular numbers
__lowerCAmelCase : Any =[int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)]
def UpperCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
lowercase = os.path.dirname(os.path.realpath(lowerCAmelCase__ ) )
lowercase = os.path.join(lowerCAmelCase__ , """words.txt""" )
lowercase = """"""
with open(lowerCAmelCase__ ) as f:
lowercase = f.readline()
lowercase = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )]
lowercase = [
word
for word in [sum(ord(lowerCAmelCase__ ) - 6_4 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(lowerCAmelCase__ )
if __name__ == "__main__":
print(solution())
| 32
|
"""simple docstring"""
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCAmelCase : Tuple ={
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
class _A ( lowerCAmelCase ):
snake_case__ : Dict = 'mask2former'
snake_case__ : Union[str, Any] = ['swin']
snake_case__ : Any = {'hidden_size': 'hidden_dim'}
def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" )
lowercase = CONFIG_MAPPING["""swin"""](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = backbone_config.pop("""model_type""" )
lowercase = CONFIG_MAPPING[backbone_model_type]
lowercase = config_class.from_dict(__lowerCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '
f'Supported model types: {",".join(self.backbones_supported )}' )
lowercase = backbone_config
lowercase = feature_size
lowercase = mask_feature_size
lowercase = hidden_dim
lowercase = encoder_feedforward_dim
lowercase = activation_function
lowercase = encoder_layers
lowercase = decoder_layers
lowercase = num_attention_heads
lowercase = dropout
lowercase = dim_feedforward
lowercase = pre_norm
lowercase = enforce_input_projection
lowercase = common_stride
lowercase = ignore_value
lowercase = num_queries
lowercase = no_object_weight
lowercase = class_weight
lowercase = mask_weight
lowercase = dice_weight
lowercase = train_num_points
lowercase = oversample_ratio
lowercase = importance_sample_ratio
lowercase = init_std
lowercase = init_xavier_std
lowercase = use_auxiliary_loss
lowercase = feature_strides
lowercase = output_auxiliary_logits
lowercase = decoder_layers
super().__init__(**__lowerCAmelCase )
@classmethod
def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return cls(
backbone_config=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
lowercase = copy.deepcopy(self.__dict__ )
lowercase = self.backbone_config.to_dict()
lowercase = self.__class__.model_type
return output
| 32
| 1
|
"""simple docstring"""
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] ) -> str:
'''simple docstring'''
return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :]
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int]="attention" ) -> Optional[Any]:
'''simple docstring'''
lowercase = lowercase = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] )
lowercase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
lowercase = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] )
lowercase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
lowercase = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] )
lowercase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
lowercase = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] )
lowercase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :str=False ) -> str:
'''simple docstring'''
if split_mlp_wi:
lowercase = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :]
lowercase = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :]
lowercase = (wi_a, wi_a)
else:
lowercase = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :]
lowercase = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :]
return wi, wo
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> List[str]:
'''simple docstring'''
return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i]
def UpperCAmelCase__ ( lowerCAmelCase__ :dict , *, lowerCAmelCase__ :int , lowerCAmelCase__ :bool , lowerCAmelCase__ :bool = False ) -> Union[str, Any]:
'''simple docstring'''
lowercase = traverse_util.flatten_dict(variables["""target"""] )
lowercase = {"""/""".join(lowerCAmelCase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowercase = """encoder/encoder/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowerCAmelCase__ )
lowercase = collections.OrderedDict()
# Shared embeddings.
lowercase = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowerCAmelCase__ ):
# Block i, layer 0 (Self Attention).
lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_attention_layer_norm""" )
lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """attention""" )
lowercase = layer_norm
lowercase = k.T
lowercase = o.T
lowercase = q.T
lowercase = v.T
# Block i, layer 1 (MLP).
lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowercase , lowercase = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , lowerCAmelCase__ )
lowercase = layer_norm
if split_mlp_wi:
lowercase = wi[0].T
lowercase = wi[1].T
else:
lowercase = wi.T
lowercase = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
lowercase = tax_relpos_bias_lookup(
lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" ).T
lowercase = old["""encoder/encoder_norm/scale"""]
if not scalable_attention:
lowercase = tax_relpos_bias_lookup(
lowerCAmelCase__ , 0 , """encoder""" ).T
lowercase = tax_relpos_bias_lookup(
lowerCAmelCase__ , 0 , """decoder""" ).T
if not is_encoder_only:
# Decoder.
for i in range(lowerCAmelCase__ ):
# Block i, layer 0 (Self Attention).
lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """self_attention""" )
lowercase = layer_norm
lowercase = k.T
lowercase = o.T
lowercase = q.T
lowercase = v.T
# Block i, layer 1 (Cross Attention).
lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """encoder_decoder_attention""" )
lowercase = layer_norm
lowercase = k.T
lowercase = o.T
lowercase = q.T
lowercase = v.T
# Block i, layer 2 (MLP).
lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowercase , lowercase = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , lowerCAmelCase__ )
lowercase = layer_norm
if split_mlp_wi:
lowercase = wi[0].T
lowercase = wi[1].T
else:
lowercase = wi.T
lowercase = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
lowercase = tax_relpos_bias_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" ).T
lowercase = old["""decoder/decoder_norm/scale"""]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowercase = old["""decoder/logits_dense/kernel"""].T
return new
def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool ) -> Tuple:
'''simple docstring'''
lowercase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowercase = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowercase = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowercase = state_dict["""shared.weight"""]
return state_dict
def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase = checkpoints.load_tax_checkpoint(lowerCAmelCase__ )
lowercase = convert_tax_to_pytorch(
lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ , scalable_attention=lowerCAmelCase__ )
lowercase = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , ) -> Optional[Any]:
'''simple docstring'''
lowercase = MTaConfig.from_json_file(lowerCAmelCase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowercase = UMTaEncoderModel(lowerCAmelCase__ )
else:
lowercase = UMTaForConditionalGeneration(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowerCAmelCase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowerCAmelCase__ )
print("""Done""" )
if __name__ == "__main__":
__lowerCAmelCase : str =argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""")
# Required parameters
parser.add_argument(
"""--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False
)
parser.add_argument(
"""--scalable_attention""",
action="""store_true""",
help="""Whether the model uses scaled attention (umt5 model)""",
default=False,
)
__lowerCAmelCase : str =parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 32
|
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ )
return new.join(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = {}
lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' )
if "res_path" in key:
lowercase = key.replace("""res_path.""" , """res_path.path.""" )
if key.endswith(""".w""" ):
lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 )
if key.endswith(""".b""" ):
lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 )
lowercase = value.float()
return upgrade
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any:
'''simple docstring'''
from dall_e import Encoder
lowercase = Encoder()
if os.path.exists(lowerCAmelCase__ ):
lowercase = torch.load(lowerCAmelCase__ )
else:
lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = ckpt.state_dict()
encoder.load_state_dict(lowerCAmelCase__ )
if config_path is not None:
lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ )
else:
lowercase = FlavaImageCodebookConfig()
lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval()
lowercase = encoder.state_dict()
lowercase = upgrade_state_dict(lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
lowercase = hf_model.state_dict()
lowercase = count_parameters(lowerCAmelCase__ )
lowercase = count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(lowerCAmelCase__ )
else:
return hf_state_dict
if __name__ == "__main__":
__lowerCAmelCase : Tuple =argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
__lowerCAmelCase : Any =parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 32
| 1
|
"""simple docstring"""
from collections import namedtuple
import requests
from lxml import html # type: ignore
__lowerCAmelCase : int =namedtuple("""covid_data""", """cases deaths recovered""")
def UpperCAmelCase__ ( lowerCAmelCase__ :str = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
'''simple docstring'''
lowercase = """//div[@class = \"maincounter-number\"]/span/text()"""
return covid_data(*html.fromstring(requests.get(lowerCAmelCase__ ).content ).xpath(lowerCAmelCase__ ) )
__lowerCAmelCase : str ="""Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 32
|
"""simple docstring"""
import enum
import shutil
import sys
__lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size()
__lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""}
class _A ( enum.Enum ):
snake_case__ : Tuple = 0
snake_case__ : List[str] = 1
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]:
'''simple docstring'''
sys.stdout.write(str(lowerCAmelCase__ ) + end )
sys.stdout.flush()
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]:
'''simple docstring'''
forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
forceWrite("""\r""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def UpperCAmelCase__ ( ) -> int:
'''simple docstring'''
forceWrite(""" """ * TERMINAL_WIDTH )
reset_cursor()
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
reset_cursor()
forceWrite("""-""" * TERMINAL_WIDTH )
| 32
| 1
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : str = BlenderbotSmallTokenizer
snake_case__ : Any = False
def A__ ( self ):
"""simple docstring"""
super().setUp()
lowercase = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""]
lowercase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) )
lowercase = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""]
lowercase = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""}
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__lowerCAmelCase ) )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = """adapt act apte"""
lowercase = """adapt act apte"""
return input_text, output_text
def A__ ( self ):
"""simple docstring"""
lowercase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowercase = """adapt act apte"""
lowercase = ["""adapt""", """act""", """ap@@""", """te"""]
lowercase = tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
lowercase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
lowercase = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
assert tok("""sam""" ).input_ids == [1384]
lowercase = """I am a small frog."""
lowercase = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )["""input_ids"""]
lowercase = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def A__ ( self ):
"""simple docstring"""
lowercase = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
lowercase = """I am a small frog ."""
lowercase = """."""
lowercase = tok(__lowerCAmelCase )["""input_ids"""]
lowercase = tok(__lowerCAmelCase )["""input_ids"""]
assert encoded[-1] == encoded_dot[0]
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""only integers accepted as input""" )
else:
lowercase = str(abs(lowerCAmelCase__ ) )
lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )]
for index in range(len(lowerCAmelCase__ ) ):
num_transpositions[index].pop(lowerCAmelCase__ )
return max(
int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 32
| 1
|
"""simple docstring"""
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _A ( unittest.TestCase ):
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" )
lowercase = AutoTokenizer.from_pretrained("""google/mt5-small""" )
lowercase = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids
lowercase = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids
lowercase = shift_tokens_right(__lowerCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
lowercase = model(__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ).logits
lowercase = optax.softmax_cross_entropy(__lowerCAmelCase , onehot(__lowerCAmelCase , logits.shape[-1] ) ).mean()
lowercase = -(labels.shape[-1] * loss.item())
lowercase = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 32
|
"""simple docstring"""
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
__lowerCAmelCase : List[Any] =numpy.array([0, 0])
__lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254])
__lowerCAmelCase : List[Any] =numpy.array([1, 0])
__lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]:
'''simple docstring'''
lowercase = initial_vectors
for _ in range(lowerCAmelCase__ ):
lowercase = iteration_step(lowerCAmelCase__ )
return vectors
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]:
'''simple docstring'''
lowercase = []
for i, start_vector in enumerate(vectors[:-1] ):
lowercase = vectors[i + 1]
new_vectors.append(lowerCAmelCase__ )
lowercase = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray:
'''simple docstring'''
lowercase = numpy.radians(lowerCAmelCase__ )
lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ )
lowercase = numpy.array(((c, -s), (s, c)) )
return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None:
'''simple docstring'''
lowercase = plt.gca()
axes.set_aspect("""equal""" )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
lowercase , lowercase = zip(*lowerCAmelCase__ )
plt.plot(lowerCAmelCase__ , lowerCAmelCase__ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 32
| 1
|
"""simple docstring"""
def UpperCAmelCase__ ( ) -> int:
'''simple docstring'''
return 1
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :int = 2_0_0 ) -> int:
'''simple docstring'''
return two_pound(lowerCAmelCase__ )
if __name__ == "__main__":
print(solution(int(input().strip())))
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = credit_card_number
lowercase = 0
lowercase = len(lowerCAmelCase__ ) - 2
for i in range(lowerCAmelCase__ , -1 , -2 ):
# double the value of every second digit
lowercase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 1_0
digit += 1
lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 1_0 == 0
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = f'{credit_card_number} is an invalid credit card number because'
if not credit_card_number.isdigit():
print(f'{error_message} it has nonnumerical characters.' )
return False
if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6:
print(f'{error_message} of its length.' )
return False
if not validate_initial_digits(lowerCAmelCase__ ):
print(f'{error_message} of its first two digits.' )
return False
if not luhn_validation(lowerCAmelCase__ ):
print(f'{error_message} it fails the Luhn check.' )
return False
print(f'{credit_card_number} is a valid credit card number.' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 32
| 1
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0_0_0_0_0 ) -> int:
'''simple docstring'''
lowercase = limit + 1
lowercase = [0] * limit
for first_term in range(1 , lowerCAmelCase__ ):
for n in range(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
lowercase = sum(1 for x in frequency[1:limit] if x == 1_0 )
return count
if __name__ == "__main__":
print(F"""{solution() = }""")
| 32
|
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def A__ ( self ):
"""simple docstring"""
lowercase = 1
lowercase = 3
lowercase = (32, 32)
lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase )
return image
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(__lowerCAmelCase )
@property
def A__ ( self ):
"""simple docstring"""
def extract(*__lowerCAmelCase , **__lowerCAmelCase ):
class _A :
def __init__( self ):
"""simple docstring"""
lowercase = torch.ones([0] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
self.pixel_values.to(__lowerCAmelCase )
return self
return Out()
return extract
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase = self.dummy_cond_unet
lowercase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
lowercase = output.images
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase = self.dummy_cond_unet
lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
lowercase = output.images
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase )
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
assert isinstance(pipe.scheduler , __lowerCAmelCase )
assert pipe.safety_checker is None
lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCAmelCase )
lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def A__ ( self ):
"""simple docstring"""
lowercase = self.dummy_cond_unet
lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
lowercase = unet.half()
lowercase = vae.half()
lowercase = bert.half()
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase )
lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
lowercase = 40_0366_0346
lowercase = 7
# without safety guidance (sld_guidance_scale = 0)
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase )
lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """padme amidala taking a bath artwork, safe for work, no nudity"""
lowercase = 27_3497_1755
lowercase = 7
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
lowercase = 10_4435_5234
lowercase = 12
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 32
| 1
|
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
snake_case__ : int = IFInpaintingSuperResolutionPipeline
snake_case__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'}
snake_case__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} )
snake_case__ : int = PipelineTesterMixin.required_optional_params - {'latents'}
def A__ ( self ):
"""simple docstring"""
return self._get_superresolution_dummy_components()
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ):
"""simple docstring"""
if str(__lowerCAmelCase ).startswith("""mps""" ):
lowercase = torch.manual_seed(__lowerCAmelCase )
else:
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
lowercase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def A__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def A__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def A__ ( self ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def A__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def A__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def A__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]:
'''simple docstring'''
lowercase = current_set.copy()
for row_index, row in enumerate(lowerCAmelCase__ ):
lowercase = row[0]
for column_index, column in enumerate(lowerCAmelCase__ ):
if magnitude == 0:
lowercase = column
continue
lowercase = column / magnitude
# Subtract to cancel term
lowercase = current_set[0]
lowercase = [first_row]
lowercase = current_set[1::]
for row in current_set:
lowercase = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(lowerCAmelCase__ )
continue
for column_index in range(len(lowerCAmelCase__ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(lowerCAmelCase__ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
lowercase = final_set[0]
lowercase = []
lowercase = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
lowercase = simplify(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , lowerCAmelCase__ )
lowercase = resultant
return final_set
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list:
'''simple docstring'''
if len(lowerCAmelCase__ ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
lowercase = len(lowerCAmelCase__ ) + 1
if any(len(lowerCAmelCase__ ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(lowerCAmelCase__ ) == 1:
return [equations[0][-1] / equations[0][0]]
lowercase = equations.copy()
if any(0 in row for row in data_set ):
lowercase = data_set.copy()
lowercase = []
for row_index, row in enumerate(lowerCAmelCase__ ):
if 0 not in row:
lowercase = data_set.pop(lowerCAmelCase__ )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 , lowerCAmelCase__ )
lowercase = data_set.copy()
lowercase = simplify(lowerCAmelCase__ )
lowercase = simplified[::-1]
lowercase = []
for row in simplified:
lowercase = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(lowerCAmelCase__ ) == 0:
solutions.append(0 )
continue
lowercase = temp_row[1::]
lowercase = temp_row[::-1]
for column_index, column in enumerate(lowerCAmelCase__ ):
current_solution -= column * solutions[column_index]
solutions.append(lowerCAmelCase__ )
lowercase = []
for item in solutions:
final.append(float(round(lowerCAmelCase__ , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : List[str] =[
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 32
| 1
|
"""simple docstring"""
from __future__ import annotations
__lowerCAmelCase : Dict =[]
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> bool:
'''simple docstring'''
for i in range(len(lowerCAmelCase__ ) ):
if board[row][i] == 1:
return False
for i in range(len(lowerCAmelCase__ ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(lowerCAmelCase__ , -1 , -1 ) , range(lowerCAmelCase__ , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(lowerCAmelCase__ , -1 , -1 ) , range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) ):
if board[i][j] == 1:
return False
return True
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] , lowerCAmelCase__ :int ) -> bool:
'''simple docstring'''
if row >= len(lowerCAmelCase__ ):
solution.append(lowerCAmelCase__ )
printboard(lowerCAmelCase__ )
print()
return True
for i in range(len(lowerCAmelCase__ ) ):
if is_safe(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = 1
solve(lowerCAmelCase__ , row + 1 )
lowercase = 0
return False
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] ) -> None:
'''simple docstring'''
for i in range(len(lowerCAmelCase__ ) ):
for j in range(len(lowerCAmelCase__ ) ):
if board[i][j] == 1:
print("""Q""" , end=""" """ )
else:
print(""".""" , end=""" """ )
print()
# n=int(input("The no. of queens"))
__lowerCAmelCase : List[Any] =8
__lowerCAmelCase : Optional[Any] =[[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("""The total no. of solutions are :""", len(solution))
| 32
|
"""simple docstring"""
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase )
class _A ( lowerCAmelCase ):
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def A__ ( self , __lowerCAmelCase=None ):
"""simple docstring"""
lowercase = {}
if top_k is not None:
lowercase = top_k
return {}, {}, postprocess_params
def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return super().__call__(__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = load_image(__lowerCAmelCase )
lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework )
return model_inputs
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = self.model(**__lowerCAmelCase )
return model_outputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
lowercase = self.model.config.num_labels
if self.framework == "pt":
lowercase = model_outputs.logits.softmax(-1 )[0]
lowercase , lowercase = probs.topk(__lowerCAmelCase )
elif self.framework == "tf":
lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0]
lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase )
lowercase , lowercase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
lowercase = scores.tolist()
lowercase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
| 32
| 1
|
"""simple docstring"""
import datasets
from .evaluate import evaluate
__lowerCAmelCase : Union[str, Any] ="""\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
"""
__lowerCAmelCase : List[str] ="""
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
"""
__lowerCAmelCase : Optional[int] ="""
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the CUAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
'aupr': Area Under the Precision-Recall curve
'prec_at_80_recall': Precision at 80% recall
'prec_at_90_recall': Precision at 90% recall
Examples:
>>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]
>>> cuad_metric = datasets.load_metric(\"cuad\")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
def A__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": {
"""id""": datasets.Value("""string""" ),
"""prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ),
},
"""references""": {
"""id""": datasets.Value("""string""" ),
"""answers""": datasets.features.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
},
} ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions}
lowercase = [
{
"""paragraphs""": [
{
"""qas""": [
{
"""answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]],
"""id""": ref["""id"""],
}
for ref in references
]
}
]
}
]
lowercase = evaluate(dataset=__lowerCAmelCase , predictions=__lowerCAmelCase )
return score
| 32
|
"""simple docstring"""
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"""The `image_to_image.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionImg2ImgPipeline` instead."""
)
| 32
| 1
|
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class _A :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=24 , __lowerCAmelCase=2 , __lowerCAmelCase=6 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=None , __lowerCAmelCase=1000 , ):
"""simple docstring"""
lowercase = parent
lowercase = batch_size
lowercase = seq_length
lowercase = is_training
lowercase = use_input_mask
lowercase = use_token_type_ids
lowercase = use_labels
lowercase = vocab_size
lowercase = hidden_size
lowercase = num_hidden_layers
lowercase = num_attention_heads
lowercase = intermediate_size
lowercase = hidden_act
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = max_position_embeddings
lowercase = type_vocab_size
lowercase = type_sequence_label_size
lowercase = initializer_range
lowercase = num_labels
lowercase = scope
lowercase = range_bbox
def A__ ( self ):
"""simple docstring"""
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowercase = bbox[i, j, 3]
lowercase = bbox[i, j, 1]
lowercase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowercase = bbox[i, j, 2]
lowercase = bbox[i, j, 0]
lowercase = t
lowercase = None
if self.use_input_mask:
lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
lowercase = None
if self.use_token_type_ids:
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase = None
lowercase = None
if self.use_labels:
lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def A__ ( self ):
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ):
"""simple docstring"""
lowercase = LiltModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowercase = model(__lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase )
lowercase = model(__lowerCAmelCase , bbox=__lowerCAmelCase , token_type_ids=__lowerCAmelCase )
lowercase = model(__lowerCAmelCase , bbox=__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ):
"""simple docstring"""
lowercase = self.num_labels
lowercase = LiltForTokenClassification(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowercase = model(
__lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ):
"""simple docstring"""
lowercase = LiltForQuestionAnswering(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowercase = model(
__lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self ):
"""simple docstring"""
lowercase = self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) = config_and_inputs
lowercase = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class _A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
snake_case__ : List[str] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case__ : Tuple = (
{
'feature-extraction': LiltModel,
'question-answering': LiltForQuestionAnswering,
'text-classification': LiltForSequenceClassification,
'token-classification': LiltForTokenClassification,
'zero-shot': LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case__ : int = False
snake_case__ : int = False
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
return True
def A__ ( self ):
"""simple docstring"""
lowercase = LiltModelTester(self )
lowercase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 )
def A__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase = type
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase = LiltModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
@require_torch
@slow
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(__lowerCAmelCase )
lowercase = torch.tensor([[1, 2]] , device=__lowerCAmelCase )
lowercase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__lowerCAmelCase )
# forward pass
with torch.no_grad():
lowercase = model(input_ids=__lowerCAmelCase , bbox=__lowerCAmelCase )
lowercase = torch.Size([1, 2, 768] )
lowercase = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__lowerCAmelCase , )
self.assertTrue(outputs.last_hidden_state.shape , __lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __lowerCAmelCase , atol=1E-3 ) )
| 32
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : Optional[int] = GPTSanJapaneseTokenizer
snake_case__ : int = False
snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False}
def A__ ( self ):
"""simple docstring"""
super().setUp()
# fmt: off
lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""]
# fmt: on
lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀
lowercase = {"""unk_token""": """<unk>"""}
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
with open(self.emoji_file , """w""" ) as emoji_writer:
emoji_writer.write(json.dumps(__lowerCAmelCase ) )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀"""
lowercase = """こんにちは、世界。 \nこんばんは、世界。😀"""
return input_text, output_text
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase )
lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
return text, ids
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_tokenizer()
# Testing tokenization
lowercase = """こんにちは、世界。 こんばんは、㔺界。"""
lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""]
lowercase = tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# Testing conversion to ids without special tokens
lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# Testing conversion to ids with special tokens
lowercase = tokens + [tokenizer.unk_token]
lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_tokenizer()
# Testing tokenization
lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。"""
lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。"""
lowercase = tokenizer.encode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
lowercase = """こんにちは、世界。"""
lowercase = """こんばんは、㔺界。😀"""
lowercase = """こんにちは、世界。こんばんは、世界。😀"""
lowercase = tokenizer.encode(prefix_text + input_text )
lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text )
lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
lowercase = """こんにちは、世界。"""
lowercase = """こんばんは、㔺界。😀"""
lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2
lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2
lowercase = [1] + [0] * (len_prefix + len_text + 1)
lowercase = [1] * (len_prefix + len_text + 1) + [0]
lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
lowercase = tokenizer(prefix_text + input_text ).token_type_ids
lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids
lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
lowercase = tokenizer.encode("""あンいワ""" )
lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" )
lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" )
self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) )
self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) )
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]]
lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase )
lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase )
# fmt: off
lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]]
lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , __lowerCAmelCase )
self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase )
self.assertListEqual(x_token.attention_mask , __lowerCAmelCase )
self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase )
self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase )
self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
pass
def A__ ( self ):
"""simple docstring"""
pass
| 32
| 1
|
"""simple docstring"""
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"""The `image_to_image.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionImg2ImgPipeline` instead."""
)
| 32
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""]
__lowerCAmelCase : List[str] =["""ViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str =[
"""VIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTForImageClassification""",
"""ViTForMaskedImageModeling""",
"""ViTModel""",
"""ViTPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any =[
"""TFViTForImageClassification""",
"""TFViTModel""",
"""TFViTPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Dict =[
"""FlaxViTForImageClassification""",
"""FlaxViTModel""",
"""FlaxViTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
__lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
| 1
|
"""simple docstring"""
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : Optional[Any] = LayoutLMTokenizer
snake_case__ : str = LayoutLMTokenizerFast
snake_case__ : Optional[int] = True
snake_case__ : Tuple = True
def A__ ( self ):
"""simple docstring"""
super().setUp()
lowercase = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = """UNwant\u00E9d,running"""
lowercase = """unwanted, running"""
return input_text, output_text
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class(self.vocab_file )
lowercase = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(__lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [7, 4, 5, 10, 8, 9] )
def A__ ( self ):
"""simple docstring"""
pass
| 32
|
"""simple docstring"""
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(
split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , )
lowercase = load_from_cache_file
lowercase = file_format
lowercase = Spark(
df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=__lowerCAmelCase , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 32
| 1
|
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
lowercase = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
lowercase = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
lowercase = s_dict.pop(lowerCAmelCase__ )
elif "subsample" in key:
lowercase = s_dict.pop(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> List[Any]:
'''simple docstring'''
lowercase , lowercase = emb.weight.shape
lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ )
lowercase = emb.weight.data
return lin_layer
def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] ) -> Optional[Any]:
'''simple docstring'''
lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )
lowercase = mam_aaa["""args"""]
lowercase = mam_aaa["""model"""]
lowercase = state_dict["""decoder.output_projection.weight"""]
remove_ignore_keys_(lowerCAmelCase__ )
rename_keys(lowerCAmelCase__ )
lowercase = state_dict["""decoder.embed_tokens.weight"""].shape[0]
lowercase = args.share_decoder_input_output_embed
lowercase = [int(lowerCAmelCase__ ) for i in args.conv_kernel_sizes.split(""",""" )]
lowercase = SpeechaTextConfig(
vocab_size=lowerCAmelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(lowerCAmelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowerCAmelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowerCAmelCase__ , num_beams=5 , max_length=2_0_0 , use_cache=lowerCAmelCase__ , decoder_start_token_id=2 , early_stopping=lowerCAmelCase__ , )
lowercase = SpeechaTextForConditionalGeneration(lowerCAmelCase__ )
lowercase , lowercase = model.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0 and not set(lowerCAmelCase__ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"""Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"""
f' but all the following weights are missing {missing}' )
if tie_embeds:
lowercase = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
lowercase = lm_head_weights
model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : List[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""")
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
__lowerCAmelCase : Optional[Any] =parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 32
|
"""simple docstring"""
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("""socket.socket""" )
@patch("""builtins.open""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = Mock()
lowercase = conn, Mock()
lowercase = iter([1, None] )
lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ )
# ===== invoke =====
send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 32
| 1
|
"""simple docstring"""
from ... import PretrainedConfig
__lowerCAmelCase : Dict ={
"""sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""",
}
class _A ( lowerCAmelCase ):
snake_case__ : int = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
snake_case__ : Optional[int] = 'nezha'
def __init__( self , __lowerCAmelCase=2_1128 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=64 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=True , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
lowercase = vocab_size
lowercase = hidden_size
lowercase = num_hidden_layers
lowercase = num_attention_heads
lowercase = hidden_act
lowercase = intermediate_size
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = max_position_embeddings
lowercase = max_relative_position
lowercase = type_vocab_size
lowercase = initializer_range
lowercase = layer_norm_eps
lowercase = classifier_dropout
lowercase = use_cache
| 32
|
"""simple docstring"""
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase : List[Any] =logging.get_logger(__name__)
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int:
'''simple docstring'''
lowercase = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""),
("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""),
("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""),
("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""),
("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""),
("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""),
] )
return rename_keys
def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' )
lowercase = in_proj_weight[
: encoder_config.hidden_size, :
]
lowercase = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
lowercase = in_proj_weight[
-encoder_config.hidden_size :, :
]
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]:
'''simple docstring'''
lowercase = dct.pop(lowerCAmelCase__ )
lowercase = val
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]:
'''simple docstring'''
if "handwritten" in checkpoint_url:
lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg"""
lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" )
return im
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ )
lowercase = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
lowercase = 7_6_8
elif "large" in checkpoint_url:
# use ViT-large encoder
lowercase = 1_0_2_4
lowercase = 4_0_9_6
lowercase = 2_4
lowercase = 1_6
lowercase = 1_0_2_4
else:
raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
lowercase = False
lowercase = """relu"""
lowercase = 1_0_2_4
lowercase = True
lowercase = False
lowercase = False
# load HuggingFace model
lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ )
lowercase = TrOCRForCausalLM(lowerCAmelCase__ )
lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ )
model.eval()
# load state_dict of original model, rename some keys
lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""]
lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
lowercase = state_dict.pop(lowerCAmelCase__ )
if key.startswith("""decoder""" ) and "output_projection" not in key:
lowercase = val
else:
lowercase = val
# load state dict
model.load_state_dict(lowerCAmelCase__ )
# Check outputs on an image
lowercase = ViTImageProcessor(size=encoder_config.image_size )
lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" )
lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values
# verify logits
lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ )
lowercase = outputs.logits
lowercase = torch.Size([1, 1, 5_0_2_6_5] )
if "trocr-base-handwritten" in checkpoint_url:
lowercase = torch.tensor(
[-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] )
elif "trocr-large-handwritten" in checkpoint_url:
lowercase = torch.tensor(
[-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] )
elif "trocr-base-printed" in checkpoint_url:
lowercase = torch.tensor(
[-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] )
elif "trocr-large-printed" in checkpoint_url:
lowercase = torch.tensor(
[-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected"
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase__ )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_url""",
default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""",
type=str,
help="""URL to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
__lowerCAmelCase : Dict =parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 32
| 1
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int = 3 , lowerCAmelCase__ :int = 7 , lowerCAmelCase__ :int = 1_0_0_0_0_0_0 ) -> int:
'''simple docstring'''
lowercase = 0
lowercase = 1
for current_denominator in range(1 , limit + 1 ):
lowercase = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
lowercase = current_numerator
lowercase = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool:
'''simple docstring'''
lowercase = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(2_7))
print(perfect_cube(4))
| 32
| 1
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _A ( metaclass=lowerCAmelCase ):
snake_case__ : Any = ['torch', 'transformers', 'onnx']
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class _A ( metaclass=lowerCAmelCase ):
snake_case__ : Optional[Any] = ['torch', 'transformers', 'onnx']
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class _A ( metaclass=lowerCAmelCase ):
snake_case__ : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class _A ( metaclass=lowerCAmelCase ):
snake_case__ : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class _A ( metaclass=lowerCAmelCase ):
snake_case__ : str = ['torch', 'transformers', 'onnx']
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class _A ( metaclass=lowerCAmelCase ):
snake_case__ : str = ['torch', 'transformers', 'onnx']
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
| 32
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : str = KandinskyInpaintPipeline
snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image']
snake_case__ : Optional[int] = [
'prompt',
'negative_prompt',
'image_embeds',
'negative_image_embeds',
'image',
'mask_image',
]
snake_case__ : Tuple = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'negative_prompt',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
snake_case__ : Dict = False
@property
def A__ ( self ):
"""simple docstring"""
return 32
@property
def A__ ( self ):
"""simple docstring"""
return 32
@property
def A__ ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def A__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def A__ ( self ):
"""simple docstring"""
return 100
@property
def A__ ( self ):
"""simple docstring"""
lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
lowercase = MultilingualCLIP(__lowerCAmelCase )
lowercase = text_encoder.eval()
return text_encoder
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = {
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
lowercase = UNetaDConditionModel(**__lowerCAmelCase )
return model
@property
def A__ ( self ):
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self ):
"""simple docstring"""
lowercase = self.dummy_text_encoder
lowercase = self.dummy_tokenizer
lowercase = self.dummy_unet
lowercase = self.dummy_movq
lowercase = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , )
lowercase = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ):
"""simple docstring"""
lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase )
# create init_image
lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) )
# create mask
lowercase = np.ones((64, 64) , dtype=np.floataa )
lowercase = 0
if str(__lowerCAmelCase ).startswith("""mps""" ):
lowercase = torch.manual_seed(__lowerCAmelCase )
else:
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
lowercase = {
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu"""
lowercase = self.get_dummy_components()
lowercase = self.pipeline_class(**__lowerCAmelCase )
lowercase = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) )
lowercase = output.images
lowercase = pipe(
**self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
print(f'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
lowercase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def A__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ):
"""simple docstring"""
lowercase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
lowercase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
lowercase = np.ones((768, 768) , dtype=np.floataa )
lowercase = 0
lowercase = """a hat"""
lowercase = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCAmelCase )
lowercase = KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
lowercase = pipeline.to(__lowerCAmelCase )
pipeline.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowercase , lowercase = pipe_prior(
__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
lowercase = pipeline(
__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , )
lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
| 32
| 1
|
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__lowerCAmelCase : Tuple ="""platform"""
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class _A :
snake_case__ : Union[str, Any] = PegasusConfig
snake_case__ : Any = {}
snake_case__ : Optional[Any] = 'gelu'
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=20 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , ):
"""simple docstring"""
lowercase = parent
lowercase = batch_size
lowercase = seq_length
lowercase = is_training
lowercase = use_labels
lowercase = vocab_size
lowercase = hidden_size
lowercase = num_hidden_layers
lowercase = num_attention_heads
lowercase = intermediate_size
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = max_position_embeddings
lowercase = eos_token_id
lowercase = pad_token_id
lowercase = bos_token_id
def A__ ( self ):
"""simple docstring"""
lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
lowercase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
lowercase = np.concatenate([input_ids, eos_tensor] , axis=1 )
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowercase = prepare_pegasus_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return config, inputs_dict
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = 20
lowercase = model_class_name(__lowerCAmelCase )
lowercase = model.encode(inputs_dict["""input_ids"""] )
lowercase , lowercase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase )
lowercase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowercase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase = model.decode(
decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , )
lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowercase = model.decode(
decoder_input_ids[:, -1:] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCAmelCase , )
lowercase = model.decode(__lowerCAmelCase , __lowerCAmelCase )
lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = 20
lowercase = model_class_name(__lowerCAmelCase )
lowercase = model.encode(inputs_dict["""input_ids"""] )
lowercase , lowercase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
lowercase = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase )
lowercase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase = model.decode(
decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , )
lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowercase = model.decode(
decoder_input_ids[:, -1:] , __lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , )
lowercase = model.decode(__lowerCAmelCase , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase )
lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' )
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Any=None , ) -> Optional[int]:
'''simple docstring'''
if attention_mask is None:
lowercase = np.not_equal(lowerCAmelCase__ , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowercase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : Optional[Any] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
snake_case__ : Tuple = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
snake_case__ : List[str] = True
snake_case__ : int = False
snake_case__ : List[Any] = False
snake_case__ : List[str] = False
def A__ ( self ):
"""simple docstring"""
lowercase = FlaxPegasusModelTester(self )
lowercase = ConfigTester(self , config_class=__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def A__ ( self ):
"""simple docstring"""
lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowercase = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase )
lowercase = model_class(__lowerCAmelCase )
@jax.jit
def encode_jitted(__lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ):
return model.encode(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase )
with self.subTest("""JIT Enabled""" ):
lowercase = encode_jitted(**__lowerCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowercase = encode_jitted(**__lowerCAmelCase ).to_tuple()
self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) )
for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def A__ ( self ):
"""simple docstring"""
lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowercase = model_class(__lowerCAmelCase )
lowercase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
lowercase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
return model.decode(
decoder_input_ids=__lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , encoder_outputs=__lowerCAmelCase , )
with self.subTest("""JIT Enabled""" ):
lowercase = decode_jitted(**__lowerCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowercase = decode_jitted(**__lowerCAmelCase ).to_tuple()
self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) )
for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def A__ ( self ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__lowerCAmelCase )
lowercase = np.ones((1, 1) )
lowercase = model(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
lowercase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
lowercase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
lowercase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
lowercase = tokenizer(__lowerCAmelCase , return_tensors="""np""" , truncation=__lowerCAmelCase , max_length=512 , padding=__lowerCAmelCase )
lowercase = model.generate(**__lowerCAmelCase , num_beams=2 ).sequences
lowercase = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase )
assert tgt_text == decoded
| 32
|
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
__lowerCAmelCase : Optional[Any] =logging.getLogger(__name__)
@dataclass
class _A ( lowerCAmelCase ):
snake_case__ : Optional[float] = field(
default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} )
snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} )
snake_case__ : bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} )
snake_case__ : Optional[str] = field(
default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
| 32
| 1
|
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 32
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict:
'''simple docstring'''
if "img_encoder.pos_embed" in name:
lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" )
if "img_encoder.patch_embed.proj" in name:
lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" )
if "img_encoder.patch_embed.norm" in name:
lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" )
if "img_encoder.layers" in name:
lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" )
if "blocks" in name and "res" not in name:
lowercase = name.replace("""blocks""" , """layers""" )
if "attn" in name and "pre_assign" not in name:
lowercase = name.replace("""attn""" , """self_attn""" )
if "proj" in name and "self_attn" in name and "text" not in name:
lowercase = name.replace("""proj""" , """out_proj""" )
if "pre_assign_attn.attn.proj" in name:
lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" )
if "norm1" in name:
lowercase = name.replace("""norm1""" , """layer_norm1""" )
if "norm2" in name and "pre_assign" not in name:
lowercase = name.replace("""norm2""" , """layer_norm2""" )
if "img_encoder.norm" in name:
lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" )
# text encoder
if "text_encoder.token_embedding" in name:
lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" )
if "text_encoder.positional_embedding" in name:
lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "text_encoder.transformer.resblocks." in name:
lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" )
if "ln_1" in name:
lowercase = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
lowercase = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
lowercase = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
lowercase = name.replace("""c_proj""" , """fc2""" )
if "text_encoder" in name:
lowercase = name.replace("""text_encoder""" , """text_model""" )
if "ln_final" in name:
lowercase = name.replace("""ln_final""" , """final_layer_norm""" )
# projection layers
if "img_projector.linear_hidden." in name:
lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" )
if "img_projector.linear_out." in name:
lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" )
if "text_projector.linear_hidden" in name:
lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" )
if "text_projector.linear_out" in name:
lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" )
return name
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase = orig_state_dict.pop(lowerCAmelCase__ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowercase = key.split(""".""" )
lowercase , lowercase = int(key_split[2] ), int(key_split[4] )
lowercase = config.vision_config.hidden_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[dim : dim * 2, :]
lowercase = val[-dim:, :]
else:
lowercase = val[:dim]
lowercase = val[dim : dim * 2]
lowercase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowercase = key.split(""".""" )
lowercase = int(key_split[3] )
lowercase = config.text_config.hidden_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[
dim : dim * 2, :
]
lowercase = val[-dim:, :]
else:
lowercase = val[:dim]
lowercase = val[dim : dim * 2]
lowercase = val[-dim:]
else:
lowercase = rename_key(lowerCAmelCase__ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowercase = val.squeeze_()
else:
lowercase = val
return orig_state_dict
def UpperCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str:
'''simple docstring'''
lowercase = GroupViTConfig()
lowercase = GroupViTModel(lowerCAmelCase__ ).eval()
lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""]
lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0)
# verify result
lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
lowercase = prepare_img()
lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" )
with torch.no_grad():
lowercase = model(**lowerCAmelCase__ )
if model_name == "groupvit-gcc-yfcc":
lowercase = torch.tensor([[13.3_523, 6.3_629]] )
elif model_name == "groupvit-gcc-redcaps":
lowercase = torch.tensor([[16.1_873, 8.6_230]] )
else:
raise ValueError(f'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 )
processor.save_pretrained(lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
print("""Successfully saved processor and model to""" , lowerCAmelCase__ )
if push_to_hub:
print("""Pushing to the hub...""" )
processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
if __name__ == "__main__":
__lowerCAmelCase : str =argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
__lowerCAmelCase : int =parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 32
| 1
|
"""simple docstring"""
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
__lowerCAmelCase : Any =logging.get_logger(__name__)
class _A :
def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=None , __lowerCAmelCase=None ):
"""simple docstring"""
if not conversation_id:
lowercase = uuid.uuida()
if past_user_inputs is None:
lowercase = []
if generated_responses is None:
lowercase = []
lowercase = conversation_id
lowercase = past_user_inputs
lowercase = generated_responses
lowercase = text
def __eq__( self , __lowerCAmelCase ):
"""simple docstring"""
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ):
"""simple docstring"""
if self.new_user_input:
if overwrite:
logger.warning(
f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '
f'with: "{text}".' )
lowercase = text
else:
logger.warning(
f'User input added while unprocessed input was existing: "{self.new_user_input}" new input '
f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' )
else:
lowercase = text
def A__ ( self ):
"""simple docstring"""
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
lowercase = None
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
self.generated_responses.append(__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self ):
"""simple docstring"""
lowercase = f'Conversation id: {self.uuid} \n'
for is_user, text in self.iter_texts():
lowercase = """user""" if is_user else """bot"""
output += f'{name} >> {text} \n'
return output
@add_end_docstrings(
lowerCAmelCase , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , )
class _A ( lowerCAmelCase ):
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
if self.tokenizer.pad_token_id is None:
lowercase = self.tokenizer.eos_token
def A__ ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = {}
lowercase = {}
lowercase = {}
if min_length_for_response is not None:
lowercase = min_length_for_response
if minimum_tokens is not None:
lowercase = minimum_tokens
if "max_length" in generate_kwargs:
lowercase = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
lowercase = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(__lowerCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__( self , __lowerCAmelCase , __lowerCAmelCase=0 , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = super().__call__(__lowerCAmelCase , num_workers=__lowerCAmelCase , **__lowerCAmelCase )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) == 1:
return outputs[0]
return outputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=32 ):
"""simple docstring"""
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
lowercase = self.tokenizer._build_conversation_input_ids(__lowerCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
lowercase = self._legacy_parse_and_tokenize(__lowerCAmelCase )
if self.framework == "pt":
lowercase = torch.LongTensor([input_ids] )
elif self.framework == "tf":
lowercase = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=10 , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = generate_kwargs.get("""max_length""" , self.model.config.max_length )
lowercase = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' )
lowercase = max_length - minimum_tokens
lowercase = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
lowercase = model_inputs["""attention_mask"""][:, -trim:]
lowercase = model_inputs.pop("""conversation""" )
lowercase = max_length
lowercase = self.model.generate(**__lowerCAmelCase , **__lowerCAmelCase )
if self.model.config.is_encoder_decoder:
lowercase = 1
else:
lowercase = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=True ):
"""simple docstring"""
lowercase = model_outputs["""output_ids"""]
lowercase = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , )
lowercase = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(__lowerCAmelCase )
return conversation
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = self.tokenizer.eos_token_id
lowercase = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) )
if len(__lowerCAmelCase ) > self.tokenizer.model_max_length:
lowercase = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 32
|
"""simple docstring"""
class _A :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = None
lowercase = None
lowercase = graph
self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase )
lowercase = len(__lowerCAmelCase )
lowercase = None
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if sources is int:
lowercase = [sources]
if sinks is int:
lowercase = [sinks]
if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0:
return
lowercase = sources[0]
lowercase = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1:
lowercase = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
lowercase = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
lowercase = max_input_flow
lowercase = 0
lowercase = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
lowercase = max_input_flow
lowercase = size - 1
def A__ ( self ):
"""simple docstring"""
if self.maximum_flow_algorithm is None:
raise Exception("""You need to set maximum flow algorithm before.""" )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = algorithm(self )
class _A :
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = flow_network
lowercase = flow_network.verticesCount
lowercase = flow_network.sourceIndex
lowercase = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
lowercase = flow_network.graph
lowercase = False
def A__ ( self ):
"""simple docstring"""
if not self.executed:
self._algorithm()
lowercase = True
def A__ ( self ):
"""simple docstring"""
pass
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
super().__init__(__lowerCAmelCase )
# use this to save your result
lowercase = -1
def A__ ( self ):
"""simple docstring"""
if not self.executed:
raise Exception("""You should execute algorithm before using its result!""" )
return self.maximum_flow
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
super().__init__(__lowerCAmelCase )
lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )]
lowercase = [0] * self.verticies_count
lowercase = [0] * self.verticies_count
def A__ ( self ):
"""simple docstring"""
lowercase = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
lowercase = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
lowercase = 0
while i < len(__lowerCAmelCase ):
lowercase = vertices_list[i]
lowercase = self.heights[vertex_index]
self.process_vertex(__lowerCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) )
lowercase = 0
else:
i += 1
lowercase = sum(self.preflow[self.source_index] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(__lowerCAmelCase , __lowerCAmelCase )
self.relabel(__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
lowercase = self.heights[to_index]
if min_height is not None:
lowercase = min_height + 1
if __name__ == "__main__":
__lowerCAmelCase : int =[0]
__lowerCAmelCase : List[Any] =[3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
__lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
__lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
__lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow()
print(F"""maximum flow is {maximum_flow}""")
| 32
| 1
|
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase : List[Any] =get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
@require_tokenizers
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : int = XLMRobertaTokenizer
snake_case__ : Optional[Any] = XLMRobertaTokenizerFast
snake_case__ : Any = True
snake_case__ : Optional[int] = True
def A__ ( self ):
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def A__ ( self ):
"""simple docstring"""
lowercase = """<pad>"""
lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(__lowerCAmelCase ) , 1002 )
def A__ ( self ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1002 )
def A__ ( self ):
"""simple docstring"""
lowercase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase )
lowercase = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__lowerCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
lowercase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase )
self.assertListEqual(
__lowerCAmelCase , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def A__ ( self ):
"""simple docstring"""
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
lowercase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
lowercase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
lowercase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
lowercase = tempfile.mkdtemp()
lowercase = tokenizer_r.save_pretrained(__lowerCAmelCase )
lowercase = tokenizer_p.save_pretrained(__lowerCAmelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
lowercase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase )
# Checks everything loads correctly in the same way
lowercase = tokenizer_r.from_pretrained(__lowerCAmelCase )
lowercase = tokenizer_p.from_pretrained(__lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__lowerCAmelCase )
# Save tokenizer rust, legacy_format=True
lowercase = tempfile.mkdtemp()
lowercase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase )
lowercase = tokenizer_p.save_pretrained(__lowerCAmelCase )
# Checks it save with the same files
self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase )
# Checks everything loads correctly in the same way
lowercase = tokenizer_r.from_pretrained(__lowerCAmelCase )
lowercase = tokenizer_p.from_pretrained(__lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) )
shutil.rmtree(__lowerCAmelCase )
# Save tokenizer rust, legacy_format=False
lowercase = tempfile.mkdtemp()
lowercase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase )
lowercase = tokenizer_p.save_pretrained(__lowerCAmelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
lowercase = tokenizer_r.from_pretrained(__lowerCAmelCase )
lowercase = tokenizer_p.from_pretrained(__lowerCAmelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) )
shutil.rmtree(__lowerCAmelCase )
@cached_property
def A__ ( self ):
"""simple docstring"""
return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" )
def A__ ( self ):
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__lowerCAmelCase , f.name )
lowercase = XLMRobertaTokenizer(f.name , keep_accents=__lowerCAmelCase )
lowercase = pickle.dumps(__lowerCAmelCase )
pickle.loads(__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase = self.get_tokenizer()
lowercase = self.get_rust_tokenizer()
lowercase = """I was born in 92000, and this is falsé."""
lowercase = tokenizer.tokenize(__lowerCAmelCase )
lowercase = rust_tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
lowercase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
lowercase = self.get_rust_tokenizer()
lowercase = tokenizer.encode(__lowerCAmelCase )
lowercase = rust_tokenizer.encode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = """Hello World!"""
lowercase = [0, 3_5378, 6661, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"""
)
lowercase = [
0,
3293,
83,
10,
4552,
4989,
7986,
678,
10,
5915,
111,
17_9459,
12_4850,
4,
6044,
237,
12,
6,
5,
6,
4,
6780,
705,
15,
1388,
44,
378,
1_0114,
711,
152,
20,
6,
5,
2_2376,
642,
1221,
1_5190,
3_4153,
450,
5608,
959,
1119,
5_7702,
136,
186,
47,
1098,
2_9367,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
6044,
237,
6284,
5_0901,
528,
31,
90,
34,
927,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase ) )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = {"""input_ids""": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCAmelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
| 32
|
"""simple docstring"""
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__lowerCAmelCase : List[str] =logging.getLogger(__name__)
__lowerCAmelCase : Dict =tf.data.AUTOTUNE
def UpperCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , )
parser.add_argument(
"""--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , )
parser.add_argument(
"""--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , )
parser.add_argument(
"""--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , )
parser.add_argument(
"""--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , )
parser.add_argument(
"""--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , )
parser.add_argument(
"""--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , )
parser.add_argument(
"""--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , )
parser.add_argument(
"""--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , )
parser.add_argument(
"""--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , )
parser.add_argument(
"""--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , )
parser.add_argument(
"""--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , )
parser.add_argument(
"""--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , )
parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" )
lowercase = parser.parse_args()
return args
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]:
'''simple docstring'''
try:
if args.tpu_name:
lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
lowercase = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(lowerCAmelCase__ )
tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ )
return tpu
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = 0
for file in file_list:
lowercase = file.split("""/""" )[-1]
lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 )
lowercase = int(lowerCAmelCase__ )
num_samples += sample_count
return num_samples
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]:
'''simple docstring'''
lowercase = count_samples(lowerCAmelCase__ )
lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ )
if shuffle:
lowercase = dataset.shuffle(len(lowerCAmelCase__ ) )
lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) )
lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ )
if shuffle:
assert shuffle_buffer_size is not None
lowercase = dataset.shuffle(args.shuffle_buffer_size )
lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ )
lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ )
lowercase = dataset.prefetch(lowerCAmelCase__ )
return dataset
def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]:
'''simple docstring'''
if not args.no_tpu:
lowercase = initialize_tpu(lowerCAmelCase__ )
lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ )
else:
lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
lowercase = AutoTokenizer.from_pretrained(args.tokenizer )
lowercase = AutoConfig.from_pretrained(args.pretrained_model_config )
lowercase = tokenizer.vocab_size
lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) )
if not training_records:
raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' )
lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' )
lowercase = count_samples(lowerCAmelCase__ )
lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
lowercase = steps_per_epoch * args.num_epochs
with strategy.scope():
lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
lowercase , lowercase = create_optimizer(
num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] )
def decode_fn(lowerCAmelCase__ :Any ):
lowercase = {
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
lowercase = DataCollatorForLanguageModeling(
tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" )
def mask_with_collator(lowerCAmelCase__ :Dict ):
# TF really needs an isin() function
lowercase = (
~tf.cast(batch["""attention_mask"""] , tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
lowercase , lowercase = data_collator.tf_mask_tokens(
batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , )
return batch
lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync
lowercase = prepare_dataset(
lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , )
lowercase = prepare_dataset(
lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , )
lowercase = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) )
model.fit(
lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__lowerCAmelCase : Optional[int] =parse_args()
main(args)
| 32
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCAmelCase : Union[str, Any] ={
"""configuration_x_clip""": [
"""XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""XCLIPConfig""",
"""XCLIPTextConfig""",
"""XCLIPVisionConfig""",
],
"""processing_x_clip""": ["""XCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any =[
"""XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XCLIPModel""",
"""XCLIPPreTrainedModel""",
"""XCLIPTextModel""",
"""XCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
__lowerCAmelCase : str =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase : List[Any] ={
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[Any] =[
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
| 1
|
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def UpperCAmelCase__ ( ) -> Optional[int]:
'''simple docstring'''
lowercase = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png"""
lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" )
return image
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> List[str]:
'''simple docstring'''
lowercase = []
# fmt: off
# vision encoder
rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") )
rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") )
rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") )
rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") )
rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') )
# QFormer
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") )
rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") )
# fmt: on
return rename_keys
def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> List[str]:
'''simple docstring'''
lowercase = dct.pop(lowerCAmelCase__ )
lowercase = val
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any] ) -> List[Any]:
'''simple docstring'''
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
lowercase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' )
lowercase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' )
# next, set bias in the state dict
lowercase = torch.cat((q_bias, torch.zeros_like(lowerCAmelCase__ , requires_grad=lowerCAmelCase__ ), v_bias) )
lowercase = qkv_bias
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ) -> List[Any]:
'''simple docstring'''
lowercase = 3_6_4 if """coco""" in model_name else 2_2_4
lowercase = BlipaVisionConfig(image_size=lowerCAmelCase__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
lowercase = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=lowerCAmelCase__ ).to_dict()
elif "opt-6.7b" in model_name:
lowercase = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=lowerCAmelCase__ ).to_dict()
elif "t5-xl" in model_name:
lowercase = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
lowercase = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict()
lowercase = BlipaConfig(vision_config=lowerCAmelCase__ , text_config=lowerCAmelCase__ )
return config, image_size
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Dict=False ) -> List[Any]:
'''simple docstring'''
lowercase = (
AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" )
if """opt""" in model_name
else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" )
)
lowercase = tokenizer("""\n""" , add_special_tokens=lowerCAmelCase__ ).input_ids[0]
lowercase , lowercase = get_blipa_config(lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ )
lowercase = BlipaForConditionalGeneration(lowerCAmelCase__ ).eval()
lowercase = {
"""blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""),
"""blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""),
"""blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""),
"""blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""),
"""blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""),
"""blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""),
"""blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""),
}
lowercase , lowercase = model_name_to_original[model_name]
# load original model
print("""Loading original model...""" )
lowercase = """cuda""" if torch.cuda.is_available() else """cpu"""
lowercase , lowercase , lowercase = load_model_and_preprocess(
name=lowerCAmelCase__ , model_type=lowerCAmelCase__ , is_eval=lowerCAmelCase__ , device=lowerCAmelCase__ )
original_model.eval()
print("""Done!""" )
# update state dict keys
lowercase = original_model.state_dict()
lowercase = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
lowercase = state_dict.pop(lowerCAmelCase__ )
if key.startswith("""Qformer.bert""" ):
lowercase = key.replace("""Qformer.bert""" , """qformer""" )
if "attention.self" in key:
lowercase = key.replace("""self""" , """attention""" )
if "opt_proj" in key:
lowercase = key.replace("""opt_proj""" , """language_projection""" )
if "t5_proj" in key:
lowercase = key.replace("""t5_proj""" , """language_projection""" )
if key.startswith("""opt""" ):
lowercase = key.replace("""opt""" , """language""" )
if key.startswith("""t5""" ):
lowercase = key.replace("""t5""" , """language""" )
lowercase = val
# read in qv biases
read_in_q_v_bias(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase , lowercase = hf_model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert len(lowerCAmelCase__ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
lowercase = load_demo_image()
lowercase = vis_processors["""eval"""](lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ )
lowercase = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(lowerCAmelCase__ )
# create processor
lowercase = BlipImageProcessor(
size={"""height""": image_size, """width""": image_size} , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ )
lowercase = BlipaProcessor(image_processor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
lowercase = processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values.to(lowerCAmelCase__ )
# make sure processor creates exact same pixel values
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ )
original_model.to(lowerCAmelCase__ )
hf_model.to(lowerCAmelCase__ )
with torch.no_grad():
if "opt" in model_name:
lowercase = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits
lowercase = hf_model(lowerCAmelCase__ , lowerCAmelCase__ ).logits
else:
lowercase = original_model(
{"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits
lowercase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 )
lowercase = hf_model(lowerCAmelCase__ , lowerCAmelCase__ , labels=lowerCAmelCase__ ).logits
assert original_logits.shape == logits.shape
print("""First values of original logits:""" , original_logits[0, :3, :3] )
print("""First values of HF logits:""" , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
lowercase = torch.tensor(
[[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=lowerCAmelCase__ )
assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
lowercase = torch.tensor(
[[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=lowerCAmelCase__ )
else:
# cast to same type
lowercase = logits.dtype
assert torch.allclose(original_logits.to(lowerCAmelCase__ ) , lowerCAmelCase__ , atol=1e-2 )
print("""Looks ok!""" )
print("""Generating a caption...""" )
lowercase = """"""
lowercase = tokenizer(lowerCAmelCase__ , return_tensors="""pt""" ).input_ids.to(lowerCAmelCase__ )
lowercase = original_model.generate({"""image""": original_pixel_values} )
lowercase = hf_model.generate(
lowerCAmelCase__ , lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print("""Original generation:""" , lowerCAmelCase__ )
lowercase = input_ids.shape[1]
lowercase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCAmelCase__ )
lowercase = [text.strip() for text in output_text]
print("""HF generation:""" , lowerCAmelCase__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(lowerCAmelCase__ )
hf_model.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
processor.push_to_hub(f'nielsr/{model_name}' )
hf_model.push_to_hub(f'nielsr/{model_name}' )
if __name__ == "__main__":
__lowerCAmelCase : str =argparse.ArgumentParser()
__lowerCAmelCase : Optional[Any] =[
"""blip2-opt-2.7b""",
"""blip2-opt-6.7b""",
"""blip2-opt-2.7b-coco""",
"""blip2-opt-6.7b-coco""",
"""blip2-flan-t5-xl""",
"""blip2-flan-t5-xl-coco""",
"""blip2-flan-t5-xxl""",
]
parser.add_argument(
"""--model_name""",
default="""blip2-opt-2.7b""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
__lowerCAmelCase : int =parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 32
|
"""simple docstring"""
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCAmelCase : Tuple ={
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
class _A ( lowerCAmelCase ):
snake_case__ : Dict = 'mask2former'
snake_case__ : Union[str, Any] = ['swin']
snake_case__ : Any = {'hidden_size': 'hidden_dim'}
def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" )
lowercase = CONFIG_MAPPING["""swin"""](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = backbone_config.pop("""model_type""" )
lowercase = CONFIG_MAPPING[backbone_model_type]
lowercase = config_class.from_dict(__lowerCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '
f'Supported model types: {",".join(self.backbones_supported )}' )
lowercase = backbone_config
lowercase = feature_size
lowercase = mask_feature_size
lowercase = hidden_dim
lowercase = encoder_feedforward_dim
lowercase = activation_function
lowercase = encoder_layers
lowercase = decoder_layers
lowercase = num_attention_heads
lowercase = dropout
lowercase = dim_feedforward
lowercase = pre_norm
lowercase = enforce_input_projection
lowercase = common_stride
lowercase = ignore_value
lowercase = num_queries
lowercase = no_object_weight
lowercase = class_weight
lowercase = mask_weight
lowercase = dice_weight
lowercase = train_num_points
lowercase = oversample_ratio
lowercase = importance_sample_ratio
lowercase = init_std
lowercase = init_xavier_std
lowercase = use_auxiliary_loss
lowercase = feature_strides
lowercase = output_auxiliary_logits
lowercase = decoder_layers
super().__init__(**__lowerCAmelCase )
@classmethod
def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return cls(
backbone_config=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
lowercase = copy.deepcopy(self.__dict__ )
lowercase = self.backbone_config.to_dict()
lowercase = self.__class__.model_type
return output
| 32
| 1
|
"""simple docstring"""
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
__lowerCAmelCase : Tuple =logging.get_logger("""transformers.models.encodec""")
__lowerCAmelCase : List[Any] ={
"""quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""",
"""quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""",
"""quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""",
"""quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""",
}
__lowerCAmelCase : List[str] ={
"""encoder.model.0.conv.conv""": """encoder.layers.0.conv""",
"""encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""",
"""encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""",
"""encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""",
"""encoder.model.3.conv.conv""": """encoder.layers.3.conv""",
"""encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""",
"""encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""",
"""encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""",
"""encoder.model.6.conv.conv""": """encoder.layers.6.conv""",
"""encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""",
"""encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""",
"""encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""",
"""encoder.model.9.conv.conv""": """encoder.layers.9.conv""",
"""encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""",
"""encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""",
"""encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""",
"""encoder.model.12.conv.conv""": """encoder.layers.12.conv""",
"""encoder.model.13.lstm""": """encoder.layers.13.lstm""",
"""encoder.model.15.conv.conv""": """encoder.layers.15.conv""",
}
__lowerCAmelCase : Union[str, Any] ={
"""encoder.model.0.conv.norm""": """encoder.layers.0.norm""",
"""encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""",
"""encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""",
"""encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""",
"""encoder.model.3.conv.norm""": """encoder.layers.3.norm""",
"""encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""",
"""encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""",
"""encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""",
"""encoder.model.6.conv.norm""": """encoder.layers.6.norm""",
"""encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""",
"""encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""",
"""encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""",
"""encoder.model.9.conv.norm""": """encoder.layers.9.norm""",
"""encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""",
"""encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""",
"""encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""",
"""encoder.model.12.conv.norm""": """encoder.layers.12.norm""",
"""encoder.model.15.conv.norm""": """encoder.layers.15.norm""",
}
__lowerCAmelCase : int ={
"""decoder.model.0.conv.conv""": """decoder.layers.0.conv""",
"""decoder.model.1.lstm""": """decoder.layers.1.lstm""",
"""decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""",
"""decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""",
"""decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""",
"""decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""",
"""decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""",
"""decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""",
"""decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""",
"""decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""",
"""decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""",
"""decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""",
"""decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""",
"""decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""",
"""decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""",
"""decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""",
"""decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""",
"""decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""",
"""decoder.model.15.conv.conv""": """decoder.layers.15.conv""",
}
__lowerCAmelCase : List[str] ={
"""decoder.model.0.conv.norm""": """decoder.layers.0.norm""",
"""decoder.model.3.convtr.norm""": """decoder.layers.3.norm""",
"""decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""",
"""decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""",
"""decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""",
"""decoder.model.6.convtr.norm""": """decoder.layers.6.norm""",
"""decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""",
"""decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""",
"""decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""",
"""decoder.model.9.convtr.norm""": """decoder.layers.9.norm""",
"""decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""",
"""decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""",
"""decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""",
"""decoder.model.12.convtr.norm""": """decoder.layers.12.norm""",
"""decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""",
"""decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""",
"""decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""",
"""decoder.model.15.conv.norm""": """decoder.layers.15.norm""",
}
__lowerCAmelCase : str ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
__lowerCAmelCase : Optional[Any] ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
__lowerCAmelCase : List[Any] =[]
__lowerCAmelCase : Union[str, Any] =[]
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] ) -> List[str]:
'''simple docstring'''
for attribute in key.split(""".""" ):
lowercase = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
lowercase = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
lowercase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
lowercase = value
elif weight_type == "weight_g":
lowercase = value
elif weight_type == "weight_v":
lowercase = value
elif weight_type == "bias":
lowercase = value
elif weight_type == "running_mean":
lowercase = value
elif weight_type == "running_var":
lowercase = value
elif weight_type == "num_batches_tracked":
lowercase = value
elif weight_type == "weight_ih_l0":
lowercase = value
elif weight_type == "weight_hh_l0":
lowercase = value
elif weight_type == "bias_ih_l0":
lowercase = value
elif weight_type == "bias_hh_l0":
lowercase = value
elif weight_type == "weight_ih_l1":
lowercase = value
elif weight_type == "weight_hh_l1":
lowercase = value
elif weight_type == "bias_ih_l1":
lowercase = value
elif weight_type == "bias_hh_l1":
lowercase = value
else:
lowercase = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Dict:
'''simple docstring'''
for key in ignore_keys:
if key.endswith(""".*""" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
lowercase , lowercase = key.split(""".*.""" )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = []
if model_name == "encodec_24khz" or "encodec_32khz":
lowercase = MAPPING_24K
elif model_name == "encodec_48khz":
lowercase = MAPPING_48K
else:
raise ValueError(f'Unsupported model: {model_name}' )
for name, value in orig_dict.items():
if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.info(f'{name} was ignored' )
continue
lowercase = False
for key, mapped_key in MAPPING.items():
if "*" in key:
lowercase , lowercase = key.split(""".*.""" )
if prefix in name and suffix in name:
lowercase = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ):
continue
lowercase = True
if "*" in mapped_key:
lowercase = name.split(lowerCAmelCase__ )[0].split(""".""" )[-2]
lowercase = mapped_key.replace("""*""" , lowerCAmelCase__ )
if "weight_g" in name:
lowercase = """weight_g"""
elif "weight_v" in name:
lowercase = """weight_v"""
elif "weight_ih_l0" in name:
lowercase = """weight_ih_l0"""
elif "weight_hh_l0" in name:
lowercase = """weight_hh_l0"""
elif "bias_ih_l0" in name:
lowercase = """bias_ih_l0"""
elif "bias_hh_l0" in name:
lowercase = """bias_hh_l0"""
elif "weight_ih_l1" in name:
lowercase = """weight_ih_l1"""
elif "weight_hh_l1" in name:
lowercase = """weight_hh_l1"""
elif "bias_ih_l1" in name:
lowercase = """bias_ih_l1"""
elif "bias_hh_l1" in name:
lowercase = """bias_hh_l1"""
elif "bias" in name:
lowercase = """bias"""
elif "weight" in name:
lowercase = """weight"""
elif "running_mean" in name:
lowercase = """running_mean"""
elif "running_var" in name:
lowercase = """running_var"""
elif "num_batches_tracked" in name:
lowercase = """num_batches_tracked"""
else:
lowercase = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f'Unused weights: {unused_weights}' )
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :List[str]=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
lowercase = EncodecConfig.from_pretrained(lowerCAmelCase__ )
else:
lowercase = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
lowercase = [8, 5, 4, 4]
lowercase = [2.2]
lowercase = 6_4
lowercase = 3_2_0_0_0
lowercase = 2_0_4_8
lowercase = False
lowercase = False
lowercase = False
elif model_name == "encodec_48khz":
lowercase = [8, 5, 4, 2]
lowercase = [3.0, 6.0, 12.0, 24.0]
lowercase = 4_8_0_0_0
lowercase = 2
lowercase = False
lowercase = """time_group_norm"""
lowercase = True
lowercase = 1.0
lowercase = 0.01
else:
raise ValueError(f'Unknown model name: {model_name}' )
lowercase = EncodecModel(lowerCAmelCase__ )
lowercase = EncodecFeatureExtractor(
feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , )
feature_extractor.save_pretrained(lowerCAmelCase__ )
lowercase = torch.load(lowerCAmelCase__ )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
lowercase = original_checkpoint["""best_state"""]
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
if repo_id:
print("""Pushing to the hub...""" )
feature_extractor.push_to_hub(lowerCAmelCase__ )
model.push_to_hub(lowerCAmelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
"""--model""",
default="""encodec_24khz""",
type=str,
help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""",
)
parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
__lowerCAmelCase : Union[str, Any] =parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 32
|
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ )
return new.join(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = {}
lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' )
if "res_path" in key:
lowercase = key.replace("""res_path.""" , """res_path.path.""" )
if key.endswith(""".w""" ):
lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 )
if key.endswith(""".b""" ):
lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 )
lowercase = value.float()
return upgrade
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any:
'''simple docstring'''
from dall_e import Encoder
lowercase = Encoder()
if os.path.exists(lowerCAmelCase__ ):
lowercase = torch.load(lowerCAmelCase__ )
else:
lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = ckpt.state_dict()
encoder.load_state_dict(lowerCAmelCase__ )
if config_path is not None:
lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ )
else:
lowercase = FlavaImageCodebookConfig()
lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval()
lowercase = encoder.state_dict()
lowercase = upgrade_state_dict(lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
lowercase = hf_model.state_dict()
lowercase = count_parameters(lowerCAmelCase__ )
lowercase = count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(lowerCAmelCase__ )
else:
return hf_state_dict
if __name__ == "__main__":
__lowerCAmelCase : Tuple =argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
__lowerCAmelCase : Any =parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 32
| 1
|
"""simple docstring"""
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
__lowerCAmelCase : Optional[Any] ="""scheduler_config.json"""
class _A ( lowerCAmelCase ):
snake_case__ : str = 1
snake_case__ : int = 2
snake_case__ : str = 3
snake_case__ : List[Any] = 4
snake_case__ : Optional[int] = 5
snake_case__ : str = 6
snake_case__ : int = 7
snake_case__ : List[str] = 8
snake_case__ : Any = 9
snake_case__ : Tuple = 10
snake_case__ : str = 11
snake_case__ : List[str] = 12
snake_case__ : List[str] = 13
snake_case__ : Optional[Any] = 14
@dataclass
class _A ( lowerCAmelCase ):
snake_case__ : torch.FloatTensor
class _A :
snake_case__ : int = SCHEDULER_CONFIG_NAME
snake_case__ : str = []
snake_case__ : Tuple = True
@classmethod
def A__ ( cls , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , **__lowerCAmelCase , ):
"""simple docstring"""
lowercase , lowercase , lowercase = cls.load_config(
pretrained_model_name_or_path=__lowerCAmelCase , subfolder=__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase , return_commit_hash=__lowerCAmelCase , **__lowerCAmelCase , )
return cls.from_config(__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False , **__lowerCAmelCase ):
"""simple docstring"""
self.save_config(save_directory=__lowerCAmelCase , push_to_hub=__lowerCAmelCase , **__lowerCAmelCase )
@property
def A__ ( self ):
"""simple docstring"""
return self._get_compatibles()
@classmethod
def A__ ( cls ):
"""simple docstring"""
lowercase = list(set([cls.__name__] + cls._compatibles ) )
lowercase = importlib.import_module(__name__.split(""".""" )[0] )
lowercase = [
getattr(__lowerCAmelCase , __lowerCAmelCase ) for c in compatible_classes_str if hasattr(__lowerCAmelCase , __lowerCAmelCase )
]
return compatible_classes
| 32
|
"""simple docstring"""
import enum
import shutil
import sys
__lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size()
__lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""}
class _A ( enum.Enum ):
snake_case__ : Tuple = 0
snake_case__ : List[str] = 1
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]:
'''simple docstring'''
sys.stdout.write(str(lowerCAmelCase__ ) + end )
sys.stdout.flush()
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]:
'''simple docstring'''
forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
forceWrite("""\r""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def UpperCAmelCase__ ( ) -> int:
'''simple docstring'''
forceWrite(""" """ * TERMINAL_WIDTH )
reset_cursor()
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
reset_cursor()
forceWrite("""-""" * TERMINAL_WIDTH )
| 32
| 1
|
"""simple docstring"""
from __future__ import annotations
from typing import Any
class _A :
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = num_of_nodes
lowercase = []
lowercase = {}
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
self.m_edges.append([u_node, v_node, weight] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
if self.m_component[u_node] != u_node:
for k in self.m_component:
lowercase = self.find_component(__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if component_size[u_node] <= component_size[v_node]:
lowercase = v_node
component_size[v_node] += component_size[u_node]
self.set_component(__lowerCAmelCase )
elif component_size[u_node] >= component_size[v_node]:
lowercase = self.find_component(__lowerCAmelCase )
component_size[u_node] += component_size[v_node]
self.set_component(__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = []
lowercase = 0
lowercase = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
lowercase = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
lowercase , lowercase , lowercase = edge
lowercase = self.m_component[u]
lowercase = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
lowercase = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase , lowercase , lowercase = edge
lowercase = self.m_component[u]
lowercase = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' )
num_of_components -= 1
lowercase = [-1] * self.m_num_of_nodes
print(f'The total weight of the minimal spanning tree is: {mst_weight}' )
def UpperCAmelCase__ ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""only integers accepted as input""" )
else:
lowercase = str(abs(lowerCAmelCase__ ) )
lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )]
for index in range(len(lowerCAmelCase__ ) ):
num_transpositions[index].pop(lowerCAmelCase__ )
return max(
int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 32
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__lowerCAmelCase : Optional[Any] ={"""tokenization_bertweet""": ["""BertweetTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_bertweet import BertweetTokenizer
else:
import sys
__lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
|
"""simple docstring"""
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
__lowerCAmelCase : List[Any] =numpy.array([0, 0])
__lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254])
__lowerCAmelCase : List[Any] =numpy.array([1, 0])
__lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]:
'''simple docstring'''
lowercase = initial_vectors
for _ in range(lowerCAmelCase__ ):
lowercase = iteration_step(lowerCAmelCase__ )
return vectors
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]:
'''simple docstring'''
lowercase = []
for i, start_vector in enumerate(vectors[:-1] ):
lowercase = vectors[i + 1]
new_vectors.append(lowerCAmelCase__ )
lowercase = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray:
'''simple docstring'''
lowercase = numpy.radians(lowerCAmelCase__ )
lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ )
lowercase = numpy.array(((c, -s), (s, c)) )
return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None:
'''simple docstring'''
lowercase = plt.gca()
axes.set_aspect("""equal""" )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
lowercase , lowercase = zip(*lowerCAmelCase__ )
plt.plot(lowerCAmelCase__ , lowerCAmelCase__ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 32
| 1
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> bool:
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = credit_card_number
lowercase = 0
lowercase = len(lowerCAmelCase__ ) - 2
for i in range(lowerCAmelCase__ , -1 , -2 ):
# double the value of every second digit
lowercase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 1_0
digit += 1
lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 1_0 == 0
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = f'{credit_card_number} is an invalid credit card number because'
if not credit_card_number.isdigit():
print(f'{error_message} it has nonnumerical characters.' )
return False
if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6:
print(f'{error_message} of its length.' )
return False
if not validate_initial_digits(lowerCAmelCase__ ):
print(f'{error_message} of its first two digits.' )
return False
if not luhn_validation(lowerCAmelCase__ ):
print(f'{error_message} it fails the Luhn check.' )
return False
print(f'{credit_card_number} is a valid credit card number.' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 32
| 1
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class _A ( lowerCAmelCase ):
snake_case__ : List[Any] = 'microsoft/speecht5_tts'
snake_case__ : Any = (
'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the '
'text to read (in English) and returns a waveform object containing the sound.'
)
snake_case__ : str = 'text_reader'
snake_case__ : Any = SpeechTaProcessor
snake_case__ : Any = SpeechTaForTextToSpeech
snake_case__ : int = SpeechTaHifiGan
snake_case__ : Optional[int] = ['text']
snake_case__ : List[Any] = ['audio']
def A__ ( self ):
"""simple docstring"""
if self.post_processor is None:
lowercase = """microsoft/speecht5_hifigan"""
super().setup()
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ):
"""simple docstring"""
lowercase = self.pre_processor(text=__lowerCAmelCase , return_tensors="""pt""" , truncation=__lowerCAmelCase )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" )
lowercase = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" )
lowercase = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
with torch.no_grad():
return self.model.generate_speech(**__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
with torch.no_grad():
return self.post_processor(__lowerCAmelCase ).cpu().detach()
| 32
|
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def A__ ( self ):
"""simple docstring"""
lowercase = 1
lowercase = 3
lowercase = (32, 32)
lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase )
return image
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(__lowerCAmelCase )
@property
def A__ ( self ):
"""simple docstring"""
def extract(*__lowerCAmelCase , **__lowerCAmelCase ):
class _A :
def __init__( self ):
"""simple docstring"""
lowercase = torch.ones([0] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
self.pixel_values.to(__lowerCAmelCase )
return self
return Out()
return extract
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase = self.dummy_cond_unet
lowercase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
lowercase = output.images
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase = self.dummy_cond_unet
lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
lowercase = output.images
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase )
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
assert isinstance(pipe.scheduler , __lowerCAmelCase )
assert pipe.safety_checker is None
lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCAmelCase )
lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def A__ ( self ):
"""simple docstring"""
lowercase = self.dummy_cond_unet
lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
lowercase = unet.half()
lowercase = vae.half()
lowercase = bert.half()
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase )
lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
lowercase = 40_0366_0346
lowercase = 7
# without safety guidance (sld_guidance_scale = 0)
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase )
lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """padme amidala taking a bath artwork, safe for work, no nudity"""
lowercase = 27_3497_1755
lowercase = 7
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
lowercase = 10_4435_5234
lowercase = 12
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 32
| 1
|
"""simple docstring"""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__lowerCAmelCase : List[Any] =logging.get_logger(__name__)
__lowerCAmelCase : Optional[int] ={"""vocab_file""": """vocab.txt"""}
__lowerCAmelCase : Tuple ={
"""vocab_file""": {
"""openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""",
},
}
__lowerCAmelCase : List[Any] ={
"""openbmb/cpm-ant-10b""": 1_0_2_4,
}
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Optional[int]:
'''simple docstring'''
lowercase = collections.OrderedDict()
with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as reader:
lowercase = reader.readlines()
for index, token in enumerate(lowerCAmelCase__ ):
lowercase = token.rstrip("""\n""" )
lowercase = index
return vocab
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<unk>" , __lowerCAmelCase=200 ):
"""simple docstring"""
lowercase = vocab
lowercase = unk_token
lowercase = max_input_chars_per_word
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = list(__lowerCAmelCase )
if len(__lowerCAmelCase ) > self.max_input_chars_per_word:
return [self.unk_token]
lowercase = 0
lowercase = []
while start < len(__lowerCAmelCase ):
lowercase = len(__lowerCAmelCase )
lowercase = None
while start < end:
lowercase = """""".join(chars[start:end] )
if substr in self.vocab:
lowercase = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(__lowerCAmelCase )
lowercase = end
return sub_tokens
class _A ( lowerCAmelCase ):
snake_case__ : Optional[int] = VOCAB_FILES_NAMES
snake_case__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
snake_case__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ : Optional[Any] = ['input_ids', 'attention_mask']
snake_case__ : Dict = False
def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<d>" , __lowerCAmelCase="</d>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="</n>" , __lowerCAmelCase="</_>" , __lowerCAmelCase="left" , **__lowerCAmelCase , ):
"""simple docstring"""
requires_backends(self , ["""jieba"""] )
super().__init__(
bod_token=__lowerCAmelCase , eod_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , line_token=__lowerCAmelCase , space_token=__lowerCAmelCase , padding_side=__lowerCAmelCase , **__lowerCAmelCase , )
lowercase = bod_token
lowercase = eod_token
lowercase = load_vocab(__lowerCAmelCase )
lowercase = self.encoder[space_token]
lowercase = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
lowercase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowerCAmelCase : x[1] ) )
lowercase = {v: k for k, v in self.encoder.items()}
lowercase = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def A__ ( self ):
"""simple docstring"""
return self.encoder[self.bod_token]
@property
def A__ ( self ):
"""simple docstring"""
return self.encoder[self.eod_token]
@property
def A__ ( self ):
"""simple docstring"""
return self.encoder["\n"]
@property
def A__ ( self ):
"""simple docstring"""
return len(self.encoder )
def A__ ( self ):
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = []
for x in jieba.cut(__lowerCAmelCase , cut_all=__lowerCAmelCase ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(__lowerCAmelCase ) )
return output_tokens
def A__ ( self , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = [i for i in token_ids if i >= 0]
lowercase = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
return token in self.encoder
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
return "".join(__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.decoder.get(__lowerCAmelCase , self.unk_token )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
if os.path.isdir(__lowerCAmelCase ):
lowercase = os.path.join(
__lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
lowercase = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
lowercase = 0
if " " in self.encoder:
lowercase = self.encoder[""" """]
del self.encoder[" "]
if "\n" in self.encoder:
lowercase = self.encoder["""\n"""]
del self.encoder["\n"]
lowercase = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __lowerCAmelCase : x[1] ) )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
""" Please check that the vocabulary is not corrupted!""" )
lowercase = token_index
writer.write(token + """\n""" )
index += 1
return (vocab_file,)
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase )
if token_ids_a is not None:
return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase ))
return [1] + ([0] * len(__lowerCAmelCase ))
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]:
'''simple docstring'''
lowercase = current_set.copy()
for row_index, row in enumerate(lowerCAmelCase__ ):
lowercase = row[0]
for column_index, column in enumerate(lowerCAmelCase__ ):
if magnitude == 0:
lowercase = column
continue
lowercase = column / magnitude
# Subtract to cancel term
lowercase = current_set[0]
lowercase = [first_row]
lowercase = current_set[1::]
for row in current_set:
lowercase = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(lowerCAmelCase__ )
continue
for column_index in range(len(lowerCAmelCase__ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(lowerCAmelCase__ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
lowercase = final_set[0]
lowercase = []
lowercase = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
lowercase = simplify(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , lowerCAmelCase__ )
lowercase = resultant
return final_set
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list:
'''simple docstring'''
if len(lowerCAmelCase__ ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
lowercase = len(lowerCAmelCase__ ) + 1
if any(len(lowerCAmelCase__ ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(lowerCAmelCase__ ) == 1:
return [equations[0][-1] / equations[0][0]]
lowercase = equations.copy()
if any(0 in row for row in data_set ):
lowercase = data_set.copy()
lowercase = []
for row_index, row in enumerate(lowerCAmelCase__ ):
if 0 not in row:
lowercase = data_set.pop(lowerCAmelCase__ )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 , lowerCAmelCase__ )
lowercase = data_set.copy()
lowercase = simplify(lowerCAmelCase__ )
lowercase = simplified[::-1]
lowercase = []
for row in simplified:
lowercase = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(lowerCAmelCase__ ) == 0:
solutions.append(0 )
continue
lowercase = temp_row[1::]
lowercase = temp_row[::-1]
for column_index, column in enumerate(lowerCAmelCase__ ):
current_solution -= column * solutions[column_index]
solutions.append(lowerCAmelCase__ )
lowercase = []
for item in solutions:
final.append(float(round(lowerCAmelCase__ , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : List[str] =[
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 32
| 1
|
"""simple docstring"""
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def UpperCAmelCase__ ( lowerCAmelCase__ :Features ) -> Optional[int]:
'''simple docstring'''
lowercase = np.inf
def set_batch_size(lowerCAmelCase__ :FeatureType ) -> None:
nonlocal batch_size
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and feature.dtype == "binary":
lowercase = min(lowerCAmelCase__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(lowerCAmelCase__ , lowerCAmelCase__ )
return None if batch_size is np.inf else batch_size
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(
__lowerCAmelCase , split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , )
lowercase = path_or_paths if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else {self.split: path_or_paths}
lowercase = _PACKAGED_DATASETS_MODULES["""parquet"""][1]
lowercase = Parquet(
cache_dir=__lowerCAmelCase , data_files=__lowerCAmelCase , features=__lowerCAmelCase , hash=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
if self.streaming:
lowercase = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase = None
lowercase = None
lowercase = None
lowercase = None
self.builder.download_and_prepare(
download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , )
lowercase = self.builder.as_dataset(
split=self.split , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _A :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
lowercase = dataset
lowercase = path_or_buf
lowercase = batch_size or get_writer_batch_size(dataset.features )
lowercase = parquet_writer_kwargs
def A__ ( self ):
"""simple docstring"""
lowercase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , """wb+""" ) as buffer:
lowercase = self._write(file_obj=__lowerCAmelCase , batch_size=__lowerCAmelCase , **self.parquet_writer_kwargs )
else:
lowercase = self._write(file_obj=self.path_or_buf , batch_size=__lowerCAmelCase , **self.parquet_writer_kwargs )
return written
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = 0
lowercase = parquet_writer_kwargs.pop("""path_or_buf""" , __lowerCAmelCase )
lowercase = self.dataset.features.arrow_schema
lowercase = pq.ParquetWriter(__lowerCAmelCase , schema=__lowerCAmelCase , **__lowerCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , __lowerCAmelCase ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ):
lowercase = query_table(
table=self.dataset._data , key=slice(__lowerCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(__lowerCAmelCase )
written += batch.nbytes
writer.close()
return written
| 32
|
"""simple docstring"""
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase )
class _A ( lowerCAmelCase ):
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def A__ ( self , __lowerCAmelCase=None ):
"""simple docstring"""
lowercase = {}
if top_k is not None:
lowercase = top_k
return {}, {}, postprocess_params
def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return super().__call__(__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = load_image(__lowerCAmelCase )
lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework )
return model_inputs
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = self.model(**__lowerCAmelCase )
return model_outputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
lowercase = self.model.config.num_labels
if self.framework == "pt":
lowercase = model_outputs.logits.softmax(-1 )[0]
lowercase , lowercase = probs.topk(__lowerCAmelCase )
elif self.framework == "tf":
lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0]
lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase )
lowercase , lowercase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
lowercase = scores.tolist()
lowercase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
| 32
| 1
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _A ( lowerCAmelCase ):
snake_case__ : UNetaDModel
snake_case__ : ScoreSdeVeScheduler
def __init__( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
super().__init__()
self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase )
@torch.no_grad()
def __call__( self , __lowerCAmelCase = 1 , __lowerCAmelCase = 2000 , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , **__lowerCAmelCase , ):
"""simple docstring"""
lowercase = self.unet.config.sample_size
lowercase = (batch_size, 3, img_size, img_size)
lowercase = self.unet
lowercase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase ) * self.scheduler.init_noise_sigma
lowercase = sample.to(self.device )
self.scheduler.set_timesteps(__lowerCAmelCase )
self.scheduler.set_sigmas(__lowerCAmelCase )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
lowercase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
lowercase = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample
lowercase = self.scheduler.step_correct(__lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample
# prediction step
lowercase = model(__lowerCAmelCase , __lowerCAmelCase ).sample
lowercase = self.scheduler.step_pred(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase )
lowercase , lowercase = output.prev_sample, output.prev_sample_mean
lowercase = sample_mean.clamp(0 , 1 )
lowercase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowercase = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__lowerCAmelCase )
| 32
|
"""simple docstring"""
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"""The `image_to_image.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionImg2ImgPipeline` instead."""
)
| 32
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase : str =logging.get_logger(__name__)
__lowerCAmelCase : List[Any] ={
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class _A ( lowerCAmelCase ):
snake_case__ : int = 'transfo-xl'
snake_case__ : Dict = ['mems']
snake_case__ : Union[str, Any] = {
'n_token': 'vocab_size',
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __lowerCAmelCase=26_7735 , __lowerCAmelCase=[2_0000, 4_0000, 20_0000] , __lowerCAmelCase=1024 , __lowerCAmelCase=1024 , __lowerCAmelCase=16 , __lowerCAmelCase=64 , __lowerCAmelCase=4096 , __lowerCAmelCase=4 , __lowerCAmelCase=False , __lowerCAmelCase=18 , __lowerCAmelCase=1600 , __lowerCAmelCase=1000 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=0 , __lowerCAmelCase=-1 , __lowerCAmelCase=True , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase="normal" , __lowerCAmelCase=0.0_1 , __lowerCAmelCase=0.0_1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0 , **__lowerCAmelCase , ):
"""simple docstring"""
lowercase = vocab_size
lowercase = []
self.cutoffs.extend(__lowerCAmelCase )
if proj_share_all_but_first:
lowercase = [False] + [True] * len(self.cutoffs )
else:
lowercase = [False] + [False] * len(self.cutoffs )
lowercase = d_model
lowercase = d_embed
lowercase = d_head
lowercase = d_inner
lowercase = div_val
lowercase = pre_lnorm
lowercase = n_layer
lowercase = n_head
lowercase = mem_len
lowercase = same_length
lowercase = attn_type
lowercase = clamp_len
lowercase = sample_softmax
lowercase = adaptive
lowercase = dropout
lowercase = dropatt
lowercase = untie_r
lowercase = init
lowercase = init_range
lowercase = proj_init_std
lowercase = init_std
lowercase = layer_norm_epsilon
super().__init__(eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
@property
def A__ ( self ):
"""simple docstring"""
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 32
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : Optional[int] = GPTSanJapaneseTokenizer
snake_case__ : int = False
snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False}
def A__ ( self ):
"""simple docstring"""
super().setUp()
# fmt: off
lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""]
# fmt: on
lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀
lowercase = {"""unk_token""": """<unk>"""}
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
with open(self.emoji_file , """w""" ) as emoji_writer:
emoji_writer.write(json.dumps(__lowerCAmelCase ) )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀"""
lowercase = """こんにちは、世界。 \nこんばんは、世界。😀"""
return input_text, output_text
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase )
lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
return text, ids
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_tokenizer()
# Testing tokenization
lowercase = """こんにちは、世界。 こんばんは、㔺界。"""
lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""]
lowercase = tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# Testing conversion to ids without special tokens
lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# Testing conversion to ids with special tokens
lowercase = tokens + [tokenizer.unk_token]
lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_tokenizer()
# Testing tokenization
lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。"""
lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。"""
lowercase = tokenizer.encode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
lowercase = """こんにちは、世界。"""
lowercase = """こんばんは、㔺界。😀"""
lowercase = """こんにちは、世界。こんばんは、世界。😀"""
lowercase = tokenizer.encode(prefix_text + input_text )
lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text )
lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
lowercase = """こんにちは、世界。"""
lowercase = """こんばんは、㔺界。😀"""
lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2
lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2
lowercase = [1] + [0] * (len_prefix + len_text + 1)
lowercase = [1] * (len_prefix + len_text + 1) + [0]
lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
lowercase = tokenizer(prefix_text + input_text ).token_type_ids
lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids
lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
lowercase = tokenizer.encode("""あンいワ""" )
lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" )
lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" )
self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) )
self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) )
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]]
lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase )
lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase )
# fmt: off
lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]]
lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , __lowerCAmelCase )
self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase )
self.assertListEqual(x_token.attention_mask , __lowerCAmelCase )
self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase )
self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase )
self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
pass
def A__ ( self ):
"""simple docstring"""
pass
| 32
| 1
|
"""simple docstring"""
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(
split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , )
lowercase = load_from_cache_file
lowercase = file_format
lowercase = Spark(
df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=__lowerCAmelCase , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 32
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""]
__lowerCAmelCase : List[str] =["""ViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str =[
"""VIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTForImageClassification""",
"""ViTForMaskedImageModeling""",
"""ViTModel""",
"""ViTPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any =[
"""TFViTForImageClassification""",
"""TFViTModel""",
"""TFViTPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Dict =[
"""FlaxViTForImageClassification""",
"""FlaxViTModel""",
"""FlaxViTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
__lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
| 1
|
"""simple docstring"""
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : int = BertJapaneseTokenizer
snake_case__ : List[Any] = False
snake_case__ : Optional[int] = True
def A__ ( self ):
"""simple docstring"""
super().setUp()
lowercase = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""こんにちは""",
"""こん""",
"""にちは""",
"""ばんは""",
"""##こん""",
"""##にちは""",
"""##ばんは""",
"""世界""",
"""##世界""",
"""、""",
"""##、""",
"""。""",
"""##。""",
]
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = """こんにちは、世界。 \nこんばんは、世界。"""
lowercase = """こんにちは 、 世界 。 こんばんは 、 世界 。"""
return input_text, output_text
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase )
lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
return text, ids
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class(self.vocab_file )
lowercase = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" )
self.assertListEqual(__lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" )
self.assertIsNotNone(__lowerCAmelCase )
lowercase = """こんにちは、世界。\nこんばんは、世界。"""
lowercase = tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowercase = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__lowerCAmelCase , """wb""" ) as handle:
pickle.dump(__lowerCAmelCase , __lowerCAmelCase )
with open(__lowerCAmelCase , """rb""" ) as handle:
lowercase = pickle.load(__lowerCAmelCase )
lowercase = tokenizer_new.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = MecabTokenizer(mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def A__ ( self ):
"""simple docstring"""
try:
lowercase = MecabTokenizer(mecab_dic="""unidic_lite""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def A__ ( self ):
"""simple docstring"""
try:
lowercase = MecabTokenizer(mecab_dic="""unidic""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def A__ ( self ):
"""simple docstring"""
lowercase = MecabTokenizer(do_lower_case=__lowerCAmelCase , mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def A__ ( self ):
"""simple docstring"""
try:
lowercase = MecabTokenizer(
do_lower_case=__lowerCAmelCase , normalize_text=__lowerCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
def A__ ( self ):
"""simple docstring"""
lowercase = MecabTokenizer(normalize_text=__lowerCAmelCase , mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , )
@require_sudachi
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" )
self.assertIsNotNone(__lowerCAmelCase )
lowercase = """こんにちは、世界。\nこんばんは、世界。"""
lowercase = tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowercase = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__lowerCAmelCase , """wb""" ) as handle:
pickle.dump(__lowerCAmelCase , __lowerCAmelCase )
with open(__lowerCAmelCase , """rb""" ) as handle:
lowercase = pickle.load(__lowerCAmelCase )
lowercase = tokenizer_new.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
@require_sudachi
def A__ ( self ):
"""simple docstring"""
lowercase = SudachiTokenizer(sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , )
@require_sudachi
def A__ ( self ):
"""simple docstring"""
lowercase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] )
@require_sudachi
def A__ ( self ):
"""simple docstring"""
lowercase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] )
@require_sudachi
def A__ ( self ):
"""simple docstring"""
lowercase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] )
@require_sudachi
def A__ ( self ):
"""simple docstring"""
lowercase = SudachiTokenizer(do_lower_case=__lowerCAmelCase , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , )
@require_sudachi
def A__ ( self ):
"""simple docstring"""
lowercase = SudachiTokenizer(normalize_text=__lowerCAmelCase , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , )
@require_sudachi
def A__ ( self ):
"""simple docstring"""
lowercase = SudachiTokenizer(trim_whitespace=__lowerCAmelCase , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
@require_jumanpp
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" )
self.assertIsNotNone(__lowerCAmelCase )
lowercase = """こんにちは、世界。\nこんばんは、世界。"""
lowercase = tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowercase = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__lowerCAmelCase , """wb""" ) as handle:
pickle.dump(__lowerCAmelCase , __lowerCAmelCase )
with open(__lowerCAmelCase , """rb""" ) as handle:
lowercase = pickle.load(__lowerCAmelCase )
lowercase = tokenizer_new.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
@require_jumanpp
def A__ ( self ):
"""simple docstring"""
lowercase = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def A__ ( self ):
"""simple docstring"""
lowercase = JumanppTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def A__ ( self ):
"""simple docstring"""
lowercase = JumanppTokenizer(normalize_text=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def A__ ( self ):
"""simple docstring"""
lowercase = JumanppTokenizer(trim_whitespace=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , )
@require_jumanpp
def A__ ( self ):
"""simple docstring"""
lowercase = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , )
def A__ ( self ):
"""simple docstring"""
lowercase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""]
lowercase = {}
for i, token in enumerate(__lowerCAmelCase ):
lowercase = i
lowercase = WordpieceTokenizer(vocab=__lowerCAmelCase , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" )
lowercase = tokenizer.subword_tokenizer
lowercase = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" )
self.assertListEqual(__lowerCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] )
lowercase = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" )
self.assertListEqual(__lowerCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" )
lowercase = tokenizer.encode("""ありがとう。""" , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase )
lowercase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : List[str] = BertJapaneseTokenizer
snake_case__ : int = False
def A__ ( self ):
"""simple docstring"""
super().setUp()
lowercase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = """こんにちは、世界。 \nこんばんは、世界。"""
lowercase = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"""
return input_text, output_text
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" )
lowercase = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" )
self.assertListEqual(
__lowerCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def A__ ( self ):
"""simple docstring"""
lowercase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
lowercase = {}
for i, token in enumerate(__lowerCAmelCase ):
lowercase = i
lowercase = CharacterTokenizer(vocab=__lowerCAmelCase , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] )
self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] )
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" )
lowercase = tokenizer.encode("""ありがとう。""" , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase )
lowercase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = """cl-tohoku/bert-base-japanese"""
lowercase = AutoTokenizer.from_pretrained(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = """cl-tohoku/bert-base-japanese"""
with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm:
BertTokenizer.from_pretrained(__lowerCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
lowercase = """bert-base-cased"""
with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm:
BertJapaneseTokenizer.from_pretrained(__lowerCAmelCase )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
| 32
|
"""simple docstring"""
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(
split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , )
lowercase = load_from_cache_file
lowercase = file_format
lowercase = Spark(
df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=__lowerCAmelCase , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 32
| 1
|
"""simple docstring"""
import random
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple ) -> Optional[int]:
'''simple docstring'''
lowercase = a[left_index]
lowercase = left_index + 1
for j in range(left_index + 1 , lowerCAmelCase__ ):
if a[j] < pivot:
lowercase , lowercase = a[i], a[j]
i += 1
lowercase , lowercase = a[i - 1], a[left_index]
return i - 1
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int ) -> List[Any]:
'''simple docstring'''
if left < right:
lowercase = random.randint(lowerCAmelCase__ , right - 1 )
lowercase , lowercase = (
a[left],
a[pivot],
) # switches the pivot with the left most bound
lowercase = partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
quick_sort_random(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # recursive quicksort to the left of the pivot point
quick_sort_random(
lowerCAmelCase__ , pivot_index + 1 , lowerCAmelCase__ ) # recursive quicksort to the right of the pivot point
def UpperCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
lowercase = input("""Enter numbers separated by a comma:\n""" ).strip()
lowercase = [int(lowerCAmelCase__ ) for item in user_input.split(""",""" )]
quick_sort_random(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) )
print(lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 32
|
"""simple docstring"""
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("""socket.socket""" )
@patch("""builtins.open""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = Mock()
lowercase = conn, Mock()
lowercase = iter([1, None] )
lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ )
# ===== invoke =====
send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 32
| 1
|
"""simple docstring"""
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__lowerCAmelCase : List[Any] =logging.get_logger(__name__)
__lowerCAmelCase : Any ={
"""nielsr/canine-s""": 2_0_4_8,
}
# Unicode defines 1,114,112 total “codepoints”
__lowerCAmelCase : Tuple =1_1_1_4_1_1_2
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
__lowerCAmelCase : List[Any] =0
__lowerCAmelCase : Tuple =0xE000
__lowerCAmelCase : List[Any] =0xE001
__lowerCAmelCase : Union[str, Any] =0xE002
__lowerCAmelCase : int =0xE003
__lowerCAmelCase : List[str] =0xE004
# Maps special codepoints to human-readable names.
__lowerCAmelCase : Dict[int, str] ={
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
__lowerCAmelCase : Dict[str, int] ={name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class _A ( lowerCAmelCase ):
snake_case__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __lowerCAmelCase=chr(__lowerCAmelCase ) , __lowerCAmelCase=chr(__lowerCAmelCase ) , __lowerCAmelCase=chr(__lowerCAmelCase ) , __lowerCAmelCase=chr(__lowerCAmelCase ) , __lowerCAmelCase=chr(__lowerCAmelCase ) , __lowerCAmelCase=chr(__lowerCAmelCase ) , __lowerCAmelCase=False , __lowerCAmelCase=2048 , **__lowerCAmelCase , ):
"""simple docstring"""
lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else bos_token
lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else eos_token
lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else sep_token
lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else cls_token
lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token
super().__init__(
bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , model_max_length=__lowerCAmelCase , **__lowerCAmelCase , )
# Creates a mapping for looking up the IDs of special symbols.
lowercase = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
lowercase = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
lowercase = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
lowercase = UNICODE_VOCAB_SIZE
lowercase = len(self._special_codepoints )
@property
def A__ ( self ):
"""simple docstring"""
return self._unicode_vocab_size
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
return list(__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
try:
return ord(__lowerCAmelCase )
except TypeError:
raise ValueError(f'invalid token: \'{token}\'' )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(__lowerCAmelCase )
except TypeError:
raise ValueError(f'invalid id: {index}' )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
return "".join(__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
lowercase = [self.sep_token_id]
lowercase = [self.cls_token_id]
lowercase = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase )
lowercase = [1] + ([0] * len(__lowerCAmelCase )) + [1]
if token_ids_a is not None:
result += ([0] * len(__lowerCAmelCase )) + [1]
return result
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
lowercase = [self.sep_token_id]
lowercase = [self.cls_token_id]
lowercase = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
return ()
| 32
|
"""simple docstring"""
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase : List[Any] =logging.get_logger(__name__)
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int:
'''simple docstring'''
lowercase = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""),
("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""),
("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""),
("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""),
("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""),
("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""),
] )
return rename_keys
def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' )
lowercase = in_proj_weight[
: encoder_config.hidden_size, :
]
lowercase = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
lowercase = in_proj_weight[
-encoder_config.hidden_size :, :
]
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]:
'''simple docstring'''
lowercase = dct.pop(lowerCAmelCase__ )
lowercase = val
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]:
'''simple docstring'''
if "handwritten" in checkpoint_url:
lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg"""
lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" )
return im
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ )
lowercase = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
lowercase = 7_6_8
elif "large" in checkpoint_url:
# use ViT-large encoder
lowercase = 1_0_2_4
lowercase = 4_0_9_6
lowercase = 2_4
lowercase = 1_6
lowercase = 1_0_2_4
else:
raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
lowercase = False
lowercase = """relu"""
lowercase = 1_0_2_4
lowercase = True
lowercase = False
lowercase = False
# load HuggingFace model
lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ )
lowercase = TrOCRForCausalLM(lowerCAmelCase__ )
lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ )
model.eval()
# load state_dict of original model, rename some keys
lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""]
lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
lowercase = state_dict.pop(lowerCAmelCase__ )
if key.startswith("""decoder""" ) and "output_projection" not in key:
lowercase = val
else:
lowercase = val
# load state dict
model.load_state_dict(lowerCAmelCase__ )
# Check outputs on an image
lowercase = ViTImageProcessor(size=encoder_config.image_size )
lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" )
lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values
# verify logits
lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ )
lowercase = outputs.logits
lowercase = torch.Size([1, 1, 5_0_2_6_5] )
if "trocr-base-handwritten" in checkpoint_url:
lowercase = torch.tensor(
[-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] )
elif "trocr-large-handwritten" in checkpoint_url:
lowercase = torch.tensor(
[-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] )
elif "trocr-base-printed" in checkpoint_url:
lowercase = torch.tensor(
[-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] )
elif "trocr-large-printed" in checkpoint_url:
lowercase = torch.tensor(
[-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected"
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase__ )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_url""",
default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""",
type=str,
help="""URL to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
__lowerCAmelCase : Dict =parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 32
| 1
|
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = tempfile.mkdtemp()
lowercase = BlipImageProcessor()
lowercase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" )
lowercase = BlipaProcessor(__lowerCAmelCase , __lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).tokenizer
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor
def A__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def A__ ( self ):
"""simple docstring"""
lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowercase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A__ ( self ):
"""simple docstring"""
lowercase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowercase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 )
lowercase = BlipaProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = BlipaProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase )
lowercase = self.prepare_image_inputs()
lowercase = image_processor(__lowerCAmelCase , return_tensors="""np""" )
lowercase = processor(images=__lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = BlipaProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase )
lowercase = """lower newer"""
lowercase = processor(text=__lowerCAmelCase )
lowercase = tokenizer(__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = BlipaProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase )
lowercase = """lower newer"""
lowercase = self.prepare_image_inputs()
lowercase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__lowerCAmelCase ):
processor()
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = BlipaProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase )
lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase = processor.batch_decode(__lowerCAmelCase )
lowercase = tokenizer.batch_decode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = BlipaProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase )
lowercase = """lower newer"""
lowercase = self.prepare_image_inputs()
lowercase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool:
'''simple docstring'''
lowercase = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(2_7))
print(perfect_cube(4))
| 32
| 1
|
"""simple docstring"""
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> Optional[Any]:
'''simple docstring'''
lowercase = tmp_path / """file.csv"""
lowercase = textwrap.dedent(
"""\
header1,header2
1,2
10,20
""" )
with open(lowerCAmelCase__ , """w""" ) as f:
f.write(lowerCAmelCase__ )
return str(lowerCAmelCase__ )
@pytest.fixture
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Dict:
'''simple docstring'''
lowercase = tmp_path / """malformed_file.csv"""
lowercase = textwrap.dedent(
"""\
header1,header2
1,2
10,20,
""" )
with open(lowerCAmelCase__ , """w""" ) as f:
f.write(lowerCAmelCase__ )
return str(lowerCAmelCase__ )
@pytest.fixture
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict ) -> List[str]:
'''simple docstring'''
lowercase = tmp_path / """csv_with_image.csv"""
lowercase = textwrap.dedent(
f'\\n image\n {image_file}\n ' )
with open(lowerCAmelCase__ , """w""" ) as f:
f.write(lowerCAmelCase__ )
return str(lowerCAmelCase__ )
@pytest.fixture
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Dict:
'''simple docstring'''
lowercase = tmp_path / """csv_with_label.csv"""
lowercase = textwrap.dedent(
"""\
label
good
bad
good
""" )
with open(lowerCAmelCase__ , """w""" ) as f:
f.write(lowerCAmelCase__ )
return str(lowerCAmelCase__ )
@pytest.fixture
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> Any:
'''simple docstring'''
lowercase = tmp_path / """csv_with_int_list.csv"""
lowercase = textwrap.dedent(
"""\
int_list
1 2 3
4 5 6
7 8 9
""" )
with open(lowerCAmelCase__ , """w""" ) as f:
f.write(lowerCAmelCase__ )
return str(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str ) -> Any:
'''simple docstring'''
lowercase = Csv()
lowercase = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(lowerCAmelCase__ , match="""Error tokenizing data""" ):
for _ in generator:
pass
assert any(
record.levelname == """ERROR"""
and """Failed to read file""" in record.message
and os.path.basename(lowerCAmelCase__ ) in record.message
for record in caplog.records )
@require_pil
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> str:
'''simple docstring'''
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f:
lowercase = f.read().splitlines()[1]
lowercase = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) )
lowercase = csv._generate_tables([[csv_file_with_image]] )
lowercase = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""image""" ).type == Image()()
lowercase = pa_table.to_pydict()["""image"""]
assert generated_content == [{"path": image_file, "bytes": None}]
def UpperCAmelCase__ ( lowerCAmelCase__ :Dict ) -> List[str]:
'''simple docstring'''
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f:
lowercase = f.read().splitlines()[1:]
lowercase = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) )
lowercase = csv._generate_tables([[csv_file_with_label]] )
lowercase = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )()
lowercase = pa_table.to_pydict()["""label"""]
assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCAmelCase__ ) for label in labels]
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> int:
'''simple docstring'''
lowercase = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCAmelCase__ : [int(lowerCAmelCase__ ) for i in x.split()]} )
lowercase = csv._generate_tables([[csv_file_with_int_list]] )
lowercase = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type )
lowercase = pa_table.to_pydict()["""int_list"""]
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 32
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : str = KandinskyInpaintPipeline
snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image']
snake_case__ : Optional[int] = [
'prompt',
'negative_prompt',
'image_embeds',
'negative_image_embeds',
'image',
'mask_image',
]
snake_case__ : Tuple = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'negative_prompt',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
snake_case__ : Dict = False
@property
def A__ ( self ):
"""simple docstring"""
return 32
@property
def A__ ( self ):
"""simple docstring"""
return 32
@property
def A__ ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def A__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def A__ ( self ):
"""simple docstring"""
return 100
@property
def A__ ( self ):
"""simple docstring"""
lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
lowercase = MultilingualCLIP(__lowerCAmelCase )
lowercase = text_encoder.eval()
return text_encoder
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = {
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
lowercase = UNetaDConditionModel(**__lowerCAmelCase )
return model
@property
def A__ ( self ):
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self ):
"""simple docstring"""
lowercase = self.dummy_text_encoder
lowercase = self.dummy_tokenizer
lowercase = self.dummy_unet
lowercase = self.dummy_movq
lowercase = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , )
lowercase = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ):
"""simple docstring"""
lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase )
# create init_image
lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) )
# create mask
lowercase = np.ones((64, 64) , dtype=np.floataa )
lowercase = 0
if str(__lowerCAmelCase ).startswith("""mps""" ):
lowercase = torch.manual_seed(__lowerCAmelCase )
else:
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
lowercase = {
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu"""
lowercase = self.get_dummy_components()
lowercase = self.pipeline_class(**__lowerCAmelCase )
lowercase = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) )
lowercase = output.images
lowercase = pipe(
**self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
print(f'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
lowercase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def A__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ):
"""simple docstring"""
lowercase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
lowercase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
lowercase = np.ones((768, 768) , dtype=np.floataa )
lowercase = 0
lowercase = """a hat"""
lowercase = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCAmelCase )
lowercase = KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
lowercase = pipeline.to(__lowerCAmelCase )
pipeline.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowercase , lowercase = pipe_prior(
__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
lowercase = pipeline(
__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , )
lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
| 32
| 1
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : str = KandinskyInpaintPipeline
snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image']
snake_case__ : Optional[int] = [
'prompt',
'negative_prompt',
'image_embeds',
'negative_image_embeds',
'image',
'mask_image',
]
snake_case__ : Tuple = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'negative_prompt',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
snake_case__ : Dict = False
@property
def A__ ( self ):
"""simple docstring"""
return 32
@property
def A__ ( self ):
"""simple docstring"""
return 32
@property
def A__ ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def A__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def A__ ( self ):
"""simple docstring"""
return 100
@property
def A__ ( self ):
"""simple docstring"""
lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
lowercase = MultilingualCLIP(__lowerCAmelCase )
lowercase = text_encoder.eval()
return text_encoder
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = {
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
lowercase = UNetaDConditionModel(**__lowerCAmelCase )
return model
@property
def A__ ( self ):
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self ):
"""simple docstring"""
lowercase = self.dummy_text_encoder
lowercase = self.dummy_tokenizer
lowercase = self.dummy_unet
lowercase = self.dummy_movq
lowercase = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , )
lowercase = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ):
"""simple docstring"""
lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase )
# create init_image
lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) )
# create mask
lowercase = np.ones((64, 64) , dtype=np.floataa )
lowercase = 0
if str(__lowerCAmelCase ).startswith("""mps""" ):
lowercase = torch.manual_seed(__lowerCAmelCase )
else:
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
lowercase = {
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu"""
lowercase = self.get_dummy_components()
lowercase = self.pipeline_class(**__lowerCAmelCase )
lowercase = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) )
lowercase = output.images
lowercase = pipe(
**self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
print(f'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
lowercase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def A__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ):
"""simple docstring"""
lowercase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
lowercase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
lowercase = np.ones((768, 768) , dtype=np.floataa )
lowercase = 0
lowercase = """a hat"""
lowercase = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCAmelCase )
lowercase = KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
lowercase = pipeline.to(__lowerCAmelCase )
pipeline.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowercase , lowercase = pipe_prior(
__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
lowercase = pipeline(
__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , )
lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
| 32
|
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
__lowerCAmelCase : Optional[Any] =logging.getLogger(__name__)
@dataclass
class _A ( lowerCAmelCase ):
snake_case__ : Optional[float] = field(
default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} )
snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} )
snake_case__ : bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} )
snake_case__ : Optional[str] = field(
default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
| 32
| 1
|
"""simple docstring"""
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class _A :
@property
def A__ ( self ):
"""simple docstring"""
return self.get_dummy_input()
@property
def A__ ( self ):
"""simple docstring"""
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' )
def A__ ( self , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , ):
"""simple docstring"""
lowercase = 4
lowercase = 32
lowercase = (32, 32)
lowercase = torch.manual_seed(0 )
lowercase = torch.device(__lowerCAmelCase )
lowercase = (batch_size, num_channels) + sizes
lowercase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase )
lowercase = {"""hidden_states""": hidden_states}
if include_temb:
lowercase = 128
lowercase = randn_tensor((batch_size, temb_channels) , generator=__lowerCAmelCase , device=__lowerCAmelCase )
if include_res_hidden_states_tuple:
lowercase = torch.manual_seed(1 )
lowercase = (randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase ),)
if include_encoder_hidden_states:
lowercase = floats_tensor((batch_size, 32, 32) ).to(__lowerCAmelCase )
if include_skip_sample:
lowercase = randn_tensor(((batch_size, 3) + sizes) , generator=__lowerCAmelCase , device=__lowerCAmelCase )
return dummy_input
def A__ ( self ):
"""simple docstring"""
lowercase = {
"""in_channels""": 32,
"""out_channels""": 32,
"""temb_channels""": 128,
}
if self.block_type == "up":
lowercase = 32
if self.block_type == "mid":
init_dict.pop("""out_channels""" )
lowercase = self.dummy_input
return init_dict, inputs_dict
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase , lowercase = self.prepare_init_args_and_inputs_for_common()
lowercase = self.block_class(**__lowerCAmelCase )
unet_block.to(__lowerCAmelCase )
unet_block.eval()
with torch.no_grad():
lowercase = unet_block(**__lowerCAmelCase )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = output[0]
self.assertEqual(output.shape , self.output_shape )
lowercase = output[0, -1, -3:, -3:]
lowercase = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase )
assert torch_all_close(output_slice.flatten() , __lowerCAmelCase , atol=5E-3 )
@unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" )
def A__ ( self ):
"""simple docstring"""
lowercase , lowercase = self.prepare_init_args_and_inputs_for_common()
lowercase = self.block_class(**__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.train()
lowercase = model(**__lowerCAmelCase )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = output[0]
lowercase = torch.device(__lowerCAmelCase )
lowercase = randn_tensor(output.shape , device=__lowerCAmelCase )
lowercase = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase )
loss.backward()
| 32
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict:
'''simple docstring'''
if "img_encoder.pos_embed" in name:
lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" )
if "img_encoder.patch_embed.proj" in name:
lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" )
if "img_encoder.patch_embed.norm" in name:
lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" )
if "img_encoder.layers" in name:
lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" )
if "blocks" in name and "res" not in name:
lowercase = name.replace("""blocks""" , """layers""" )
if "attn" in name and "pre_assign" not in name:
lowercase = name.replace("""attn""" , """self_attn""" )
if "proj" in name and "self_attn" in name and "text" not in name:
lowercase = name.replace("""proj""" , """out_proj""" )
if "pre_assign_attn.attn.proj" in name:
lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" )
if "norm1" in name:
lowercase = name.replace("""norm1""" , """layer_norm1""" )
if "norm2" in name and "pre_assign" not in name:
lowercase = name.replace("""norm2""" , """layer_norm2""" )
if "img_encoder.norm" in name:
lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" )
# text encoder
if "text_encoder.token_embedding" in name:
lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" )
if "text_encoder.positional_embedding" in name:
lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "text_encoder.transformer.resblocks." in name:
lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" )
if "ln_1" in name:
lowercase = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
lowercase = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
lowercase = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
lowercase = name.replace("""c_proj""" , """fc2""" )
if "text_encoder" in name:
lowercase = name.replace("""text_encoder""" , """text_model""" )
if "ln_final" in name:
lowercase = name.replace("""ln_final""" , """final_layer_norm""" )
# projection layers
if "img_projector.linear_hidden." in name:
lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" )
if "img_projector.linear_out." in name:
lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" )
if "text_projector.linear_hidden" in name:
lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" )
if "text_projector.linear_out" in name:
lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" )
return name
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase = orig_state_dict.pop(lowerCAmelCase__ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowercase = key.split(""".""" )
lowercase , lowercase = int(key_split[2] ), int(key_split[4] )
lowercase = config.vision_config.hidden_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[dim : dim * 2, :]
lowercase = val[-dim:, :]
else:
lowercase = val[:dim]
lowercase = val[dim : dim * 2]
lowercase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowercase = key.split(""".""" )
lowercase = int(key_split[3] )
lowercase = config.text_config.hidden_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[
dim : dim * 2, :
]
lowercase = val[-dim:, :]
else:
lowercase = val[:dim]
lowercase = val[dim : dim * 2]
lowercase = val[-dim:]
else:
lowercase = rename_key(lowerCAmelCase__ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowercase = val.squeeze_()
else:
lowercase = val
return orig_state_dict
def UpperCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str:
'''simple docstring'''
lowercase = GroupViTConfig()
lowercase = GroupViTModel(lowerCAmelCase__ ).eval()
lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""]
lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0)
# verify result
lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
lowercase = prepare_img()
lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" )
with torch.no_grad():
lowercase = model(**lowerCAmelCase__ )
if model_name == "groupvit-gcc-yfcc":
lowercase = torch.tensor([[13.3_523, 6.3_629]] )
elif model_name == "groupvit-gcc-redcaps":
lowercase = torch.tensor([[16.1_873, 8.6_230]] )
else:
raise ValueError(f'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 )
processor.save_pretrained(lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
print("""Successfully saved processor and model to""" , lowerCAmelCase__ )
if push_to_hub:
print("""Pushing to the hub...""" )
processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
if __name__ == "__main__":
__lowerCAmelCase : str =argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
__lowerCAmelCase : int =parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 32
| 1
|
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = """laion/clap-htsat-unfused"""
lowercase = tempfile.mkdtemp()
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return RobertaTokenizer.from_pretrained(self.checkpoint , **__lowerCAmelCase )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_tokenizer()
lowercase = self.get_feature_extractor()
lowercase = ClapProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowercase = ClapProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCAmelCase )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() )
processor.save_pretrained(self.tmpdirname )
lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowercase = self.get_feature_extractor(do_normalize=__lowerCAmelCase , padding_value=1.0 )
lowercase = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCAmelCase )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_feature_extractor()
lowercase = self.get_tokenizer()
lowercase = ClapProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase )
lowercase = floats_list((3, 1000) )
lowercase = feature_extractor(__lowerCAmelCase , return_tensors="""np""" )
lowercase = processor(audios=__lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_feature_extractor()
lowercase = self.get_tokenizer()
lowercase = ClapProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase )
lowercase = """This is a test string"""
lowercase = processor(text=__lowerCAmelCase )
lowercase = tokenizer(__lowerCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_feature_extractor()
lowercase = self.get_tokenizer()
lowercase = ClapProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase )
lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase = processor.batch_decode(__lowerCAmelCase )
lowercase = tokenizer.batch_decode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_feature_extractor()
lowercase = self.get_tokenizer()
lowercase = ClapProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase )
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
| 32
|
"""simple docstring"""
class _A :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = None
lowercase = None
lowercase = graph
self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase )
lowercase = len(__lowerCAmelCase )
lowercase = None
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if sources is int:
lowercase = [sources]
if sinks is int:
lowercase = [sinks]
if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0:
return
lowercase = sources[0]
lowercase = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1:
lowercase = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
lowercase = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
lowercase = max_input_flow
lowercase = 0
lowercase = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
lowercase = max_input_flow
lowercase = size - 1
def A__ ( self ):
"""simple docstring"""
if self.maximum_flow_algorithm is None:
raise Exception("""You need to set maximum flow algorithm before.""" )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = algorithm(self )
class _A :
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = flow_network
lowercase = flow_network.verticesCount
lowercase = flow_network.sourceIndex
lowercase = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
lowercase = flow_network.graph
lowercase = False
def A__ ( self ):
"""simple docstring"""
if not self.executed:
self._algorithm()
lowercase = True
def A__ ( self ):
"""simple docstring"""
pass
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
super().__init__(__lowerCAmelCase )
# use this to save your result
lowercase = -1
def A__ ( self ):
"""simple docstring"""
if not self.executed:
raise Exception("""You should execute algorithm before using its result!""" )
return self.maximum_flow
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
super().__init__(__lowerCAmelCase )
lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )]
lowercase = [0] * self.verticies_count
lowercase = [0] * self.verticies_count
def A__ ( self ):
"""simple docstring"""
lowercase = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
lowercase = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
lowercase = 0
while i < len(__lowerCAmelCase ):
lowercase = vertices_list[i]
lowercase = self.heights[vertex_index]
self.process_vertex(__lowerCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) )
lowercase = 0
else:
i += 1
lowercase = sum(self.preflow[self.source_index] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(__lowerCAmelCase , __lowerCAmelCase )
self.relabel(__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
lowercase = self.heights[to_index]
if min_height is not None:
lowercase = min_height + 1
if __name__ == "__main__":
__lowerCAmelCase : int =[0]
__lowerCAmelCase : List[Any] =[3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
__lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
__lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
__lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow()
print(F"""maximum flow is {maximum_flow}""")
| 32
| 1
|
"""simple docstring"""
import json
import os
import tempfile
from transformers.testing_utils import check_json_file_has_correct_format
class _A :
snake_case__ : Optional[int] = None
def A__ ( self ):
"""simple docstring"""
lowercase = self.feature_extraction_class(**self.feat_extract_dict )
lowercase = json.loads(feat_extract.to_json_string() )
for key, value in self.feat_extract_dict.items():
self.assertEqual(obj[key] , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase = os.path.join(__lowerCAmelCase , """feat_extract.json""" )
feat_extract_first.to_json_file(__lowerCAmelCase )
lowercase = self.feature_extraction_class.from_json_file(__lowerCAmelCase )
self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() )
def A__ ( self ):
"""simple docstring"""
lowercase = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase = feat_extract_first.save_pretrained(__lowerCAmelCase )[0]
check_json_file_has_correct_format(__lowerCAmelCase )
lowercase = self.feature_extraction_class.from_pretrained(__lowerCAmelCase )
self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() )
def A__ ( self ):
"""simple docstring"""
lowercase = self.feature_extraction_class()
self.assertIsNotNone(__lowerCAmelCase )
| 32
|
"""simple docstring"""
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__lowerCAmelCase : List[str] =logging.getLogger(__name__)
__lowerCAmelCase : Dict =tf.data.AUTOTUNE
def UpperCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , )
parser.add_argument(
"""--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , )
parser.add_argument(
"""--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , )
parser.add_argument(
"""--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , )
parser.add_argument(
"""--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , )
parser.add_argument(
"""--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , )
parser.add_argument(
"""--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , )
parser.add_argument(
"""--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , )
parser.add_argument(
"""--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , )
parser.add_argument(
"""--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , )
parser.add_argument(
"""--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , )
parser.add_argument(
"""--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , )
parser.add_argument(
"""--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , )
parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" )
lowercase = parser.parse_args()
return args
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]:
'''simple docstring'''
try:
if args.tpu_name:
lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
lowercase = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(lowerCAmelCase__ )
tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ )
return tpu
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = 0
for file in file_list:
lowercase = file.split("""/""" )[-1]
lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 )
lowercase = int(lowerCAmelCase__ )
num_samples += sample_count
return num_samples
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]:
'''simple docstring'''
lowercase = count_samples(lowerCAmelCase__ )
lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ )
if shuffle:
lowercase = dataset.shuffle(len(lowerCAmelCase__ ) )
lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) )
lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ )
if shuffle:
assert shuffle_buffer_size is not None
lowercase = dataset.shuffle(args.shuffle_buffer_size )
lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ )
lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ )
lowercase = dataset.prefetch(lowerCAmelCase__ )
return dataset
def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]:
'''simple docstring'''
if not args.no_tpu:
lowercase = initialize_tpu(lowerCAmelCase__ )
lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ )
else:
lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
lowercase = AutoTokenizer.from_pretrained(args.tokenizer )
lowercase = AutoConfig.from_pretrained(args.pretrained_model_config )
lowercase = tokenizer.vocab_size
lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) )
if not training_records:
raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' )
lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' )
lowercase = count_samples(lowerCAmelCase__ )
lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
lowercase = steps_per_epoch * args.num_epochs
with strategy.scope():
lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
lowercase , lowercase = create_optimizer(
num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] )
def decode_fn(lowerCAmelCase__ :Any ):
lowercase = {
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
lowercase = DataCollatorForLanguageModeling(
tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" )
def mask_with_collator(lowerCAmelCase__ :Dict ):
# TF really needs an isin() function
lowercase = (
~tf.cast(batch["""attention_mask"""] , tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
lowercase , lowercase = data_collator.tf_mask_tokens(
batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , )
return batch
lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync
lowercase = prepare_dataset(
lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , )
lowercase = prepare_dataset(
lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , )
lowercase = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) )
model.fit(
lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__lowerCAmelCase : Optional[int] =parse_args()
main(args)
| 32
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCAmelCase : str =logging.get_logger(__name__)
__lowerCAmelCase : List[Any] ={
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class _A ( lowerCAmelCase ):
snake_case__ : int = 'convbert'
def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=768 , __lowerCAmelCase=2 , __lowerCAmelCase=9 , __lowerCAmelCase=1 , __lowerCAmelCase=None , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(
pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
lowercase = vocab_size
lowercase = hidden_size
lowercase = num_hidden_layers
lowercase = num_attention_heads
lowercase = intermediate_size
lowercase = hidden_act
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = max_position_embeddings
lowercase = type_vocab_size
lowercase = initializer_range
lowercase = layer_norm_eps
lowercase = embedding_size
lowercase = head_ratio
lowercase = conv_kernel_size
lowercase = num_groups
lowercase = classifier_dropout
class _A ( lowerCAmelCase ):
@property
def A__ ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
lowercase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowercase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 32
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase : List[Any] ={
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[Any] =[
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase : int =logging.get_logger(__name__)
__lowerCAmelCase : Union[str, Any] ={
"""vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""",
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class _A ( lowerCAmelCase ):
snake_case__ : Dict = 'glpn'
def __init__( self , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=[2, 2, 2, 2] , __lowerCAmelCase=[8, 4, 2, 1] , __lowerCAmelCase=[32, 64, 160, 256] , __lowerCAmelCase=[7, 3, 3, 3] , __lowerCAmelCase=[4, 2, 2, 2] , __lowerCAmelCase=[1, 2, 5, 8] , __lowerCAmelCase=[4, 4, 4, 4] , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=64 , __lowerCAmelCase=10 , __lowerCAmelCase=-1 , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(**__lowerCAmelCase )
lowercase = num_channels
lowercase = num_encoder_blocks
lowercase = depths
lowercase = sr_ratios
lowercase = hidden_sizes
lowercase = patch_sizes
lowercase = strides
lowercase = mlp_ratios
lowercase = num_attention_heads
lowercase = hidden_act
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = initializer_range
lowercase = drop_path_rate
lowercase = layer_norm_eps
lowercase = decoder_hidden_size
lowercase = max_depth
lowercase = head_in_index
| 32
|
"""simple docstring"""
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCAmelCase : Tuple ={
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
class _A ( lowerCAmelCase ):
snake_case__ : Dict = 'mask2former'
snake_case__ : Union[str, Any] = ['swin']
snake_case__ : Any = {'hidden_size': 'hidden_dim'}
def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" )
lowercase = CONFIG_MAPPING["""swin"""](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = backbone_config.pop("""model_type""" )
lowercase = CONFIG_MAPPING[backbone_model_type]
lowercase = config_class.from_dict(__lowerCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '
f'Supported model types: {",".join(self.backbones_supported )}' )
lowercase = backbone_config
lowercase = feature_size
lowercase = mask_feature_size
lowercase = hidden_dim
lowercase = encoder_feedforward_dim
lowercase = activation_function
lowercase = encoder_layers
lowercase = decoder_layers
lowercase = num_attention_heads
lowercase = dropout
lowercase = dim_feedforward
lowercase = pre_norm
lowercase = enforce_input_projection
lowercase = common_stride
lowercase = ignore_value
lowercase = num_queries
lowercase = no_object_weight
lowercase = class_weight
lowercase = mask_weight
lowercase = dice_weight
lowercase = train_num_points
lowercase = oversample_ratio
lowercase = importance_sample_ratio
lowercase = init_std
lowercase = init_xavier_std
lowercase = use_auxiliary_loss
lowercase = feature_strides
lowercase = output_auxiliary_logits
lowercase = decoder_layers
super().__init__(**__lowerCAmelCase )
@classmethod
def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return cls(
backbone_config=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
lowercase = copy.deepcopy(self.__dict__ )
lowercase = self.backbone_config.to_dict()
lowercase = self.__class__.model_type
return output
| 32
| 1
|
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class _A ( lowerCAmelCase ):
snake_case__ : List[str] = (DEISMultistepScheduler,)
snake_case__ : Union[str, Any] = (('num_inference_steps', 25),)
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""solver_order""": 2,
}
config.update(**__lowerCAmelCase )
return config
def A__ ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = dict(self.forward_default_kwargs )
lowercase = kwargs.pop("""num_inference_steps""" , __lowerCAmelCase )
lowercase = self.dummy_sample
lowercase = 0.1 * sample
lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowercase = self.get_scheduler_config(**__lowerCAmelCase )
lowercase = scheduler_class(**__lowerCAmelCase )
scheduler.set_timesteps(__lowerCAmelCase )
# copy over dummy past residuals
lowercase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowerCAmelCase )
lowercase = scheduler_class.from_pretrained(__lowerCAmelCase )
new_scheduler.set_timesteps(__lowerCAmelCase )
# copy over dummy past residuals
lowercase = dummy_past_residuals[: new_scheduler.config.solver_order]
lowercase , lowercase = sample, sample
for t in range(__lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ):
lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample
lowercase = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def A__ ( self ):
"""simple docstring"""
pass
def A__ ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = dict(self.forward_default_kwargs )
lowercase = kwargs.pop("""num_inference_steps""" , __lowerCAmelCase )
lowercase = self.dummy_sample
lowercase = 0.1 * sample
lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowercase = self.get_scheduler_config()
lowercase = scheduler_class(**__lowerCAmelCase )
scheduler.set_timesteps(__lowerCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__lowerCAmelCase )
lowercase = scheduler_class.from_pretrained(__lowerCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__lowerCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase = dummy_past_residuals[: new_scheduler.config.solver_order]
lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample
lowercase = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def A__ ( self , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
if scheduler is None:
lowercase = self.scheduler_classes[0]
lowercase = self.get_scheduler_config(**__lowerCAmelCase )
lowercase = scheduler_class(**__lowerCAmelCase )
lowercase = self.scheduler_classes[0]
lowercase = self.get_scheduler_config(**__lowerCAmelCase )
lowercase = scheduler_class(**__lowerCAmelCase )
lowercase = 10
lowercase = self.dummy_model()
lowercase = self.dummy_sample_deter
scheduler.set_timesteps(__lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase = model(__lowerCAmelCase , __lowerCAmelCase )
lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample
return sample
def A__ ( self ):
"""simple docstring"""
lowercase = dict(self.forward_default_kwargs )
lowercase = kwargs.pop("""num_inference_steps""" , __lowerCAmelCase )
for scheduler_class in self.scheduler_classes:
lowercase = self.get_scheduler_config()
lowercase = scheduler_class(**__lowerCAmelCase )
lowercase = self.dummy_sample
lowercase = 0.1 * sample
if num_inference_steps is not None and hasattr(__lowerCAmelCase , """set_timesteps""" ):
scheduler.set_timesteps(__lowerCAmelCase )
elif num_inference_steps is not None and not hasattr(__lowerCAmelCase , """set_timesteps""" ):
lowercase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
lowercase = dummy_past_residuals[: scheduler.config.solver_order]
lowercase = scheduler.timesteps[5]
lowercase = scheduler.timesteps[6]
lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample
lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def A__ ( self ):
"""simple docstring"""
lowercase = DEISMultistepScheduler(**self.get_scheduler_config() )
lowercase = self.full_loop(scheduler=__lowerCAmelCase )
lowercase = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3
lowercase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
lowercase = DPMSolverMultistepScheduler.from_config(scheduler.config )
lowercase = UniPCMultistepScheduler.from_config(scheduler.config )
lowercase = DEISMultistepScheduler.from_config(scheduler.config )
lowercase = self.full_loop(scheduler=__lowerCAmelCase )
lowercase = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3
def A__ ( self ):
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
self.check_over_configs(thresholding=__lowerCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , algorithm_type="""deis""" , solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , algorithm_type=__lowerCAmelCase , )
lowercase = self.full_loop(
solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , algorithm_type=__lowerCAmelCase , )
assert not torch.isnan(__lowerCAmelCase ).any(), "Samples have nan numbers"
def A__ ( self ):
"""simple docstring"""
self.check_over_configs(lower_order_final=__lowerCAmelCase )
self.check_over_configs(lower_order_final=__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__lowerCAmelCase , time_step=0 )
def A__ ( self ):
"""simple docstring"""
lowercase = self.full_loop()
lowercase = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1E-3
def A__ ( self ):
"""simple docstring"""
lowercase = self.full_loop(prediction_type="""v_prediction""" )
lowercase = torch.mean(torch.abs(__lowerCAmelCase ) )
assert abs(result_mean.item() - 0.0_9_1 ) < 1E-3
def A__ ( self ):
"""simple docstring"""
lowercase = self.scheduler_classes[0]
lowercase = self.get_scheduler_config(thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0 )
lowercase = scheduler_class(**__lowerCAmelCase )
lowercase = 10
lowercase = self.dummy_model()
lowercase = self.dummy_sample_deter.half()
scheduler.set_timesteps(__lowerCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase = model(__lowerCAmelCase , __lowerCAmelCase )
lowercase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
| 32
|
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ )
return new.join(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = {}
lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' )
if "res_path" in key:
lowercase = key.replace("""res_path.""" , """res_path.path.""" )
if key.endswith(""".w""" ):
lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 )
if key.endswith(""".b""" ):
lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 )
lowercase = value.float()
return upgrade
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any:
'''simple docstring'''
from dall_e import Encoder
lowercase = Encoder()
if os.path.exists(lowerCAmelCase__ ):
lowercase = torch.load(lowerCAmelCase__ )
else:
lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = ckpt.state_dict()
encoder.load_state_dict(lowerCAmelCase__ )
if config_path is not None:
lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ )
else:
lowercase = FlavaImageCodebookConfig()
lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval()
lowercase = encoder.state_dict()
lowercase = upgrade_state_dict(lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
lowercase = hf_model.state_dict()
lowercase = count_parameters(lowerCAmelCase__ )
lowercase = count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(lowerCAmelCase__ )
else:
return hf_state_dict
if __name__ == "__main__":
__lowerCAmelCase : Tuple =argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
__lowerCAmelCase : Any =parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 32
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bart import BartTokenizer
__lowerCAmelCase : Tuple =logging.get_logger(__name__)
__lowerCAmelCase : Optional[Any] ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
# See all BART models at https://huggingface.co/models?filter=bart
__lowerCAmelCase : Optional[Any] ={
"""vocab_file""": {
"""facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""",
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""",
"""facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""",
"""facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""",
"""facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""",
"""yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""",
},
"""merges_file""": {
"""facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""",
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""",
"""facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""",
"""facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""",
"""facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""",
"""yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""",
"""facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""",
"""facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""",
"""facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""",
"""facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""",
"""yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""",
},
}
__lowerCAmelCase : Union[str, Any] ={
"""facebook/bart-base""": 1_0_2_4,
"""facebook/bart-large""": 1_0_2_4,
"""facebook/bart-large-mnli""": 1_0_2_4,
"""facebook/bart-large-cnn""": 1_0_2_4,
"""facebook/bart-large-xsum""": 1_0_2_4,
"""yjernite/bart_eli5""": 1_0_2_4,
}
class _A ( lowerCAmelCase ):
snake_case__ : List[Any] = VOCAB_FILES_NAMES
snake_case__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ : int = ['input_ids', 'attention_mask']
snake_case__ : int = BartTokenizer
def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="replace" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(
__lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , )
lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space:
lowercase = getattr(__lowerCAmelCase , pre_tok_state.pop("""type""" ) )
lowercase = add_prefix_space
lowercase = pre_tok_class(**__lowerCAmelCase )
lowercase = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
lowercase = """post_processor"""
lowercase = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase )
if tokenizer_component_instance:
lowercase = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase = tuple(state["""sep"""] )
if "cls" in state:
lowercase = tuple(state["""cls"""] )
lowercase = False
if state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space:
lowercase = add_prefix_space
lowercase = True
if state.get("""trim_offsets""" , __lowerCAmelCase ) != trim_offsets:
lowercase = trim_offsets
lowercase = True
if changes_to_apply:
lowercase = getattr(__lowerCAmelCase , state.pop("""type""" ) )
lowercase = component_class(**__lowerCAmelCase )
setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase )
@property
def A__ ( self ):
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value
lowercase = value
def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = kwargs.get("""is_split_into_words""" , __lowerCAmelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"""to use it with pretokenized inputs.""" )
return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = kwargs.get("""is_split_into_words""" , __lowerCAmelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"""to use it with pretokenized inputs.""" )
return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
lowercase = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase )
return tuple(__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ):
"""simple docstring"""
lowercase = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
lowercase = [self.sep_token_id]
lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 32
|
"""simple docstring"""
import enum
import shutil
import sys
__lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size()
__lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""}
class _A ( enum.Enum ):
snake_case__ : Tuple = 0
snake_case__ : List[str] = 1
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]:
'''simple docstring'''
sys.stdout.write(str(lowerCAmelCase__ ) + end )
sys.stdout.flush()
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]:
'''simple docstring'''
forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
forceWrite("""\r""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def UpperCAmelCase__ ( ) -> int:
'''simple docstring'''
forceWrite(""" """ * TERMINAL_WIDTH )
reset_cursor()
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
reset_cursor()
forceWrite("""-""" * TERMINAL_WIDTH )
| 32
| 1
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> str:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
lowercase = str(bin(lowerCAmelCase__ ) )[2:] # remove the leading "0b"
lowercase = str(bin(lowerCAmelCase__ ) )[2:] # remove the leading "0b"
lowercase = max(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase__ ) , b_binary.zfill(lowerCAmelCase__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""only integers accepted as input""" )
else:
lowercase = str(abs(lowerCAmelCase__ ) )
lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )]
for index in range(len(lowerCAmelCase__ ) ):
num_transpositions[index].pop(lowerCAmelCase__ )
return max(
int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 32
| 1
|
"""simple docstring"""
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__lowerCAmelCase : Any =datasets.load_iris()
__lowerCAmelCase : Union[str, Any] =np.array(data["""data"""])
__lowerCAmelCase : Dict =np.array(data["""target"""])
__lowerCAmelCase : Optional[int] =data["""target_names"""]
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any =train_test_split(X, y)
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> Dict:
'''simple docstring'''
return np.linalg.norm(np.array(lowerCAmelCase__ ) - np.array(lowerCAmelCase__ ) )
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=5 ) -> Tuple:
'''simple docstring'''
lowercase = zip(lowerCAmelCase__ , lowerCAmelCase__ )
# List of distances of all points from the point to be classified
lowercase = []
for data_point in data:
lowercase = euclidean_distance(data_point[0] , lowerCAmelCase__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
lowercase = [i[1] for i in sorted(lowerCAmelCase__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
lowercase = Counter(lowerCAmelCase__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 32
|
"""simple docstring"""
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
__lowerCAmelCase : List[Any] =numpy.array([0, 0])
__lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254])
__lowerCAmelCase : List[Any] =numpy.array([1, 0])
__lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]:
'''simple docstring'''
lowercase = initial_vectors
for _ in range(lowerCAmelCase__ ):
lowercase = iteration_step(lowerCAmelCase__ )
return vectors
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]:
'''simple docstring'''
lowercase = []
for i, start_vector in enumerate(vectors[:-1] ):
lowercase = vectors[i + 1]
new_vectors.append(lowerCAmelCase__ )
lowercase = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray:
'''simple docstring'''
lowercase = numpy.radians(lowerCAmelCase__ )
lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ )
lowercase = numpy.array(((c, -s), (s, c)) )
return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None:
'''simple docstring'''
lowercase = plt.gca()
axes.set_aspect("""equal""" )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
lowercase , lowercase = zip(*lowerCAmelCase__ )
plt.plot(lowerCAmelCase__ , lowerCAmelCase__ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 32
| 1
|
"""simple docstring"""
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
__lowerCAmelCase : Optional[Any] ="""<<<<<<< This should probably be modified because it mentions: """
__lowerCAmelCase : Optional[Any] ="""=======
>>>>>>>
"""
__lowerCAmelCase : Tuple =[
"""TextEncoderConfig""",
"""ByteTextEncoder""",
"""SubwordTextEncoder""",
"""encoder_config""",
"""maybe_build_from_corpus""",
"""manual_dir""",
]
__lowerCAmelCase : Any =[
# (pattern, replacement)
# Order is important here for some replacements
(R"""tfds\.core""", R"""datasets"""),
(R"""tf\.io\.gfile\.GFile""", R"""open"""),
(R"""tf\.([\w\d]+)""", R"""datasets.Value('\1')"""),
(R"""tfds\.features\.Text\(\)""", R"""datasets.Value('string')"""),
(R"""tfds\.features\.Text\(""", R"""datasets.Value('string'),"""),
(R"""features\s*=\s*tfds.features.FeaturesDict\(""", R"""features=datasets.Features("""),
(R"""tfds\.features\.FeaturesDict\(""", R"""dict("""),
(R"""The TensorFlow Datasets Authors""", R"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""),
(R"""tfds\.""", R"""datasets."""),
(R"""dl_manager\.manual_dir""", R"""self.config.data_dir"""),
(R"""self\.builder_config""", R"""self.config"""),
]
def UpperCAmelCase__ ( lowerCAmelCase__ :Namespace ) -> Dict:
'''simple docstring'''
return ConvertCommand(args.tfds_path , args.datasets_directory )
class _A ( lowerCAmelCase ):
@staticmethod
def A__ ( __lowerCAmelCase ):
"""simple docstring"""
lowercase = parser.add_parser(
"""convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , )
train_parser.add_argument(
"""--tfds_path""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , )
train_parser.add_argument(
"""--datasets_directory""" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Path to the HuggingFace Datasets folder.""" )
train_parser.set_defaults(func=__lowerCAmelCase )
def __init__( self , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ):
"""simple docstring"""
lowercase = get_logger("""datasets-cli/converting""" )
lowercase = tfds_path
lowercase = datasets_directory
def A__ ( self ):
"""simple docstring"""
if os.path.isdir(self._tfds_path ):
lowercase = os.path.abspath(self._tfds_path )
elif os.path.isfile(self._tfds_path ):
lowercase = os.path.dirname(self._tfds_path )
else:
raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" )
lowercase = os.path.abspath(self._datasets_directory )
self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' )
lowercase = []
lowercase = []
lowercase = {}
if os.path.isdir(self._tfds_path ):
lowercase = os.listdir(__lowerCAmelCase )
else:
lowercase = [os.path.basename(self._tfds_path )]
for f_name in file_names:
self._logger.info(f'Looking at file {f_name}' )
lowercase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
lowercase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if not os.path.isfile(__lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info("""Skipping file""" )
continue
with open(__lowerCAmelCase , encoding="""utf-8""" ) as f:
lowercase = f.readlines()
lowercase = []
lowercase = False
lowercase = False
lowercase = []
for line in lines:
lowercase = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
lowercase = """import datasets\n"""
elif "import tensorflow" in out_line:
# order is important here
lowercase = """"""
continue
elif "from absl import logging" in out_line:
lowercase = """from datasets import logging\n"""
elif "getLogger" in out_line:
lowercase = out_line.replace("""getLogger""" , """get_logger""" )
elif any(expression in out_line for expression in TO_HIGHLIGHT ):
lowercase = True
lowercase = list(filter(lambda __lowerCAmelCase : e in out_line , __lowerCAmelCase ) )
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCAmelCase ) + """\n""" )
out_lines.append(__lowerCAmelCase )
out_lines.append(__lowerCAmelCase )
continue
else:
for pattern, replacement in TO_CONVERT:
lowercase = re.sub(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
lowercase = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , __lowerCAmelCase )
tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) )
lowercase = """from . import """ + match.group(1 )
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(f'Error converting {out_line.strip()}' )
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
lowercase = True
out_lines.append(__lowerCAmelCase )
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
lowercase = f_name.replace(""".py""" , """""" )
lowercase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
lowercase = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
self._logger.info(f'Adding directory {output_dir}' )
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} )
else:
# Utilities will be moved at the end
utils_files.append(__lowerCAmelCase )
if needs_manual_update:
with_manual_update.append(__lowerCAmelCase )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.writelines(__lowerCAmelCase )
self._logger.info(f'Converted in {output_file}' )
for utils_file in utils_files:
try:
lowercase = os.path.basename(__lowerCAmelCase )
lowercase = imports_to_builder_map[f_name.replace(""".py""" , """""" )]
self._logger.info(f'Moving {dest_folder} to {utils_file}' )
shutil.copy(__lowerCAmelCase , __lowerCAmelCase )
except KeyError:
self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' )
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = credit_card_number
lowercase = 0
lowercase = len(lowerCAmelCase__ ) - 2
for i in range(lowerCAmelCase__ , -1 , -2 ):
# double the value of every second digit
lowercase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 1_0
digit += 1
lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 1_0 == 0
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = f'{credit_card_number} is an invalid credit card number because'
if not credit_card_number.isdigit():
print(f'{error_message} it has nonnumerical characters.' )
return False
if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6:
print(f'{error_message} of its length.' )
return False
if not validate_initial_digits(lowerCAmelCase__ ):
print(f'{error_message} of its first two digits.' )
return False
if not luhn_validation(lowerCAmelCase__ ):
print(f'{error_message} it fails the Luhn check.' )
return False
print(f'{credit_card_number} is a valid credit card number.' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 32
| 1
|
"""simple docstring"""
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class _A :
def __init__( self , __lowerCAmelCase , ):
"""simple docstring"""
lowercase = parent
lowercase = 13
lowercase = 7
lowercase = 30
lowercase = self.seq_length + self.mem_len
lowercase = 15
lowercase = True
lowercase = True
lowercase = 99
lowercase = [10, 50, 80]
lowercase = 32
lowercase = 32
lowercase = 4
lowercase = 8
lowercase = 128
lowercase = 2
lowercase = 2
lowercase = None
lowercase = 1
lowercase = 0
lowercase = 3
lowercase = self.vocab_size - 1
lowercase = 0.0_1
def A__ ( self ):
"""simple docstring"""
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase = None
if self.use_labels:
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def A__ ( self ):
"""simple docstring"""
random.seed(self.seed )
tf.random.set_seed(self.seed )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = TFTransfoXLModel(__lowerCAmelCase )
lowercase , lowercase = model(__lowerCAmelCase ).to_tuple()
lowercase = {"""input_ids""": input_ids_a, """mems""": mems_a}
lowercase , lowercase = model(__lowerCAmelCase ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = TFTransfoXLLMHeadModel(__lowerCAmelCase )
lowercase , lowercase = model(__lowerCAmelCase ).to_tuple()
lowercase = {"""input_ids""": input_ids_a, """labels""": lm_labels}
lowercase , lowercase = model(__lowerCAmelCase ).to_tuple()
lowercase , lowercase = model([input_ids_a, mems_a] ).to_tuple()
lowercase = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels}
lowercase , lowercase = model(__lowerCAmelCase ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = TFTransfoXLForSequenceClassification(__lowerCAmelCase )
lowercase = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self ):
"""simple docstring"""
lowercase = self.prepare_config_and_inputs()
((lowercase) , (lowercase) , (lowercase) , (lowercase)) = config_and_inputs
lowercase = {"""input_ids""": input_ids_a}
return config, inputs_dict
@require_tf
class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
snake_case__ : List[Any] = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
snake_case__ : List[str] = () if is_tf_available() else ()
snake_case__ : Tuple = (
{
'feature-extraction': TFTransfoXLModel,
'text-classification': TFTransfoXLForSequenceClassification,
'text-generation': TFTransfoXLLMHeadModel,
'zero-shot': TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
snake_case__ : List[str] = False
snake_case__ : List[Any] = False
snake_case__ : List[Any] = False
snake_case__ : Optional[int] = False
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def A__ ( self ):
"""simple docstring"""
lowercase = TFTransfoXLModelTester(self )
lowercase = ConfigTester(self , config_class=__lowerCAmelCase , d_embed=37 )
def A__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def A__ ( self ):
"""simple docstring"""
self.model_tester.set_seed()
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
self.model_tester.set_seed()
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common()
lowercase = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
lowercase = model_class(__lowerCAmelCase )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
lowercase = model.get_output_embeddings()
assert isinstance(__lowerCAmelCase , tf.keras.layers.Layer )
lowercase = model.get_bias()
assert name is None
else:
lowercase = model.get_output_embeddings()
assert x is None
lowercase = model.get_bias()
assert name is None
def A__ ( self ):
"""simple docstring"""
pass
@slow
def A__ ( self ):
"""simple docstring"""
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase = TFTransfoXLModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
@unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" )
def A__ ( self ):
"""simple docstring"""
pass
@require_tf
class _A ( unittest.TestCase ):
@unittest.skip("""Skip test until #12651 is resolved.""" )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" )
# fmt: off
lowercase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
lowercase = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
lowercase = model.generate(__lowerCAmelCase , max_length=200 , do_sample=__lowerCAmelCase )
self.assertListEqual(output_ids[0].numpy().tolist() , __lowerCAmelCase )
| 32
|
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def A__ ( self ):
"""simple docstring"""
lowercase = 1
lowercase = 3
lowercase = (32, 32)
lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase )
return image
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(__lowerCAmelCase )
@property
def A__ ( self ):
"""simple docstring"""
def extract(*__lowerCAmelCase , **__lowerCAmelCase ):
class _A :
def __init__( self ):
"""simple docstring"""
lowercase = torch.ones([0] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
self.pixel_values.to(__lowerCAmelCase )
return self
return Out()
return extract
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase = self.dummy_cond_unet
lowercase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
lowercase = output.images
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase = self.dummy_cond_unet
lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
lowercase = output.images
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase )
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
assert isinstance(pipe.scheduler , __lowerCAmelCase )
assert pipe.safety_checker is None
lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCAmelCase )
lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def A__ ( self ):
"""simple docstring"""
lowercase = self.dummy_cond_unet
lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
lowercase = unet.half()
lowercase = vae.half()
lowercase = bert.half()
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase )
lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
lowercase = 40_0366_0346
lowercase = 7
# without safety guidance (sld_guidance_scale = 0)
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase )
lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """padme amidala taking a bath artwork, safe for work, no nudity"""
lowercase = 27_3497_1755
lowercase = 7
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
lowercase = 10_4435_5234
lowercase = 12
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 32
| 1
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> list:
'''simple docstring'''
return [
txt[:a] + txt[a].upper() + txt[a + 1 :]
for a in range(len(lowerCAmelCase__ ) )
if txt[a].isalpha()
]
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]:
'''simple docstring'''
lowercase = current_set.copy()
for row_index, row in enumerate(lowerCAmelCase__ ):
lowercase = row[0]
for column_index, column in enumerate(lowerCAmelCase__ ):
if magnitude == 0:
lowercase = column
continue
lowercase = column / magnitude
# Subtract to cancel term
lowercase = current_set[0]
lowercase = [first_row]
lowercase = current_set[1::]
for row in current_set:
lowercase = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(lowerCAmelCase__ )
continue
for column_index in range(len(lowerCAmelCase__ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(lowerCAmelCase__ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
lowercase = final_set[0]
lowercase = []
lowercase = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
lowercase = simplify(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , lowerCAmelCase__ )
lowercase = resultant
return final_set
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list:
'''simple docstring'''
if len(lowerCAmelCase__ ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
lowercase = len(lowerCAmelCase__ ) + 1
if any(len(lowerCAmelCase__ ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(lowerCAmelCase__ ) == 1:
return [equations[0][-1] / equations[0][0]]
lowercase = equations.copy()
if any(0 in row for row in data_set ):
lowercase = data_set.copy()
lowercase = []
for row_index, row in enumerate(lowerCAmelCase__ ):
if 0 not in row:
lowercase = data_set.pop(lowerCAmelCase__ )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 , lowerCAmelCase__ )
lowercase = data_set.copy()
lowercase = simplify(lowerCAmelCase__ )
lowercase = simplified[::-1]
lowercase = []
for row in simplified:
lowercase = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(lowerCAmelCase__ ) == 0:
solutions.append(0 )
continue
lowercase = temp_row[1::]
lowercase = temp_row[::-1]
for column_index, column in enumerate(lowerCAmelCase__ ):
current_solution -= column * solutions[column_index]
solutions.append(lowerCAmelCase__ )
lowercase = []
for item in solutions:
final.append(float(round(lowerCAmelCase__ , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : List[str] =[
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 32
| 1
|
"""simple docstring"""
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
__lowerCAmelCase : Optional[Any] ="""\
@inproceedings{lin-2004-rouge,
title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",
author = \"Lin, Chin-Yew\",
booktitle = \"Text Summarization Branches Out\",
month = jul,
year = \"2004\",
address = \"Barcelona, Spain\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W04-1013\",
pages = \"74--81\",
}
"""
__lowerCAmelCase : Optional[Any] ="""\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
"""
__lowerCAmelCase : List[str] ="""
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,
`\"rougeL\"`: Longest common subsequence based scoring.
`\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
Examples:
>>> rouge = datasets.load_metric('rouge')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results[\"rouge1\"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results[\"rouge1\"].mid.fmeasure)
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
def A__ ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/ROUGE_(metric)""",
"""https://github.com/google-research/google-research/tree/master/rouge""",
] , )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False ):
"""simple docstring"""
if rouge_types is None:
lowercase = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""]
lowercase = rouge_scorer.RougeScorer(rouge_types=__lowerCAmelCase , use_stemmer=__lowerCAmelCase )
if use_aggregator:
lowercase = scoring.BootstrapAggregator()
else:
lowercase = []
for ref, pred in zip(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = scorer.score(__lowerCAmelCase , __lowerCAmelCase )
if use_aggregator:
aggregator.add_scores(__lowerCAmelCase )
else:
scores.append(__lowerCAmelCase )
if use_aggregator:
lowercase = aggregator.aggregate()
else:
lowercase = {}
for key in scores[0]:
lowercase = [score[key] for score in scores]
return result
| 32
|
"""simple docstring"""
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase )
class _A ( lowerCAmelCase ):
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def A__ ( self , __lowerCAmelCase=None ):
"""simple docstring"""
lowercase = {}
if top_k is not None:
lowercase = top_k
return {}, {}, postprocess_params
def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return super().__call__(__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = load_image(__lowerCAmelCase )
lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework )
return model_inputs
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = self.model(**__lowerCAmelCase )
return model_outputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
lowercase = self.model.config.num_labels
if self.framework == "pt":
lowercase = model_outputs.logits.softmax(-1 )[0]
lowercase , lowercase = probs.topk(__lowerCAmelCase )
elif self.framework == "tf":
lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0]
lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase )
lowercase , lowercase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
lowercase = scores.tolist()
lowercase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
| 32
| 1
|
"""simple docstring"""
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
__lowerCAmelCase : Tuple =threading.Lock()
__lowerCAmelCase : Optional[logging.Handler] =None
__lowerCAmelCase : Union[str, Any] ={
"""debug""": logging.DEBUG,
"""info""": logging.INFO,
"""warning""": logging.WARNING,
"""error""": logging.ERROR,
"""critical""": logging.CRITICAL,
}
__lowerCAmelCase : List[Any] =logging.WARNING
__lowerCAmelCase : List[Any] =True
def UpperCAmelCase__ ( ) -> int:
'''simple docstring'''
lowercase = os.getenv("""TRANSFORMERS_VERBOSITY""" , lowerCAmelCase__ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, '
f'has to be one of: { ", ".join(log_levels.keys() ) }' )
return _default_log_level
def UpperCAmelCase__ ( ) -> str:
'''simple docstring'''
return __name__.split(""".""" )[0]
def UpperCAmelCase__ ( ) -> logging.Logger:
'''simple docstring'''
return logging.getLogger(_get_library_name() )
def UpperCAmelCase__ ( ) -> None:
'''simple docstring'''
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
lowercase = logging.StreamHandler() # Set sys.stderr as stream.
lowercase = sys.stderr.flush
# Apply our default configuration to the library root logger.
lowercase = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
lowercase = False
def UpperCAmelCase__ ( ) -> None:
'''simple docstring'''
global _default_handler
with _lock:
if not _default_handler:
return
lowercase = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
lowercase = None
def UpperCAmelCase__ ( ) -> str:
'''simple docstring'''
return log_levels
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[str] = None ) -> logging.Logger:
'''simple docstring'''
if name is None:
lowercase = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> int:
'''simple docstring'''
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> None:
'''simple docstring'''
_configure_library_root_logger()
_get_library_root_logger().setLevel(lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
return set_verbosity(lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> Optional[int]:
'''simple docstring'''
return set_verbosity(lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> str:
'''simple docstring'''
return set_verbosity(lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> str:
'''simple docstring'''
return set_verbosity(lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> None:
'''simple docstring'''
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def UpperCAmelCase__ ( ) -> None:
'''simple docstring'''
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def UpperCAmelCase__ ( lowerCAmelCase__ :logging.Handler ) -> None:
'''simple docstring'''
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :logging.Handler ) -> None:
'''simple docstring'''
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> None:
'''simple docstring'''
_configure_library_root_logger()
lowercase = False
def UpperCAmelCase__ ( ) -> None:
'''simple docstring'''
_configure_library_root_logger()
lowercase = True
def UpperCAmelCase__ ( ) -> None:
'''simple docstring'''
lowercase = _get_library_root_logger().handlers
for handler in handlers:
lowercase = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" )
handler.setFormatter(lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> None:
'''simple docstring'''
lowercase = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(lowerCAmelCase__ )
def UpperCAmelCase__ ( self :Optional[Any] , *lowerCAmelCase__ :Dict , **lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
lowercase = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , lowerCAmelCase__ )
if no_advisory_warnings:
return
self.warning(*lowerCAmelCase__ , **lowerCAmelCase__ )
__lowerCAmelCase : Optional[int] =warning_advice
@functools.lru_cache(lowerCAmelCase__ )
def UpperCAmelCase__ ( self :Union[str, Any] , *lowerCAmelCase__ :List[str] , **lowerCAmelCase__ :Dict ) -> Union[str, Any]:
'''simple docstring'''
self.warning(*lowerCAmelCase__ , **lowerCAmelCase__ )
__lowerCAmelCase : int =warning_once
class _A :
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): # pylint: disable=unused-argument
"""simple docstring"""
lowercase = args[0] if args else None
def __iter__( self ):
"""simple docstring"""
return iter(self._iterator )
def __getattr__( self , __lowerCAmelCase ):
"""simple docstring"""
def empty_fn(*__lowerCAmelCase , **__lowerCAmelCase ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self ):
"""simple docstring"""
return self
def __exit__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
return
class _A :
def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm(*__lowerCAmelCase , **__lowerCAmelCase )
else:
return EmptyTqdm(*__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
__lowerCAmelCase : Optional[int] =_tqdm_cls()
def UpperCAmelCase__ ( ) -> bool:
'''simple docstring'''
global _tqdm_active
return bool(_tqdm_active )
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
global _tqdm_active
lowercase = True
hf_hub_utils.enable_progress_bars()
def UpperCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
global _tqdm_active
lowercase = False
hf_hub_utils.disable_progress_bars()
| 32
|
"""simple docstring"""
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"""The `image_to_image.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionImg2ImgPipeline` instead."""
)
| 32
| 1
|
"""simple docstring"""
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class _A ( lowerCAmelCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCAmelCase , """tf_padding""" ) )
self.parent.assertTrue(hasattr(__lowerCAmelCase , """depth_multiplier""" ) )
class _A :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=3 , __lowerCAmelCase=32 , __lowerCAmelCase=0.2_5 , __lowerCAmelCase=8 , __lowerCAmelCase=8 , __lowerCAmelCase=6 , __lowerCAmelCase=32 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="relu6" , __lowerCAmelCase=1280 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=10 , __lowerCAmelCase=None , ):
"""simple docstring"""
lowercase = parent
lowercase = batch_size
lowercase = num_channels
lowercase = image_size
lowercase = depth_multiplier
lowercase = depth_divisible_by
lowercase = min_depth
lowercase = expand_ratio
lowercase = tf_padding
lowercase = output_stride
lowercase = first_layer_is_expansion
lowercase = finegrained_output
lowercase = hidden_act
lowercase = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
lowercase = classifier_dropout_prob
lowercase = use_labels
lowercase = is_training
lowercase = num_labels
lowercase = initializer_range
lowercase = scope
def A__ ( self ):
"""simple docstring"""
lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase = None
lowercase = None
if self.use_labels:
lowercase = ids_tensor([self.batch_size] , self.num_labels )
lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
lowercase = self.get_config()
return config, pixel_values, labels, pixel_labels
def A__ ( self ):
"""simple docstring"""
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = MobileNetVaModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowercase = model(__lowerCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
self.parent.assertEqual(
result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = self.num_labels
lowercase = MobileNetVaForImageClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = self.num_labels
lowercase = MobileNetVaForSemanticSegmentation(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowercase = model(__lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
lowercase = model(__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def A__ ( self ):
"""simple docstring"""
lowercase = self.prepare_config_and_inputs()
lowercase , lowercase , lowercase , lowercase = config_and_inputs
lowercase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
snake_case__ : Any = (
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
snake_case__ : Optional[int] = (
{
'feature-extraction': MobileNetVaModel,
'image-classification': MobileNetVaForImageClassification,
'image-segmentation': MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
snake_case__ : int = False
snake_case__ : List[Any] = False
snake_case__ : Optional[int] = False
snake_case__ : Tuple = False
def A__ ( self ):
"""simple docstring"""
lowercase = MobileNetVaModelTester(self )
lowercase = MobileNetVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" )
def A__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" )
def A__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason="""MobileNetV2 does not output attentions""" )
def A__ ( self ):
"""simple docstring"""
pass
def A__ ( self ):
"""simple docstring"""
lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase = model_class(__lowerCAmelCase )
lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase = [*signature.parameters.keys()]
lowercase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
lowercase = model_class(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
with torch.no_grad():
lowercase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) )
lowercase = outputs.hidden_states
lowercase = 16
self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase )
lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase = True
check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase = True
check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase = MobileNetVaModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
def UpperCAmelCase__ ( ) -> List[Any]:
'''simple docstring'''
lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _A ( unittest.TestCase ):
@cached_property
def A__ ( self ):
"""simple docstring"""
return (
MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None
)
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__lowerCAmelCase )
lowercase = self.default_image_processor
lowercase = prepare_img()
lowercase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase )
# forward pass
with torch.no_grad():
lowercase = model(**__lowerCAmelCase )
# verify the logits
lowercase = torch.Size((1, 1001) )
self.assertEqual(outputs.logits.shape , __lowerCAmelCase )
lowercase = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(__lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" )
lowercase = model.to(__lowerCAmelCase )
lowercase = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" )
lowercase = prepare_img()
lowercase = image_processor(images=__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase )
# forward pass
with torch.no_grad():
lowercase = model(**__lowerCAmelCase )
lowercase = outputs.logits
# verify the logits
lowercase = torch.Size((1, 21, 65, 65) )
self.assertEqual(logits.shape , __lowerCAmelCase )
lowercase = torch.tensor(
[
[[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]],
[[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]],
[[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]],
] , device=__lowerCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1E-4 ) )
| 32
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : Optional[int] = GPTSanJapaneseTokenizer
snake_case__ : int = False
snake_case__ : Tuple = {'do_clean_text': False, 'add_prefix_space': False}
def A__ ( self ):
"""simple docstring"""
super().setUp()
# fmt: off
lowercase = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""]
# fmt: on
lowercase = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀
lowercase = {"""unk_token""": """<unk>"""}
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
with open(self.emoji_file , """w""" ) as emoji_writer:
emoji_writer.write(json.dumps(__lowerCAmelCase ) )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = """こんにちは、世界。 \nこんばんは、㔺界。😀"""
lowercase = """こんにちは、世界。 \nこんばんは、世界。😀"""
return input_text, output_text
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase , lowercase = self.get_input_output_texts(__lowerCAmelCase )
lowercase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
return text, ids
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
pass # TODO add if relevant
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_tokenizer()
# Testing tokenization
lowercase = """こんにちは、世界。 こんばんは、㔺界。"""
lowercase = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""]
lowercase = tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# Testing conversion to ids without special tokens
lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# Testing conversion to ids with special tokens
lowercase = tokens + [tokenizer.unk_token]
lowercase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
lowercase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_tokenizer()
# Testing tokenization
lowercase = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。"""
lowercase = """こんにちは、、、、世界。こんばんは、、、、世界。"""
lowercase = tokenizer.encode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
lowercase = """こんにちは、世界。"""
lowercase = """こんばんは、㔺界。😀"""
lowercase = """こんにちは、世界。こんばんは、世界。😀"""
lowercase = tokenizer.encode(prefix_text + input_text )
lowercase = tokenizer.encode("""""" , prefix_text=prefix_text + input_text )
lowercase = tokenizer.encode(__lowerCAmelCase , prefix_text=__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
lowercase = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
# Testing tokenization
lowercase = """こんにちは、世界。"""
lowercase = """こんばんは、㔺界。😀"""
lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2
lowercase = len(tokenizer.encode(__lowerCAmelCase ) ) - 2
lowercase = [1] + [0] * (len_prefix + len_text + 1)
lowercase = [1] * (len_prefix + len_text + 1) + [0]
lowercase = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
lowercase = tokenizer(prefix_text + input_text ).token_type_ids
lowercase = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids
lowercase = tokenizer(__lowerCAmelCase , prefix_text=__lowerCAmelCase ).token_type_ids
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
lowercase = tokenizer.encode("""あンいワ""" )
lowercase = tokenizer.encode("""""" , prefix_text="""あンいワ""" )
lowercase = tokenizer.encode("""いワ""" , prefix_text="""あン""" )
self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) )
self.assertEqual(tokenizer.decode(__lowerCAmelCase ) , tokenizer.decode(__lowerCAmelCase ) )
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" )
lowercase = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]]
lowercase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase )
lowercase = tokenizer.batch_encode_plus(__lowerCAmelCase , padding=__lowerCAmelCase )
# fmt: off
lowercase = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]]
lowercase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
lowercase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , __lowerCAmelCase )
self.assertListEqual(x_token.token_type_ids , __lowerCAmelCase )
self.assertListEqual(x_token.attention_mask , __lowerCAmelCase )
self.assertListEqual(x_token_a.input_ids , __lowerCAmelCase )
self.assertListEqual(x_token_a.token_type_ids , __lowerCAmelCase )
self.assertListEqual(x_token_a.attention_mask , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
pass
def A__ ( self ):
"""simple docstring"""
pass
| 32
| 1
|
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class _A ( lowerCAmelCase ):
snake_case__ : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 32
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""]
__lowerCAmelCase : List[str] =["""ViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str =[
"""VIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTForImageClassification""",
"""ViTForMaskedImageModeling""",
"""ViTModel""",
"""ViTPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any =[
"""TFViTForImageClassification""",
"""TFViTModel""",
"""TFViTPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Dict =[
"""FlaxViTForImageClassification""",
"""FlaxViTModel""",
"""FlaxViTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
__lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
| 1
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _A :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ):
"""simple docstring"""
lowercase = parent
lowercase = batch_size
lowercase = seq_length
lowercase = is_training
lowercase = use_token_type_ids
lowercase = use_labels
lowercase = vocab_size
lowercase = hidden_size
lowercase = num_hidden_layers
lowercase = num_attention_heads
lowercase = intermediate_size
lowercase = hidden_act
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = max_position_embeddings
lowercase = type_vocab_size
lowercase = type_sequence_label_size
lowercase = initializer_range
lowercase = num_labels
lowercase = num_choices
lowercase = scope
lowercase = self.vocab_size - 1
def A__ ( self ):
"""simple docstring"""
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase = None
if self.use_token_type_ids:
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase = None
lowercase = None
lowercase = None
if self.use_labels:
lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase = ids_tensor([self.batch_size] , self.num_choices )
lowercase = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowercase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ):
"""simple docstring"""
lowercase = OpenAIGPTModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowercase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , head_mask=__lowerCAmelCase )
lowercase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase )
lowercase = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ):
"""simple docstring"""
lowercase = OpenAIGPTLMHeadModel(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowercase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ):
"""simple docstring"""
lowercase = OpenAIGPTDoubleHeadsModel(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowercase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ):
"""simple docstring"""
lowercase = self.num_labels
lowercase = OpenAIGPTForSequenceClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self ):
"""simple docstring"""
lowercase = self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) = config_and_inputs
lowercase = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_torch
class _A ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
snake_case__ : Any = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
snake_case__ : Union[str, Any] = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
snake_case__ : str = (
{
'feature-extraction': OpenAIGPTModel,
'text-classification': OpenAIGPTForSequenceClassification,
'text-generation': OpenAIGPTLMHeadModel,
'zero-shot': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ):
"""simple docstring"""
lowercase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase , )
lowercase = inputs_dict["""labels"""]
lowercase = inputs_dict["""labels"""]
lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCAmelCase , )
lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase )
return inputs_dict
def A__ ( self ):
"""simple docstring"""
lowercase = OpenAIGPTModelTester(self )
lowercase = ConfigTester(self , config_class=__lowerCAmelCase , n_embd=37 )
def A__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCAmelCase )
@slow
def A__ ( self ):
"""simple docstring"""
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase = OpenAIGPTModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
@require_torch
class _A ( unittest.TestCase ):
@slow
def A__ ( self ):
"""simple docstring"""
lowercase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" )
model.to(__lowerCAmelCase )
lowercase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCAmelCase ) # the president is
lowercase = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
4_0477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowercase = model.generate(__lowerCAmelCase , do_sample=__lowerCAmelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCAmelCase )
| 32
|
"""simple docstring"""
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = "arrow" , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(
split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , **__lowerCAmelCase , )
lowercase = load_from_cache_file
lowercase = file_format
lowercase = Spark(
df=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , working_dir=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
lowercase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=__lowerCAmelCase , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 32
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase : List[str] ={"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] =["""ViTFeatureExtractor"""]
__lowerCAmelCase : List[str] =["""ViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : str =[
"""VIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTForImageClassification""",
"""ViTForMaskedImageModeling""",
"""ViTModel""",
"""ViTPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Any =[
"""TFViTForImageClassification""",
"""TFViTModel""",
"""TFViTPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Dict =[
"""FlaxViTForImageClassification""",
"""FlaxViTModel""",
"""FlaxViTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
__lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
|
"""simple docstring"""
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("""socket.socket""" )
@patch("""builtins.open""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = Mock()
lowercase = conn, Mock()
lowercase = iter([1, None] )
lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ )
# ===== invoke =====
send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 32
| 1
|
"""simple docstring"""
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("""socket.socket""" )
@patch("""builtins.open""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = Mock()
lowercase = conn, Mock()
lowercase = iter([1, None] )
lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ )
# ===== invoke =====
send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 32
|
"""simple docstring"""
import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase : List[Any] =logging.get_logger(__name__)
def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int:
'''simple docstring'''
lowercase = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append(
(f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""),
("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""),
("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""),
("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""),
("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""),
("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""),
] )
return rename_keys
def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' )
lowercase = in_proj_weight[
: encoder_config.hidden_size, :
]
lowercase = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
lowercase = in_proj_weight[
-encoder_config.hidden_size :, :
]
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]:
'''simple docstring'''
lowercase = dct.pop(lowerCAmelCase__ )
lowercase = val
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]:
'''simple docstring'''
if "handwritten" in checkpoint_url:
lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg"""
lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" )
return im
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ )
lowercase = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
lowercase = 7_6_8
elif "large" in checkpoint_url:
# use ViT-large encoder
lowercase = 1_0_2_4
lowercase = 4_0_9_6
lowercase = 2_4
lowercase = 1_6
lowercase = 1_0_2_4
else:
raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
lowercase = False
lowercase = """relu"""
lowercase = 1_0_2_4
lowercase = True
lowercase = False
lowercase = False
# load HuggingFace model
lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ )
lowercase = TrOCRForCausalLM(lowerCAmelCase__ )
lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ )
model.eval()
# load state_dict of original model, rename some keys
lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""]
lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
lowercase = state_dict.pop(lowerCAmelCase__ )
if key.startswith("""decoder""" ) and "output_projection" not in key:
lowercase = val
else:
lowercase = val
# load state dict
model.load_state_dict(lowerCAmelCase__ )
# Check outputs on an image
lowercase = ViTImageProcessor(size=encoder_config.image_size )
lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" )
lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values
# verify logits
lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ )
lowercase = outputs.logits
lowercase = torch.Size([1, 1, 5_0_2_6_5] )
if "trocr-base-handwritten" in checkpoint_url:
lowercase = torch.tensor(
[-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] )
elif "trocr-large-handwritten" in checkpoint_url:
lowercase = torch.tensor(
[-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] )
elif "trocr-base-printed" in checkpoint_url:
lowercase = torch.tensor(
[-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] )
elif "trocr-large-printed" in checkpoint_url:
lowercase = torch.tensor(
[-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected"
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase__ )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_url""",
default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""",
type=str,
help="""URL to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
__lowerCAmelCase : Dict =parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 32
| 1
|
"""simple docstring"""
def UpperCAmelCase__ ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )]
__lowerCAmelCase : Dict =generate_large_matrix()
__lowerCAmelCase : Optional[Any] =(
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] ) -> None:
'''simple docstring'''
assert all(row == sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ) for row in grid )
assert all(list(lowerCAmelCase__ ) == sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ) for col in zip(*lowerCAmelCase__ ) )
def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> int:
'''simple docstring'''
lowercase = 0
lowercase = len(lowerCAmelCase__ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowercase = (left + right) // 2
lowercase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowercase = mid + 1
else:
lowercase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] ) -> int:
'''simple docstring'''
lowercase = 0
lowercase = len(grid[0] )
for i in range(len(lowerCAmelCase__ ) ):
lowercase = find_negative_index(grid[i][:bound] )
total += bound
return (len(lowerCAmelCase__ ) * len(grid[0] )) - total
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[int]] ) -> int:
'''simple docstring'''
lowercase = 0
for row in grid:
for i, number in enumerate(lowerCAmelCase__ ):
if number < 0:
total += len(lowerCAmelCase__ ) - i
break
return total
def UpperCAmelCase__ ( ) -> None:
'''simple docstring'''
from timeit import timeit
print("""Running benchmarks""" )
lowercase = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowercase = timeit(f'{func}(grid=grid)' , setup=lowerCAmelCase__ , number=5_0_0 )
print(f'{func}() took {time:0.4f} seconds' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool:
'''simple docstring'''
lowercase = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(2_7))
print(perfect_cube(4))
| 32
| 1
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__lowerCAmelCase : int =logging.get_logger(__name__)
class _A ( lowerCAmelCase ):
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
warnings.warn(
"""The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use ChineseCLIPImageProcessor instead.""" , __lowerCAmelCase , )
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
| 32
|
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _A ( lowerCAmelCase , unittest.TestCase ):
snake_case__ : str = KandinskyInpaintPipeline
snake_case__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image']
snake_case__ : Optional[int] = [
'prompt',
'negative_prompt',
'image_embeds',
'negative_image_embeds',
'image',
'mask_image',
]
snake_case__ : Tuple = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'negative_prompt',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
snake_case__ : Dict = False
@property
def A__ ( self ):
"""simple docstring"""
return 32
@property
def A__ ( self ):
"""simple docstring"""
return 32
@property
def A__ ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def A__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def A__ ( self ):
"""simple docstring"""
return 100
@property
def A__ ( self ):
"""simple docstring"""
lowercase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
lowercase = MultilingualCLIP(__lowerCAmelCase )
lowercase = text_encoder.eval()
return text_encoder
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = {
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
lowercase = UNetaDConditionModel(**__lowerCAmelCase )
return model
@property
def A__ ( self ):
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = VQModel(**self.dummy_movq_kwargs )
return model
def A__ ( self ):
"""simple docstring"""
lowercase = self.dummy_text_encoder
lowercase = self.dummy_tokenizer
lowercase = self.dummy_unet
lowercase = self.dummy_movq
lowercase = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__lowerCAmelCase , )
lowercase = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ):
"""simple docstring"""
lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCAmelCase )
# create init_image
lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowercase = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) )
# create mask
lowercase = np.ones((64, 64) , dtype=np.floataa )
lowercase = 0
if str(__lowerCAmelCase ).startswith("""mps""" ):
lowercase = torch.manual_seed(__lowerCAmelCase )
else:
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
lowercase = {
"""prompt""": """horse""",
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu"""
lowercase = self.get_dummy_components()
lowercase = self.pipeline_class(**__lowerCAmelCase )
lowercase = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) )
lowercase = output.images
lowercase = pipe(
**self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
print(f'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
lowercase = np.array(
[0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def A__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ):
"""simple docstring"""
lowercase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" )
lowercase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
lowercase = np.ones((768, 768) , dtype=np.floataa )
lowercase = 0
lowercase = """a hat"""
lowercase = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCAmelCase )
lowercase = KandinskyInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa )
lowercase = pipeline.to(__lowerCAmelCase )
pipeline.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowercase , lowercase = pipe_prior(
__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
lowercase = pipeline(
__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , )
lowercase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
| 32
| 1
|
"""simple docstring"""
from manim import *
class _A ( lowerCAmelCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = Rectangle(height=0.5 , width=0.5 )
lowercase = Rectangle(height=0.2_5 , width=0.2_5 )
lowercase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 )
lowercase = [mem.copy() for i in range(6 )]
lowercase = [mem.copy() for i in range(6 )]
lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
lowercase = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
lowercase = Text("""CPU""" , font_size=24 )
lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCAmelCase )
lowercase = [mem.copy() for i in range(4 )]
lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
lowercase = Text("""GPU""" , font_size=24 )
lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCAmelCase )
lowercase = [mem.copy() for i in range(6 )]
lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
lowercase = Text("""Model""" , font_size=24 )
lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCAmelCase )
lowercase = []
lowercase = []
lowercase = []
for i, rect in enumerate(__lowerCAmelCase ):
rect.set_stroke(__lowerCAmelCase )
lowercase = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowerCAmelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0] , direction=__lowerCAmelCase , buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1] , direction=__lowerCAmelCase , buff=0.0 )
self.add(__lowerCAmelCase )
model_cpu_arr.append(__lowerCAmelCase )
self.add(*__lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase )
lowercase = [mem.copy() for i in range(6 )]
lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
lowercase = Text("""Loaded Checkpoint""" , font_size=24 )
lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase )
checkpoint.move_to([3, 0.5, 0] )
self.add(__lowerCAmelCase )
lowercase = []
lowercase = []
for i, rect in enumerate(__lowerCAmelCase ):
lowercase = fill.copy().set_fill(__lowerCAmelCase , opacity=0.7 )
target.move_to(__lowerCAmelCase )
ckpt_arr.append(__lowerCAmelCase )
lowercase = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(__lowerCAmelCase )
self.add(*__lowerCAmelCase , *__lowerCAmelCase )
lowercase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowercase = MarkupText(
f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCAmelCase , __lowerCAmelCase )
lowercase = MarkupText(
f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , )
blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(__lowerCAmelCase )
lowercase = MarkupText(
f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , )
step_a.move_to([2, 2, 0] )
lowercase = [meta_mem.copy() for i in range(6 )]
lowercase = [meta_mem.copy() for i in range(6 )]
lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
lowercase = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
lowercase = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
lowercase = Text("""Disk""" , font_size=24 )
lowercase = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase )
disk.move_to([-4.0, -1.2_5, 0] )
self.play(Write(__lowerCAmelCase , run_time=3 ) , Write(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) )
lowercase = []
for i, rect in enumerate(__lowerCAmelCase ):
lowercase = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(__lowerCAmelCase , run_time=1.5 ) )
self.play(*__lowerCAmelCase )
self.play(FadeOut(__lowerCAmelCase ) )
lowercase = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCAmelCase , run_time=3 ) )
self.play(
FadeOut(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) , )
self.wait()
| 32
|
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
__lowerCAmelCase : Optional[Any] =logging.getLogger(__name__)
@dataclass
class _A ( lowerCAmelCase ):
snake_case__ : Optional[float] = field(
default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} )
snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} )
snake_case__ : bool = field(
default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
snake_case__ : bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} )
snake_case__ : Optional[float] = field(
default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} )
snake_case__ : Optional[str] = field(
default='linear' , metadata={'help': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
| 32
| 1
|
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
__lowerCAmelCase : Dict ={
"""distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"""roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"""bert""": (BertConfig, BertForMaskedLM, BertTokenizer),
"""gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] ) -> str:
'''simple docstring'''
if args.student_type == "roberta":
lowercase = False
elif args.student_type == "gpt2":
lowercase = False
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str ) -> Dict:
'''simple docstring'''
if args.student_type == "roberta":
lowercase = False
def UpperCAmelCase__ ( ) -> int:
'''simple docstring'''
lowercase = argparse.ArgumentParser(description="""Training""" )
parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" )
parser.add_argument(
"""--dump_path""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""The output directory (log, checkpoints, parameters, etc.)""" )
parser.add_argument(
"""--data_file""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , )
parser.add_argument(
"""--student_type""" , type=lowerCAmelCase__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=lowerCAmelCase__ , help="""The student type (DistilBERT, RoBERTa).""" , )
parser.add_argument("""--student_config""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to the student configuration.""" )
parser.add_argument(
"""--student_pretrained_weights""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Load student initialization checkpoint.""" )
parser.add_argument(
"""--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=lowerCAmelCase__ , help="""Teacher type (BERT, RoBERTa).""" )
parser.add_argument("""--teacher_name""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""The teacher model.""" )
parser.add_argument("""--temperature""" , default=2.0 , type=lowerCAmelCase__ , help="""Temperature for the softmax temperature.""" )
parser.add_argument(
"""--alpha_ce""" , default=0.5 , type=lowerCAmelCase__ , help="""Linear weight for the distillation loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_mlm""" , default=0.0 , type=lowerCAmelCase__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , )
parser.add_argument("""--alpha_clm""" , default=0.5 , type=lowerCAmelCase__ , help="""Linear weight for the CLM loss. Must be >=0.""" )
parser.add_argument("""--alpha_mse""" , default=0.0 , type=lowerCAmelCase__ , help="""Linear weight of the MSE loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_cos""" , default=0.0 , type=lowerCAmelCase__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" )
parser.add_argument(
"""--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" )
parser.add_argument(
"""--mlm_mask_prop""" , default=0.15 , type=lowerCAmelCase__ , help="""Proportion of tokens for which we need to make a prediction.""" , )
parser.add_argument("""--word_mask""" , default=0.8 , type=lowerCAmelCase__ , help="""Proportion of tokens to mask out.""" )
parser.add_argument("""--word_keep""" , default=0.1 , type=lowerCAmelCase__ , help="""Proportion of tokens to keep.""" )
parser.add_argument("""--word_rand""" , default=0.1 , type=lowerCAmelCase__ , help="""Proportion of tokens to randomly replace.""" )
parser.add_argument(
"""--mlm_smoothing""" , default=0.7 , type=lowerCAmelCase__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , )
parser.add_argument("""--token_counts""" , type=lowerCAmelCase__ , help="""The token counts in the data_file for MLM.""" )
parser.add_argument(
"""--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , )
parser.add_argument(
"""--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , )
parser.add_argument(
"""--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , )
parser.add_argument("""--n_epoch""" , type=lowerCAmelCase__ , default=3 , help="""Number of pass on the whole dataset.""" )
parser.add_argument("""--batch_size""" , type=lowerCAmelCase__ , default=5 , help="""Batch size (for each process).""" )
parser.add_argument(
"""--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=lowerCAmelCase__ , default=5_0 , help="""Gradient accumulation for larger training batches.""" , )
parser.add_argument("""--warmup_prop""" , default=0.05 , type=lowerCAmelCase__ , help="""Linear warmup proportion.""" )
parser.add_argument("""--weight_decay""" , default=0.0 , type=lowerCAmelCase__ , help="""Weight decay if we apply some.""" )
parser.add_argument("""--learning_rate""" , default=5e-4 , type=lowerCAmelCase__ , help="""The initial learning rate for Adam.""" )
parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=lowerCAmelCase__ , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , default=5.0 , type=lowerCAmelCase__ , help="""Max gradient norm.""" )
parser.add_argument("""--initializer_range""" , default=0.02 , type=lowerCAmelCase__ , help="""Random initialization range.""" )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=lowerCAmelCase__ , default="""O1""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_gpu""" , type=lowerCAmelCase__ , default=1 , help="""Number of GPUs in the node.""" )
parser.add_argument("""--local_rank""" , type=lowerCAmelCase__ , default=-1 , help="""Distributed training - Local rank""" )
parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=5_6 , help="""Random seed""" )
parser.add_argument("""--log_interval""" , type=lowerCAmelCase__ , default=5_0_0 , help="""Tensorboard logging interval.""" )
parser.add_argument("""--checkpoint_interval""" , type=lowerCAmelCase__ , default=4_0_0_0 , help="""Checkpoint interval.""" )
lowercase = parser.parse_args()
sanity_checks(lowerCAmelCase__ )
# ARGS #
init_gpu_params(lowerCAmelCase__ )
set_seed(lowerCAmelCase__ )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'
""" itUse `--force` if you want to overwrite it""" )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(f'Experiment will be dumped and logged in {args.dump_path}' )
# SAVE PARAMS #
logger.info(f'Param: {args}' )
with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f:
json.dump(vars(lowerCAmelCase__ ) , lowerCAmelCase__ , indent=4 )
git_log(args.dump_path )
lowercase , lowercase , lowercase = MODEL_CLASSES[args.student_type]
lowercase , lowercase , lowercase = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
lowercase = teacher_tokenizer_class.from_pretrained(args.teacher_name )
lowercase = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
lowercase = tokenizer.all_special_tokens.index(lowerCAmelCase__ )
lowercase = tokenizer.all_special_ids[idx]
logger.info(f'Special tokens {special_tok_ids}' )
lowercase = special_tok_ids
lowercase = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(f'Loading data from {args.data_file}' )
with open(args.data_file , """rb""" ) as fp:
lowercase = pickle.load(lowerCAmelCase__ )
if args.mlm:
logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)' )
with open(args.token_counts , """rb""" ) as fp:
lowercase = pickle.load(lowerCAmelCase__ )
lowercase = np.maximum(lowerCAmelCase__ , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
lowercase = 0.0 # do not predict special tokens
lowercase = torch.from_numpy(lowerCAmelCase__ )
else:
lowercase = None
lowercase = LmSeqsDataset(params=lowerCAmelCase__ , data=lowerCAmelCase__ )
logger.info("""Data loader created.""" )
# STUDENT #
logger.info(f'Loading student config from {args.student_config}' )
lowercase = student_config_class.from_pretrained(args.student_config )
lowercase = True
if args.student_pretrained_weights is not None:
logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}' )
lowercase = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowerCAmelCase__ )
else:
lowercase = student_model_class(lowerCAmelCase__ )
if args.n_gpu > 0:
student.to(f'cuda:{args.local_rank}' )
logger.info("""Student loaded.""" )
# TEACHER #
lowercase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowerCAmelCase__ )
if args.n_gpu > 0:
teacher.to(f'cuda:{args.local_rank}' )
logger.info(f'Teacher loaded from {args.teacher_name}.' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(lowerCAmelCase__ , lowerCAmelCase__ )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(lowerCAmelCase__ , lowerCAmelCase__ )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
lowercase = Distiller(
params=lowerCAmelCase__ , dataset=lowerCAmelCase__ , token_probs=lowerCAmelCase__ , student=lowerCAmelCase__ , teacher=lowerCAmelCase__ )
distiller.train()
logger.info("""Let's go get some drinks.""" )
if __name__ == "__main__":
main()
| 32
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict:
'''simple docstring'''
if "img_encoder.pos_embed" in name:
lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" )
if "img_encoder.patch_embed.proj" in name:
lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" )
if "img_encoder.patch_embed.norm" in name:
lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" )
if "img_encoder.layers" in name:
lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" )
if "blocks" in name and "res" not in name:
lowercase = name.replace("""blocks""" , """layers""" )
if "attn" in name and "pre_assign" not in name:
lowercase = name.replace("""attn""" , """self_attn""" )
if "proj" in name and "self_attn" in name and "text" not in name:
lowercase = name.replace("""proj""" , """out_proj""" )
if "pre_assign_attn.attn.proj" in name:
lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" )
if "norm1" in name:
lowercase = name.replace("""norm1""" , """layer_norm1""" )
if "norm2" in name and "pre_assign" not in name:
lowercase = name.replace("""norm2""" , """layer_norm2""" )
if "img_encoder.norm" in name:
lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" )
# text encoder
if "text_encoder.token_embedding" in name:
lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" )
if "text_encoder.positional_embedding" in name:
lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "text_encoder.transformer.resblocks." in name:
lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" )
if "ln_1" in name:
lowercase = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
lowercase = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
lowercase = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
lowercase = name.replace("""c_proj""" , """fc2""" )
if "text_encoder" in name:
lowercase = name.replace("""text_encoder""" , """text_model""" )
if "ln_final" in name:
lowercase = name.replace("""ln_final""" , """final_layer_norm""" )
# projection layers
if "img_projector.linear_hidden." in name:
lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" )
if "img_projector.linear_out." in name:
lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" )
if "text_projector.linear_hidden" in name:
lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" )
if "text_projector.linear_out" in name:
lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" )
return name
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase = orig_state_dict.pop(lowerCAmelCase__ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowercase = key.split(""".""" )
lowercase , lowercase = int(key_split[2] ), int(key_split[4] )
lowercase = config.vision_config.hidden_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[dim : dim * 2, :]
lowercase = val[-dim:, :]
else:
lowercase = val[:dim]
lowercase = val[dim : dim * 2]
lowercase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowercase = key.split(""".""" )
lowercase = int(key_split[3] )
lowercase = config.text_config.hidden_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[
dim : dim * 2, :
]
lowercase = val[-dim:, :]
else:
lowercase = val[:dim]
lowercase = val[dim : dim * 2]
lowercase = val[-dim:]
else:
lowercase = rename_key(lowerCAmelCase__ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowercase = val.squeeze_()
else:
lowercase = val
return orig_state_dict
def UpperCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str:
'''simple docstring'''
lowercase = GroupViTConfig()
lowercase = GroupViTModel(lowerCAmelCase__ ).eval()
lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""]
lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0)
# verify result
lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
lowercase = prepare_img()
lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" )
with torch.no_grad():
lowercase = model(**lowerCAmelCase__ )
if model_name == "groupvit-gcc-yfcc":
lowercase = torch.tensor([[13.3_523, 6.3_629]] )
elif model_name == "groupvit-gcc-redcaps":
lowercase = torch.tensor([[16.1_873, 8.6_230]] )
else:
raise ValueError(f'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 )
processor.save_pretrained(lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
print("""Successfully saved processor and model to""" , lowerCAmelCase__ )
if push_to_hub:
print("""Pushing to the hub...""" )
processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" )
if __name__ == "__main__":
__lowerCAmelCase : str =argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
__lowerCAmelCase : int =parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 32
| 1
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = credit_card_number
lowercase = 0
lowercase = len(lowerCAmelCase__ ) - 2
for i in range(lowerCAmelCase__ , -1 , -2 ):
# double the value of every second digit
lowercase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 1_0
digit += 1
lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 1_0 == 0
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = f'{credit_card_number} is an invalid credit card number because'
if not credit_card_number.isdigit():
print(f'{error_message} it has nonnumerical characters.' )
return False
if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6:
print(f'{error_message} of its length.' )
return False
if not validate_initial_digits(lowerCAmelCase__ ):
print(f'{error_message} of its first two digits.' )
return False
if not luhn_validation(lowerCAmelCase__ ):
print(f'{error_message} it fails the Luhn check.' )
return False
print(f'{credit_card_number} is a valid credit card number.' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 32
|
"""simple docstring"""
class _A :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = None
lowercase = None
lowercase = graph
self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase )
lowercase = len(__lowerCAmelCase )
lowercase = None
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if sources is int:
lowercase = [sources]
if sinks is int:
lowercase = [sinks]
if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0:
return
lowercase = sources[0]
lowercase = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1:
lowercase = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
lowercase = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
lowercase = max_input_flow
lowercase = 0
lowercase = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
lowercase = max_input_flow
lowercase = size - 1
def A__ ( self ):
"""simple docstring"""
if self.maximum_flow_algorithm is None:
raise Exception("""You need to set maximum flow algorithm before.""" )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = algorithm(self )
class _A :
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = flow_network
lowercase = flow_network.verticesCount
lowercase = flow_network.sourceIndex
lowercase = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
lowercase = flow_network.graph
lowercase = False
def A__ ( self ):
"""simple docstring"""
if not self.executed:
self._algorithm()
lowercase = True
def A__ ( self ):
"""simple docstring"""
pass
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
super().__init__(__lowerCAmelCase )
# use this to save your result
lowercase = -1
def A__ ( self ):
"""simple docstring"""
if not self.executed:
raise Exception("""You should execute algorithm before using its result!""" )
return self.maximum_flow
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
super().__init__(__lowerCAmelCase )
lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )]
lowercase = [0] * self.verticies_count
lowercase = [0] * self.verticies_count
def A__ ( self ):
"""simple docstring"""
lowercase = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
lowercase = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
lowercase = 0
while i < len(__lowerCAmelCase ):
lowercase = vertices_list[i]
lowercase = self.heights[vertex_index]
self.process_vertex(__lowerCAmelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) )
lowercase = 0
else:
i += 1
lowercase = sum(self.preflow[self.source_index] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(__lowerCAmelCase , __lowerCAmelCase )
self.relabel(__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
lowercase = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
lowercase = self.heights[to_index]
if min_height is not None:
lowercase = min_height + 1
if __name__ == "__main__":
__lowerCAmelCase : int =[0]
__lowerCAmelCase : List[Any] =[3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
__lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
__lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
__lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow()
print(F"""maximum flow is {maximum_flow}""")
| 32
| 1
|
"""simple docstring"""
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> str:
'''simple docstring'''
lowercase = []
for line in lines:
lowercase = re.sub(R"""#.*""" , """""" , lowerCAmelCase__ ) # remove comments
if line:
filtered_lines.append(lowerCAmelCase__ )
lowercase = """\n""".join(lowerCAmelCase__ )
# Make a hash from all this code
lowercase = full_str.encode("""utf-8""" )
return shaaaa(lowerCAmelCase__ ).hexdigest()
# get importable module names and hash for caching
__lowerCAmelCase : Any ={
"""csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
"""json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
"""pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
"""parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
"""arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
"""text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
"""imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
"""audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
__lowerCAmelCase : Union[str, Any] ={
""".csv""": ("""csv""", {}),
""".tsv""": ("""csv""", {"""sep""": """\t"""}),
""".json""": ("""json""", {}),
""".jsonl""": ("""json""", {}),
""".parquet""": ("""parquet""", {}),
""".arrow""": ("""arrow""", {}),
""".txt""": ("""text""", {}),
}
_EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
__lowerCAmelCase : List[Any] ={"""imagefolder""", """audiofolder"""}
# Used to filter data files based on extensions given a module name
__lowerCAmelCase : Dict[str, List[str]] ={}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""")
_MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
| 32
|
"""simple docstring"""
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__lowerCAmelCase : List[str] =logging.getLogger(__name__)
__lowerCAmelCase : Dict =tf.data.AUTOTUNE
def UpperCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
lowercase = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""" , type=lowerCAmelCase__ , default="""roberta-base""" , help="""The model config to use. Note that we don't copy the model's weights, only the config!""" , )
parser.add_argument(
"""--tokenizer""" , type=lowerCAmelCase__ , default="""unigram-tokenizer-wikitext""" , help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""" , )
parser.add_argument(
"""--per_replica_batch_size""" , type=lowerCAmelCase__ , default=8 , help="""Batch size per TPU core.""" , )
parser.add_argument(
"""--no_tpu""" , action="""store_true""" , help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""" , )
parser.add_argument(
"""--tpu_name""" , type=lowerCAmelCase__ , help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""" , default="""local""" , )
parser.add_argument(
"""--tpu_zone""" , type=lowerCAmelCase__ , help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""" , )
parser.add_argument(
"""--gcp_project""" , type=lowerCAmelCase__ , help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""" , action="""store_true""" , help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""" , )
parser.add_argument(
"""--train_dataset""" , type=lowerCAmelCase__ , help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--shuffle_buffer_size""" , type=lowerCAmelCase__ , default=2**1_8 , help="""Size of the shuffle buffer (in samples)""" , )
parser.add_argument(
"""--eval_dataset""" , type=lowerCAmelCase__ , help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""" , )
parser.add_argument(
"""--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of epochs to train for.""" , )
parser.add_argument(
"""--learning_rate""" , type=lowerCAmelCase__ , default=1e-4 , help="""Learning rate to use for training.""" , )
parser.add_argument(
"""--weight_decay_rate""" , type=lowerCAmelCase__ , default=1e-3 , help="""Weight decay rate to use for training.""" , )
parser.add_argument(
"""--max_length""" , type=lowerCAmelCase__ , default=5_1_2 , help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""" , )
parser.add_argument(
"""--mlm_probability""" , type=lowerCAmelCase__ , default=0.15 , help="""Fraction of tokens to mask during training.""" , )
parser.add_argument("""--output_dir""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""" , type=lowerCAmelCase__ , help="""Model ID to upload to on the Hugging Face Hub.""" )
lowercase = parser.parse_args()
return args
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[Any]:
'''simple docstring'''
try:
if args.tpu_name:
lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
lowercase = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(lowerCAmelCase__ )
tf.tpu.experimental.initialize_tpu_system(lowerCAmelCase__ )
return tpu
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase = 0
for file in file_list:
lowercase = file.split("""/""" )[-1]
lowercase = re.search(R"""-\d+-(\d+)\.tfrecord""" , lowerCAmelCase__ ).group(1 )
lowercase = int(lowerCAmelCase__ )
num_samples += sample_count
return num_samples
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]:
'''simple docstring'''
lowercase = count_samples(lowerCAmelCase__ )
lowercase = tf.data.Dataset.from_tensor_slices(lowerCAmelCase__ )
if shuffle:
lowercase = dataset.shuffle(len(lowerCAmelCase__ ) )
lowercase = tf.data.TFRecordDataset(lowerCAmelCase__ , num_parallel_reads=lowerCAmelCase__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
lowercase = dataset.apply(tf.data.experimental.assert_cardinality(lowerCAmelCase__ ) )
lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ )
if shuffle:
assert shuffle_buffer_size is not None
lowercase = dataset.shuffle(args.shuffle_buffer_size )
lowercase = dataset.batch(lowerCAmelCase__ , drop_remainder=lowerCAmelCase__ )
lowercase = dataset.map(lowerCAmelCase__ , num_parallel_calls=lowerCAmelCase__ )
lowercase = dataset.prefetch(lowerCAmelCase__ )
return dataset
def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]:
'''simple docstring'''
if not args.no_tpu:
lowercase = initialize_tpu(lowerCAmelCase__ )
lowercase = tf.distribute.TPUStrategy(lowerCAmelCase__ )
else:
lowercase = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
lowercase = AutoTokenizer.from_pretrained(args.tokenizer )
lowercase = AutoConfig.from_pretrained(args.pretrained_model_config )
lowercase = tokenizer.vocab_size
lowercase = tf.io.gfile.glob(os.path.join(args.train_dataset , """*.tfrecord""" ) )
if not training_records:
raise ValueError(f'No .tfrecord files found in {args.train_dataset}.' )
lowercase = tf.io.gfile.glob(os.path.join(args.eval_dataset , """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f'No .tfrecord files found in {args.eval_dataset}.' )
lowercase = count_samples(lowerCAmelCase__ )
lowercase = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
lowercase = steps_per_epoch * args.num_epochs
with strategy.scope():
lowercase = TFAutoModelForMaskedLM.from_config(lowerCAmelCase__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
lowercase , lowercase = create_optimizer(
num_train_steps=lowerCAmelCase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowerCAmelCase__ , metrics=["""accuracy"""] )
def decode_fn(lowerCAmelCase__ :Any ):
lowercase = {
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowerCAmelCase__ , lowerCAmelCase__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
lowercase = DataCollatorForLanguageModeling(
tokenizer=lowerCAmelCase__ , mlm_probability=args.mlm_probability , mlm=lowerCAmelCase__ , return_tensors="""tf""" )
def mask_with_collator(lowerCAmelCase__ :Dict ):
# TF really needs an isin() function
lowercase = (
~tf.cast(batch["""attention_mask"""] , tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
lowercase , lowercase = data_collator.tf_mask_tokens(
batch["""input_ids"""] , vocab_size=len(lowerCAmelCase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowerCAmelCase__ , )
return batch
lowercase = args.per_replica_batch_size * strategy.num_replicas_in_sync
lowercase = prepare_dataset(
lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , shuffle_buffer_size=args.shuffle_buffer_size , )
lowercase = prepare_dataset(
lowerCAmelCase__ , decode_fn=lowerCAmelCase__ , mask_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , )
lowercase = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowerCAmelCase__ ) )
model.fit(
lowerCAmelCase__ , validation_data=lowerCAmelCase__ , epochs=args.num_epochs , callbacks=lowerCAmelCase__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__lowerCAmelCase : Optional[int] =parse_args()
main(args)
| 32
| 1
|
"""simple docstring"""
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def UpperCAmelCase__ ( *lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Union[Dict, Any]] = None , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :int=2 ) -> List[str]:
'''simple docstring'''
from .. import __version__
lowercase = take_from
lowercase = ()
if not isinstance(args[0] , lowerCAmelCase__ ):
lowercase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowerCAmelCase__ ).base_version ) >= version.parse(lowerCAmelCase__ ):
raise ValueError(
f'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
f' version {__version__} is >= {version_name}' )
lowercase = None
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowerCAmelCase__ ),)
lowercase = f'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowerCAmelCase__ , lowerCAmelCase__ ):
values += (getattr(lowerCAmelCase__ , lowerCAmelCase__ ),)
lowercase = f'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
lowercase = f'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
lowercase = warning + """ """ if standard_warn else """"""
warnings.warn(warning + message , lowerCAmelCase__ , stacklevel=lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) > 0:
lowercase = inspect.getouterframes(inspect.currentframe() )[1]
lowercase = call_frame.filename
lowercase = call_frame.lineno
lowercase = call_frame.function
lowercase , lowercase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowerCAmelCase__ ) == 0:
return
elif len(lowerCAmelCase__ ) == 1:
return values[0]
return values
| 32
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase : List[Any] ={
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[Any] =[
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
| 1
|
"""simple docstring"""
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__lowerCAmelCase : str =logging.get_logger(__name__) # pylint: disable=invalid-name
__lowerCAmelCase : List[Any] ="""
Examples:
```py
>>> import torch
>>> import numpy as np
>>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
>>> from transformers import pipeline
>>> from diffusers.utils import load_image
>>> def make_hint(image, depth_estimator):
... image = depth_estimator(image)[\"depth\"]
... image = np.array(image)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... detected_map = torch.from_numpy(image).float() / 255.0
... hint = detected_map.permute(2, 0, 1)
... return hint
>>> depth_estimator = pipeline(\"depth-estimation\")
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16
... )
>>> pipe_prior = pipe_prior.to(\"cuda\")
>>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16
... )
>>> pipe = pipe.to(\"cuda\")
>>> img = load_image(
... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"
... \"/kandinsky/cat.png\"
... ).resize((768, 768))
>>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")
>>> prompt = \"A robot, 4k photo\"
>>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"
>>> generator = torch.Generator(device=\"cuda\").manual_seed(43)
>>> image_emb, zero_image_emb = pipe_prior(
... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
... ).to_tuple()
>>> images = pipe(
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... hint=hint,
... num_inference_steps=50,
... generator=generator,
... height=768,
... width=768,
... ).images
>>> images[0].save(\"robot_cat.png\")
```
"""
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int]=8 ) -> int:
'''simple docstring'''
lowercase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
lowercase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class _A ( lowerCAmelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ):
"""simple docstring"""
super().__init__()
self.register_modules(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , movq=__lowerCAmelCase , )
lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if latents is None:
lowercase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase )
else:
if latents.shape != shape:
raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' )
lowercase = latents.to(__lowerCAmelCase )
lowercase = latents * scheduler.init_noise_sigma
return latents
def A__ ( self , __lowerCAmelCase=0 ):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
lowercase = torch.device(f'cuda:{gpu_id}' )
lowercase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__lowerCAmelCase , __lowerCAmelCase )
def A__ ( self , __lowerCAmelCase=0 ):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
lowercase = torch.device(f'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=__lowerCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
lowercase = None
for cpu_offloaded_model in [self.unet, self.movq]:
lowercase , lowercase = cpu_offload_with_hook(__lowerCAmelCase , __lowerCAmelCase , prev_module_hook=__lowerCAmelCase )
# We'll offload the last model manually.
lowercase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def A__ ( self ):
"""simple docstring"""
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__lowerCAmelCase , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__lowerCAmelCase )
def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 512 , __lowerCAmelCase = 512 , __lowerCAmelCase = 100 , __lowerCAmelCase = 4.0 , __lowerCAmelCase = 1 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , ):
"""simple docstring"""
lowercase = self._execution_device
lowercase = guidance_scale > 1.0
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = torch.cat(__lowerCAmelCase , dim=0 )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = torch.cat(__lowerCAmelCase , dim=0 )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = torch.cat(__lowerCAmelCase , dim=0 )
lowercase = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
lowercase = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 )
lowercase = negative_image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 )
lowercase = hint.repeat_interleave(__lowerCAmelCase , dim=0 )
lowercase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase )
lowercase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase )
self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase )
lowercase = self.scheduler.timesteps
lowercase = self.movq.config.latent_channels
lowercase , lowercase = downscale_height_and_width(__lowerCAmelCase , __lowerCAmelCase , self.movq_scale_factor )
# create initial latent
lowercase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , )
for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowercase = {"""image_embeds""": image_embeds, """hint""": hint}
lowercase = self.unet(
sample=__lowerCAmelCase , timestep=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , added_cond_kwargs=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0]
if do_classifier_free_guidance:
lowercase , lowercase = noise_pred.split(latents.shape[1] , dim=1 )
lowercase , lowercase = noise_pred.chunk(2 )
lowercase , lowercase = variance_pred.chunk(2 )
lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
lowercase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
lowercase , lowercase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
lowercase = self.scheduler.step(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase , )[0]
# post-processing
lowercase = self.movq.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
lowercase = image * 0.5 + 0.5
lowercase = image.clamp(0 , 1 )
lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowercase = self.numpy_to_pil(__lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCAmelCase )
| 32
|
"""simple docstring"""
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__lowerCAmelCase : Tuple ={
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
class _A ( lowerCAmelCase ):
snake_case__ : Dict = 'mask2former'
snake_case__ : Union[str, Any] = ['swin']
snake_case__ : Any = {'hidden_size': 'hidden_dim'}
def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" )
lowercase = CONFIG_MAPPING["""swin"""](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowercase = backbone_config.pop("""model_type""" )
lowercase = CONFIG_MAPPING[backbone_model_type]
lowercase = config_class.from_dict(__lowerCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '
f'Supported model types: {",".join(self.backbones_supported )}' )
lowercase = backbone_config
lowercase = feature_size
lowercase = mask_feature_size
lowercase = hidden_dim
lowercase = encoder_feedforward_dim
lowercase = activation_function
lowercase = encoder_layers
lowercase = decoder_layers
lowercase = num_attention_heads
lowercase = dropout
lowercase = dim_feedforward
lowercase = pre_norm
lowercase = enforce_input_projection
lowercase = common_stride
lowercase = ignore_value
lowercase = num_queries
lowercase = no_object_weight
lowercase = class_weight
lowercase = mask_weight
lowercase = dice_weight
lowercase = train_num_points
lowercase = oversample_ratio
lowercase = importance_sample_ratio
lowercase = init_std
lowercase = init_xavier_std
lowercase = use_auxiliary_loss
lowercase = feature_strides
lowercase = output_auxiliary_logits
lowercase = decoder_layers
super().__init__(**__lowerCAmelCase )
@classmethod
def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return cls(
backbone_config=__lowerCAmelCase , **__lowerCAmelCase , )
def A__ ( self ):
"""simple docstring"""
lowercase = copy.deepcopy(self.__dict__ )
lowercase = self.backbone_config.to_dict()
lowercase = self.__class__.model_type
return output
| 32
| 1
|
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = tempfile.mkdtemp()
lowercase = SamImageProcessor()
lowercase = SamProcessor(__lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor
def A__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def A__ ( self ):
"""simple docstring"""
lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowercase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A__ ( self ):
"""simple docstring"""
lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 )
lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__lowerCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = SamProcessor(image_processor=__lowerCAmelCase )
lowercase = self.prepare_image_inputs()
lowercase = image_processor(__lowerCAmelCase , return_tensors="""np""" )
lowercase = processor(images=__lowerCAmelCase , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = SamProcessor(image_processor=__lowerCAmelCase )
lowercase = [torch.ones((1, 3, 5, 5) )]
lowercase = [[1764, 2646]]
lowercase = [[683, 1024]]
lowercase = processor.post_process_masks(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
lowercase = processor.post_process_masks(
__lowerCAmelCase , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
lowercase = [np.ones((1, 3, 5, 5) )]
lowercase = processor.post_process_masks(__lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
lowercase = [[1, 0], [0, 1]]
with self.assertRaises(__lowerCAmelCase ):
lowercase = processor.post_process_masks(__lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) )
@require_vision
@require_tf
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = tempfile.mkdtemp()
lowercase = SamImageProcessor()
lowercase = SamProcessor(__lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor
def A__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def A__ ( self ):
"""simple docstring"""
lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowercase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A__ ( self ):
"""simple docstring"""
lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 )
lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__lowerCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = SamProcessor(image_processor=__lowerCAmelCase )
lowercase = self.prepare_image_inputs()
lowercase = image_processor(__lowerCAmelCase , return_tensors="""np""" )
lowercase = processor(images=__lowerCAmelCase , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = SamProcessor(image_processor=__lowerCAmelCase )
lowercase = [tf.ones((1, 3, 5, 5) )]
lowercase = [[1764, 2646]]
lowercase = [[683, 1024]]
lowercase = processor.post_process_masks(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
lowercase = processor.post_process_masks(
__lowerCAmelCase , tf.convert_to_tensor(__lowerCAmelCase ) , tf.convert_to_tensor(__lowerCAmelCase ) , return_tensors="""tf""" , )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
lowercase = [np.ones((1, 3, 5, 5) )]
lowercase = processor.post_process_masks(
__lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
lowercase = processor.post_process_masks(
__lowerCAmelCase , np.array(__lowerCAmelCase ) , np.array(__lowerCAmelCase ) , return_tensors="""tf""" )
@require_vision
@require_torchvision
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = tempfile.mkdtemp()
lowercase = SamImageProcessor()
lowercase = SamProcessor(__lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor
def A__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def A__ ( self ):
"""simple docstring"""
lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowercase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = SamProcessor(image_processor=__lowerCAmelCase )
lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
lowercase = [tf.convert_to_tensor(__lowerCAmelCase )]
lowercase = [torch.tensor(__lowerCAmelCase )]
lowercase = [[1764, 2646]]
lowercase = [[683, 1024]]
lowercase = processor.post_process_masks(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors="""tf""" )
lowercase = processor.post_process_masks(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , return_tensors="""pt""" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = SamProcessor(image_processor=__lowerCAmelCase )
lowercase = self.prepare_image_inputs()
lowercase = image_processor(__lowerCAmelCase , return_tensors="""pt""" )["""pixel_values"""].numpy()
lowercase = processor(images=__lowerCAmelCase , return_tensors="""pt""" )["""pixel_values"""].numpy()
lowercase = image_processor(__lowerCAmelCase , return_tensors="""tf""" )["""pixel_values"""].numpy()
lowercase = processor(images=__lowerCAmelCase , return_tensors="""tf""" )["""pixel_values"""].numpy()
self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) )
self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) )
self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) )
| 32
|
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any ) -> Dict:
'''simple docstring'''
lowercase = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ )
return new.join(lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() )
def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> List[str]:
'''simple docstring'''
lowercase = {}
lowercase = ["""group_1""", """group_2""", """group_3""", """group_4"""]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
lowercase = key.replace(f'{group_key}.' , f'{group_key}.group.' )
if "res_path" in key:
lowercase = key.replace("""res_path.""" , """res_path.path.""" )
if key.endswith(""".w""" ):
lowercase = rreplace(lowerCAmelCase__ , """.w""" , """.weight""" , 1 )
if key.endswith(""".b""" ):
lowercase = rreplace(lowerCAmelCase__ , """.b""" , """.bias""" , 1 )
lowercase = value.float()
return upgrade
@torch.no_grad()
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Any=True ) -> Any:
'''simple docstring'''
from dall_e import Encoder
lowercase = Encoder()
if os.path.exists(lowerCAmelCase__ ):
lowercase = torch.load(lowerCAmelCase__ )
else:
lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase = ckpt.state_dict()
encoder.load_state_dict(lowerCAmelCase__ )
if config_path is not None:
lowercase = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ )
else:
lowercase = FlavaImageCodebookConfig()
lowercase = FlavaImageCodebook(lowerCAmelCase__ ).eval()
lowercase = encoder.state_dict()
lowercase = upgrade_state_dict(lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
lowercase = hf_model.state_dict()
lowercase = count_parameters(lowerCAmelCase__ )
lowercase = count_parameters(lowerCAmelCase__ )
assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(lowerCAmelCase__ )
else:
return hf_state_dict
if __name__ == "__main__":
__lowerCAmelCase : Tuple =argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
__lowerCAmelCase : Any =parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 32
| 1
|
"""simple docstring"""
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def UpperCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
lowercase = HfArgumentParser(lowerCAmelCase__ )
lowercase = parser.parse_args_into_dataclasses()[0]
lowercase = TensorFlowBenchmark(args=lowerCAmelCase__ )
try:
lowercase = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
lowercase = """Arg --no_{0} is no longer used, please use --no-{0} instead."""
lowercase = """ """.join(str(lowerCAmelCase__ ).split(""" """ )[:-1] )
lowercase = """"""
lowercase = eval(str(lowerCAmelCase__ ).split(""" """ )[-1] )
lowercase = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
lowercase = full_error_msg + begin_error_msg + str(lowerCAmelCase__ )
raise ValueError(lowerCAmelCase__ )
benchmark.run()
if __name__ == "__main__":
main()
| 32
|
"""simple docstring"""
import enum
import shutil
import sys
__lowerCAmelCase , __lowerCAmelCase : List[str] =shutil.get_terminal_size()
__lowerCAmelCase : Union[str, Any] ={"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""}
class _A ( enum.Enum ):
snake_case__ : Tuple = 0
snake_case__ : List[str] = 1
def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]="" ) -> List[Any]:
'''simple docstring'''
sys.stdout.write(str(lowerCAmelCase__ ) + end )
sys.stdout.flush()
def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any]="" ) -> Optional[Any]:
'''simple docstring'''
forceWrite(f'\u001b[{color}m{content}\u001b[0m' , lowerCAmelCase__ )
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
forceWrite("""\r""" )
def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[Any]:
'''simple docstring'''
forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' )
def UpperCAmelCase__ ( ) -> int:
'''simple docstring'''
forceWrite(""" """ * TERMINAL_WIDTH )
reset_cursor()
def UpperCAmelCase__ ( ) -> Dict:
'''simple docstring'''
reset_cursor()
forceWrite("""-""" * TERMINAL_WIDTH )
| 32
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase : Optional[int] ={
"""configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[str] =["""MobileViTFeatureExtractor"""]
__lowerCAmelCase : Dict =["""MobileViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Dict =[
"""MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MobileViTForImageClassification""",
"""MobileViTForSemanticSegmentation""",
"""MobileViTModel""",
"""MobileViTPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Union[str, Any] =[
"""TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFMobileViTForImageClassification""",
"""TFMobileViTForSemanticSegmentation""",
"""TFMobileViTModel""",
"""TFMobileViTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> int:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("""only integers accepted as input""" )
else:
lowercase = str(abs(lowerCAmelCase__ ) )
lowercase = [list(lowerCAmelCase__ ) for char in range(len(lowerCAmelCase__ ) )]
for index in range(len(lowerCAmelCase__ ) ):
num_transpositions[index].pop(lowerCAmelCase__ )
return max(
int("""""".join(list(lowerCAmelCase__ ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 32
| 1
|
"""simple docstring"""
from typing import Any
class _A :
def __init__( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = data
lowercase = None
class _A :
def __init__( self ):
"""simple docstring"""
lowercase = None
def A__ ( self ):
"""simple docstring"""
lowercase = self.head
while temp is not None:
print(temp.data , end=""" """ )
lowercase = temp.next
print()
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = Node(__lowerCAmelCase )
lowercase = self.head
lowercase = new_node
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if node_data_a == node_data_a:
return
else:
lowercase = self.head
while node_a is not None and node_a.data != node_data_a:
lowercase = node_a.next
lowercase = self.head
while node_a is not None and node_a.data != node_data_a:
lowercase = node_a.next
if node_a is None or node_a is None:
return
lowercase , lowercase = node_a.data, node_a.data
if __name__ == "__main__":
__lowerCAmelCase : Tuple =LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print("""After swapping""")
ll.print_list()
| 32
|
"""simple docstring"""
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
__lowerCAmelCase : List[Any] =numpy.array([0, 0])
__lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254])
__lowerCAmelCase : List[Any] =numpy.array([1, 0])
__lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]:
'''simple docstring'''
lowercase = initial_vectors
for _ in range(lowerCAmelCase__ ):
lowercase = iteration_step(lowerCAmelCase__ )
return vectors
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]:
'''simple docstring'''
lowercase = []
for i, start_vector in enumerate(vectors[:-1] ):
lowercase = vectors[i + 1]
new_vectors.append(lowerCAmelCase__ )
lowercase = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray:
'''simple docstring'''
lowercase = numpy.radians(lowerCAmelCase__ )
lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ )
lowercase = numpy.array(((c, -s), (s, c)) )
return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None:
'''simple docstring'''
lowercase = plt.gca()
axes.set_aspect("""equal""" )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
lowercase , lowercase = zip(*lowerCAmelCase__ )
plt.plot(lowerCAmelCase__ , lowerCAmelCase__ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 32
| 1
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__)
__lowerCAmelCase : List[Any] ={
"""microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""",
"""microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""",
}
class _A ( lowerCAmelCase ):
snake_case__ : str = 'markuplm'
def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=256 , __lowerCAmelCase=1024 , __lowerCAmelCase=216 , __lowerCAmelCase=1001 , __lowerCAmelCase=32 , __lowerCAmelCase=50 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(
pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
lowercase = vocab_size
lowercase = hidden_size
lowercase = num_hidden_layers
lowercase = num_attention_heads
lowercase = hidden_act
lowercase = intermediate_size
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = max_position_embeddings
lowercase = type_vocab_size
lowercase = initializer_range
lowercase = layer_norm_eps
lowercase = position_embedding_type
lowercase = use_cache
lowercase = classifier_dropout
# additional properties
lowercase = max_depth
lowercase = max_xpath_tag_unit_embeddings
lowercase = max_xpath_subs_unit_embeddings
lowercase = tag_pad_id
lowercase = subs_pad_id
lowercase = xpath_unit_hidden_size
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = credit_card_number
lowercase = 0
lowercase = len(lowerCAmelCase__ ) - 2
for i in range(lowerCAmelCase__ , -1 , -2 ):
# double the value of every second digit
lowercase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 1_0
digit += 1
lowercase = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 1_0 == 0
def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> bool:
'''simple docstring'''
lowercase = f'{credit_card_number} is an invalid credit card number because'
if not credit_card_number.isdigit():
print(f'{error_message} it has nonnumerical characters.' )
return False
if not 1_3 <= len(lowerCAmelCase__ ) <= 1_6:
print(f'{error_message} of its length.' )
return False
if not validate_initial_digits(lowerCAmelCase__ ):
print(f'{error_message} of its first two digits.' )
return False
if not luhn_validation(lowerCAmelCase__ ):
print(f'{error_message} it fails the Luhn check.' )
return False
print(f'{credit_card_number} is a valid credit card number.' )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("""4111111111111111""")
validate_credit_card_number("""32323""")
| 32
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__lowerCAmelCase : List[Any] =logging.get_logger(__name__)
__lowerCAmelCase : str ={
"""Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""",
# See all Marian models at https://huggingface.co/models?filter=marian
}
class _A ( lowerCAmelCase ):
snake_case__ : Any = 'marian'
snake_case__ : List[str] = ['past_key_values']
snake_case__ : int = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __lowerCAmelCase=5_8101 , __lowerCAmelCase=None , __lowerCAmelCase=1024 , __lowerCAmelCase=12 , __lowerCAmelCase=4096 , __lowerCAmelCase=16 , __lowerCAmelCase=12 , __lowerCAmelCase=4096 , __lowerCAmelCase=16 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="gelu" , __lowerCAmelCase=1024 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=5_8100 , __lowerCAmelCase=False , __lowerCAmelCase=5_8100 , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=True , **__lowerCAmelCase , ):
"""simple docstring"""
lowercase = vocab_size
lowercase = decoder_vocab_size or vocab_size
lowercase = max_position_embeddings
lowercase = d_model
lowercase = encoder_ffn_dim
lowercase = encoder_layers
lowercase = encoder_attention_heads
lowercase = decoder_ffn_dim
lowercase = decoder_layers
lowercase = decoder_attention_heads
lowercase = dropout
lowercase = attention_dropout
lowercase = activation_dropout
lowercase = activation_function
lowercase = init_std
lowercase = encoder_layerdrop
lowercase = decoder_layerdrop
lowercase = use_cache
lowercase = encoder_layers
lowercase = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , forced_eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
class _A ( lowerCAmelCase ):
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def A__ ( self ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
lowercase = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
lowercase = {0: """batch"""}
lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
lowercase = {0: """batch""", 1: """decoder_sequence"""}
lowercase = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(__lowerCAmelCase , direction="""inputs""" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowercase = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
lowercase , lowercase = self.num_layers
for i in range(__lowerCAmelCase ):
lowercase = {0: """batch""", 2: """past_sequence + sequence"""}
lowercase = {0: """batch""", 2: """past_sequence + sequence"""}
else:
lowercase = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}),
("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def A__ ( self ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
lowercase = super().outputs
else:
lowercase = super(__lowerCAmelCase , self ).outputs
if self.use_past:
lowercase , lowercase = self.num_layers
for i in range(__lowerCAmelCase ):
lowercase = {0: """batch""", 2: """past_sequence + sequence"""}
lowercase = {0: """batch""", 2: """past_sequence + sequence"""}
return common_outputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ):
"""simple docstring"""
lowercase = self._generate_dummy_inputs_for_encoder_and_decoder(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Generate decoder inputs
lowercase = seq_length if not self.use_past else 1
lowercase = self._generate_dummy_inputs_for_encoder_and_decoder(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowercase = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
lowercase = dict(**__lowerCAmelCase , **__lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowercase , lowercase = common_inputs["""input_ids"""].shape
lowercase = common_inputs["""decoder_input_ids"""].shape[1]
lowercase , lowercase = self.num_attention_heads
lowercase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowercase = decoder_seq_length + 3
lowercase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowercase = torch.cat(
[common_inputs["""decoder_attention_mask"""], torch.ones(__lowerCAmelCase , __lowerCAmelCase )] , dim=1 )
lowercase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowercase , lowercase = self.num_layers
lowercase = min(__lowerCAmelCase , __lowerCAmelCase )
lowercase = max(__lowerCAmelCase , __lowerCAmelCase ) - min_num_layers
lowercase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder"""
for _ in range(__lowerCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCAmelCase ),
torch.zeros(__lowerCAmelCase ),
torch.zeros(__lowerCAmelCase ),
torch.zeros(__lowerCAmelCase ),
) )
# TODO: test this.
lowercase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape
for _ in range(__lowerCAmelCase , __lowerCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) )
return common_inputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ):
"""simple docstring"""
lowercase = self._generate_dummy_inputs_for_encoder_and_decoder(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowercase , lowercase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowercase = seqlen + 2
lowercase , lowercase = self.num_layers
lowercase , lowercase = self.num_attention_heads
lowercase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowercase = common_inputs["""attention_mask"""].dtype
lowercase = torch.cat(
[common_inputs["""attention_mask"""], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 )
lowercase = [
(torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(__lowerCAmelCase )
]
return common_inputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ):
"""simple docstring"""
lowercase = compute_effective_axis_dimension(
__lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowercase = tokenizer.num_special_tokens_to_add(__lowerCAmelCase )
lowercase = compute_effective_axis_dimension(
__lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
lowercase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size
lowercase = dict(tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) )
return common_inputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase )
else:
lowercase = self._generate_dummy_inputs_for_causal_lm(
__lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase )
return common_inputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if self.task in ["default", "seq2seq-lm"]:
lowercase = super()._flatten_past_key_values_(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
lowercase = super(__lowerCAmelCase , self )._flatten_past_key_values_(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
@property
def A__ ( self ):
"""simple docstring"""
return 1E-4
| 32
|
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def A__ ( self ):
"""simple docstring"""
lowercase = 1
lowercase = 3
lowercase = (32, 32)
lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase )
return image
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def A__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(__lowerCAmelCase )
@property
def A__ ( self ):
"""simple docstring"""
def extract(*__lowerCAmelCase , **__lowerCAmelCase ):
class _A :
def __init__( self ):
"""simple docstring"""
lowercase = torch.ones([0] )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
self.pixel_values.to(__lowerCAmelCase )
return self
return Out()
return extract
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase = self.dummy_cond_unet
lowercase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
lowercase = output.images
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase = self.dummy_cond_unet
lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe([prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
lowercase = output.images
lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCAmelCase , )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCAmelCase )
assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
assert isinstance(pipe.scheduler , __lowerCAmelCase )
assert pipe.safety_checker is None
lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCAmelCase )
lowercase = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def A__ ( self ):
"""simple docstring"""
lowercase = self.dummy_cond_unet
lowercase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase )
lowercase = self.dummy_vae
lowercase = self.dummy_text_encoder
lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
lowercase = unet.half()
lowercase = vae.half()
lowercase = bert.half()
# make sure here that pndm scheduler skips prk
lowercase = StableDiffusionPipeline(
unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """A painting of a squirrel eating a burger"""
lowercase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase )
lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
lowercase = 40_0366_0346
lowercase = 7
# without safety guidance (sld_guidance_scale = 0)
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCAmelCase )
lowercase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = """padme amidala taking a bath artwork, safe for work, no nudity"""
lowercase = 27_3497_1755
lowercase = 7
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self ):
"""simple docstring"""
lowercase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
lowercase = sd_pipe.to(__lowerCAmelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase )
lowercase = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
lowercase = 10_4435_5234
lowercase = 12
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
lowercase = torch.manual_seed(__lowerCAmelCase )
lowercase = sd_pipe(
[prompt] , generator=__lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowercase = output.images
lowercase = image[0, -3:, -3:, -1]
lowercase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 32
| 1
|
"""simple docstring"""
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
__lowerCAmelCase : int =logging.get_logger(__name__)
class _A ( lowerCAmelCase ):
snake_case__ : Tuple = 'AutoTokenizer'
snake_case__ : Optional[Any] = ['tokenizer']
snake_case__ : Union[str, Any] = {
'semantic_prompt': 1,
'coarse_prompt': 2,
'fine_prompt': 2,
}
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=None ):
"""simple docstring"""
super().__init__(__lowerCAmelCase )
lowercase = speaker_embeddings
@classmethod
def A__ ( cls , __lowerCAmelCase , __lowerCAmelCase="speaker_embeddings_path.json" , **__lowerCAmelCase ):
"""simple docstring"""
if speaker_embeddings_dict_path is not None:
lowercase = get_file_from_repo(
__lowerCAmelCase , __lowerCAmelCase , subfolder=kwargs.pop("""subfolder""" , __lowerCAmelCase ) , cache_dir=kwargs.pop("""cache_dir""" , __lowerCAmelCase ) , force_download=kwargs.pop("""force_download""" , __lowerCAmelCase ) , proxies=kwargs.pop("""proxies""" , __lowerCAmelCase ) , resume_download=kwargs.pop("""resume_download""" , __lowerCAmelCase ) , local_files_only=kwargs.pop("""local_files_only""" , __lowerCAmelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , __lowerCAmelCase ) , revision=kwargs.pop("""revision""" , __lowerCAmelCase ) , )
if speaker_embeddings_path is None:
logger.warning(
f'`{os.path.join(__lowerCAmelCase , __lowerCAmelCase )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' )
lowercase = None
else:
with open(__lowerCAmelCase ) as speaker_embeddings_json:
lowercase = json.load(__lowerCAmelCase )
else:
lowercase = None
lowercase = AutoTokenizer.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
return cls(tokenizer=__lowerCAmelCase , speaker_embeddings=__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase="speaker_embeddings_path.json" , __lowerCAmelCase="speaker_embeddings" , __lowerCAmelCase = False , **__lowerCAmelCase , ):
"""simple docstring"""
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(__lowerCAmelCase , __lowerCAmelCase , """v2""" ) , exist_ok=__lowerCAmelCase )
lowercase = {}
lowercase = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
lowercase = self._load_voice_preset(__lowerCAmelCase )
lowercase = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["""repo_or_path"""] , __lowerCAmelCase , f'{prompt_key}_{key}' ) , voice_preset[key] , allow_pickle=__lowerCAmelCase , )
lowercase = os.path.join(__lowerCAmelCase , f'{prompt_key}_{key}.npy' )
lowercase = tmp_dict
with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" ) as fp:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
super().save_pretrained(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase = None , **__lowerCAmelCase ):
"""simple docstring"""
lowercase = self.speaker_embeddings[voice_preset]
lowercase = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' )
lowercase = get_file_from_repo(
self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , __lowerCAmelCase ) , cache_dir=kwargs.pop("""cache_dir""" , __lowerCAmelCase ) , force_download=kwargs.pop("""force_download""" , __lowerCAmelCase ) , proxies=kwargs.pop("""proxies""" , __lowerCAmelCase ) , resume_download=kwargs.pop("""resume_download""" , __lowerCAmelCase ) , local_files_only=kwargs.pop("""local_files_only""" , __lowerCAmelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , __lowerCAmelCase ) , revision=kwargs.pop("""revision""" , __lowerCAmelCase ) , )
if path is None:
raise ValueError(
f'`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' )
lowercase = np.load(__lowerCAmelCase )
return voice_preset_dict
def A__ ( self , __lowerCAmelCase = None ):
"""simple docstring"""
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f'Voice preset unrecognized, missing {key} as a key.' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(f'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(f'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' )
def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="pt" , __lowerCAmelCase=256 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , **__lowerCAmelCase , ):
"""simple docstring"""
if voice_preset is not None and not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
if (
isinstance(__lowerCAmelCase , __lowerCAmelCase )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
lowercase = self._load_voice_preset(__lowerCAmelCase )
else:
if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not voice_preset.endswith(""".npz""" ):
lowercase = voice_preset + """.npz"""
lowercase = np.load(__lowerCAmelCase )
if voice_preset is not None:
self._validate_voice_preset_dict(__lowerCAmelCase , **__lowerCAmelCase )
lowercase = BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
lowercase = self.tokenizer(
__lowerCAmelCase , return_tensors=__lowerCAmelCase , padding="""max_length""" , max_length=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , )
if voice_preset is not None:
lowercase = voice_preset
return encoded_text
| 32
|
"""simple docstring"""
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list[list]:
'''simple docstring'''
lowercase = current_set.copy()
for row_index, row in enumerate(lowerCAmelCase__ ):
lowercase = row[0]
for column_index, column in enumerate(lowerCAmelCase__ ):
if magnitude == 0:
lowercase = column
continue
lowercase = column / magnitude
# Subtract to cancel term
lowercase = current_set[0]
lowercase = [first_row]
lowercase = current_set[1::]
for row in current_set:
lowercase = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(lowerCAmelCase__ )
continue
for column_index in range(len(lowerCAmelCase__ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(lowerCAmelCase__ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
lowercase = final_set[0]
lowercase = []
lowercase = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
lowercase = simplify(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , lowerCAmelCase__ )
lowercase = resultant
return final_set
def UpperCAmelCase__ ( lowerCAmelCase__ :list[list] ) -> list:
'''simple docstring'''
if len(lowerCAmelCase__ ) == 0:
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
lowercase = len(lowerCAmelCase__ ) + 1
if any(len(lowerCAmelCase__ ) != _length for item in equations ):
raise IndexError("""solve_simultaneous() requires n lists of length n+1""" )
for row in equations:
if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ):
raise ValueError("""solve_simultaneous() requires lists of integers""" )
if len(lowerCAmelCase__ ) == 1:
return [equations[0][-1] / equations[0][0]]
lowercase = equations.copy()
if any(0 in row for row in data_set ):
lowercase = data_set.copy()
lowercase = []
for row_index, row in enumerate(lowerCAmelCase__ ):
if 0 not in row:
lowercase = data_set.pop(lowerCAmelCase__ )
break
if not full_row:
raise ValueError("""solve_simultaneous() requires at least 1 full equation""" )
data_set.insert(0 , lowerCAmelCase__ )
lowercase = data_set.copy()
lowercase = simplify(lowerCAmelCase__ )
lowercase = simplified[::-1]
lowercase = []
for row in simplified:
lowercase = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
lowercase = row.copy()[: len(lowerCAmelCase__ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(lowerCAmelCase__ ) == 0:
solutions.append(0 )
continue
lowercase = temp_row[1::]
lowercase = temp_row[::-1]
for column_index, column in enumerate(lowerCAmelCase__ ):
current_solution -= column * solutions[column_index]
solutions.append(lowerCAmelCase__ )
lowercase = []
for item in solutions:
final.append(float(round(lowerCAmelCase__ , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : List[str] =[
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 32
| 1
|
"""simple docstring"""
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__lowerCAmelCase : Optional[Any] =4
__lowerCAmelCase : int =3
class _A ( lowerCAmelCase ):
pass
def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> str:
'''simple docstring'''
for shard in shards:
for i in range(lowerCAmelCase__ ):
yield {"i": i, "shard": shard}
def UpperCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
lowercase = int(os.environ["""RANK"""] )
lowercase = int(os.environ["""WORLD_SIZE"""] )
lowercase = ArgumentParser()
parser.add_argument("""--streaming""" , type=lowerCAmelCase__ )
parser.add_argument("""--local_rank""" , type=lowerCAmelCase__ )
parser.add_argument("""--num_workers""" , type=lowerCAmelCase__ , default=0 )
lowercase = parser.parse_args()
lowercase = args.streaming
lowercase = args.num_workers
lowercase = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]}
lowercase = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ )
if not streaming:
lowercase = Dataset.from_list(list(lowerCAmelCase__ ) )
lowercase = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ )
lowercase = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ )
lowercase = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
lowercase = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 32
|
"""simple docstring"""
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase )
class _A ( lowerCAmelCase ):
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def A__ ( self , __lowerCAmelCase=None ):
"""simple docstring"""
lowercase = {}
if top_k is not None:
lowercase = top_k
return {}, {}, postprocess_params
def __call__( self , __lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return super().__call__(__lowerCAmelCase , **__lowerCAmelCase )
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = load_image(__lowerCAmelCase )
lowercase = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework )
return model_inputs
def A__ ( self , __lowerCAmelCase ):
"""simple docstring"""
lowercase = self.model(**__lowerCAmelCase )
return model_outputs
def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
lowercase = self.model.config.num_labels
if self.framework == "pt":
lowercase = model_outputs.logits.softmax(-1 )[0]
lowercase , lowercase = probs.topk(__lowerCAmelCase )
elif self.framework == "tf":
lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0]
lowercase = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase )
lowercase , lowercase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
lowercase = scores.tolist()
lowercase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
| 32
| 1
|
"""simple docstring"""
from __future__ import annotations
def UpperCAmelCase__ ( lowerCAmelCase__ :list , lowerCAmelCase__ :int | None = None , lowerCAmelCase__ :int | None = None ) -> None:
'''simple docstring'''
if start is None:
lowercase = 0
if end is None:
lowercase = len(_UpperCAmelCase ) - 1
if start >= end:
return
lowercase = (start + end) // 2
slowsort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
slowsort(_UpperCAmelCase , mid + 1 , _UpperCAmelCase )
if sequence[end] < sequence[mid]:
lowercase = sequence[mid], sequence[end]
slowsort(_UpperCAmelCase , _UpperCAmelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 350
|
"""simple docstring"""
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"""The `image_to_image.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionImg2ImgPipeline` instead."""
)
| 32
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.